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Abstract - A Particle Swarm Optimization Toolbox (PSOt) for 
use with the Matlab scientific programming environment has 
been developed. PSO is introduced briefly and then the use of 
the toolbox is explained with some examples. A link to 
downloadable code is provided. 
 

I. GENERAL INFORMATION 
 
A. Particle Swarm Optimization Toolbox (PSOt), Summary of 
Included Files 
 
Main files:  

1) PSO – finds min/max of arbitrary MISO functions 
using PSO 

2) trainPSO – Function to train neural nets using PSO 
3) tpso1,2,3 – called by trainPSO for training 0 hidden 

layer, 1 hidden layer, and 2 hidden layer ANNs 
respectively. 

 
Support files: 

4) wrapmat – convert vector(s) into matrix(ces) 
5) unwrapmat –  convert any 2d matrix(ces) into a row 

vector(s) 
6) normalize – takes a 2D matrix and reformats it to 

any specified range 
7) goplotpso – called by trainpso for graphical display 

during training 
 
Demo and miscellaneous files: 

8) DemoTrainPSO – shows an example of using PSO 
to train a neural net to the XOR function 

9) f6 – Schaffer’s f6 function 
10) hypara – 4 dimensional hyperbolic paraboloid 

function  
11) hypara2 – 8 dimensional hyperbolic paraboloid 

function 
 
The toolbox may be downloaded freely as a self extracting 
zipfile from: http://www4.ncsu.edu/~bkbirge/PSO/PSOt.exe 
 
B. Introduction 
 
With the growth of more mainstream interest in 
computational intelligence algorithms applied to real-world 
engineering problems there is a need to build tools that can be 
used in a wide variety of environments, from classroom to 
field. Particle Swarm Optimization (PSO) is one recent 
technique that has been used with great success in the 

Computational Intelligence arena. With the Particle Swarm 
Optimization Toolbox (PSOt), users can apply the algorithm 
to their problem without having to write their own PSO code 
or really even understand much about PSO. Users can train 
an Artificial Neural Network (ANN) with PSO and/or apply 
PSO to their more general problem.  
 
This paper originally came out of an effort to replace standard 
backpropagation trained ANNs with PSO in order to make 
better ANNs and was inspired by the freely available Matlab 
implementation of a Genetic Algorithm function optimizer by 
Houck, Joines, and Kay referenced at the end of this paper 
[3]. 
 
It is hoped this suite of programs will be useful to classroom 
lecturers wishing to add a PSO unit as well as fellow 
researchers in Computational Intelligence. 
 
C. Matlab 
 
Matlab is a scientific computing language developed by 
Mathworks that is run in interpreter mode on a wide variety 
of operating systems. It is extremely powerful, simple to use, 
and can be found in most research and engineering 
environments. It gets more powerful and specialized with the 
addition of ‘toolboxes’, additional functions added to the 
Matlab environment by various developers for specific tasks 
or fie lds. For example, the Neural Net toolbox adds functions 
that allow one to develop ANNs and the Control System 
toolbox includes many traditional engineering controls 
functions. The PSOt aims to add not only stand alone 
function optimization using PSO but also the ability to 
interface easily with the Neural Net toolbox, training ANNs 
with PSO rather than backpropagation. The reader is 
expected to have a basic understanding of Matlab to use the 
PSOt. Please refer to the appropriate Matlab documentation 
to understand the code syntax examples [6]. 
 
D. Particle Swarm Optimization (PSO) 
 
Inspired initially by flocking birds, Particle Swarm 
Optimization (PSO) is another form of Evolutionary 
Computation and is stochastic in nature much like Genetic 
Algorithms. Instead of a constantly dying and mutating GA 
population we have a set number of particles that fly through 
the hyperspace of the problem. A minimization (or 
maximization) of the problem topology is found both by a 
particle remembering its own past best position and the entire 



group’s (or flock’s, or swarm’s) best overall position. This 
algorithm has been shown to have GA like advantages 
without the big computational hit.  
 
The PSO algorithm is based on the concept that complex 
behavior follows from a few simple rules [5].  
 
The intricacies of the algorithm are briefly outlined here. For 
more details and discussion see the references, especially [4], 
[5], and [8]. 
 

II. TECHNICAL INFORMATION 
 
A. PSO Algorithm 
 
The Basic PSO algorithm consists of the velocity and 
position equations: 
  

( ) ( ) ( )( ) ( )( )1 1 2v k v k p x k G x ki i i i i i iγ γ+ = + − + −     (1) 

 
( ) ( ) ( )1 1x k x k v ki i i+ = + +     (2) 

 
i – particle index 
k – discrete time index 
v – velocity of ith particle 
x – position of ith particle 
p – best position found by ith particle (personal best) 
G – best position found by swarm (global best, best of 
personal bests ) 
γ1,2 – random numbers on the interval [0,1] applied to ith 
particle 
 
The most used PSO form is to include an inertia term and 
acceleration constants , hence the Common PSO algorithm: 
 

( )1v ki + =  

( ) ( ) ( )( ) ( )( )1 21 2k v k p x k G x ki i i i iiφ α γ α γ   + − + −     (3) 

 
φ - Inertia function 
α1,2 – Acceleration constants  
 
The inertia function is commonly either taken as a constant 
1.4 or as a decreasing linear function in k from 0.9 to 0.4. As 
training progresses using a linear inertia function, the 
influence of past velocity becomes smaller. 
 
Reference [8] shows the acceleration constants are most 
commonly set to both equal 2.  
 
There are also a few more important parameters. These are 
initial positions of particles (init ial weights when training a 
neural net), the maximum velocity bounds, and number of 
particles in the swarm.  

B. Development/Program Usage 
 
The set of programs that comprise the PSOt are designed with 
two purposes in mind. The first purpose is to act as a 
standalone function optimizer. The second purpose is to 
replace backpropagation with PSO during neural net training. 
 
C. Finding global min/max of MISO function using PSO 
 
The first goal is achieved with the Matlab script ‘PSO.m’. It 
is very simple to use but can be very flexible as well. The 
function only works with single input single output (SISO) or 
multi-input single output (MISO) functions that need all the 
input space searched. It will work with any size dimension of 
input space, the toolbox miscellaneous functions include 2D, 
3D, and 7D functions to experiment with. The PSO function 
can either minimize or maximize the target function. The 
basic syntax can be found by typing ‘help PSO’. 
 

TABLE I 
MATLAB OUTPUT FOR TYPING ‘HELP PSO’ 

 
%[optOUT]=PSO(functname,D), or: 
%[optOUT,tr,te]= 
%        PSO(functname,D,VarRange,minmax,PSOparams) 
% 
%Inputs: 
% functname– 
%   name (string) of matlab function to optimize 
% D- 
%   # of inputs to the function (problem dimension) 
% 
%Optional Inputs: 
% VarRange- 
%  matrix of ranges for input variable, 
%  default -100 to 100, form: 
%       [ min1 max1  
%         min2 max2 
%            ... 
%         minD maxD ] 
% 
% minmax- 
%  if 0 then funct is minimized 
%  if 1 then funct maximized, default=0 
 
The ‘PSOparams’ option is where the PSO specific 
parameters can be changed. 
 

TABLE II 
‘PSO.M’ PARAMETERS 

 
%PSOparams - PSO parameters 
% 
%P(1)- 
%  Epochs between updating display, 
%  works with P(13), default = 25. 
% 
%P(2)- 
%  Maximum number of iterations (epochs) to train, 
%  default = 2000. 
% 
%P(3)- 
%  population size, default = 20 



%P(4)- 
%  maximum particle velocity, default = 4 
% 
%P(5)- 
%  acceleration const #1 (local best influence),  
%  default = 2 
% 
%P(6)- 
%  acceleration const #2 (global best influence),  
%  default = 2 
% 
%P(7)- 
%  Initial inertia weight, default = 0.9 
% 
%P(8)- 
%  Final inertia weight, default = 0.2 
% 
%P(9)- 
%  Epoch by which inertial weight = final value,  
%  default = 1500 
% 
%P(10)- 
%  randomization flag, 
%   = 0, random for each epoch 
%   = 1, random for each particle at each epoch 
%   = 2, random for each dimension of each particle  
%        at each epoch 
% 
%P(11)- 
%  minimum global error gradient, 
%   if abs(Gbest(i+1)-Gbest(i)) < gradient over  
%   certain length of epochs, terminate run,  
%   default = 1e-9 
% 
%P(12)- 
%  epochs before error gradient criterion  
%  terminates run, default = 50 
% 
%P(13)- 
%  plot flag, shows progress display if =1, 
%  default = 1 
 
The output of the function is returned as a column vector of 
the final global best position. The last entry in the vector is 
the global best value. Optional outputs are the # of epochs it 
took to reach consensus that optimization had occurred and 
the value of global best as a function of epoch. 
 
A simple example would be to find the minimum of the sine 
function from 0 to π/2: 
 

pso(‘sin’,1,[0,pi/2],0) 
 
The name of the function is surrounded by single quotes, the 
dimension of the problem is 1 (only one input so only one 
searchable dimension), the range is from 0 to π/2, and the 
minmax flag is set to 0 indicating we want to find the 
minimum.  
 
Naturally we expect it to return the column vector [0,0]’ 
which it does. It finds it after 1 epoch (iteration) of the 
algorithm but doesn’t stop looking until 50 epochs have gone 
by  with no change in the best global position. That can be 
changed with P(12).  

 
A more interesting example is the Schaffer f6 function. The 
function has 2 inputs and one output and looks like a still shot 
of a pebble dropped into water. It has circular ripples that die 
out as the radius increases. It has a known global minimum at 
x,y = 0 and the maximum is the first ‘ripple’ around the 
origin. It has lots of local minimums and maximums making 
it a good test function for the algorithm.   
 
Running the PSO function to find the minimum bound by -
100 = x,y = 100 gives the following table. 
 

TABLE III 
FINDING THE MINIMUM OF THE ‘F6’ FUNCTION 

 
>> pso('f6',2,[-100,100;-100,100],0) 
PSO: 1/2000 iterations, GBest = 0.499643. 
PSO: 26/2000 iterations, GBest = 0.0858499. 
PSO: 51/2000 iterations, GBest = 0.00197516. 
PSO: 76/2000 iterations, GBest = 0.00197516. 
PSO: 89/2000 iterations, GBest = 0.00197516. 
  
***** global error gradient too small for too long 
***** this means you've got the solution or it got 
stuck 
ans = 
   -4.400531404313024e-002 
    4.527939759978006e-003 
    1.975158000277422e-003 

 
FIGURE I 

USING ‘PSO.M’ TO FIND MINIMUM OF ‘F6’ 
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Running the ‘PSO.m’ function to find the maximum of f6 
with the same bounds yields the following table. 
 

TABLE IV 
FINDING THE MAXIMUM OF THE ‘F6’ FUNCTION 

 
>> pso('f6',2,[-100,100;-100,100],1) 
PSO: 1/2000 iterations, GBest = 0.500179. 
PSO: 26/2000 iterations, GBest = 0.973786. 



PSO: 51/2000 iterations, GBest = 0.976315. 
PSO: 76/2000 iterations, GBest = 0.976362. 
PSO: 101/2000 iterations, GBest = 0.976432. 
PSO: 126/2000 iterations, GBest = 0.976432. 
PSO: 145/2000 iterations, GBest = 0.976432. 
  
***** global error gradient too small for too long 
***** this means you've got the solution or it got 
stuck 
ans = 
   -1.399320469183342e+000 
    6.794290702799257e-001 
    9.764318246838789e-001 
 
For a fun exercise, you can set the maximum velocity 
parameter to a small fraction, such as 0.04 and set the update 
display frequency to do so at every iteration. This will really 
show the behavior of the PSO algorithm, showing the 
particles ‘fly’ towards the global best and explore new areas. 
The reader is encouraged to change all of the parameters 
around and examine the changes in behavior of the PSO. 
 
D. Training Neural Net using PSO 
 
To train a neural net using the PSO algorithm the function 
‘trainPSO.m’ is used. This function requires that the Neural 
Net toolbox be installed for use with your copy of Matlab. 
TrainPSO is modeled after the structure of the Neural Net 
toolbox and can be used interchangeably with the other 
training functions such as TrainBP, TrainLM, etc. The only 
difference is in the training parameters passed to the training 
algorithm. The format of the function is: 
 

[W1,B1,W2,B2,...,TE,TR] = 
TRAINPSO(W1,B1,F1,W2,B2,F2,...,P,T,TP) 

 
W1, W2, W3, B1, B2, B3 are weights and biases for the 
neural net, initially made randomly or with the built in 
initialization function that comes with the Neural Net 
toolbox. F1, F2, F3, are activation function choices such as 
‘logsig’, ‘tansig’, etc. Refer to the Neural Net toolbox 
documentation for more details on those and the other 
parameters [6]. The PSO specific training parameters show 
up in TP. TP is a row vector of 15 values. They cover the 
same ground as the straight PSO function with a couple of 
parameters specific to neural net training. 
 
Typing ‘help trainpso’ yields the training parameter summary 
and is shown in the following table. 
 

TABLE V 
‘TRAINPSO.M’ PARAMETERS 

 
%Training parameters are: 
%TP(1)- 
%  Epochs between updating display, default = 100. 
% 
%TP(2)- 
%  Maximum number of iterations (epochs) to train,  
%  default = 4000. 

% 
%TP(3)- 
%  Error goal, default=0.02. 
% 
%TP(4)- 
%  Population size, default = 20 
% 
%TP(5)- 
%  Maximum particle velocity, default= 4 
% 
%TP(6)- 
%  Acceleration constant #1, default = 2 
% 
%TP(7)- 
%  Acceleration constant #2, default = 2 
% 
%TP(8)- 
%  Initial inertia weight, default = 0.9 
% 
%TP(9)- 
%  Final inertia weight(iwt),default=0.2 
% 
%TP(10)- 
%  Epoch by which inertial weight = final value,  
%  default = 1500 
% 
%TP(11)- 
%  Maximum initial network weight absolute value,  
%  default = 100 
% 
%TP(12)- 
%  Randomization flag, default = 2: 
%   = 0, random for each epoch 
%   = 1, random for each particle at each epoch 
%   = 2, random for each dimension of each particle  
%        at each epoch 
% 
%TP(13)- 
%  Minimum global error gradient 
%     (if SSE(i+1)-SSE(i) < gradient over certain  
%      length of epochs, terminate run,  
%      default = 1e-9 
% 
%TP(14)- 
%  Error gradient criterion terminates run here,  
%  default = 200 
% 
%TP(15)- 
%  Plot flag, if = 1, display is updated 
 
Here is a run of ‘DemoTrainPSO’ where there is one hidden 
layer of 2 neurons (9 dimensional optimization problem). The 
net is trained to approximate the XOR function. It displays 
the evolution of the inertia weight (iwt) over time as well as 
the training error and particle positions. The graph also shows 
the trajectory of the global best position. Only a portion of the 
training is shown. 
 

TABLE VI 
MATLAB OUTPUT FOR ‘DEMOTRAINPSO.M’ 

 
TRAINPSO: 100/1000 epochs,  gbest SSE = 0.428059141 
  mv  = 4,  iwt = 0.8537691795 
TRAINPSO: 125/1000 epochs,  gbest SSE = 
0.3870019042 
  mv  = 4,  iwt = 0.8420947298 



TRAINPSO: 150/1000 epochs,  gbest SSE = 
0.0943753488 
  mv  = 4,  iwt = 0.8304202802 
TRAINPSO: 175/1000 epochs,  gbest SSE = 
0.0943753488 
  mv  = 4,  iwt = 0.8187458306 
TRAINPSO: 200/1000 epochs,  gbest SSE = 
0.0943753488 
  mv  = 4,  iwt = 0.8070713809 
TRAINPSO: 225/1000 epochs,  gbest SSE = 
0.04639357585 
  mv  = 4,  iwt = 0.7953969313 
TRAINPSO: 250/1000 epochs,  gbest SSE = 
0.04454761798 
  mv  = 4,  iwt = 0.7837224817 
*****************************  Reached Goal 
****************** 
TRAINPSO: 256/1000 epochs,  gbest SSE = 
0.01641486174 
  mv  = 4,  iwt = 0.7809206137 
***************************** end of training 
**************** 
 

FIGURE II 
USING ‘TRAINPSO.M’ TO APPROXIMATE XOR 
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E. Conclusion 
 
The suite of functions and programs included with the 
Particle Swarm Optimization Toolbox are useful both in 
researching PSO behavior and in applying PSO to real world 
optimization and computational intelligence problems. The 
PSO algorithms implemented here are computationally 
intensive and are missing some features that would improve 
flexibility and work continues on improvement. As it stands, 
the toolbox allows the researcher/engineer to utilize PSO 
without having to write custom code from the ground up. The 
included comments make the suite easily modified to fit more 
specific types of problems. 
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