
PSOt - a Particle Swarm Optimization Toolbox for use with Matlab

Brian Birge
NCSU, MAE Dept.
726 N. West St., #B
Raleigh, NC 27603

birgeb@bellsouth.net

Abstract - A Particle Swarm Optimization Toolbox (PSOt) for
use with the Matlab scientific programming environment has
been developed. PSO is introduced briefly and then the use of
the toolbox is explained with some examples. A link to
downloadable code is provided.

I. GENERAL INFORMATION

A. Particle Swarm Optimization Toolbox (PSOt), Summary of
Included Files

Main files:

1) PSO – finds min/max of arbitrary MISO functions
using PSO

2) trainPSO – Function to train neural nets using PSO
3) tpso1,2,3 – called by trainPSO for training 0 hidden

layer, 1 hidden layer, and 2 hidden layer ANNs
respectively.

Support files:

4) wrapmat – convert vector(s) into matrix(ces)
5) unwrapmat – convert any 2d matrix(ces) into a row

vector(s)
6) normalize – takes a 2D matrix and reformats it to

any specified range
7) goplotpso – called by trainpso for graphical display

during training

Demo and miscellaneous files:

8) DemoTrainPSO – shows an example of using PSO
to train a neural net to the XOR function

9) f6 – Schaffer’s f6 function
10) hypara – 4 dimensional hyperbolic paraboloid

function
11) hypara2 – 8 dimensional hyperbolic paraboloid

function

The toolbox may be downloaded freely as a self extracting
zipfile from: http://www4.ncsu.edu/~bkbirge/PSO/PSOt.exe

B. Introduction

With the growth of more mainstream interest in
computational intelligence algorithms applied to real-world
engineering problems there is a need to build tools that can be
used in a wide variety of environments, from classroom to
field. Particle Swarm Optimization (PSO) is one recent
technique that has been used with great success in the

Computational Intelligence arena. With the Particle Swarm
Optimization Toolbox (PSOt), users can apply the algorithm
to their problem without having to write their own PSO code
or really even understand much about PSO. Users can train
an Artificial Neural Network (ANN) with PSO and/or apply
PSO to their more general problem.

This paper originally came out of an effort to replace standard
backpropagation trained ANNs with PSO in order to make
better ANNs and was inspired by the freely available Matlab
implementation of a Genetic Algorithm function optimizer by
Houck, Joines, and Kay referenced at the end of this paper
[3].

It is hoped this suite of programs will be useful to classroom
lecturers wishing to add a PSO unit as well as fellow
researchers in Computational Intelligence.

C. Matlab

Matlab is a scientific computing language developed by
Mathworks that is run in interpreter mode on a wide variety
of operating systems. It is extremely powerful, simple to use,
and can be found in most research and engineering
environments. It gets more powerful and specialized with the
addition of ‘toolboxes’, additional functions added to the
Matlab environment by various developers for specific tasks
or fie lds. For example, the Neural Net toolbox adds functions
that allow one to develop ANNs and the Control System
toolbox includes many traditional engineering controls
functions. The PSOt aims to add not only stand alone
function optimization using PSO but also the ability to
interface easily with the Neural Net toolbox, training ANNs
with PSO rather than backpropagation. The reader is
expected to have a basic understanding of Matlab to use the
PSOt. Please refer to the appropriate Matlab documentation
to understand the code syntax examples [6].

D. Particle Swarm Optimization (PSO)

Inspired initially by flocking birds, Particle Swarm
Optimization (PSO) is another form of Evolutionary
Computation and is stochastic in nature much like Genetic
Algorithms. Instead of a constantly dying and mutating GA
population we have a set number of particles that fly through
the hyperspace of the problem. A minimization (or
maximization) of the problem topology is found both by a
particle remembering its own past best position and the entire

group’s (or flock’s, or swarm’s) best overall position. This
algorithm has been shown to have GA like advantages
without the big computational hit.

The PSO algorithm is based on the concept that complex
behavior follows from a few simple rules [5].

The intricacies of the algorithm are briefly outlined here. For
more details and discussion see the references, especially [4],
[5], and [8].

II. TECHNICAL INFORMATION

A. PSO Algorithm

The Basic PSO algorithm consists of the velocity and
position equations:

() () ()() ()()1 1 2v k v k p x k G x ki i i i i i iγ γ+ = + − + − (1)

() () ()1 1x k x k v ki i i+ = + + (2)

i – particle index
k – discrete time index
v – velocity of ith particle
x – position of ith particle
p – best position found by ith particle (personal best)
G – best position found by swarm (global best, best of
personal bests)
γ1,2 – random numbers on the interval [0,1] applied to ith
particle

The most used PSO form is to include an inertia term and
acceleration constants , hence the Common PSO algorithm:

()1v ki + =

() () ()() ()()1 21 2k v k p x k G x ki i i i iiφ α γ α γ + − + − (3)

φ - Inertia function
α1,2 – Acceleration constants

The inertia function is commonly either taken as a constant
1.4 or as a decreasing linear function in k from 0.9 to 0.4. As
training progresses using a linear inertia function, the
influence of past velocity becomes smaller.

Reference [8] shows the acceleration constants are most
commonly set to both equal 2.

There are also a few more important parameters. These are
initial positions of particles (init ial weights when training a
neural net), the maximum velocity bounds, and number of
particles in the swarm.

B. Development/Program Usage

The set of programs that comprise the PSOt are designed with
two purposes in mind. The first purpose is to act as a
standalone function optimizer. The second purpose is to
replace backpropagation with PSO during neural net training.

C. Finding global min/max of MISO function using PSO

The first goal is achieved with the Matlab script ‘PSO.m’. It
is very simple to use but can be very flexible as well. The
function only works with single input single output (SISO) or
multi-input single output (MISO) functions that need all the
input space searched. It will work with any size dimension of
input space, the toolbox miscellaneous functions include 2D,
3D, and 7D functions to experiment with. The PSO function
can either minimize or maximize the target function. The
basic syntax can be found by typing ‘help PSO’.

TABLE I
MATLAB OUTPUT FOR TYPING ‘HELP PSO’

%[optOUT]=PSO(functname,D), or:
%[optOUT,tr,te]=
% PSO(functname,D,VarRange,minmax,PSOparams)
%
%Inputs:
% functname–
% name (string) of matlab function to optimize
% D-
% # of inputs to the function (problem dimension)
%
%Optional Inputs:
% VarRange-
% matrix of ranges for input variable,
% default -100 to 100, form:
% [min1 max1
% min2 max2
% ...
% minD maxD]
%
% minmax-
% if 0 then funct is minimized
% if 1 then funct maximized, default=0

The ‘PSOparams’ option is where the PSO specific
parameters can be changed.

TABLE II
‘PSO.M’ PARAMETERS

%PSOparams - PSO parameters
%
%P(1)-
% Epochs between updating display,
% works with P(13), default = 25.
%
%P(2)-
% Maximum number of iterations (epochs) to train,
% default = 2000.
%
%P(3)-
% population size, default = 20

%P(4)-
% maximum particle velocity, default = 4
%
%P(5)-
% acceleration const #1 (local best influence),
% default = 2
%
%P(6)-
% acceleration const #2 (global best influence),
% default = 2
%
%P(7)-
% Initial inertia weight, default = 0.9
%
%P(8)-
% Final inertia weight, default = 0.2
%
%P(9)-
% Epoch by which inertial weight = final value,
% default = 1500
%
%P(10)-
% randomization flag,
% = 0, random for each epoch
% = 1, random for each particle at each epoch
% = 2, random for each dimension of each particle
% at each epoch
%
%P(11)-
% minimum global error gradient,
% if abs(Gbest(i+1)-Gbest(i)) < gradient over
% certain length of epochs, terminate run,
% default = 1e-9
%
%P(12)-
% epochs before error gradient criterion
% terminates run, default = 50
%
%P(13)-
% plot flag, shows progress display if =1,
% default = 1

The output of the function is returned as a column vector of
the final global best position. The last entry in the vector is
the global best value. Optional outputs are the # of epochs it
took to reach consensus that optimization had occurred and
the value of global best as a function of epoch.

A simple example would be to find the minimum of the sine
function from 0 to π/2:

pso(‘sin’,1,[0,pi/2],0)

The name of the function is surrounded by single quotes, the
dimension of the problem is 1 (only one input so only one
searchable dimension), the range is from 0 to π/2, and the
minmax flag is set to 0 indicating we want to find the
minimum.

Naturally we expect it to return the column vector [0,0]’
which it does. It finds it after 1 epoch (iteration) of the
algorithm but doesn’t stop looking until 50 epochs have gone
by with no change in the best global position. That can be
changed with P(12).

A more interesting example is the Schaffer f6 function. The
function has 2 inputs and one output and looks like a still shot
of a pebble dropped into water. It has circular ripples that die
out as the radius increases. It has a known global minimum at
x,y = 0 and the maximum is the first ‘ripple’ around the
origin. It has lots of local minimums and maximums making
it a good test function for the algorithm.

Running the PSO function to find the minimum bound by -
100 = x,y = 100 gives the following table.

TABLE III
FINDING THE MINIMUM OF THE ‘F6’ FUNCTION

>> pso('f6',2,[-100,100;-100,100],0)
PSO: 1/2000 iterations, GBest = 0.499643.
PSO: 26/2000 iterations, GBest = 0.0858499.
PSO: 51/2000 iterations, GBest = 0.00197516.
PSO: 76/2000 iterations, GBest = 0.00197516.
PSO: 89/2000 iterations, GBest = 0.00197516.

***** global error gradient too small for too long
***** this means you've got the solution or it got
stuck
ans =
 -4.400531404313024e-002
 4.527939759978006e-003
 1.975158000277422e-003

FIGURE I

USING ‘PSO.M’ TO FIND MINIMUM OF ‘F6’

-10 -5 0 5 10 15 20 25
-40

-20

0

20

Pos dimension 1

P
os

 d
im

en
si

on
 2

0 10 20 30 40 50 60 70 80
10

-3

10
-2

10
-1

10
0

epoch

G
be

st
 v

al
ue

PSO: 2 dimensional prob search, Gbestval=0.0019752

Running the ‘PSO.m’ function to find the maximum of f6
with the same bounds yields the following table.

TABLE IV
FINDING THE MAXIMUM OF THE ‘F6’ FUNCTION

>> pso('f6',2,[-100,100;-100,100],1)
PSO: 1/2000 iterations, GBest = 0.500179.
PSO: 26/2000 iterations, GBest = 0.973786.

PSO: 51/2000 iterations, GBest = 0.976315.
PSO: 76/2000 iterations, GBest = 0.976362.
PSO: 101/2000 iterations, GBest = 0.976432.
PSO: 126/2000 iterations, GBest = 0.976432.
PSO: 145/2000 iterations, GBest = 0.976432.

***** global error gradient too small for too long
***** this means you've got the solution or it got
stuck
ans =
 -1.399320469183342e+000
 6.794290702799257e-001
 9.764318246838789e-001

For a fun exercise, you can set the maximum velocity
parameter to a small fraction, such as 0.04 and set the update
display frequency to do so at every iteration. This will really
show the behavior of the PSO algorithm, showing the
particles ‘fly’ towards the global best and explore new areas.
The reader is encouraged to change all of the parameters
around and examine the changes in behavior of the PSO.

D. Training Neural Net using PSO

To train a neural net using the PSO algorithm the function
‘trainPSO.m’ is used. This function requires that the Neural
Net toolbox be installed for use with your copy of Matlab.
TrainPSO is modeled after the structure of the Neural Net
toolbox and can be used interchangeably with the other
training functions such as TrainBP, TrainLM, etc. The only
difference is in the training parameters passed to the training
algorithm. The format of the function is:

[W1,B1,W2,B2,...,TE,TR] =
TRAINPSO(W1,B1,F1,W2,B2,F2,...,P,T,TP)

W1, W2, W3, B1, B2, B3 are weights and biases for the
neural net, initially made randomly or with the built in
initialization function that comes with the Neural Net
toolbox. F1, F2, F3, are activation function choices such as
‘logsig’, ‘tansig’, etc. Refer to the Neural Net toolbox
documentation for more details on those and the other
parameters [6]. The PSO specific training parameters show
up in TP. TP is a row vector of 15 values. They cover the
same ground as the straight PSO function with a couple of
parameters specific to neural net training.

Typing ‘help trainpso’ yields the training parameter summary
and is shown in the following table.

TABLE V
‘TRAINPSO.M’ PARAMETERS

%Training parameters are:
%TP(1)-
% Epochs between updating display, default = 100.
%
%TP(2)-
% Maximum number of iterations (epochs) to train,
% default = 4000.

%
%TP(3)-
% Error goal, default=0.02.
%
%TP(4)-
% Population size, default = 20
%
%TP(5)-
% Maximum particle velocity, default= 4
%
%TP(6)-
% Acceleration constant #1, default = 2
%
%TP(7)-
% Acceleration constant #2, default = 2
%
%TP(8)-
% Initial inertia weight, default = 0.9
%
%TP(9)-
% Final inertia weight(iwt),default=0.2
%
%TP(10)-
% Epoch by which inertial weight = final value,
% default = 1500
%
%TP(11)-
% Maximum initial network weight absolute value,
% default = 100
%
%TP(12)-
% Randomization flag, default = 2:
% = 0, random for each epoch
% = 1, random for each particle at each epoch
% = 2, random for each dimension of each particle
% at each epoch
%
%TP(13)-
% Minimum global error gradient
% (if SSE(i+1)-SSE(i) < gradient over certain
% length of epochs, terminate run,
% default = 1e-9
%
%TP(14)-
% Error gradient criterion terminates run here,
% default = 200
%
%TP(15)-
% Plot flag, if = 1, display is updated

Here is a run of ‘DemoTrainPSO’ where there is one hidden
layer of 2 neurons (9 dimensional optimization problem). The
net is trained to approximate the XOR function. It displays
the evolution of the inertia weight (iwt) over time as well as
the training error and particle positions. The graph also shows
the trajectory of the global best position. Only a portion of the
training is shown.

TABLE VI
MATLAB OUTPUT FOR ‘DEMOTRAINPSO.M’

TRAINPSO: 100/1000 epochs, gbest SSE = 0.428059141
 mv = 4, iwt = 0.8537691795
TRAINPSO: 125/1000 epochs, gbest SSE =
0.3870019042
 mv = 4, iwt = 0.8420947298

TRAINPSO: 150/1000 epochs, gbest SSE =
0.0943753488
 mv = 4, iwt = 0.8304202802
TRAINPSO: 175/1000 epochs, gbest SSE =
0.0943753488
 mv = 4, iwt = 0.8187458306
TRAINPSO: 200/1000 epochs, gbest SSE =
0.0943753488
 mv = 4, iwt = 0.8070713809
TRAINPSO: 225/1000 epochs, gbest SSE =
0.04639357585
 mv = 4, iwt = 0.7953969313
TRAINPSO: 250/1000 epochs, gbest SSE =
0.04454761798
 mv = 4, iwt = 0.7837224817
***************************** Reached Goal

TRAINPSO: 256/1000 epochs, gbest SSE =
0.01641486174
 mv = 4, iwt = 0.7809206137
***************************** end of training

FIGURE II
USING ‘TRAINPSO.M’ TO APPROXIMATE XOR

0 50 100 150 200 250 300
10

-2

10
-1

10
0

10
1

epoch

gb
es

t

mv=4 inertia wt=0.78092, 9 dimensions, GbestVal= 0.01641486174

-10 -8 -6 -4 -2 0 2 4
-4

-2

0

2

4

6

pos dim 1

po
s

di
m

 9

E. Conclusion

The suite of functions and programs included with the
Particle Swarm Optimization Toolbox are useful both in
researching PSO behavior and in applying PSO to real world
optimization and computational intelligence problems. The
PSO algorithms implemented here are computationally
intensive and are missing some features that would improve
flexibility and work continues on improvement. As it stands,
the toolbox allows the researcher/engineer to utilize PSO
without having to write custom code from the ground up. The
included comments make the suite easily modified to fit more
specific types of problems.

F. References

[1] Eberhart, R., Simpson, P., Dobbins, R., Computational

Intelligence PC Tools , pp. 212-223, 1996, Academic
Press, Inc.

[2] Haykin, S., Neural Networks, a Comprehensive
Foundation, Second Edition, 1999, Prentice-Hall.

[3] Houck, C., Joines, J., and Kay M., A Genetic Algorithm
for Function Optimization: A Matlab Implementation,
ACM Transactions on Mathematical Software,
Submitted 1996

[4] Kennedy, J., Eberhart, R., Particle Swarm Optimization,
Proc. IEEE Int’l. Conf. on Neural Networks (Perth,
Australia), IEEE Service Center, Piscataway, NJ, IV:
1942-1948, 1995

[5] Kennedy, J., Eberhart, R., Shi, Y., Swarm Intelligence,
2001, Academic Press, Inc.

[6] Matlab Online Help, http://www.MathWorks.com
[7] Parsopoulos, K.E., Plagianakos, V.P., Magoulas, G.D.,

Vrahatis, M.N., Stretching Technique for obtaining
global minimizers through Particle Swarm Optmization,
Proc. Particle Swarm Optimization Workshop,
(Indianapolis, IN, USA), pp. 22-29, 2001

[8] Shi, Y., Eberhart, R., Parameter Selection in Particle
Swarm Optimization, Proceedings of the Seventh Annual
Conf. on Evolutionary Programming, pp. 591-601, 1998

[9] van den Bergh, F., Particle Swarm Weight Initialization
In Multi-Layer Perceptron Artificial Neural Networks, In
Development and Practice of Artificial Intelligence
Techniques (Durban, South Africa), pp. 41-45, Sept.
1999.

