
Intrusion Detection 1 02/09/00

Computer System Intrusion Detection:
A Survey1

Anita K. Jones and Robert S. Sielken
Department of Computer Science

University of Virginia
Thornton Hall

Charlottesville, VA 22903
jones@cs.virginia.edu, rsielken@alumni.virginia.edu

Abstract
The abil ity to detect intruders in computer systems increases in importance as computers are
increasingly integrated into the systems that we rely on for the correct functioning of society.
This paper reviews the history of research in intrusion detection as performed in software in the
context of operating systems for a single computer, a distributed system, or a network of
computers. There are two basic approaches: anomaly detection and misuse detection. Both have
been practiced since the 1980s. Both have naturally scaled to use in distributed systems and
networks.

1 Introduction

When a user of an information system takes an action that that user was not legally
allowed to take, it is called intrusion. The intruder may come from outside, or the intruder may
be an insider, who exceeds his limited authority to take action. Whether or not the action is
detrimental, it is of concern because it might be detrimental to the health of the system, or to the
service provided by the system.

As information systems have come to be more comprehensive and a higher value asset of
organizations, complex, intrusion detection subsystems have been incorporated as elements of
operating systems, although not typically applications. Most intrusion detection systems attempt
to detect suspected intrusion, and then they alert a system administrator. The technology for
automated reaction to intrusion is just beginning to be fashioned. Original intrusion detection
systems assumed a single, stand-alone processor system, and detection consisted of post-facto
processing of audit records. Today’s systems consist of multiple nodes executing multiple
operating systems that are linked together to form a single distributed system. Intrusions can
involve multiple intruders. The presence of multiple entities only changes the complexity, but
not the fundamental problems. However, that increase in complexity is substantial.

This survey states the basic assumptions and il luminates the alternative technical
approaches used to detect intrusions. There have been a number of surveys of intrusion detection

1 This effort was sponsored by the Defense Advanced Research Projects Agency and Rome Laboratory, Air

Force Materiel Command, USAF, under agreement F30602-99-1-0538. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon.
The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily
representing the off icial poli cies or endorsements, either expressed or implied, of the Defense Advanced Research
Projects Agency, Rome Laboratory or the U.S. Government.

Intrusion Detection 2 02/09/00

that essentially catalog different systems [Anderson80, Cannaday96, Liepens92, Lunt93b,
Kumar94, Smaha94]. In this survey we attempt to determine the fundamental approaches and
describe the essence of each approach. To be concrete, we use existing implementations to
il lustrate the mechanics of implementation of each approach.

Intrusion detection involves determining that some entity, an intruder, has attempted to
gain, or worse, has gained unauthorized access to the system. None of the automated detection
approaches of which we are aware seeks to identify an intruder before that intruder initiates
interaction with the system. Of course, system administrators routinely take actions to prevent
intrusion. These can include requiring passwords to be submitted before a user can gain any
access to the system, fixing known vulnerabil ities that an intruder might try to exploit in order to
gain unauthorized access, blocking some or all network access, as well as restricting physical
access. Intrusion detection systems are used in addition to such preventative measures.

Intruders are classified in two groups. External intruders do not have any authorized
access to the system they attack. Internal intruders have some authority, but seek to gain
additional ability to take action without legitimate authorization. J. P. Anderson divided internal
intruders into three subgroups: masqueraders, clandestines, and legitimate [Anderson80]. In later
related work Brownell Combs has divided internal intruders into two categories. He separates
internal users who have accounts on the system from pseudo-internal intruders who are, or can
be thought of as being, physically in space of legitimate users, but have no accounts [Combs98].
They do however have physical access to the same equipment used by those who have accounts.
He shows how distinguishing the two categories can be distinguished enables better defense
against the pseudo-internal intruders.

To limit the scope of the problem of detecting intrusions, system designers make a set of
assumptions. Total physical destruction of the system, which is the ultimate denial of service, is
not considered. Intrusion detection systems are usually based on the premise that the operating
system, as well as the intrusion detection software, continues to function for at least some period
of time so that it can alert administrators and support subsequent remedial action.

It is also assumed that intrusion detection is not a problem that can be solved once;
continual vigilance is required. Complete physical isolation of a system from all possible,
would-be external intruders is a simple and effective way of denying external intruders, but it
may be unacceptable because physical isolation may render the system unable to perform its
intended function. Some possible solution approaches cannot be used because they are in
conflict with the service to be delivered.

In addition, potential internal intruders legitimately have access to the system for some
purposes. So, it is assumed that at least internal intruders, and possibly external intruders, have
some access and therefore have some tools with which to attempt to penetrate the system. It is
typically assumed that the system, usually meaning the operating system, does have flaws that
can be exploited. Today, software is too complicated to assume otherwise. New flaws may be
introduced in each software upgrade. Patching the system could eliminate known vulnerabilities.
However, some vulnerabil ities are too expensive to fix, or their elimination would also prevent
desired functionality.

Intrusion Detection 3 02/09/00

Vulnerabil ities are usually assumed to be independent. Even if a known vulnerabil ity is
removed, a system administrator may run intrusion detection software in order to detect attempts
at penetration, even though they are guaranteed to fail. Most intrusion detection systems do not
depend on whether specific vulnerabilities have been eliminated or not. This use of intrusion
detection tools can identify a would-be intruder so that his or her other activities may be
monitored. New vulnerabilities may, of course, be discovered in the future.
2 Approaches

Currently there are two basic approaches to intrusion detection. The first approach,
called anomaly detection, is to define and characterize correct static form and/or acceptable
dynamic behavior of the system, and then to detect wrongful changes or wrongful behavior. It
relies on being able to define desired form or behavior of the system and then to distinguish
between that and undesired or anomalous behavior. The boundary between acceptable and
anomalous form of stored code and data is precisely definable. One bit of difference indicates a
problem. The boundary between acceptable and anomalous behavior is much more difficult to
define.

The second approach, called misuse detection, involves characterizing known ways to
penetrate a system. Each one is usually described as a pattern. The misuse detection system
monitors for explicit patterns. The pattern may be a static bit string, for example a specific virus
bit string insertion. Alternatively, the pattern may describe a suspect set or sequence of actions.
Patterns take a variety of forms as will be illustrated later.

Intrusion detection systems have been built to explore both approaches – anomaly
detection and misuse detection – for the past 15 to 20 years. In some cases, the two kinds of
detection are combined in a complementary way in a single system. There is a consensus in the
community that both approaches continue to have value. In our view, no fundamentally different
alternative approach has been introduced in the past decade. However, new forms of pattern
specifications for misuse detection have been invented. The techniques for single systems have
been adapted and scaled to address intrusion in distributed systems and in networks. Eff iciency
and system control have improved. User interfaces have improved, especially those for
specifying new misuse patterns and for interaction with the system security administrator.
Essentially all the intrusion detection implementations that will be discussed are extensions of
operating systems. They use operating system notions of events, and operating system data
collection, particularly audit records, as their base.

The concept of intrusion detection appears to have been first used in the 1970s and early
1980s [Anderson80]. In what we will call the first generation of intrusion detection, the
emphasis was on single computer systems. Operating system audit records were post-processed.
Both anomaly detection and misuse detection approaches were invented early. In the second
generation, the processing became more statistically sophisticated, more behavior measures were
monitored, and primitive real-time alerts became possible. A seminal paper defining an early
second generation intrusion detection system implementation (IDES) appeared in 1987

Intrusion Detection 4 02/09/00

[Denning87].2 Intrusion detection was expanded to address the multiple computers in a
distributed system.

We are now in the third generation of operating system based intrusion detection where
networks are a major focus. The challenges are to

- manage the volume of data, communications, and processing in large scale networks,
- increase coverage (i.e. be able to recognize as much errant behavior as possible),
- decrease false alarms (benign behavior reported as intrusion),
- detect intrusions in progress, and
- react in real-time to avert an intrusion, or to limit potential damage.

The latter challenges are the most daunting.

3 Anomaly Detection

By definition anomalies are not nominal or normal. The anomaly detector must be able
to distinguish between the anomaly and normal. We divide anomaly detection into static and
dynamic. A static anomaly detector is based on the assumption that there is a portion of the
system being monitored that should remain constant. All the static detectors that we have
studied address only the software portion of a system, and are based on the tacit assumption that
the hardware need not be checked. There exist system administration tools to check physical
component configurations and report change; we do not treat such tools here. The static portion
of a system is composed of two parts: the system code and that portion of system data that
remains constant. Static portions of the system can be represented as a binary bit string or a set of
such strings (such as files). If the static portion of the system ever deviates from its original
form, either an error has occurred or an intruder has altered the static portion of the system.
Static anomaly detectors are said to check for data integrity.

Dynamic anomaly detectors must include a definition of behavior. Frequently, system
designers employ the notion of an event. System behavior is defined as a sequence (or partially
ordered sequence) of distinct events. For example, many intrusion detection systems use the
audit records that are (already) produced by the operating system to define the events of interest.
In that case, the only behavior that can be observed is that which results in the creation of audit
records by the operating system. Events may occur in a strict sequence. More often, such as
with distributed systems, partial ordering of events is more appropriate. In still other cases, the
order is not directly represented; only cumulative information, such as cumulative processor
usage during a time interval, is maintained. In this case, thresholds are defined to separate
nominal resource consumption from anomalous resource consumption.

 Where it is uncertain whether behavior is anomalous or not, the system may rely on
parameters that are set during initialization to reflect behavior. Initial behavior is assumed to be
normal. It is measured and then used to set parameters that describe correct or nominal behavior.
There is typically an unclear boundary between normal and anomalous behavior as depicted in
Figure 1. If uncertain behavior is not considered anomalous, then intrusion activity may not be

2 It should be noted that several seminal systems, such as IDES, came from researchers at the Stanford Research
Institute.

Intrusion Detection 5 02/09/00

detected. If uncertain behavior is considered anomalous, then system administrators may be
alerted by false alarms, i.e. in cases where there is no intrusion.

Figure 1: Anomalous behavior must be distinguished from normal behavior.

The most common way to draw this boundary is with statistical distributions having a mean and
standard deviation. Once the distribution has been established, a boundary can be drawn using
some number of standard deviations. If an observation lies at a point outside of the
(parameterized) number of standard deviations, it is reported as a possible intrusion.

A dynamic anomaly detector must define some notion of the “actor” , the potential
intruder. An actor is frequently defined to be a user, i.e. activity that is identified with an
account and presumably then with one specific human being. Alternatively, user or system
processes are monitored. The mapping between processes, accounts, and human beings is only
determined when an alert is to be raised. In most operating systems there is clear traceabil ity
from any process to the user/account for which it is acting. Likewise, an operating system
maintains a mapping between a process and the physical devices in use by that process. In the
next sections we describe in more detail how both static and dynamic anomaly detectors have
been implemented.

Anomaly detection is performed statically and dynamically by first and second
generation detectors. The second generation detectors are more sophisticated on several
dimensions: definitions of events or behavior of interest, compact representation of signatures,
compilation of initial behavior profiles that characterize behavior of interest (whether normal or
anomalous), and statistical processing techniques for divining the difference between normal and
anomalous behavior. However, one difficult problem continues: coverage, i.e. the percentage of
the kinds of intrusions that a specific detector will identify. In a later section we will discuss
extensions of these second generation techniques from single computer and distributed processor
operating systems to the more loosely connected networked systems.

It is important to note that anomaly detection which is restricted to events visible to an
operating system, or behavior of that operating system in reaction to users is limited to activity of
import to the operating system. Because one of the most insidious intrusions is for a user to gain
the privilege of a system administrator, the semantics of the operating system are precisely those
which need to be monitored for this intrusion.

3.1 Static anomaly detection
Static anomaly detectors define one or several static bit strings to define the desired state

of the system. They archive a representation of that state, perhaps compressed. Periodically, the
static anomaly detector compares the archived state representation to a similar representation
computed based on the current state of the same static bit string(s). Any difference signals an
error such as hardware failure or intrusion.

Intrusion Detection 6 02/09/00

The representation of static state could be the actual bit strings selected as the definition
of the static system state. However, that is quite costly in both storage and comparison
computation. Because the primary objective is to determine if there is a difference, not to
identify precisely what that difference might be. The compressed representation is called a
signature. It is a “summary” value computed from a base bit string. The computation is designed
so that a signature is computed from a different base bit string would – with high probability –
have a different value. Signatures include checksums, message-digest algorithms, and hash
functions3.

Some anomaly detectors incorporate meta-data, or knowledge about the structure of the
objects that are being checked. For example, the meta-data for a log file includes its size. A log
file that has decreased in size might be a sign of an intrusion, while a log file that has increased
in size would be consistent with normal operation. We will shortly describe an intrusion detector
that stores information about Unix file and directory objects. The following sections provide
implementation detail on two (contrasting) anomaly detection designs. Tripwire performs
integrity checks using the signatures and meta-data that describe files. A second system, Self-
Nonself, takes a quite different approach to signatures.

3.1.1 Tripwire

Tripwire [Kim93, Kim94] is a file integrity checker that uses signatures as well as Unix
file meta-data. A configuration file, tw.config, specifies the static system state to be some
portion of the hierarchical Unix file system. Each file defines a bitstring on which one – or more
– signatures is computed. Tripwire periodically monitors the file system for added, deleted, or
modified files. For each file or directory of interest, the Tripwire configuration file specifies
attributes (meta-data) that are expected to remain constant. A substantial portion of the meta-data
is fields of the file’s Unix inode. More specifically, a “selection mask” is associated with each
file or directory. It contains a flag for each distinct field stored in a Unix inode. The mask
specifies which attributes can change, without being reported as an exception, as well as which
should not change. Attributes include access permission to the file, inode number, number of
links, user id, group id, size of the file, modification timestamp, and access timestamp. In
addition, ten or less signature algorithms are specified. Checksums, hash functions and message
digests can be used in concert. Each signature is computed based on file content.

Tripwire is initialized by building a baseline database based on the then-current file
system state and the configuration file. It is assumed that the baseline database describes a
“clean” , unpenetrated system. Based on tw.config, Tripwire builds a baseline database
containing one record per file. While the configuration file may simply name directories, the
database contains a record per file in each (recursively) named directory. Note that a tw.config
file that names the directory “/” , effectively names the entire file system because Tripwire
expands directories recursively. Each database entry holds a selection mask and a set of
signatures.

3 A checksum is a count of the number of bits in the string (usually used in transmissions so that the receiver can
verify that it received the appropriate number of bits). A hash function computes a string of characters, usually a
shorter and fixed in length, that represents the original string. A message-digest algorithm is one type of hash
function.

Intrusion Detection 7 02/09/00

Periodically thereafter, Tripwire re-computes elements of a current value of database
entries in the same manner. This requires computing each specified signature based on current
file contents. Using the selection masks from the configuration file to determine what inode
attributes to ignore, Tripwire compares the current database to the baseline database (record by
record) and issues alerts where unexpected mis-matches are found.

Tripwire assumes a Unix system; in particular it is tailored to check attributes of Unix
inodes for files. However, the configuration file is designed to be generic and reusable for many
instances of similar nodes in a networked system. The strategy could be mapped to any operating
system file structure. Tripwire supports distributed systems as conveniently as single computer
systems. It offers other optimizations and usabil ity features to simpli fy the job of the system
administrator who oversees a network of hundreds of machines. Note that while many
distributed nodes may share the same generic tw.config configuration file, each will have a
unique baseline database computed from actual node file structure and contents. Other static
anomaly detection systems exist, such as COPS [Farmer94], TAMU [Safford93], and ATP
[Cotrozzi93]. We chose Tripwire as representative of this class of systems.

3.1.2 Virus checkers

Virus-specific checkers [Skardhamar96] are another example of static anomaly checkers.
They maintain a database of strings, each representing a telltale portion of virus code and data
that is inserted as part of the virus infection. Typically, virus checkers record a modicum of
meta-data so that they recognize files, or individual memory objects. The strings are short. The
virus checker looks for an exact match to the specific string. In this case the presence of the
string indicates virus infection. Note that in this case, the virus checker is searching for a
signature strung that signifies corruption of data, not the presence of correct data as was the case
for Tripwire. Most virus checkers use the actual bit string inserted by the virus. That string is
short enough that there is no efficiency to be gained by compressing the string to make a shorter
length signature.

3.1.3 Self-Nonself

Self-Nonself, like Tripwire, addresses the problem of assuring that static strings do not
change [Forrest94]. Again, some unchanging portion of code and data is defined to be the static
string to be protected. While Tripwire uses signatures, such as checksums and hash functions, to
compute a value directly based on the content of a string, the Self-Nonself signatures are for
unwanted string values, that is, strings that might result if an unwanted change were to be made
to the static system state.

The Self-Nonself developers describe an analogy between their approach and that of the
human immune system to ward off foreign material [Forrest94]. The human body creates T cells
in the thymus and then a “censoring” process takes place: if the T cells bind with proteins, or
actually peptides that are sub-units of proteins, then they are disposed of because they bind with
“self” . Those T cells that do not bind are released to monitor the body for foreign material.
Presumably, they will bind with that foreign material, and be a vehicle to remove it from the
system.

Intrusion Detection 8 02/09/00

 Using the Self-Nonself technique, one views the static state as a single string. It is
divided into substrings of equal length k. These substrings comprise a collection, Self, that
should contain some, but not all, of the possible 2k strings. Note that Self is a collection, not a set,
because it may contain duplicates. The Self-Nonself approach is to generate (only) a portion of
the set { 2k – Self } or the complement of Self, called Nonself. The set Nonself contains n
detector strings, each of length k and not in the collection Self. Efficiency calls for Nonself to be
a set4. Nonself is the baseline database containing “negative signatures” for the static string
whose integrity is to be protected. Self-Nonself monitoring consists of periodically comparing
substrings of length k of the current static state to the detector strings in Nonself. If a match is
ever found, then it indicates unexpected change, and possibly an intrusion.

Nonself could be generated in many ways. The recommended implementation is to
randomly generate strings of length k and then to censor any that are in the collection Self. A
substring that is not in Self is a detector and is added to Nonself. The size of Nonself determines
a tradeoff between the eff iciency of the execution with the probability of detecting anomalous
behavior. The larger the size of Nonself, the more likely it is that an intrusion will be detected in
an individual node. However, with each addition to Nonself, the cost of monitoring increases.
The counterpart to the choice of the size of Nonself in Tripwire is the choice of the number of
signatures for content to use in the monitoring comparisons. Both Tripwire and Self-Nonself are
probabilistic in that any change which does not generate a change in the signature of the current
static state will not be detected by either. One would expect that signatures which can be tailored
to maximally detect changes in the underlying string will be more efficient in detecting change
than randomly selected detector strings that are selected merely to be outside Self.

The initial generation of the set the Nonself is computationally expensive, but the
monitoring comparisons are cheaper. In Tripwire monitoring requires computing anew
signatures of the current static state for comparison. Self-Nonself requires that the current static
state string be broken up into substrings and compared to detector strings. In either case, the
entire current static state must be visited, so the monitoring costs appear roughly comparable.

The developers of Self-Nonself comment that perfect matching between strings of non-
trivial length is rare [Forrest94]. Therefore, a partial matching rule: “for any two strings x and y,
. . . match(x,y) is true if x and y agree (match) in at least r contiguous locations” . Consider the
following example where

x = ABADCBAB , and
y = CAGDCBBA.

With r>3, match(x,y) is false, but with r<4, match(x,y) is true. Because perfect matches are too
rare, partial matching is used to increase the probabil ity of detecting anomalous behavior.

The developers of the Self-Nonself approach were motivated by the problem of detecting
virus infections, that is changes in code that should remain constant. As mentioned earlier, most
virus detection systems rely on known bit strings inserted by the virus to detect the unwanted
change. They are similar to the Self-Nonself system in that they monitor, seeking to find the

4 The reference [Forrest94] uses slightly different terminology in describing the Self-Nonself approach. Because the
objective of this survey is to ill uminate the fundamental ideas, we introduce terminology that can be reused when
describing different systems.

Intrusion Detection 9 02/09/00

unwanted strings. However, they are decidedly less robust than the Self-Nonself approach in
that the viral signature must be known a priori bit for bit. The Self-Nonself signatures do not
rely on prior knowledge of the virus!

While the Self-Nonself signature is analogous to the signature portion of Tripwire. Self-
Nonself does not check or depend upon properties of the file system, or actual (meta) data stored
in the file system. As a result it will not detect improper deletion of files; it has no notion of a
file. Because a deleted file is no longer present (has no strings at all), it will never contain a
substring that is in Self. However, the Self-Nonself technique does address both string
modifications and additions to the static state.

The choice of the value of k is important for implementation. If Nonself were to be
empty, then all possible strings are already contained in Self. But detectors are needed for
monitoring, so an empty Nonself is not useful. The solution is to increase the substring length k
so that Nonself will not be computed to be empty.

Consider the use of Self-Nonself for a distributed system. Each of the separate
cooperating operating systems (nodes) will be separately monitored. It is attractive to have the
maximum size of Nonself be substantially larger than that used by a single computer. The
suggested implementation is not to build the maximum size of Nonself, but to cause each
different instance of the operating system in a distributed system to randomly generate strings
and thus create its own (possibly unique) set, Nonself. This provides more coverage in
monitoring for undesired changes. If the maximum size of Nonself were large enough, the
distributed Self-Nonself system could be constructed to ensure a unique Nonself signature for
each node.

Tripwire is implemented so that to have different nodes use different signatures, each
node must have differences in the tw.config configuration file. The Tripwire developers cited the
use of a common configuration file for multiple nodes as a usabil ity advantage.

3.2 Dynamic anomaly detection

Dynamic anomaly detection requires distinguishing between normal and anomalous
activity. It is intrinsically harder that distinguishing changes in static strings. Dynamic anomaly
detection systems typically create a base profile to characterize normal, acceptable behavior. A
profile consists of a set of observed measures of behavior for each of a set of dimensions.
Frequently used dimensions include

• preferred choices, e.g. log-in time, log-in location, and favorite editor,
• resources consumed cumulatively or per unit time, e.g. length of interactive session or

number of messages emitted into a network per unit time, and
• representative sequences of actions.

Dimensions may be specific to the type of the entity with which behavior is associated.
Typical entity types are users, workstations, or remote hosts as in NIDES [Anderson95a,b,
Javitz93, Lunt93a] or even applications, as in SRI Safeguard [Anderson93]. An intrusion

Intrusion Detection 10 02/09/00

detection system develops a unique base profile (typically based on observed behavior) for each
individual entity that it recognizes. It assumes that the profile is untainted by intrusive activity.

 After base profile initialization, intrusion detection can commence. Dynamic detectors
are similar to the static detectors in that they monitor behavior by comparing current
characterization of behavior to the initial characterization of expected behavior (the base profile).
They seek divergence. As the intrusion detection system executes, it observes events that are
related to the entity or actions that are attributed to the entity. It incrementally builds a current
(possibly always incomplete) profile. Early generation systems depended upon audit records to
capture the events or actions of interest. Some later generation systems record a data base
specific for intrusion detection. Some operate in real-time, or near real-time, and more directly
observe the events of interest during their occurrence, rather than waiting for the operating
system to make a record describing an event.

Different sub-sequences of events relate to different profile dimensions. So, for example,
if audit records are used to define events of interest, one audit record may reflect initiation of an
interactive session for an entity. Then, for the purposes of the “session duration” dimension of
the entity’s profile, all audit records until a session termination event may be ignored. One
portion of the detector sequentially processes audit records, updating the profile dimensions that
each one affects.

Because there is typically wide variation in acceptable entity behavior, deviation from the
base profile is often measured in statistical terms. Normal behavior is distinguished from
abnormal behavior based on empirically determined thresholds, or standard deviation measures.
In some systems the profiles are slowly aged to reflect gradual behavioral changes. Another
portion of the dynamic anomaly detector periodically compares the incrementally built, current
profiles to base profiles. The “difference” wil l be computed. It will be compared to a
statistically defined threshold to determine whether the difference is so great that it indicates
anomalous behavior. For example, an inordinately long session wil l eventually appear to be
anomalous when “session duration” exceeds some threshold.

The main diff iculty with dynamic anomaly detection systems is that they must build
sufficiently accurate base profiles and then recognize deviant behavior that is in conflict with the
profile. Base profiles can be built by synthetically running the system or by observing normal
user behavior over a sufficiently long time.

Errant behavior of an entity whose behavior typically varies within tight bounds will be
easier to detect when it starts to deviate. On the other hand, an entity that exhibits diverse
activities wil l be characterized by a base profile with wider bounds. If genuinely anomalous
behavior falls within observed base profile bounds, it will not be recognized as anomalous. An
intruder masquerading as a diverse user would be much more difficult to detect because that
user’s base profile bounds are larger.

3.2.1 NIDES

The Next-generation Intrusion Detection Expert System (NIDES) [Anderson95a,b,
Javitz93, Lunt93a], developed by SRI, contains a statistical dynamic anomaly detector. NIDES

Intrusion Detection 11 02/09/00

builds statistical profiles of users, though the entities monitored can also be workstations,
network of workstations, remote hosts, groups of users, or application programs. NIDES uses
statistically unusual behavior to detect an intruder masquerading as a legitimate user.

NIDES reads audit records written by the operating system. NIDES measures fall i nto
several generic classes:

• Audit record distribution – tracks the types of audit records that have been generated in
some specified period of time.

• Categorical – transaction-specific information, such as user name, names of files accessed,
and identity of machines onto which user has logged.

• Continuous – any measure for which the outcome is a count of how often some event
occurred, such as elapsed user CPU time, total number of open files, and number of pages
read from secondary storage.

For continuous measures, NIDES defines a sequence of intervals or “bins” ; thirty-two is
often cited. The “bins” contain a count of the number of observations with values in the interval
represented by the “bin” . For example, one profile dimension of a user includes a distribution of
the total memory size of the user’s processes during execution. At any point the user’s current
profile is the distribution of periodically sampled total memory size. The current and base
distributions can be compared for similarity.

To maintain each statistical profile dimension, NIDES stores only statistics such as
frequencies, means, variances, and covariances of the profile since storing the audit data itself is
too cumbersome. Given a profile with n measures, NIDES characterizes any point in the n-space
of the measures to be anomalous if it is sufficiently far from an expected or defined value. In
some cited experiments, this was defined as two standard deviations. In this manner, NIDES
evaluates the total deviation and not just the deviation of each individual measure.

The profile measures of each entity are subject to an exponential decay factor so that the
older audit records have less of an impact on the statistical measures while the newer records
have the most weight in the determination of the statistical distributions.

3.2.2 UNM Pattern Matching

Modern programming for decades has used the notion of a function, procedure or method
as a way to package units of code for use, by invocation. That means that a sequence of
invocations characterizes the sequential behavior of a program. Invocation sequences offer an
alternative to audit record events. In the section discussing misuse detection, we will see
repeated use of invocations to characterize known intrusions.

Researchers at the University of New Mexico (UNM) have taken operating system
routine invocations as the definition of system behavior [Hofmeyer97]. They elect to monitor
only those system routines that execute with privileges over and above those of an ordinary user.
(Ordinary users can, of course, invoke system routines.) The researchers associate with each
system routine a profile that consists of fixed length, k, sequences of calls made by the
(privileged) system routine.

Intrusion Detection 12 02/09/00

 To illustrate the construction of the profile, the UNM researchers created traces of system
calls by a selected system routine, such as Unix sendmail . Parameters were ignored. So for
example, assume that the sequence length is selected to be three and given the trace of systems
calls made by sendmail :

open, read, mmap, mmap, open, read, mmap
The resulting sequences are:

open, read, mmap
read, mmap, mmap
mmap, mmap, open
mmap, open, read

Two techniques were used to develop traces. The first method involved creating a
variety of synthetic invocations. For example, invoking sendmail for different situations, will
induce different calls by sendmail . Sending messages of different sizes results in different traces
as does forwarding, bounced mail, vacation, and sending messages to multiple recipients. The
resulting size of the profile database for k = 10 for three Unix programs was

Program5 Profile database size
 sendmail 1318
 lpr 198
 ftpd 1017

The second method for building the database is to observe normal usage for a period of
time. In both cases the database is not guaranteed to hold all sequences derivable from legal
functioning of the routine at hand.

In experiments, the UNM researchers report that the sequence length of ten proved
useful. When k equals one, there were too few mismatches possible. Once k had the value
between 6 and 10, empirical observation showed that increasing the sequence length was not
particularly useful.

 A set of experiments was performed to detect intrusions that exploit flaws in the three
programs based on five known intrusions (three for sendmail , one for lpr, and one for ftpd) and
three intrusions for which the system had been configured, so that the intrusion attempt would be
unsuccessful. Based on the intrusion code, sequences of length k were generated and compared
against the profile database. The number of mismatches – sequences not in the database – is an
indicator of anomalous behavior. UNM researchers report that the majority of intrusions were
detectable due to notable numbers of mismatches between the k-length sequences of the
intrusions and the synthetic database sequences.

Whether the profile database is built synthetically or is built based on sequences observed during
initialization, there is a question of how large the database should be to ensure that anomalies wil l be detected, but
false alarms will not raised. It is a matter for experimentation. Reported experiments indicated that if the profile
database was built from 700 to 1400 invocations of lpr and then roughly 1000 to 1300 invocations were tested, the
false alarm rate was between one and two. However, it is interesting to note that a number of the false alarms were

5 sendmail sends messages to designated recipients, lpr prints a file to a device and ftpd handles connections to a
file transfer protocol (FTP) server.

Intrusion Detection 13 02/09/00

based on unusual circumstances. They included printing on a machine on which a printer did not exist, printing a
job so large that the print spooler ran out of disk space to store the log file, and printing from a separately
administered machine whose configuration differed. An intrusion detection system that flags rare events could be
useful to system administration and to users.

4 M isuse Detection

Misuse detection is concerned with catching intruders who are attempting to break into a
system using some known technique. Ideally, a system security administrator would be aware of
all the known vulnerabilities and would eliminate them. However, as was mentioned earlier, an
organization may decide that eliminating know vulnerabil ities is cost prohibitive or unduly
constrains system functionality. In practice, many administrators do not remove vulnerabil ities
even when they might. Note that users who slowly modify their activity so that their profiles
contain the abusive activity are nearly impossible to detect with anomaly detectors. So, misuse
detection systems look for known intrusions irrespective of the user’s normal behavior.

We use the term intrusion scenario to mean a description of a fairly precisely known kind
of intrusion; it is typically defined as a (partial) sequence of actions, that when taken, result in an
intrusion, unless some outside intervention prevents completion of the sequence. A misuse
detection system typically will continually compare current system activity to a set of intrusion
scenarios in an attempt to detect a scenario in progress. The model or description of the intrusion
scenario will substantially determine how efficient monitoring can be. Current system activity as
seen by the intrusion detection system may be real time observations strictly for the use of the
intrusion detection system, or it can be the audit records as recorded by the operating system.
Although the systems described below use audit records, they would be fundamentally the same
if they were collecting unique, real-time system information.

The main difference between the misuse detection techniques described below is in how
they describe or model the bad behavior that constitutes an intrusion. First generation misuse
detection systems used rules to describe what security administrators looked for within the
system. Large numbers of rules accumulated and proved to be difficult to interpret and modify
because they were not necessarily grouped by intrusion scenario.

To overcome these diff iculties, second generation systems introduced alternative scenario
representations. These include model-based rule organizations and state transition
representations. These have proved to be more intuitive for the misuse detection system user
who needs to express and understand the scenarios. Since the system wil l need to be constantly
maintained and updated to cope with newly discovered intrusion scenarios, ease of use is a major
concern.

Since the intrusion scenarios can be specified relatively precisely, misuse detection
systems can track the intrusion attempt against the intrusion scenario action by action. During
the sequence of actions, the intrusion detection system can anticipate the next step of the possible
intrusion. Given this information, the detector can more deeply analyze system information to
check for the next step or can determine that the intrusion attempt has proceeded far enough and
intervene to mitigate possible damage. The model-based and state transition characterizations
lend themselves to anticipation of intrusion.

Intrusion Detection 14 02/09/00

4.1 Rule-Based Systems
Expert systems detect intrusions by encoding intrusion scenarios as a set of rules. These

rules reflect the partially ordered sequence of actions that comprise the intrusion scenario. Some
rules may be applicable to more than one intrusion scenario.

The system state is represented in a knowledge base consisting of a fact base and a rule
base. A fact base is a collection of assertions that can be made based on accumulated data from
the audit records or directly from system activity monitoring. The rule base contains the rules
that describe known intrusion scenario(s) or generic techniques. When a pattern of a rule’s
antecedent matches the asserted fact, a rule-fact binding is created. After this binding is made, if
all the patterns of the rule have been matched, then a binding analysis is performed to make sure
that all the associated variables with the rule are consistent with the binding. The rules with rule-
fact bindings that meet the binding analysis requirements are then gathered into a set from which
the “best” rule is picked, through a process called conflict resolution. The rule then fires. It may
cause an alert to be raised for a system administrator. Alternatively, some automated response,
such as terminating that user’s session, will be taken. Normally, a rule firing wil l result in
additional assertions being added to the fact base. They, in turn, may lead to additional rule-fact
bindings. This process continues until there are no more rules to be fired.

Consider the intrusion scenario in which two or more unsuccessful login attempts are
made in a period of time shorter than it would take a human to type in the login information at a
conventional keyboard. If the rule or rules of this scenario fire, then a specific user’s suspicion
level can be increased. The system may raise an alarm or freeze the named user’s account.
Account freeze would be entered into the fact database.

The following sections demonstrate the progress of the development of rule-based misuse
detection. The first system, MIDAS, uses the basic rule-based system. The second,
IDES/NIDES, was originally designed to be rule-based, but then the design was changed to the
model based organization of the rule base.

4.1.1 MIDAS

MIDAS (Multics Intrusion Detection and Alerting System) [Sebring88] was designed and
written to perform rule-based intrusion detection. For developing, compiling, and debugging the
rules, MIDAS uses the Production-Based Expert System Toolset (P-BEST) that is a forward-
chaining, LISP based development environment [Lindqvist99]. The P-BEST compiler produces
primitive LISP functions that embody the semantics of the rules. The MIDAS rule base grew to
be very large, so it was subdivided by the type of intrusion for which each rule was designed to
detect. The system was designed to take some predefined action once it detected an intrusion. A
secondary set of rules determine what action should be taken by the system. These secondary
rules are kept separate from the primary rules to help keep the rule base size manageable for user
maintainabil ity.

The following figures (2a and 2b) illustrate MIDAS rules. The first rule deals with an
intrusion scenario dealing with attempted privileged account intrusions. The rule monitors the
knowledge base waiting for an assertion of a failed login attempt to an account with an account

Intrusion Detection 15 02/09/00

name that is either privileged on this system or is the common name of privileged accounts on
other systems. When the rule fires, it warns the MIDAS operator and adds a “remember” fact to
the fact base stating that there is a high probability that an intrusion attempt occurred. Words
preceded by a question mark denote variables that are during rule antecedent matching.

(defrule ill egal_privileged_account states
if there exists a failed_login_item

such that name is (“root” or “superuser” or “maintenance” or “system”) and
time is ?time_stamp and
channel is ?channel

then
(print “WARNING: ATTEMPTED LOGIN TO PRIVILEGED ACCOUNT”)
and remember a breakin_attempt

with certainty *high*
such that attack_time is ?time_stamp
and login_channel is ?channel)

Figure 2a. I llegal privileged account access rule

The second example rule defines an intrusion scenario involving unusual login times.
This rule is used to determine when a login to an account was made outside of “normal” hours.
This example illustrates that some implementations use intrusion scenarios described as rules in
lieu of statistical anomaly detection, but the rule can only look for specifics (a particular value)
and not a parameterized range of values. This example also illustrates that the intrusion scenario
describes unusual behavior that does not necessarily constitute an intrusion.

(defrule unusual_login_time states
if there exists a login_entry

such that user is ?userid and
time_stamp is ?login_time and
(unusual_login_time ?userid ?login_time)

then
remember a user_login_anomaly

such that user is ?userid and
time_stamp is ?login_time)

Figure 2b. Unusual login time rule

4.1.2 IDES/NIDES

Initially, IDES [Lunt89] was designed with a simple rule-based system to detect intrusion
attempts using intrusion scenarios described by rule sets. The rule-based component was based
on the same Production-Based Expert System Toolset (P-BEST) that MIDAS used. The rule
base was divided into two parts for easier maintainabil ity and understanding. The generic rules
are those that can be applied to many different types of target systems under a number of
configurations. The second part of the rules are those that are either operating system or
implementation dependent. IDES was a predecessor of NIDES.

Intrusion Detection 16 02/09/00

Although simple rule-based systems can be useful, they are reported to be hindered by a
lack of support for developing the intrusion scenarios. It is difficult to determine the relations
between rules. The sheer magnitude of the rule sets make it difficult to isolate a subset in order
to make a change. To overcome this difficulty, the concept of model-based intrusion detection
[Garvey91] was developed in conjunction with the IDES project at Stanford Research Institute.
Each intrusion scenario was separately modeled so that the number of rules that need to be
considered in making a change is a more manageable size.

A performance issue is involved here as well . Since the model-based approach organizes
the rules by intrusion scenario, only the rules used to check for the initial steps in the intrusion
need to be fired. The other rules remain dormant. Once an intrusion scenario is begun (by the
first rule of that scenario being satisfied), additional rules for detecting the subsequent steps of
the intrusion can be added to the set of rules that must be evaluated. In the initial rule-based
approach, none of the rules were dormant, so they were all constantly being evaluated.
Therefore, the model-based approach gains both efficiency and improved maintainabil ity.

4.2 State-based intrusion scenar io representations
In state based representations, attribute-value pairs characterize systems states of interest.

Actions that contribute to intrusion scenarios are defined as transitions between states. Each
action changes the value of attribute(s) of interest. Intrusion scenarios are defined in the form of
state transition diagrams. Nodes represent system states and arcs represent relevant actions. The
action causes a transition between states and determines how the attribute values of the prior
state change as a result of a transition.

The state of the system is a function of all the users, processes, and data present in a
system at any given point. A state transition diagram that defines an intrusion scenario consists

of an initial state, the state before the intrusion, and a compromised state, the state after the
intrusion has been completed, as ill ustrated in figure 3. In between are some number of
transition states. Actions of interest are those taken by the would-be intruder to attain the
compromised state. Actions that do not involve a labeled arc emanating from a current state
(initial or transition) are ignored for the purposes of a specific intrusion scenario. If a
compromised (final) state is ever reached, an intrusion is said to have occurred.

4.2.1 USTAT

USTAT (UNIX State Transition Analysis Tool) provides an excellent illustration of the
implementation of the state-based approach [Porras92]. USTAT is tailored to the UNIX

Figure 3. Generic State Transition Diagram

Action
Compro-

mised State

Transition

State

 Action(s)
Initial

State

 Action
Transition

State

Intrusion Detection 17 02/09/00

environment [Ilgun93]. Each known penetration, or intrusion scenario, is represented in the form
of a state transition diagram. Some action, for example UNIX system routines that change
system state, are the transitions from one state to the next.

USTAT processes audit records from the particular UNIX system on which it was
implemented. The more-than-200 audit events were mapped onto ten USTAT actions, such as
read(file_var), modify_owner(file_var) and hardlink(file_var, file_var), where each instance of
“ file_var” is the name of some file.

States are each defined by as set of assertions, each of which evaluates to true or false.
An example assertion is of the form: member(file_set, file_var), which evaluates to true if
file_var is a member of the file_set.

To monitor for intrusions, an inference engine maintains a table that holds a row for each
possible intrusion that may be in progress. The inference engine processes audit events
sequentially. It maps each event to a corresponding USTAT action. It then checks all rows in the
table to determine if that action causes a transition from the current state (of a diagram that is
represented by a row in the table) to its successor state. If so, the inference engine adds a copy of
that row to the table and marks it as being in the successor state. The original row remains
because another later action could repeat the same action in another penetration attempt using the
same scenario.

An action that causes transition to the final state of a diagram indicates an intrusion. A
separate decision engine determines what action to take.

5 Extensions – distr ibuted systems and networks

Intrusion detection for a distributed system, or for a (more loosely coupled) network of
machines is basically similar to that of intrusion detection for a single operating system. We
refer to them as networked systems from now on. Intrusion scenarios are still based on actions
taken by entities. However, the multiple users of a network system can work together as part of
a cooperative intrusion in which multiple entities collaborate to implement the intrusion. These
entities may represent different humans or may be the same human using different
identifications, possibly on different machines. Casual experience shows that cooperative
intrusions in a network are more frequent than single entity intrusions and provide more options
for intrusive activity. The intruder(s) can use the multiple nodes in an attempt to disguise their
activities. They take advantage of the fact that different operating systems may be unaware of
each other’s state. To detect network-based intrusion, the detector must be able to correlate
actions, and possibly users, from multiple nodes involved in a cooperative intrusion.

 The single-system approaches discussed earlier, anomaly detection and misuse
detection, have been scaled up to deal with intrusion in network systems. Audit data, system
routine invocations, and system state information are collected and then analyzed in a very
similar way as for single operating systems. As one would expect, the system calls that result in
network activity figure prominently in the definition of normal/anomalous behavior and intrusion
scenarios. The difference between the singular case and the network case is that the intrusion
detection system must aggregate and correlate the information from multiple hosts and the

Intrusion Detection 18 02/09/00

network. To accomplish this task, the detector can either apply a centralized approach in which
all the information is collected in a single location and then analyzed, or it may use a
decentralized (hierarchical) approach where local information is analyzed and only selected, vital
information is shared between the intrusion detection components across nodes.

By correlating each action to a particular user, the intrusion detection system encounters
the problem commonly called the Network-user Identification (NID) problem. It is the problem
of tracking a user moving around in the network using possibly many different user-ids on each
machine. There is some disagreement on how much of a problem this presents, but it is a
problem to some degree in all the systems. [Snapp91] argues that the NID problem exists in both
detecting the intrusion and knowing on whom to focus mitigation; [Kemmerer97] claims that the
NID problem is only a problem for the mitigation aspect. No matter how many times a human
logs-in on different machines through the network with different ids, there is always only one
human from which all the logins originated. The key to solving this problem is being able to
find the initial log-in and use that identification as the originating-id for all the other different ids
that have been “derived” from that originating-id. One way to do this it to check for sequences
of actions that a user takes after logging in. Frequently, a user will run certain scripts or
commands in a distinguishable sequence immediately after login.

Other difficulties in performing network intrusion detection include the classical problem
of synchronization of either the clocks for different nodes, or just the audit record time stamps
from different nodes. Since actions may be temporally dependent, keeping clocks in the
distributed system synchronized is essential to being able to match sequences of actions in the
system with the sequences of actions in a defined intrusion scenario.

5.1 Centralized analysis
Centralized network intrusion detection systems are characterized by distributed audit

collection and centralized analysis. Most, if not all , of the audit data is collected on the
individual systems and then reported to some centralized location where the intrusion detection
analysis is performed. This approach works well for smaller network situation but is inadequate
for larger networks due to the sheer volume of audit data that must be analyzed by the central
analysis component.

An example of an intrusion that is operating system dependent is the setuid shell intrusion
that is possible in SunOS but not in Solaris. The intrusion detector must be able to distinguish
between different audit trails since some different intrusion scenarios may apply to each different
operating system being run. This is the problem with performing centralized analysis on
information collected from a collection of heterogeneous system components.

5.1.1 DIDS

Distributed Intrusion Detection System (DIDS) illustrates the centralized approach to
network intrusion detection [Snapp91]. DIDS is basically a collection of multiple intrusion
detection systems running on individual systems that cooperate to detect network-wide
intrusions. The intrusion detection components on the individual systems are responsible for
collecting the system information and converting it into a homogeneous form to be passed to the

Intrusion Detection 19 02/09/00

central analyzer. By converting the audit data into a homogeneous format, DIDS is able to
handle heterogeneous individual systems with just one centralized intrusion detection system.

DIDS does extend the non-distributed intrusion detectors by monitoring network traff ic
and aggregating all the information from the individual intrusion detectors. Once the
information about the individual systems and the network itself has been collected in the
centralized location, it can be analyzed as if it were a single system using some combination of
anomaly and misuse detection approaches. NADIR (Network Anomaly Detection and Intrusion
Reporter) follows a similar approach to that taken by DIDS [Hochberg93].

5.1.2 NSTAT

NSTAT (Network State Transition Analysis Tool) also performs centralized network
intrusion detection [Kemmerer97]. NSTAT collects the audit data from multiple hosts and
combines the data into a single, chronological audit trail to be analyzed by a modified version of
USTAT. To chronologically maintain the audit trail, each component sends a sync message
periodically to make sure that the clocks are synchronized within some threshold. Like DIDS,
NSTAT can handle many heterogeneous audit trail formats since the local audit trail i s converted
to a common NSTAT format before it is sent across the network via an encrypted socket
connection. The intrusion detection analysis is similar to that described for USTAT, a
predecessor of NSTAT.

5.2 Decentrali zed (hierarchical) analysis
Decentralized network intrusion detection systems are characterized by distributed audit

data collection followed by distributed intrusion detection analysis. These systems can be
modeled as hierarchies. Unlike the centralized network intrusion detection systems, these
systems are better able to scale to larger networks because the analysis component is distributed
and less of the audit information must be shared between the different components.

For the decentralized approach, there must be some way of partitioning the entire system
into different, smaller domains for the purpose of communication. A domain is some subset of
the hierarchy consisting of a node that is responsible for collecting and analyzing all the data
from all the other nodes in the domain; this analyzing node represents the domain to the nodes
higher up in the hierarchy. Domains can be constructed by dividing the system based on

• geography,
• administrative control,
• collections of similar software platforms, or
• partitions based on anticipated types of intrusions.

For example, audited events from nodes running the same operating system can be sent to a
central collection point so that the homogeneous systems can be analyzed in concert.

5.2.1 GrIDS

The Graph Based Intrusion Detection System (GrIDS) uses a decentralized approach
[Staniford-Chen96]. GrIDS is concerned with detecting intrusions that involve connections
between many nodes. It constructs activity graphs to represent host activity in a network. The
system being observed is broken into domains as described above ([Staniford-Chen96] calls

Intrusion Detection 20 02/09/00

these departments). Graphs consist of nodes representing the domains and edges representing
the network traffic between them. If a domain Z is the parent domain of domains A, B, and C,
then Z collects the information from the three (A,B, and C) and analyzes it. Z then represents the
domain of A, B, and C to the next level in the hierarchy. Therefore, the parent domain of Z will
only collect information from Z and not the individual domains. For scalabil ity reasons, each
domain builds its own graph and then passes the graph and summary information up to its parent
domain. As the information passes up the hierarchy, the graphs become coarser and coarser with
each child node representing a lower domain that may have numerous nodes and/or sub-domains.

Although it is a decentralized intrusion detection system, GrIDS uses a rule set to
determine how the graphs are built from the incoming and previous information. Rules are
applied to determine whether or not a graph is suspicious – i.e. whether it represents a possible
intrusion. The rule set also specifies how graphs can be combined, based on common nodes or
edges. GrIDS allows multiple rule sets. Each may operate independently of others. Since rule
sets can be complicated and diff icult to write, GrIDS includes a policy specification tool that
more easily allows the specification of acceptable and unacceptable behavior. From this policy
specification, GrIDS builds the appropriate rule sets.

5.2.2 EMERALD

EMERALD (Event Monitoring Enabling Responses to Anomalous Live Disturbances)
uses a three-layer hierarchical approach to large-scale system intrusion detection [Porras97].
Each of the three layers consists of monitors. Each monitor may have its own anomaly and
misuse detectors. The layers are named: service (lowest), domain-wide, and enterprise-wide
(highest). The service layer monitors a single domain. The monitors in the domain-wide layer
accept input from the service layer monitors and attempts to detect intrusions across multiple,
service domains. Likewise, the enterprise-wide monitor accepts input from the domain-wide
monitors and attempts to detect intrusions that cross the entire system.

Information exchange can go up and down the hierarchy. Monitors may subscribe to
information from other monitors at the same level and lower. This "push-pull" information
structure allows the system to scale better than the centralized network intrusion detection
systems.

5.2.3 Common Intrusion Detection Framework (CIDF)

A natural extension of the hierarchical approach to intrusion detection is using multiple
intrusion detection systems to form a new intrusion detection system that can utilize the best
portions of each intrusion detection system. For these individual systems to cooperate with each
other, there must be some standardization between the heterogeneous intrusion detection
subsystems on issues such as deciding on a common vocabulary, information format, and
protocols for sharing information.

One such formalization is the Common Intrusion Detection Framework (CIDF) [Kahn98]
sponsored by the Defense Advanced Research Projects Agency (DARPA). The CIDF working
group is composed of numerous researchers collaborating in an effort to allow their respective
intrusion detection systems to interoperate. The CIDF already includes the Common Intrusion
Specification Language (CISL) for expressing event data, analysis results, and responses to
directives from other intrusion detection systems.

Intrusion Detection 21 02/09/00

6 Vulnerabili ties

Intrusion detection software mechanisms themselves are not inherently survivable; they
too require some protection to prevent an intruder from manipulating the intrusion detection
system to avoid detection. Most systems depend upon the assumption that the intrusion detection
system itself, including executables and data, cannot be tampered with. Fortunately, many of
these problems are classical security problems that have been studied in depth. Physical security
of the system itself must be maintained. Also, the data files from which the intrusion detection
system operates must be kept secure. Well-guarded access and physical measures such as read-
only data storage are used.

Some intrusion detection systems initialize by creating a database intended to define
“normal” behavior. That initialization will be flawed if the intrusion(s) are present.

Since many of the current intrusion detection systems rely on audit trail i nformation,
audit data must be available to the intrusion detection system in a timely manner. Long gaps
between receiving audit records can render an intrusion detector less useful because an intrusion
can take place in a relatively short time. The intrusion detector should have some built-in
survivabil ity to handle the case of infrequent audit records.

 Intrusion detection system designers have to be conscious about the coexistence of the
intrusion detector with the rest of the system. The system being guarded and the intrusion
detector should not compete for the same processor, because doing so would make the intrusion
detector vulnerable to denial-of-service attacks. Executing the intrusion detection system on a
separate computer with its own processor and memory can solve most of these problems.

7 Conclusions

About twenty years of research have produced eff icient, effective intrusion detection
systems. They are based on two fundamental approaches: the detection of anomalous behavior
as it deviates from normal behavior, and misuse detection. These two approaches were
originally developed for single operating systems. In the second generation, they were extended
and scaled to address distributed systems. In the third generation, they were extended to address
loosely coupled networks of otherwise unrelated systems. While the approaches for networked
systems are basically the same as for single operating systems, there are two primary challenges:
tracking users as they move through nodes in the network and managing the data needed by the
intrusion detectors as the size of the network scales up.

We posit that for the next/fourth generation of intrusion detectors, it is urgent to find
some new approaches. We expect that the current approaches will become more accurate
because the semantics of operating systems, and the protocols that knit multiple computers
together into an interdependent network, will be more precisely defined. It will be possible to
monitor for and detect unusual behavior based on more precise and more formal descriptions of
behavior. The University of New Mexico research that devised patterns that, in effect,
recognized “unusual” behavior provides a particularly creative approach for characterizing
system behavior.

Intrusion Detection 22 02/09/00

Network intrusion attempts will be more easily detected if it is possible to actively trace
back from messages in one computer through intermediaries to the originating computer with
high assurance. TCP/IP v6 will raise the associated issues of policy, privacy, and administrative
control.

Intrusion detection in the first three generations has almost wholly focused on intruders
who seek to penetrate the operating system, and in the jargon of Unix, attempt to gain “root”
privilege. Operating system based intrusion detection is well understood at this point. The
weakest aspect is the problem tackled in the third generation: networks. If new network
protocols permit active tracing and identification of (external) intruders through multiple
network nodes, the network problems of today will be dramatically reduced.

At that point the main threat will come from internal intruders, those with limited
authority, seeking to extend that authority, particularly in the context of their applications. Users
who seek to gain application privileges will likely be invisible at the operating system level, and
thus invisible to the most of the kind of intrusion detectors that this survey addresses. We
envision the need for application intrusion detection systems that relate to and exploit the
semantics of the application, not to those of the operating system. These types of detectors will
be the keystone of the fourth generation intrusion detectors that are still to come. An initial
analysis of how to approach application intrusion detection can be found in [Sielken99a, 99b].

8 References

[Anderson80] Anderson, J.P. “Computer Security Threat Monitoring and Surveillance.”
Technical Report, James P. Anderson Co., Fort Washington, Pennsylvania, April 1980.

[Anderson93] Anderson, D. T. Lunt, H. Javitz, A. Tamaru, and A. Valdes. “Safeguard Final
Report: Detecting Unusual Program Behavior Using the NIDES Statistical Component.” SRI
International Computer Science Laboratory Technical Report, December 1993.

[Anderson95a] Anderson, D., T. Lunt, H. Javitz, A. Tamaru and A. Valdes. “Detecting Unusual
Program Behavior Using the Statistical Component of the Next-generation Intrusion
Detection Expert System (NIDES).” SRI International Computer Science Laboratory
Technical Report SRI-CSL-95-06, May 1995.

[Anderson95b] Anderson, D., T. Frivold and A. Valdes. “Next-generation Intrusion Detection
Expert System (NIDES): A Summary.” SRI International Computer Science Laboratory
Technical Report SRI-CSL-95-07, May 1995.

[Cannady96] Cannady, J. and J. Harrell . “A Comparative Analysis of Current Intrusion
Detection Technologies.” 4th Technology for Information Security Conference (TISC’96),
May 1996.

[Combs98] Combs, Brownell . “The Pseudo-Internal Intruder; a new Access Oriented Intruder
Category.” University of Virginia Technical Report, 1999.

Intrusion Detection 23 02/09/00

[Cotrozzi93] Cotrozzi, M. and D. Vincenzetti. “ATP – Anti-Tampering Program.” UNIX
Security IV Symposium (USENIX), October 1993.

[Debar92] Debar, H., M. Becker and D. Siboni. “A Neural Network Component for and
Intrusion Detection System.” Proceedings of the IEEE Symposium on Research in Computer
Security and Privacy, 1992.

[Denning87] Denning, D. “An Intrusion Detection Model.” IEEE Transactions on Software
Engineering, 13.2 (1987) 222.

[Farmer94] Farmer, D. and E. Spafford. “The COPS Security Checker Systems.” Purdue
Technical Report CSD-TR-993, January 1994.

[Forrest94] Forrest, S., L. Allen, A.S. Perelson, and R. Cherukuri. “Self-Nonself Discrimination
in a Computer.” Proceedings of the 1994 IEEE Symposium on Research in Security and
Privacy, 1994.

[Garvey91] Garvey, T.D. and T.F. Lunt. “Model-Based Intrusion Detection.” Proceedings of the
14th National Computer Security Conference, October 1991.

[Hochberg93] Hochberg, J., K. Jackson, C.Stallings, J.F. McClary, D. DuBois, and J. Ford.
“NADIR: An Automated System for Detecting Network Intrusion and Misuse.” Computers
and Security, 12.3 (1993) 235-248, http://nadir.lanl.gov/libLA-UR-93-137.html.

[Hofmeyer97] Hofmeyer, S.A., S. Forrest, and A. Somayaji. “Intrusion Detection using
Sequences of System Calls.” Revised: December 17, 1997.
http://www.cs.unm.edu/~steveah/publications/ids.ps.gz.

[I lgun93] I lgun, K. “USTAT: A Real-Time Intrusion Detection System for UNIX.” Proceedings
of the IEEE Symposium on Research in Security and Privacy, May 1993.

[Javitz93] Javitz, H.S. and A. Valdes. “The NIDES Statistical Component: Description and
Justification.” ftp://ftp.csl.sri.com/pub/nides/reports/statreport.ps.gz, March 1993.

[Kahn98] Kahn, C., P. Porras, S. Staniford-Chen, and B. Tung. “A Common Intrusion Detection
Framework.” Submitted to Journal of Computer Security, July 1998.

[Kemmerer97] Kemmerer, R.A. “NSTAT: A Model-based Real-time Network Intrusion
Detection System.” University of California-Santa Barbara Technical Report TRCS97-18,
November 1997.

[Kim93] Kim, G.H. and E.H. Spafford. “A Design and Implementation of Tripwire: A File
System Integrity Checker.” Purdue Technical Report CSD-TR-93-071, November 1993.

[Kim94] Kim, G.H. and E.H. Spafford. “Experiences with Tripwire: Using Integrity Checkers
for Intrusion Detection.” Purdue Technical Report CSD-TR-94-012, February 1994.

Intrusion Detection 24 02/09/00

[Kumar94] Kumar, S. and E. Spafford. “An Application of Pattern Matching in Intrusion
Detection.” Purdue Technical Report CSD-TR-94-013, June 1994.

[Lindqvist99] Lindqvist, U. and P. Porras. “Detecting Computer and Network Misuse Through
the Production-Based Expert System Toolset (P-BEST).” Proceedings of the 1999 IEEE
Symposium on Security and Privacy, May 1999.

[Liepens92] Liepens, G. and H. Vaccaroo. “Intrusion Detection: Its Role and Validation.”
Computer & Security 11 (1992) 347-355.

[Lunt89] Lunt, T., R. Jaganathan, R. Lee, A. Whitehurst and S. Listgarten. “Knowledge-Based
Intrusion Detection.” Proceedings of the 1989 AI Systems in Government Conference, March
1989.

[Lunt93a] Lunt, T.F. “Detecting Intruders in Computer Systems.” 1993 Conference on Auditing
and Computer Technology, 1993.

[Lunt93b] Lunt, T.F. “A Survey of Intrusion Detection Techniques.” Computers & Security 12
(1993) 405-418.

[Mukherjee94] Mukherjee, B., L.T. Heberlein and K.N. Levitt. “Network Intrusion Detection.”
IEEE Network, May/June 1994, 26-41.

[Porras92] Porras, P.A. and R.A. Kemmerer. “Penetration State Transition Analysis: A Rule-
Based Intrusion Detection Approach.” Proceedings of the Eighth Annual Computer Security
Applications Conference, December 1992.

[Porras97] Porras, P.A. and P.G. Neumann. “EMERALD: Event Monitoring Enabling Responses
to Anomalous Live Disturbances.” 19th National Information System Security Conference
(NISSC), 1997, http://www.csl.sri.com/emerald/emerald-niss97.html.

[Safford93] Safford, D.R., D.L. Schalem, and D.K. Hess. “The TAMU Security Package: An
Outgoing Response to Internet Intruders in an Academic Environment.” Proceedings of the
Fourth USENIX Security Symposium, 1993.

[Sebring88] Sebring, M.M., E. Shellhouse, M. Hanna and R. Whitehurst. “Expert Systems in
Intrusion Detection: A Case Study.” Proceedings of the 11th National Computer Security
Conference, October 1988.

[Sieken99a] Sielken, R. “Application Intrusion Detection.” University of Virginia Computer
Science Technical Report CS-99-17, June 1999.

[Sieken99b] Sielken, R. and A. Jones “Application Intrusion Detection Systems: The Next Step.”
ACM Transactions on Information and System Security, Submitted 1999.

Intrusion Detection 25 02/09/00

[Skardhamar96] Skardhamar, R. Virus: Detection and Elimination. AP Professional, 1996.

[Smaha88] Smaha, S.E. “Haystack: An Intrusion Detection System.” Fourth Aerospace
Computer Security Applications Conference, December 1988.

[Smaha94] Smaha, S.E. and J. Winslow. “Misuse Detection Tools.” Computer Security Journal
10.1 (1994) 39-49.

[Snapp91] Snapp, S.R., J. Brentano, G.V. Dias, T.L. Goan, L.T. Heberlein, C. Ho, K.N. Levitt,
B. Mukherjee, S.E. Smaha, T. Grance, D.M. Teal and D. Mansur. “DIDS (Distributed
Intrusion Detection System) – Motivation, Architecture, and An Early Prototype.”
Proceedings of the 14th National Computer Security Conference, October 1991.

[Staniford-Chen96] Staniford-Chen, S., S. Cheung, R. Crawford, M. Dilger, J. Frank, J.
Hoagland, K. Levitt, C. Wee, R. Yip, and D. Zerkle. “GrIDS – A Graph Based Intrusion
Detection System for Large Networks.” 20th National Information System Security
Conference (NISSC), October 1996, http://olympus.cs.ucdavis.edu/arpa/grids/nissc96.ps.

[Sundaram96] Sundaram, A. “An Introduction to Intrusion Detection.” ACM Crossroads 2.4
(1996), http://www.acm.org/crossroads/xrds2-4/intrus.html.

