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1 Introduction

We address the numerical challenge of solving regular Sturm–Liouville problems in
Liouville’s normal form with a continuous and piecewise analytic potential

−y′′
λ
(t)+q(t)yλ (t) = λyλ (t), t ∈ [a,b], a,b ∈ R, λ ∈ R,

q ∈C0 ([a,b], [qmin,qmax]) is piecewise analytic, yλ ∈C2 ([a,b],R) , (1)

and self-adjoint separated boundary conditions

α1yλ (a)+α2y′
λ
(a) = 0, α1,α2 ∈ R, α

2
1 +α

2
2 > 0,

β1yλ (b)+β2y′
λ
(b) = 0, β1,β2 ∈ R, β

2
1 +β

2
2 > 0, (2)

where a, b, q, qmin, qmax, α1, α2, β1 and β2 are known, and the eigenvalue and eigen-
function pairs (λ ,yλ ) are unknown (Everitt, 2005).

Numerical methods for these problems, as well as for general Sturm–Liouville
problems, which, occasionally, can also be placed in Liouville’s normal form via
Liouville’s transformation (Everitt, 2005, p. 279-280), are particularly important in
physics, chemistry and applied mathematics, e.g., in fluid flow, Schrödinger spectra,
nuclear magnetic resonance imaging, etc (Iserles, Munthe-Kaas, Nørsett and Zanna,
2000, p. 333–337).

It has been known for many years that regular Sturm–Liouville problems in Liou-
ville’s normal form, with a continuous (not necessarily piecewise analytic) potential
and self-adjoint separated boundary conditions (1)–(2), possess a unique countable
family of solutions

{
(λ j,yλ j) : j ∈ Z+

0 and ‖yλ j‖L2([a,b],R) = 1
}

, which can be shown
to satisfy,

λ j < λ j+1 and lim
j→+∞

λ j =+∞,

yλ j has exactly j zeros in (a,b),{
yλ j

}
j∈Z+

0

is an orthonormal basis of L2 ([a,b],R) .

Notwithstanding this result, the fact remained that, although there existed fairly ro-
bust methods to compute (λ j,yλ j) for small j, it was infeasible, in practice, to com-
pute eigenvalue and eigenfunction pairs whenever j� 1. In particular, every numeri-
cal method designed for Sturm–Liouville problems, was either: i) unable to compute
arbitrarily large eigenvalues because of severe restrictions on the step size, or, ii) able
to compute arbitrarily large eigenvalues, but unable to provide a fast convergence rate
in terms of the step size (Pryce, 1993).

In recent years, this state of affairs has began to change with the contributions of
(Moan, 1998), (Iserles et al., 2000, p. 116-120), (Ixaru, 2000), (Ledoux, Daele and
van den Berghe, 2010), etc.

Moan’s (1998) work, is based on four ideas: i) in formulating the Sturm–Liouville
problem (1)–(2) in the Lie-group

SL(2,R) :=
{[

a b
c d

]
: a,b,c,d ∈ R and ad−bc = 1

}
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of two-by-two real matrices with determinant one, ii) in approximating the solution
in SL(2,R) with the use of the Lie-algebra

sl(2,R) :=
{[

a b
c −a

]
: a,b,c ∈ R

}
of two-by-two real matrices with zero trace and Magnus expansions, by calling upon
(Iserles and Nørsett, 1999), iii) in discretizing Magnus expansions, with discretization
schemes put forth in (Iserles and Nørsett, 1999), and, iv) in a clever summation of the
discretized terms in order to avoid some of the issues that arise with large eigenvalues.
In particular, in his work, Moan (1998) established a numerical method with global
order 4 which is able to approximate uniformly any eigenvalue within the bounded
interval h2|λ | ≤ 1, where h denotes the step size.

Following Moan’s (1998) work, Iserles et al.’s (2000) suggested a slightly dif-
ferent, but game-changing, approach: in short, switch the order of discretization and
clever summation. This new idea, coined ‘Magnus streamers’, opened the door to
truly fast computations of Magnus series in low-dimensional Lie algebras, making it
an important contribution to the solution of matrix Lie-group linear differential equa-
tions. Unfortunately, when applied to the formulation of the Sturm–Liouville problem
(1)–(2) in SL(2,R), the uniform approximation of Magnus streamers turn out to be
prohibitively complex: there is nothing wrong with the summation, except that it is
difficult to track the manner in which the magnitude of the eigenvalue influences the
local and global error estimates.

In this paper, we apply the idea from (Iserles et al., 2000) to Fer expansions’ in-
stead of Magnus expansions. The result is remarkable: by calling upon Fer expansions
radius of convergence and recursive nature, it turns out that, unlike Magnus stream-
ers, ‘Fer streamers’ lend themselves to uniform approximation of every eigenvalue
and eigenfunction pair and exponentially growing order with increasing number of
terms, making them a perfect tool in our endeavor!

Indeed, based on this new concept called Fer streamers, we propose a new numer-
ical method, which, i) does not impose any restriction on the step size for eigenvalues
which are greater than or equal to the minimum of the potential, ii) requires only a
mild restriction on the step size for the remaining finite number of eigenvalues, iii)
can attain any convergence rate, which grows exponentially with the number of terms,
and is uniform for every eigenvalue, and, iv) lends itself to a clear understanding of
the manner in which the potential affects the local and global errors.

It is important to emphasize that the piecewise perturbation methods in (Ixaru,
2000) and the modified Magnus methods in (Ledoux et al., 2010), also feature a
numerical mesh which is not severely impeded by the magnitude of the eigenvalues
but lead to asymptotic estimates.

Our main contribution to the state-of-the-art is three-fold. Firstly, the novelty of
our approach. We produce a new numerical method with a numerical mesh which is
virtually independent of the size of the eigenvalues and leads to uniform estimates,
by introducing a new set of ideas based on Fer streamers. Secondly, the order in our
numerical method grows exponentially with the number of terms, as opposed to the
linear growth in (Ixaru, 2000) and (Ledoux et al., 2010). Thirdly, unlike (Ixaru, 2000)
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and (Ledoux et al., 2010), we provide a clear understanding of how the potential
affects our local and global errors.

Assumption 1 The numerical mesh

m ∈ Z+,

c0 := a < c1 < · · ·< cm−1 < cm := b,

hmin := min
k∈{0,1,...,m−1}

{ck+1− ck} ,

hmax := max
k∈{0,1,...,m−1}

{ck+1− ck} ,

is such that

k ∈ {0,1, . . . ,m−1}
t ∈ (ck,ck+1)

}
=⇒ q(t) =

∞

∑
j=0

q( j)
(
c+k
)

j!
(t− ck)

j, (3)

λ ≥ qmin =⇒ hmax ≤
1√

qmax−qmin
, (4)

λ < qmin =⇒ hmax ≤
1√

qmax−λ
, (5)

hmax

hmin
≤ 2 (this constant can be increased). (6)

Remark 1 There exist Sturm–Liouville problems (1)–(2) where (5) does not need to
be considered because there do not exist eigenvalues which are less than the minimum
of the potential. For example, if the boundary conditions (2) are such that

− y′
λ
(b)yλ (b)+ y′

λ
(a)yλ (a)≥ 0 (7)

then

− y′′
λ
(t)+q(t)yλ (t) = λyλ (t)⇒

⇒
∫ b

a

(
−y′′

λ
(t)yλ (t)+q(t)(yλ (t))

2
)

dt = λ

∫ b

a
(yλ (t))

2 dt

⇔ λ =
−y′

λ
(b)yλ (b)+ y′

λ
(a)yλ (a)+

∫ b
a

((
y′

λ
(t)
)2

+q(t)(yλ (t))
2
)

dt∫ b
a (yλ (t))

2 dt

⇒ λ ≥ qmin. (8)

Important examples of boundary conditions (2) that satisfy (7) include zero Dirichlet

α1 6= 0, β1 6= 0, α2 = β2 = 0, yλ (a) = yλ (b) = 0

and zero Neumann

α1 = β1 = 0, α2 6= 0, β2 6= 0, y′
λ
(a) = y′

λ
(b) = 0
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boundary conditions, but (8) is not true in general. As an example, let

a = 0, b = π, (∀t ∈ [0,π],q(t) = 0) , α1 = α2 6= 0, β1 = β2 6= 0

and consider the regular Sturm–Liouville problem in Liouville’s normal form with
self-adjoint separated boundary conditions

−y′′
λ
(t) = λyλ (t), t ∈ [0,π], yλ (0)+ y′

λ
(0) = 0, yλ (π)+ y′

λ
(π) = 0

with eigenvalues and eigenfunctions (normalized so that
∫

π

0 (yλ (t))
2 dt = 1) given in

closed-form by

λ j =

{
−1 ⇐ j = 0,
j2 ⇐ j ∈ Z+,

yλ j(t) =


e−t

e−
π
2
√

sinh(π)
⇐ j = 0,

j cos( jt)−sin( jt)√
π
2

√
j2+1

⇐ j ∈ Z+.

In this example, (8) does not hold true because the negative eigenvalue, λ0 = −1, is
strictly smaller than the minimum of the potential, qmin = 0.

Our approach consists of a three-step procedure, which is based on Assumption
1: Firstly, we divide (4) and (5) into two pieces

λ ∈
[
qmax−h−2

max,qmax +h−2
max
]
∪
[
qmax +h−2

max,+∞
)

and we approximate the solution of

Y′
λ
(t) =

[
0 1

q(t)−λ 0

]
Yλ (t), t ∈ [a,b], a,b ∈ R, λ ∈ R,

q ∈C0 ([a,b], [qmin,qmax]) is piecewise analytic, Yλ : [a,b]→ SL(2,R), (9)

with initial condition

Yλ (a) =
[

1 0
0 1

]
, (10)

in the two uniform regimes

hmax→ 0+, uniformly w.r.t.

{
k ∈ {0,1, . . . ,m−1}, t ∈ [ck,ck+1] ,

λ ∈
[
qmax−h−2

max,qmax +h−2
max
]
,

(11)

hmax→ 0+, uniformly w.r.t.

{
k ∈ {0,1, . . . ,m−1}, t ∈ [ck,ck+1] ,

λ ∈
[
qmax +h−2

max,+∞
)
.

(12)

Our main ideas lie precisely in the development of these uniform expansions. We
proceed by recalling Fer expansions and observing that the error in the standard trun-
cation of Fer expansions deteriorates with increasing values of λ . This, at first glance,
suggests that Fer expansions are not a useful tool to increase the step size in the pres-
ence of large eigenvalues, but nothing could be further from the truth! Indeed, it is
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possible to truncate Fer expansions in an alternative manner, with what we call Fer
streamers, which, to all intents and purposes, do not impede the step size and yield
error estimates with exponentially growing order with increasing number of terms
which also single out the role of the potential!

Remark 2 There is a geometric feature intrinsic to (9)–(10) that should not go unno-
ticed: as indicated above, it is true that (c.f., (Iserles et al., 2000, p. 215–252))

Yλ ([a,b])⊆ SL(2,R).

The reader should be aware that the uniform expansions that appear in this paper
preserve this geometrical feature.

Secondly, we approximate the eigenvalues λ , either via a shooting method (Pryce,
1993, p. 88–116) based on[

α1 α2
0 0

][
yλ (a)
y′

λ
(a)

]
+

[
0 0
β1 β2

][
yλ (b)
y′

λ
(b)

]
=

[
0
0

]
, (13)[

yλ (b)
y′

λ
(b)

]
= Yλ (b)

[
yλ (a)
y′

λ
(a)

]
, (14)

or via the transcendental characterization (Zettl, 2005, p. 43–47) given by

{
λ j
}

j∈Z+
0
=

{
λ ∈ R : det

([
α1 α2
0 0

]
+

[
0 0
β1 β2

]
Yλ (b)

)
= 0
}
, (15)

which relate (1)–(2) and (9)–(10), by approximating Yλ (b) with Fer streamers, and
solving the resulting equation with the use of a root-finding algorithm.

Thirdly, having approximated the eigenvalues, we continue by estimating the cor-
responding eigenfunctions yλ using (13) and (14).

We provide our numerical method with its mathematical foundation, but empha-
size that it is at an early stage of development and that much remains to be done. In
particular, we comment on our investigation of efficient discretization schemes for
the integrals which arise in Fer streamers.

2 Fer expansions and streamers

We embark in this section upon the core of our argument and the essence of the
novelty of its contribution, namely the elaboration of an approximation of (9)–(10) in
the two uniform regimes (11) and (12). We note that it is the uniform character of our
approximations which makes them a very useful tool in our endeavor to approximate
small, medium or large eigenvalues of Sturm–Liouville problems.

In the following subsection, we recall Fer expansions and observe that they pro-
vide an amenable closed-form representation of the exact solution of (9)–(10), with
two important properties: Firstly, Fer expansions are valid whenever the potential is
piecewise analytic, a feature independent of any eigenvalue. Secondly, Fer expan-
sions are naturally defined via a recurrence relation.
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It is then, in the subsequent subsection, that we establish, under the mild con-
ditions, (3), (4), (5) and (6), that those two properties pave the way to the uniform
approximation of what we call Fer streamers: exact closed-form expressions which
we devise for each of the terms appearing in Fer expansions.

2.1 Fer expansions

For ‘small’ eigenvalues, it is possible to solve (9)–(10) by calling upon the following
definitions and theorem from (Fer, 1958), (Iserles, 1984, Theorem 3), (Iserles et al.,
2000, p. 267–270).

Definition 1 Let X,Y ∈ sl(2,R), and define the exponential, the adjoint represen-
tation, and the derivative of the adjoint representation (also referred to as the Lie
bracket) as

exp(X) :=
∞

∑
j=0

X j

j!
,

Adexp(X)Y := exp(X)Yexp(−X) ,

adXY :=: [X,Y] := XY−YX.

Remark 3 Note that the exponential is in SL(2,R) and that the adjoint representation
and the derivative of the adjoint representation are in sl(2,R).

Definition 2 Let l ∈ Z+ and t ∈ [ck,ck+1], and define

Bλ ,0(ck, t) :=
[

0 1
q(t)−λ 0

]
, (16)

Dλ ,0(ck, t) :=
∫ t

ck

Bλ ,0(ck,ξ )dξ , (17)

Bλ ,l(ck, t) :=
∞

∑
j=1

(−1) j j
( j+1)!

ad j
Dλ ,l−1(ck,t)

Bλ ,l−1(ck, t), (18)

Dλ ,l(ck, t) :=
∫ t

ck

Bλ ,l(ck,ξ )dξ . (19)

Remark 4 Observe that Bλ ,0(ck, t),Dλ ,0(ck, t),Bλ ,1(ck, t),Dλ ,1(ck, t), . . . ∈ sl(2,R).
This was recognized by Zanna in (Zanna, 1996) (see the historical reference in (Iser-
les et al., 2000, p. 267–270)), and will go a long way to retain the geometric feature
described in Remark 2.

Theorem 1 ((Fer, 1958), (Iserles, 1984, Theorem 3), (Iserles et al., 2000, p. 267–
270)) If (3) holds true, l ∈ Z+ and t ∈ [ck,ck+1], then

Bλ ,0(ck, t) =
[
O(1) O(1)
O(1) O(1)

]
, t→ c+k (20)

Bλ ,l(ck, t) = (t− ck)
4×2l−1−2

[
O(1) O(1)
O(1) O(1)

]
, t→ c+k (21)
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and the solution of (9) is given by the Fer expansions

Yλ (t) = eDλ ,0(ck,t)eDλ ,1(ck,t)eDλ ,2(ck,t) · · ·Yλ (ck). (22)

Although Theorem 1 provides a closed-form representation of the exact solution of
(9), it is not clear in practice how to evaluate or approximate (22). In particular, Theo-
rem 1 does not provide a practical means to evaluate or approximate the infinite series
(18). This state of affairs was partially resolved in (Zanna, 1998). The methodology
in (Zanna, 1998) consists in two levels of truncation: one in the infinite product, and
one in each infinite sum. Specifically, Zanna (1998) succeeds in approximating the
exact solution by calling upon (20)–(21) to discard all except the very first exponen-
tials in the infinite product (22), and by a careful estimation of each summand to
discard all except the very first terms in each infinite sum (18). This procedure works
exceedingly well, for ‘small’ values of |λ |.

2.2 Fer streamers

For ‘medium’ or ‘large’ eigenvalues, however, the two-stage truncation procedure
described in the previous subsection breaks down, and leads to catastrophic results.
Indeed, it is possible to see that in the aforementioned procedure: i) it is only fea-
sible to solve for eigenvalues in a compact interval h2

max|λ | ≤ 1, as opposed to an
unbounded interval, and, ii) the error bounds deteriorate quite considerably, or com-
pletely, whenever h2

max|λ | ≈ 1.
We now address this issue by proposing a different truncation of Fer expansions,

which consists in one less level of truncation. Our point of departure is what we call
Fer streamers: exact closed-form expressions which we devise for each infinite sum
(18). With these closed-form expressions at hand, we are left only with the truncation
of the infinite product (22), and we proceed by investigating the size of Fer streamers,
in the two uniform regimes (11) and (12).

The result, is a numerical method which, under the mild conditions (3), (4), (5)
and (6), provides a means to estimate any eigenvalue with little or no restriction on the
step size! Moreover, our proposed numerical method retains the same, albeit slower,
type of exponential growth in order!

2.2.1 Closed-form expressions

Definition 3 For every X ∈ sl(2,R), let

π (X) :=

[X]1,1
[X]1,2
[X]2,1

 ,
C X :=

 0 −[X]2,1 [X]1,2
−2[X]1,2 2[X]1,1 0
2[X]2,1 0 −2[X]1,1

 ,
ρ(X) := 2

√
−det(X).
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Theorem 2 If l ∈ Z+ and X,Y ∈ sl(2,R), then

π (adXY) = C Xπ (Y) , C 2l−1
X = ρ

2l−2(X)C X, C 2l
X = ρ

2l−2(X)C 2
X.

Proof The first assertion follows by straightforward computation, and the last two
follow by induction from

C 3
X = ρ

2(X)C X.

ut

Definition 4 Let

ψ(z) :=
∞

∑
j=1

(−1) j j
( j+1)!

z j =−e−z(ez−1− z)
z

and

ϕ(z) :=
ψ(z)−ψ(−z)

2z
=−

∞

∑
j=0

2 j+1
(2 j+2)!

z2 j =
cosh(z)−1− zsinh(z)

z2 ,

φ(z) :=
ψ(z)+ψ(−z)

2z2 =
∞

∑
j=0

2 j+2
(2 j+3)!

z2 j =
zcosh(z)− sinh(z)

z3 .

Remark 5 In the sequel, it will be vital to observe that both ϕ and φ are bounded
along the imaginary axis:

ϕ(ix) =
∞

∑
j=0

(−1) j+1 2 j+1
(2 j+2)!

x2 j =

(
1− cos(x)

x
− sin(x)

)
1
x
,

φ(ix) =
∞

∑
j=0

(−1) j 2 j+2
(2 j+3)!

x2 j =

(
sin(x)

x
− cos(x)

)
1
x2 .

We name the exact closed-form expressions which appear in following Theorem, as
Fer streamers.

Theorem 3 If (3) holds true, l ∈ Z+ and t ∈ [ck,ck+1], then

π
(
Bλ ,l(ck, t)

)
= ϕ

(
ρ
(
Dλ ,l−1(ck, t)

))
C Dλ ,l−1(ck,t)π

(
Bλ ,l−1(ck, t)

)
+

+φ
(
ρ
(
Dλ ,l−1(ck, t)

))
C 2

Dλ ,l−1(ck,t)
π
(
Bλ ,l−1(ck, t)

)
.

Proof See Appendix A. ut
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Remark 6 As an example, since

π
(
Bλ ,0(ck, t)

)
=

 0
1

q(t)−λ


we have that

ρ
(
Dλ ,0(ck, t)

)
= 2(t− ck)

√∫ t
ck

q(ξ )dξ

t− ck
−λ

and that Theorem 3 yields (see Appendix B)

π
(
Bλ ,1(ck, t)

)
=


ϕ
(
ρ
(
Dλ ,0(ck, t)

)) q(t)−
∫ t
ck

q(ξ )dξ

t−ck
t−ck

(t− ck)
2

−2φ
(
ρ
(
Dλ ,0(ck, t)

)) q(t)−
∫ t
ck

q(ξ )dξ

t−ck
t−ck

(t− ck)
3

1
2 φ
(
ρ
(
Dλ ,0(ck, t)

))
ρ2
(
Dλ ,0(ck, t)

) q(t)−
∫ t
ck

q(ξ )dξ

t−ck
t−ck

(t− ck)

 .

2.2.2 Estimates

Definition 5 Let
δ|q′| := max

k∈{0,1,...,m−1}
max

t∈(ck,ck+1)

{
|q′(t)|

}
.

Theorem 4 If Assumption 1 holds true, l ∈Z+ and t ∈ [ck,ck+1], then, in the uniform
regime (11), it follows that

eDλ ,0(ck,ck+1) · · ·eDλ ,0(a,c1) =

[
O (1) O (hmax)

O
(
h−1

max
)

O (1)

]
,

π
(
Dλ ,l(ck, t)

)
= δ

2l−1

|q′| h3×2l−1−1
max

O (hmax)
O
(
h2

max
)

O (1)

 ,
and, in the uniform regime (12), it follows that

eDλ ,0(ck,ck+1) · · ·eDλ ,0(a,c1) =

[
O (1) O(1)√

λ−qmax

O (1)
√

λ −qmax O (1)

]
,

π
(
Dλ ,l(ck, t)

)
= δ

2l−1

|q′| h2l

max(λ −qmax)
− 2l−1−1

2


O(1)√
λ−qmax
O(1)

λ−qmax
O (1)

 .

Proof See Appendix B. ut
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Definition 6 Let n ∈ Z+, and define the

exact flow: Fλ (ck,ck+1) :=
∞

∏
l=0

eDλ ,l(ck,ck+1),

exact solution: Yλ (ck+1) = Fλ (ck,ck+1) · · ·Fλ (c1,c2)Fλ (a,c1),

approximate flow: F̃λ ,n(ck,ck+1) :=
n

∏
l=0

eDλ ,l(ck,ck+1),

approximate solution: Ỹλ ,n(ck+1) := F̃λ ,n(ck,ck+1) · · · F̃λ ,n(c1,c2)F̃λ ,n(a,c1),

local error: Lλ ,n(ck,ck+1) := log
(

Fλ (ck,ck+1)F̃
−1
λ ,n(ck,ck+1)

)
,

global error: Gλ ,n(ck+1) := log
(

Yλ (ck+1)Ỹ
−1
λ ,n(ck+1)

)
.

Remark 7 Observe that Remark 4 and Definition 6 ensure that the exact flow, the
exact solution, the approximate flow and the approximate solution are in SL(2,R),
and that the local error and the global error are in sl(2,R). In particular, note that the
approximate solution retains the geometric feature described in Remark 2.

Theorem 5 If Assumption 1 holds true, and n∈Z+, then, in the uniform regime (11),
it follows that

π
(
Lλ ,n(ck,ck+1)

)
= δ

2n

|q′|h
3×2n−1
max

O (hmax)
O
(
h2

max
)

O (1)

 ,
π
(
Gλ ,n(ck+1)

)
= δ

2n

|q′|h
3×2n−2
max

O (hmax)
O
(
h2

max
)

O (1)

 ,
and, in the uniform regime (12), it follows that

π
(
Lλ ,n(ck,ck+1)

)
= δ

2n

|q′|h
2n+1

max (λ −qmax)
− 2n−1

2


O(1)√
λ−qmax
O(1)

λ−qmax
O (1)

 ,

π
(
Gλ ,n(ck+1)

)
= δ

2n

|q′|h
2n+1−1
max (λ −qmax)

− 2n−1
2


O(1)√
λ−qmax
O(1)

λ−qmax
O (1)

 .

Proof See Appendix C. ut
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Corollary 1 If Assumption 1 is true, and n ∈ Z+, then, in the two uniform regimes
(11) and (12),

π
(
Lλ ,n(ck,ck+1)

)
= δ

2n

|q′|h
3×2n−1
max

O (hmax)
O
(
h2

max
)

O (1)

 ,
π
(
Gλ ,n(ck+1)

)
= δ

2n

|q′|h
3×2n−2
max

O (hmax)
O
(
h2

max
)

O (1)

 .

3 Numerical results

We showcase our numerical method by computing small, medium and large eigen-
values of two Sturm–Liouville toy examples: the first is an Airy-type problem where
the interval, the potential and the boundary conditions in (1) and (2) are given by

a = 0, b = 1, (∀t ∈ [0,1],q(t) = t) , α1 6= 0, β1 6= 0, α2 = β2 = 0,

i.e.,
−y′′

λ
(t)+ tyλ (t) = λyλ (t), t ∈ [0,1], yλ (0) = yλ (1) = 0,

and the second is a Mathieu-type problem where the interval, the potential and the
boundary conditions in (1) and (2) are instead given by

a= 0, b= π, (∀t ∈ [0,π],q(t) = 20cos(2t)) , α1 6= 0, β1 6= 0, α2 = β2 = 0,

i.e.,

−y′′
λ
(t)+20cos(2t)yλ (t) = λyλ (t), t ∈ [0,π], yλ (0) = yλ (π) = 0.

Since both problems have zero Dirichlet boundary conditions, it is clear that together
with Remark 1, the transcendental characterization (15) yields the following non-
linear equation in the unknown eigenvalues{

λ j
}

j∈Z+
0
= {λ ∈ [qmin,+∞) : [Yλ (b)]1,2 = 0} .

The numerical results displayed in Figure 1 represent the absolute error between
an approximation with Fer streamers and one with Matslise’s (Ledoux, Daele and
Berghe, 2005) package. To illustrate their power, Fer streamers were generated with
the largest possible step size which satisfies Assumption 1, i.e., with

m =
⌈
(b−a)

√
qmax−qmin

⌉
, hmax = hmin = (b−a)/m,

together with
n = 1

in Corollary 1, i.e., with a global order four method. The computation of the integrals
that appear in Fer streamers was done with a preliminary version of an efficient dis-
cretization scheme which will appear in a forthcoming paper (c.f., Subsection 4.1),
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and the root-finding was done with chebfun’s (Driscoll, Hale and Trefethen, 2014)
package. It is amazing to observe in Figure 1 that Fer streamers perform well even
with extremely large step sizes: in the Airy-type problem with hmax = hmin = 1.00
and in the Mathieu-type problem with hmax = hmin = 0.16. On a related note, it is
equally important to observe that the absolute errors in Figure 1 are decreasing with
increasing |λ |, as expected in view of Theorem 5.
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te

 e
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=h
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=0.16, n=1
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lu
te

 e
rr

or

Fig. 1 Airy-type (left) and Mathieu-type (right) absolute error.

To conclude, we emphasize that together with the above analytical underpinning,
it seems clear that Figure 1 depicts Fer streamers as a very promising numerical
method for the computation of regular Sturm–Liouville problems in Liouville’s nor-
mal form, with a continuous and piecewise analytic potential and self-adjoint sepa-
rated boundary conditions.

4 Conclusions

We have set in motion the development of a very promising new numerical method to
compute any eigenvalue of regular Sturm–Liouville problems in Liouville’s normal
form, with a continuous and piecewise analytic potential and self-adjoint separated
boundary conditions. In particular, we have seen that the method enjoys:

– Large step sizes uniform over the whole eigenvalue range, and,
– Tight error estimates uniform for every eigenvalue.

Much remains to be done, and current and future work, which will appear in forth-
coming papers, include:

– Efficient discretization schemes, and,
– Absolutely integrable potentials and self-adjoint boundary conditions.



14 Alberto Gil C. P. Ramos, Arieh Iserles

4.1 Efficient discretization schemes

Following Corollary 1, it is clear that n = 1,2,3, . . . yields a numerical method with
global order 4,10,22, . . . uniformly w.r.t. (11) and (12). Going from theory to practice,
this means that we must devise a way to compute

eDλ ,0(ck,ck+1),eDλ ,1(ck,ck+1),eDλ ,2(ck,ck+1), . . . ,eDλ ,n(ck,ck+1),

or, equivalently, given that the exponential map from sl(2,R) to SL(2,R) has a simple
closed-form expression, to compute

Dλ ,0(ck,ck+1),Dλ ,1(ck,ck+1),Dλ ,2(ck,ck+1), . . . ,Dλ ,n(ck,ck+1).

The first term amounts to the computation of

Dλ ,0(ck,ck+1) =
∫ ck+1

ck

Bλ ,0(ck, t)dt =
[

0 ck+1− ck∫ ck+1
ck

q(t)dt− (ck+1− ck)λ 0

]
,

which we assume can be carried out without concern. The computation of the other
terms is sketched below.

4.1.1 A method with global order 4

Calling upon Corollary 1, it is clear that n = 1 results in a numerical method with
local order 5 and global order 4 uniformly w.r.t. (11) and (12). It is now important to
emphasize the intricacies associated with the computation of

Dλ ,1(ck,ck+1) =
∫ ck+1

ck

Bλ ,1(ck, t)dt.

To this end, we begin by partitioning (4) and (5) into three intervals:

λ ∈
[
qmax−h−2

max,qmin−1
]
∪
[
qmin−1,qmax +1

]
∪
[
qmax +1,+∞

)
. (23)

Focusing first on the right interval in (23), we note that a closer investigation reveals
that (c.f., Remark 6 and Definition 4)

Bλ ,1(ck, t) = η
′
λ ,1(ck, t)R1+

+Sλ ,1(ck, t)e
i2
√

λ−q(c+k )(t−ck)+Sλ ,1(ck, t)e
−i2
√

λ−q(c+k )(t−ck), (24)

where the derivatives η
( j)
λ ,1(ck, t) ∈ R and S( j)

λ ,1(ck, t) ∈ sl(2,C) can be bounded inde-
pendently of λ and R1 ∈ sl(2,R), which, in turn, implies that

Dλ ,1(ck,ck+1) =
(
ηλ ,1(ck,ck+1)−ηλ ,1(ck,ck)

)
R1+

+2ℜ

(∫ ck+1

ck

Sλ ,1(ck, t)e
i2
√

λ−q(c+k )(t−ck)dt
)

amounts to the computation of a one-dimensional mildly to highly oscillatory Fourier-
type integral. This observation is key since it is well-known that standard techniques
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such as Gauss–Christoffel quadrature are useless in the presence of mildly to highly
oscillatory behaviour, and specialized techniques must be used instead. Here we
choose a Filon-type quadrature (consistent with the local order of the numerical
method), because it performs well not only in the highly oscillatory regime, but also
in the mildly oscillatory regime. Looking next at the middle interval in (23), we write
(c.f., Remark 6 and Definition 4)

Bλ ,1(ck, t) =

=

(
q(t)−

∫ t
ck

q(ξ )dξ

t− ck

)
×

×

 ϕ

(√
ρ2
(
Dλ ,0(ck, t)

))
(t− ck) −2φ

(√
ρ2
(
Dλ ,0(ck, t)

))
(t− ck)

2

1
2 φ

(√
ρ2
(
Dλ ,0(ck, t)

))
ρ2
(
Dλ ,0(ck, t)

)
−ϕ

(√
ρ2
(
Dλ ,0(ck, t)

))
(t− ck)

,
(25)

where ϕ (
√

z) and φ (
√

z) are analytic in z ∈ C, and,

ρ
2 (Dλ ,0(ck, t)

)
= 4(t− ck)

2

(∫ t
ck

q(ξ )dξ

t− ck
−λ

)
,

and note that, since λ is confined to a fixed compact interval,

Dλ ,1(ck,ck+1) =
∫ ck+1

ck

Bλ ,1(ck, t)dt

amounts to the computation of a one-dimensional well-behaved integral, which can
be uniformly discretized with either a Gauss–Legendre or a Filon-type quadrature
(consistent with the local order of the numerical method). Looking next at the left
interval in (23), we write (c.f., Remark 6 and Definition 4)

Bλ ,1(ck, t) = η
′
λ ,1(ck, t)R1+

+Uλ ,1(ck, t)e
2
√

q(c+k )−λ (t−ck)+Vλ ,1(ck, t)e
−2
√

q(c+k )−λ (t−ck), (26)

where the derivatives η
( j)
λ ,1(ck, t) ∈ R, U( j)

λ ,1(ck, t) ∈ sl(2,R) and V( j)
λ ,1(ck, t) ∈ sl(2,R)

can be bounded independently of λ and R1 ∈ sl(2,R), and note that

Dλ ,1(ck,ck+1) =

=
(
ηλ ,1(ck,ck+1)−ηλ ,1(ck,ck)

)
R1+

+
∫ ck+1

ck

Uλ ,1(ck, t)e
2
√

q(c+k )−λ (t−ck)dt +
∫ ck+1

ck

Vλ ,1(ck, t)e
−2
√

q(c+k )−λ (t−ck)dt

amounts to the computation of one-dimensional exponentially increasing and de-
creasing integrals with linear exponent. This observation is key since it is well-
known that standard techniques such as Gauss–Christoffel quadrature are useless in
the presence of exponentially increasing and decreasing behaviour, and specialized
techniques must be used instead. Here we choose a Filon-type quadrature (consistent
with the local order of the numerical method), because it performs well regardless of
the sign and magnitude of the exponent.
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4.1.2 A method with global order 10

Calling upon Corollary 1, it is clear that n = 2 results in a numerical method with
local order 11 and global order 10 uniformly w.r.t. (11) and (12). It is now important
to draw attention to the intricacies associated with the computation of

Dλ ,2(ck,ck+1) =
∫ ck+1

ck

Bλ ,2(ck, t)dt.

To this end, we begin by estimating in the two uniform regimes (11) and (12):

Dλ ,2(ck,ck+1) =

=
∫ ck+1

ck

Bλ ,2(ck, t)dt

=
∫ ck+1

ck

ϕ
(
ρ
(
Dλ ,1(ck, t)

))
adDλ ,1(ck,t)Bλ ,1(ck, t)dt+

+
∫ ck+1

ck

φ
(
ρ
(
Dλ ,1(ck, t)

))
ad2

Dλ ,1(ck,t)
Bλ ,1(ck, t)dt

=−1
2

∫ ck+1

ck

∫ t1

ck

[
Bλ ,1(ck, t2),Bλ ,1(ck, t1)

]
dt2dt1+

+
1
3

∫ ck+1

ck

∫ t1

ck

∫ t1

ck

[
Bλ ,1(ck, t3),

[
Bλ ,1(ck, t2),Bλ ,1(ck, t1)

]]
dt3dt2dt1+

+δ
4
|q′|h

11
max

[
O (hmax) O

(
h2

max
)

O (1) −O (hmax)

]
,

where the second equality is due to Theorem 3 and the third equality is due to Defini-
tion 4 and Theorem 4. Focusing first on the right interval in (23), we note that insert-
ing (24) into the previous estimate, and collecting like terms, leads to the computation
of two-dimensional and three-dimensional mildly to highly oscillatory Fourier-type
integrals, which can be uniformly discretized with a Filon-type quadrature (consistent
with the local order of the numerical method). Looking next at the middle interval
in (23), we note that inserting (25) into the previous estimate leads to the compu-
tation of two-dimensional and three-dimensional well-behaved integrals, which can
be uniformly discretized with either a Gauss–Legendre or a Filon-type quadrature
(consistent with the local order of the numerical method). Looking next at the left
interval in (23), we note that inserting (26) into the previous estimate, and collect-
ing like terms, leads to the computation of two-dimensional and three-dimensional
exponentially increasing and decreasing integrals with linear exponent, which can be
uniformly discretized with a Filon-type quadrature (consistent with the local order of
the numerical method).

4.1.3 Methods with global order greater than or equal to 22

Calling upon Corollary 1, it is clear that n = 3,4,5, . . . results in a numerical method
with global order 22,46,94, . . . uniformly w.r.t. (11) and (12), and the question arises
of whether it is also possible to develop efficient discretization schemes for these
cases; a matter currently being investigated.
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4.1.4 The challenges

The challenges include:

– Tracking down the behaviour of each multivariate integrand, by collecting like
terms, in order to apply each Filon-type quadrature successfully,

– Choosing the number of quadrature points of each Filon-type quadrature consci-
entiously in order to be consistent with the local order of the numerical method,

– Choosing the set of quadrature points of each Filon-type quadratures intelligently
in order to minimize the local and global error estimates whenever possible,

– Decreasing the number of function evaluations as a means to reduce the compu-
tational effort,

– Decreasing the amount of linear algebra as a means to reduce the computational
effort, and,

– Comparing well-developed efficient discretization schemes for Sturm–Liouville
problems based on Fer streamers with other well-developed software for Sturm–
Liouville problems based on different techniques.

4.2 Absolutely integrable potentials and self-adjoint boundary conditions

Having developed Fer streamers and started the investigation of efficient discretiza-
tion schemes for their implementation, we are now also looking forward to extending
Fer streamers to regular Sturm–Liouville problems in Liouville’s normal form, with
absolutely integrable potentials and self-adjoint separated, real coupled or complex
coupled boundary conditions.

A Proof of Theorem 3

Note that

π
(
Bλ ,l(ck, t)

)
=

= π

(
∞

∑
j=1

(−1) j j
( j+1)!

ad j
Dλ ,l−1(ck,t)

Bλ ,l−1(ck, t)

)

=
∞

∑
j=1

(−1) j j
( j+1)!

π

(
ad j

Dλ ,l−1(ck,t)
Bλ ,l−1(ck, t)

)
=

(
∞

∑
j=1

(−1) j j
( j+1)!

C j
Dλ ,l−1(ck,t)

)
π
(
Bλ ,l−1(ck, t)

)
=−

(
∞

∑
j=1

2 j−1
(2 j)!

C 2 j−1
Dλ ,l−1(ck,t)

)
π
(
Bλ ,l−1(ck, t)

)
+

+

(
∞

∑
j=1

2 j
(2 j+1)!

C 2 j
Dλ ,l−1(ck,t)

)
π
(
Bλ ,l−1(ck, t)

)
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=−

(
∞

∑
j=1

2 j−1
(2 j)!

ρ
2 j−2 (Dλ ,l−1(ck, t)

))
C Dλ ,l−1(ck,t)π

(
Bλ ,l−1(ck, t)

)
+

+

(
∞

∑
j=1

2 j
(2 j+1)!

ρ
2 j−2 (Dλ ,l−1(ck, t)

))
C 2

Dλ ,l−1(ck,t)
π
(
Bλ ,l−1(ck, t)

)

where the first equality is due to Definition 2, and the third and last equalities are due
to Theorem 2.

B Proof of Theorem 4

Recall Definitions 2 and 3 and note that

ρ
(
Dλ ,0(ck, t)

)
= 2(t− ck)

√∫ t
ck

q(ξ )dξ

t− ck
−λ . (27)

Note further that, (27) and assumptions (4) and (5) ensure

λ ∈
[
qmax−h−2

max,qmin
]
⇒ ρ

(
Dλ ,0(ck, t)

)
∈
[
0,2hmax

√
qmax−λ

]
⊆ [0,2] (28)

λ ∈ [qmin,qmax]⇒
∣∣ρ (Dλ ,0(ck, t)

)∣∣≤ 2hmax
√

qmax−qmin ≤ 2 (29)

λ ∈
[
qmax,qmax +h−2

max
]
⇒ ρ

(
Dλ ,0(ck, t)

)
∈ i
[
0,2hmax

√
λ −qmin

]
⊆ i
[
0,2
√

2
]

(30)

λ ∈
[
qmax +h−2

max,+∞
)
⇒ ρ

(
Dλ ,0(ck, t)

)
∈ i
[
2(t− ck)

√
λ −qmax,+∞

)
(31)

which, together with Definition 4 and Remark 5, lead to the following estimates, in
the two uniform regimes (11) and (12):

∣∣ϕ (ρ (Dλ ,0(ck, t)
))∣∣≤ 2, w.r.t (11), (32)∣∣φ (ρ (Dλ ,0(ck, t)
))∣∣≤ 1, w.r.t (11), (33)∣∣φ (ρ (Dλ ,0(ck, t)

))
ρ

2 (Dλ ,0(ck, t)
)∣∣≤ 2, w.r.t (11), (34)∣∣ϕ (ρ (Dλ ,0(ck, t)
))∣∣≤ (t− ck)

−1√
λ −qmax

, w.r.t (12), (35)

∣∣φ (ρ (Dλ ,0(ck, t)
))∣∣≤ 1

2
(t− ck)

−2

λ −qmax
, w.r.t (12), (36)∣∣φ (ρ (Dλ ,0(ck, t)

))
ρ

2 (Dλ ,0(ck, t)
)∣∣≤ 2, w.r.t (12). (37)
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B.1 Estimating exp
(
Dλ ,0(ck,ck+1)

)
· · ·exp

(
Dλ ,0(a,c1)

)
Firstly, in the uniform regime (11), we have

eDλ ,0(ck,ck+1) =

= cosh
ρ
(
Dλ ,0(ck,ck+1)

)
2

[
1 0
0 1

]
+

+
sinh

ρ(Dλ ,0(ck,ck+1))
2

ρ(Dλ ,0(ck,ck+1))
2

 0 ck+1− ck(
ρ(Dλ ,0(ck,ck+1))

2

)2

(ck+1− ck)
−1 0


= O (1)

[
1 0
0 1

]
+O (1)

[
0 O (1)hmax

O (1)h−1
min 0

]
= O (1)

[
1 0
0 1

]
+O (1)

[
0 O (1)hmax

O (1)h−1
max 0

]

where we have called upon (6), (28), (29) and (30). Secondly, in the uniform regime
(12), we have

eDλ ,0(ck,ck+1) =

= cos
ρ
(
Dλ ,0(ck,ck+1)

)
2i

[
1 0
0 1

]
+

+ sin
ρ
(
Dλ ,0(ck,ck+1)

)
2i

 0 ck+1−ck
(2i)−1ρ(Dλ ,0(ck,ck+1))

− (2i)−1ρ(Dλ ,0(ck,ck+1))
ck+1−ck

0



= O (1)
[

1 0
0 1

]
+O (1)


0 1√

λ−
∫ ck+1
ck q(ξ )dξ

ck+1−ck

−
√

λ −
∫ ck+1

ck q(ξ )dξ

ck+1−ck
0


= O (1)

[
1 0
0 1

]
+O (1)

[
0 O (1) 1√

λ−qmax

O (1)
√

λ −qmin 0

]

= O (1)
[

1 0
0 1

]
+O (1)

[
0 O (1) 1√

λ−qmax

O (1)
√

λ −qmax 0

]

where the second equality is due to (27) and (31), and the last equality is due to the
fact that (4) ensures that

√
λ −qmin√
λ −qmax

=

√
1+

qmax−qmin

λ −qmax
≤
√

1+h2
max(qmax−qmin)≤

√
2.



20 Alberto Gil C. P. Ramos, Arieh Iserles

B.2 Estimating π
(
Bλ ,1(ck, t)

)
and π

(
Dλ ,1(ck, t)

)
Finally, we note that (32)–(37), in turn, imply that

ϕ
(
ρ
(
Dλ ,0(ck, t)

))
C Dλ ,0(ck,t)π

(
Bλ ,0(ck, t)

)
=

=

ϕ
(
ρ
(
Dλ ,0(ck, t)

)) q(t)−
∫ t
ck

q(ξ )dξ

t−ck
t−ck

(t− ck)
2

0
0



=



δ|q′|

O
(
h2

max
)

0
0

 , w.r.t (11),

δ|q′|

O (hmax)(λ −qmax)
− 1

2

0
0

 , w.r.t (12),

and

φ
(
ρ
(
Dλ ,0(ck, t)

))
C 2

Dλ ,0(ck,t)
π
(
Bλ ,0(ck, t)

)
=

=


0

−2φ
(
ρ
(
Dλ ,0(ck, t)

)) q(t)−
∫ t
ck

q(ξ )dξ

t−ck
t−ck

(t− ck)
3

1
2 φ
(
ρ
(
Dλ ,0(ck, t)

))
ρ2
(
Dλ ,0(ck, t)

) q(t)−
∫ t
ck

q(ξ )dξ

t−ck
t−ck

(t− ck)



=


δ|q′|

 0
O
(
h3

max
)

O (hmax)

 , w.r.t (11),

δ|q′|

 0
O (hmax)(λ −qmax)

−1

O (hmax)

 , w.r.t (12),

which, according to Theorem 3, lead to

π
(
Bλ ,1(ck, t)

)
= ϕ

(
ρ
(
Dλ ,0(ck, t)

))
C Dλ ,0(ck,t)π

(
Bλ ,0(ck, t)

)
+

+φ
(
ρ
(
Dλ ,0(ck, t)

))
C 2

Dλ ,0(ck,t)
π
(
Bλ ,0(ck, t)

)

=



δ|q′|

O
(
h2

max
)

O
(
h3

max
)

O (hmax)

 , w.r.t (11),

δ|q′|

O (hmax)(λ −qmax)
− 1

2

O (hmax)(λ −qmax)
−1

O (hmax)

 , w.r.t (12).
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B.3 Estimating π
(
Bλ ,l(ck, t)

)
and π

(
Dλ ,l(ck, t)

)
for l ≥ 2

Follows by induction.

B.3.1 First step: l = 2

Given Definition 4 and the uniform estimates for π
(
Bλ ,1(ck, t)

)
in the previous sub-

section, it is now clear that

ϕ
(
ρ
(
Dλ ,1(ck, t)

))
=


−1

2
+δ

2
|q′|O

(
h6

max

)
, w.r.t (11),

−1
2
+δ

2
|q′|O

(
h4

max
)
(λ −qmax)

−1 , w.r.t (12),

φ
(
ρ
(
Dλ ,1(ck, t)

))
=


1
3
+δ

2
|q′|O

(
h6

max

)
, w.r.t (11),

1
3
+δ

2
|q′|O

(
h4

max
)
(λ −qmax)

−1 , w.r.t (12),

and, according to Theorem 3, that

π
(
Bλ ,2(ck, t)

)
= ϕ

(
ρ
(
Dλ ,1(ck, t)

))
C Dλ ,1(ck,t)π

(
Bλ ,1(ck, t)

)
+

+φ
(
ρ
(
Dλ ,1(ck, t)

))
C 2

Dλ ,1(ck,t)
π
(
Bλ ,1(ck, t)

)

=



δ
2
|q′|

O
(
h5

max
)

O
(
h6

max
)

O
(
h4

max
)
 , w.r.t (11),

δ
2
|q′|

O
(
h3

max
)
(λ −qmax)

−1

O
(
h3

max
)
(λ −qmax)

− 3
2

O
(
h3

max
)
(λ −qmax)

− 1
2

 , w.r.t (12).

B.3.2 Induction step: l⇒ l +1

Given the induction claim, it is now clear that

ϕ
(
ρ
(
Dλ ,l(ck, t)

))
=


−1

2
+δ

2l

|q′|O
(

h3×2l

max

)
, w.r.t (11),

−1
2
+δ

2l

|q′|O
(

h2l+1

max

)
(λ −qmax)

−2l−1
, w.r.t (12),

φ
(
ρ
(
Dλ ,l(ck, t)

))
=


1
3
+δ

2l

|q′|O
(

h3×2l

max

)
, w.r.t (11),

1
3
+δ

2l

|q′|O
(

h2l+1

max

)
(λ −qmax)

−2l−1
, w.r.t (12),
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and, according to Theorem 3, that

π
(
Bλ ,l+1(ck, t)

)
= ϕ

(
ρ
(
Dλ ,l(ck, t)

))
C Dλ ,l(ck,t)π

(
Bλ ,l(ck, t)

)
+

+φ
(
ρ
(
Dλ ,l(ck, t)

))
C 2

Dλ ,l(ck,t)
π
(
Bλ ,l(ck, t)

)

=



δ
2l

|q′|


O
(

h3×2l−1
max

)
O
(

h3×2l
max

)
O
(

h3×2l−2
max

)
 , w.r.t (11),

δ
2l

|q′|


O
(

h2l+1−1
max

)
(λ −qmax)

− 2l
2

O
(

h2l+1−1
max

)
(λ −qmax)

− 2l+1
2

O
(

h2l+1−1
max

)
(λ −qmax)

− 2l−1
2

 , w.r.t (12).

C Proof of Theorem 5

Recall the Baker–Campbell–Hausdorff-type formulas

eXeY = eX+Y+ 1
2 [X,Y]+ 1

12 ([X,[X,Y]]+[Y,[Y,X]])+··· (38)

eXeYe−X = eY+[X,Y]+ 1
2 [X,[X,Y]]+ 1

6 [X,[X,[X,Y]]]+··· (39)

= exp
(
Adexp(X) (Y)

)
. (40)

The local error can be written as

Lλ ,n(ck,ck+1) =

= log
(

Fλ (ck,ck+1)F̃
−1
λ ,n(ck,ck+1)

)
= log

( ∞

∏
l=0

eDλ ,l(ck,ck+1)

)(
n

∏
l=0

eDλ ,l(ck,ck+1)

)−1


= log

( n

∏
l=0

eDλ ,l(ck,ck+1)

)(
∞

∏
l=n+1

eDλ ,l(ck,ck+1)

)(
n

∏
l=0

eDλ ,l(ck,ck+1)

)−1


= log

( n

∏
l=0

eDλ ,l(ck,ck+1)

)
eDλ ,n+1(ck,ck+1)+h.o.t.

(
n

∏
l=0

eDλ ,l(ck,ck+1)

)−1


= log
(

eDλ ,0(ck,ck+1)eDλ ,n+1(ck,ck+1)+h.o.t.e−Dλ ,0(ck,ck+1)
)

= Adexp(Dλ ,0(ck,ck+1))
(
Dλ ,n+1(ck,ck+1)+h.o.t.

)
= Adexp(Dλ ,0(ck,ck+1))

(
Dλ ,n+1(ck,ck+1)

)
+h.o.t. (41)
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where the first and second equalities are due to Definition 6, the fourth equality is due
to (38), the fifth equality is due to (39), and the sixth equality is due to (40). The local
error expression (41), together with Theorem 4, yields the desired estimate.

The global error obeys the recursion relation with initial condition

Gλ ,n(c1) = Lλ ,n(a,c1) (42)

and general rule

Gλ ,n(ck+1) =

= log
(

Yλ (ck+1)Ỹ
−1
λ ,n(ck+1)

)
= log

(
Fλ (ck,ck+1)Yλ (ck)Ỹ

−1
λ ,n(ck)F̃

−1
λ ,n(ck,ck+1)

)
= log

(
Fλ (ck,ck+1)eGλ ,n(ck)F̃−1

λ ,n(ck,ck+1)
)

= log
(

eLλ ,n(ck,ck+1)F̃λ ,n(ck,ck+1)eGλ ,n(ck)F̃−1
λ ,n(ck,ck+1)

)
= log

eLλ ,n(ck,ck+1)

(
n

∏
l=0

eDλ ,l(ck,ck+1)

)
eGλ ,n(ck)

(
n

∏
l=0

eDλ ,l(ck,ck+1)

)−1


= log
(

eLλ ,n(ck,ck+1)eDλ ,0(ck,ck+1)eGλ ,n(ck)+h.o.t.e−Dλ ,0(ck,ck+1)
)

= log
(

eLλ ,n(ck,ck+1) exp
(

Adexp(Dλ ,0(ck,ck+1))
(
Gλ ,n(ck)+h.o.t.

)))
= log

(
eLλ ,n(ck,ck+1) exp

(
Adexp(Dλ ,0(ck,ck+1))

(
Gλ ,n(ck)

)
+h.o.t.

))
= Lλ ,n(ck,ck+1)+Adexp(Dλ ,0(ck,ck+1))

(
Gλ ,n(ck)

)
+h.o.t. (43)

where the first, second, third, fourth and fifth equalities are due to Definition 6, the
sixth equality is due to (39), the seventh equality is due to (40), and the last equality
is due to (38). The global error expressions (42) and (43) lead to

Gλ ,n(ck+1) = Adexp(Dλ ,0(ck,ck+1))
(
Dλ ,n+1(ck,ck+1)

)
+

+Adexp(Dλ ,0(ck,ck+1))exp(Dλ ,0(ck−1,ck))
(
Dλ ,n+1(ck−1,ck)

)
+

+ · · ·+
+Adexp(Dλ ,0(ck,ck+1))···exp(Dλ ,0(a,c1))

(
Dλ ,n+1(a,c1)

)
+

+h.o.t.

which, together with (6) and Theorem 4, result in the desired estimate.
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