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ABSTRACT 
Code size has always been an important issue for all embedded 
applications as well as larger systems.  Code compression 
techniques have been devised as a way of battling bloated code; 
however, the impact of VLIW compiler methods and outputs on 
these compression schemes has not been thoroughly investigated. 

This paper describes the application of single- and multiple-
instruction dictionary methods for code compression to decrease 
overall code size for the TI TMS320C6xxx DSP family.  The 
compression scheme is applied to benchmarks taken from the 
Mediabench benchmark suite built with differing compiler 
optimization parameters. 

In the single instruction encoding scheme, it was found that 
compression ratios were not a useful indicator of the best overall 
code size – the best results (smallest overall code size) were 
obtained when the compression scheme was applied to size-
optimized code.  In the multiple instruction encoding scheme, 
changing parallel instruction order was found to only slightly 
improve compression in unoptimized code and does not affect the 
code compression when it is applied to builds already optimized 
for size.   

Categories and Subject Descriptors 
D.3.4 [Programming Languages]: Processors – code generation, 
Compilers, Optimization. 

General Terms 
Performance. 

Keywords 
Code Compression, compiler optimizations, VLIW. 

1. INTRODUCTION 
The main goal of any compression algorithm is to reduce 
redundancy and increase the information content in a given block 

of information.  However, code compression varies from normal 
text or data compression in many ways.  The majority of text 
compression techniques view the information to be compressed as 
a block of data (such as a file) that needs to be compressed in size.  
When compressing a series of instructions, however, certain 
information needs to be retrieved at will.  For example, branching 
and function entry points must be able to be decompressed on 
demand. 

Code compression can be used as a method of reducing overall 
code size in embedded applications to reduce the amount of on- or 
off-chip memory required, or to increase the amount of code than 
can be used in those areas of memory. 

Code compression efficiency is widely defined [5, 12, 13, 16, 18] 
by the compression ratio given by the following formula: 

 sizeprogram original
 sizeprogram compressedrationcompressio =  

RISC processors have been the main focus for code compression 
techniques but VLIW (Very Long Instruction Word) processors 
are now being considered in this area as a result of their increased 
appeal to not only larger applications, but also the embedded 
field. 

Their attraction stems from their powerful parallel architecture 
and their simple execution-unit design.  Executing multiple 
instructions in parallel brings with it the obvious speedup of 
instruction processing, while introducing scheduling issues and 
resource constraints.  Unlike superscalar implementations, VLIW 
architectures give the compiler responsibility for scheduling 
instructions and recognizing dependencies instead of the hardware 
doing so at runtime.  As a result, code size can be largely 
dependant on compiler optimizations and efficiency. 

Compilers for VLIW processors are required to package multiple 
instructions into packet-sized blocks for simultaneous execution.  
The way in which this is done can greatly increase or decrease the 
efficiency in compressing this generated code, and can have a 
large effect on overall code size.  As the full responsibility for 
scheduling and packaging instructions in a VLIW program is 
given to the compiler, it is necessary to investigate the effects of 
that compiler’s output on the compression ratios achieved as well 
as the overall code size after compression. 

In this paper, we present a dictionary method compression scheme 
and investigate its performance when applied to various compiler 
optimizations and parallel instruction orderings.  Section 2 
presents related work in this field while Section 3 describes the 
dictionary-method compression scheme used.  Section 4 outlines 
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results from applying the compression scheme to varied compiler 
output and Section 5 concludes with a discussion and comparison 
of results. 

2. RELATED WORK 
The idea of using code compression as a tool for chip size 
reduction in microprocessors has mostly incited interest in the 
area of single instruction issue (usually RISC) processors.  These 
compression schemes can be categorized as dictionary methods 
such as CodePack™ in [8] or SADC in [19], or as statistical such 
as Arithmetic Coding [9, 23] or Markov models [18].  Some work 
has been done on the comparison of program optimization and 
compression for a RISC processor [6], however this is not 
extensive and there is no published work targeting VLIW 
compiler optimizations. 

2.1 Code Compression on RISC processors 
Code compression for RISC processors first emerged in a paper 
by Wolfe and Channin [22].  This paper proposed a new RISC 
system architecture based on existing architectures called a CCRP 
(compressed Code RISC Processor).  Due to RISC programs 
tending to be larger, a CCRP was suggested to compress the code 
and use a ‘code-expanding instruction cache’, such that the 
decompression could be transparent to the processor.  Various 
Huffman-based encoding schemes were used.  By using a 
compression technique that did not give consideration to branch 
targets and function beginnings, extra hardware was required to 
fetch addresses. 

Further developments in RISC code compression developed code 
compression methods that looked at compiler techniques [6, 7], 
expression trees and operand factorization [3, 4], enhanced 
dictionary schemes  and statistical schemes based on Markov 
models and arithmetic coding. 

Dictionary compression schemes have been investigated by 
Lefurgy et al [12] with fixed and variable length codewords.  The 
dictionary compression is used to determine what portion of a 
program’s object code is made up of its most frequent instructions 
and encode the more frequent instructions with a ‘codeword’ 
whose size is much smaller than the original instruction.  This 
codeword references the dictionary where all original instructions 
are stored.  Their study finds that on average more than 80% of 
the instructions in CINT95 have instruction words which are used 
multiple times, and one in-depth case showed that 10% of the 
most frequent instructions accounted for 66% of the overall code 
size of that program [12].  Investigation is also undertaken into 
compression based on multiple instruction dictionary entries. 

The CodePack encoding algorithm[8] encompasses a similar idea, 
as the most common instructions are replaced by the indexes to 
the smallest dictionary, the next set of instructions (in order of 
frequency) are replaced by an index into the second-smallest 
dictionary, etc.  This introduces some overhead to determine 
which dictionary is used to decompress the instruction, but 
ensures that very few bits are required for the most common 
instructions.  CodePack is said to achieve compression ratios of 
35-40%, not including the dictionaries themselves. 

2.2 Code Compression on VLIW processors 
The code compression techniques applied to date on multiple-
issue processors (particularly the more original rigid VLIW 

processors, but also recently targeting variable execution set 
architectures) are limited to the works of Nam et al [21], Ishiura 
and Yamaguchi [10], Prakash et al [20], Xie et al [23-25] and 
Larin and Conte [11].  This is only a subset of the techniques 
available for both data compression and single-issue code 
compression. 

Nam et al[21] achieved average compression ratios of 63%-71% 
on SPEC95 benchmarks for varying VLIW architectures using a 
dictionary compression method and compared the difference in 
performance of "identical" and "isomorphic" instruction word 
encoding schemes.  Nam[21] uses the separation into opcodes and 
operands across the entire fetch-packet, hence for an x-issue 
processor, there will be x opcodes and x operand streams.  Two 
dictionaries are required, one to hold the opcode entries and the 
other to hold operand entries.  Two methods of investigating 
common instruction words are compared (identical – whole 
instructions words; and isomorphic – split into opcode/operand 
fields) in varying VLIW architectures.  Their results show that 
using the isomorphic instruction words method out-performed the 
identical instruction words method by a compression ratio 
difference of at least 17%. 

Ishiura and Yamaguchi [10] also investigate code compression for 
VLIW processors, this time based on a statistical method called 
Automatic Field Partitioning.  Their paper reduces the problem of 
compressing code to the problem of finding the field partitioning 
that yields the smallest compression ratio.  Each field partition is 
then encoded with a dictionary scheme.  Ishiura and Yamaguchi 
[10] achieve compression ratios of 46-60%. 

Prakash et al [20] present a dictionary based encoding scheme 
that divides instructions into 2 16-bit halves. For each half, a 
dictionary is constructed that contains a choice set of vectors such 
that a majority of the vectors used throughout the program in that 
half of the instruction differ by one of the dictionary vectors by a 
small Hamming Distance (the Hamming Distance between two 
vectors is the number of bits that are different).  Each compressed 
instruction is then replaced by two codewords representing each 
half-instruction.  These codewords are a combination of the 
indexes into the relevant dictionaries as well as information about 
which bits are toggled.  This method means that two vectors that 
are different at only one bit will not require both vectors to be 
stored in the dictionary.  Compression ratios of 80% are recorded. 

Xie et al.[23, 25] are the first works to really target a VLES 
(various length execution set) such as the TMS320C6x where bit0 
of each instruction tells the architecture whether the next 
instruction may be executed with the current set of instructions or 
not.  Xie uses a reduced-precision arithmetic coding technique 
combined with a Markov model (statistical method) and applies it 
to similar systems with different sized sub-blocks.  Increasing the 
block size decreases the compression ratio, but also increases the 
time taken to decompress.  The 16-byte sub-block scheme yields 
the best compression rates at 67.3% – 69.7% but processing 11.2 
– 11.5 bits per clock cycle; whilst the 4-byte sub-block scheme 
although processing 47.01 – 47.42 bits per clock cycle has a 
compression ratio of 76.7% – 80.6%. 

Xie et al. [24] also present a Tunstall-based memory-less 
variable-to-fixed encoding scheme as well as an improved 
Markov variable-to-fixed algorithm with varying model depths 
and widths.  It is reported that 4-bit encoding produces the best 



results.  Compression ratio was found to improve with larger 
codeword sizes until after 4 bits.  This was mainly due to the fact 
that less padding was required in 4-bit codeword compression.  
The use of variable-to-fixed encoding means that codewords are 
arbitrarily assigned and this assignment can be used to an 
advantage to reduce the number of bit toggles on the instruction 
bus. 

Finally, the related work by Larin and Conte [11] conducts a 
comparison between code compression methods and a tailored 
encoding of the Instruction Set Architecture.  In the tailored ISA 
method, instructions were compacted into the smallest number of 
bits required to still represent the same information.  This method 
produced new code at 64% of the original code size, though at a 
much smaller cost to decoding hardware than standard 
compression.  This was compared to a Huffman encoding with the 
code treated as bytes (72%), operations separated into streams 
(75%), and operations as a whole (30%).  The Huffman 
compression applied to instructions as a whole was found to 
produce These compression ratios did not include the Address 
Translation Table required to maintain branch target information.  
This added approximately 15.5% to the compressed code size. 

3. ENCODING SCHEMES 
In order to analyze the effects of compiler outputs on the 
compressibility of a program, single and multiple dictionary 
encoding schemes were used to illustrate the frequencies of 
instructions associated with VLIW code. 

3.1 Single Instruction Encoding Scheme 
The single instruction encoding scheme used in this paper is a 
dictionary compression method that analyses the instructions in a 
program, builds a dictionary with the most frequent instructions 
and compresses the original program by replacing common 
instructions with a reference to the dictionary.  This is a technique 
similar to [13], except that instructions appearing only once are 
not compressed. 

The initial pass of the encoding scheme reads in a compiled object 
file and gathers statistics of the frequencies of unique instructions.  
This information is used to decide which instructions will be 
included in the dictionary.  The second pass through the program 
takes each instruction and either leaves it as it is, or compresses it 
if it is found in the dictionary.  Figure 1 demonstrates this. 

This dictionary method has been implemented using dictionaries 
of 4- and 12- bits which correspond to 8- and 16-bit codewords as 
a result of the compression overhead required (described in 
Section 3.5). 

3.2 Multiple Instruction Encoding Scheme 
The multiple instruction encoding scheme adopted is very similar 
to the single instruction scheme, except that sequences of 2- to 8-
instructions are considered as ‘dictionary words’ instead of lone 
instructions.  In a way, the scheme in Section 3.1 is a version of 
this encoding scheme, where sequences of 1-instruction are 
considered. 

Although both encoding schemes are similar, the method is very 
different.  Because sequences of 2 or more instructions are being 
considered in this scheme, the sequences in a given program can 
‘overlap’.  This means that when a particular instruction sequence 

is chosen for addition to the dictionary (and replacement 
throughout the code), this affects the statistics for the remaining 
sets of sequences.  As a result, new statistics must be gathered 
upon every iteration of the dictionary-filling process. 

This brings into question the algorithm to be used for dictionary 
word selection.  In this paper, we present results for a greedy 
method of dictionary word choice, choosing the most frequent 
sequence of instructions at all times.  It is possible that a better 
compression ratio could be achieved through an alternative 
algorithm for the choice of dictionary words; however, as the aim 
of this paper is to measure compiler optimization effects on code 
compression, the greedy approach is an appropriate one. 

3.3 Parallel Instruction Ordering 
Another property of VLIW code investigated in this paper, is the 
effect of parallel instruction ordering on code compression.  As 
mentioned earlier, for VLIW processors, the compiler assumes 
responsibility for scheduling and ordering instructions.  This 
includes detecting when instructions can be executed in parallel 
and adding this information to the code itself.  In the TI 
TMS320C6x Family, this is done by using the last bit of the 
instruction to signify whether it can be executed in parallel with 
the following instruction or not.  Fetch packets are 8 instructions 
long, so the longest possible sequence of parallel instructions is 8 
in a row.  These groups of parallel instructions, in the 
TMS320C6x series, can be ordered by the compiler in any way, 
as the instructions themselves contain information as to which 
execution unit they will be run on.  This means that the compiler 
can arbitrarily choose the order of this sequence, with the end 
result being the same – they all get executed in parallel and on 
their respective execution units.  To investigate the effect of 
parallel instruction ordering on compressibility, a canonical sort 
order1 was applied to groups of parallel instructions before 
compression. 

Thus, the multiple instruction encoding scheme described in 
Section 3.2 was applied to benchmark builds before and after the 
parallel instruction ordering took place.  Results were produced 
                                                                 
1 The sort order used was one based on the bitwise comparison of 

instructions 

 
Figure 1 – Dictionary Encoding Scheme Example 



for benchmarks compiled for the 67xx floating point target 
without libraries using a byte-aligned best-fit codeword size to 
encode the dictionary entries. 

3.4 Branch Target Patching 
One of the major differences between standard data compression 
and code compression is that function entry points and branch 
targets must be preserved in some way.  This is so that references 
to memory locations do not return invalid code.  The method of 
branch target patching is a way of manipulating (changing) the 
code so as to reflect the changes in code size, and was introduced 
in [12]. 

As a result, instructions that branch forward x  instructions 
(where y  of those are compressed and  yx −  are maintained) 
need to be patched.  Instead of branching forward to 

ninstructioperbytesx __× , 

the branch needs to be changed to 

ninstructioperbytesyxcodewordsinbytesy __)(  __ ×−+×  

bytes. 

This ensures that all requests from the CPU for memory locations 
are already correct and the hardware does not have to be altered to 
recalculate the correct locations of the instructions wanted. 

This method of ‘patching’ instructions introduces a dilemma for 
relative branching instructions.  What if the relative branch 
instruction itself is required to be compressed?  This would mean 
that the instruction would be stored in the dictionary, and an index 
into the dictionary would be stored in place of the original 
branching instruction.  Then the number of bytes to branch would 
be changed, making the instruction in the dictionary incorrect. 

This sort of problem is akin to the problem found in [12] where 
compressing relative branches is NP-complete.   To avoid this 
problem, relative branches are not compressed.  

3.5 Compression Overhead 
Overhead is included in all compression schemes albeit in many 
different ways.  In the case of this encoding scheme, overhead is 
introduced by having to add information that allows an instruction 
to be decoded as either a codeword or an original instruction.  A 
prefix bit could have been added to determine whether an 
instruction is compressed or not, however that would result in 
code not being byte aligned which can cause difficulty in 
designing a hardware engine to decompress the instructions. The 
method used in this paper expands the instruction set architecture 
to make use of the unused opcode-space available.  In particular, 
the TI TMS320C6x series has various classes/types of instructions 
that are each categorized by the values of bits 2-6 as shown in 
Figure 2. 

The set of 4 bits 1100 does not correspond to any ‘normal’ 
instruction, and can be used to flag that the codeword is not an 
original instruction.  The codewords inserted instead of the 
original instructions will need to include these extra 4 bits which 
will essentially be the overhead in this encoding scheme.  As a 
result, the codeword size turns out to be 4 bits larger than the 

index into the dictionary and so 8- and 16-bit codewords result in 
162 48 =−  and 40962 416 =−  entry dictionaries.  

The encoding scheme takes care not to compress any instruction 
that only occurs once, because doing so would increase the 
number of bytes required to represent the instruction.  This may 
mean that the dictionary is not filled.  Dictionary sizes can thus 
vary from program to program depending on the density of 
instructions that exist more than once. 

3.6 Decompression Hardware and Runtime 
Overhead 
Like most code compression schemes, hardware would be 
required to analyze instructions as they are fetched from memory 
and decide whether to allow the instruction to pass on to the CPU 
unaltered, or whether to decompress the recognized codeword by 
looking up a dictionary and passing-on the dictionary word 
instead.  This introduces a delay when processing compressed 
instructions that may affect the performance of the processor.  
Figure 3 shows a block diagram of the required hardware. 

The size of the decompression hardware required to process the 
compressed instructions also needs to be taken into account.  
Huge reductions in code size at the cost of a large increase in die 
size on the processor (as a result of a large dictionary) would not 
be advisable.  As the dictionary is the largest component of the 
decompression hardware, dictionary sizes need to be taken into 
account when considering compression techniques.  The 
compression ratios in our study take into account the compression 

 
Figure 2 – TI TMS320C6x Opcode Space 

Figure 3 –Block Diagram for Decoder Hardware 
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overhead associated with instruction patching and the dictionary. 

The performance and run-time overhead of this sort of 
decompression scheme has been investigated in other papers [7, 
14, 15, 17, 22, 25] and is beyond the scope of this paper.  
Although code compression generally results in reduced 
performance as a result of the hardware required, some studies 
have shown that applying code compression to post-cache 
architectures produces a benefit to performance through reduced 
cache-misses and fewer instruction fetches [19]. 

4. APPLICATION 
The aim of this paper is to investigate the impact of various 
compiler optimizations on the compressibility of compiled object 
code.  In particular, the TI TMS320C6x DSP processor fam-ily 
[2] has been chosen as the target VLIW processor family, and the 
Mediabench benchmark programs [1] have been chosen as 
appropriate benchmarks for this sort of processor. The TI Code 
Composer Studio IDE was used to generate various builds for 
each benchmark, each build using a different set of optimization 
options.  The study presented in this paper is limited to this 
particular processor and compiler, but as there is no other 
published work of the effect of compiler optimizations and 
ordering on VLIW code compression, it serves as an indication of 
an area that needs to be further examined. 

4.1 Mediabench Benchmarks 
Mediabench [1] was chosen as an appropriate set of benchmark 
programs to investigate.  These programs were compiled for both 
fixed point and floating point targets.  The benchmarks used 
included: 

• adpcm (rawc- and rawd-audio) 
• g721 (encode and decode) 
• epic (and unepic) 
• mpeg (mpeg2enc and mpeg2dec) 
• jpeg (cjpeg and djpeg) 

4.2 Compiler optimizations 
The TI compiler offered two sets of optimization control through 
argument flags.  The first and most common optimization option 
is that of the numerical level associated with optimization flags ‘-
o0’ to ‘-o3’.  This gives 5 levels of numeric optimization: 

• No optimization 
• ‘-o0’ (register-level optimization)  

Performs control-flow-graph simplification, loop rotation, 
allocates variables to registers, eliminates unused code, 
simplifies expressions and statements, expands inline 
functions. 

• ‘-o1’ (local optimization) 
Performs all –o0 optimizations and: Performs local 
copy/constant propagation, removes unused assignments, 
eliminates local common expressions 

• ‘-o2’ (global optimization) 
Performs all –o1 optimizations and: software optimizing, 
loop optimizations and unrolling, eliminates global 
common subexpressions and  unused assignments, 
converts array references in loops to increment pointer 
form. 

• ‘-o3’ (file-level optimization)  
Performs all –o2 optimizations and: removes uncalled 
functions, simplifies functions with unused return values, 
makes functions inline, reorders function declarations, 
propagates arguments into function bodies when the same 
value is always passed 

Also, the TI compiler offers a separate 5 levels of optimization for 
code size versus speed (performance).   

• (no flag) Speed Most Critical 
• ‘ ms0’ Speed More Critical 
• ‘-ms1’ Speed Critical 
• ‘-ms2’ Size Critical 
• ‘-ms3’ Size Most Critical 

These levels were found to increase or reduce how many of the 
instructions in a given program were scheduled for execution on 
their own, or in parallel.  For example, with the ‘-ms3’ option, 
where size is considered most critical, it was found that more than 
99% of the instructions were scheduled to be executed alone. 

The two sets of 5-option optimization parameters effectively give 
25 levels of optimization, including optimizing for speed or size.  
The compiler documentation suggests high values of the –o 
parameter, combined with high values of the –ms parameter to 
achieve the smallest code size.  This was found to be generally 
true of the benchmarks built, although the smallest code size was 
not always achieved with the ‘–ms3 –o3’ combination. 

5. RESULTS 
The heading of a section should be in Times New Roman 12-
point bold in all-capitals flush left with an additional 6-points of 
white space above the section head.  Sections and subsequent sub- 
sections should be numbered and flush left. For a section head and 
a subsection head together (such as Section 3 and subsection 3.1), 
use no additional space above the subsection head. 

5.1 Single Instruction Encoding Scheme 
The built benchmarks were passed through a compression 
program that applied the encoding scheme defined in Section 3.1.  
Information was retrieved from this program, including the 
benchmark build size pre- and post- compression, dictionary size 
and compression ratios.  (All compressed program sizes and 
compression ratios in this paper make mention of code size with 
the dictionary to give a truer indication of the compression 
achieved). 

The compression ratios varied from 69.2% to 94.6% with 
dictionaries.  Some of the higher (worse) compression ratios 
resulted from using codewords that were not of suitable length 
(i.e. using 1-byte codewords for large benchmarks and 2-byte 
codewords for smaller benchmarks).  When the ‘best-fit’ 
codeword size was used for each benchmark, the compression 
ratio range became 69.2% to 88.5%. 

In general, the larger benchmarks compressed best under 16-bit 
codeword compression, while the smaller benchmarks produced 
more favorable results with the 8-bit codeword compression.  
However, this is highly dependant on the portion of repeated 
instructions in the code.  Figure 4 shows the average sizes (pre- 
and post- compression) and compression ratios for each 
benchmark (averaged across all builds of the benchmark).  The 



average compression ratios for fixed- and floating- point targets 
across all benchmarks were very similar.  The floating-point 
builds started smaller and had slightly better (lower) compression 
ratios. 

Analysis of the parameter options in the compiler drew some 
interesting results.  As the benchmarks varied greatly in size, the 
sizes were ‘normalized’ before comparing absolute sizes of builds 
for varying optimization parameters.  Normalization was done by 
comparing each parameter build to the build with no parameters 
[expressed as ‘-ms(none)’ and ‘-o(none)’] in the same group.  
Figures 5 and 6 show the average of the normalized sizes, across 
all benchmarks used, for original and compressed programs. 

As expected, the ‘–ms3’ (Size Most Critical) option produced the 
smallest original object code out of the ‘–ms’ options.  This 

option corresponds to the (darkest) bars at the forefront of Figure 
5.  However, when the encoding scheme was applied, the average 
compression ratio of programs built with the ‘–ms3’ option was 
worse (higher) than all but one of the other ‘–ms’ options.  This 
reflects the measures already taken to optimize the code for size.  
Even with this higher (worse) average compression ratio, 
compressed ‘–ms3’ code was still the smallest of the ‘–ms’ 
options overall.  Figure 6 shows the same combinations of 
parameters as Figure 5, but after the encoding scheme is applied.  
Builds with the ‘–ms3’ option were still the smallest overall.  
Comparison of Figures 5 and 6 shows that the relative sizes of 
code compiled for each optimization parameter pair are similar 
before and after code compression is applied and compression 
does not affect the relative sizes. 

The higher levels of optimization (‘–o2’ and ‘–o3’) seemed to 
generate larger original code than the ‘–o0’ and ‘–o1’ parameters.  
This is likely to be as a result of the optimization techniques 
involved.  For example, the act of loop unrolling or propagating 
arguments into function bodies may optimize the performance of 
the program, but may also increase the size of the program.   

Object code built with no ‘–o’ parameter was by far the largest 
(rightmost columns in Figure 5).  This lack of optimization (and 
presumed redundancy) resulted in the best (lowest) average 
compression ratio and this is evident by the lower bars for this 
category in Figure 7 (left-most bar in each group of 5 bars).  
Although the compression ratios were better than that of other 
parameters, this did not reduce the code size enough.  The overall 
code size was still the largest after compression.  The 
compression ratios in Figure 7 are averaged across all benchmarks 
and highest/lowest values are depicted by error bars, for each 
parameter combination. 

The jpeg compression/decompression utilities (cjpeg/djpeg) 
seemed to compress well in all situations.  Table 1 outlines the 
performance of cjpeg builds with no library, under 16-bit 
codeword compression for the floating-point target.  In this table, 
compression ratio is defined - as in previous examples – to be the 
ratio of compressed code to uncompressed code for each build.  
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This means that the code it is being compared with is optimized 
already (with the use of different parameters in each build case).  
The other two columns compare the optimized and compressed 
program sizes with the original un-optimized, uncompressed 

program size (shaded in dark grey in Table 1). 

We see that the smallest original code is generated by the ‘–ms3 –
o1’ parameters and that this results in the smallest compressed 
code size. Note, however, that this is not the build that exhibits 
the best compression ratio. That “honor” goes to the ‘-ms3 –
o(none)’ build (69.5%) but results in code that is 10% larger than 
for the ‘-ms3 –o1’ build (with a compression ratio of 77.1%). 

The results in Table 1 show that although compression ratio 
adequately measures the relationship of uncompressed code to 
compressed code, it is not a useful indicator of final code size 
unless compiler optimization is taken into account. 

5.2 Multiple Instruction Encoding Scheme 
The same benchmarks were compressed with the multiple 
instruction encoding scheme described in Section 3.2.  Sets of 
sequences from 2 to 8 instructions long were used and 
compression schemes using smaller sequences resulted in lower 
(better) compression ratios.  This shows that the reduction in code 
size attributed to the high frequencies of smaller instruction 
sequences outweighs the code size reduction attributed to 
replacing a larger instruction sequence with one codeword.  
Figure 8 shows the average compression ratios attained across all 
benchmarks for the sets of 2 to 8 sequences of instructions. 

                                                                 
† Un-optimized code size refers to the size of code built with no 

optimization parameters (167264 bytes) 

Table 1 – Sizes and Ratios for the cjpeg Benchmark under 16-bit compression 

Optimized Code Compressed Code (including dictionary) Optimization 
Parameters Size 

(bytes) 
Fraction of 

Un-optimized Code† (%) 
Size 

(bytes) Compression Ratio Fraction of 
Un-optimized Code† (%) 

-ms(none) -o(none) † 167264 100.0% 117878 70.5% 70.5% 
-ms(none) -o0 146720 87.7% 114772 78.2% 68.6% 
-ms(none) -o1 140640 84.1% 110662 78.7% 66.2% 
-ms(none) -o2 152000 90.9% 120356 79.2% 72.0% 
-ms(none) -o3 153088 91.5% 121166 79.1% 72.4% 
-ms0 -o(none) 161920 96.8% 113912 70.4% 68.1% 
-ms0 -o0 139488 83.4% 108348 77.7% 64.8% 
-ms0 -o1 134368 80.3% 105144 78.3% 62.9% 
-ms0 -o2 144288 86.3% 113874 78.9% 68.1% 
-ms0 -o3 145280 86.9% 114628 78.9% 68.5% 
-ms1 -o(none) 161920 96.8% 113912 70.4% 68.1% 
-ms1 -o0 139488 83.4% 108348 77.7% 64.8% 
-ms1 -o1 133600 79.9% 104808 78.4% 62.7% 
-ms1 -o2 142624 85.3% 112674 79.0% 67.4% 
-ms1 -o3 142656 85.3% 112712 79.0% 67.4% 
-ms2 -o(none) 161920 96.8% 113912 70.4% 68.1% 
-ms2 -o0 139488 83.4% 108348 77.7% 64.8% 
-ms2 -o1 133600 79.9% 104808 78.4% 62.7% 
-ms2 -o2 135552 81.0% 106898 78.9% 63.9% 
-ms2 -o3 135712 81.1% 107000 78.8% 64.0% 
-ms3 -o(none) 158560 94.8% 110226 69.5% 65.9% 
-ms3 -o0 135872 81.2% 103698 76.3% 62.0% 
-ms3 -o1 129792 77.6% 100008 77.1% 59.8% 
-ms3 -o2 131232 78.5% 101958 77.7% 61.0% 
-ms3 -o3 131200 78.4% 101918 77.7% 60.9% 
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Figure 7 – Average Compression Ratios (including dictionary, 

all benchmarks) 



To investigate the effect of parallel instruction ordering on the 
benchmarks, the multiple instruction encoding scheme was 
applied before and after parallel instructions were sorted.  This 
gave some insignificant results in the unoptimized code, however 
made no difference whatsoever to the highly optimized code.  
Tables 2 and 3 show the compression results for the cjpeg 
example benchmark before and after instruction ordering. 

In general, the results after ordering were generally better, but 
only by at most 0.4%.  However, the differences only occurred in 
builds that were less than fully optimized.  Fully optimized builds 
(especially those with the ‘-ms3’ parameter) displayed no 
evidence of a change in the compression ratio before and after 
parallel instructions were reordered. Further investigation found 
that this was because these optimization levels resulted in very 
few instructions being executed in parallel, e.g., for the cjpeg 
builds with the ‘–ms3’ option, over 99.9% of the instructions were 

executed alone, so reordering the remaining less than 0.1% of 
instructions will certainly have no effect on code compression.  

6. CONCLUSIONS 
The investigation presented in this paper has looked at the effect 
of compiler optimizations and parallel instruction ordering on 
code compression for VLIW code.  In particular, code produced 
by the TI Code Composer Studio IDE for the TI TMS320C6x 
DSP processor family was examined.  It has been found that code 
compression, and in particular compression ratios, must always be 
considered in the context of compiler optimization parameters.  
Compression ratios do differ from one parameter combination to 
another and unoptimized code seemed to generate higher 
compression ratios. However, the best compression ratio is not 
always an indication of best overall size.  In general, to obtain the 
smallest overall size after compression, a compression scheme 
should be applied to already size-optimized code. 

With multiple instruction compression, reordering of parallel 
instructions was found to have, at best, a small influence on code 
compressibility. With size-optimized code, there was no effect. 
This was found to be because the compiler produced code with 
very few instructions to be executed in parallel.  

Further investigation will look at other VLIW processors and 
compilers in order to be able to formulate a generalization of the 
impact of VLIW compilers and compilation options on code 
compressibility.  
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