
In Proceedings of the Fifteenth National Conference
on Artificial Intelligence (AAAI-98)
Cambridge, MA: AAAI/MIT Press, 1998.

Qualitative simulation as a temporally-extended constraint
satisfaction problem �

Daniel J. Clancy
Caellum/NASA Ames Research Center, MS 269-3

Mo�ett Field, CA 94035 USA
clancy@ptolemy.arc.nasa.gov

Benjamin J. Kuipers
Computer Science Department
University of Texas at Austin

Austin, Texas 78712
kuipers@cs.utexas.edu

Abstract

Traditionally, constraint satisfaction problems (CSPs)
are characterized using a �nite set of constraints ex-
pressed within a common, shared constraint language.
When reasoning across time, however, it is possi-
ble to express both temporal and state{based con-
straints represented within multiple constraint lan-
guages. Qualitative simulation provides an instance of
this class of CSP in which, traditionally, all solutions
to the CSP are computed. In this paper, we formally
describe this class of temporally{extended CSPs and
situate qualitative simulation within this description.
This is followed by a description of the DecSIM algo-
rithm which is used to incrementally generate all pos-
sible solutions to a temporally{extended CSP. DecSIM
combines problem decomposition, a tree-clustering al-
gorithm and ideas similar to directed arc{consistency
to exploit structure and causality within a qualitative
model resulting in an exponential speed-up in simula-
tion time when compared to existing techniques.

Introduction

Traditionally, constraint satisfaction problems (CSPs)
are characterized using a �nite set of constraints ex-
pressed within a common, shared constraint language
(Tsang 1993). When reasoning across time, however,
it is possible to express both temporal and state{based
constraints represented within multiple constraint lan-
guages. A state{based constraint speci�es restrictions
between variables that must hold at any given point in
time while a temporal constraint speci�es restrictions
that occur across time. Qualitative simulation pro-
vides an instance of this class of temporally{extended
constraint satisfaction problems.

�This work has taken place in the Qualitative Reason-
ing Group at the Arti�cial Intelligence Laboratory, The
University of Texas at Austin and was supported in part
by NSF grants IRI-9504138 and CDA 9617327, by NASA
grants NAG 2-994 and NAG 9-898, and by the Texas Ad-
vanced Research Program under grant no. 003658-242.
Copyright c
1998, American Association for Arti�cial In-
telligence (www.aaai.org). All rights reserved.

Qualitative simulation (Forbus 1984; Kuipers 1994)
reasons about the behavior of a class of dynamical sys-
tems using a branching time description of alternat-
ing time{point and time{interval states. The model
speci�es a �nite set of variables and constraints. Each
constraint speci�es valid combinations of variable val-
ues for any given point in time (i.e. state{based con-
straints). Continuity constraints are then used to re-
strict the valid transitions between states. For exam-
ple, if in a time{point state S1 the variableX is increas-
ing and has a value X�, then immediately following
S1, X must be greater than X� and increasing. The
continuity constraints correspond to temporal restric-
tions. The use of temporal constraints within quali-
tative simulation has been further generalized within
the TeQSIM algorithm to allow the speci�cation of an
arbitrary temporal constraint (Brajnik & Clancy 1996;
1997). TeQSIM uses a propositional linear-time tem-
poral logic (PLTL) (Emerson 1990) that combines
propositional state-formulae specifying either qualita-
tive or quantitative information about a state with
temporal operators such as next, eventually, always,
and until. Each qualitative behavior generated during
simulation corresponds to a solution to the CSP de-
�ned by the composition of the state{based constraints
with the temporal constraints.

Viewing qualitative simulation as a temporally{
extended CSP is bene�cial because it allows us to ex-
plore how advances within the CSP literature can be
used to improve the techniques applied during simula-
tion. In addition, it describes a new class of constraint
satisfaction problems that has not been extensively ex-
plored within the CSP literature. While conceptually a
traditional temporal CSP can be used to express state{
based constraints, by separating the two sets of con-
straints we are able to exploit inherent structure that
exists within the state{based constraints to reduce the
overall complexity of �nding a solution.

The DecSIM qualitative simulation algorithm e�-
ciently computes all possible solutions to this class of

CSPs by building upon and extending existing research
within the constraint satisfaction literature.1 DecSIM
provides a sound, but potentially incomplete algorithm
that solves instances within this class of CSPs exponen-
tially faster than the techniques currently used within
the qualitative reasoning literature. This speed-up fa-
cilitates the application of qualitative simulation tech-
niques to larger, more realistic problems.

Qualitative simulation explicitly computes all possi-
ble solutions to the temporally{extended CSP de�ned
by the model. If two variables are completely uncon-
strained with respect to each other, then the set of
all possible solutions contains the cross{product of the
possible values for each variable. For QSIM this results
in combinatoric branching when the temporal ordering
of a set of events is unconstrained by the model.

DecSIM uses a divide and conquer approach to
reduce the complexity of a simulation by exploit-
ing structure within the qualitative model. DecSIM
decomposes the state{based CSP, PM , de�ned by
the qualitative model M into a set of smaller sub{
problems. Each sub{problem contains a subset of the
variables in PM while shared variables represent the
constraints between sub{problems. DecSIM explicitly
computes all solutions only for each sub{problem. In
addition, however, DecSIM must also ensure that each
partial solution participates in at least one solution
to the original CSP. This task is characterized as a
separate global CSP. Note that for each partial solu-
tion DecSIM is only required to compute a single so-
lution to this global CSP as opposed to explicitly enu-
merating all possible solutions as is e�ectively done
by QSIM. Furthermore, causality is used along with a
tree-clustering algorithm to simplify the task of identi-
fying this solution. The primary technical innovation
provided by the DecSIM algorithm is the application
of these basic concepts to a temporally{extended CSP
ensuring that both the state-based and the temporal
continuity constraints are satis�ed. In this paper, we
describe the DecSIM algorithm and present both the-
oretical and empirical results demonstrating the bene-
�ts provided by DecSIM when compared to techniques
currently used to perform a simulation. In addition,
we provide a formal characterization of a temporally{
extended CSP thus laying the ground work for future
research to explore how work within �elds such as qual-
itative reasoning, planning, constraint satisfaction and
reasoning about action can potentially be integrated.

1An earlier version of the DecSIM algorithm was pub-
lished in (Clancy & Kuipers 1997) with preliminary results.
Since that publication, the algorithm has been signi�cantly
generalized, resulting in stronger theoretical claims and ex-
perimental results.

De�nitions and concepts

Qualitative simulation uses an imprecise, structural
model describing a class of dynamical systems to de-
rive a description of all qualitatively distinct behaviors
consistent with the model.2 In its basic form, a model,
called a qualitative di�erential equation (QDE), is de-
�ned by the tuple <V;Q; I; C> where V is a set of
variables, Q a discrete set of values for each variable,
I is an initial state, and C a set of state{based con-
straints on the variables in V .

The constraints are abstractions of mathematical re-
lationships restricting the valid combinations of values
for the variables in the constraint. The behavior of
the system is described by a tree of qualitative states
in which each path consists of alternating time{point
and time{interval states. Each qualitative state pro-
vides a value for all of the variables within the model
along with a value for a special variable representing
time.

A qualitative model de�nes a traditional, state{
based CSP. During simulation, however, this CSP
is extended across time as each variable is assigned
a value at successive time-point and time-interval
states. These variable assignments must satisfy both
the state{based constraints as well as any implicit or
explicit temporal constraints. A temporally{extended
CSP is de�ned by extending the de�nitions that are
commonly used to de�ne a traditional CSP.

De�nition 1 (Temporally{extended CSP)
A temporally{extended CSP is de�ned by the tuple
<V;D;Cs; Ct; closed> where

� V is a set of variables,

� D de�nes the domain for each variable,

� Cs is the set of state{based constraints,

� Ct is a set of temporal constraints, and

� closed is a domain-speci�c boolean predicate that is
used to determine whether or a temporal sequence
can be extended further.

A label is an assignment of a value to a variable at a
particular point within the temporal sequence. Thus,
a label is de�ned by the tuple <v; dv ; t> where v is
a variable, dv is a value for the variable and t is a
non-negative integer corresponding to the \location"
of the value assignment within the temporal sequence.
A label with the value of t = 0 corresponds to the

2In this presentation, we focus on the representation
used by the QSIM qualitative simulation algorithm. These
concepts can also be applied to alternative representations
(Forbus 1984; de Kleer & Brown 1985) that have been pro-
posed within the literature.

initial state within a temporal sequence.3 An extended
label (also called a variable history) corresponds to a se-
quence (<v; d1v ; t>;<v; d

2
v ; t+1>; : : : ; <v; dmv ; t+m>)

of consecutive labels while a rooted extended label is an
extended label with t = 0. A compound label is a set of
labels (<v1; dv1 ; t>;<v2; dv2 ; t>; : : : <vn; dvn ; t>) pro-
viding values to multiple variables in the same time-
state while an extended compound label is simply a set
of extended labels for multiple variables.
A solution to the temporally{extended CSP corre-

sponds to an extended compound label that satis�es
both the state-based and the temporal constraints.
The formal de�nition of a solution, however, needs to
account for the potentially in�nite nature of a tempo-
ral sequence. To address this issue, the domain speci�c
boolean predicate closed is used.

De�nition 2 (Partial and Full Solutions) A fully
extended solution is an extended compound label that
satis�es all of the constraints as well as the closed pred-
icate. Conversely, a partially extended solution is an
extended compound label that satis�es all of the con-
straints but fails to satisfy the closed predicate.

How the closed predicate is de�ned depends upon the
domain. Within qualitative simulation, a solution is
fully extended if either a cycle is detected, a transition
condition occurs or the last state is quiescent (i.e. in
a steady state). On the other hand, if planning were
viewed as a temporally{extended CSP, then a solution
is fully extended when the �nal state satis�es the goal
condition. One of the reasons that it is important to
de�ne the closed predicate is that in qualitative simu-
lation a partially-extended solution is eliminated from
the solution set if it is determined that there does not
exist a consistent extension to the solution.
Given a qualitative model and an initial state, qual-

itative simulation can be mapped to a temporally{
extended CSP in a straight-forward manner by map-
ping the variables, their domains and the state{based
constraints directly from one problem to the next
and then by deriving the temporal constraints from
the continuity constraints applied when performing a
simulation.4 Qualitative simulation then attempts to
�nd all possible solutions to the temporally{extended

3In our de�nition of a temporally{extended CSP, we do
not restrict the semantic interpretation of a point within
this sequence. In qualitative simulation, a temporal pro-
gression will alternate between time-point and time-interval
states, however, other interpretations can be used for dif-
ferent domains.

4To describe the problem addressed by TeQSIM, the set
of temporal constraints are extended to include any tempo-
ral logic expressions contained within the model. Currently,
however, DecSIM does not handle arbitrary temporal con-
straints as can be expressed using TeQSIM.

CSP given some limit on either the length of a temporal
sequence or the overall set of compound labels within
the solution set. Thus, the complexity of the problem
is completely determined by the size of the solution
space. Since larger models tend to be more loosely
constrained, simulation of these models often results
in intractable branching and an exponential number
of solutions. Thus, a state{based representation is in-
herently limited in its ability to represent and reason
about the behavior of an imprecisely de�ned dynamical
system.

The DecSIM Algorithm

DecSIM modi�es the representation used to describe
the solution space generated during qualitative simu-
lation thus providing a more compact representation
and a more e�cient simulation algorithm. DecSIM ex-
ploits the fact that larger systems can often be decom-
posed into a number of loosely connected subsystems
due to inherent structure that exists within the model.
By decomposing the model, DecSIM is able to address
one of the primary sources of complexity { combina-
toric branching due to the complete temporal ordering
of the behaviors of unrelated variables.

Component Generation

Given a model M with a set of variables V and an ini-
tial state I , DecSIM uses a partitioning fV1; V2; : : : Vng
of the variables in the model to generate a compo-
nent for each partition. Currently, the partitioning
of the variables is provided as an input to the Dec-
SIM algorithm.5 A separate behavioral description
(i.e. set of solutions) is explicitly generated for each
component. The interaction between components is
represented via shared variables called boundary vari-
ables. For each partition Vi, DecSIM generates a com-
ponent Ci containing two types of variables: within-
partition variables are the variables speci�ed in Vi,
and boundary variables are variables contained in
other partitions that have a direct causal in
uence on
the within{partition variables.

DecSIM identi�es boundary variables using an ex-
tension of Iwasaki's (1988) causal ordering algorithm to
transform the model into a hybrid directed/undirected
hypergraph called the causal graph. A variable vi is
said to have a direct causal in
uence on a variable vj
if there exists either an undirected hyperedge in the
causal graph relating vi and vj or if there exists a di-

5Various techniques for automating this process have
been considered; however, up to this point, we have focused
on the simulation algorithm since partitioning the variables
is a fairly straight{forward extension of the model{building
process.

rected hyperedge extending from vi and terminating in
vj .

6

Each component Ci de�nes a qualitative model, in
which the variables correspond to the union of the
within{partition and boundary variables for the com-
ponent and the constraints correspond to the set of
constraints in the original model relating the variables
contained in the component. Furthermore, the rela-
tionship between components de�ned by the shared
boundary variables de�nes a labeled directed graph
called the component graph de�ned as follows.

De�nition 3 (Component graph) Given a set of
related components fC1; C2; : : : ; Cng the component
graph is a labeled, directed graph with a node corre-
sponding to each component. The edges are de�ned as
follows:
� An edge exists from component Ci to node Cj if and

only if there exists a variable v such that v is a
within{partition variable in Ci and a boundary vari-
able in Cj .

� An edge from Ci to Cj is labeled with the set
of boundary variables in Cj that are classi�ed as
within{partition variables in Ci.

Local and global consistency

The core QSIM algorithm is used to derive a sepa-
rate behavioral description, called a component tree,
for each component. The terms component behavior
and component state are used to refer to a behavior
and a state within a component tree respectively.

De�nition 4 (Local consistency) A component be-
havior for component Ci is locally consistent if and
only if it is a solution to the CSP de�ned by Ci.

In addition, however, each component behavior must
be consistent with respect to the rest of the model. To
determine if a component behavior participates in a
complete solution to the original CSP, DecSIM must
solve a separate global CSP in which the \variables"
correspond to components, the \variable values" to
component behaviors, and the \constraints" to the re-
strictions represented by the variables that are shared
between components.
A component behavior bi is globally consistent if

and only if there exists a set of component behaviors
B = fbC1

; bC2
; : : : ; bCng containing bi such that B is a

solution to the global CSP.7 Thus, DecSIM must de-
termine if a set of component behaviors are compatible

6The algorithm used to generate the causal graph is po-
tentially incomplete in which case the causal relationship
between any two variables may be incomplete thus result-
ing in an undirected hyperedge in the causal graph.

7Throughout this paper, subscripts are used to identify
the component to which a state, behavior or set of variables
belong.

with respect to the variables that are shared between
components.

De�nition 5 (Compatible behaviors) A set
of component behaviors B = fbC1

; bC2
; : : : ; bCng are

compatible if and only if the behaviors can be combined
to form at least one composite behavior describing all
of the variables within each component behavior.

Conceptually, behavior composition is equivalent to a
multi-way join as it is used in the relational database
literature.

De�nition 6 (Behavior composition) Given a set
of component behaviors B = fbC1

; bC2
; : : : ; bCng, B is

a composite behavior for B if and only if B describes
all of the variables in

Sn
i=1 VCi and for i from 1 to n

and �VCi (B) = bi where �VCi is the projection of a

behavior onto the variables in VCi .
8

The set of all composite behaviors is essentially the
cross-product of the component behaviors, minus the
combinations �ltered out by the global consistency
constraints. Thus, if the components are weakly con-
nected, this set can be quite large.

Since each behavior is actually a temporal sequence,
determining if a set of component behaviors is com-
patible is not simply a straight{forward comparison of
the variable values. DecSIM addresses this issue by
maintaining a many-to-many mapping between states
within components related in the component graph.
Two states are mapped to each other if and only if
the behaviors terminating in these two states are com-
patible. This mapping allows DecSIM to evaluate the
global consistency of a set of behaviors by comparing
the �nal states within the behaviors with respect to
this mapping.

The mapping is generated as each component behav-
ior is incrementally extended. If components A and B
are related via shared variables, then state SA maps
to component state SB if and only if SA and SB are
equivalent with respect to any shared variables, and
either SA and SB are initial states, the predecessor of
SA maps to the predecessor of SB , the predecessor of
SA maps to SB , or SA maps to the predecessor of SB .

By maintaining the many-to-many mapping be-
tween compatible states in related components, Dec-
SIM translates the global CSP in which the variable
values correspond to component behaviors into a CSP,
called the component graph CSP, in which the variable
values correspond to qualitative states. This transla-
tion enables DecSIM to evaluate the global consistency

8Please refer to (Clancy 1997) for a formal de�nition
of the projection operator as it applies to a qualitative
behavior.

of a state based upon local inferences with respect to
the temporal progression of the behaviors.

De�nition 7 (Component graph CSP) The com-
ponent graph CSP is de�ned by the tuple <V;D;C>
such that

� the variables V correspond to components,

� the domain for each variable is the set of qualitative
states de�ned in the component tree for the corre-
sponding component (D is the set of domains for
each variable),

� the constraints C are de�ned by the many-to-many
mapping maintained between related components. If
components Ci and Cj are related in the component
graph, then a constraint exists between the corre-
sponding variables within the component graph CSP
that is satis�ed for two states sCi and sCj if and
only sCi and sCj are linked by the many-to-many
mapping relating these components.

Speci�cation of this global CSP on qualitative states
allows us to de�ne global consistency with respect to
a qualitative state as opposed to an entire behavior.

De�nition 8 (Globally consistent) A component
state is globally consistent if and only if the state is
both locally consistent and participates in a solution to
the component graph CSP.

Performing the simulation

When performing a simulation, DecSIM iterates
through the components incrementally simulating the
leaf states in each component tree. DecSIM uses QSIM
to generate the successors of each component state,
thus ensuring that each state is locally consistent. In
addition, however, DecSIM must ensure that each state
is also globally consistent.
Determining whether a component state is globally

consistent for a fully simulated set of component be-
haviors is a straight{forward constraint satisfaction
problem given the characterization that has been pro-
vided. DecSIM, however, incrementally generates each
component behavior. Thus, it is possible that as com-
ponent behaviors are extended, a solution to the com-
ponent graph is generated containing a state already
within a component tree that had previously not been
globally consistent. In other words, a state s not being
globally consistent at a given point during the simu-
lation does not imply that s is globally inconsistent.
DecSIM addresses this issue using two techniques: 1)
successors of a component state s are only computed
if s is determined to be globally consistent, and 2)
the identi�cation of a state as globally consistent must
be propagated through the component graph CSP by
identifying all solutions to the component graph that

contain at least one state whose status with respect to
global consistency had previously been undetermined.

The �rst condition ensures that globally inconsis-
tent states are not simulated while the second condi-
tion ensures that all globally consistent solutions are
still computed given the �rst restriction.

The algorithm used to test a state for global consis-
tency exploits causality and structure within the com-
ponent graph CSP to reduce the complexity of �nding
a solution. First, a tree-clustering algorithm (Dechter
& Pearl 1988; 1989) is used to transform the compo-
nent graph CSP into an acyclic cluster graph by group-
ing components that are included within a cycle into
a single node within the cluster graph. This transfor-
mation signi�cantly reduces the time required to �nd
a solution to the component graph by allowing Dec-
SIM to use constraint propagation between clusters as
opposed to computing a complete solution to the CSP.
Second, causality is used to further reduce the com-
plexity of this process by asserting the independence
of causally upstream components from those compo-
nents that are strictly downstream with respect to the
causal ordering.

Two primary bene�ts are provided by DecSIM with
respect to a standard QSIM simulation. First, by
transforming the component graph into an acyclic clus-
ter graph, the worst case complexity required to �nd
a solution to the component graph CSP is exponential
in the size of the largest cluster as opposed to over-
all size of the component graph. Second, DecSIM is
only required to �nd a single solution to the compo-
nent graph for each component behavior as opposed
to computing all possible solutions as is required by a
standard QSIM simulation.

An Example

The bene�ts provided by DecSIM can be demonstrated
using a simple model of a sequence of cascaded tanks.
Two versions of this model will be used during the
discussion. In the simpler version, a simple cascade is
used while in the more complex version a feedback loop
exists by which the in
ow to the top tank is controlled
by the level in the bottom tank (see �gure 1).

When performing a standard QSIM simulation of
a simple N-tank cascade, a total of 2N�1 behaviors
are generated enumerating all possible solutions to the
CSP. Many of these solutions, however, simply pro-
vide di�erent temporal orderings of unrelated events.
DecSIM, however, eliminates these distinctions gener-
ating a separate behavioral description, each contain-
ing a total of three behaviors, for each tank. By using
causality, we are able to reason about the behavior of
the upstream tanks independently of the downstream

Controller

Tank A

Level B

Control signal u

OutflowA

Tank B

(a) Controlled two tank cascade

(b) Causal graph and variable partitioning

The qualitative model of a controlled two tank cascade (a)

is partitioned into three components: tankA, tankB and the

controller. DecSIM generates a causal graph of the model

(b) that is used to identify the boundary variables. The

variable partitioning is identi�ed by the solid boxes within

the causal graph. Boundary variables are variables in other

partitions that are causally upstream. Thus, OutflowA is a

boundary variable for component B and therefore included

in the component; however, InflowB is not a boundary

variable for component A.

Figure 1: Controlled two tank cascade

tanks. Thus, the overall complexity of the simulation
is linear in the number of tanks. In the controlled
version of the N -tank cascade, a feedback loop con-
nects the upstream and downstream tanks. DecSIM,
however, is still able to provide signi�cant improve-
ments in the overall simulation time due to its ability
to partition the problem into smaller sub-problems and
reason about the interaction between sub-problems in-
dependently. For an 8 tank cascade, DecSIM generates
an average of 28 behaviors for each component while
QSIM generates a total of 1071 behaviors. Table 1 dis-
plays the simulation time for a number of variations
on this example.

Theoretical Results

Traditional techniques for qualitative simulation, while
both sound and complete with respect to the CSP
de�ned by the model, are unable to scale to larger
problems.9 DecSIM, on the other hand, trades com-
pleteness for e�ciency. The following results are es-
tablished in (Clancy & Kuipers 1998).

9Note the incompleteness of qualitative simulation is
with respect to the set of real valued trajectories described
by the behavioral description and not the CSP.

Theorem 1 (DecSIM Soundness Guarantee)
Given a consistent qualitative modelM and a decompo-
sition of the model into components fC1; C2; : : : Cmg,
for all solutions B to the temporally{extended CSP de-
�ned by M , DecSIM generates the set of partial so-
lutions fb1; b2; : : : ; bng such that for i : 1 � i � n ::
�Vi(B) = bi.

10

Theorem 2 (DecSIM Completeness Guarantee)
Given a consistent model M and a decomposition of
the model into components fC1; C2; : : : Cmg such that
there does not exist a cycle of size 3 or greater in the
component graph CSP, for all partial solutions bi gen-
erated by DecSIM describing the subset of variables Vi,
there exists a corresponding solution to the temporally{
extended CSP de�ned by M such that bi = �Vi(B).

Note that the completeness theorem includes a restric-
tion on the maximum cycle size within the compo-
nent graph CSP. Except for this one limitation and
the temporal ordering of behaviors in separate com-
ponents, the behavioral description generated by Dec-
SIM is identical to the description generated by QSIM.
Temporal ordering information (which is intentionally
omitted), however, is still available since DecSIM im-
plicitly represents this information via the constraints
represented by the mapping maintained between com-
ponent states.

Incompleteness The source of the incompleteness
comes from the characterization of the component
graph CSP as a CSP over qualitative states as opposed
to qualitative behaviors. This translation is essential
if DecSIM is to e�ciently determine if a component
state is globally consistent; however, it may result in
the introduction of component behaviors that do not
have a corresponding behavior within the behavioral
description generated by QSIM. The problem encoun-
tered is analogous to the distinction between constraint
propagation and constraint satisfaction with respect to
the temporal continuity constraints. Before allowing a
state SA to participate in a solution to the compo-
nent graph CSP, DecSIM requires that its predecessor
participate in a solution. However, it does not check
to ensure that the solution containing SA satis�es the
continuity constraints with respect to a solution con-
taining the predecessor of SA. To do this, DecSIM
would be required to maintain a record of solutions to
the component graph CSP to ensure that a proposed
solution is continuous with a solution identi�ed for the
preceding time-step. For many models, this may re-
quire DecSIM to compute all solutions for a cluster

10�Vi
(B) is the projection of the solution onto the subset

of variables Vi where component Ci is assumed to describe
the set of variables Vi.

within the component graph thus eliminating the com-
putational e�ciency bene�ts provided by DecSIM for
the behavior of the system within this cluster.

In practice, the incompleteness of the algorithm has
not been a problem for a number of reasons. First, the
conditions under which the incompleteness of the algo-
rithm is encountered is quite restricted and only occurs
when two components are closely related. In fact, we
have yet to encounter this problem in any of the models
that have been tested. In addition, we have developed
an algorithm that can be used to identify when this
problem occurs which can be run following completion
of a simulation. Finally, qualitative simulation already
encounters a problem with behaviors being generated
that do not correspond to a real-valued trajectory of
a dynamical system described by the model. Thus,
techniques using qualitative simulation already must
account for possible spurious behaviors. In the end, as
is often the case, a trade-o� exists between complete-
ness and the overall computational complexity of the
algorithm. 11 A traditional state{based approach is
inherently limited in its ability to scale to larger prob-
lems and thus at times we may be required to sacri�ce
completeness guarantees when reasoning about these
problems.

Computational complexity

The overall complexity of a standard QSIM simulation
is determined by the size of the representation that is
being computed. The worst case size of the behavioral
description is exponential in the number of variables
within the model. DecSIM reduces the size of the so-
lution space by decomposing the model. For DecSIM,
the worst case size is simply exponential in the number
of variables in the largest component. DecSIM, how-
ever, must also reason about the global consistency
of a component state by solving the component graph
CSP. Thus, the overall bene�ts provided by DecSIM
depend upon the topology of the model and the degree
to which it lends itself to decomposition along with the
variable partitioning selected by the modeler.

The following two conclusions (Clancy 1997) de�ne
the relationship between DecSIM and QSIM with re-
spect to the complexity of a simulation for a model
that is decomposed into k partitions: 1) as the degree
of overlap between components approaches zero, the
size of the total solution space is reduced by an expo-
nential factor k where k is the number of components
within the decomposed model; and 2) as the degree of

11We are currently in the process of developing a proof to
establish that this trade-o� is an inherent limitation when
computing all possible solutions to a temporally{extended
CSP.

#
of Cascade Chained Loop

Tanks Qsim DecS Qsim DecS Qsim DecS

2 0.20 0.815 3.07 6.79 0.757 5.58
3 0.62 1.6 10.9 19.90 16.14 8.14
4 2.2 3.12 37.5 25.98 89.41 12.6
5 7.09 5.49 139 36.71 493.8 23.2
6 21.9 6.32 676 62.40 2758 48.7
7 71.5 8.39 1633 70 14474 116
8 236 11.6 8101 77 nc 442

nc = Resource limitation prevented completion

Table 1: Simulation Time Results: DecSIM vs QSIM

overlap approaches a fully connected constraint graph
for the component graph CSP, the size of the set of be-
haviors generated by DecSIM is within a factor of k of
a standard QSIM simulation. In practice, the savings
provided by a DecSIM simulation are quite pronounced
as is demonstrated by our empirical results. The pri-
mary source of these savings is the fact that DecSIM is
only required to compute a single solution to the com-
ponent graph CSP (i.e. to ensure that each component
behavior is consistent with at least one global solution)
as opposed to computing all solutions (as QSIM does
for the non-decomposed model).

Empirical Evaluation

Empirical evaluation has been used to measure the
bene�ts provided by a DecSIM simulation with respect
to a standard QSIM simulation. Both DecSIM and
QSIM were tested on a set of \extendible" models. An
extendible model is a model composed of a sequence
of identical components thus enabling the incremental
extension of the model to facilitate an evaluation of
the asymptotic behavior of the algorithm. The models
used were variations on the cascaded tanks example
described in �gure 1. Three di�erent versions were
used; each with a di�erent topology for the component
graph CSP. A simple cascade topology, a loop topology
in which the top tank is controlled by the bottom tank,
and a chain topology in which the out
ow for tank n
is controlled by the level for tank n+ 1.

For all three models, DecSIM performed exponen-
tially better than QSIM. Table 1 shows the simulation
time results as the number of tanks are varied while
�gure 2(a) plots the results for the loop con�guration
comparing QSIM to DecSIM. The bene�ts provided
by DecSIM are even more pronounced for the other
two topologies. Figure 2(b) provides a comparison of
the results from the DecSIM simulation for all three
topologies. Note the dependence of the computational
complexity on the topology of the model. In the loop
con�guration, the component graph CSP is composed
of a single, large cycle. Thus, it is more likely to en-

0

2000

4000

6000

8000

10000

12000

14000

16000

2 3 4 5 6 7 8

R
un

 T
im

e
(S

ec
)

Number of Components

Standard QSIM
DecSIM

(a) DecSIM vs QSIM: Loop con�guration

0

50

100

150

200

250

300

350

400

450

2 3 4 5 6 7 8 9 10

R
un

 T
im

e
(S

ec
)

Number of Components

Loop Configuration
Chained Configuration
Cascade Configuration

(b) DecSIM on di�erent versions of the N -tank cascade

Figure 2: DecSIM results

counter backtracking when determining if a component
state is globally consistent. Thus, the complexity of
the simulation becomes exponential in the number of
tanks. DecSIM, however, still performs signi�cantly
better than QSIM. For the simple N -tank cascade the
complexity is linear in the number of tanks.

Conclusions

In this paper, we have characterized qualitative sim-
ulation as the composition of a state{based and a
temporal{based CSP. Furthermore, we have shown
that the state{based representation that is tradition-
ally used when performing a simulation is inherently
limited thus restricting the degree to which techniques
based upon qualitative simulation can scale to larger,
more realistic problems. DecSIM provides an alter-
native simulation algorithm that addresses this prob-
lem by decomposing the model into components. De-
composition eliminates combinatoric branching due to
the complete temporal ordering of behaviors for un-
related variables contained in separate components.
Thus, the complexity of the simulation is determined
by the inherent complexity of the problem speci�ca-
tion as opposed to an artifact of the inference mecha-
nism used to perform simulation. Furthermore, char-
acterizing qualitative simulation as a general class of

CSPs allows the ideas presented here to be applied
within a broader context. Hopefully, the concept of
a temporally-extended CSP can help integrate ideas
from �elds such as qualitative simulation, planning
and reasoning about action to provide a more uni�ed
representation that can be used to reason about both
autonomous and non{autonomous change within the
physical world.

References
Brajnik, G., and Clancy, D. J. 1996. Temporal constraints
on trajectories in qualitative simulation. In Clancey, B.,
and Weld, D., eds., Proc. of the Thirteenth National Con-
ference on Arti�cial Intelligence. AAAI Press. To appear.

Brajnik, G., and Clancy, D. J. 1997. Focusing qualitative
simulation using temporal logic: theoretical foundations.
Annals of Mathematics and Arti�cial Intelligence. To ap-
pear.

Clancy, D. J., and Kuipers, B. J. 1997. Model decom-
position and simulation: A component based qualitative
simulation algorithm. In Kuipers, B. J., and Webber, B.,
eds., Proc. of the Fourteenth National Conference on Ar-
ti�cial Intelligence. AAAI Press.

Clancy, D. J., and Kuipers, B. 1998. Divide and con-
quer: A component{based qualitative simulation algo-
rithm. Technical Report forthcoming, Arti�cial Intelli-
gence Laboratory, The University of Texas at Austin.

Clancy, D. J. 1997. Solving complexity and ambiguity
problems in qualitative simulation. Technical Report AI-
TR97-264, Arti�cial Intelligence Laboratory, The Univer-
sity of Texas at Austin.

de Kleer, J., and Brown, J. S. 1985. A qualitative physics
based on con
uences. In Hobbs, J. R., and Moore, R. C.,
eds., Formal Theories of the Commonsense World. Nor-
wood, New Jersey: Ablex. chapter 4, 109{183.

Dechter, R., and Pearl, J. 1988. Tree-clustering schemes
for constraint processing. In Proceedings of the Seventh
National Conference on Arti�cial Intelligence. Los Altos,
CA.: Morgan Kaufman.

Dechter, R., and Pearl, J. 1989. Tree{clustering for con-
straint networks. Arti�cial Intelligence 38:353{366.

Emerson, E. 1990. Temporal and modal logic. In van
Leeuwen, J., ed., Handbook of Theoretical Computer Sci-
ence. Elsevier Science Publishers/MIT Press. 995{1072.
Chap. 16.

Forbus, K. 1984. Qualitative process theory. Arti�cial
Intelligence 24:85{168.

Iwasaki, Y. 1988. Causal ordering in a mixed strcuture.
In Proc. of the Seventh National Conference on Arti�cial
Intelligence, 313{318. AAAI Press / The MIT Press.

Kuipers, B. 1994. Qualitative Reasoning: modeling and
simulation with incomplete knowledge. Cambridge, Mas-
sachusetts: MIT Press.

Tsang, E. 1993. Foundations of Constraint Satisfaction.
San Diego, CA: Academic Press.

