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Abstract— Human control of high degree-of-freedom robotic
systems, e.g. anthropomorphic robot hands, is often difficult
due to the overwhelming number of variables that need to
be specified. Previous work has addressed this sparse control
problem by learning a high-dimensional manifold of robot poses
to provide low-dimensional control subspaces. Such subspaces
allow cursor control, or eventually decoding of neural activity,
to drive a robotic hand. Considering previously identified
problems related to noise in manifold learning, we introduce a
method for denoising neighborhood graphs in order to embed
hand motion into 2D spaces. We present results demonstrating
our approach in the case of a synthetic swissroll as well as in the
embeddings for interactive sparse control for several grasping
tasks.

I. INTRODUCTION

Developing human interfaces for controlling complex
robotic systems, such as mechanical prosthetic arms, presents
an underdetermined problem. Specifically, the amount of
information a human can reasonably specify within a suf-
ficiently small update interval is often far less than a robot’s
degrees-of-freedom (DOFs). Consequently, basic control
tasks for humans, such as reaching and grasping, are often
onerous for human teleoperators of robot systems, requiring
either a heavy cognitive burden or overly slow execution.
Such teleoperation problems persist even for able-bodied hu-
man teleoperators given state-of-the-art sensing and actuation
platforms.

The problem of teleoperation become magnified for ap-
plications to biorobotics, particularly in relation to prosthetic
and assistive devices by users with lost physical functionality.
In such applications, feasible sensing technologies, such as
electroencephalogram (EEG) [1], electromyography (EMG)
[2], [3], [4], and cortical neural implants [5], [6], provide
a very limited channel for user input due to the sparsity
and noise of the sensed signals. Specifically for neural
decoding, efforts to decode these user neural activity into
control signals have demonstrated success limited to 2-3
DOFs with bandwidth around 15 bits/sec [7]. With such
limited bandwidth, control applications have focused on low-
DOF systems, such as 2D cursor control [8], planar mobile
robots [1], and discrete control of 4 DOF robot arms [7], [9].
Additionally, Bitzer and van der Smagt [4] have performed
high-DOF robot hand control by reducing the DOFs to a
discrete set of pose that can be indexed by through kernel-
based classification.
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Fig. 1. Snapshot of our sparse control system driving a DLR/HIT robot
hand to grasp an object from a user’s 2D curson control.

Robotic systems geared for general functionality or a
human anthropomorphism will have significantly more than
2-3 DOFs, posing a sparse control problem. For instance, a
prosthetic arm and hand could have around 30 DOF. While
this mismatch in input and control dimensionality is prob-
lematic, it is clear that the space of valid human arm/hand
poses does not fully span the space of DOFs. It is likely
that plausible hand configurations exist in a significantly
lower dimensional subspace arising from biomechanical re-
dundancy and statistical studies on human movement [10],
[11], [12]. In general, uncovering the intrinsic dimensionality
of this subspace is crucial for bridging the divide between
the decoded user input and the production of robot control
commands. A recent attempt in that direction is the work in
[13] where the grasping motion of a high-DOF robot hand is
represented as a linear combination of 2 basis motion vectors
(eigengrasps).

In addressing the sparse control problem, our objective is
to discover 2D subspaces of hand poses suitable for interac-
tive control of a high-DOF robot hand, with the longer-term
goal of sparse control with 2D cursor-based neural decoding
systems. We posit viable sparse control subspaces should be
scalable (not specific to certain types of motion), consistent
(two dissimilar poses are not proximal/close in the subspace),
and continuity-preserving (poses near in sequence should
remain proximal in the subspace). To uncover control sub-
spaces, we follow a data-driven approach to this problem
through the application of manifold learning (i.e., dimension



reduction) to hand motion data, motion captured from real
human subjects.

Fig. 2. Diagram for hand control by the user using human hand motion
capture data for training

Our previous work [14] identified noise in both in the
motion capture and pose graph construction procedures
as major limiting factors in uncovering subspaces for sparse
control. In this paper, we address the second limitation
through graph denoising using probabilistic belief propaga-
tion [15]. In [16] we addressed the first limitation through
more careful selection of motion capture data and we found
out that there can be viable control of a robot hand using
these subspaces. Even though the results with the motion
datasets we used were satisfactory, we try to improve this
approach even more by handling the noise in the pose graph
construction procedure.

In the next section, we describe the sparse control problem.
In section III our neighborhood denoising procedure using
Belief Propagation is presented and section IV contains our
results for the case of a synthetic swissroll dataset as well
as for interactive control of a robot hand. Finally, section V
concludes our current work and discusses future extensions.

II. THE SPARSE CONTROL PROBLEM

The essence of the sparse control problem is to estimate
a control mapping f : X → Y that maps coordinates in
a low-dimensional space, in our case 2-dimensional control
space x ∈ <2 into the space of hand poses y ∈ <d,
where d is the number of DOFs expressing hand pose. The
estimation of the mapping f is founded upon the assumption
that the space of plausible hand poses for desired motion is
intrinsically parameterized by a low-dimensional manifold
subspace. We assume each hand pose achieved by a human
is an example generated within this manifold subspace. It is
given that the true manifold subspace of hand poses is likely
to have dimensionality greater than two. With an appropriate
dimension reduction technique, however, we can preserve as
much of the intrinsic variance as possible. As improvements

in user interfaces (namely for neural decoding) occur, the
dimensionality of the input signal will increase but we will
still leverage the same control mapping.

Our application of sparse control involves interactive
control of the DLR/HIT hand is illustrated in Figure 2.
Human hand motion data in high-dimensional pose space
is given as input. Using manifold learning, the hand pose
data is embedded into a 2D space. The embedding space
is presented to a human user through a Matlab graphical
interface. Every time the user clicks on a point in this space,
the 2D input coordinates s translated to a high-dimensional
hand configuration, serving as the target joint angles for
actuating the robot hand. The user can observe the results
of their action and interactively guide the performance of
the robot hand.

We create a control mapping by taking as input a set of
training hand poses yi ∈ <d, embedding this data into control
space coordinates xi ∈ <2, and generalizing to new data.
The configuration of points in control space xi = f−1(yi)
is latent and represents the inverse of the control mapping.
Dimension reduction estimates the latent coordinates y such
that distances between datapairs preserve some criteria of
similarity. Each dimension reduction method has a different
notion of pairwise similarity and, thus, a unique view of
the intrinsic structure of the data. Once embedded, the
pose-subspace pairs (yi, xi) are generalized into a mapping
through interpolation [17] to allow for new (out-of-sample)
points to be mapped between input and control spaces.

Discovery of the sparse control mapping is performed
using Isomap [18]. We focus on Isomap, but have also
explored the use of other dimension reduction techniques
(PCA, Hessian LLE, Spatio-temporal Isomap) [16]. Isomap
is basically a “geodesic” form of multidimensional scaling
(MDS) [19], where shortest-path distances in pose space
represent desired Euclidean distances the control subspace.
Isomap constructs the approximation of geodesic distance
(contained in the matrix D):

Dy,y′ = minp

∑
i

D′(pi, pi+1) (1)

where D′ is a sparse pose graph of local distances between
nearest neighbors and p is a sequence of points through D′

indicating the shortest path between poses y and y′. MDS is
performed on the matrix D to generate subspace coordinates
x based on the distance preserving error E (which can be
optimized efficiently thorugh eigendecomposition):

E =
√∑

x

∑
x′

(
√

(x− x′)2)−Dy,y′)2 (2)

A canonical Isomap example is the “Swiss roll” dataset
(Figure 1), where input data generated by 2D manifold is
contorted into a “roll” in 3D. Given a sufficient density
of samples and proper selections of neighborhoods, Isomap
able to flatten this Swiss roll data into its original 2D
parameterization, within an affine transformation.



Noisy Swiss Roll Example (1000 points)
Neighborhood graphs

(a) Initial neighborhood graph G with 7
noisy edges highlighted

(b) Denoised (ground truth) neighborhood
graph G′

(c) Noiseless swissroll embedding

2-Dimensional embeddings

(d) PCA (e) FastMVU (f) Isomap (g) BP-Isomap

Fig. 3. Noisy “Swiss Roll” example (1000 points): (a) the initial neighborhood graph among the input data, (b) the initial neighborhood with 7
noisy links highlighted, (c) the denoised neighborhood graph. A comparison between 2D embeddings of the original neighborhood graph with
(d) PCA, (e) Isomap, (f) FastMVU, (g) BP combined with Isomap. PCA and Isomap are unable to preserve consistency due to graph “short
circuiting”. Adding a denoising step allows for an embedding into two dimensions that preserves the structure of the manifold as shown by the
different colors of the points.

Method Embedding Error
PCA 2.00×1012

FastMVU 4.29×1012

Isomap 1.26×1012

BP - Isomap 5.64× 1011

TABLE I
ERROR BETWEEN EUCLIDEAN DISTANCES IN THE NOISY SWISS ROLL

EMBEDDINGS AND 2D GROUND TRUTH DISTANCES.

In practice, however, noise-free nearest neighborhood con-
struction can be difficult and prohibit the application of
Isomap to noisy datasets, such as motion capture data. In the
Swiss Roll example, the inclusion of a noisy neighborhood
edge between points at the start and end of the manifold
creates a “short circuit” for shortest path computation. Con-
sequently, the approximation geodesic distance is invalid
and the resulting embedding lacks consistency with the
manifold’s true parameterization.

III. NEIGHBORHOOD DENOISING WITH BELIEF
PROPAGATION

To enable application of Isomap to noisy data, we propose
BP-Isomap a method for denoising a neighborhood graph in
pose space using probabilistic loopy belief propagation. BP-
Isomap consists of three steps: 1) construction of a neighbor-
hood graph between hand poses using k-nearest neighbors,

2) denoising of neighborhood edges and 3) embedding of
the denoised neighborhood graph using Isomap. Step 2,
neighborhood denoising, is the primary focus of this section.
For denoising, BP-Isomap attempts to estimate the true latent
distance of a neighborhood edge xij between two points yi

and yj given the distance of their observed neighborhood
edge yij = D′(yi, yj) = ||yi − yj ||. Once xij has been
estimated for all neighboring pairs (i, j) ∈ D′, edges with
distances greater than an allowed threshold τ are removed
for the denoised neighborhood graph D̂′.

The denoising procedure used by BP-Isomap follows the
formulation of a Markov Random Field (MRF) as described
by Yedidia et. al [15]. This formulation maintains a prob-
ability distribution (or belief) about each latent variable
xij (neighborhood edge distance). The belief bij(xij) is
formed as the product of incoming messages mjm→ij from
other latent variables xmi and a local evidence function
φij(xij , yij):

bij(xij) = kφij(xij , yij)
∏

jm∈adj(ij)

mjm→ij(xij) (3)

where k is a normalization constant and adj(ij) is the
set of edges adjacent to edge ij. In terms of MRFs, each
neighborhood edge is a vertex in the message passing



structure and the connectivity between these vertices are
defined by the adjacency of their neighborhood edges. For
computational simplicity, we assume the belief bij(xij) is a
discrete distribution representing probabilities over a given
set of fixed distances.

The local evidence function φij(xij , yij) inclines the edge
distance xij to preserve the observed Euclidean edge distance
yij . This function weights possible values of xij with a
Gaussian distribution centered at yij with variance σ2:

φ(dij |yij) ∼ N (yij , σ
2) (4)

Messages mjm→ij to ij incoming from adjacent edges
jm are formed using the following message update rule:

mjm→ij(xij) ∝
∑
xjm

φ(xjm, yjm)ψ(xij , xjm)(5)∏
xmk∈adj(jm)−ij

mmk→jm(xjm)

The compatibility function ψ(xij , xjm) outputs scalar
values proportional to the compatibility of a specific edge
distance of xij with another edge distance xjm. This function
considers two cases for the relation between data points yi

and ym (which are adjacent to a common point yj in D′): 1)
vertices yi and ym are adjacent or share a common neighbor
yk 6= yj , or 2) vertices yi and ym are neither adjacent nor
have common neighbors. In both cases, we are concerned
with weighting the compatibility of xij and xjm by the
triangle they form, specifically via the distance of a third
edge dmi:

dmi = ||vmi|| (6)

vmi = −xij
yi − yj

||yi − yj ||
+ xjm

ym − yj

||ym − yj ||
(7)

In the first case, we consider common neighbors to indi-
cate external validation for variable xjm to consider points
yi and yj to be neighbors. Consequently, the compatibility
prefers the triangle to be maintained and dmi to be roughly
equal to the observed Euclidean distance ymi. In the second
case, xjm considers a neighborhood edge between yi and
yj to be noise, preferring the distance dmi to be as far as
possible. We enforce these two cases in the compatibility
function using a Gaussian distribution centered on ymi, in
the common neighbor case, and a logistic sigmoid function,
in the distal case:

ψ(xij , xjm) ∼ (8)
N (ymi, σ

2), if ym ∈ adj(yi)
or ∃ k s.t. yk ∈ adj(yi)
and yk ∈ adj(ym)

logsig(0.2(dmi − 1.8ymi), otherwise

The constants in these cases were found through informal
experimentation and are considered user parameters.

The denoising procedure begins by considering all be-
lief distributions to be uniform, with all distance values
being equally probable. The procedure works continually
updates the messages by selecting an edge pair at random
and updating it using Equation 5. The procedure continues
until convergence, with convergence properties described by
Yedidia et al.[15].

IV. RESULTS

We present preliminary results from neighborhood denois-
ing for manifold learning and interactive sparse 2D control
of the DLR/HIT hand.

A. Swiss Roll Denoising

To evaluate our denoising procedure, we generated A 3D
Swiss Roll dataset by transforming data parameterized by
a planar 2D bordered manifold. The ground truth geodesic
distances were known based on the 2D coordinates used
to seed the Swiss Roll generation. The neighborhood graph
of this data was corrupted by adding noise on the location
of the points resulting in seven non-adjacent noisy edges
highlighted in Fig.3b. Illustrated in Figure 3 and quantified
in Table I, we compared the embeddings produced by PCA,
FastMVU [20], Isomap [21] and our neighborhood denoising
technique combined with MDS and FastMVU. Visually, it
can be seen that PCA is simply an affine transform of the
data, due to embedding with all edges both valid and noisy.
As a result, unable to preserve the consistency of the data, the
depth of the Swiss Roll is completely lost in 2D. The noisy
edges also present a problem for Isomap in that consistency is
lost in a similar manner as PCA. In addition, Isomap brings
into closer proximity points at the edges of the manifold.
This circumstance is worse than the PCA result because it
gives the appearance that the edges of the manifold have
continuity in the input space, when in fact they do not. Our
denoising procedure was able to detect these seven noisy
edges and produce the proper embedding of the Swiss Roll.

From our informal experience, FastMVU is the best of the
non-denoising embedding techniques. In this case, however,
we were unable to produce quality results. Although these
embeddings are themselves quite noisy, we anticipate in the
long-run that denoising with FastMVU will yield the best
embedding results.

B. Interactive Control of a Robot Hand

Our sparse control and subspace embedding systems were
implemented in Matlab. Mex executables formed the bridge
between our Matlab implementation and the C++ interface
provided by DLR for the control of the robot hand. The
robot hand used in the experiments was the DLR/HIT
anthropomorphic robot hand, constructed with 4 fingers, 17
DOFs (with 4 redundant DOFs). This hand has a form
factor of roughly 1.5 times the size of a human hand. The
human hand motion sequence that was used for training was
a concatenation of finger tapping motions (once with each
finger), 2 power grasps, and 3 precision grasps (one with each
finger) captured by a Vicon optical motion capture system.
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Fig. 4. Performance of interactive sparse control for grasping an oscillating box. Finger tapping motions are used to position the box inside the
palm; power grasps and precision grasps are used for its actual grasping.

The performer’s hand was instrumented with 25 reflective
markers, approximately 0.5cm in width, as shown in Figure
2. These markers were placed at critical locations on the top
of the hand: 4 markers for each digit, 2 for the base of the
hand, and 3 on the forearm. The resulting dataset consisted of
approximately 500 frames and intentionally selected to have
at most one missing (occluded) marker at any instant of time.
Each frame of hand motion is considered a point in a high-
dimensional pose space. The pose space is defined as the 3D
endpoints of the fingers in the hand’s local coordinate system,
resulting in a 12-dimensional vector. Because the DLR hand
has only 3 fingers and a thumb, data for the fifth human finger
(pinky) is omitted. Joint angles used for motion control of the
hand were computed using an inverse kinematics procedure
that minimized the distance between each finger’s endpoint
position with respect to the knuckle of the finger.

In previous work [16], we tried to apply a set of subspace
embedding techniques on a neighborhood defined from the
high-dimensional input hand poses. Different methods pro-
duced different embeddings that were evaluated in terms of
consistency (two dissimilar poses in the high-dimensional
space should not be close in the low-dimensional space),
continuity (two consecutive motion frames should be close
together in the low-dimensional control space) and whether
they facilitate robot hand control. For each control task,
while the user was moving on the 2D space depicted on the
screen, the high-dimensional robot configuration that each
2D point corresponded to was applied to the robot hand.
The desired configuration of the hand was determined by the
nearest neighboring point in the 2D embedding with respect
to the current mouse position. In order to test the efficacy of
sparse control for grasping tasks, we performed grasping of
a box in a dynamic environment (Figure 4). While the box
was oscillating near the place of the hand, finger tapping
motions were used to position the box inside the palm.
Power grasps and precision grasps were used for its actual

grasping. The complete set of experiments can be found at
http : //robotics.cs.brown.edu/projects/bpdenoising.

Although in [16] we showed that techniques like FastMVU
or Isomap yield viable control subspaces in terms of robot
hand control, the control embedding could be improved even
more. More specifically, points that overlap in the low-
dimensional space could be farther from each other if we
could remove the noisy edges that make them seem as
neighbors. Motivated by that fact, we tried to apply BP-
Isomap in the Basic Motions dataset of [16] and compare
with the results from Isomap, for different values of k
(smaller than the value used in [16] due to computational
limitations). The results are shown in Figure 5.

Despite developing our neighborhood denoising proce-
dure, the neighborhood graph for our grasping trials ended up
having adjacent bad edges that our denoising procedure could
not remove. Subspace embeddings produced by BP-Isomap
and Isomap were almost identical. However, we expect that
enhancing the diversity in the set of hand motion used for
training there will be areas with big density of noisy edges
and areas with smaller density of noisy edges that our method
will be able to denoise.

In our future work, we plan to examine till which ratio
of the number of adjacent edges over the degree of the
neighborhood graph our method works well. Alternatively,
we plan on examining other approaches of determining
noisy edges that take into account a broader part of the
neighborhood graph and not only the imediate neighborhood.
Finally, in order to decrease the computational cost of our
method, we plan to run Belief Propagation selectively on
parts of the graph that are good candidates for containing
noisy edges.

V. CONCLUSION

In this paper, we have attempted to address the problem
of sparse control of a high-DOF robot hand. Considering the
problems of noise in pose graph construction, we introduced



(a) Training motion

(b) Isomap, k = 3 (c) Isomap, k = 4 (d) Isomap, k = 5 (e) Isomap, k = 6

(f) BP-Isomap, k = 3 (g) BP-Isomap, k = 4 (h) BP-Isomap, k = 5 (i) BP-Isomap, k = 6

Fig. 5. Performances of Isomap and BP-Isomap for k = 3, 4, 5, 6

a method for denoising neighborhood graphs for embedding
hand motion into 2D spaces. Such spaces allow for control
of high-DOF systems using 2D interfaces such as cursor
control via mouse or decoding of neural activity. Although
our denoising technique could not denoise the very noisy
motion capture data we used for training, we expect that it
will yield better results for cases of nonadjacent bad links
along the motion data manifold.
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