
International Transaction of Electrical and Computer Engineers System, 2014, Vol. 2, No. 5, 144-148 
Available online at http://pubs.sciepub.com/iteces/2/5/3 
© Science and Education Publishing 
DOI:10.12691/iteces-2-5-3 

 

Design of an Efficient Low Power 4-bit Arithmatic Logic 
Unit (ALU) Using VHDL 

Giridhari Muduli, Bibhudatt Pradhan, Manas Ranjan Jena*, Snigdharani Nath 

Departemt of ETC, SIET, Odisha 
*Corresponding author: manas.synergy@gmail.com 

Received June 03, 2014; Revised November 26, 2014; Accepted December 01, 2014 

Abstract  In this paper, we have designed an efficient low power 4-bit ALU using VHDL. Advancement in VLSI 
technology has allowed following Moore’s law for doubling component density on a silicon chip after every three 
years. Though MOS transistors have been scaled down, increased interconnections have limited circuit density on a 
chip. Furthermore, the size of transistor is limited by hot-carrier phenomena and increase in electric field that lead to 
degradation of device performance and device lifetime. It has become essential to look into other methods of adding 
more functionality to a MOS transistor, such as, the multiple- input floating gate MOS transistor structure proposed 
by Shibata and Ohmi. An enhancement in the basic function of a transistor has, thus, allowed for designs to be 
implemented using fewer transistors and reduced interconnections. In published literature, many integrated circuits 
have been reported which are using multi-input floating gate MOSFETs in standard CMOS process. Thus using the 
advanced VLSI technology the proposed ALU design is more efficient. 

Keywords: CPU, GPU, ALU, RCA, CSA, CMOS 

Cite This Article: Giridhari Muduli, Bibhudatt Pradhan, Manas Ranjan Jena, and Snigdharani Nath, “Design 
of an Efficient Low Power 4-bit Arithmatic Logic Unit (ALU) Using VHDL.” International Transaction of 
Electrical and Computer Engineers System, vol. 2, no. 5 (2014): 144-148. doi: 10.12691/iteces-2-5-3. 

1. Introduction 
In computing, an arithmetic logic unit (ALU) is a 

digital circuit that performs arithmetic and logical 
operations. The ALU is a fundamental building block of 
the central processing unit (CPU) of a computer, and even 
the simplest microprocessors contain one for purposes 
such as maintaining timers. The processors found inside 
modern CPUs and graphics processing units (GPUs) 
accommodate very powerful and very complex ALUs; a 
single component may contain a number of ALUs. 
Mathematician John von Neumann proposed the ALU 
concept in 1945, when he wrote a report on the 
foundations for a new computer called the EDVAC. 
Research into ALUs remains an important part of 
computer science, falling under Arithmetic and logic 

structures in the ACM Computing Classification System 
[1]. 

1.1. System Operations 
A simple arithmetic logic unit does AND, OR, XOR, 

and addition. Most ALUs can perform the following 
operations: Integer arithmetic operations (addition, 
subtraction, and sometimes multiplication and division, 
though this is more expensive). Bitwise logic operations 
(AND, NOT, OR, XOR). Bit-shifting operations (shifting 
or rotating a word by a specified number of bits to the left 
or right, with or without sign extension). Shifts can be 
interpreted as multiplications by 2 and divisions by 2 [2]. 
A basic block diagram is shown in Figure 1.1 indicating 2-
bit ALU operation. 

 

Figure 1.1. Block diagram shows 2-bit ALU Operation 



145 International Transaction of Electrical and Computer Engineers System  

 

1.2. System Inputs & Outputs 
The inputs to the ALU are the data to be operated on 

(called operands) and a code from the control unit 
indicating which operation to perform. Its output is the 
result of the computation. In many designs the ALU also 
takes or generates as inputs or outputs a set of condition 
codes from or to a status register. These codes are used to 
indicate cases such as carry-in or carry-out, overflow, 
divide-by-zero, etc. 

The arithmetic logic unit (ALU) is the core of a CPU in 
a computer. The adder cell is the elementary unit of an 

ALU. The constraints the adder has to satisfy are area, 
power and speed requirements. Some of the conventional 
types of adders are ripple-carry adder, carry- look ahead 
adder, carry-skip adder and Manchester carry chain adder. 
The delay in an adder is dominated by the carry chain. 
Carry chain analysis must consider transistor and wiring 
delays. Ripple carry adder is an n-bit adder built from full 
adders. Figure 1.2 shows a 4-bit ripple carry adder. Carry- 
look ahead adders first compute carry propagate and 
generate and then computes SUM and CARRY from them. 
It allows for carry to be computed in each bit [1,3].

 
Figure 1.2. Block diagram of a 4-bit ripple carry adder (RCA) 

 
Figure 1.3. Block diagram of a 4-bit carry-look ahead adder (CLA) 

Figure 1.3 shows a 4-bit carry-look ahead adder. Carry- 
look ahead unit requires complex wiring between adders 
and look ahead unit, as the values must be routed back to 
adder from look ahead unit. Layout becomes complex 
with multiple levels of look ahead. Figure 1.4 shows a 4-
bit carry-skip adder and skip module used. The skip 
module determines whether it could just pass a carry in 
(CIN) the next four bits for addition or it has to wait until 
the carry out (C3) propagates through the last full adder in 
the design. In essence, the skip module can make the carry 
in (CIN) appear to skip through the four full adders [4]. 
The Manchester carry chain adder uses a pre charged 
carry chain with P and G signals. Propagate signal Pi is 
the XOR of input bits Ai and Bi and generate signal Gi is 
the NAND of input bits Ai and Bi. Propagate signal 
connects adjacent carry bits and Generate signal discharge 
the carry bit. Figure 1.4 shows a Manchester carry chain. 

When input bits are ‘0’, Gi is HIGH and hence the carry 
out node is discharged. When one of the input bits is ‘1’, 
then Pi is HIGH and carry out follows carry in. When both 
bits are ‘1’, then both Gi and Pi are LOW; hence carry out 
node remains isolated from carry in and ground. As the 
node is pre-charged to a HIGH state the carry out remains 
HIGH. Each of the adder configurations may or may not 
require additional logic apart from full adder design. Table 
2.1 shows approximately how many additional gates and 
transistors are required for each of the adder 
configurations. In terms of area efficiency ripple carry 
adder is preferred. Keeping in mind small layout area and 
less number of interconnections our ALU has been 
designed using ripple carry configuration. However, the 
delay time for worst case is more when compared to other 
adders [5]. A 16 -bit, 2.4 ns, 0.5 mm CMOS ALU is 
shown in Figure 1.5. 

 

Figure 1.4. Block diagram of a 4-bit carry-skip adder (CSA) with skip module 



 International Transaction of Electrical and Computer Engineers System 146 

 

 

Figure 1.5. 16-bit, 2.4 ns, 0.5 mm CMOS arithmetic logic unit 

1.3. System Block Diagram 
The system block diagram of a 4-bit ALU is shown in 

the Figure 1.6. ALU is a combinational circuit that 
performs logic and arithmetic micro-operations on a pair 
of n-bit operands (ex. A [3:0] and B [3:0]). The operations 

performed by an ALU are controlled by a set of function-
select inputs. In this design a 4-bit ALU with 3 function-
select inputs: Mode M, Select S1 and S0 inputs. The mode 
input M selects between a Logic (M=0) and Arithmetic 
(M=1) operation. 

 

Figure 1.6. Block diagram of a 4-bit ALU 

2. System Specification 
The 4-bit ALU comprises of 4 to 1 and 2 to 1 

multiplexers at the input and output sides and full adder 
with additional logic. The full adder is configured as 

ripple carry adder. S0, S1 and S2 are the select signals that 
decide the operation being performed. The post layout 
simulated waveforms for the full adder showing SUM & 
CARRY bits. The truth table for the eight operations 
performed by the ALU is shown in Table 2.1 [6]. 

 

Figure 2.1. Post layout simulated waveforms for the full adder showing SUM and CARRY bits 



147 International Transaction of Electrical and Computer Engineers System  

 

Table 2.1 Truth table of a 4-bit ALU 
S2 S1 S0 Operation performed 

0 0 0 INCREMENT 

0 0 1 DECREMENT 

0 1 0 ADDITION 

0 1 1 SUBTRATION 

1 0 0 AND 

1 0 1 OR 

1 1 0 EXOR 

1 1 1 EXNOR 

Signal S2 is connected to logic ‘0’ for arithmetic 
operations, and connected to logic ‘1’ for logical 
operations. The multiplexer logic at the output side of 
each stage of the ALU gives the final output. For logical 
operations the output of each stage is independent of the 
other stages. In case of arithmetic operations, the carry 
ripples from LSB to MSB position. Therefore the output 
of each stage depends on the previous stage. For the 
layout of the 4-bit ALU, four stages of the full adder are 
cascaded in ripple carry adder configuration. The layout of 
the 4-bit ALU is shown in Figure 3.4. The entire layout 
was placed in the 1.5 m pad frame. Connections were 
made for inputs, outputs, supply voltages and ground pins 
on the pad frame [7].  

3. Simulation Results & Analysis 
The synthesis & simulation is performed by using 

softwares like Xilinx 11.1 and ModelSim SE 5.7 which is 
further used for coding, testing and simulation of VHDL 
programs. The layout of 4- bit ALU has been shown in 
Figure 3.4 using Mentor Graphic 2007. The chip layout 
before fabrication is shown in Figure 3.4. The design was 
fabricated in AMI 1.5 mm CMOS process. The 4-Bit ALU 
occupies approximately an area of 830 x 935 mm2. SPICE 
simulations for the 4-bit ALU were done for post- layout 
extracted net lists. The RTL schematic block of 7-bit ALU 
is shown in Figure 3.1. 

 
Figure 3.1. RTL Schematic block of 4-bit ALU 

 
Figure 3.2. Synthesis output of ALU 



 International Transaction of Electrical and Computer Engineers System 148 

 

  
Figure3.3. Simulated Waveform 

 

Figure 3.4. Layout of a 4-bit ALU 

4. Conclusion 
This paper presents design, optimization and 

implementation of 4-bit ALU. The increasing demand for 
low-power very large scale integration (VLSI) can be 
addressed at different design levels, such as the 
architectural, circuit, layout, and the process technology 
level. The simulation results shows improvement in delay 
of output signal & decrease the distortion of the 
waveforms at the output stages. Due to the major 
advantages the proposed design can be suitable in DSP 
applications.  

References 
[1] M. Farmwald., “Design of High Performance Digital Arithmetic 

Units”. PhD thesis, Stanford University, Aug. 1981. 
[2] M. Morris Mano “Digital Design” (Pearson Education Asia. 3rd 

Ed, 2002). 
[3] N. Burgess. “The flagged prefix adder for dual additions”. In Proc. 

SPIE ASPAAI-7, volume 3461, pages 567-575, San Diego, Jul. 
1998. 

[4] N. Quach and M. Flynn. “Design and implementation of the snap 
floating-point adder”. Technical Report CSL-TR-91-501, 
Stanford University, Dec. 1991. 

[5] Y. Hagihara, S. Inui, F. Okamoto, M. Nishida, T. Nakamura, and 
H. Yamada. “Floating point data paths with online built in self 
speed test”. IEEE J. Solid-State Circuits, 32 (3): 444-449, Mar. 
1997. 

[6] R.V.K. Pillai, D. Al-Khalili and A.J. Al-Khalili “Power 
Implications of Additions in Floating Point DSP-an Architectural 
Perspective” Concordia University, Montreal CANADA; Royal 
Military College, Kingston, The IEEE International Conference 
Pages: 581-586, 1999. 

[7] E. Hokenek and R. Montoye. “Leading-zero anticipator (lza) in 
the ibm risc system/6000 floating-point execution unit”. IBM J. 
Res. Develop., 34 (1): 71-77, Jan. 1990. 

[8] Javier D. Bruguera and Tomas Lang “Leading one anticipation 
scheme for latency improvement in single data path floating point 
adders”, Department of Electrical and Computer Engineering, 
Spain. Pages 125-133, 2005. 

[9] S. Kang and Y. Leblebici “CMOS Digital Integrated Circuit, 
Analysis and Design” (Tata McGraw-Hill, 3rd Ed, 2003).  

[10] Ricardo Gonzalez, Benjamin M. Gordon, and Mark A. Horowitz,” 
Supply and Threshold Voltage Scaling for Low Power CMOS”, 
IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 32, NO. 
8, AUGUST 1997. 

 


