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Abstract—This paper describes a method for localizing the
members of a mobile robot team by using only the robots
themselves as landmarks. That is, we describe a method
whereby each robot can determine the relative range, bear-
ing and orientation of every other robot in the team, without
the use of GPS, external landmarks, or instrumentation of
the environment. We assume that robots are equipped with
proprioceptive motion sensor (such as odometry or inertial
measurement units) and some form of sensor that will al-
low them to make occasional measurements of the relative
pose and identity of nearby robots (such sensors can be con-
structed using cameras or scanning laser range-finders). By
employing a combination of maximum likelihood estimation
and numerical optimization, we can subsequently infer the
relative pose of every robot in the team at any given point
in time.

This paper describes the basic formalism, its practical im-
plementation, and presents experimental results obtained
using both real and simulated robots in both static and dy-
namic environments.

I. Introduction

This paper describes a method for localizing the mem-
bers of a mobile robot team, using only the robots them-
selves as landmarks. That is, we describe a method
whereby each robot can determine the relative range, bear-
ing and orientation of every other robot in the team, with-
out the use of GPS, external landmarks, or instrumenta-
tion of the environment. Our approach is motivated by
the need to localize robots in hostile and dynamic envi-
ronments. Consider, for example, a search-and-rescue sce-
nario in which a team of robots must deploy into a dam-
aged structure, search for survivors, and guide rescuers to
those survivors. In such environments, localization infor-
mation cannot be obtained using GPS or landmark-based
techniques: GPS is generally unavailable or unreliable due
to occlusions and multi-path effects, while landmark-based
techniques require prior models of the environment that are
either unavailable, incomplete or inaccurate. In contrast,
the method described in this paper can generate good rela-

tive localization information in almost any environment,
including those that are undergoing dynamic structural
changes. Our only requirement is that the robots are able
to maintain at least intermittent line-of-sight contact with
one-another.

We make four basic assumptions. First, we assume
that each robot is equipped with a proprioceptive mo-

tion sensor such that it can measure changes in its own
pose. Suitable motion detectors can be constructed using
either odometry or inertial measurement units. Second,

we assume that each robot is equipped with a robot sen-

sor such that it can measure the relative pose and identity
of nearby robots. Suitable sensors can be constructed us-
ing either vision (in combination with color-coded markers)
or scanning laser range-finders (in combination with retro-
reflective bar-codes). We further assume that the identity
of robots is always determined correctly (which eliminates
what would otherwise be a combinatoric labeling problem)
but that there is some uncertainty in the relative pose mea-
surements. Finally, we assume that each robot is equipped
with some form of transceiver that can be used to broad-
cast information back to a central location, where the lo-
calization is performed. Standard IEEE 802.11b wireless
network adapters can be used for this purpose.

Given these assumptions, the team localization problem
can be solved using a combination of maximum likelihood
estimation and numerical optimization. The basic method
is as follows. First, we construct a set of estimates X = {x̂}
in which each element x̂ represents the estimated pose of a
particular robot at a particular time. These pose estimates
are defined with respect to some arbitrary global coordinate
system. Next, we construct a set of observations M = {m̂}
in which each element m̂ represents an observation made
by a motion sensor; and a set of observations O = {o} in
which each element o represents an observation made by
a robot sensor. Finally, we use numerical optimization to
determine the set of estimates X that is most likely to give
rise to the combined set of observations (M,O).

Note that this method attempts to determine the pose of
robots at every point in time (we are, in effect, ‘unrolling’
the time component and treating this as a static estimation
problem). It is therefore necessary, in practice, to bound
X such that it includes pose estimates over some finite pe-
riod of time. Note also that we do not expect robots to
use the set of pose estimates X directly; these estimates
are defined with respect to an arbitrary global coordinate
system whose relationship with the external environment
is undefined. Instead, each robot employs these estimates
to compute the pose of every other robot relative to itself,
and uses this ego-centric viewpoint to coordinate activity.
On the other hand, if some subset of the team chooses to
remain stationary, the global coordinate system will be-
come ‘anchored’ in the real world, and the pose estimates
in X may be used as global pose estimates in the standard
fashion.

In the remainder of this paper, we describe the basic for-
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malism, its practical implementation, and present experi-
mental results obtained using small teams of real robots in
both static and dynamic environments.

II. Related Work

Localization is an extremely well studied topic in mobile
robotics. The vast majority of this research, however, has
concentrated on two problems: localizing a single robot us-
ing an a priori map of the environment [1], [2], [3], or local-
izing a single robot whilst simultaneously building a map
[4], [5], [6], [7], [8], [9]. Recently, some authors have also
considered the related problem of map building with multi-
ple robots [10]. All of these authors make use of statistical
or probabilistic techniques of one sort or another; the com-
mon tools of choice are Kalman filters (KF), maximum like-
lihood estimation (MLE), expectation maximization (EM),
and Markovian techniques (using grid or sample-based rep-
resentations for probability distributions).

The team localization problem described in this paper
bears many similarities to the simultaneous localization
and map building problem, and is amenable to similar
mathematical treatments. In this context, the work of Lu
and Milios [5] should be noted. These authors describe
a method for constructing globally consistent maps by en-
forcing pairwise geometric relationships between individual
range scans; relationships are derived either from odome-
try, or from the comparison of range scan pairs. MLE
is used to determine the set of pose estimates that best
accounts this set of relationships. Our mathematical for-
malism is similar to that described by these authors, even
though it is directed towards a somewhat different objec-
tive; i.e., the localization of mobile robot teams, rather
than the construction of globally consistent maps.

Among those who have considered the problem of coop-

erative localization are Roumeliotis and Bekey [11] and Fox
et al. [12]. Roumeliotis and Bekey [11] present an approach
to multi-robot localization in which sensor data from a het-
erogeneous collection of robots is combined through a sin-
gle Kalman filter to estimate the pose of each robot in
the team. They also show how this centralized Kalman
filter can be broken down into N separate Kalman filters
(one for each robot) to allow for distributed processing.
It should be noted, however, that this method still relies
on the use of external landmarks. In a similar vein, Fox
et al. describe an approach to multi-robot localization in
which each robot maintains a probability distribution de-
scribing its own pose (based on odometry and environment
sensing), but is able to refine this distribution through the
observation of other robots. This approach extends earlier
work on single-robot Markovian localization techniques [3].
The authors avoid the problem of dimensionality (for N
robots, one must maintain a 3N dimensional distribution)
by factoring the distribution into N separate components
(one for each robot). While this step makes the algorithm
tractable, it also results in some loss of expressiveness. The
algorithm also relies on the use of external landmarks.

Finally, a number of authors [13], [14], [15] have de-
scribed approaches in which team members actively coor-
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Fig. 1. An illustration of the basic formalism. The figure shows two
robots, r = 1 and r = 2, traveling from left to right and observing each
other exactly once. The robots’ activity is encoded in the graph, with
nodes representing pose estimates and arcs representing observations.
Two observations are highlighted: a motion observation for robot
r = 1 (between times t = 1 and t = 2) and a robot observation at
time t = 2 (between robots r = 1 and r = 2).

dinate their activities in order to reduce cumulative odo-
metric errors. The basic method is to keep one subset
of the robots stationary while the other subset is in mo-
tion; the stationary robots observe the robots in motion
(or vice-versa), thereby providing more accurate pose esti-
mates than can be obtained using odometry alone. While
our approach does not require such explicit cooperation on
the part of robots, the accuracy of localization can cer-
tainly be improved by the adoption of such strategies. We
will return to this topic briefly in the final sections of this
paper.

III. Formalism

A. General Formalism

We formulate the team localization problem as follows.
Let x̂rt denote the absolute pose estimate for robot r at time
t, and let X denote the set of all such estimates. Let m̂r

tt′

denote an observation made by a motion sensor describing
the change in pose of robot r between times t and t′. Let
M denote the set of all such observations. Finally, let ôrr

′

t

denote an observation made by a robot sensor at time t, in
which robot r measures the relative pose of robot r′, and let
O denote the set of all such observations. These definitions
are illustrated in Figure 1. Each estimate x̂rt can be thought
of as a node in a graph, and each observation m̂r

tt′ or ôrr
′

t

can be thought of as a link between two nodes. Thus,
motion observations join nodes representing the same robot
at two different points in time, while robot observations
join nodes representing two different robots at the same
point in time. Note also that this is a directed graph; an
observation ôrr

′

t is not equivalent to an observation ôr
′r
t ,

for example.

Our aim is to determine the set of pose estimates X that
maximizes the probability of obtaining the set of obser-
vations (M,O); i.e., we seek to maximize the conditional
probability P (M,O | X). If we assume that observations
are statistically independent, we can write this probability
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as:

P (M,O | X) =
∏

m̂r

tt′
∈M

P (m̂r
tt′ | x̂

r
t , x̂

r
t′)

×
∏

ôrr′

t
∈O

P (ôrr
′

t | x̂rt , x̂
r′

t ) (1)

where P (m̂r
tt′ | x̂rt , x̂

r
t′) is the probability of obtaining the

individual motion observation m̂r
tt′ , given that the esti-

mated initial pose for robot r is x̂rt , and the estimated final
pose for the same robot is x̂rt′ . Note that we have made
the additional (but not unreasonable) assumption that this
probability is independent of other pose estimates. In a
similar vein, P (ôrr

′

t | x̂rt , x̂
r′

t ) specifies the probability of

obtaining the individual robot observation ôrr
′

t , given that
the estimate pose for the robot r making the observation is
x̂rt , and the estimated pose for the robot r′ being observed
is x̂r

′

t . Taking the logarithm of Equation 1, we can write:

U(M,O | X) =
∑

m̂r

tt′
∈M

U(m̂r
tt′ | x̂

r
t , x̂

r
t′)

+
∑

ôrr′

t
∈O

U(ôrr
′

t | x̂rt , x̂
r′

t ) (2)

where

U(M,O | X) = − log P (M,O | X)

U(m̂r
tt′ | x̂

r
t , x̂

r
t′) = − log P (m̂r

tt′ | x̂
r
t , x̂

r
t′)

U(ôrr
′

t | x̂rt , x̂
r′

t ) = − log P (ôrr
′

t | x̂rt , x̂
r′

t ) (3)

This latter form is somewhat more convenient for numerical
optimization. Our aim is now to find the set of estimates
X that minimizes U(M,O | X), for which we will need
to determine the form of the conditional log-probabilities
U(m̂r

tt′ | x̂
r
t , x̂

r
t′) and U(ôrr

′

t | x̂rt , x̂
r′

t ).
If we assume that the uncertainty in motion observations

is normally distributed in some coordinate system, we can
describe each motion observation using a tuple of the form:

m̂r
tt′ = (µrtt′ ,Σ

r
tt′) (4)

where µ
r
tt′ is a relative pose measurement and Σr

tt′ is a co-
variance matrix representing the uncertainty in this mea-
surement. The conditional log-probability for such obser-
vations is given by:

U(m̂r
t,t′ | x̂

r
t , x̂

r
t′) =

1

2
(µrtt′ − ŷrtt′)

TΣr
tt′(µ

r
tt′ − ŷrtt′) (5)

where ŷrtt′ is a relative pose estimate describing the esti-
mated change in pose of robot r between times t and t′.
The relative pose estimate is derived from the absolute pose
estimates x̂rt and x̂rt′ via some coordinate transform Γm:

ŷrtt′ = Γm(x̂rt , x̂
r
t′) (6)

The specific form of Γm depends on the coordinate system
chosen to represent the absolute pose estimates X and the
motion observations M̂ . We will consider one specific form

for Γm in Section III-B, where we consider the problem of
localization in a plane.

Robot observations are handled in a similar manner to
motion observations; each observation is described using a
tuple of the form:

ôrr
′

t = (µrr
′

t ,Σrr′

t ) (7)

where µ
rr′

t is the relative pose of robot r′, as measured by

robot r at time t; Σrr′

t is the covariance matrix representing
the uncertainty in this measurement. The conditional log-
probability is given by:

U(ôrr
′

t | x̂rt , x̂
r′

t ) =
1

2
(µrr

′

t − ŷrr
′

t )TΣrr′

t (µrr
′

t − ŷrr
′

t ) (8)

where ŷrr
′

t is the estimated pose of robot r′ relative to robot
r at time t. The relative pose estimate is derived from the
absolute pose estimates x̂rt and x̂r

′

t via some coordinate
transform Γo:

ŷrr
′

t = Γo(x̂
r
t , x̂

r′

t ) (9)

As with the motion observations, the specific form of Γo
depends on the coordinate systems being used.

Given appropriate definitions for Γm and Γo, one can de-
termine the optimal set of pose estimates X using a stan-
dard numerical optimization algorithm. The selection of an
appropriate algorithm is driven largely by the form of these
coordinate transforms, which are, in general, non-linear by
differentiable. This rules out fast linear algorithms, but
allows gradient-based techniques such as steepest descent
and conjugate gradient algorithms [16]. Such algorithms
require that we compute the gradient of U(M,O | X) with
respect to X; this can be done by differentiating through
Equation 2:

∂

∂x̂rt
U(M,O | X) =

∑

m̂r

tt′
∈M

∂

∂x̂rt
U(m̂r

tt′ | x̂
r
t , x̂

r
t′)

+
∑

m̂r

t′t
∈M

∂

∂x̂rt
U(m̂r

t′t | x̂
r
t′ , x̂

r
t )

+
∑

ôrr′

t
∈O

∂

∂x̂rt
U(ôrr

′

t | x̂rt , x̂
r′

t )

+
∑

ôr′r

t
∈O

∂

∂x̂rt
U(ôr

′r
t | x̂r

′

t , x̂rt ) (10)

The four summations in this equation capture four different
cases: for motion observations, the pose estimate x̂rt may
correspond to either the initial or the final location of the
robot, and for robot observations the pose estimate x̂rt may
correspond to either the robot making the observation or
the robot being observed. Individual derivatives for the
motion observation terms can be evaluated by applying the
chain-rule to Equation 5:

∂

∂x̂rt
U(m̂r

tt′ | x̂
r
t , x̂

r
t′) =

∂ŷrtt′

∂x̂rt
Σr
tt′(µ

r
tt′ − ŷrtt′)

∂

∂x̂rt
U(m̂r

t′t | x̂
r
t′ , x̂

r
t ) =

∂ŷrt′t
∂x̂rt′

Σr
t′t(µ

r
t′t − ŷrt′t) (11)
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where the derivatives ∂ŷrtt′/∂x̂rt and ∂ŷrt′t/∂x̂rt can be de-
termined by differentiating Equation 6, given some spe-
cific form for Γm, The derivatives for the robot observation
terms can be determined in a similar fashion by applying
the chain-rule to Equation 8:

∂

∂x̂rt
U(ôrr

′

t | x̂rt , x̂
r′

t ) =
∂ŷrr

′

t

∂x̂rt
Σrr′

t (µrr
′

t − ŷrr
′

t )

∂

∂x̂rt
U(ôr

′r
t | x̂r

′

t , x̂rt ) =
∂ŷr

′r
t

∂x̂rt
Σr′r
t (µr

′r
t − ŷr

′r
t ) (12)

where the derivatives ∂ŷrr
′

t /∂x̂rt and ∂ŷr
′r
t /∂x̂rt are deter-

mined by differentiating Equation 9 for some specific Γo.

B. Localization in a Plane

The formalism described in the previous section is quite
general, and can be applied to localization problems in two,
three, or more dimensions. In order to make this formalism
more concrete, and to lay the theoretical foundations for
the experiments described in Section V, we now consider
the specific problem of localization in a plane.

Let the absolute pose estimate x̂rt be a 3-vector such
that:

x̂rt =





xrtx
xrty
xrtθ



 (13)

where (xrtx, x
r
ty) describes the robot’s position (in Cartesian

coordinates) and xrtθ describes its orientation. For motion
observations, let the relative pose measurement µ

r
tt′ be a

3-vector such that:

µ
r
tt′ =





µrtt′d
µrtt′φ
µrtt′ψ



 (14)

where (µrtt′d, µ
r
tt′φ) describes the measured change in po-

sition for robot r (in polar coordinates; i.e. range and
bearing) and µrtt′ψ describes its change in orientation. The

relative pose measurements µ
rr′

t for robot observations are
defined in a similar manner:

µ
rr′

t =







µrr
′

td

µrr
′

tφ

µrr
′

tψ






(15)

where (µrr
′

td , µrr
′

tφ ) describes the measured range and bearing

of robot r′ relative to r, and µrr
′

tψ describes their relative
orientation.

We choose to express measurements in terms of polar co-
ordinates since, for many sensors, the uncertainty in range,
bearing and orientation is effectively uncorrelated. Con-
sider, for example, the probability distributions shown in
Figure 2; by using polar coordinates, we can accurately
model the behavior of sensors that return only range in-
formation, sensors that return only bearing information,
and sensors that return both range and bearing informa-
tion. Thus, for example, polar coordinates are well suited

to representing odometric measurements from differential
drive robots; Figure 2 is a good approximation to the clas-
sic ‘banana-shaped’ distribution that is usually observed
with such sensors [3]. Note, however, that if one was to use
an IMU as a motion sensor, motion measurements would
more naturally be expressed in Cartesian coordinates, and
the derivations that follow would have to be suitably mod-
ified.

Given these definitions, we can write down an expression
for the relative pose estimates ŷrtt′ : the coordinate trans-
form function Γm simply transforms from polar to Carte-
sian coordinates:

ŷrtt′ =





yrtt′d
yrtt′φ
yrtt′ψ



 =







√

(∆r
tt′x)

2 + (∆r
tt′y)

2

arctan(∆r
tt′y/∆

r
tt′x) − xrtθ

∆r
tt′θ






(16)

where ∆̂
r

tt′ = x̂rt′ − x̂rt . For optimization, we require the
corresponding derivatives, which are given by:

∂ŷrtt′

∂x̂rt
=





∂yrtt′d/∂xrtx ∂yrtt′φ/∂xrtx ∂yrtt′ψ/∂xrtx
∂yrtt′d/∂xrty ∂yrtt′φ/∂xrty ∂yrtt′ψ/∂xrty
∂yrtt′d/∂xrtθ ∂yrtt′φ/∂xrtθ ∂yrtt′ψ/∂xrtθ





=





−∆r
tt′x/y

r
tt′d +∆r

tt′y/(y
r
tt′d)

2 0
−∆r

tt′y/y
r
tt′d −∆r

tt′x/(y
r
tt′d)

2 0
0 −1 −1





∂ŷrt′t
∂x̂rt

=





+∆r
tt′x/y

r
tt′d −∆r

tt′y/(y
r
tt′d)

2 0
+∆r

tt′y/y
r
tt′d +∆r

tt′x/(y
r
tt′d)

2 0
0 0 +1



 (17)

There are two features of these derivatives that should be
noted. First, ∂ŷrtt′/∂x̂rt 6= −∂ŷrt′t/∂x̂rt as one might naively
expect. Second, the derivatives contain a singularity at
yrtt′d = 0; one must take care to avoid this singularity dur-
ing the optimization process.

The relative pose estimates ŷrr
′

t are treated in a similar
manner, since Γo also transforms from polar to Cartesian
coordinates:

ŷrr
′

t =







yrr
′

td

yrr
′

tφ

yrr
′

tψ






=







√

(∆rr′
tx )2 + (∆rr′

ty )2

arctan(∆rr′

ty /∆rr′

tx ) − xrtθ
∆rr′

tθ






(18)

where ∆̂
rr′

t = x̂r
′

t − x̂rt . The corresponding derivatives are:

∂ŷrr
′

t

∂x̂rt
=





−∆rr′

tx /yrr
′

td +∆rr′

ty /(yrr
′

td )2 0

−∆rr′

ty /yrr
′

td −∆rr′

tx /(yrr
′

td )2 0
0 −1 −1





∂ŷr
′r
t

∂x̂rt
=





+∆rr′

tx /yrr
′

td −∆rr′

ty /(yrr
′

td )2 0

+∆rr′

ty /yrr
′

td +∆rr′

tx /(yrr
′

td )2 0
0 0 +1



(19)

Note once again that ∂ŷrr
′

t /∂x̂rt 6= −∂ŷr
′r
t /∂x̂rt , and that

both derivatives contain a singularity at yrr
′

td = 0.
Inserting these definitions into the general formalism de-

scribed in the previous sections, one can solve the planar
localization problem in a fairly straight-forward manner.
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Fig. 2. Sample probability distributions for for the planar localization problem. The plots show the probability P (ôrr′

t | x̂r
t , x̂r′

t ) as a

function of the estimated position (x̂r′

tx, x̂r′

ty) for the robot being observed. Orientation is not shown. (a) The range is well determined

(µrr′

td
= 1±0.1 m), but the bearing is unknown. (b) The bearing is moderately well determined (µrr′

tφ
= 45±57◦), but the range in unknown.

(c) Both range and bearing are (moderately) well determined (µrr′

td
= 1 ± 0.1 m, µrr′

tφ
= 45 ± 57◦).
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Fig. 3. Plot of the log-probability U(M, O | X) along a number of
lines through X (the lines correspond to successive optimization steps
in the conjugate gradient algorithm). Note that the plots are smooth
(which aids optimization) but that they contain local minima (which
does not). These plots were generated using real data obtained from
the experiment described in Section V-A.

IV. Implementation

A. Optimization: The Conjugate Gradient Algorithm

For optimization, we use the conjugate gradient algo-
rithm described in [16]; this algorithm is somewhat more
complex than the standard steepest descent algorithm, but
has the advantage of being much faster. In addition, its
memory requirements scale linearly with the number of
variables being optimized (rather than quadratically, as is
the case with some alternatives). This latter feature is im-
portant when one considers that the set of pose estimates
X over which we are optimizing can be very large.

Figure 3 shows an example of the conjugate gradient al-
gorithm at work on a real data set. Each curve shows the
log-probability U(M,O | X) plotted along a line through
the high-dimensional space that is X; these lines are com-
puted at successive steps in the algorithm. Note that the
plots are smooth (which aids optimization) but that there
exist local minima (which does not). For this data-set,
which contains 20 pose estimates and 50 observations, the
algorithm was able to find the global minimum with 61 op-
timization steps (well under 1 second on a 700 MHz PIII
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Fig. 4. An illustration of the extended formalism. The figure shows
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ing each other exactly once. The robots’ activity is encoded in the
graph, with nodes representing pose estimates and arcs representing
observations. Also shown are the interpolated pose estimates p̂1 and
p̂2 for each of the robots at time t = 2.

workstation).
We also adopt a incremental approach to optimization:

as each new observation is added to M or O, we optimize
over the entire set of pose estimates X. While it is some-
what inefficient, this incremental approach helps to ensure
that the algorithm converges to a global rather than a lo-
cal minimum (we have a very good initial ‘guess’ at the
start of each optimization pass). While this approach does
guarantee convergence to the global minimum, it appears
to suffice in practice.

B. Practical considerations: bounding X, M and O

The dimensionality of the problem that must be solved
by the conjugate gradient algorithm scales linearly with
the size of X; the computational cost of each step in this
algorithm scales linearly with the size of {M ∪ O}. It is
therefore necessary, in practice, to bound both the number
of estimates in X and the number of observations in {M ∪
O}. We use three basic methods for constraining the size
of these sets: we discard older estimates and observations,
we limit the number of observations relating any pair of
estimates, and we limit the rate at which new estimates
are generated.

The first two methods are simple and well-defined: we
consider only those estimates and observations that occur
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between times t and t−T , where t is the current time and T
is the duration of the temporal ‘window’; and we consider
at most m observations for every pair of pose estimates.
Thus we can trade-off computational cost against localiza-
tion accuracy by manipulating the duration T and number
of observations m.

In contrast, the third method, which seeks to limit
the rate at which pose estimates are generated, requires
some extensions to the formalism described in Section III.
Rather than attempting to estimate the pose of the robots
at every point in time, we instead estimate the pose at only
a few discrete points in time, and use information from the
motion sensors to ‘fill the gaps’ between these estimates.
In effect, we make two additional assumptions about the
motion sensors: that they produce observations at a very
high rate, and that these observations are relatively ac-
curate. Thus, the motion sensors alone can be used to
generate good pose estimates that require only occasional
corrections. Let ẑrt+ be the interpolated pose estimate for
robot r at time t+; this estimate is given by:

ẑrt+ = Γ−1
m (x̂rt ,µ

r
tt+) (20)

where x̂rt is the most recent pose estimate for robot r in X
and µ

r
tt+

is the measured change in pose between times t
and t+. The inverse coordinate transform Γ−1

m maps from
relative to absolute coordinates. The difficulty now lies in
the incorporation of information from the robot sensors;
as the interval between pose estimates becomes larger, it
becomes increasingly unlikely that robot observations will
occur at the times represented by these pose estimates.
We must therefore make the following modifications to the
robot observation model Equations 8:

U(ôrr
′

t+ | x̂rt , x̂
r′

t ,µrtt+) =
1

2
(µrr

′

t − ŷrrt+)TΣrr′

t (µrr
′

t − ŷrrt+)

(21)
where

ŷrr
′

t+ = Γo(ẑ
r
t+ , ẑr

′

t+) (22)

The corresponding derivatives must also be modified to
yield:

∂ŷrr
′

t+

∂x̂rt
−→

∂ŷrr
′

t+

∂x̂rt
=

∂ŷrr
′

t+

∂ẑr
t+

∂ẑr
t+

∂x̂rt
(23)

Tthe additional derivative ∂ẑr
t+

/∂x̂rt can be computed by
differentiating through Equation 20, once the form of Γ−1

m

is known. These definitions are illustrated in Figure 4.
This extended formalism allows us approximate the in-

formation provided by the motion sensors to an arbitrary
degree of fidelity (rather than simply discarding informa-
tion). It therefore provides us with another means to trade-
off computational cost against localization accuracy.

V. Experimental Validation

A. Experiment 1

We have conducted a series of experiments aimed at val-
idating both the practicality and the accuracy of the team
localization algorithm presented in this paper. Our first ex-
periment was conducted using a team of four Pioneer 2DX

mobile robots equipped with SICK LMS200 scanning laser
range-finders. Each robot was also equipped with a pair
of retro-reflective ‘totem-poles’ as shown in Figure 5(a).
These totem-poles can be detected from a wide range of
angles using the SICK lasers, which can be programmed
to return intensity information in addition to the normal
range information. This arrangement allows each robot to
detect the presence of other robots and to determine both
their range (to within a few centimeters) and bearing (to
within a few degrees). Orientation can also be determined
to within a few degrees, but is subject to a 180◦ ambigu-
ity. This arrangement does not allow individual robots to
be identified. Given the ambiguity in both orientation and
identity, it was necessary, for this experiment, to manually
label the data. Ground-truth information was provided by
an external laser-based tracking system.

The robot team was placed into the environment shown
in Figure 5(b) and each robot executed a simple wall fol-
lowing algorithm. Two robots followed the inner wall and
two followed the outer wall; importantly, the robots were
arranged such that at no time were the two robots on the
outer wall able to directly sense one other. The structure of
the environment was modified a number of times during the
course of the experiment; at time t = 265 sec, for example,
the inner wall was modified to form two separate ‘islands’,
with one robot circumnavigating each island. The original
structure was later restored, then modified, the restored
again.

The qualitative results for this experiment are summa-
rized in Figure 6, which contains a series of ‘snap-shots’
from the experiment. Each snap-shot shows the estimated
pose of the robots at a particular point in time, overlaid
with the corresponding laser scan data. Note that these
are snap-shots of live data, not cumulative maps of stored

data. At time t = 0, the snap-shot is largely incoherent;
at this time, the relative pose of the robots is completely
unknown and their absolute poses have been chosen ran-
domly. In the interval 0 < t < 12 sec, the robots commence
wall following; by time t = 12 sec, the robots following the
outer wall have observered and been observed by both of
the robots following the inner wall. As the snap-shot from
this time indicates, there is now sufficient information to
fully constrain the relative poses of the robots, and hence
to correctly align the laser scan data. It should be noted
that the two robots on the outer wall can correctly deter-
mine each others’ pose, even though they have never ob-
served one other directly. At time t = 265 sec, the environ-
ment is modified, with the inner wall being re-structured
to form two separate islands. The localization, however, is
un-affected by this change, as shown in the snap-shot at
time t = 272 sec. Thus, a key feature of the method de-
scribed in this paper is that it is largely indifferent to such
structural changes in the environment.

The accuracy of the localization algorithm is determined
by comparing the relative pose estimates ŷrr

′

t against their
corresponding true values (as determined by the ground-
truth system). That is, at each time t we measure how
accurately each robot has estimated the relative pose of all



7

Bug

Comet

Fly

Bee

1 m

(a) (b) (c)

Fig. 5. Setup for Experiment 1. (a) A Pioneer 2DX equipped with a SICK LMS200 scanning laser range-finder and a pair of retro-reflective
totem-poles. (b) The arena: the central island is constructed from partitions that can be re-arranged during the course of the experiment.
(c) Set-up: robots Fly and Comet follow the outer wall, robots Bee and Bug follow the inner wall(s).

fly
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bee

bug

fly

comet

bee

bug

fly

comet

bee

bug

(a) t = 0 sec (b) t = 12 sec (c) t = 272 sec

Fig. 6. Snap-shots from Experiment 1. Each sub-figure shows the estimated pose of the robots at a particular point in time, overlaid with
the corresponding laser scan data. Arrows denote the observation of one robot by another. Note that these are snap-shots of live data, not
cummulative maps of stored data.
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Fig. 7. Plots showing the relative pose error as a function of time for Experiment 1. The three plots show the average range, bearing and
orientation errors, respectively.

the other robots. Accuracy is measured by an error term
of the form:

(εt)
2 =

1

n(n − 1)

∑

r

∑

r′

(ŷrr
′

t − yrr
′

t )T (ŷrr
′

t − yrr
′

t ) (24)

where yrr
′

t is the true pose of robot r′ relative to robot
r at time t. The summation is over all pairs of robots
and the result is normalized by the number of robots n to
generate an average result. Note that we make no attempt
to compare the absolute pose estimates x̂rt against some
‘true’ value; the arbitrary nature of the global coordinate
system renders such comparison meaningless.

The quantitative results for this experiment are sum-
marized in Figure 7, which plots the range, bearing and

orientation components of the total error εt as a function
of time. At time t = 0 sec, the relative pose of the robots
is completely unknown, and the errors are correspondingly
high. By time t = 12 sec, however, the robots have gath-
ered sufficient information to fully constrain their relative
poses, and the errors have fallen to more modest values.
Over the duration of the experiment, the range error oscil-
lates around 5.5±5.2 cm, while the bearing and orientation
errors oscillate around 1.7±0.7◦ and 1.9±0.6◦ respectively.
The magnitude these errors can be attributed to two key
factors. First, there is some uncertainty in the relative
pose measurements made by the laser-range-finder/retro-
reflector combination. These uncertainties are difficult to
characterize precisely, but are of the order of ±2.5 cm and
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Fig. 9. Plot showing the relative range error as a function of time
for Experiment 2; bearing and orientation errors were not measured.

±2◦. Second, and more significantly, there are uncertain-
ties associated with the temporal synchronization of the
laser and odometric measurements. Our low-level imple-
mentation is such that the time at which events occur can
only be measured to the nearest 100 ms; in this time, the
robot may travel 2 cm and/or rotate through 3◦, which will
significantly bias the results.

We ascribe the variation seen in the error plots two differ-
ent factors. First, we expect that the error will rise during
those periods in which the robots cannot see each other and
localization is reliant on odometry alone. The odometric
accuracy of the robots used in this experiment varies from
quite good to quite poor: drift rates for orientation, for
example, vary from 2.5◦ per lap to 30◦ per lap. Second,
we expect that errors will fall during those periods when
robots are observing one another. This fall, however, may
be proceeded by a ‘spike’ in the error term; this is spike is
an artifact produced by the optimization algorithm, which
may take several cycles (each cycle is 100 ms) to incoporate
the new data and relax to a new set of pose estimates.

Finally, we note that there is a major spike in the plot
at around t = 300 sec. This spike corresponds to a colli-
sion that occurred between two robots following the first
structural change in the environment. As a result of this
collision, the robots had to be manually re-positioned, lead-
ing to gross errors in both robot’s odometry. Nevertheless,
as the plot indicates, the localization algorithm was able to
quickly recover.

B. Experiment 2

The second experiment was conducted using a team of
7 Pioneer 2DX mobile robots, each of which was equipped
with a SICK LMS 200 scanning laser range-finder and a
retro-reflective target. For this experiment, 6 of the 7
robots were positioned at fixed locations in the corridors
of a building as shown in Figure 8(a); the remaining robot
was then ‘joy-sticked’ around the circuit, and was thus ob-
served by each of the stationary robots in turn. Note that
the stationary robots were positioned outside each other’s
sensor range, and hence there are no observations that

relate the stationary robots directly. Since these experi-
ments were performed in an un-instrumented environment,
ground truth information was obtained by measuring the
inter-robot distances between the fixed robots using a tape-
measure. Bearings and orientations were not measured.

The quantitative results for this experiment are shown
in Figure 9, which shows a plot of the relative range error
εtr as a function of time. Also marked on this plot are the
times at which each of the stationary robots observed the
mobile robot. The most striking feature of this plot is the
way in which the error drops immediately after each robot
observation. This is not unexpected, given that the pose
of the stationary robots can only be determined after they
have seen the mobile robot at least once (recall that these
robots cannot see one-another). Note that very low error
between times t = 120 and t = 200 is an artifact: the result
of a lucky guess for the initial pose of one of the robots.

Qualitative results for this experiment are shown in Fig-
ures 8(b) and (c); each figure is a snap-shot showing pose
estimates, observations, and the laser scan data for a par-
ticular point in time. In Figure 8b, the mobile robot has
been seen by each of the stationary robots exactly once.
As a result of the cumulative error in this robot’s motion
observations, however, the overall error in the pose esti-
mates remains relatively high. In Figure 8(c) the mobile
robot has ‘closed the loop’ by revisiting the first stationary
robot. At this point, the error drops dramatically, reaching
a final value of 0.08±0.09 m. This value is quite remarkable
when one considers that the loop traversed by the mobile
robot is about 80m in length.

This experiment clearly demonstrates our ability to solve
for closed loops, although it should be noted that, for this
experiment, the time interval T over which estimates and
observations were maintained (see Section IV-B) was cho-
sen to be longer than the time take to complete the loop.

VI. Conclusion and Further Work

The experiments described in the previous section
demonstrate several key capabilities of the team localiza-
tion method: this method does not require external land-
marks, nor does it require that any of the robots remain
stationary; it is robust to changes in the environment and
to poor motion sensing; and robots can use transitive rela-
tionships to infer the pose of robots they have never seen.
There remain, however, several aspects of both the general
method and of our particular implementation require fur-
ther experimental analysis. With regards to the method,
we have not yet analyzed the impact of local minima (which
necessarily plague any non-trivial numerical optimization
problem). With regards to the implementation, we are yet
to fully characterize the scaling properties of the algorithm
and the relationship between localization accuracy and fac-
tors such as the number of estimates in X.

In closing, we note that the mathematical formalism pre-
sented in this paper can be extended in a number of inter-
esting directions. We can, for example, define a covariance
matrix that measures the relative uncertainty in the pose
estimates between pairs of robots. This matrix can then be
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Fig. 8. Setup and results for Experiment 2. (a) The arena: six stationary robots are placed at strategic locations while the seventh mobile
robot (Comet) executes a circuit. (b) Combined laser scans at t = 200 sec, after the mobile robot has been seen by all six stationary robots
exactly once. Note that this is not a stored map: this is live laser data. Pose estimates and observations are also shown, denoted by rectangles
and lines respectively. (c) Combined laser scans at t = 220 sec, after the mobile robot has been seen by the first stationary robot (Tanis) for
a second time, thus closing the loop.

used as a signal to actively control the behavior of robots.
Thus, for example, if two robots need to cooperate, but
their relative pose is not well know, they can undertake ac-
tions (such seeking out other robots) that will reduce this
uncertainty.
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