
Traitor Tracing with Optimal Transmission Rate

Nelly Fazio1?, Antonio Nicolosi2?, and Duong Hieu Phan3??

1 IBM Almaden Research Center
nfazio@us.ibm.com

2 New York University and Stanford University
nicolosi@scs.stanford.edu

3 France Telecom R&D
duonghieu.phan@orange-ftgroup.com

Abstract. We present the first traitor tracing scheme with efficient black-box
traitor tracing in which the ratio of the ciphertext and plaintext lengths (the trans-
mission rate) is asymptotically 1, which is optimal. Previous constructions in this
setting either obtained constant (but not optimal) transmission rate [16], or did not
support black-box tracing [10]. Our treatment improves the standard modeling of
black-box tracing by additionally accounting for pirate strategies that attempt to
escape tracing by purposedly rendering the transmitted content at lower quality.
Our construction relies on the decisional bilinear Diffie-Hellman assumption, and
attains the same features of public traceability as (a repaired variant of) [10],
which is less efficient and requires non-standard assumptions for bilinear groups.

Keywords: Traitor Tracing, Constant Transmission Rate, Fingerprint Codes, Bi-
linear Maps.

1 Introduction

Traitor tracing schemes constitute a very useful tool against piracy in the context of
digital content distribution. They are multi-recipient encryption schemes that can be
employed by content providers that wish to deliver copyrighted material to an exclusive
set of users. Each user holds a decryption key that is fingerprinted and bound to his
identity. If a group of subscribers (the traitors) collude to construct an illegal device (the
pirate decoder), the security manager can run a specialized traitor tracing algorithm to
uncover the source of the leakage. Therefore, a traitor tracing scheme deters subscribers
of a distribution system from leaking information by the mere fact that the identities of
the leaking entities can then be revealed.

The first formal definition of traitor tracing scheme appears in Chor et al. [11, 12],
whose construction requires storage and decryption complexity O(t2 log2 t log(n/t))
and communication complexity O(t3 log4 t log(n/t)), where n is the size of the uni-
verse of users and t is an upper bound on the number of traitors. Stinson and Wei later
suggested in [22] explicit combinatorial construction that achieve better efficiency for
small values of t and n.
? Research conducted in part while visiting ENS, Paris and Stanford University, CA.

?? Research conducted in part while at ENS, Paris and University College London.

The work of [19, 12] introduced the notion of threshold traitor tracing scheme,
where the tracing algorithm is only required to guarantee exposure of the traitors’ iden-
tities for pirate decoders whose decryption probability is better than a given threshold
β. The scheme of [19] achieves storage complexity O(t/β log(t/ε)), where ε is the
probability of successfully tracing one of the traitors. Moreover, the scheme has com-
munication complexity linear in t and constant decryption complexity.

In [4], Boneh and Franklin present an efficient public-key traitor tracing scheme
with deterministic t-tracing based on an algebraic approach. Its communication, storage
and decryption complexities are all O(t). The authors also introduce the notion of non-
black-box traceability: given a “valid” key extracted from a pirate device (constructed
using the keys of at most t users), recover the identity of at least one traitor. This is in
contrast with the notion of black-box tracing (on which we focus in this paper), where
the traitor’s identity can be uncovered by just observing the pirate decoder’s replies on
“well crafted” ciphertexts. More recently, Boneh et al. [5, 7] proposed traitor tracing
schemes that withstand any number of traitors (full traceability), while requiring a sub-
linear ciphertext length (O(

√
n)).

Constant Transmission Rate. As pointed out by Kiayias and Yung in [16], an impor-
tant problem in designing practical traitor tracing schemes is to ensure a low trans-
mission rate, defined as the asymptotic ratio of the size of ciphertexts over the size of
plaintexts, while at the same time minimize the secret- and the public-storage rates,
similarly defined as the asymptotic ratio of the size of user-keys and of public-keys
over the size of plaintexts.1 Under this terminology, the transmission rate of all the
above mentioned solutions is linear w.r.t. the maximal number t of traitors, whereas in
[16], Kiayias and Yung show that if the plaintexts to be distributed are large (which
is the case for most applications of traitor tracing, such as distribution of multimedia
content), then it is possible to obtain ciphertexts with constant expansion rate. Their
solution is based on collusion-secure fingerprint codes [6, 23] and its parameters are
summarized in Figure 1.

Besides the clear benefit in terms of communication efficiency, schemes with con-
stant transmission rate also enjoy efficient black-box traceability, while schemes with
linear transmission rate are inherently more limited in this regard [15] (e.g., the black-
box traitor tracing of [4] takes time proportional to

(
n
t

)
).

In [10], Chabanne et al. extend the setting of [16] with the notion of public trace-
ability: Whereas traditional tracing algorithms require knowledge of the system’s secret
information, in a scheme with public traceability everyone can run the tracing algo-
rithm. In this paper, we also consider local public traceability, whereby public infor-
mation suffices to carry out the preliminary phase of tracing, which requires interaction
with the pirate decoder, and results in an encoding of the traitor’s identity that can be
decoded with a master key. This separation of tasks ensures that the system’s secret in-
formation is only needed for off-line operations (i.e., user registration and possibly the

1 We adopt a terminology slightly different from the one of [16], which uses the term cipher-
text/user-key/public-key rates, for what we called transmission/secret-storage/public-storage
rates. Moreover, in [16] transmission rate refers to the sum of the all the three rates. Our
choice is of course mostly a matter of taste: we prefer the terminology of this paper as it makes
more evident the role played by each quantity in a concrete implementation of the system.

Trans. S-Storage P-Storage BB Public Hardness
Rate Rate Rate Tracing Traceability Assumption

BF[4] 2t + 1 2t 2t + 1 × × DDH
KY[16] 3 2 4

√
∗ × DDH

CPP[10] 1 2 1 × × DBDH2-E ∧ DBDH1-M
PST[20] 7 1 1

√
full DDH

Repaired CPP 3 2 6
√

local DBDH2-E ∧ DBDH1-M
Our Scheme 1 2 10

√
local DBDH

Fig. 1. Comparison of rates (transmission, secret- and public-storage rates) and tracing features
(black-box tracing and public traceability) between existing schemes and our construction. The
“*” in the row labeled “KY” refers to the fact that the scheme of [16] can support black-box
tracing using the tracing algorithm that we describe in the full version [13] The row labeled
“PST” refers to instantiating their generic construction with ternary IPP codes and ElGamal-style
encryption. The row labeled “Repaired CPP” refers to the variant of the scheme of [10] that we
suggest in the full version [13] to support black-box tracing.

final phase of tracing), thus improving the overall security of the system by allowing
for safer storage solutions.
The work of [20] describes a traitor tracing scheme with constant (but not optimal)
transmission rate and (full) public traceability based on Identifiable Parent Property
(IPP) codes. Figure 1 also reports on these two schemes. One could think that traitor
tracing schemes with linear transmission rate (e.g. [4]) could easily be turned into
schemes with constant transmission rate by means of hybrid encryption: To send a large
message, pick a random session key, encrypt it with the given traitor tracing scheme,
and append a symmetric encryption of the message under the chosen anonymous ses-
sion key. This approach, however, suffers from a simple yet severe untraceable pirate
strategy: Just decrypt the session key and make it available to the “customers” on the
black market, e.g., via anonymous e-mail, or via text-messaging from a pre-paid cell-
phone. Clearly, when a traitor tracing scheme is used to encrypt the content directly,
this “re-broadcasting” strategy becomes much less appealing for would-be pirates, be-
cause of the higher costs and exposure risks associated with running a high-bandwidth
darknet.
Our Contributions. We present the first public-key traitor tracing scheme with efficient
black-box traitor tracing and local public traceability in which the transmission rate is
asymptotically 1, which is optimal. Encryption involves the same amount of computa-
tion as in [10]; decryption is twice as fast. We also considerably simplify the computa-
tional hardness requirements, relying just on the DBDH assumption—much weaker and
more widely accepted than the non-standard bilinear assumptions employed in [10].

Our treatment improves the standard modeling of black-box tracing by additionally
accounting for pirate strategies that attempt to escape tracing by purposedly rendering
the transmitted content at lower quality (e.g. by dropping every other frame from the
decrypted video-clip, or skipping few seconds from the original audio file).

As additional contribution, we point out and resolve an issue in the black-box
tracing of [16] (which was also independently addressed in a revised version of their

work [17]). We then show that [10], which extends [16] and inherits its tracing mech-
anism, inherits in fact the above-mentioned problem, too. In this case, however, fixing
the black-box functionality requires changes that intrinsically conflict with the opti-
mizations put up by [10] to achieve optimal transmission rate. In other words, [10] can
either provide optimal transmission rate with only non-black-box tracing, or support
local public traceability with sub-optimal transmission rate, but cannot achieve both at
the same time.
A Comparison with [5, 7]. The schemes of [5, 7] are the most efficient ones support-
ing full collusion, but they are not well suited for the more practical case of small
number of traitors (say, logarithmic in the size of the entire user population). Indeed,
in this case, the ciphertext in the schemes of [5, 7] still contains O(

√
n) elements. In

our scheme, assuming the number of traitors t is logarithmic in the number of users
n, the ciphertext has poly-logarithmic length v = O(t2(log n + log 1

ε)) = O(log3 n),
which is asymptotically superior to the O(

√
n)-ciphertexts of [5, 7]. More importantly,

the tracing algorithms of [5, 7] require O(n2) decryption queries to the pirate decoder,
whereas our scheme employs O(v) = O(log3 n) decryption queries, and is moreover
completely parallelizable.

2 Preliminaries

The security properties of our construction hinge upon the decisional bilinear Diffie-
Hellman assumption (DBDH) for (G1,G2). We refer the reader to the full version of
this paper [13] for the relevant definitions.
Collusion-Secure Codes. Collusion-secure codes [6] provide a powerful tool against
illegal redistribution of fingerprinted material in settings satisfying the following Mark-
ing Assumption: 1) it is possible to introduce small changes to the content at some
discrete set of locations (the marks), while preserving the “quality” of the content being
distributed; but 2) it is infeasible to apport changes to a mark without rendering the
entire content “useless” unless one possesses two copies of the content that differ at
that mark. Below, we include a formalization of the notion of collusion-secure codes,
adapted from [6].

Definition 1. Let Σ be a finite alphabet, and n, v ∈ Z≥0. An (n, v)-code over Σ is a
set of n v-tuples of symbols of Σ: C = {ω(1), . . . , ω(n)} ⊆ Σv .

Definition 2. Let T be a subset of indices in [1, n]. The set of undetectable positions
for T is: RT = {` ∈ [1, v] | (∀i, j ∈ T).[ω(i)

` = ω
(j)
`]}.

Notice that for each i ∈ T , the projection of each codeword ω(i) over the unde-
tectable positions for T is the same; we denote this common projected sub-word as
ω|RT

. By the Marking Assumption, any “useful” copy of the content created by the
collusion of the users in T must result in a tuple ω̄ whose projection over RT is also
ω|RT

. This is captured by the following:

Definition 3. The set of feasible codewords for T is: FT = {ω̄ ∈ (Σ ∪{?})v | ω̄|RT
=

ω|RT
}.

Definition 4. Let ε > 0 and t ∈ Z≥0. C is an (ε, t, n, v)-collusion-secure code over Σ
if there exists a probabilistic polynomial-time algorithm T such that for all T ⊆ [1, n]
of size | T |≤ t, and for all ω̄ ∈ FT , it holds that: Pr[T (rC , ω̄) ∈ T] ≥ (1− ε), where
the probability is over the random coins rC used in the construction of the (n, v)-code
C, and over the random coins of T .

3 Public-Key Traitor Tracing Scheme with Public Traceability

Definition 5 (Public-Key Traitor Tracing Scheme). A public-key traitor tracing
scheme is a 5-tuple of probabilistic polynomial-time algorithms (Setup, Reg, Enc,
Dec, Trace), where:

Setup: On input a security parameter 1κ, a collusion threshold 1t, and a bound n
on the maximum number of users, returns a public key pk along with some master
secret information msk (cf. Reg and Trace);

Reg: Given msk and a user index i ∈ [1, n], outputs a “fingerprinted” user key ski;2

Enc: On input key pk and a message m (from the appropriate message space M,
implicitly described by pk), returns a (randomized) ciphertext ψ;

Dec: On input a user key ski and a ciphertext ψ, recovers the message encrypted
within ψ;

Trace: Given the master secret key msk, the public key pk, and black-box access to
a “pirate” decoder capable of inverting the Enc(pk, ·) functionality, returns the
user index of one of the traitors that contributed his/her user key for the realization
of the pirate decoder, or the special user index 0 upon failure.

For correctness, decryption with any user key output by Reg should “undo” encryp-
tion, i.e., Dec(ski,Enc(pk,m)) = m.

Definition 6 (Full/Local Public Traceability). A public-key traitor tracing scheme is
said to support: 1) public traceability if the Trace algorithm can be implemented with-
out the master secret key msk; or 2) local public traceability if the Trace algorithm
can be split in an on-line phase, in which the pirate decoder can be queried without
knowledge of the secret key, and an off-line phase, without access to the pirate decoder,
that can retrieve the identity of the traitor from the master secret key and the output of
the publicly executable on-line phase.

Definition 7 (Indistinguishability under Chosen-Plaintext Attack). A public-key
traitor tracing scheme satisfies εind-indistinguishability if, for any pair of probabilistic
polynomial-time algorithms (A1,A2), it holds that:

Pr

A2(state, ψ∗) = b∗

∣∣∣∣∣∣∣
(pk,msk) R← Setup(1κ, 1t, n),

(m0,m1, state)
R← A1(pk),

b∗
R← {0, 1}, ψ∗ R← Enc(pk,mb∗)

 ≤ 1
2

+ εind,

where the probability is over b∗, and the random coins of A1, A2, Setup, and Enc.
2 Equivalently, we can think of Setup as outputting a vector of user keys, one per each user in

the system; we will refer to either formalization interchangeably.

Requirements on the Tracing Functionality. Existing literature usually models black-
box traceability as the ability to “extract” the identity of (at least) one traitor from pirate
decoders that correctly invert the decryption algorithm (under appropriate efficiency and
success probability constraints). This approach, however, is often criticized because it
leaves the way open for pirate decoders that decrypt ciphertexts into plaintexts that
closely resemble (but are not identical to) the original plaintexts. To account for pi-
rate strategies of this sort, we allow traitors to specify a notion of “resemblance” in the
form of a polynomial-time reflexive, symmetric binary relation R over plaintexts, with
R(m,m′) = 1 if customers would accept m′ as a reasonable replacement for m.3 The
only semantic constraint onR is that it shall not be so lax as to deem random4 plaintexts
similar to fixed ones, i.e., the quantity pR

.= maxm∈M Pr[R(m,m′) = 1 | m′ R←M]
shall be negligible (otherwise tracing is impossible, since a keyless decoder could sim-
ply output a random plaintext as a “reasonable” decryption of any ciphertext). Similarly,
tracing needs only be effective against efficient decoders D whose success probability
pD

.= Pr[R(m,D(Enc(pk,m))) = 1 | m R←M] is non-negligible.

Definition 8. A public-key traitor tracing scheme is εtrac-traceable if for any proba-
bilistic polynomial-time traitor strategy A, it holds that:

Pr

[
TraceD(·)(pk,msk) 6∈ T

∣∣∣∣∣(pk,msk) R← Setup(1κ, 1t, n),
(D,R) R← A(pk)Reg(msk,·)

]
≤ εtrac

where M is the message space, T ⊆ [1, n] is the set of up to t indices on which A
queried the Reg(msk, ·) oracle, D and R both run in probabilistic polynomial-time
and are such that pD is non-negligible and pR is negligible, and the probability is over
the coins of Setup, Reg, A, D and Trace.

Notice that Definition 8 subsumes the case that the traitor strategy A only produces
a “good” pirate decoderD with a low (but non-negligible) probability: indeed, any such
strategy can be “boosted” by simply keeping executing A on fresh random coins, until
the pirate decoder D that A outputs is a good one (which can be efficiently tested by
estimating D’s decryption capability on the encryption of a random plaintext).

4 Public-Key Traitor Tracing with Public Traceability, Black-Box
Tracing and Optimal Transmission Rate

Similarly to the schemes of [16] and [10], our construction is based on the use of
an (ε, t, n, v)-collusion-secure code C over the alphabet {0, 1} (cf. Definition 4). At
a high level, the idea is to first define a two-user sub-scheme resilient against a single
traitor, and then “concatenate” v instantiations of this sub-scheme according to the code
C. Although the overall architecture that we follow is well-known, achieving optimal
transmission rate along these lines requires solving a number of technical problems, on
which we elaborate in Section 4.4.

3 Alternatively, the resemblance relation R could be specified as a parameter of the scheme in
the definition of the Trace algorithm.

4 For the sake of simplicity, in this paper we discuss only the case of random sampling fromM,
but the treatment generalizes to the case of other plaintext distribution with high min-entropy.

4.1 Our Two-User Sub-Scheme

Setup: Given a security parameter 1κ, the algorithm works as follows:
Step 1: Generate a κ-bit prime q, two groups G1 and G2 of order q, and an admis-

sible bilinear map e : G1 × G1 → G2. Choose an arbitrary generator P ∈ G1.
Step 2: Pick random elements a, b, c ∈ Z∗q , and set Q .= aP,R

.= bP, h
.=

e(P, cP). Compute two linearly independent vectors (α0, β0) and (α1, β1) in
Zq such that bασ + aβσ = c mod q, for σ ∈ {0, 1}. The private key of the
security manager is set to be msk

.= (a, b, α0, β0, α1, β1).
Step 3: For σ ∈ {0, 1}, let Aσ

.= ασR and Bσ
.= βσP . Choose a universal hash

function H : G2 → {0, 1}κ, and set the public key of the scheme to be the
tuple

pk
.= (q,G1,G2, e,H, P,Q,R,A0, B0, A1, B1).5

The associated message space isM .= {0, 1}κ.
Reg: For σ ∈ {0, 1}, the secret key of user σ is set to be skσ

.= ασ . Notice that
cP = ασR+βσQ and hence h = e(P, cP) = e(P, ασR) ·e(Q, βσP) = e(P,Aσ) ·
e(Q,Bσ), for σ ∈ {0, 1}.

Enc: Given pk, anybody can encrypt a message m ∈ M by first selecting a random
k ∈ Zq and then creating the ciphertext ψ .= 〈U, V,W 〉 ∈ G2 × G1 ×M where

U
.= e(P,R)k, V

.= kQ, W
.= m⊕H(hk)

Dec: Given a ciphertext ψ = 〈U, V,W 〉, user σ computes hk = Uασ · e(V,Bσ) and
recovers m = W ⊕ H(hk). Correctness of the decryption algorithm is clear by
inspection.

Trace: To trace a decoder D with resemblance relation, feed D with the “illegal”
ciphertext ψ̂ .= 〈e(P,R)k′ , kQ, m̂ ⊕ H(e(P,Aσ)k′e(Q,Bσ)k)〉, for random σ ∈
{0, 1}, k, k′ ∈ Zq, m̂ ∈ M. If the output m∗ of D satisfies R(m̂,m∗) = 1, then
return σ as the traitor’s identity; otherwise, pick fresh random σ ∈ {0, 1}, k, k′ ∈
Zq, m̂ ∈M and repeat.

Before moving on to the security and traceability of our two-user scheme in the
sense of Definitions 7 and 8 (cf. Section 3), we remark that Trace does not require
knowledge of the master secret key msk, and thus it supports full public traceability (cf.
Definition 6). Also, notice that decryption requires only one pairing computation.

4.2 Indistinguishability under Chosen-Plaintext Attack

Theorem 9. Under the DBDH assumption for (G1,G2), the scheme in Section 4.1 is
secure w.r.t. indistinguishability under chosen-plaintext attack (cf. Definition 7).

5 Note that there is no need to explicitly include h in the public key, as it can be derived as
h = e(P, Aσ) · e(Q, Bσ). Caching the value of h, however, is recommendable when public
storage is not at a premium, as that would save two pairing computations during encryption.

Proof. To a contradiction, let us assume that the scheme does not satisfy Defini-
tion 7 i.e., there is an adversary A = (A1,A2) that, given the public key pk =
(q,G1,G2, e,H, P,Q,R,A0, B0, A1, B1), can break the scheme with non-negligible
advantage εind. We then construct an algorithm B (whose running time is polynomi-
ally related to A’s) that breaks the DBDH assumption with probability εDBDH = εind.

Algorithm B is given as input an instance (P ′, xP ′, yP ′, zP ′, h′) of the DBDH
problem in (G1,G2); its task is to determine whether h′ = e(P ′, P ′)xyz , or h′ is a
random element in G2. B proceeds as follows:

Setup: B sets P .= xP ′ and Q .= P ′. Then, B picks r R← Z∗q , and sets R .= rQ. B
now chooses β0, β1

R← Z∗q and computes B0
.= β0P and B1

.= β1P . Then, B sets
A0

.= zP ′ and h .= e(P,A0) · e(Q,B0). Finally, B sets A1
.= A0 + β0Q − β1Q,

so that in fact h = e(P,Aσ) · e(Q,Bσ), for σ ∈ {0, 1}, as required.
B can now set pk

.= (q,G1,G2, e,H, P,Q,R,A0, B0, A1, B1) and send it to A1.
Challenge: A1 outputs two messages m0,m1 on which it wishes to be challenged,

along with some state state to be passed to A2. To prepare the ciphertext, B picks
random b∗ ∈ {0, 1}, and sets

U
.= e(P, yP ′)r(= e(P,R)y), V .= yP ′(= yQ),W .= mb∗⊕H(h′·e(yP ′, xP ′)β0).

(Notice that this implicitly defines k = y.) Then, B sends A2 the challenge cipher-
text ψ∗ .= (U, V,W), along with the state information state.

Guess: Algorithm A2 outputs a guess b′ ∈ {0, 1}. B returns 1 if b′ = b∗ and 0 other-
wise.

If h′ = e(P ′, P ′)xyz , then A2 gets a valid encryption of mb∗ , since (as we verify
below) in this case the input to the hash function in the computation of W is just hk:

h′ · e(yP ′, xP ′)β0 = e(P ′, P ′)xyz · e(yP ′, β0(xP ′)) = e(xP ′, zP ′)y · e(P ′, β0(xP ′))y

= e(P,A0)y · e(Q,B0)y = [e(P,A0) · e(Q,B0)]y = hy = hk,

as required by the encryption algorithm. Therefore, in this case A will successfully
guess b′ = b∗ with probability εind + 1/2.

On the other hand, when h′ is a random element of G2, the input to H is a random
value, independent of any other information in the adversary’s view. Since H is chosen
from a universal hash function family, its output is also (almost) uniformly random
in {0, 1}κ, so that the value of W (and hence the whole challenge ciphertext ψ∗) is
completely independent from mb∗ . Thus, in this case b′ = b∗ holds with probability
1/2.

It follows that adversary B breaks the DBDH assumption with non-negligible ad-
vantage εDBDH = εind, contradicting our hardness assumption. ut

4.3 Traceability

To assess the effectiveness of the Trace algorithm from Section 4.1, we start with some
observations about the illegal ciphertexts that Trace uses in querying the decoder D:

Definition 10 (Valid and Probe Ciphertexts). Let σ∈{0, 1}, m̂∈M, Û ∈G1, V̂ ∈G2,
Ŵ =m̂⊕H(Ûασe(V̂ , Bσ)), and ψ̂ = 〈Û , V̂ , Ŵ 〉. We say that the ciphertext ψ̂ is:

– valid, if Û = e(P,R)k, V̂ = kQ, for some k ∈ Zq;
– σ-probe, if Û = e(P,R)k′ , V̂ = kQ, for distinct k, k′ ∈ Zq.

Lemma 11 (Indistinguishability of Valid vs. Probe Ciphertexts). Un-
der the DBDH assumption for (G1,G2), given the public key pk =
(q,G1,G2, e,H, P,Q,R,A0, B0, A1, B1) and the secret key skτ = ατ of user
τ ∈ {0, 1} (where Aτ = ατR), it is infeasible to distinguish a valid ciphertext from a
τ -probe.

Proof. For simplicity, assume τ = 0. We proceed by contradiction: assume there is an
adversary A that, given the public key pk = (q,G1,G2, e,H, P,Q,R,A0, B0, A1, B1)
and the secret key α0 of user 0, can distinguish valid ciphertexts from probes with
probability ε. We then construct an algorithm B (whose running time is polynomially
related to A’s) that breaks the DBDH assumption with probability εDBDH = ε.

Algorithm B is given as input an instance (P ′, xP ′, yP ′, zP ′, h′) of the DBDH
problem in (G1,G2); its task is to determine whether h′ = e(P ′, P ′)xyz or h′ is a
random element in G2. B proceeds as follows:

Setup: B lets P .= xP ′, Q .= P ′, R .= yP ′, chooses α0, β0, β1
R← Z∗q and computes

A0
.= α0R, B0

.= β0P and B1
.= β1P . B also sets A1

.= A0 + β0Q− β1Q, which
implicitly defines h = e(P,A0) · e(Q,B0) = e(P,A1) · e(Q,B1). B now defines
pk

.= (q, G1, G2, e, H , P , Q, R, A0, B0, A1, B1). Then, B prepares a challenge
ciphertext ψ̂ .= 〈Û , V̂ , Ŵ 〉 by setting Û .= h′, V̂ .= zP ′(= zQ, thus implicitly
defining k = z) and Ŵ .= m̂ ⊕ H(Ûα0e(V̂ , B0)), for m̂ R← M. At this point, B
feeds A with pk, ψ̂, and α0.

Attack: A returns her guess to whether ψ̂ is a valid ciphertext or a probe (w.r.t. the
public key pk).

Break: B outputs yes or no accordingly.

If h′ = e(P ′, P ′)xyz , then A gets a valid ciphertext since h′ = e(xP ′, yP ′)z =
e(P,R)z , consistently with the value of V̂ = zQ, as required by the encryption algo-
rithm. Otherwise, h′ is a random value in G2, of the form h′ = e(P,R)k′ , for some
k′ totally independent from k = z, and thus ψ̂ is a 0-probe. Therefore, B breaks the
DBDH assumption with the same advantage as A’s i.e., εDBDH = ε. ut

An important consequence of Lemma 11 is that pirate decoders created by user τ
reply to τ -probes with an m∗ such that R(m̂,m∗) = 1 with non-negligible probability
p̂D:

Corollary 12. Let D, R be the pirate decoder and resemblance relation output by a
traitor strategy A based on the user key ατ , such that pD is non-negligible and pR is
negligible (cf. Definition 8). Let ψ̂ be a τ -probe for a message m̂ R← M. Under the
DBDH assumption, p̂D

.= Pr[R(m̂,m∗) = 1 | m∗ R← D(ψ̂)] is non-negligible.

Proof. To a contradiction, assume p̂D to be negligible. We then construct an efficient
algorithm B that, given pk and the secret key ατ of a single user, distinguishes valid
ciphertexts from τ -probes as follows: on input a ciphertext ψ̂ = 〈Û , V̂ , Ŵ 〉,B computes
m̂

.= Ŵ ⊕ H(Ûατ · e(V̂ , Bτ)) from ατ and ψ̂. Notice that this value m̂ is correct
regardless of whether ψ̂ is a valid ciphertext or a τ -probe. Then, B feeds D with ψ̂,
getting back a value m∗. If R(m̂,m∗) = 1, then B concludes that ψ̂ must be valid;
otherwise, B concludes that ψ̂ is a τ -probe. In other words, B “interpolates” between
the experiment defining probabilities pD and p̂D, so that B’s advantage in discerning
valid ciphertext from τ -probes is clearly pD − p̂D. But if p̂D were negligible, such
algorithm B would violate the statement of Lemma 11, proving our argument. ut

The next lemma addresses the case of pirate decoders fed with probes of the “wrong
type”:

Lemma 13. Replacing ψ̂ with a (1 − τ)-probe in the setting of Corollary 12,
Pr[R(m̂,m∗) = 1] is negligible.

Proof. We start with the observation that if we could somehow remove the message
m̂ from the pirate decoder’s view, then our thesis would follow immediately, since m̂
would then be independent from the message m∗ output by D, and hence, by definition
of pR,R(m̂,m∗) = 1 would hold with probability pR, which is negligible.

In fact, m̂ occurs in D’s view only in the third component of the (1 − τ)-probe
ψ̂

.= 〈Û , V̂ , Ŵ 〉, as Ŵ = m̂ ⊕ H(Ûα1−τ e(V̂ , B1−τ)), so it suffices to show that
Ûα1−τ e(V̂ , B1−τ) is indistinguishable from random inD’s view. SinceB0,B1 both ap-
pear in the public key pk of the system, this boils down to proving that D cannot distin-
guish Ûα1−τ from random. It also holds that Ûα1−τ = e(P,R)k′α1−τ = e(P,A1−τ)k′ ,
so that the task faced by D is to tell e(P,A1−τ)k′ apart from random, given e(P,R),
e(P,A1−τ), and Û = e(P,R)k′ . But this is just the DDH problem for group G2, whose
hardness is implied by the DBDH assumption.

The above argument can be easily rephrased along the lines of the reductions de-
scribed in the proofs of Theorem 9 and Lemma 11; we refrain from doing so due to
space limitations. ut

Theorem 14. Under the DBDH assumption for (G1,G2), our Trace algorithm has a
negligible traceability error.

Proof. LetD,R be the pirate decoder and resemblance relation on which the Trace al-
gorithm is being run, and let τ be the traitor index. Corollary 12 guarantees that Trace
will on average terminate after 2/pD queries to D. Upon termination, Trace’s output
will be wrong only if it happens that D replies to a (1 − τ)-probe ψ̂ with an m∗ sat-
isfying R(m̂,m∗) = 1, i.e., Pr[TraceD(·)(pk,⊥) 6∈ T] = Pr[ψ̂ is a (1− τ)-probe |
R(m̂,m∗) = 1], which by Corollary 12, Lemma 13, and Bayes’ theorem is easily seen
to equal pR/(pD + pR), which is negligible. ut

4.4 Our Multi-User Scheme

As mentioned at the beginning of Section 4, a common approach to extending a two-
user construction to the multi-user setting is to concatenate several instantiations (say,

v) of the basic two-user scheme. Tracing in the resulting multi-user scheme can then
be performed iteratively as a sequence of v stages; in each stage, the pirate decoder
is queried with ciphertexts that are valid in all v components, except for one, which
instead is crafted according to the Trace algorithm of the two-user construction. In
this way, if the decoder does not have both sub-keys for the component currently under
testing, it will be unable to tell that the ciphertext is invalid, and so the tracing procedure
of the two-user subscheme will determine which of the two sub-keys the decoder holds
for that component.

Since tracing requires the ability to set up each component of the ciphertext inde-
pendently of all the others, it may seem necessary to use completely unrelated instan-
tiations of the two-user sub-scheme for each component. This is done, for example, in
[16]. Having independent components, however, clearly leads to a multi-user scheme
with the same transmission rate as the underlying basic two-user scheme, and so it
would not help us attaining optimal transmission rate. In fact, the scheme of [10] man-
ages to get transmission rate 1 by sacrificing component independence, and instead
using component-instances all very closely related to each other. As we show in the full
version [13], though, their scheme does not support black-box traceability.

To solve this tension between transmission rate and black-box traceability, we move
from the observation that, at each stage, it suffices that a single component can be ap-
propriately set up independently from the rest; the remaining v − 1 can all be closely
related to each other. Therefore, ciphertexts in our construction include a “special” po-
sition `, where encryption is performed with instance of our two-user scheme that is
specific to the `-th component; the remaining (v − 1) positions, instead, are encrypted
using a “shared” two-user scheme.

To prevent pirate decoders from selectively ignoring the “special” position (which
is the only part of the ciphertext that encodes tracing information), we follow the ap-
proach proposed in [16], by which the encryption algorithm preliminarily processes the
plaintext with an All-Or-Nothing transform (AONT) [21, 8, 9]. This will force decoders
to decrypt all blocks of the ciphertext, since ignoring even a single one would result in
missing at least one block of the AONT-transformed plaintext, so that, by the proper-
ties of AONT’s, such decoders would fail to recover any information about the original
plaintext being transmitted. We remark that reliance on AONT’s to force the pirate to
include (at least) one key for each component was suggested in [16], but later dismissed
by the authors in [17] as ineffective for the black-box setting, since it cannot prevent
cropping of the plaintext once it has been decrypted. However, we believe their critique
to be misleading, since traitor strategies in which the pirate decoder tampers with the
decrypted plaintexts are dealt with the use of the resemblance relation R (see discus-
sion in Section 3), while AONT’s prevent the pirate from learning anything about the
plaintext if even a single block cannot be decrypted.

For the sake of clarity, we first describe the scheme without explicitly mentioning
the AONT pre-processing, and later discuss the details regarding the use of AONT’s.

Setup: Given the security parameters 1κ, 1t and ε, the algorithm works as follows:
Step 1: Generate a κ-bit prime q, two groups G1 and G2 of order q, and an admis-

sible bilinear map e : G1 × G1 → G2. Generate an (ε, t, n, v)-collusion-secure
code C = {ω(1), . . . , ω(n)}.

Step 2a: Generate v independent copies of the 2-user scheme described in Sec-
tion 4.1 (call these copies the special schemes). In particular, for j = 1, . . . , v,
let Pj be a generator of G1; pick random elements aj , bj , cj ∈ Z∗q , and set
Qj

.= ajPj , Rj
.= bjPj , hj

.= e(Pj , cjPj). Also, for j = 1, . . . , v, com-
pute linearly independent vectors (αj,0, βj,0), (αj,1, βj,1) ∈ Z2

q such that
bjαj,σ + ajβj,σ = cj mod q, for σ ∈ {0, 1}.

Step 2b: Generate one more independent copy of the 2-user scheme of Section 4.1,
in which we additionally select v values for h (call this the shared scheme).
At a high level, the shared scheme can be thought of as v parallel copies of
the 2-user scheme of Section 4.1, sharing the same values P , Q and R. More
precisely, draw P

R← G1, a, b R← Z∗q , and set Q .= aP , and R .= bP ; then, for
each j = 1, . . . , v, select c̄j ∈ Z∗q and set h̄j

.= e(P, c̄jP). Also, for each j =
1, . . . , v, compute two linearly independent vectors (ᾱj,0, β̄j,0), (ᾱj,1, β̄j,1) in
Z2

q such that bᾱj,σ + aβ̄j,σ = c̄j mod q, for σ ∈ {0, 1}.
Step 2c: The master secret key msk of the security manager is set to be:

((aj , bj , (αj,0, βj,0, αj,1, βj,1))j=1,...,v, a, b, (ᾱj,0, β̄j,0, ᾱj,1, β̄j,1)j=1,...,v)

Step 3: For j = 1, . . . , v and σ ∈ {0, 1}, let Aj,σ
.= αj,σRj , Bj,σ

.= βj,σPj ,
Āj,σ

.= ᾱj,σR and B̄j,σ
.= β̄j,σP . Choose a universal hash function H : G2 →

{0, 1}κ, and set pk to:6

(H, (Pj , Qj , Rj , Aj,0, Bj,0, Aj,1, Bj,1), P,Q,R, (Āj,0, B̄j,0, B̄j,1))

for all j = 1, . . . , v. The associated message space isM .= ({0, 1}κ)v .
Reg: For each user i, the security manager first retrieves the corresponding codeword

ωi ∈ C and sets his/her secret key to: ski
.= ((α

j,ω
(i)
j

)j=1,...,v, (ᾱj,ω
(i)
j

)j=1,...,v).
Notice that, for j = 1, . . . , v, it holds that:

cjPj = α
j,ω

(i)
j
Rj + β

j,ω
(i)
j
Qj and hence hj = e(Pj , Aj,ω

(i)
j

) · e(Qj , Bj,ω
(i)
j

),

c̄jP = ᾱ
j,ω

(i)
j
R+ β̄

j,ω
(i)
j
Q and hence h̄j = e(P, Ā

j,ω
(i)
j

) · e(Q, B̄
j,ω

(i)
j

).

Enc: Given pk, anybody can encrypt a message m = (m(1)‖ . . . ‖m(v)) ∈ M as fol-
lows:
First, select ` R← {1, . . . , v} and k`

R← Zq, and compute the special component
of the ciphertext (U`, V`,W`) ∈ G2 × G1 × {0, 1}κ, where U`

.= e(P`, R`)k` ,
V

.= k`Q` and W`
.= m(`) ⊕H(hk`

`).

Then, select k R← Zq, and compute the remaining pieces of the ciphertext as:
(U, V,W1, . . . ,W`−1, W`+1, . . . ,Wv), where U

.= e(P,R)k, V .= kQ, and
Wj

.= m(j) ⊕ H(h̄k
j), for j = 1, . . . , v, j 6= `. The ciphertext is set to be the

tuple ψ .= 〈`, U`, V`, U, V,W1, . . . ,Wv〉.

6 The shared scheme is not used for tracing, so Āj,1 can be safely omitted (Āj,0 is included only
so that h̄j can be computed.)

Dec: Given a ciphertext ψ = 〈`, U`, V`, U, V,W1, . . . ,Wv〉 ∈ Z× (G2 × G1)2 ×M,
ui computes for each j = 1, . . . , v, j 6= `:

hk`

` = (U`)
α

`,ω
(i)
` · e(V`, B`,ω

(i)
`

) and h̄k
j = (U)

ᾱ
j,ω

(i)
j · e(V, B̄

j,ω
(i)
j

)

recovers m(`) = W`⊕H(hk`

`) and m(j) = Wj⊕H(h̄k
j) (for j ∈ {1, . . . , v}\{`})

and outputs m .= (m(1)‖ . . . ‖m(v)).
Trace: Given pk, anybody can extract the “traitor codeword” ω̂ .= (ω̂(1), . . . , ω̂(v)) ∈
{0, 1}v from a decoder D by making O(v) queries to D. At a high level,
the idea is to iteratively derive each ω̂(`) by feeding D with an invalid ci-
phertext that looks valid in the “shared” components, but is actually a probe
(in the sense of Section 4.3) on the `-th “special” component. In this way,
if D contains only one of the two user-keys for the `-th “special” two-user
component (say, α`,τ(`)), its reply will reveal the value of τ (`). More in de-
tail, to extract τ (`) from D, Trace queries D with ciphertexts of the form
ψ̂(`) .= 〈`, Û`, V̂`, U

(`), V (`),W
(`)
1 , . . . , Ŵ

(`)
` , . . . ,W

(`)
v 〉, where k`, k

′
`, k

(`) R←
Zq, m̂(`) = m̂

(`)
1 , . . . , m̂(`)

v is drawn at random from M, σ(`) is a random bit,
W

(`)
j

.= m̂
(`)
j ⊕H(hk(`)

j) for each j = 1, . . . , v, j 6= `, and

Û`
.= e(P`, R`)k′` V̂`

.= k`Q` U (`) .= e(P,R)k(`)
V (`) .= k(`)Q

Ŵ
(`)
`

.= m̂
(`)
` ⊕H(e(P`, A`,τ(`))k′` · e(V̂`, B`,τ(`))).

Let m∗(`) .= (m∗(`)
1 ‖ . . . ‖m∗(`)

v) be the plaintext output by D when fed with the
ciphertext ψ̂(`). If R(m̂(`),m∗(`)) = 1, then set ω̂(`) = σ(`); otherwise, pick fresh
random k`, k

′
`, k

(`) from Zq, m̂(`) fromM, σ(`) from {0, 1}, and repeat, until either
R(m̂(`),m∗(`)) = 1, or the iteration has failed some fixed polynomial number of
time, in which case ω̂(`) is set arbitrarily.
After this process has been repeated for ` = 1, . . . , v, the resulting “traitor code-
word” ω̂ is handed to the tracer, who (knowing the random coins rC used in gen-
erating C) can run it through the tracing algorithm T (rC , ·) of the collusion-secure
code C, thus obtaining a value in {1, . . . , n, 0}, which is the output of Trace.

Remark 15. Since the Trace algorithm needs msk only in the off-line phase, which
does not access the pirate decoder and is much less computation-intensive,7 our multi-
user scheme supports local public traceability.

Remark 16. We bound the number of trials that Trace performs to extract each bit
ω̂(`) because a pirate decoder holding both keys for position ` could cause the test
R(m̂(`),m∗(`)) = 1 to fail with probability 1. A suitable value for this bound is
O(1/pD), where pD is the success probability (over random valid ciphertexts) of the
decoder under tracing, which can be efficiently estimated using Chernoff bounds.

7 For the scheme of [23], for example, such computation consists just of a matrix-vector multi-
plication.

Remark 17. Notice that the size of the message blocks can be shrunk to any κ′ ≤ κ,
by choosing a universal hash function H : G2 → {0, 1}κ

′
. This is possible as long as

κ′ > log v+log(1/ε) = O(log t+log log(n/ε)+log(1/ε)), which ensures that, during
tracing, the probability of a hash collision in any of the v components of the scheme is
bounded by ε. For a typical choice of parameters (n = 230, ε = 2−30, t = 30), κ′ can
be chosen as low as 64 bits.

Pre-Processing Messages with AONT’s. An AONT is an efficient, unkeyed, random-
ized transformation, with the property that it is hard to invert unless the entire output is
known. (For a formal definition, see [8, 9].) As for specific instantiations, Boyko showed
in [8] that the Optimal Asymmetric Encryption Padding (OAEP)[3] can be proven se-
cure as an AONT in the Random Oracle Model. In [9], Canetti et al. described con-
structions in the standard model based on the notion of Exposure-Resilient Functions.

For our purposes, it suffices to think of an AONT as a length-preserving algorithm
AONT(m; r), where m ∈ ({0, 1}κ)v−1 is the message to be processed and r is an
additional random value, of the same length as each message block i.e., |r| = κ. In
what follows, we denote byM R← AONT(m) the process of selecting a random r from
{0, 1}κ and setting M ← AONT(m; r). The resulting AONT-transformed message
M = (M1, . . . ,Mv) is an element of ({0, 1}κ)v , so that it can be encrypted with the
Enc algorithm described above. We can thus define a multi-user scheme with AONT
pre-processing by modifying the Enc and Dec algorithms as:

Enc′(m) .= Enc(AONT(m)) Dec′(ψ) .= AONT−1(Dec(ψ))

Notice that the use of AONT pre-processing in the full-blown scheme implies an ex-
pansion in the message size by roughly a factor 1+1/v, which still results in an asymp-
totical unitary ciphertext-to-plaintext ratio.

4.5 Indistinguishability under Chosen-Plaintext Attack

In this section, we assess the security of the multi-user scheme of Section 4.4. (For lack
of space, we defer all proofs for this section to the full version [13].)

We start by verifying the intuition that AONT pre-processing does not hurt security:

Lemma 18. If the multi-user scheme without AONT pre-processing is secure w.r.t. in-
distinguishability under chosen-plaintext attack, then the multi-user scheme with AONT
pre-processing is secure w.r.t. the same notion.

Next, we observe that the security of the multi-user scheme from Section 4.4 can be
reduced (via a hybrid argument) to the security of the two-user scheme from Section 4.1:

Lemma 19. If our two-user scheme is secure w.r.t. indistinguishability under chosen-
plaintext attack, then our multi-user scheme without AONT pre-processing is secure
w.r.t. the same notion.

In light of Theorem 9, our main security theorem follows immediately from Lem-
mata 18 and 19:

Theorem 20. Under the DBDH assumption for (G1,G2), the scheme in Section 4.4 is
secure w.r.t. indistinguishability under chosen-plaintext attack.

4.6 Traceability

Similarly to the case of the 2-user scheme of Section 4.1, the traceability of our multi-
user scheme (with AONT pre-processing) is based on the notions of valid and probe
ciphertexts:

Definition 21. Let ` ∈ [1, v], σ ∈ {0, 1}, m̂ ∈ M, M̂ = (M̂1, . . . , M̂v) R←
AONT(m̂), Û` ∈ G2, V̂` ∈ G1, k ∈ Zq, U = e(P,R)k, V = kQ, Wj =
M̂j ⊕ H(hk

j) (j = 1, . . . , v, j 6= `), Ŵ` = M̂` ⊕ H(Ûα`,σ

` e(V̂`, B`,σ)), and
ψ̂ = 〈`, Û`, V̂`, U, V,W1, . . . , Ŵ`, . . . ,Wv〉. We say that the ciphertext ψ̂ is:

– valid, if Û` = e(P`, R`)k` , V̂` = k`Q`, for some k` ∈ Zq;
– (`, σ)-probe, if Û` = e(P`, R`)k′` , V̂` = k`Q`, for distinct k`, k

′
` ∈ Zq.

Our analysis is organized as follows. Let T denote the set of indices of the t traitors.
Lemma 22 proves the computational indistinguishability of valid ciphertexts vs. (`, τ `)-
probes when only the τ ` subkey is known for position `. It follows (Corollary 23) that
pirate decoders must decrypt such (`, τ `)-probes correctly (w.r.t. the chosen resem-
blance relation). Lemma 24 then shows that instead (`, 1− τ `)-probes cannot be prop-
erly decrypted, and Lemma 25 combines Corollary 23 and Lemma 24 to argue that the
chances that the `-th stage of tracing fails to extract the correct bit ω̂(`) = τ ` from D
are negligible, which implies the overall traceability of our scheme (Theorem 26).

Lemma 22 (Indistinguishability of Valid vs. Probe Ciphertexts). Under the DBDH
assumption for (G1,G2), given the public key pk = (q, G1, G2, e, H , Pj , Qj , Rj ,
(Aj,0, Bj,0, Aj,1, Bj,1)j=1,...,v , P,Q,R, (Āj,0, B̄j,0, B̄j,1)j=1,...,v) and the secret keys
ski

.= ((α
j,ω

(i)
j

)j=1,...,v , (ᾱ
j,ω

(i)
j

)j=1,...,v) for each i ∈ T , it is infeasible to distinguish

valid ciphertexts from (`, τ `)-probes, if the codewords of all traitors in T have bit τ ` at
position `.

Proof. Since the `-th “special” sub-schemes is completely independent from the rest of
our construction, the thesis follows as a simple reduction to Lemma 11. ut

Corollary 23. Let D, R be the pirate decoder and resemblance relation output by a
traitor strategy A based on the user keys of the traitors in T , such that pD is non-
negligible and pR is negligible (cf. Definition 8). Assume the codewords of all the
traitors in T have bit τ ` at position `, and let ψ̂ be an (`, τ `)-probe for a message

m̂
R← M. Under the DBDH assumption, p̂D

.= Pr[R(m̂,m∗) = 1 | m∗ R← D(ψ̂)] is
non-negligible.

Proof. Reduces to Lemma 22 exactly as Corollary 12 reduces to Lemma 11.

Lemma 24. Replacing ψ̂ with an (`, 1 − τ `)-probe in the setting of Corollary 23,
Pr[R(m̂,m∗) = 1] is negligible, if the AONT employed in the system is secure.

Proof. The argument described in the proof of Lemma 13 implies that the AONT-
transformed message block M̂` is computationally hidden from the pirate decoder’s

view. By the properties of AONT’s, the whole original message m̂ is then also compu-
tationally hidden from D, so that in fact m̂ is just a random message independent from
the output m∗ of D, and hence R(m̂,m∗) = 1 holds with probability pR, which is
negligible. ut

Lemma 25. Consider the `-th stage of the Trace algorithm, when the tracer queries
the decoderD with (`, σ)-probes for random σ ∈ {0, 1}. If all codewords of the traitors
in T have bit τ ` in the `-th position, then the `-th stage will terminate setting ω̂` = 1−τ `

with negligible probability.

Proof. The assumption that D does not contain both keys for position ` implies, by
Corollary 23, that the `-th stage of Trace will on average terminate after 2/pD queries
to D. Upon termination, Trace’s output will be wrong only if it happens that D replies
to an (`, 1− τ `)-probe ψ̂ with an m∗ satisfyingR(m̂,m∗) = 1, which by Corollary 23,
Lemma 24, and Bayes’ theorem is easily seen to equal pR/(pD + pR), which is negli-
gible. ut

Theorem 26. Under the DBDH assumption for (G1,G2), the multi-user Trace algo-
rithm from Section 4.4 has a negligible traceability error.

Proof. Let ω̂ = (ω̂(1), . . . , ω̂(v)) be the “traitor codeword” recovered at the end of the
publicly traceable phase of Trace (cf. Section 4.4). By the union bound, Lemma 25
implies that ω̂ will be correct in all positions ` where all traitors show the same bit,
except with negligible probability. By the collusion resistance of the code C underlying
the key assignment of Setup, the codeword-tracing algorithm T (cf. Definition 4) will
then be able to tie such traitor codeword ω̂ to the identity of one of the traitors in T
(except with negligible probability ε), as required. ut

Remark 27. As noted above, by employing AONT’s, the security and tracing capa-
bilities of our multi-user scheme follow almost directly from those of the embedded
“special” sub-scheme. In fact, even if we were to suppress the shared sub-scheme (e.g.,
by setting Wj = Mj , for j = 1, . . . , v, j 6= `), the multi-user scheme would still be
secure and tracing would still be possible (thanks also to the random rotation of the
special position ` between 1 and v). Using the shared sub-scheme, however, reinforces
the semantic security of the scheme, though at the cost of a greater computational load,
due to the larger number of pairing computations needed for encryption and decryption.

5 Space and Time Parameters in a Concrete Instantiation

Existing constructions of constant-rate traitor tracing schemes (including ours) are
based on the use of collusion-secure fingerprint codes8 [6, 23], and in particular are
applicable for messages of size proportional to the length of the code, which in the case
of the optimal codes due to Tardos [23] is O(t2(log n+log 1

ε)). For a typical choice of

8 [20] actually employs IPP codes, but similar considerations on code length and message size
apply to such codes as well.

parameters, e.g. user population n = 230, tracing error probability ε = 2−30 and trace-
able threshold t = 30, the resulting code length is about 5 million bits. Instantiating our
construction with such codes yields a scheme with plaintext and ciphertext of size 41
MBytes. (The ciphertext size is equal to the plaintext size, as the additive overhead is
less than 1 KByte.) These values are well within the range of multimedia applications,
since 41 MBytes roughly corresponds to 33 seconds of DVD-quality (high-resolution)
video, 4 minutes of VCD-quality (low-resolution) video and 25–50 minutes of audio.
The resulting public and secret keys roughly require respectively 1.5GByte and 206
MBytes. Although quite large, such a public key could be stored in commodity hard-
ware (e.g., it would fit in the hard disk of an iPod), whereas user secret keys could be
kept in Secure Digital memory cards, like those commonly available for PDAs.

Another important issue for a concrete instantiation is the rate at which encrypted
content can be processed. In our scheme, decryption requires one paring per 1024 bits
of content, which, using the PBC Library [18] on a desktop PC, takes approximately
16 msec. However, in our context, the pairings to be computed all have one of their two
input-points in common: as reported in [2], pre-processing in similar settings more than
halves the computation time, so that one easily gets in the order of 128 pairings/sec,
corresponding to a near-CD-quality audio rate of 128 Kbits/sec. More specialized soft-
ware implementations [1] of the pairing operation can further reduce its computational
cost to around 3 msec; whereas hardware implementations, even under conservative as-
sumptions on the hardware architecture [14], can obtain running time below 1 msec,
attaining the 1Mbits/sec data rate needed for VCD-quality video.

6 Conclusion

We present the first public-key traitor tracing scheme with efficient black-box tracing
and optimal transmission rate. Our treatment improves the standard modeling of black-
box tracing by additionally accounting for pirate strategies that attempt to escape tracing
by purposedly rendering the transmitted content at lower quality (e.g. by dropping every
other frame from the decrypted video-clip, or skipping few seconds from the original
audio file). We also point out and resolve an issue in the black-box traitor tracing mech-
anism of both the previous schemes in this setting [16, 10]. Our construction is based on
the decisional bilinear Diffie-Hellman assumption, and additionally provides the same
features of public traceability as (a repaired version of) [10], which is less efficient and
requires non-standard assumptions for bilinear groups.

References

1. P. Barreto, S. Galbraith, hEigeartaigh C., and M. Scott. Efficient Pairing Computation on Su-
persingular Abelian Varieties. Available at http://eprint.iacr.org/2004/375,
2004.

2. S.L.M. Barreto, L. Ben, and M. Scott. Efficient Implementation of Paring-Based Cryptosys-
tems. Journal of Cryptology, 17(4):321–334, 2004.

3. M. Bellare and P. Rogaway. Optimal Asymmetric Encryption–How to Encrypt with RSA. In
Advances in Cryptology—EuroCrypt ’94, pages 92–111, Heidelberg, 1994. Springer. LNCS
950.

4. D. Boneh and M. Franklin. An Efficient Public Key Traitor Tracing Scheme. In Advances
in Cryptology—Crypto ’99, pages 338–353, Heidelberg, 1999. Springer. LNCS 1666. Full
version available at crypto.stanford.edu/˜dabo/pubs.html.

5. D. Boneh, A. Sahai, and B. Waters. Fully Collusion Resistant Traitor Tracing with Short
Ciphertexts and Private Keys. In Advances in Cryptology—Proceedings of EUROCRYPT
’06, pages 573–592, Heidelberg, 2006. Springer. LNCS 4004.

6. D. Boneh and J. Shaw. Collusion-Secure Fingerprinting for Digital Data. IEEE Transactions
on Information Theory, 44(5):1897–1905, 1998.

7. D. Boneh and B. Waters. A Collusion Resistant Broadcast, Trace and Revoke System. In
Computer and Communication Security—CCS’06, pages 211–220, New York, 2006. ACM
Press.

8. V. Boyko. On the Security Proprties of the OAEP as an All-or-Nothing Transform. In
Advances in Cryptology—Crypto ’99, pages 503–518, Heidelberg, 1999. Springer. LNCS
1666.

9. R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, and A. Sahai. Exposure-Resilient Functions
and All-or-Nothing Transform. In Advances in Cryptology—EuroCrypt ’00, pages 453–469,
Heidelberg, 2000. Springer. LNCS 1807.

10. H. Chabanne, D.H. Phan, and D. Poitcheval. Public Traceability in Traitor Tracing Schemes.
In Advances in Cryptology—EuroCrypt ’05, pages 542–558, Heidelberg, 2005. Springer.
LNCS 3494.

11. B. Chor, A. Fiat, and N. Naor. Tracing Traitors. In Advances in Cryptology—Crypto ’94,
pages 257–270, Heidelberg, 1994. Springer. LNCS 839.

12. B. Chor, A. Fiat, N. Naor, and B. Pinkas. Tracing Traitors. IEEE Transaction on Information
Theory, 46(3):893–910, 2000.

13. N. Fazio, A. Nicolosi, and D.H. Phan. Traitor tracing with optimal transmission
rate. In Information Security Conference—ISC’07, 2007. Full version available at
http://cs.nyu.edu/ fazio/research/research.html.

14. T. Kerins, W.P. Marnane, E.M. Popovici, and P.S.L.M. Barreto. Efficient Hardware for the
Tate Paring Calculation in Characteristic Three. In Cryptography Hardware and Embedded
Systems—CHES ’05, pages 412–426, Heidelberg, 2005. Springer. LNCS 3659.

15. A. Kiayias and M. Yung. Self Protecting Pirates and Black-Box Traitor Tracing. In Advances
in Cryptology—Crypto ’01, pages 63–79, Heidelberg, 2001. Springer. LNCS 2139.

16. A. Kiayias and M. Yung. Traitor Tracing with Constant Transmission Rate. In Advances in
Cryptology—EuroCrypt ’02, pages 450–465, Heidelberg, 2002. Springer. LNCS 2332.

17. A. Kiayias and M. Yung. Copyrighting Public-key Functions and Applica-
tions to Black-box Traitor Tracing. Full revised version of [16]. Available at:
http://eprint.iacr.org/2006/458/, 2006.

18. B. Lynn. PBC Library. Available at http://crypto.stanford.edu/pbc/.
19. M. Naor and B. Pinkas. Threshold Traitor Tracing. In Advances in Cryptology—Crypto ’98,

pages 502–517, Heidelberg, 1998. Springer. LNCS 1462.
20. D.H. Phan, R. Safavi-Naini, and D. Tonien. Generic construction of hybrid public key traitor

tracing with full-public-traceability. In International Colloquim on Automata, Languages,
and Programming—ICALP’06, pages 264–275, 2006.

21. R. Rivest. All-or-Nothing Encryption and the Package Transform. In Fast Softaware En-
cryption, 1997.

22. D. R. Stinson and R. Wei. Combinatorial Properties and Constructions of Traceability
Schemes and Frameproof Codes. SIAM Journal on Discrete Mathematics, 11(1):41–53,
1998.

23. G. Tardos. Optimal Probabilistic Fingerprint Codes. In Proceedings of the 35th Symposium
on Theory of Computing—STOC’03, pages 116–125, New York, 2003. ACM Press.

