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1. Introduction 
Existence of gravitational radiation is one of the 

proposals due to General Relativity, for the first time 
considered through Albert Einstein about one hundred 
years ago [1,2]. Let us present the core basis of this idea, 
the detailed derivations can be found in handbooks, Cf. 
the Refs. [3,4,5]. 

Gravitational waves are defined through the weak field 
condition 
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where ημν = diag (1,1,1,1) is the Minkowski metric in the 
relativistic convention. Assuming the coordinate 
transformation ' ,v

vx xµ µ= Λ  where v
µΛ  are the Lorentz 

matrices, the Lorentz invariance 

 , ,v vg gα β α β
µ µ µ αβ µ µ µ αβη η= Λ Λ = Λ Λ  (2) 

leads to 

 , vg h h hµ
αβ αβ αβ αβ α β µνη= + = Λ Λ  (3) 

The change of coordinates 

 ( ),x x xα α α βξ= +   (4) 

generates the Lorentz transformation α 
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which leads to the gauge transformation for Einstein’s 
gravitational waves α 
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In such an approximation 
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where v v
v vh h h andµ µ µ

µ µ µη η= = = ∂ ∂ , and the Einstein 
field equations for gravitational waves are 
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 (12) 

where Tμν is the energy-momentum tensor of Matter fields. 
Making use of the tensor 

 1 ,
2

v v vh h hµ µ µη= −  (13) 

and require the Lorenz-like gauge 

 0,vhµ
µ∂ =  (14) 

the field equations (12) become the wave equation 

 2 ,v vh Tµ µκ= −  (15) 
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whose 00-component and the spherical symmetry 

 00 00 ( ),h h r=   (16) 

for the energy-momentum tensor with 

 2
00 ,T cρ=   (17) 

gives the Poisson equation 

 2
4 ,G
c
πφ ρ∆ =  (18) 

with the gravitational potential 

 00
1 ,
4

hφ = −  (19) 

which establishes the Newton law of universal gravitation. 
Then, neglecting other components of vhµ , 

 00h h=  (20) 

one has 

 00 11 22 33 2 ,h h h h φ= = = = −  (21) 

and, consequently, the space-time is characterized by the 
interval 

 ( ) ( )2 0
01 2 1 2 .i

ids dx dx dx dxϕ φ= − + + −  (22) 

Gravitational waves are one of the most intriguing 
questions of modern physics [6,7,8]. In 2011, V.F. 
Mukhanov presented the lecture on massive gravity [9] 
following from Einstein’s gravitational waves, 
cosmological perturbation theory, and perturbative 
quantum gravity. This paper shows that the situation is 
really much more sophisticated than Mukhanov indicated. 

2. Cosmological Perturbations 
In the cosmological perturbation theory [10,11] 
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where the scalar and the tensor perturbations are 

 1 ,
6

k
khΨ = −  (24) 

 ( )1 2 ,
2ij ij ijs h δ= + Ψ  (25) 

while Φ is the gravitational potential responsible for the 
appropriate law of gravitation, and ∂iB is the vector 
perturbation. Then, the weak field is 

 00 0 i2 , B,h 2 2 ,i ij ij ijh h s δ= − Φ = ∂ = − Ψ  (26) 

while the condition det 1vhµ   gives 

 i1 B
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2ijh
+ ∂
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Φ

 (27) 

However, this state of affairs differs from General 
Relativity, because the cosmological perturbation theory 
corresponds with fixation of an inertial reference frame in 
the background Minkowski space-time and the scalar-
vector- tensor decomposition of the perturbation metric 
components is made according to their transformation 
properties under spatial rotations, and is similar to 
decomposition of the electromagnetic field into electric 
and magnetic fields. The (0,2) spatial tensor can be further 
decomposed into a trace and a trace- free part, which 
corresponds with looking for an irreducible 
representations of the rotation group. 

For the metric (23), one has 
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For this reason 
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Consequently, the Einstein field equations are 

 00
13 ,
2

kl
k l h Tκ∆Ψ + ∂ ∂ =  (38) 

 0 0
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 (40) 
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and, amazingly, can be solved. The 00 component and 0i 
component give 

 0 00 0 ,i
iT T∂ = ∂  (41) 

while the 0j-component leads to 

 0
06 2 ,k k k

j j jh T dx dxδ κ= − Ψ + ∫ ∫   (42) 

Contraction of this solution with δ and application of 
(24) give 

 0
0 ,

6
k

kT dx dxκ
Ψ = ∫ ∫   (43) 

and, consequently, (42) becomes 
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0 02 .i i k i
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Noticing that 
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one can see that the 00-component of the field equations 
becomes 

 00.
6

Tκ
Ψ =  (50) 

Making use of the relation (41), one receives 

 0 2
0 0 00 ,j i i jT dx T dx dx∂ = ∂∫ ∫ ∫  (51) 
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and, consequently, the ij component of the field equations 
is 
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and after contraction with δ gives 

 ( ) ( )0 00 ,
2

B T Tκ
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where ij
ijT Tδ= . Finally, one obtains 
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and the condition (27) for non-zero T00 can be rewritten 
in the following form 
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In the equation (56), the evolutions of B and Φ can not 
be separated, but, consistency with the Newton gravitation 
suggests the Poisson equation 

 2
4 ,G
c
π ρΦ = (60) 

and then 

 0 ,
2

B Tdxκ
= ∫  (61) 

that is the problem is a choice of suitable vTµ . 

3. Perturbative Graviton 
Gauge field theories offer the perturbative point of view, 

wherein graviton is a spin-2 particle [12]. Then, vTµ  of 
graviton is derived from a Lagrangian 

 ( ) ( )1 ...,
2

v
M M v v vL L t hµ

µ µ µη η= + − +  (62) 

or, explicitly 
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The Lagrangian of Matter fields has the form 
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G
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  (64) 

where m is a graviton mass. Straightforward calculations 
gives 
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2 ,v vm cT
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  (65) 

and, consequently, 

 
2 6 2 6

002 23 , .ij
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m c m cT T T
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Implementing the massless limit, one has 

 ( )00, 0, 0,ijh BΨ = = ∆ Φ + ∂ =  (67) 

and, consequently, the metric (23) becomes 

 ( )( )22 0 01 2 2 ,i i j
ids dx Bdx dx dx dx= − + Φ + ∂ +  (68) 

while the condition (27) is equivalent to 



 Applied Mathematics and Physics 115 

 

 
21

0.
2

i B+ ∂

Φ
  (69) 

4. Massless Limit 
The Laplace equation (67) can be rewritten in the form 

 0 ,B∆Φ = −∆∂  (70) 

and can be solved by the most general separation of 
variables Φ = C, ∂0B = C, 

 0, ,C B C∆Φ = ∆∂ = −  (71) 

where C is a separation constant. In such a situation, 
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Taking into account the boundary conditions 

 ( ) ( )0 0 0 0, ,i ir rΦ = Φ ∂ Φ = ∂ Φ  (73) 

one receives  
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Because the constant in the gravitational potential 
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vanishes when differentiation is performed, it does not 
play a role for the force law of gravitation Fi = -m∂iΦ, and, 
consequently, it can be identically vanishing. This 
condition gives 
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Considering 
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where Ω0 and ω0 are two constant angular frequency 
parameters, for which 

 ( ) ( )2 2 2 2 2 2
0 0 0 0 0 0 0 0 0

1 15 , 2 ,
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i
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and the force law of gravitation is 2 3 
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one sees that the force law is non-trivial if and only if 

 0 0
0 0, ,

K k
m m

ωΩ = =  (81) 

where K0 and k0 are positive constants. 

5. Massive Gravitons 
Let m be a positive graviton mass parameter. Then, one 

has 
1. The Newton law of universal gravitation, if 

 0 0 3
0

0, ,GM
r

ω = Ω =   (82) 

where M > 0 is a mass of a spherically-symmetric body of 
radius r0 

2. The oscillatory law of gravitation, if 

 0 00, 0.ω ≠ Ω =  (83) 

3. The force law of gravitation 2
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r
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where M is as previously, and 1Φ  is a certain constant 
reference value of the potential Φ . Then, 

 0 1 0 0 1, ,i
i

M Mr
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and, for consistency, one has 

 ,M m constβ= =  (86) 

where β is a dimensionless constant, which means that the 
mass of a body generating gravitation is multiplication of 
the graviton mass. 

Therefore, 
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1 .

r
r

r
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where the constant 1 0rβΦ  can be established from 
experimental data. 

4. The most general force law of gravitation, which is 
non-trivial in the massless limit, 
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Therefore, 
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For M = βm and r0 = R, where R is a radius of the 
spherical body, 

 0 0 0 3, .GM
R

ω β= Ω Ω =  (95) 

Then, a graviton mass is 
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ω
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and suggests existence of the various gravitons emitted by 
a mass. 

6. Electromagnetic Gravity 
The resulting force law of gravitation 
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can be considered as the analogue of the Lorentz force 

 ,jk
i i j kiF mg m v d= +   (98) 

where the field dk plays a role analogous to magnetic field, 
gravitational acceleration gi plays a role of electric field, 
and mass m of a moving particle plays a role of electric 
charge. 

Introducing the analogue of the Faraday tensor of 
electromagnetic field 
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for which the dual tensor is 
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 (100) 

and taking the four-current 

 , ,v iJ c Jρ=  (101) 

one obtains the analogue of the Maxwell equations 
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or, explicitly, the analogue of the Gauss law for electricity 
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the analogue of the Amp`ere law 
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π
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 (104) 

the analogue of the Gauss law for magnetism 

 0,k
kd∂ =  (105) 

and the analogue of the Faraday law 

 .k i
j ij kd g= ∂   (106) 

Introducing the analogue of the electromagnetic four-
potential Aμ 
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where [ , ]iv c vµ =  is the velocity four-vector, one has 

 ,v v vA Aµ µ µ= ∂ − ∂  (108) 

and, making use of (108), one receives 
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or, equivalently, 

 , .kl
i i i i k lg v d v= − = ∂    (111) 

Also, the stress-energy tensor is the analogue of the 
electromagnetic one 
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(112) 

where   is the field energy density 

 
2 2 2

,
8

g c d
Gπ

+
=   (113) 

Si is the analogue of the Poynting vector 

 
4

kl
i i k l

cS g d
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and σij is the analogue of the Maxwell stress tensor 
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21 .
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G
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 +
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Making use of the definitions (111) within the equation 
(104), one receives 
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and, similarly, the equation (103) leads to 
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Consequently,  
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Particularly, for a graviton mass m= 0, one has 
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or, taking into account (107), 
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Comparing the relations (118) and (120), one obtains  
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and, consequently, one receives the analogue of the Proca 
equation 
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describing the massive graviton. 
The analogy with the Maxwell electrodynamics gives 

the Lagrangian 
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v
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Also, on the quantum level, one obtains the analogue of 
the quantum electrodynamics and the Feynman diagrams 
are fully analogous. Making use of (119), the Lagrangian 
(123) becomes 
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(124) 

where we have made use of the four-velocity definition vμ 
= [c,vi], and the constant Lagrangian has been omitted. 
Noticing that the continuity equation 

 0,Jµ
µ∂ =   (125) 

should be satisfied, the equation (119) gives the Lorentz 
gauge 
 0,Aµ

µ∂ =   (126) 

which gives the divergence-free velocity field 

 0,i
iv vµ

µ∂ = ∂ =   (127) 

which implies that 0i
iv∂ =  and, consequently, the 

graviton mass identically vanishes m = 0. However, 
because this is an additional relation which can be broken 
and which is not needed for consistency of the theory, one 
must not take this condition into account. When the 
continuity equation is non-valid, then a graviton mass is 
existent and fully argued. 

The equations (97) and (98) can be used to find the 
explicit form of the fields gi and di. There are two 
identifications 
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For the first one 
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and, consequently, m = 0, and the Lorentz gauge is 
consistent. For the second one, 
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0 0ω > a graviton is a tachyon, whereas for 
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0 0 0ω ω= − < , that is an inverted harmonic oscillator, 
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what compared with (96), gives 
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Therefore, for non-tachyonic massM, one should have 
22

0 03 ,GM
R

Ω = − = − Ω  that is a repulsive gravitation, and  
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Interestingly, for a sphere of radius equal to the Planck 
length PR =   and mass equal to the Planck mass M = MP, 
one obtains 

 19
0 1/6 1.544 10 ,

3
P YHzω

ω = ≈ ⋅  (135) 

 19
0 1.855 10 ,P YHzωΩ = ≈ ⋅  (136) 

 1/3 4
23 1.7610 10 ,P

YeVm M
c

= ≈ ⋅  (137) 

where ωP is the Planck frequency, while the force law of 
gravitation becomes  

 
31/3

2
3

31
2

P
i P P iF M r

r
ω

 
= +  

 

  (138) 
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For emission of a graviton through the Planckian 
particle, M = MP, a hy- pothetical particle existing in the 
Planck scale energetic regime, a graviton mass exceeds 
MP, what in the light of the Markov hypothesis [13,14], 
that is m ≤ MP, means that this graviton is undetectable. 

Moreover, one can see that (111) gives 

 ,jk l l
j k i l l ii v d v v v v= ∂ − ∂  (139) 

and when the velocity field vi is known, for example as 
the solution to the equation (122), both (128) and (129) 
are the equations for ri  

 ( )
2/32 2

2 ,
3

j j
i i j j i

GM cr R v v v v
−

 
= ∂ − ∂  

 

 (140) 

 ( )3
2 .l li

i l l i
r

v v v v
GMr

= ∂ − ∂  (141) 

7. Summary 
Joining the various approaches to gravity - the Einstein 

gravitational waves following from General Relativity 
whose applicability is unclear, the Lifshitz cosmological 
perturbation theory which is cureently applicable for 
astrophysical scales, the Veltman perturbative quantum 
gravity based on the gauge field theories which usually are 
applicable for high energy physics, and the Maxwell 
electrodynamics which is applicable at any scales - we 
have received an essential discussion on either massless 
and massive gravitons. The analysis of the Planckian 
particle in the context of the Markov hypothesis has been 
shown that a massive graviton emitted throughout such a 
particle is undetectable. The new force law of gravitation 
has been established. This theory, however, needs a 

straightforward confrontation with a suitable experimental 
data. Its should be emphasized that the discussion of this 
model in more advanced detail was presented in the 
author’s monograph [15]. 
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