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Summary

The mapping of DNA-protein interactions is crucial for a full understanding of transcrip-
tional regulation. Chromatin-immunoprecipitation followed by massively parallel sequenc-
ing (ChIP-seq) has become the standard technique for analyzing these interactions on a
genome-wide scale. We have developed a software system calledCASSys(ChIP-seq data
AnalysisSoftwareSystem) spanning all steps of ChIP-seq data analysis. It supersedes the
laborious application of several single command line tools.CASSysprovides functionality
ranging from quality assessment and -control of short reads, over the mapping of reads
against a reference genome (readmapping) and the detection of enriched regions (peakde-
tection) to various follow-up analyses. The latter are accessible via a state-of-the-art web
interface and can be performed interactively by the user. The follow-up analyses allow for
flexible user defined association of putative interaction sites with genes, visualization of
their genomic context with an integrated genome browser, the detection of putative bind-
ing motifs, the identification of over-represented Gene Ontology-terms, pathway analysis
and the visualization of interaction networks. The system is client-server based, accessi-
ble via a web browser and does not require any software installation on the client side.
To demonstrateCASSys’s functionality we used the system for the complete data analysis
of a publicly available Chip-seq study that investigated the role of the transcription factor
estrogen receptor-αin breast cancer cells.

1 Introduction

ChIP-seq, chromatin immunoprecipitation followed by massively parallel sequencing, is a
method for profiling DNA-protein interactions on a genome-wide scale. Offering a higher
resolution and benefiting from the decreasing costs of second-generation sequencing, ChIP-
seq is replacing its array-based predecessor ChIP-chip as the method of choice for identifying
transcription factor binding sites and histone modifications. In a typical ChIP-seq experiment,
immunoprecipitated DNA fragments, about 200 bp long, are sequenced from both ends with
modern short read sequencing technology. As a result, millions of short sequence reads with a
length of 25 - 100 bp are obtained. These short reads are the starting point for the subsequent
computational data analysis. Figure1 shows, that the computational analysis of ChIP-seq ex-
periments consists of four sequential steps. The first step is usually the quality assessment and
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control (QA/QC) of raw reads. Reads satisfying the applied quality criteria are then mapped
against a reference genome (readmapping) and from these mappings the locations of read en-
riched regions are determined to identify sites where the immunoprecipitated protein and DNA
interact (peakdetection). These are calledinteraction sitesin the following. To understand
mechanisms of transcriptional regulation it is not sufficient to know the mere locations of in-
teraction sites. Therefore, subsequently to peakdetection, further steps, like the analysis of
protein-protein interactions, are required. These follow-up analyses are diverse and often re-
quire the integration of genomic annotation data and other information.

ChIP Sequencing
Quality

assessment

and -control

Readmapping Peakdetection
Follow-up

analyses

Computational analysisLaboratory analysis

Figure 1: The typical workflow of a ChIP-seq experiment can be divided into a laboratory and
a computational part. The laboratory part covers chromatin-immunoprecipitation (ChIP) and
massively parallel sequencing. The computational data analysis part consist of four sequentially
performed steps. Namely, (1) the quality control and assessment of short reads, (2) their mapping
against a reference genome and (3) the derivation of putative interaction sites. In a final step (4)
various follow-up analyses to elucidate the biological implications of identified interaction sites can
follow.

For readmapping and peakdetection several programs have been developed, for a recent review
see [33, 24]. While the readmapping tools are used in several other applications of short read
sequencing, the peakdetection tools are specific to ChIP-seq data analysis. Most of these pro-
grams are command line tools. Stand-alone software is also available for some follow-up analy-
ses. Especially for the detection of sequence motifs several established programs [5, 21, 23, 25]
exist. Standard genome browsers, like theUCSC Genome Browser[17], can be used to visual-
ize binding sites within their genomic context. But overall, computational analysis of ChIP-seq
data remains a patchwork of manual application of different tools.

Some software packages simplify the computational analyses of ChIP-seq data by providing
graphical interfaces for peakdetection or integrating follow-up analyses.W-ChIPeaks[19] and
ChIP-Seq web server[1] are examples for peak-detection tools with a web-based user interface.
Sole-Search[8] additionally provides basic statistics on interaction sites and identifies the genes
closest to each site. The most advanced system in this field isCisGenome[15], which also
integrates a genome browser and provides motif detection capability. The CisGenome GUI
can, however, only be used on MS Windows platforms.MICSA [9] employsFindPeaks[11]
for peakdetection and aims at enhancing its results by removing putative interaction sites not
bearing certain sequence motifs. Although the tools mentioned above can simplify and improve
certain aspects of ChIP-seq analysis, none of them covers all steps of the analysis, see Table 1.
With CASSys(ChIP-seq Analysis Software System) we present a software system integrating
all steps of computational ChIP-seq data analysis. C
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W-ChIPeaks ChIP-Seq Web ServerSole-Search MICSA CisGenome CASSys

Quality assessment and control
√

Readmapping
√ 1,2

Peakdetection
√ √ √ √ √ 4 √ 3,4

Motif detection
√ 8 √ 5 √ 5,6

Motif comparison
√ 7

Genome browser
√ √

Over-representation analysis
√

Pathway analysis
√

Interaction analysis
√

Web interface
√ √ √ √

Incorporation of genomic annotations
√ √ √ √

1 Bowtie [20], 2 BWA [22], 3 MACS [34], 4 FindPeaks [11], 5 MEME [5], 6 Weeder [25], 7 Tomtom [13], 8 flexmodule

Table 1: Most ChIP-seq analysis pipelines focus on providing a graphical user-interface for
peakdetection and hardly offer further analysis capabilities following this step. Except forCASSys,
no system supports readmapping as well as peakdetection, which are absolutely necessary for anal-
ysis of ChIP-seq data. In addition,CASSys offers an integrated QA/QC processing step and the
widest range of possible follow up analyses. Hence, it supports the whole computational data anal-
ysis ranging from the processing of raw reads to follow up analyses like motif detection, pathway
analysis and interaction network visualization.

2 Methods

CASSysdivides the computational analyses into two parts. The first part spans the steps from
QA/QC to peakdetection. Since these steps are sequentially executed and—once started—do
not require user-interaction, we refer to them asasynchronous analysesin the following. Re-
sults of the asynchronous part are stored in a local database from where they can be efficiently
retrieved for theinteractive analysessubsequent of the peakdetection step. For persistent stor-
ageCASSysemploys the open source object-relational database systemPostgreSQL. For an
overview ofCASSys’s system architecture see Figure2.

2.1 Asynchronous analyses

To determine the location of interaction sitesCASSysemploys the concept ofworkflows. Here a
workflow describes the tools and parameters used for QA/QC, readmapping and peakdetection.
These sets of parameters are stored in the database. The workflow concept has the following
benefits:

• A workflow completely documents the different steps of the asynchronous analysis al-
lowing to fully reproduce them.

• Parts of a workflow can be (re)used in different combinations. If, for example in two
workflows, only the parametersets for peakdetection differ, it is not required to repeat the
other two steps which came before peakdetection.

The QA/QC step starts with the parsing of short reads in the widespread FastQ-format. A filter
removes prefixes, suffixes or whole reads according to user-specified quality and length param-
eters. The mean quality and base-frequency of each position common to all reads is assessed
before and after filtering. The results of this step are summarized, stored in the database and
can be displayed and visualized in the systems web interface.
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Figure 2: An overview of CASSys’s system architecture. The asynchronous part (red) spans the
computational analysis steps up to peakdetection and the parsing of data from external sources.
Refined data resulting from these processes is persistently stored in a local database, and can be
accessed in the web-based analyses of the interactive part (green).

CASSysemploys a selection of widely used software tools for readmapping and peakdetec-
tion. Moreover it offers the infrastructure to quickly integrate new tools. This allows users
to choose from different methods for these central processing steps depending on data quality
and experiment design. In particular, different peak-calling algorithms show severe variations
in the obtained results on different datasets [31] which may lead to dramatic changes in the
drawn biological conclusions [18]. Currently, for readmappingCASSys integratesBowtie[20]
andBWA [22], while for peakdetection the system employsMACS[34] andFindPeaks[11].
Besides determining interaction sites, the asynchronous part covers the parsing of annotation
data. This process is required only once for each studied species. The annotations provide a
biological context for interpreting interaction sites. Genomic annotations can be provided in
GFF3-format [2]. In addition,CASSysparses other annotation fromIntAct [3] andKEGG [16]
in the respective formats. Experiment descriptions are imported inMiniML (MIAMI Notation
In Markup Language) format. This allows to easily import complete experiments with their as-
sociated data files from NCBI’s Gene Expression Omnibus (GEO) [6] which, as of April 2011
containsMiniML-files for over 570 studies.

In ChIP-seq data analysis the identification of genes that are co-regulated by the immunopre-
cipitated protein is of central interest. This requires to associate interaction sites identified in
the peakdetection step with annotated genes. To address this,CASSyscalculates, based on the
parsed annotation data and the detected putative interaction sites, the distance between the cen-
ter of each site and the closest transcription start of a gene occurring upstream or downstream
on the forward or the reverse strand. In this way, every site is initially associated with up to
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four genes.CASSysalso provides the option to only include functional genes when associating
interaction sites and genes. A gene is considered to be functional if and only if it is listed in
theKEGGdatabase. This allows to ignore pseudogenes and other non-coding elements when
determining the set of site/gene associations. As a consequence, up to eight genes can be as-
sociated with each interaction site. This number results from the combination of the features
upstream/downstream, forward/reverse and functional/not necessarily functional. For each in-
teraction siteCASSysconsiders these (up to) eight genes to be the most likely regulated genes
and stores them in the local database. Observe that this precalculated set of interaction site/gene
associations only constitutes the set of all possible associations from which in the interactive
analyses subsets can be generated based on user defined criteria. This precalculation optimizes
access times and avoids redundant calculation during the interactive analyses.

2.2 Interactive analyses

The analyses subsequent to the peakdetection step are interactive and accessible viaCASSys’
web interface. This is designed to be used by experimentalists. The parameters of all software
tools used in the interactive analyses can be defined in the web interface. As the different
analysis steps are very fast and all data is retrieved from the local database, the effects of
changing parameters are instantly visible.

CASSyssupports the following three types of web-based analyses which are also depicted in
Figure 3:

• Thederivation and analysis of sets of candidate genes (gene set analyses).

• The detection and interpretation of sequence motifs in interaction sites (motif detection).

• The visualization and comparison of interaction sites in their genomic context (genome
browsing).

The analyses rely on information which was stored in the database during the asynchronous
part ofCASSys. As CASSysuses a local database to connect the asynchronous and interactive
analyses, it does not require access to third party databases at runtime.

2.2.1 Motif detection

If the detected sites interact with the same protein, they likely share common binding motifs.
Therefore,CASSysallows interaction sites to be screened for common motifs using the estab-
lished motif detection programsWeeder[25] andMEME [5]. Weederprovides an enumerative
approach to motif discovery, whileMEME is based on a probabilistic model. Results are post-
processed and a report with summary statistics including sequence logos of each detected motif
is generated. The motifs can automatically be compared to known motifs fromJASPAR[26]
using theTomtom[13] program. Pairwise alignments of high-ranking database motifsand de-
tected motifs are reported along with corresponding E-values.
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Figure 3: Dataflow in CASSys interactive part. The interaction sites detected in the peakdetection
step of the asynchronous analysis part are the starting point for three different types of interactive
analyses inCASSys. The sites are screened for sequence motifs and detected motifs can then be
compared to known motifs listed in motif databases (red). A set of candidate genes is constructed
and further analyzed (green). The interaction sites can be explored in their genomic context using
the CASSys’ genome browser (blue).

2.2.2 Genome browsing

CASSysimplements its own genome browser. The browser is fully integrated into the system
and visualizes interaction sites and corresponding fragment coverage data, within their genomic
context and augments them with a tabular view containing detailed information on displayed
features. Moreover, the genome browser allows the visual comparison of multiple datasets.
The level of detail and different color-schemes of annotated genes can be modified by the
user. Transcripts, for example, can be visualized as separate items or they can be collapsed
to genes. For a screenshot ofCASSys’ integrated genome browser, which makes use of the
genome annotation drawing libraryAnnotationSketch[30], see Figure 4.

2.2.3 Derivation and analysis of gene sets

CASSysallows to interactively derive a set of likely co-regulated genes based on user defined
criteria from the precalculated set of possible interaction site/gene associations determined in
the asynchronous part. These criteria include maximal up- and downstream distances from
transcription start sites of genes to the centers of interaction sites, quality values of the interac-
tion sites, and membership of the genes in theKEGG-database. Since multiple candidate genes
may be associated with a single binding site, the user can also decide whether in such cases
all, none or only the gene closest to the center of the interaction site should remain in the set.
Summary statistics, including the median quality and length of associated interaction sites as
well as the median distance between their center and the transcription start sites of genes, are
generated in form of tables. The tables can be exported in CSV-format (comma-separated val-
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E

D
G

H

F

A

B

C

Figure 4: The CASSys’s genome browser displaying two ChIP-seq datasets. Navigation elements
provide functionality for shifting, zooming and jumping to certain features (A). Tracks display ge-
nomic annotation like genes and transcripts (B). DNA-protein interaction sites of different datasets
are color-coded (C). The original coverage of precipitated DNA-fragments is shown in an extra
track (D). Displayed genes and interaction sites are also provided in an additional tabular view
(E). Multiple datasets can be selected for visual comparison (F). The level of detail and different
color-schemes of annotated genes can be chosen (G). A search box allows searching specific genes
(H).

ues format) and the sequences of the interaction sites can be downloaded in Fasta-format. This
set of candidate genes is the starting point for the following gene set analyses withinCASSys.

Identification of over-representedGene Ontology Terms
Candidate genes are characterized using theGene Ontology Terms(GO-terms) [4] they are
annotated with. A central question is whether or not some GO-term annotations are over-
represented in a set of candidate genes.CASSysaddresses this question by applying a hyper-
geometric test to detect statistical over-representation and by reporting a Bonferroni-corrected
p-value resulting from this test. For this functionalityCASSyshas an interface toR/Bioconduc-
tor [27, 28] and makes use of existingBioconductorfunctions.

Pathway analyses
Pathway analyses provide evidence about the role candidate genes play in metabolic and sig-
naling pathways. As a first step, a table of allKEGG-Pathwayswith at least a user-defined
minimum of candidate genes is constructed. In a subsequent step, the web-service provided by
KEGG is used to highlight those genes in the pathways. Additionally the genes are categorized
according to theKEGG-Britefunctional hierarchy.

Protein-protein interaction visualization
It is likely, that the candidate genes are directly regulated by the protein of interest. For studying
other important regulatory mechanisms, like feedback-loops and interaction cascades, indirect
interactions must also be taken into account. Therefore, the set of candidate genes is enriched
with protein-protein interaction data from theIntActdatabase. This allows to construct network
graphs containing the immunoprecipitated protein, its target genes and interactions with other
proteins.CASSysenables users to visualize and interactively explore these networks, for an ex-
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CD44

WASL

MIR4281

KCNB1

PTDSS2

LHX1

SAC3D1

C1orf61

SOX2

Protein of interest (POI)

Protein directly interacting with POI

Protein indirectly interacting with POI (expanded)

Protein indirectly interacting with POI (collapsed)

Interaction derived from ChIP-seq experiment

Interaction described in IntAct ((physical) interaction)

Interaction described in IntAct ((de-)phosphorylation reaction)

Figure 5: Interactive display of protein-protein interacti on within CASSys. Subgraphs can be
expanded or collapsed by the user by clicking on the corresponding nodes. The resulting network
graph can be exported in scalable vector graphics format (SVG).

ample see Figure 5. Edges corresponding to different types of interaction are color-coded. The
user can expand and collapse subgraphs by clicking on the nodes representing the interacting
proteins.

AlthoughCASSyswas designed to serve the needs associated with ChIP-seq experiments, sev-
eral of its features have a wide range of possible applications. Especially analyses based on
gene sets may also prove useful in other contexts, like mRNA-expression analysis. Therefore,
the web-interface ofCASSysallows to directly submit an arbitrary set of gene identifiers. This
set can be analyzed in the same way as a set of candidate genes from a ChIP-seq experiment.

3 Results

To demonstrateCASSys’ analysis capability and functionality, we used the system to re-evaluate
several ChIP-seq datasets fromGEO. As an example, we briefly describe an analysis of estro-
gen receptor-α (ER-α) binding sites in breast cancer cells [14]. The analyzed dataset is pub-
licly available inGEO (accession GSE19013). It consists of3, 624, 955 short reads resulting
from Illumina Solexa sequencing of DNA immunoprecipitated against ER-α. CASSysaccom-
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plished all asynchronous analyses in≈ 3 hours, requiring only few manual interactions. During
QC/QA,11% of the reads were removed, because their average Phred quality score was below
a threshold of10. From the remaining reads,86% could be mapped to the reference genome
(human genome, version 19) usingbowtie(v0.12.7).32% of the mapped reads were discarded
because they could be mapped to more then ten genomic locations. Peakdetection was per-
formed withMACS(v1.3.7.1). This delivered12, 131 putative interaction sites for ER-α. All
643 sites inside a3 kb region upstream of the transcription start site of a functional gene (as
annotated in gencode v6) were selected. Of these sites,620 sites were unambiguously associ-
ated with a gene. The interaction sites have a median length of214 bases. The distances of the
center of each interaction site to the next transcription start site have a median of786 bases.
As some genes are associated with multiple interaction sites, the620 sites correspond to570
genes. GO-term analysis revealed, that the termsprotein bindingandmulticellular organismal
developmentare significantly over-represented within the set of570 genes.MEME (v4.4.0) and
Weeder(v1.1) both found very similar highly significant sequence motifs within the sequences
of the interaction sites. A search in theJASPAR-database for the highest scoring sequence mo-
tifs revealed that this motif clearly corresponds to a ER-α binding site motif [7], see Figure 6.
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Figure 6: Top: ER binding site motif identified with CASSys. Bottom: The motif of ER-α from
the JASPAR-database (accession number MA0112.2). Input for motif detection were the200 most
significant interaction sites extracted as described in the main text. All of these sites contained the
shown motif.

The twelve genes with the statistically most significant binding site predictions are listed in
Table 2. These includeTFF1 (trefoil factor 1),GREB1(growth regulation by estrogen in breast
cancer 1),PDZK1(PDZ domain containing 1) andOXT (oxytocin, prepropeptide), all of which
are known to be regulated by the estrogen receptor [10, 12, 29].
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Gene Sequence motif
Known

interaction
with ER

Overlapping
ER-β site

associated
with

GO:0005515

associated
with

GO:0007275

TFF1 AGGTCACCGTGGCCA
√ √ √

PDZK1 AGGACTGGGTGACCT
√ √ √

ADAMTSL5 AGGGCGGGGTGACCT
√ √

VASN GGGCCAGGGCAACCC
√ √

GREB1 GGAGCTGTGTGACCT
√ √

ADORA1 AGGTTAGGGTGACCT
√ √ √

ANXA9 GGACCACAGAGACCT
√ √

CCDC88C GGCCCAGGGCGACCT
√

MANEAL GGGTCAAACTGTCAA
√

OLFML3 GGGTCACAGTGACCT
√ √

OXT CGGTCAGGCTGACCT
√ √ √ √

CASP7 GGGTCAGGGTGAACT
√ √ √

Table 2: The twelve genes (from a set of 570 candidate genes) with the statistically most signifi-
cant binding site predictions. The interaction sites of all twelve genes contain the ER-α sequence
motif. This is shown in column 2 with the less conserved part of the motif underlined. Four of
the listed genes are known to be regulated by the estrogen receptor (column 3). The locations of
the interaction sites corresponding to the twelve genes were compared with those derived from
the ER-β dataset GSE21770 [32] (workflow as described in the main text). The interaction site
upstream of CCDC88C is the only site not overlapping in both datasets (column 4). GO-term
analysis reveals that the termsprotein binding and multicellular organismal development are both
significantly over-represented in the set of 570 candidate genes. Nine of the twelve listed genes are
associated with the GO-termprotein binding (GO:0005515, column 5) and four with the GO-term
multicellular organismal development (GO:0007275, column 6).

4 Discussion

The analysis of data from ChIP-seq experiments is a complex process involving the use of
several different software tools and information resources. Therefore, in practice such analy-
sis tasks often turn into a patchwork of manual application and script-based glueing of these
tools. The output of one program often has to be reformatted before it can serve as an input
for another program. Consequently experimentalists without bioinformatic expertise are often
unable to efficiently conduct ChIP-seq data analyses and even for bioinformaticians the process
is still laborious. For these reasons we developedCASSys, an integrated, user-friendly software
system, spanning all steps of ChIP-seq data analysis. The software is easy to use, and offers an
unprecedented range of functionality, allowing for example, extensive parametrization of each
analysis step.

For the results of ChIP-seq data analysis and hence the biological conclusions drawn from the
data, readmapping and peakdetection are notably important, because all follow-up analyses rely
on the results obtained in these processing steps. Since excellent programs exist for readmap-
ping, peakdetection and motif detection,CASSysemploys third party software for these steps.
Moreover, it implements a general concept for integrating new tools. This guarantees, that the
success ofCASSysis not bound to a single softwaretool and that, at any time, the best available
tools can be used.
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5 Availability

The web based part of theCASSyssystem for carrying out all interactive analyses is available
athttp://www.zbh.uni-hamburg.de/cassys.
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