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Abstract: The design and performance optimization of X-band reconfigurable 
reflectarray antennas have been discussed in this paper concentrating mainly on the 
phase characteristics. Liquid crystals based substrates and slot embedded patch elements 
have been proposed as two different techniques for the design of reflectarrays with 
frequency tunability characteristics. Reflectarray patch elements constructed on 
anisotropic liquid crystal substrate are proposed to be employed as a dynamic phase 
control strategy for terrestrial systems. A detailed analysis of dynamic phase range and 
frequency tunability with respect to dielectric anisotropy is presented for two different 
anisotropic liquid crystal substrate materials. The investigated liquid crystals substrates 
provided a maximum reduction of 14.1% in volume for reflectarray design at 10 GHz. 
Moreover rectangular slots on the patch elements are shown to offer a maximum 
frequency tenability of 1.7GHz. The Finite Integral Method (FIM) validated by 
waveguide scattering parameter measurements demonstrated a dynamic phase range of 
314° and a volume reduction of up to 24.36%. 
 
Keywords:  Reconfigurable Reflectarrays, Liquid Crystals, Slot Embedded Patches, 
Frequency Tunability,  Dynamic Phase Range. 
 

1.  Introduction 
 Beam steering of high gain antennas is usually required for terrestrial and space 
communication systems. Conventionally, parabolic reflectors and phased array antennas have 
been used for the antenna applications. However, in 1991 J. Huang proposed microstrip 
reflectarray as an alternative to the bulky parabolic reflector and expensive phased array 
antennas [1]. Microstrip reflectarray consists of an array of microstrip patches printed on a 
dielectric substrate which is backed by a ground plane [2]. Various techniques have been used 
in the past for the design of reconfigurable reflectarray antenna to be used in beam steering 
applications. Some of the commonly employed techniques include the use of liquid crystals as 
substrate [3] and integration of Micro Electro Mechanical Switches (MEMS) [4] and varactor 
diodes [5] with patch elements of reflectarray antennas. 
 This paper discusses a detailed analysis of reconfigurable reflectarray antennas, designed in 
X-band frequency range, based on two different techniques. In the first part of this work, 
anisotropic properties of nematic liquid crystals have been exploited for the design of 
electronically tunable reflectarray antenna. The second part highlights the use of slot 
configurations embedded in the patch elements for frequency tuning of reflectarray antennas. 
 
2. Reconfigurable Reflectarray Antenna Design using Anisotropic Dielectric Materials. 
 It is possible to vary the dielectric permittivity of anisotropic liquid crystals simply by 
applying a dc bias voltage across the substrate, which allows the molecules of anisotropic 
material to be aligned parallel to the incident field and attain maximum dielectric permittivity 
value (ε║). Whereas without a DC bias voltage molecules of the materials are aligned 
perpendicular to  the  incident  field  and attains a minimum dielectric permittivity value (ε┴) as  
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shown in Figure 1. The tenability capability in dielectric permittivity is required in order to 
realize dynamic phase distribution of reflectarrays. The difference between maximum and 
minimum values of dielectric permittivity is called dielectric anisotropy of material [6] which 
is given by:  
 
 Δε = ε║ - ε⊥ (1) 
 
Where, Δε = Dielectric anisotropy, ε║ = Dielectric constant with applied DC bias voltage, ε⊥ = 
Dielectric constant without DC bias voltage. 
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Figure 1. Alignment of molecules of anisotropic liquid crystal material without and with 

external DC bias voltage 
 

 In this work, two different anisotropic liquid crystal substrate materials are used to design a 
unit cell X-band reflectarray rectangular element, constructed on 1mm thick anisotropic 
substrate as shown in figure 2. Series of simulations of rectangular patch reflectarray have been 
performed in CST MWS computer model in order to characterize the reflectivity characteristics 
of reflectarray patch element based on reflection phase and frequency tunability. This section 
provides a detailed comparative analysis of dynamic phase range and frequency tunability 
performance of the proposed design with two different liquid crystal materials. 
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Figure 2. Built configuration of a unit cell reflectarray element (a) Top View (b) Side view 

 
A. Dynamic Phase Range 
 As anisotropic materials cover a range of dielectric permittivity values, the possibility of 
realizing a variation in the phase distribution has been further investigated based on dynamic 
phase range. Therefore by changing the value of dielectric permittivity of anisotropic materials 
a wider phase range is achievable. Dynamic phase range in this case can be defined as: 
 

 )()( // ⊥−=Δ εϕεϕϕ  (2)
   
 Dielectric permittivity of anisotropic materials can be changed by simply applying a DC 
voltage across the substrate as described in [7] and shown in Figure. 1. The dynamic phase 
range of materials is a measure of dielectric anisotropy. The maximum phase variations of the 
reflected signal occur at the resonant frequency. 
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Table 1. Dynamic phase range and frequency tunability of liquid crystal substrate materials 

Liquid 
Crystals ε┴ ε║ 

Dielectric 
Anisotropy  

(Δε) 
tanδ⊥ tanδ║ 

Dynamic 
Phase 

Range (°) 

Frequency 
tunability 

(MHz) 
K15 

Nematic 2.1 2.27 0.17 0.072 0.06 90 372 

LC-B1 2.6 3.05 0.45 0.022 0.007 160 784 
 
 The dynamic phase range values for anisotropic liquid crystal materials used for 
reflectarray design at 10 GHz resonant frequency with 1mm substrate thickness are shown in 
Figure 3. The results in Figure 3 shows that LC-B1 has a wider dynamic phase range of 160° 
with a dielectric anisotropy of 0.45 compared to K-15 Nematic which attains a narrower 
dynamic phase range of 90° with a dielectric anisotropy of 0.17. Table 1 summarizes the 
results of dynamic phase range with dielectric anisotropy for anisotropic liquid crystal 
materials that are used as reflectarray substrate. As shown in Table 1, it can be observed that 
dynamic phase range increases from 90° to 160° with an increase in dielectric anisotropy from 
0.17 to 0.45. This is because of the fact that, higher tunable range of dielectric permittivity of 
anisotropic materials increases the tunable range of reflection phase which results in a higher 
dynamic phase range performance. 

Δϕ Range

ε

ε

 
Figure 3. Dynamic phase ranges of anisotropic liquid crystal materials 

 
B. Frequency Tunability 
 A change in the dielectric permittivity of dielectric anisotropic materials can also cause a 
significant change in resonant frequency that is known as frequency tunability. The summary 
of the frequency tunability performance of liquid crystal materials employed for reflectarray 
antenna design is shown in Table 1. It can be observed from Table 1 that LC-B1 has a wider 
frequency tunability of 784 MHz with a dielectric anisotropy of 0.9, whereas K-15 Nematic has 
a narrower frequency tunability of 372 MHz with a dielectric anisotropy of 0.17. 
 It has also been observed that a change in dielectric anisotropy of materials can 
significantly affect the dynamic phase range and frequency tunability performance of 
reflectarray antenna. Based on the resultsshown in Figure 3, it can be concluded that the 
dielectric anisotropy is directly proportional to the dynamic phase range and frequency 
tunability of reflectarray antenna. 
 
3. Reconfigurable Reflectarray Design using Slots Embedded patch elements 
 Commercially available computer model of CST Microwave Studio has been used to 
design a unit cell patch element with proper boundary conditions in order to represent an 
infinite reflectarray and scattering parameters of modeled resonant elements have been 
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analyzed. Initially a reflectarray with rectangular patch element was designed to resonate at 
10GHz using Rogers RT/d 5880 (εr=2.2 and tanδ=0.0010) as a substrate. Then rectangular slots 
of variable width were introduced in the patch element and the effect on the performance of the 
reflectarray was observed. The geometry of the designed 2-patch element unit cell reflectarray 
with rectangular slots in the centre of each patch is shown in Figure 4 (a). In Figure 4 (a), the 
two patch elements are identical with dimensions L1 xW1 and L2 x W2 and an interelement 
spacing (d) while the embedded slots has a variable width (w). 
 
A. Effects of Slots on Electric Field Intensity and Surface Currents 
 The effect of variable width slots in the patch element on the maximum surface current  
density (J) and maximum electric field intensity (E) analyzed by Finite Integral Method (FIM) 
is shown in Figure 4. As depicted in Figure 4 (b), both surface current density and electric field 
intensity decrease from 255A/m to 113A/m and 121KV/m to 14KV/m respectively by an 
increase in the width of the slot configuration from 0.1W to 0.5W (W=W1=W2is the width of 
patch elements at 10 GHz). The decrease in the electrical field intensity has the effect of 
increasing the dielectric constant. Consequently the resonant frequency of the patch element 
decreases and reflection loss increases [8]. Moreover the change in resonant frequency also 
varies the phase response of the element at a particular frequency which provides the feasibility 
of designing a tunable reflectarray antenna using this configuration. 
 

w w

 
 

 
Figure 4(a). Geometry of the designed 2-patch element unit cell reflectarray with rectangular 
slots in the centre of each patch. (b). Maximum surface current and electric field intensity for 

different patch widths at resonant frequency 
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B. Scattering Parameter Measurements 
 In order to validate the simulated results, scattering parameters measurements of the 
designed samples have been carried out using Agilent 8722ET vector network analyzer as 
given in [9]. An X-band waveguide was designed for the measurement of scattering parameters 
which has been connected to the vector network analyzer using an Agilent coax to waveguide 
APC-7 connector (Amphenol Precision Connector-7 mm). The variation in the reflection phase 
of the reflectarrays with different width of slots in the patch element is shown in Figure 5. It 
can be observed from Figure 5 that both the measured and simulated reflection phase curves 
are in good agreement. A small difference that can be observed in the measured and simulated 
reflection phases is due to the discrepancy caused by the connectors and the waveguide 
simulator used for scattering parameter measurements. Moreover it can be observed from 
Figure 5 that the slope of the reflection phase curve increases from 0.28°/MHZ to 0.61°/MHZ 
as the width of the slot is increased from 0.3W to 0.5W causing a reduction in the bandwidth 
performance. This effect can be attributed to the increased reflection loss with increasing slot 
width. 
 As a figure of merit, Dynamic Phase Range (DPR) has been defined as the difference in the 
reflection phase variation curves without slot and with a particular slot at the mean frequency 
of two curves.  The summary of the measured and simulated dynamic phase ranges for 
different lengths of slot configurations is shown in Table 2. It can be observed from Table 2 
that a measured dynamic phase range of 120° to 314° is achievable with a variation of slot 
width from 0.3W to 0.5W which shows the feasibility of using slot configurations to achieve a 
dynamic phase tuning control of a reflectarray antenna.  
 Furthermore the possibility of reducing the volume of a unit cell patch element in a 
reflectarray designed at 10GHzhas also been demonstrated in Table 2. The volume reduction 
has been determined based on the comparison of the proposed designs with the conventionally 
used rectangular patch element reflectarray design at 10 GHz. It can be observed from Table 2 
that a maximum reduction of 24.36% in the volume of the unit cell is shown for slot of 0.5W x 
0.125L.  Therefore a larger number of patch elements embedded with slots can be used to 
design a reflectarray without varying its overall aperture dimensions. On the other hand 
anisotropic LC-B1 shows a 14.1% reduction while anisotropic K-15 shows an increase of 7.11% 
in unit cell reflectarray volume. 
 
 
Table 2. Dynamic phase range (DPR) and volume reduction for reflectarray designed with slot 

embedded patch elements and liquid crystals at 10GHz 

Design Configuration Dynamic Phase Range 
(°) 

Volume Reduction 
(%) 

Anisotropic 
Liquid 

Crystals 

K-15 Nematic 90 -7.11 

LC-B1 160 14.1 

Slot 
Embedded 

Patch 
Elements 

with          
Rogers RT/d 

5880 

0.30W x 
0.125L 

Measured Simulated 

5.85 120 122 
0.35W x 
0.125L 210 207 8.08 

0.40W x 
0.125L 235 233 14.89 

0.45W x 
0.125L 295 291 19.60 

0.50W x 
0.125L 314 319 24.36 
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