
©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 9

37

Performance Enhancement by the Design of Flash

Controller for x8 NAND Flash Memory Devices

Pramod T. Talole

M.E. (Digital Electronics)

S.S.G.M.C.E., Shegaon, Dist: Buldana [MS]

Sarita T. Sawale

M.E. (CSE)

Govt. College of Engg. Aurangabad [MS]

ABSTRACT
The available flash devices are NAND flash and NOR flash

memory devices. Each device is also divided with data width into

x8 / x16 NAND flash memory and x8 / x16 NOR flash memory.

We are going to implement Flash Controller which is the

interface between x8 NAND flash device and the CPU/processor.

The same concept will be used for other devices like x8 NOR

also. Normal interface is between one x8 NAND flash device and

CPU or Processor. This paper proposed a design to interface

eight x8 NAND flash devices with CPU/processor. The main

feature of the implementation is parallel write operation of eight

x8 NAND flash devices. As the numbers of flash devices are 8,

it requires dedicated DMA buffers for each x8 NAND flash

device. Also to support parallel writes, it is required to read the

data of a next DMA write from DRAM while current NAND

flash write is in progress. Hence DMA engine is divided into two

parts – Flash Side DMA Engine (DMA) and Host Side DMA

Engine (HDE). These DMA engines are used to control the

above operation.

Keywords

 Design

1. INTRODUCTION
The flash interface unit is designed for system on chip (SoC)

applications where flash memory acts as the main non volatile

storage device. The need for non-volatile flash memory is

increasing as many new applications require a system with no

hard disks. Flash memory provides storage which is rugged,

requires low power, and comes in a small and light form factor.

The flash interface unit provides basic flash commands which

can be used by the main CPU to access data in the flash memory.

Since the flash memory contains information to initiate the boot

process, it is assumed that the flash memory is non-removable.

Since the flash memory acts as the main storage device, the main

CPU should be able to read and write files like any generic file

system. However, flash memory does not follow the standard

read/write interface. Write access to flash memory is only

through programs which change bits in memory from one to zero.

In order to change bits in memory from zero to one, flash memory

supports erases which sets blocks of memory to all ones.

2. MOTIVATION
The flash interface unit has been designed primarily to support

DMP10, DMP20, and SC25. DMP10 and DMP20 are high end

2D/3D graphics and multimedia processors designed primarily

for digital television, car navigation and pachinko applications.

SC25 is an ultra low power 2D/3D graphics and multimedia

processor designed primarily for mobile applications.

In order to support multimedia applications, the flash interface

unit has been optimized for large block reads and writes. This

interface must satisfy the bandwidth requirements required to

transfer video and audio streams from flash memory, with special

attention to write bandwidth to minimize downloading time. To

minimize main CPU interaction, the flash interface unit supports

DMA transfers from flash memory to system DRAM memory.

In SoC applications, the amount of on-chip ROM memory

dedicated to booting is very limited. As a result, most or all of

the boot information is typically stored in flash memory. A

number of partitions for the boot loader code, the compressed

root application or the flash file system are created in the flash

memory.

Table 1. Properties

Devices NOR Small NAND Large NAND

Approximate

cost

$0.30/MB $0.08/MB $0.06/MB

Density/device 16Mb to

128Mb

64Mb to 2Gb 1Gb to 8Gb

Memory

Access

Random

Access

XIP Support

Page Access

No XIP

Support

Page Access

No XIP

Support

Page Size N/A 512 bytes/16

byte spare

2048 bytes/64

byte spare

Block Size 8KB/64KB 16KB (32

pages)

128KB (64

pages)

Read Access

Time

65ns (first

byte)

25ns (next 7

bytes)

50ns (cycle

time)

10us (page

time)

30ns (cycle

time)

25us (page

time)

Program Time 4us per byte 200us per

page

200us per

page

Block Erase

Time

0.7 to 1.6 sec 2ms 2ms

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 9

38

Shipped with

Bad Blocks

No Yes Yes

ECC

Recommended

No Yes Yes

3. PERFORMANCE REQUIREMENT
Bandwidth for NAND, the peak read bit rate is

=

With

np the number of data accesses in a page

w the width of the data bus

nc the number of commands to initiate a full page read, typically

one.

na the number of address cycles to initiate a full page read

twc the write cycle time, used to send command and address to

the flash

tr the retrieval time to transfer the data into the page buffer (also

called register for NAND)

trc the read cycle time per data access

3.1 Small Flash Bandwidth (x8 NAND)
DMP10 can be supported by a small NAND flash x8/x16. 6

Mbps write and 10 Mbps read. NAND Flash takes 10 us to

access a page, and 50 ns to read each byte/word. Max x8 device

FlashReadBW = 512 bytes/ (10 us + 512*50ns) = 14.4 MB/sec.

Max x16 device FlashReadBW = 256 words/ (10us + 256*50ns)

= 22.5 MB/sec. NAND Flash takes 200 us to program a page,

and 50 ns to write each byte/word. Max x8 device

FlashWriteBW = 512 bytes/ (200us + 512*50ns) = 2.27 MB/sec.

Max x16 device FlashWriteBW = 256 words/ (200us +

256*50ns) = 2.41 MB/sec.

3.2 Large NAND Flash Bandwidth
DMP20 can be supported by a large NAND flash x8/x16. 19

Mbps write and 38 Mbps read. NAND Flash takes 25 us to

access a page, and 30 ns to read each byte/word. Max x8 device

FlashReadBW = 2048 bytes/ (25 us + 2048*30ns) = 23.7

MB/sec. Max x16 device FlashReadBW = 1024 words/ (25us +

1024*30ns) = 36.8 MB/sec. NAND Flash takes 200 us to

program a page, and 30 ns to write each byte/word. Max x8

device FlashWriteBW = 2048 bytes/ (200us + 2048*30ns) = 7.83

MB/sec. Max x16 device FlashWriteBW = 1024 words/ (200us +

1024*30ns) = 8.88 MB/sec.

4. PARALLEL WRITE OF MULTIPLE

NAND FLASH DEVICES.
The previous rate requirements were for one device. When

multiple external devices are present, the aggregate write

performance can be increased by concurrent use of multiple

external devices. This can be done efficiently without resorting

to full parallelization as explained below.

The following tables show numerical values for the BW of

different operations. The table also shows a duty cycle, defined

as the ratio between the amount of cycles where chip select is

asserted to the total operation time and how many devices can

operate on the bus without the bus becoming the bottleneck.

Table 2. Samsung K9xxG08UxM: 8 bits data bus, Np = 2k +

64, worst case TPROG and TBERS

Operation
T bus

(ns)

T

operation

(ns)

BW

(Mb/s

)

Duty

Cycle

Max

Devices

Erase 225 40,000,22

5

27.0 0.00% 177,77

8

Write 53,05

0

753,050 22.4 7.04% 14

Read 52,97

5

72,825 232.0 72.74

%

1

Table 3. Same device, Samsung K9xxG08UxM, but typical

case TPROG and TBERS

Operation
T bus

(ns)

T

operation

(ns)

BW

(Mb/s)

Duty

Cycle

Max

Devices

Erase 225 30,000,22

5

36.0 0.00% 133,334

Write 53,050 253,050 66.8 20.96

%

4 (almost

5)

Read 52,975 72,825 232.0 72.74

%

1

Table 4. Toshiba TC58NVG0S3AFT05: 8 bits data bus, Np =

2k + 64, worst case TPROG and TBERS

Operation
T bus

(ns)

T

operation

(ns)

BW

(Mb/s)

Duty

Cycle

Max

Devices

Erase 450 80,000,45

0

13.5 0.00% 177,778

Write 106,10

0

806,100 21.0 13.16

%

7

Read 105,95

0

130,650 129.3 81.09

%

1

Table 5. Same device, Toshiba TC58NVG0S3AFT05, but

typical case TPROG and TBERS

Operatio

n

T bus

(ns)

T

operatio

n (ns)

BW

(Mb/s

)

Duty

Cycle

Max

Device

s

Erase 450 40,000,4

50

27.0 0.00% 88,889

Write 106,100 306,100 55.2 34.66 2

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 9

39

% (almost

3)

Read 105,950 130,650 129.3 81.09

%

1

When N devices are present, the peak rate can trivially be N

times the above rate by providing independent channels to each

device. However, if maximizing the write bandwidth is the goal,

it is possible to increase the write bandwidth by a factor M using

one bus and M chip select signals. This principle is shown in the

figure 1.

Write

Data
WC Timing

Write

Data

750 us
50

Write

Data
Typical Timing

Write

Data

250 us
50

FLASH write operation

1 Device

3 Interleaved Devices (with different write timings)

Single channel DMA processing 10 pages in order

Write

0

300 us (1 internal)

Write

1

200 us (0 internal)

Write

1

Write

2

350 us (2 internal)

Write

2

Write

0

Write

0

200 us (0 internal)

Write

1

200 us (0 internal)

Write

2

300 us (1 internal)

350 us (2 internal)

Write

0

Figure 1. Flash writes operation.

The next table shows the peak write bandwidth in function of the

number of devices on one data bus, bold value identify

configurations where the bus is the bottleneck, not the devices.

These values ignore the effects of collisions.

Table 6. Peak Writes Bandwidth

Device

type

Samsung

K9xxG08UxM

Toshiba

TC58NVG0S3AFT05

Device(s) Worst

case

Typical

case

Worst case Typical

case

1 22.4 66.8 21.0 55.2

2 44.8 133.6 42.0 110.4

3 67.2 200.4 63.0 160.0

4 89.6 267.2 84.0 160.0

5 112.0 320.0 105.0 160.0

6 134.4 320.0 126.0 160.0

7 156.8 320.0 147.0 160.0

8 179.2 320.0 160.0 160.0

Based on these values and the requirements, the flash interface

unit will operate with one NAND flash interface, supporting 8

chip select signals. To limit the number of signals, only one

ready signal is used per interface and the status byte is polled to

detect when a write operation is finished. The polling operation

has low priority; especially polling doesn’t take place if the

DMA is transferring data to another device. Only DMA program

operations are operated in this fashion.

5. FLASH CONTROLLER
The Flash Controller mainly comprises of toggle, DMA Engine

and Flash Interface block.

Figure 2. NAND Flash Controller

5.1 Front-End Block
The Flash interface unit implements a small number of methods.

Hence fetch, decode, validate, notify, package generation and

emitter functionality is implemented in this block. Methods

processed by DMA engine and toggle control are specified in

class file. A Perl script will be written to generate verilog and F-

model files. Front-end emits a package (DMA operation) on one

bus to the DMA engine and bundles (toggle commands) on

another bus to the toggle control block. Front-end waits for

acknowledge from the engines that consume the packages before

sending a new package or bundle.

5.1.1 Host
This block implements a 64-entry FIFO (64x64) to store the

commands that are fetched from memory. Commands are fetched

by performing DMA operation (getPtr/putPtr). The flushing

semantics impacts the combination of FIFO in the host and the

rest of the command buffer in memory.

The host fetches commands from memory when getPtr and putPtr

are different and fetch is enabled. In particular, S/W is allowed

to modify the putPtr at any time.

The host will forward commands to the execution engine in the

following way. When the FIFO is not empty, the host checks the

command at the head of FIFO and operates. If a block is

currently active and the next command is not for the same block,

wait the block becomes inactive before attempting to issue the

next command. This insures that toggle and DMA are never

active simultaneously. It also insures that an interrupt is only

generated after a DMA transfer is fully completed.

An inactive block is assumed to be able to accept any command.

An active block indicates provides an indication to the host about

which commands it is able to accept (flow control). This is

especially needed to insure parallel operation of the DMA write;

the DMA provides at least 8 flags to the host, each flag

indicating that the channel is able to accept a new command.

5.1.2 Notify
Notification is supported via flags in H/W registers and by

interrupts. In the list of events previously notified, the DMP10

alternate support is shown in italics.

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 9

40

A 32-bit free running counter (wraps at ~43secs at 100MHz) is

maintained to timestamp the notification messages. Notification

is sent to software on the occurrence of the following events:

 Upon reception of a notify command (P1). Only an interrupt

command as P0.

Upon detection of a correctable error when connected to a NAND

flash (P1). Error captured in error log register as P0.

Upon detection of an uncorrectable error when connected to a

NAND flash (P1). Error captured in error log register as P0.

Upon detection of programming errors or read errors by the flash

device (P1). Only timeout interrupt as P0.

Upon reception of a DMA command that overlaps multiple pages

in a NAND flash device. Only interrupt during execution of

DMA command as P0.

Upon reception of a DMA command that exceeds the supported

size of the flash device. Only interrupt during execution of DMA

command as P0.

5.1.3 Request Arbiter
Arbitrates between the three memories requesters: Front-end

fetch, DMA engine and Notify block (P1). The order of priority

in case of multiple requests arriving in the same clock is: Notify

followed by Front-end fetch followed by DMA.

5.2 DMA Engine
DMA engine supports the following features:

Transfer size limited to 2KB maximum for large page NAND,

and 512B for small page NAND flash devices.

Breaks down DMA transfers into smaller transfers depending on

the size of bursts supported by the interface. The bursts should

be as long as possible (64 bytes).

Support multiple outstanding read and write messages towards

the memory controller so that memory controller can utilize

memory bandwidth efficiently.

All data transfers are multiple of 32 bits and naturally aligned for

ease of implementation.

Supports multiple write and erase program in parallel.

The DMA starts transferring data upon reception of the DMA

packet (consisting of command type, source address, destination

address and size) from the front-end.

 DMA inside a NAND has some specific characteristics: The

flash address is used to calculate a start page and the target

device, the address passed to the NAND is a combination of page

address and offset in the page. When needed the DMA interact

with the ECC block to either generate the ECC bytes to program

in the spare area or to correct data present in the data buffer.

ECC errors are logged. For correctable errors, the correct

amount of data is transferred into memory.

The DMA processes commands sequentially as fast as possible

and overlaps DMA write and erase commands for best

performance.

5.3 DMA Buffer
The data buffer is implemented as 8 blocks, each of (512 + 16) x

32 SRAM, managing the flow of information between DMA,

enhanced ECC block and the external flash devices. The data

buffer is statically provisioned with 2K + 64 bytes (one large

page including spare area) per external flash device. The ECC

block needs access to the DMA buffer, but only one of DMA or

ECC is allowed access to one of the page buffer at any one time.

The normal sequence of operation is begin from DMA command

results in data transfer into one of the DMA buffer, either from

external DRAM or from flash. DMA pass the DMA buffer to

ECC if needed, ECC either encodes or decodes the codeword.

ECC signals to DMA that processing is done; control of DMA

buffer is given back to DMA. DMA finishes the DMA command,

transferring DMA buffer to either flash or external DRAM RAM

Parameters like single cycle read and write access, byte enables

for write and shared read/write port.

6. NAND INTERFACE WRITE BLOCK
The NAND interface write block is a part of DMA page program

operation. The complete DMA page program operation is done

through the NAND interface write block and NAND interface

polling block. The write FSM is active up to the page program

confirm command (10h) which initiates the programming

process/cycle. The NAND interface write block contains two

write state machines. Main write state machine is used to

controls the main field area and spare field area. NAND write

sub-state machine is used to control the exact write process both

for main field area as well as spare field area and is dependent

on write state machine [3, 4].

7. EXPERIMENTAL SETUP AND

RESULTS
In this design, we have studied the logic implementation ideas

used in the NAND - Flash 1.2-Flyer document from Arasan. In

which the NAND flash interface provides an 8-bit or 16-bit

interface to the flash memories. A total of 4 memory banks and 8

flash memories per bank are supported. Each memory bank

provides up to 8 chip selects signals. The interface supports a

maximum of 64 Gbytes of NAND flash memory [12].

From this concept the controller designs for the 8-bit interface to

the NAND Flash memory to support parallel write operation. The

NAND flash Verilog model-MT29F (Micron Technology, Inc.)

is used for verification and for simulation- Modelsim SE 5.8 is

used with 2.8GHz Pentium IV processor, 512 MB RAM running

Windows XP system [10,11].

7.1 PAGE PROGRAM
The device is programmed basically on a page basis, but it does

allow multiple partial page programming of a byte/word or

consecutive bytes/words up to 528(X8 device) or 264(X16

device), in a single page program cycle. The number of

consecutive partial page programming operation within the same

page without an intervening erase operation should not exceed 2

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 9

41

for main array and 3 for spare array. The addressing may be done

in any random order in a block. A page program cycle consists of

a serial data loading period in which up to 528 bytes(X8 device)

or 264 words(X16 device) of data may be loaded into the page

register, followed by a non-volatile programming period where

the loaded data is programmed into the appropriate cell. The

serial data loading period begins by inputting the Serial Data

Input command (80h), followed by the three cycle address input

and then serial data loading. The words other than those to be

programmed do not need to be loaded. The Page Program

confirms command (10h) initiates the programming process.

Writing 10h alone without previously entering the serial data

will not initiate the programming process. The internal write

controller automatically executes the algorithms and timings

necessary for program and verify, thereby freeing the system

controller for other tasks. Once the program process starts, the

Read Status Register command may be entered, with RE and CE

low, to read the status register. The system controller can detect

the completion of a program cycle by monitoring the R/B output,

or the Status bit (I/O 6) of the Status Register. Only the Read

Status command and Reset command are valid while

programming is in progress. When the Page Program is

complete, the Write Status Bit (I/O 0) may be checked (Figure

5). The internal write verify detects only errors for "1"s that are

not successfully programmed to "0"s. The command register

remains in Read Status command mode until another valid

command is written to the command register [3, 4].

Fig 4: Program Operation

Fig.5: Page Write Cycle

Fig.6: 8-Flash Parallel Programmed

8 NAND flash are programmed by Parallel Write method. The

actual flash data write time is more, so the same time is utilized

to program the next flash. First priority is given to the user to

write the flash and second priority is given for polling to check

the write status of each flash.

Fig. 7: 8-Flash Parallel Programmed Polling Cycles

The actual data time into flash is 300 microseconds to 700

microseconds. In this case, we need less than 50usec to check the

actually write completion status of each flash.

Fig. 8: 8- Flash Programmed

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 9

42

8 NAND flash are programmed serially, one bye one as shown

above. Consider typical actual flash program time of 300 usec.

Time required to program one flash =300+50=350 use. Total

time required to program 8 NAND Flash=350*8=2800 usec

(approx). Conclusion- More time for actual data write into flash.

We can utilize this time to program another flash.

8. CONCLUSION
The NAND Flash Controller has only one I/O port and

command/address/data multiplexed I/O port in addition to the

simple command sets which are provided for the different

operations. System uses huge amount of program time for

another NAND flash program, so the total program time required

for all eight NAND flash is very less as compared to eight

individual NAND flash programming.

9. REFERENCES

[1] Yet Another Flash File System (YAFFS)
http://www.aleph1.co.uk/yaffs/

[2] Journaling Flash File System 2 (JFFS2)
http://sourceware.org/jffs2/
http://www.linux-mtd.infradead.org/

[3] Samsung K9K1208U0C 64Mx8/32Mx16 NAND Flash

Memory 528 Byte/Page Data Sheet.
http://www.samsung.com/Products/Semiconductor/Flash/NAND/512

Mbit/K9K1208U0C/ds_k9k12xxx0c_rev31.pdf

[4] Samsung K9K2G08U0A 256Mx8/128Mx16/512Mx8

NAND Flash Memory 2112 Byte/Page Data Sheet.
http://www.samsung.com/Products/Semiconductor/Flash/NAND/2Gbit

/K9K2G08U0A/ds_k9k2g08ua_rev02.pdf

[5] Spansion S29GLxxxM MirrorBit Flash Family Data Sheet
http://www.spansion.com/datasheets/s29glxxxm_00_b4_e.pdf

[6] Toshiba TC58FVM7T2A 16Mx8 NOR Flash Memory Data

Sheet.
http://www.toshiba.com/taec/components/Datasheet/58fvm7x2a.pdf

[7] Intel StrataFlash® Embedded Memory (P30) 64Mb – 1Gb

Datasheet
http://download.intel.com/design/flcomp/datashts/30666601.pdf

[8] AN1823 APPLICATION NOTE Error Correction Code in

Single Level Cell NAND Flash Memories
http://www.st.com/stonline/books/pdf/docs/10123.pdf

[9] I2C Bus Specification Version 2.1
http://www.semiconductors.philips.com/acrobat_download/literature/9

398/39340011.pdf

[10] Micron technical note 2906: ECC Module for Xilinx

Spartan-3
http://download.micron.com/pdf/technotes/nand/tn2905.pdf

[11] Micron technical note 2908: Hamming Codes for NAND

Flash Memories
http://download.micron.com/pdf/technotes/nand/tn2908.pdf

[12] NAND Flash Controller IP Core Data Sheet
http://www.arasan.com/datasheets/login.php

http://www.aleph1.co.uk/yaffs/
http://sourceware.org/jffs2/
http://www.linux-mtd.infradead.org/
http://www.samsung.com/Products/Semiconductor/Flash/NAND/512Mbit/K9K1208U0C/ds_k9k12xxx0c_rev31.pdf
http://www.samsung.com/Products/Semiconductor/Flash/NAND/512Mbit/K9K1208U0C/ds_k9k12xxx0c_rev31.pdf
http://www.samsung.com/Products/Semiconductor/Flash/NAND/2Gbit/K9K2G08U0A/ds_k9k2g08ua_rev02.pdf
http://www.samsung.com/Products/Semiconductor/Flash/NAND/2Gbit/K9K2G08U0A/ds_k9k2g08ua_rev02.pdf
http://www.spansion.com/datasheets/s29glxxxm_00_b4_e.pdf
http://www.toshiba.com/taec/components/Datasheet/58fvm7x2a.pdf
http://www.toshiba.com/taec/components/Datasheet/58fvm7x2a.pdf
http://download.intel.com/design/flcomp/datashts/30666601.pdf
http://www.st.com/stonline/books/pdf/docs/10123.pdf
http://www.semiconductors.philips.com/acrobat_download/literature/9398/39340011.pdf
http://www.semiconductors.philips.com/acrobat_download/literature/9398/39340011.pdf
http://download.micron.com/pdf/technotes/nand/tn2905.pdf
http://download.micron.com/pdf/technotes/nand/tn2908.pdf
http://www.arasan.com/datasheets/login.php

