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Abstract

We consider the problem of convolutive blind source separation of stereo mixtures.

This is often tackled using frequency-domain independent component analysis (FD-

ICA), or time-frequency masking methods such as DUET. In these methods, the

short-term Fourier transform (STFT) is used to transform the signal into the time-

frequency domain. Instead of using a fixed time-frequency transform on each mixture

channel, such as the STFT, we propose learning an adaptive transform from the

stereo mixture pair. Many basis vector pairs of the resulting transform exhibit prop-

erties suggesting that they represent the components of individual sources, together

with the filtering process from the sources to the microphone pair. A mask is then

applied to the transformed signal, with the mask parameters determined by rela-

tive delays between the learned left and right basis vector pairs. The performance

of the proposed adaptive stereo basis (ASB) algorithm is compared with FD-ICA

and DUET under different reverberation and noise conditions, using both objective

distortion measures and formal listening tests.

Key words: Blind Source Separation, Audio Source Separation, Independent

Preprint submitted to Elsevier Science 9 August 2006



Component Analysis, DUET Algorithm, Adaptive Basis, Sparse Coding

1 Introduction

Convolutive blind audio source separation is a problem that arises when an

array of microphones records mixtures of sound sources that are convolved

with the impulse response between each source and sensor.

Several methods have been proposed to tackle this problem, either in the time

domain or in the frequency domain. Time domain methods mostly entail the

extension of existing instantaneous blind source separation (BSS) algorithms

to the convolutive case [1–3]. However, since they require the evaluation of

convolutions, they can be computationally expensive [4].

An alternative and popular approach is the frequency domain independent

independent component analysis (FD-ICA) method [4–9]. This approach uses

the short-time Fourier transform (STFT) to transform the convolved signal

into the time-frequency domain, with instantaneous independent component

analysis (ICA) performed separately in each frequency bin. This approach

is typically simpler and computationally less complex than the time-domain

approach, although it may require long STFT frames to successfully separate

convolutively mixed signals. There are other issues that need to be overcome,

such as a tendency to flatten the estimated signal spectrum, due to a spectral
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shape ambiguity inherent in the problem. The use of separate ICA processes

in each bin also introduces the well-known permutation problem, whereby the

different frequency components of the signals become ‘swapped’ and require

permutation to realign them. In common with other ICA-based separation

methods, FD-ICA can only be used where the number of sources P to be

separated is no more than the number of microphones Q.

Another approach that has been found to be successful in practical applica-

tions on stereo (two-microphone) anechoic mixtures is the degenerate unmix-

ing estimation technique (DUET) [10–12]. Here the STFT is again used to

transform the signal into the time-frequency domain, but then time-frequency

masking is used to extract source components on the basis of which source

dominates each time-frequency bin. Estimates of relative amplitude and de-

lay between two microphones are used to identify the dominating source in

each bin. In theory, DUET can perfectly separate sources that are W -disjoint

orthogonal, i.e. with representations that are disjoint in the time-frequency do-

main. The use of time-frequency masking means that it is applicable to sources

with more sources than microphones, and DUET has been successfully applied

to separation of e.g. five speech source from stereo mixtures. However, per-

formance of DUET has been observed to degrade with echoic mixtures, and

large microphone spacing can also cause problems in estimating the relative

delay used by the algorithm.

In this article, we propose an Adaptive Stereo Basis (ASB) source separation

method for convolutive mixtures, based on the idea of masking in a transform

domain. However, instead of using a fixed time-frequency transform such as

the STFT, applied separately to each observation (microphone) channel, we

learn an adaptive transform based on the observed stereo data that is applied
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to both channels together [13]. Many basis pairs of the resulting transform

exhibit properties suggesting that they represent the components of individual

sources, together with the filtering process from the sources to the microphone

pair. We then calculate the relative time delays between left and right channels

of the stereo basis pairs, corresponding to different directions of arrival (DOAs)

of the sources, and use this information to separate the basis pairs into clusters,

one for each source. This then gives us a time-invariant association of each

source with a subset of the stereo basis pairs, allowing us to estimate the

separated sources.

The structure of this paper is as follows: the convolutive BSS problem is

described in Section 2, with the FD-ICA and DUET algorithms described in

Section 3. Our proposed adaptive stereo basis method is introduced in section

4. The performance of the algorithm is evaluated in Section 5, followed by

discussion and conclusions.

2 Convolutive Blind Source Separation

Consider the problem of linear convolutive mixing, for example microphones

recording mixed sound sources in a room with delays and echoes. Here each

microphone records a linear combination of the source signals sp, at several

times and levels, as well as multipath copies (echoes) of the sources. This sce-

nario can be modelled as a finite impulse response (FIR) convolutive mixture,

given by [4]

xq(n) =
P
∑

p=1

Lm−1
∑

l=0

aqp(l)sp(n − l), q = 1, . . . , Q (1)

4



where xq(n) is the signal recorded at the q-th microphone at time sample

n, sp(n) is the p-th source signal, aqp(l) denotes the impulse response of the

mixing filter from source p to sensor q, and Lm is the maximum length of all

impulse responses [14]. The aim of convolutive blind source separation is to

estimate the original source signals sp(n) and the mixing process aqp(n) given

only the mixtures xq(n).

2.1 Spectral shape ambiguity

We wish to estimate the original source sp(n) in (1), given only the observa-

tions xq(n). However, there is an inherent ambiguity in this problem, called the

spectral shape ambiguity, as we can see if we transform (1) into the continuous

frequency domain

xq(ω) =
P
∑

p=1

aqp(ω)sp(ω) (2)

where xq(ω), aqp(ω) and sp(ω) are the continuous Fourier transforms of the

respective quantities in (1). But we can also write

xq(ω) =
P
∑

p=1

a′

qp(ω)s′p(ω) =
P
∑

p=1

aqp(ω)sp(ω) (3)

where a′

qp(ω) = aqp(ω)gp(ω) and s′p(ω) = s′p(ω)/gp(ω). Unless some other

information is used, the source signals sp can only be identified up to some

arbitrary filtering gp [9].

The spectral shape ambiguity is probably most clearly demonstrated for FD-

ICA methods, whereby the use of standard pre-whitened ICA for each fre-

quency bin typically leads to source estimates that are whitened, i.e. have the

same signal power in each frequency bin. This ambiguity can also be a problem

for other methods, although its effect may be reduced if specific signal models
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are used, or if assumptions on the filter order are employed. Nevertheless, we

can sidestep the spectral shape ambiguity entirely by mapping the estimated

sources back to the observation (microphone) space [9]. Suppose that a blind

source separation algorithm produces ŝp as the estimate of the pth source sig-

nal and âqp as the estimate of the mixing process. Then the image x̂qp of the

pth source signal at the qth microphone is given in the frequency domain by

x̂qp(ω) = âqp(ω)ŝp(ω) (4)

where we note that the right hand side is not summed over p. In the time

domain this is

x̂qp(n) =
Lm−1
∑

l=0

âqp(l)ŝp(n − l). (5)

For each of the P sources, Equation (4) results in Q estimates, one at each

microphone corresponding to what that source would sound like at that mi-

crophone. It is straightforward to verify that the filtering ambiguity gp(ω)

cancels out in Equation (4), so the spectral shape ambiguity does not arise in

the source images x̂qp(ω) [9].

In this article, we use source image estimates x̂qp to avoid the spectral shape

ambiguity while comparing the performance of the algorithms.

3 Algorithms for Convolutive BSS

3.1 Time-Domain Approach

The convolutive source separation problem can be approached directly in the

time domain, by searching for a set of deconvolving filters wpq(k) to produce
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an output

yp(n) =
Q
∑

q=1

∑

k

wpq(k)xq(n − k) (6)

where the filter coefficients wpq(k) are adapted to optimize certain statistics

of the outputs yp(n) [1–3].

However, the frequency domain interpretation (2) suggests that with a trans-

formation into the frequency domain we could replace a complex deconvolution

problem with many parallel source separation problems, each at each different

frequency [4].

3.2 Frequency-domain ICA

The mixing model (2) in the continuous frequency domain suggests that we

could tackle the convolutive blind source separation problem by searching for

a suitable unmixing filter wpq(ω) yielding

yp(ω) =
Q
∑

q=1

wpq(ω)xq(ω) (7)

where yp(ω) is our estimate of the source sp(ω), p = 1, . . . , P and P = Q.

However, to use ICA on the frequency components in an FD-ICA algorithm

we need to gather statistics about the mixtures xq. We therefore divide the

input sequence into frames, and use the short-time Fourier transform (STFT)

xq(f, t) =
N−1
∑

m=0

xq(m + t)γ(m)e−j2πfm (8)

where N is the frame length, xq(n) is the time-domain signal sampled at

frequency fs, γ(m) is a window function, that typically decays smoothly to

zero at each end, t is the STFT block index, and f ∈ {0, fs

N
, . . . , (N−1)fs

N
}

denotes the frequency bin.
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In this time-frequency domain (8), the mixing model in (1) is reasonably

approximated in matrix notation by

x(f, t) = A(f)s(f, t) (9)

where A(f) and s(f, t) are the time-frequency domain representations of the

mixing filters and the original sources respectively. The separating model then

becomes

y(f, t) = W(f)x(f, t) (10)

where y(f, t) are the recovered source estimates in the frequency domain,

and W(f) are the separating filters to be estimated. The convolutive BSS

problem is thus transformed into multiple complex valued ICA problems in

the time-frequency domain, with a suitable ICA algorithm (e.g. [15–17]) used

to estimate W(f) separately in each frequency bin.

Once we have the separated source estimates, we can calculate the source

images x̂qp(f, t) as suggested by (4), using the estimate Â(f) = W−1(f) for

the mixing process.

3.2.1 The permutation problem

The use of separate ICA algorithms for each frequency bin f in (10) leads

to the well-known permutation problem. Due to the inherent ambiguity in

the identification of the sources, any ICA algorithm can only find a set of

original sources relative to some unknown permutation. Since these are applied

independently to each frequency bin, a further process is required to match

the source estimates y(f, t) at a particular frequency bin f with those at other

frequency bins.
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Several different methods have been proposed to perform this source match-

ing process across frequency bins. For example, Smaragdis [5] proposed a fre-

quency coupling between the separating matrices for adjacent frequency bins;

Parra [7] proposed a constraint on the length of the separating filter; Ikeda and

Murata [6] suggested that for a particular source, the time envelopes across the

frequency bins are similar, and therefore they are matched in order to align

the permutations; while Davies [8] proposed a time-frequency source model

which couples the frequency bins by measuring the signal envelope along the

frequencies.

3.2.2 Solving the permutation problem using beamforming

An alternative approach to solving the permutation problem is to consider

the spatial arrangement of the source and microphones: a beamforming ap-

proach [18]. If most of the signal observed at the microphones arrives from

the direction of the direct path from the source, the time delay between the

microphones will correspond to the direction of arrival (DOA) of the source.

The permutation problem is addressed using this beamforming approach by

Kurita et al [19,20], who use an FD-ICA method to separate the sources at

each frequency bin, and then permute these source estimates so that their

DOAs are aligned.

To ensure the direction of arrival calculation is unique, the inter-microphone

spacing must satisfy d < λmin/2 = c/(2fmax) so that there is less than one

wavelength difference between two sources with DOA of +π/2 and −π/2 from

the equal-delay direction. For example, with fmax = 8 kHz and c = 340 m/s

we get d ≤ (340/16000)m ≈ 2.1 cm [14]. If uniqueness is not satisfied, for
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example when the microphone spacing is too large (e.g. d ≈ 1 m), then several

DOAs may correspond to a given delay, and permutation errors may occur.

This problem is known as spatial aliasing.

To avoid the spatial aliasing problem, we can perform DOA estimation using

only the lower band of frequencies f < fmax [21] and use another method

to solve the permutation problem for higher frequencies. Alternatively, Mi-

tianoudis and Davies [22] proposed the use of a ‘peakier’ directivity pattern

method based on the MuSIC algorithm [23]. While the spatial ambiguity prob-

lem still exists, the more ‘spiky’ directivity patterns mean that the DOAs can

be usefully aligned over a wider frequency range 0 ≤ f < 12fmax [22]. We will

use this MuSIC-based method in our comparative evaluation later.

3.3 DUET algorithm

In FD-ICA the STFT was used to transform the mixture signal into the time-

frequency domain to approximate the convolutive mixing process (1) by a set

of parallel instantaneous narrowband mixing processes (9). A side-effect of

the STFT is that many signals are sparse in the time-frequency domain: i.e.

signals are zero or very small more often than it might be expected from their

variances [24]. It has been noted that many ICA algorithms have improved

performance when sources are sparse [25].

In addition, this sparsity property also means that in most time-frequency

bins, all but at most one source will have a time-frequency coefficient sp(f, t)

of zero or close to zero. So rather than performing ICA at each frequency bin

f , we could instead attempt to simply identify the dominating source in each
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time-frequency bin (f, t) and separate by time-frequency masking. This is the

essence of the degenerate unmixing estimation technique (DUET), which has

the additional advantage that it can be applied to the underdetermined case,

where there are more sources than mixtures [10].

In the DUET algorithm we assume that in the TF domain each time-frequency

point of a mixture signal is due only to one of the sources, a property denoted

as W-disjoint orthogonality [24]. Two sources sl and sm are W-disjoint orthog-

onal if the supports of the STFT representations of the sources are disjoint,

i.e.[10]

sl(f, t)sm(f, t) = 0, ∀l 6= m, ∀t, f. (11)

Therefore in place of the permutation problem present in FD-ICA, in the

DUET algorithm we have to identify which source is present in each time-

frequency point.

DUET assumes an anechoic mixing model with Q = 2 microphones:

xq(n) =
P
∑

p=1

αqpsp(n − δqp), q = 1, 2 (12)

where αqp and δqp are the attenuation and time delay coefficients associated

with the path between the p-th source and the q-th sensor [12]. In the time-

frequency domain, equation (12) can be written as in (9) but where A(f)

will take a special form since it will represent a set of 1-tap filters each with a

scaling and single time delay. Due to the spectral shape ambiguity (and scaling

ambiguity) we can absorb the filtering on the first mixture channel into the

sources. Setting the parameters of the first mixture (q = 1) to αqp = 1 and

δqp = 0 for all p = 1, 2, we drop the subscript q = 2 for the remaining

parameters, writing αp and δp in place of α2p and δ2p respectively. The mixing
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matrix, A(f), is then of the form [10]

A(f) =

















1 . . . 1

α1e
−j2πfδ1 . . . αP e−j2πfδP

















. (13)

To identify which source is present in each time-frequency bin (f, t), the rel-

ative amplitude and delay between the left and right channels for each fre-

quency bin are calculated. These are then clustered, so that time-frequency

bins within the same cluster correspond to the same source.

Suppose that one source dominates in a given time-frequency bin (f, t). Then

from Equations (9), (11), and (13) the relative amplitude and delay parameters

for the source active in that time-frequency bin can be estimated by [12]

α̂(f, t) =

∣

∣

∣

∣

∣

x2(f, t)

x1(f, t)

∣

∣

∣

∣

∣

(14)

δ̂(f, t) = −
1

2πf
∠

(

x2(f, t)

x1(f, t)

)

(15)

where ∠(·) denotes the phase of a complex number taken between −π and π.

In evaluating the delay parameter δ the DUET algorithm suffers from the

same spatial ambiguity experienced in frequency domain ICA (Section 3.2.2).

To avoid this, we normally assume that the sensor spacing is small enough not

to introduce these ambiguities.

Following the computation of α̂(f, t) and δ̂(f, t), these estimated mixing pa-

rameters are used to produce a weighted two-dimensional histogram. The num-

ber of histogram peaks are used to estimate the number P of source signals

present in the mixture, with the relative amplitude α̂p and delay δ̂p of the pth

estimated source given by the values of the mixing parameters at the peak of

12



the pth cluster in the histogram.

Once the histogram peaks have been found, a set of binary time-frequency

masks Mp(f, t), p = 1, . . . , P is then constructed to perform separation of

the sources sp. To build the mask, each time-frequency point in proximity

of a peak is assigned to the source corresponding to that peak. The time-

frequency representation of the p-th estimated source is then constructed from

the masked observations, either masked from one observation channel x1, or

remixed from both channels. Finally, the time-domain source estimates are

obtained by inverting the STFT, for example using the overlap-add method.

In theory, perfect separation can be achieved with these masks, provided the

sources do not overlap in the TF domain, i.e. that W-disjoint orthogonal-

ity holds [12]. Empirical evidence is presented in [12] that speech signals are

approximately pairwise W-disjoint orthogonal.

3.3.1 Extending DUET for source images

There are several ways to extend DUET to produce source image estimates

at the microphones, to allow us to measure separation performance on source

images at the microphones (Equation (5)). For example, it would be possible

to use maximum likelihood (ML) source estimation [12] and create the source

image using (4). However, we have observed that for echoic convolutive mix-

tures this can produce poor results, apparently due to inaccurate estimates of

the mixing delays δp.

For the evaluation in this article, we directly calculate the image x̂qp(f, t) of
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the p-th estimated source observed at the q-th microphone using

x̂qp(f, t) = Mp(f, t)xq(f, t), ∀f, t. (16)

The time-domain estimate x̂qp(n) is obtained by inverting the STFT for each

source/microphone pair. Conceptually this approach uses DUET time-frequency

masking to directly calculate an estimate of the image xqp of source sp at the

qth microphone, without calculating a single source estimate as an intermedi-

ate stage.

4 Adaptive Stereo Basis method

Both the FD-ICA and DUET methods use the STFT separately for each

microphone to transform the time-domain signal into a time-frequency repre-

sentation. In the case of FD-ICA, the STFT is used to approximate convo-

lution in time by multiplication in frequency, allowing separation via parallel

ICA algorithms at each frequency. In the case of DUET, the STFT is used

to transform the signal into a representation where the signals are approxi-

mately disjoint, allowing separation via binary masking in the time-frequency

domain, although other transforms are possible [12].

The method that we proposed is based on the search for a transform that

will directly allow us to partition the transform components into subsets cor-

responding to each source. If we could achieve this with the single-channel

STFT, this would be a simple filtering operation, assigning frequency bands

(subsets of frequency bins) to each source. However, since the sources we are

considering do not occupy disjoint frequency bands, we use an adaptive trans-

form.
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In fact, we can use ICA to learn such an adaptive transform, but instead

of using it across mixtures to separate sources, we use it across time sam-

ples to search for interesting structure in the data. In an early application of

this method, Bell and Sejnowski [26] found that ICA trained on time-frames

of monophonic recordings of ‘tooth taps’ discovered features (basis vectors)

exhibiting localized time and phase structure, while those learned by e.g. prin-

cipal components analysis (PCA) did not. Other studies on monophonic audio

signals have reported that the basis vectors learned by ICA from speech signals

are mostly well localised in time and frequency, yielding a representation that

exhibits wavelet-like bases [27,28]. The resulting representation of the sounds

transformed into this learned basis are sparse, i.e. with most coefficients close

to zero, giving a representation reminiscent of that of auditory nerve fibres

[28].

In a preliminary study [13], we investigated an extension of this technique to

stereo signals, applying an ICA algorithm to sequences of stereo time frames.

We found that many of the resulting basis vectors typically exhibited the

wavelet-like localized time and frequency representation as for the monophonic

case. However, while the frequency representation of a typical basis vector is

localized around a particular centre frequency, it is not narrowband as is the

case for STFT basis vectors, and a time-domain centre is normally observed.

Furthermore, many bases also displayed relative amplitude differences and

time delays between the two channels, suggesting that the basis vectors dis-

covered by the algorithm represent the components of individual sources and

the filtering process from the sources to each of the microphones. If this is the

case, then by partitioning these bases into subsets corresponding to each of

the sources, it should be possible to separate the original source signals from
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Fig. 1. Reshaping of the sensor vector prior to training with ICA. In this illustration,

we have K/2 = 4 sample pairs per frame, with an overlap of T = 2 samples.

each other. This is the principle behind the proposed Adaptive Stereo Basis

(ASB) method.

4.1 Learning the stereo basis set

To learn the stereo basis set, the observed vector sequence x(n) is first reshaped

into a K × kmax matrix on which learning is performed. Successive frames of

K/2 samples is taken from each mixture, with an overlap of T samples. Thus,

the (i, k)-th element of the new matrix, X̃, is

[X̃]i,k =























x1 ((k − 1)Z + (i + 1)/2) : i odd

x2 ((k − 1)Z + i/2) : i even

(17)

where Z = K/2 − T , and i ∈ {1, . . . , K/2}, and k ∈ {1, . . . , kmax}. The
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Fig. 2. Examples of basis vectors extracted with the adaptive stereo basis algorithm.

reshaping of the sensor vector x(n) is illustrated in figure 1.

For each column x̃ of X̃ we construct the representation coefficients u = Bx̃.

The coding matrix B ∈ R
K×K is learned using an ICA algorithm, such as [13]

∆B = η
(

I − E{f(u)uT}
)

B (18)

where η is the learning rate, and f(u) = −∇u log p(u) is the activation func-

tion, using p(u) =
∏P

p=1 p(up) for some prior p(cp). We use the generalized

exponential prior [29] p(cp) ∝ exp(−|cp|
α) where the exponent α is estimated

through maximum likelihood.

The reshaping of x(n) into the matrix X̃ emphasises the correlations between

the sources at the two microphones. Stacking the columns of x(n) allows fea-

tures relating to temporally correlated signals from each recording to be ex-

tracted. Basis vector pairs are then extracted from the columns of the inverse

matrix B−1.

Figure 2 shows some of the feature vector (basis vector) pairs obtained from

two mixtures generated when two male speech signals were synthetically mixed
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using a source image technique, in low noise and low reverberation conditions

(see Section 5).

This figure illustrates that the basis vector pairs encode how the extracted

features are received at the microphones. Many of the basis vectors are lo-

calised in time, and they seem to capture information about time-delay and

amplitude differences that characterise the mixing channel. This observation,

together with measurements of the relative time delay (see Fig. 3 below), sug-

gests that the convolutive nature of the mixing process has been captured by

the algorithm, and that each basis vector pair relates to a particular source.

4.2 Clustering using time delays

Having identified the basis vectors, we perform clustering to identify the sub-

spaces corresponding to the original sources. For each basis pair k we find

the time delay τk between the vectors in the pair. The time delay τk is evalu-

ated using the well known generalised cross-correlation with phase transform

(GCC-PHAT) algorithm [30]

Ra1a2
(τ) =

∫

∞

−∞

A1(ω)A∗

2(ω)/(|A1(ω)A∗

2(ω)|)ejωτdω (19)

where A1(ω), A2(ω) are the Fourier transforms of the basis vectors, which

are taken from the columns of A = B−1. Since GCC-PHAT considers all

frequency bins together, we reduce the problem of phase ambiguities (spatial

aliasing) that can occur with the FD-ICA and DUET algorithms. We have

observed that the function Ra1a2
(τ) typically exhibits a sharp peak at the lag

corresponding to the time delay between the two signals.

The upper plot in Figure 3 depicts the time-delay estimates obtained with
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Fig. 3. Plot of the time delays estimated for all basis vectors (upper plot), and its

histogram (lower plot).

GCC-PHAT, for all basis vector pairs shown in figure 2. The histogram of the

estimated time-delays is shown in the lower plot of Figure 3. The figure shows

that the directions of the two sources (corresponding to a delay of about 9 and

−9 samples) are correctly identified, and most basis functions are associated

with one of the directions of arrival.

Once we have the delays τk for each basis vector k, we then construct the

histogram of τk across the different values of k, and use the K-means clustering

algorithm to find the peaks Tp, p = 1, . . . , P corresponding to each of the P

sources.

We construct a set of mask matrices H(p) = diag(h
(p)
1 , . . . , h

(p)
K ) for p =

1, . . . , P , with the mask values given by

h
(p)
k =























1 if (Tp − ∆) ≤ τk ≤ (Tp + ∆)

0 otherwise
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for p = 1, . . . , P , k = 1, . . . , K, and where the threshold ∆ determines the

tolerance allowed on the delay estimation for a basis vector to be considered

to represent part of a particular source. Thus the diagonal elements of H(p)

are one or zero depending on whether or not a transform component belongs

to the cluster corresponding to the p-th source.

Finally the the image x̂qp of the p-th source estimate at the q-th microphone,

is calculated using

x̂p = B−1H(p)u (20)

where x̂p = [x̂1p, x̂2p, . . . , x̂Qp]
T is the vector of images of the p-th source at

all Q microphones and H(p) is the p-th diagonal masking matrix given above.

Note that, in contrast to the mask Mp(f, t) used in the DUET algorithm,

which depends both on the frequency bin index f and the time frame index

t, the ASB masking matrix H(p) operates across basis pair indices k only and

is independent of the time frame.

5 Evaluation

We evaluated FD-ICA, DUET and the proposed ASB algorithm on several

mixtures of two male speech sources. The speech sources were sampled at 16

kHz with a duration of 1 minute each.

To allow us to control the room Reverberation Time (RT) and the Input

Signal-to-Noise Ratio (ISNR), the sources were mixed using simulated room

impulse responses, determined by the image technique [31] using McGovern’s

RIR Matlab function 1 . The positions of the microphones and the loudspeakers

1 http://2pi.us/code/rir.m
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Fig. 4. Experimental setup for simulated speech recordings. The reverberation times

were set to either 20 ms, 80 ms or 320 ms.

are illustrated in figure 4. Six different mixing conditions were obtained by

varying RT between 20 ms (320 samples), 80 ms (1300 samples) and 320 ms

(5100 samples), and adding white noise to the mixture with ISNRs of 40 dB

and 20 dB.

We chose the STFT frame lengths separately for each algorithm, but fixed

for all the reverberation times tested. We used the FD-ICA algorithm with

the MuSIC-based permutation alignment algorithm described by Mitianoudis

and Davies [9], setting the STFT frame size to 2048 samples, which was pre-

viously found to be appropriate for this algorithm at a 16kHz sampling rate

[9,32]. For the DUET algorithm we used an STFT frame size of 1024 samples,

which was found by Yilmaz and Rickard [12] to give the best separation per-

formance at 16 kHz. For the proposed adaptive stereo basis algorithm, we used

an adaptive basis frame size of 512 samples, to be consistent with preliminary

experiments which indicated that this would be sufficient for separation at a

16 kHz sampling rate with reasonable room reverberation times [32].

Excerpts of the original mixture and source signals and of the estimated source

21



signals are available for listening on our demo web page 2 .

5.1 Objective evaluation

We evaluated the performance of each method using the objective criteria of

Signal-to-Distortion Ratio (SDR), Signal-to-Interference Ratio (SIR), Signal-

to-Noise Ratio (SNR) and Signal-to-Artefacts Ratio (SAR) as defined in [33].

SDR measures the difference between an estimated source and a target source

allowing for possible linear filtering between the estimated and target source:

we allowed for time-invariant filtering of filter length 1024 samples when cal-

culating SDR. SIR, SNR and SAR provide a more detailed diagnosis of the

performance by distinguishing between the elements of the total distortion

which are due due to unwanted interfering sources (SIR), remaining mixing

noise (SNR) and other artefacts (SAR).

These SDR, SIR, SNR and SAR criteria are defined in [33] on a per-source

basis. To gain a single figure for all sources, we averaged the criteria across all

microphones and all sources. The results are presented in Table 1.

We see that with short reverberation times (RT=20 ms) our proposed method

outperforms both FD-ICA and DUET by more than 7 dB SDR in relatively

clean conditions (ISNR=40 dB) and by about 2 dB SDR in more noisy con-

ditions (ISNR=20 dB). As the reverberation time increases, the performance

of the proposed method degrades faster than the other algorithms, with FD-

ICA (which has the longest frame size) providing best performance at long

reverberation times.

2 http://www.elec.qmul.ac.uk/people/mariaj/asb demo/
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In noisy reverberant conditions (ISNR=20 dB, RT=320 ms), we found that

the unsupervised K-means clustering algorithm used in the proposed algorithm

failed to find both source directions, resulting in a negative SDR. Supervised

clustering based on the true source directions improved the SDR to -0.6 dB,

but this remained lower than with FD-ICA and DUET in this case. Super-

vised clustering did not change the performance of the proposed algorithm

significantly in other conditions.

5.2 Evaluation using listening tests

When we listened to the result of an earlier preliminary investigation [32],

we found that the objective SDR measures did not always correspond to our

perceived quality of the separation. We therefore decided to perform a for-

mal subjective listening test to give an alternative comparison of the relative

performance of the three algorithms. Such tests are common in audio coding,

with standardized test procedures such as MUSHRA (MUltiple Stimulus test

with Hidden Reference and Anchors) [34], but have not yet found widespread

use in the source separation community.

For our listening test, we adapted the MUSHRA standard and built a Matlab

graphical interface to allow subjects to listen to the stimuli and input their

scores [35]. Subjects were asked to assess the basic quality of each stimulus,

a term used to mean the overall perceived quality of the sound, including all

possible types of distortion. Each subject was asked to grade the basic quality

of the estimated sources compared to a given target source on a scale between

0 and 100, where 100 corresponded to the target source and 0 to the worst

estimated source over all conditions. For more details on the listening test

23



Table 1

Objective performance of FD-ICA, DUET and ASB with default frame sizes on

simulated speech recordings. All values are expressed in decibels (dB). Bold numbers

indicate the best SDR for each mixing condition. See text for comments.

Mixing

conditions

ISNR 40 dB 20 dB

RT 20 ms 80 ms 320 ms 20 ms 80 ms 320 ms

FD-ICA

SDR 7.0 11.2 6.3 6.2 6.5 4.2

SIR 10.4 16.1 9.1 12.3 14.0 9.1

SNR 19.1 19.9 28.9 26.7 10.7 25.8

SAR 11.1 14.2 10.3 7.7 11.4 7.0

DUET

SDR 7.9 8.2 5.3 6.3 5.7 3.5

SIR 13.4 13.8 10.0 14.7 12.7 8.9

SNR 21.0 21.0 20.3 11.8 11.8 11.5

SAR 10.3 10.2 7.9 9.3 9.0 7.3

ASB

SDR 15.4 7.7 1.3 8.3 6.8 -4.2

SIR 25.7 16.3 8.9 19.7 17.8 7.4

SNR 20.2 28.0 22.9 12.5 26.3 16.9

SAR 18.2 9.8 4.2 12.6 7.5 -2.1

procedure, see [35].

Eight subjects took part in the listening tests, and each complete listening test
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took between about 1 and 2 hours, including breaks. The algorithm developers

who had already heard the stimuli were excluded from the listening test. The

test results are shown in Figures 5 and 6.
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Fig. 5. Subjective performance of FD-ICA, DUET and ASB with default frame sizes

on simulated speech recordings with ISNR=40 dB. Bars indicate 95% confidence

intervals. SDR values are displayed below for comparison. See text for comments.
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Fig. 6. Subjective performance of FD-ICA, DUET and ASB with default frame sizes

on simulated speech recordings with ISNR=20 dB. Bars indicate 95% confidence

intervals. SDR values are displayed below for comparison. See text for comments.

The results are generally consistent with the objective criteria. In particular,

the proposed ASB algorithm performs significantly better than FD-ICA and

DUET in clean, less reverberant, conditions (ISNR=40 dB, RT=20 ms). Per-

formance differences are less significant in other conditions, except in the noisy

reverberant case (ISNR=20 dB, RT=320 ms) mentioned above.
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6 Discussion

6.1 Algorithm comparison

FD-ICA with beamforming-based source matching, DUET and the proposed

adaptive stereo basis (ASB) algorithms are based on an essentially similar

approach. A transformation is applied on the observed data in order to find

a set of basis vectors, followed by direction-based clustering to associate each

vector with a source. However, they exhibit some differences that become

important when applied to realistic mixtures. We summarize their respective

advantages and limitations below.

The main characteristic of ASB is that it is based on an adaptive transform

of the observed data, where the basis vectors are estimated from the data.

Conversely, FD-ICA and the DUET algorithm use the STFT, a fixed time-

frequency transform. Thus we believe that ASB has the potential to provide

a sparser representation of the data, and hence improve performance.

DUET and ASB achieve separation by clustering the dictionary elements, the

former according to phase (delay) and amplitude information, and the latter

according to phase only. FD-ICA with beamforming also uses phase informa-

tion to align the permutations across all frequencies. Both FD-ICA and DUET

suffer from phase ambiguities in the upper frequencies. To avoid this problem,

DUET was designed under the assumption that the microphone separation,

d, is small enough so that phase ambiguities do not arise [12]. Clearly, this

assumption cannot always be satisfied, particularly when the problem is truly

blind (i.e. the microphone separation is not known, and cannot be controlled),
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or for certain applications, such as for CD recordings where phase ambiguities

would arise with a sensor spacing of less than 1cm at 44.1 kHz [36]. To help

select the correct phase difference between the two sensors where phase am-

biguities are possible, a modified version of DUET has been proposed which

uses amplitude differences in the high frequency range [36]. In the ASB algo-

rithm we found experimentally that the basis vectors learned by the algorithm

are typically time-localized rather than narrowband. It is therefore possible to

identify a unique time delay between the left and right channels, using in our

case the GCC-PHAT algorithm, and the phase ambiguity problem does not

arise.

DUET was developed for anechoic mixing, and can have difficulties dealing

with echoic (convolutive) mixing. Histograms obtained from anechoic mixtures

are typically well localised, with distinct peak regions corresponding to the

sources, while they are more spread out for echoic mixtures [12]. Conversely,

ASB does not make any specific assumptions regarding the mixing channel.

The learned basis pairs should automatically capture the nature of the channel,

so we would expect the method to be able to deal with reverberation. However,

the performance of the ASB algorithm does degrade with longer reverberation

times (RT = 80 ms and above), perhaps due to the current frame size limit:

80 ms is equivalent to 1280 samples, compared to the currently feasible frame

size of 512 samples in the ASB algorithm.

6.2 Training the basis set

In comparison to methods that used a fixed basis, the adaptive stereo basis

algorithm requires increased computational expense of fitting an ICA model
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to the frames of stereo data. There is also a potential problem of overfitting

due to the large effective dimensionality of the model.

The first problem, that of computational expense, is partly due to the use of a

stochastic gradient optimisation. The use of the ‘natural’ or covariant gradient

[1] instead of a direct application of a steepest-descent algorithm does improve

matters somewhat. We expect that further reduction in computation time

would be possible through the use of second-order derivatives (i.e.curvature)

to improve the convergence of ICA [17].

The second problem, that of overfitting, is potentially more serious as it is an

intrinsic limitation of the model in its present form. For example, in our ex-

periments, the ICA weight matrix had 512×512 entries and thus required the

optimisation of 262144 parameters. At 16 kHz, a two-channel signal requires

approximately 8.2 s to deliver this many samples. Our one-minute signals sup-

plied less than 8 times as much data as there were parameters to be optimised,

which is rather low and may lead to overfitting.

In applications where the mixing system is known to be stable for long periods,

sufficient training data could be collected to avoid overfitting, though of course

this would bring us back to the computational expense of fitting an ICA model

to such a large amount of data.

Alternatively, there are several structural aspects of the system that could

potentially be exploited to regularise or constrain the ICA model [37]. For a

further possibility, since the frames used to train the model are extracted from

a longer signal which is assumed to be stationary, there should be no privileged

times within the frame. This type of shift invariance has been exploited in

single-channel sparse coding [38] and could possibly be adapted for use here.
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7 Conclusions

We have considered the problem of convolutive blind audio source separation,

and we have presented a stereo coding method. The method is based on the

identification of stereo basis vectors adapted to the data. The basis functions

are mostly temporally localized, and can be clustered according to directions

of arrival (DOA). Separation can then be performed using binary masking on

the resulting basis components.

The performance of the algorithm was compared to that of frequency domain

ICA (FD-ICA) and the DUET algorithm, using speech signals mixed in a

simulated room. Evaluation was performed using both objective measures and

subjective listening tests.

The results of both the objective SDR comparison and the formal listening

tests indicate that the proposed stereo coding method is competitive with

both FD-ICA and the DUET algorithm, and significantly outperforms either

of the other algorithms with low noise and short reverberation times (RT =

20 ms or 320 samples) of the same order as the frame size used in the ASB

algorithm (512 samples). However, the performance of ASB on more echoic

rooms (RT = 80 ms and above) indicates there is still more work to be done.

In future work, we plan to explore frame sizes longer than 512 samples. To

ameliorate the increased computation time involved, we plan to investigate

ways to partially structure the ICA bases to allow faster and more robust

learning. Other methods may prove useful to learn the basis vector sets, such

as the recent K-SVD algorithm [39]. We believe the proposed adaptive stereo

basis method is interesting and promising, although further investigation is
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required in order to reduce the computation cost and improve its robustness

to noise and reverberation.
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