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Abstract. Registration, that is, the alignment of multiple images, has been one 
of the most challenging problems in the field of computer vision. It also serves 
as an important role in biomedical image analysis and its applications. Although 
various methods have been proposed for solving different kinds of registration 
problems in computer vision, the results are still far from ideal when it comes to 
real world biomedical image applications. For instance, in order to register 3D 
brain MR images, current state of the art registration methods use a multi-
resolution coarse-to-fine algorithm, which typically involves starting with low 
resolution images and working progressively through to higher resolutions, with 
the aim to avoid the local maximum "traps". However, these methods do not 
always successfully avoid the local maximum. Consequently, various rather so-
phisticated optimization methods are developed to attack this problem. In this 
paper, we propose a novel viewpoint on the coarse-to-fine registration, in which 
coarse and fine images are distinguished by different scales of the objects in-
stead of different resolutions of the images. Based on this new perspective, we 
develop a new image registration framework by combining the multi-resolution 
method with novel multi-scale algorithm, which could achieve higher accuracy 
and robustness on 3D brain MR images. We believe this work has great contri-
bution to biomedical image analysis and related applications. 

1   Introduction 

In medical image analysis, what is most often desired is a proper integration of the 
information provided by different images. Image registration, serving as the first step 
of the information integration process, is to bring various images into spatial align-
ment. In other words, it is a process of overlaying multiple images of the same type of 
objects taken at different times, by different modalities, and from different subjects. 
Image registration serves various functions in medical image applications: it can be 
used to obtain ampler information about the patient by registration images acquired 
from different modalities, to monitor and investigate tumor growth by images taken at 
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different times, to compare patients' data with anatomical atlases, to correct the mo-
tion of a series of data acquired continuously, etc. Despite the fact that registration is 
of great significance, fully automatic registration with high accuracy and robustness 
on 3D data is hardly achieved due to the difficulties of finding the most proper set-
tings of the following factors: transformation, interpolation, similarity metric, and 
optimization. In this paper, we propose a multi-scale and multi-resolution coarse-to-
fine (MMCTF) optimization method for 3D brain MR image registration, which can 
be used in conjunction with any transformation, interpolation method, and similarity 
metric to obtain consistent and accurate registration results. 

1.1   Issues in Brain MRI Registration 

In this section, we briefly introduce existing methods for medical image registration. 
A survey of more medical image registration methods, including semi-automatic 
registration methods using landmarks and interactive registration, can be found in [9]. 
Registration is the process to seek a transformation T(·) that registers the floating 
image F and the reference image R by maximizing their similarity: 

 ))()),(((maxarg xRxFTST T= ,           (1) 

where x are the coordinates of the voxel, and S is the similarity metric which meas-
ures the closeness of the two images. Determining the type of transformation is the 
first task of registration. It can be divided into linear transformation and nonlinear 
warping. Considering 3D linear transformation, it can be from 6 DOF (a rigid body 
transformation including 3 translations and 3 rotations) up to 12 DOF (an affine trans-
formation including 3 translations, 3 rotations, 3 scales, and 3 skew parameters). Non-
linear warping encompasses a wide range of transformations, which can be up to 
millions of DOF and allow any geometric change between images. The most suitable 
type of transformation is determined based on factors such as the characteristics of the 
data, the need of a specific experiment or application, the dimensionality and the size 
of the data, and the tradeoff between speed and accuracy.  

Interpolation methods are used to calculate the intensity of location between dis-
crete points during transformation. There are several widely-practiced interpolation 
methods. Nearest neighbor decides the intensity of a location by taking the value from 
its nearest neighbor. Trilinear interpolation calculates the intensity from the 8 corner 
points of the 3D cube encompassing the specific location. Sinc interpolation calcu-
lates local intensity from much more than 8 neighbors. Although it is generally more 
accurate for registration between images with large transformations, Sinc interpola-
tion requires much more computational time and is not widely used in 3D data.  

Selecting the similarity metric is one of the most challenging problems in medical 
image analysis. Its purpose is to measure the closeness of different images. Similarity 
measurements of intra-modal and inter-modal registration of two images may be very 
different. In practice, mean absolute difference, least square difference, and normal-
ized correlation are often used for intra-modal registration whereas mutual informa-
tion [19], woods [20], and correlation ratio [16] are suitable for inter-modal cases. 

Optimization method is used to search for the transformation that maximizes the 
similarity value given the cost function and the type of transformation. Although 
global maximum is always desired, it is not always worth doing exhaustive search due 
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to unacceptable computational overhead, especially when the search is performed in 
high dimensional space. Powell's method [15] and gradient descent are two of the 
most well-known and widely-used local optimization methods. Multi-resolution 
methods, on the other hand, are often used to improve the robustness and speed up the 
registration process. A multi-resolution method is a coarse-to-fine method where 
images are registered progressively through lower resolutions to higher resolutions. 
Different resolutions of the image are obtained by different sub-samplings (fig. 2 (I)). 
Other optimization methods include apodization of the cost function [6], multi-start, 
etc. Apodization of the cost function gives greater weighting to the object region 
inside the FOV (Filed of View). Multi-start obtains several local maximums during 
the lowest resolution match and then passes these candidates to the next level to re-
duce the chance of missing the global maximum. 

 

Fig. 1. (I) The TV-L� �model on 1-d signal. Note that small scale signal can be separated from 
large scale signal using different λ  according to their scale r. (II) Original image f and dif-
ferent level of u when applying different (λ). (III) Additive signals with one included in the 
other can be extracted one by one using increasing values of (λ). s shows the original intensities 
of the four shapes before addition. 

2   Methodology 

In this section, we introduce the MMCTF framework and illustrate how it works for 
image registration. Before that, we first introduce the TV-L1 model and extend it to 
3D, which serves as the basis of the proposed framework. In the TV-based frame-
work, an image f is modeled as the sum of image cartoon u and texture v, where f, u 
and v are defined as functions (or flow fields) in appropriate spaces. Cartoon contains 
background hues and important boundaries as sharp edges. The rest of the image, 
which is texture, is characterized by small-scale patterns. Since cartoon u is more 
regular than texture v, we can obtain u from image f by solving:  

∫
Ω

+∇ ,||),(||||min Bfutu λ                    (2) 

where ∫Ω|∇u| is the total variation of u over its domain Ω, ||t(u, f)||B  can be any meas-
ure of the closeness between u and f, and λ is a scalar weight parameter. The choice of 
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the measure ||·||B depends on applications. The first use of this model was the ROF 
model for image denoising [17], where ||t(u, f)||B = ||f - u|| L2. The essential merit of 
total variation based image model is the edge-preserving property [18]. First, mini-
mizing the regularization measure ∫Ω|∇u(x)|dx only reduces the total variation of u 
over its support, a value that is independent of edge smoothness. Second, unless ||t(u, 
f)||B specifically penalizes sharp edges, minimizing a fidelity term ||t(u, f)||B (e.g., L1 or 
L2-norm of f - u) generally tends to keep u close to f, and thus, also keeps edges of f in 
u. Finally, minimizing ∫Ω|∇u| + λ||t(u, f)||B, with λ sufficiently big will keep sharp 
edges. ROF uses the L2-norm, which penalizes big point-wise differences between f 
and u, so it removes small point-wise differences (noise) from f. Mainly due to this 
good edge-keeping property, this model has been adopted, generalized and extended 
in many way. One of them uses the L1-norm as the fidelity term [2, 3, 11]. 

 

Fig. 2. (I) Traditional coarse-to-fine method uses different sub-samplings of the images. (II) 
Multi scales of the brain image obtained by the TV- L1 model. (III) The contour image obtained 
by 3D TV-L1 model (right) does not contain artifacts or noise in the original image (left). 

2.1   The TV-L1 Model for Scale-Driven Image Extraction 

Formally, this TV-L1 model is formulated as: 

∫
Ω

≤−∇ ,||)()(||..|)(|min 1 σ
L

xuxftsdxxu                 (3) 

where Ω is the image domain where functions f and u are defined on. Since (3) is a 
convex optimization problem, it can be reformulated as  

∫
Ω

−+∇ ,|)()(||)(|min dxxuxfdxxu
u

λ                   (4) 

Just like the L2-norm, the L1-norm keeps u close to f (but under a different measure), 
so the edge-preserving property can be easily seen by following the similar argument 
of the ROF model. To concrete our claims, we give the TV-L1 analytical results of 
some easy problems from ℜ to ℜ3. Fig.1 (I) illustrates the TV-L1 method applied to 1-
d signal. According to fig. 1 (I), with different values of λ, u keeps different signals 
according to their scales but not intensities. Now, we extend this to 2-d signal (i.e. an 
image). Chan and Esedoglu [3] have proved that solving equation (4) is equivalent to 
solving the following level-set-based geometrical problem: 

∫
+∞

∞−
>⊕>+> ,}))(:{})(:({}))(:({min duuxfxuxuxVoluxuxPer

u
λ        (5) 

where Per(·) is the perimeter function, Vol(·) is the volume function, and S1⊕S2 := 
(S1\S2)∪(S2\S1), for any set S1 and S2. Using equation (5), Chan and Esedoglu [3] 
proved the following geometric properties of the solution v(λ) = f - u(λ) in (4): 
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• Suppose f = c11Br(y)(x), a function with the intensity c1 in the disk centered at y and 
with radius r, and the intensity 0 anywhere else. Then 
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By this property, when applying different values of λ, objects of different scales can 
be kept in either u or v. Fig. 1 (II) illustrates this property. Furthermore, we can extend 
this property to the following: 

• Suppose f = c11Br1 (y)(x) + c21Br2 (y)(x), where 0 < r2 < r1 and c1, c2 > 0. 
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Fig. 1 (III) illustrates this property, which is proved in [4]. More discussions on 2D 
properties of the TV-L1 model can be found in [21]. 

2.2   3D TV-ψ � �Model 

The properties discussed in the previous section which has been developed and used 
for 2D image can be simply extended to 3D. First, we extend property (5) and claim 
that solving (2) in 3D is equal to solve the following equation: 

∫
+∞

∞−
>⊕>+> ,}))(:{})(:({}))(:({min duuxfxuxuxVoluxuxSur

u
λ        (8) 

where Sur(·) is the surface area function, and Vol(·) is the volume function. Using 
equation (8), we can extend previous geometric properties (6) and (7) to: 

• Suppose f = c11Br(y)(x), a function with the intensity c1 in the ball centered at y and 
with radius r, and the intensity 0 anywhere else. Then 
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• Suppose f = c11Br1(y)(x) + c21Br2(y)(x), where 0 < r2 < r1 and c1, c2 > 0. Then 
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(9) is proved as follows and (10) can be easily proved by following the proof of (7). 
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Proof of property (9): 
Proof. By assumption, f = c11Br(y)(x). Without loss of generality, we assume c1 > 0. 
Clearly, solution u(x) of (4) is bounded between 0 and c1, for all x ∈ Ω. It follows that 
(8) is simplified to:  

∫ >⊕>+>1

0
,}))(:{})(:({}))(:({min

c

u
duuxfxuxuxVoluxuxSur λ       (11) 

Since {x : f(x) > u} ≡ Br(y) for u ∈ (0; c1),  S(u) := {x : u(x) > u } must solve the 
following geometry problem: 

))()(())((min yBuSVoluSSur r
S

⊕+ λ ,       (12) 

for almost all u ∈ (0; c1). First, S(u) ⊆ Br(y) holds because, otherwise, S(u) := S(u) 
∩Br(y) achieves lower objective value than S(u). Then, it follows that  

))(\)(())()(( uSyBVolyBuSVol rr =⊕        (13) 

Therefore, to minimize (12) is to minimize the surface area of S while maximizing 
its volume. By extending the Isoperimetric Theorem into 3D, S(u) must be either 
empty or a ball. Let rS denote the radius of S, it follows that rS = r if λ > 3/r, rS = 0 if  

0 ≤ λ < 3/r, and rS ( {0, r} if = 3/r.                           

Based on the above properties, we can extract different scales of a brain by differ-
ent λs, which is illustrated in fig. 2 (II). More precisely, if we select λ ≈ 3/r, where r is 
close to the radius of the brain region, u will be close to the 3D contour of the brain.  

2.3   The MMCTF Registration Algorithm 

Traditional 3D brain MRI registration methods avoid local minimum and improve the 
efficiency of the registration process by a multi-resolution coarse-to-fine algorithm. 
This approach is not always sufficient for avoiding local minimum traps. To over-
come this limitation, we propose a new viewpoint on coarse-to-fine registration – 
coarse and fine images can be distinguished by different scales of the objects (fig. 2 
(II)). However, if we do a pure multi-scale coarse-to-fine registration, it may lose the 
efficiency of the traditional multi-resolution method. Hence, instead of using multi-
scale method only, we develop a novel framework combining the two methods to-
gether to avoid the limitation of each other. Fig. 3 illustrates our final algorithm, a 
Multi-scale and Multi-resolution Coarse-To-Fine (MMCTF) framework. In order to 
simplify following discussions, we call the u obtained using λ ≈ 3/r, which is the 
largest scale we used in the MMCTF framework, the contour image in this paper. In 
the MMCTF algorithm, the first step is to obtain the contour images of both the float-
ing image and the reference image using 3D TV-L1 model with λ ( 3/r, where r is the 
radius specifying the volume of interest. Second, we use a traditional coarse-to-fine 
(multi-resolution) method to register the two contour images. An initial search for 
translation, rotation, and global scaling parameters is applied at the beginning of the 
lowest resolution registration to speed up the search. The initial search includes 
matching the COM (center of mass) of the two images and finding the best initial 
rotation by searching every 30 degree in all directions. Since it is in the lowest resolu-



120 T. Chen et al. 

tion, this initial search can be done efficiently. After the initial search, the Powell’s 
local optimization method [15] is used to search for the maximum of the similarity 
measurement in each level. Followed by the registration of the contour images, the 
final parameters can be used to register the floating and reference images. We would 
like to point out that although we can do more scales in between the contour image 
and the original image by increasing the value of ( (fig. 2 (II)), empirically only two 
scale levels are enough for robust and accurate registration. Besides, it is much more 
efficient to perform the registration with only two scale levels. There are several ad-
vantages of this combination framework: 1.) The multi-resolution method is used for 
initial registration, which finds a good registration efficiently at the beginning. 2.) 
Since the multi-resolution is performed on the contour images, which consist of only 
the contours without detailed features, the chance that the gross features in the low 
resolution images mislead further registration is much smaller. 3.) By a multi-scale 
registration, a good registration can be easily found based on the contour images. 4.) 
Noise or other artifacts, which may degrade the registration performance and cause 
local maximum/minimum, barely exist in the contour images. (fig. 2 (III)) 5.) Empiri-
cally, only two scale levels are enough to obtain satisfying results. Besides, since the 
registration of the contour images is mostly very close to the final registration, step 10 
in fig. 3 normally costs only a little more computational time than pure multi-
resolution method. 

 

Fig. 3. The MMCTF algorithm 

3   Experimental Results 

In this section, we compare the proposed MMCTF algorithm with one of the famous 
brain MR image registration methods, FLIRT [6], and with the traditional pure multi-
resolution (PMR) coarse-to-fine method. For fair comparison, the following settings 
are used in all methods throughout the experiments. Transformation: 3D affine trans-
formation with 12 DOF (3 translations, 3 rotations, 3 scales, and 3 skews). Cost func-
tion: although any similarity metric can be used in our framework, correlation ratio is 
adopted for inter-modal registration since it is suggested in [6], which we aim to com-
pare to. In addition, normalized correlation is used for intra-modal registration. Inter-
polation: Trilinear interpolation. The step sizes used to search for each parameters are: 
translation: ∆t = 0.5, rotation: ∆θ = 0.3°, scale: ∆s = 0.005, and skew: ∆k = 0.005. The 
number of intensity bins used per image for correlation ratio is 256/n, where n is the 
resolution in mm. Some other optimization settings used by FLIRT (i.e. apodization of 
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the cost function, multi-start, etc.) to improve robustness and efficiency are not im-
plemented in PMR and MMCTF. The T1 weighted images we use are real 3D brain 
MR images. The T2 weighted image is obtained from brainweb [8]. 

3.1   Accuracy Evaluation 

Although the quantitative assessment of registration methods is quite difficult, a 
method can be affirmed as relatively more accurate than others if it consistently ob-
tains higher similarity values, under the circumstances that all other settings are the 
same. In the first experiment, we evaluate the registration accuracy between 6 high 
resolution T1 weighted MR images with size 207×255×207. 15 total registrations 
between each pair of the six images are evaluated. Normalized correlation is chosen 
as the similarity measurement. Fig. 4 shows the results. In fig. 4, the three methods 
achieve similar and consistent results, which means that the traditional multi-
resolution method is good enough for high resolution intra-modal registration. Next, 
we evaluate the inter-modal registration accuracy between images with different reso-
lution. In this experiment, we register one low resolution 181×217×30, T2 weighted 
MR image with voxel dimension 1×1×5 mm3 to six different high resolution 
207×255×207, T1 weighted MR images with voxel dimension 1×1×1 mm3. Correla-
tion ratio is used to measure the similarity. Fig. 5 illustrates the results. In this more 
complicated and difficult case, although all methods register the images well, the 
strength of MMCTF is demonstrated by the higher similarity of images. Fig. 5 shows 
that the MMCTF algorithm reaches higher maximum value of the correlation ratio, 
which proves  that the proposed algorithm has a much higher chance to reach global 
 

  

Fig. 4. Left: Normalized correlation between registered and reference images (intra-modal 
registration). Right: An example (2D slice from 3D data). 

   

Fig. 5. Left: Correlation ratio between registered and reference images (inter-modal registra-
tion). Right: An example (2D slice from 3D data). 
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maximum. It can also be observed by human eyes that the registration results of the 
MMCTF are closer to the reference images (fig. 5 (right)). 

3.2   Robustness Evaluation 

The robustness evaluation of the registration method is originally purposed by Jenkin-
son and Smith [7]. In this paper, we use a similar way to evaluate the robustness of 
the registration algorithm. Similar to the inter-modal experiment in the accuracy 
evaluation, we register the same low resolution T2 weighted MR image with voxel 
dimension 1×1×5 mm3 to six different high resolution T1 weighted MR images with 
voxel dimension 1×1×1 mm3. However, for each registration, we operate ten different 
initial transformations on the T2 weighted low resolution image before the registration 
process, including four global scalings of 0.7, 0.8, 0.9, and 1.1, four different rotations 
of -10, -2, 2, and 10 degrees about the anterior-posterior (y) axis, and two extreme 
cases with rotations of -10 and 10 degrees about y axis plus the second skew factor = 
0.4. The ten transformed images are then registered to the reference image. To evalu-
ate the robustness, we compare the ten registration results to the registered image 
which obtained directly from the original floating image to the reference image. If the 
registration algorithm is robust, these 10 values should show little difference. Fig. 6 
shows the results. In fig. 6 (I), the variance between the results obtained by the 
MMCTF model is much smaller than the variances of FLIRT and PMR. In fact, 
 

 
(I)                                                (II)
 

(III) 
 

 

Fig. 6. (I) Normalized correlation between registered images with different initial transforma-
tions and the registered image without initial transformation. 6 cases (I~VI) in total and each 
with 10 different initial transformations (0~9). (II) The first two rows: Registration results of 
the same image with different initial transformations by FLIRT. The last two rows: Same re-
sults by MMCTF. 10 initial parameters from left to right, top to down are global scalings: 0.7, 
0.8, 0.9, and 1.1, rotation about y-axis, 2, -2, 10, and -10 degrees, and rotation of -10 and 10 
degrees plus 2nd skew factor = 0.4. (III) (a): Floating image; (b): (a) after initial transformation, 
rotation = -10 and 2nd skew factor = 0.4. (e): Reference image; (c): Result of registering (b) to 
(e) by FLIRT; (d): Result of registering (b) to (e) by MMCTF. 
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FLIRT and PMR fail to register some images correctly after large initial transforma-
tions. On the contrary, the MMCTF algorithm always gets consistent and good regis-
tration results throughout the experiments. Fig. 6 (II) shows one sample of the regis-
tration results obtained by FLIRT and MMCTF. While FLIRT fails to register the 
images in the last two cases, all results registered by the proposed MMCTF algorithm 
are very consistent. Fig. 6 (III) illustrates the coronal view. The floating image is first 
transformed by -10 degrees about the y axis and 0.4 of the second skew parameter. 

4   Summary and Conclusion 

In this paper, we try to improve the accuracy and robustness of biomedical image 
registration using a novel coarse-to-fine image registration framework. The results 
show that by integrating the novel multi-scale idea into original multi-resolution reg-
istration framework, we can improve both consistency and accuracy of both inter-
modal and intra-modal registrations on 3D brain MR images. The proposed frame-
work is also expected to be useful for registration of other types of biomedical images 
and may also contribute to high dimensional non-linear warping, which normally 
requires much more computation. Although the computation overhead of the TV-L1 
model on 3D data is high, it is fully parallel computable, which greatly alleviates this 
problem. Our future work includes comparing our method with other famous works 
such as mutual information based methods [14, 19] and extending the capability of 
our model to handle local affine transformation. 
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