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Abstract  In this research, we calculated the atomic properties of systems have been studied (N+ and O+2 ) for 
intra-shells (1s, 2s and 2p) using Hartree-Fock wave function. These properties included, one-particle radial density 
function, one-particle and inter-particle expectation values, inter-particle density function and expectation values of 
energies. All these atomic properties increase with atomic number, have highest values in 1s shell and lowest values 
in 2p shell. All results are obtained numerically by using the computer program (MathCad 14) because it able to 
calculation and plot functions. All atomic properties are calculated in atomic units. 
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1. Introduction 
The Hartree-Fock Self-Consistent Field approximation 

(HF-SCF), it is a good approximation to many-electron 
systems, which is described by wave function. The 
essence of HF-SCF approximation is to replace the 
complicated many-electron problem by a one-electron 
problem in which electron-electron repulsion is treated in 
an average way [1]. The approximation is based on two 
grounds, first, each electron moves in the potential field of 
the nucleus plus the N-1 other electrons (central field 
approximation) that mean the electrons move 
independently [2]. The second must on initial wave 
function consistent with final it when inter in the 
calculation. The wave functions ψ( 𝑥𝑖 ) where 𝑥𝑖  spin 
orbitals included four quantum number ( 𝑛, 𝑙, 𝑚𝑙,𝑚𝑠 ), 
using in the calculation obey on Pauli exclusion principle, 
so consequently the wave function antisymmetric when 
two electrons exchange their locations. 

2. Theory 
In order to wave function satisfy the antisymmetric 

principle have to have written as slater determinant which 
named after John C. Slater [3]. 
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Slater created such a basis set of functions known as the 
slater-type orbitals (STO's), which written [4]. 

 ( ) ,, , ( ) ( , )nlm nl l mlr R r Yγ θ θ∅ = ∅  (2) 

Where 𝑅𝑛𝑙(𝑟) represented radial part of the wave function 
and its given as [5]. 

 ( )   ( )nl nlm nllR r N S r=  (3) 

𝑁𝑛𝑙𝑚𝑙  Normalized constant and written as 
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 ( ) ( )1 expn
nlS r r rξ−= −  (5) 

Where n principle quantum number, 𝑟 is the distance of 
the electron from the atomic nucleus, 𝑌𝑙,𝑚𝑙  is spherical 
harmonic, (𝜉) the orbital exponent. 

The Hartree-Fock spin orbitals can be described as a 
linear combination of slater orbitals from the function 
called basis functions written as [6]. 
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Where 𝑐𝑖  represent the constant coefficient and 𝛾𝑖  is the 
slater orbitals. 

The two-particle density 𝛤( 𝑥𝑚, 𝑥𝑛) contains all of the 
information necessary to calculate the energy and many 
properties of the atom or ion [7]. Written as  



75 International Journal of Physics  

 
0

2
( , , , . )

( , )
( 1)=

=

| | ...

k

HF i i
i

HF m n

x x x x p qm n p q

c

x x
N N dx dx

N

ϕ γ

ψ

=

…

Γ

−

∑

∬

 (7) 

Where 𝑥𝑛  represents the combined space and spin 
coordinate of electron 𝑛  and 𝑑𝑥𝑝 …𝑑𝑥𝑞  indicates 
integration summation over all N-electron except 𝑚 and 𝑛. 

The two-particle radial density function 𝐷(𝑟1, 𝑟2) it is 
probability density of finding the electron 1 at 𝑟1  and 
electron 2 at 𝑟2 from nucleus simultaneously written as [8]  

 2 2
1 2 1 2 1 2 1 2 1 2( , ) ( , )D r r r r r r d d d dσ σ= Γ Ω Ω∬  (8) 

The one-particle radial density function 𝐷(𝑟1) it is the 
probability density function of finding an electron at a 
distance 𝑟1  and 𝑟1 + 𝑑𝑟1  from the coordinate origin (i.e. 
nucleus) written as [9]. 

 ( ) ( )1 1 2 2
0

, .D r D r r dr
∞

= ∫  (9) 

The one-particle expectation value 〈𝑟1𝑛〉  can be 
calculated from the following equation [10]. 

 ( )1 1 1 1
0

  . n nr r D r dr
∞

= ∫  (10) 

Standard deviation ∆𝑟1 it is spead out or difference in 
the expectation value written as [11] 
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The inter-particle distribution function ƒ(r12) it is the 
probability density function of finding the electron 1 and 
electron 2 at the distance between 𝑟12  and 𝑟12 + 𝑑𝑟12 
written as [12] 

 ( )12 1 2 2 1( , )f r r r dr dr= Γ∫  (12) 

The inter–particle expectation value 〈 𝑟12𝑛 〉 It is given by 
[13] 
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Standard deviation ∆𝑟12 it is defined as [14]. 
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The expectation value of total energy for the system 
written by equation  

 ˆ     en eeE H T V V= = − + − +  (15) 

Where 𝑇  kinetic energy, 𝑉𝑒𝑛  electron-nucleus attraction 
energy and 𝑉𝑒𝑒 electron-electron repulsion energy. 

 1
1enV Z r−= −  (16) 

 1
12 eeV r−=  (17) 

From condition of the virial theorem [15]. The energy 
expectation value of total energy is related to expectation 
value of potential energy. 

 1    .
2T TE V T= = −  (18) 

3. Results and Discussion 
Table 1 and Table 2 have contained the results of one-

particle distribution function D(𝑟1) and the inter- particle 
distribution function 𝑓(𝑟12) respectively. D(𝑟1) and 𝑓(𝑟12) 
increases when atomic number Z increase because the 
distance between electrons and nucleus in 1s shell is 
smallest as well as the distance between electrons as a 
Figure 1, Figure 2. The greatest value of D(𝑟1) in 1s shell 
and smallest value in 2p shell. From Figure 1 when 𝑟1=0 
or ∞, D(𝑟1)=0, that means the probability of finding the 
electron inside the nucleus or far away from it equal zero. 
We noted two peaks of D(𝑟1) for 2s shell, the first peak 
represented the probability of finding the electron in 1s 
shell due to penetration phenomenon and the second peak 
represented the probability of finding the electron in 2s 
shell. The largest value of  𝑓(𝑟12)  in 1s shell for each 
system as a Figure 2. From Figure 2 when 𝑟12=0 or ∞, 
ƒ(r12) =0 that means the probability of finding two 
electrons in the same position or too far away from each 
other equal zero. 

 
Figure 1. The relation between one-particle radial density distribution 
function and location for each system 
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Figure 2. The relation between inter-particle distribution function and 
location for each system 

Table 1. The maximum values of the one-particle distribution 
function and corresponding location 𝒓𝟏 for each system 

Shell 
N+ O+2 

𝑟1 D(𝑟1) 𝑟1 D(𝑟1) 
1s 0.149 3.5506 0.1295 4.0873 
2s 0.995 0.85549 0.8383 1.0493 
2p 0.9184 0.74078 0.7397 0.94572 

Table 2. The maximum values of the inter-particle distribution 
function and corresponding location for each system 

Shell 
N+ O+2 

𝑟12 𝑓(𝑟12) 𝑟12 𝑓(𝑟12) 
1s 0.2515 2.6028 0.2179 2.9971 
2s 1.5496 0.53358 1.2904 0.64889 
2p 1.4508 0.51315 1.1614 0.65307 

Table 3. The one-particle expectation values 〈𝒓𝟏𝒏〉 where (n=-1,1,2) 
and standard deviation for each system 

Shell N+ O+2 

1s 

〈𝑟1−1〉 6.65657 7.65037 
〈𝑟11〉 0.22808 0.19821 
〈𝑟12〉 0.07009 0.05289 
∆𝑟1 0.13442 0.11661 

2s 

〈𝑟1−1〉 1.14084 1.38855 
〈𝑟11〉 1.25284 1.03371 
〈𝑟12〉 1.87455 1.26794 
∆𝑟1 0.55221 0.44653 

2p 

〈𝑟1−1〉 1.05597 1.31909 
〈𝑟11〉 1.24366 0.98447 
〈𝑟12〉 1.93255 1.19954 
∆𝑟1 0.62118 0.47996 

Table 3 and Table 4 have contained the one-particle 
〈𝑟1𝑛〉  and inter-particle 〈𝑟12𝑛 〉  expectation values and 
standard deviation. When 𝑛 = −1 the expectation values 
increase when the atomic number increase and the highest 
value of 〈𝑟1−1〉 in 1s shell and lowest value in 2p shell. 
When 𝑛 = 1,2  the expectation values decrease when Z 
increase. The highest value in 2s shell and lowest value in 
1s shell. 

Table 4. the inter-particle expectation values 〈𝒓𝟏𝟐𝒏 〉 where (n=-1,1, 2) 
and standard deviation for each system 

Shell N+ O+2 

1s 

〈𝑟12−1〉 4.12789 4.74807 
〈𝑟121 〉 0.33334 0.28964 
〈𝑟122 〉 0.14018 0.10577 
∆𝑟12 0.17047 0.14793 

2s 

〈𝑟12−1〉 0.72448 0.87655 
〈𝑟121 〉 1.7744 1.46203 
〈𝑟122 〉 3.74909 2.53585 
∆𝑟12 0.77499 0.63112 

2p 

〈𝑟12−1〉 0.73785 0.92953 
〈𝑟121 〉 1.78177 1.40714 
〈𝑟122 〉 3.86509 2.39905 
∆𝑟12 0.83088 0.64731 

The standard deviation ∆𝑟1  and ∆𝑟12  decrease when 
atomic number increase because decrease the distance 
between electrons and between electrons and nucleus. in 
addition, the largest value of ∆𝑟1 in 2p shell and smallest 
value in 1s shell for each system. 

Table 5. The expectation values for all attraction, repulsion, kinetic 
and total energies of intra-shells for each system.  

Shell N+ O+2 

1s 

−〈𝑉𝑒𝑛〉 79.87884 91.80444 
〈𝑉𝑒𝑒〉 4.12789 4.74807 
−〈𝑉𝑇〉 75.75095 87.05637 
〈𝑇〉 37.87548 43.52819 
−〈𝐸𝑇〉 37.87548 43.52819 

2s 

−〈𝑉𝑒𝑛〉 13.69008 16.6626 
〈𝑉𝑒𝑒〉 0.72448 0.87655 
−〈𝑉𝑇〉 12.9656 15.78605 
〈𝑇〉 6.4828 7.89302 
−〈𝐸𝑇〉 6.4828 7.89302 

2p 

−〈𝑉𝑒𝑛〉 12.67164 15.82908 
〈𝑉𝑒𝑒〉 0.73785 0.92953 
−〈𝑉𝑇〉 11.93379 14.89955 
〈𝑇〉 5.9669 7.44978 
−〈𝐸𝑇〉 5.9669 7.44978 

Table 5 contained the results of expectation of energies 
which increase when atomic number increase. They have 
highest value in 1s shell and lowest value in 2p shell. 

4. Conclusions 
When to increase the atomic number, the one-particle 

distribution function, the inter-particle distribution 
function and the expectation values of energies are 
increased. These properties have highest values in 1s shell 
and lowest values in 2p shell. When 𝑟1=0 or ∞ and 𝑟12=0 
or ∞ , D (𝑟1)=0 and ƒ(r12)=0 respectively. For expectation 
values 〈𝑟1𝑛〉 ,  〈𝑟12𝑛 〉 , where 𝑛 = −1  increase when Z 
increase and the highest of 〈𝑟1−1〉 in 1s shell. While when 
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𝑛 = 1,2 the expectation values decrease when Z increase 
and lowest value in 1s shell. 
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