Science \& Education

A Theoretical Study of the Atomic Properties for Subshells of \mathbf{N}^{+}and \mathbf{O}^{+2} Using Hartree-Fock Approximation

Hayder Ali Abd Alabas*, Qassim Shamkhi AL-Khafaji, Abbas Hassan Raheem
Department of physics, Faculty of Sciences, Kufa University, Iraq
*Corresponding author: hydar40@yahoo.com

Abstract

In this research, we calculated the atomic properties of systems have been studied (N^{+}and O^{+2}) for intra-shells (1s, 2s and 2p) using Hartree-Fock wave function. These properties included, one-particle radial density function, one-particle and inter-particle expectation values, inter-particle density function and expectation values of energies. All these atomic properties increase with atomic number, have highest values in 1 s shell and lowest values in $2 p$ shell. All results are obtained numerically by using the computer program (MathCad 14) because it able to calculation and plot functions. All atomic properties are calculated in atomic units.

Keywords: Hamiltonian operator \widehat{H}, wave function ψ, Approximation methods, multi-electron systems and Hund's rules

Cite This Article: Hayder Ali Abd Alabas, Qassim Shamkhi AL-Khafaji, and Abbas Hassan Raheem, "A Theoretical Study of the Atomic Properties for Subshells of N^{+}and O^{+2} Using Hartree-Fock Approximation." International Journal of Physics, vol. 4, no. 4 (2016): 74-77. doi: 10.12691/ijp-4-4-1.

1. Introduction

The Hartree-Fock Self-Consistent Field approximation (HF-SCF), it is a good approximation to many-electron systems, which is described by wave function. The essence of HF-SCF approximation is to replace the complicated many-electron problem by a one-electron problem in which electron-electron repulsion is treated in an average way [1]. The approximation is based on two grounds, first, each electron moves in the potential field of the nucleus plus the $\mathrm{N}-1$ other electrons (central field approximation) that mean the electrons move independently [2]. The second must on initial wave function consistent with final it when inter in the calculation. The wave functions $\psi\left(x_{i}\right)$ where x_{i} spin orbitals included four quantum number (n, l, m_{l}, m_{s}), using in the calculation obey on Pauli exclusion principle, so consequently the wave function antisymmetric when two electrons exchange their locations.

2. Theory

In order to wave function satisfy the antisymmetric principle have to have written as slater determinant which named after John C. Slater [3].

$$
\begin{align*}
& \Psi_{H F}\left(x_{1}, x_{2}, \ldots, x_{N}\right) \\
& =(N!)^{-\frac{1}{2}}\left|\begin{array}{ccc}
\varphi_{\mathrm{i}}\left(\mathrm{x}_{1}\right) & \ldots & \varphi_{\mathrm{j}}\left(\mathrm{x}_{1}\right) \\
\vdots & \ddots & \vdots \\
\varphi_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{N}}\right) & \ldots & \varphi_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{N}}\right)
\end{array}\right| \tag{1}
\end{align*}
$$

Slater created such a basis set of functions known as the slater-type orbitals (STO's), which written [4].

$$
\begin{equation*}
\gamma_{n l m}(r, \theta, \varnothing)=R_{n l}(r) Y_{l, m l}(\theta, \varnothing) \tag{2}
\end{equation*}
$$

Where $R_{n l}(r)$ represented radial part of the wave function and its given as [5].

$$
\begin{equation*}
R_{n l}(r)=N_{n l m l} S_{n l}(r) \tag{3}
\end{equation*}
$$

$N_{n l m_{l}}$ Normalized constant and written as

$$
\begin{align*}
N & =\frac{(2 \xi)^{n+\frac{1}{2}}}{((2 n)!)^{\frac{1}{2}}} \tag{4}\\
S_{n l}(r) & =r^{n-1} \exp (-\xi r)
\end{align*}
$$

Where n principle quantum number, r is the distance of the electron from the atomic nucleus, $Y_{l, m l}$ is spherical harmonic, (ξ) the orbital exponent.

The Hartree-Fock spin orbitals can be described as a linear combination of slater orbitals from the function called basis functions written as [6].

$$
\begin{equation*}
\varphi_{H F}=\sum_{i=0}^{k} c_{i} \gamma_{i} \tag{6}
\end{equation*}
$$

Where c_{i} represent the constant coefficient and γ_{i} is the slater orbitals.

The two-particle density $\Gamma\left(x_{m}, x_{n}\right)$ contains all of the information necessary to calculate the energy and many properties of the atom or ion [7]. Written as

$$
\begin{align*}
& \varphi_{H F}=\sum_{i=0}^{k} c_{i} \gamma_{i} \\
& \Gamma_{H F}\left(x_{m}, x_{n}\right) \tag{7}\\
& =\frac{N(N-1)}{N} \iint\left|\psi_{\left(x_{m}, x_{n}, x_{p}, \ldots x_{q}\right)}\right|^{2} d x_{p} \ldots d x_{q}
\end{align*}
$$

Where x_{n} represents the combined space and spin coordinate of electron n and $d x_{p} \ldots d x_{q}$ indicates integration summation over all N -electron except m and n.

The two-particle radial density function $D\left(r_{1}, r_{2}\right)$ it is probability density of finding the electron 1 at r_{1} and electron 2 at r_{2} from nucleus simultaneously written as [8]

$$
\begin{equation*}
D\left(r_{1}, r_{2}\right)=\iint \Gamma\left(r_{1}, r_{2}\right) r_{1}^{2} r_{2}^{2} d \Omega_{1} d \Omega_{2} d \sigma_{1} d \sigma_{2} \tag{8}
\end{equation*}
$$

The one-particle radial density function $D\left(r_{1}\right)$ it is the probability density function of finding an electron at a distance r_{1} and $r_{1}+d r_{1}$ from the coordinate origin (i.e. nucleus) written as [9].

$$
\begin{equation*}
D\left(r_{1}\right)=\int_{0}^{\infty} D\left(r_{1}, r_{2}\right) d r_{2} \tag{9}
\end{equation*}
$$

The one-particle expectation value $\left\langle r_{1}^{n}\right\rangle$ can be calculated from the following equation [10].

$$
\begin{equation*}
r_{1}^{n}=\int_{0}^{\infty} r_{1}^{n} D\left(r_{1}\right) d r_{1} \tag{10}
\end{equation*}
$$

Standard deviation Δr_{1} it is spead out or difference in the expectation value written as [11]

$$
\begin{equation*}
\Delta r_{1}=\left[\left\langle r_{1}^{2}\right\rangle-\left\langle r_{1}^{2}\right\rangle\right]^{1 / 2} . \tag{11}
\end{equation*}
$$

The inter-particle distribution function $f\left(r_{12}\right)$ it is the probability density function of finding the electron 1 and electron 2 at the distance between r_{12} and $r_{12}+d r_{12}$ written as [12]

$$
\begin{equation*}
f\left(r_{12}\right)=\int \Gamma\left(r_{1}, r_{2}\right) d r_{2} d r_{1} \tag{12}
\end{equation*}
$$

The inter-particle expectation value $\left\langle r_{12}^{n}\right\rangle$ It is given by [13]

$$
\begin{equation*}
\left\langle r_{12}^{n}\right\rangle=\int_{0}^{\infty} r_{12}^{n} f_{\left(r_{12}\right)} d r_{12} \tag{13}
\end{equation*}
$$

Standard deviation Δr_{12} it is defined as [14].

$$
\begin{equation*}
\Delta r_{12}=\left[r_{12}^{2}-r_{12}^{2}\right]^{1 / 2} \tag{14}
\end{equation*}
$$

The expectation value of total energy for the system written by equation

$$
\begin{equation*}
E=\langle\hat{H}\rangle=-\langle T\rangle+-\left\langle V_{e n}\right\rangle+\left\langle V_{e e}\right\rangle \tag{15}
\end{equation*}
$$

Where T kinetic energy, $V_{e n}$ electron-nucleus attraction energy and $V_{e e}$ electron-electron repulsion energy.

$$
\begin{gather*}
\left\langle V_{e n}\right\rangle=-Z\left\langle r_{1}^{-1}\right\rangle \tag{16}\\
\left\langle V_{e e}\right\rangle=\left\langle r_{12}^{-1}\right\rangle \tag{17}
\end{gather*}
$$

From condition of the virial theorem [15]. The energy expectation value of total energy is related to expectation value of potential energy.

$$
\begin{equation*}
\left\langle E_{T}\right\rangle=\frac{1}{2}\left\langle V_{T}\right\rangle=-\langle T\rangle . \tag{18}
\end{equation*}
$$

3. Results and Discussion

Table 1 and Table 2 have contained the results of oneparticle distribution function $\mathrm{D}\left(r_{1}\right)$ and the inter- particle distribution function $f\left(r_{12}\right)$ respectively. $\mathrm{D}\left(r_{1}\right)$ and $f\left(r_{12}\right)$ increases when atomic number Z increase because the distance between electrons and nucleus in 1s shell is smallest as well as the distance between electrons as a Figure 1, Figure 2. The greatest value of $\mathrm{D}\left(r_{1}\right)$ in 1 s shell and smallest value in $2 p$ shell. From Figure 1 when $r_{1}=0$ or $\infty, \mathrm{D}\left(r_{1}\right)=0$, that means the probability of finding the electron inside the nucleus or far away from it equal zero. We noted two peaks of $\mathrm{D}\left(r_{1}\right)$ for 2 s shell, the first peak represented the probability of finding the electron in 1 s shell due to penetration phenomenon and the second peak represented the probability of finding the electron in 2 s shell. The largest value of $f\left(r_{12}\right)$ in 1 s shell for each system as a Figure 2. From Figure 2 when $r_{12}=0$ or ∞, $f\left(r_{12}\right)=0$ that means the probability of finding two electrons in the same position or too far away from each other equal zero.

Figure 1. The relation between one-particle radial density distribution function and location for each system

Figure 2. The relation between inter-particle distribution function and location for each system

Table 1. The maximum values of the one-particle distribution function and corresponding location r_{1} for each system

Shell	N^{+}		O^{+2}	
	r_{1}	$\mathrm{D}\left(r_{1}\right)$	r_{1}	$\mathrm{D}\left(r_{1}\right)$
1 s	0.149	3.5506	0.1295	4.0873
2 s	0.995	0.85549	0.8383	1.0493
2 p	0.9184	0.74078	0.7397	0.94572

Table 2. The maximum values of the inter-particle distribution function and corresponding location for each system

Shell	N^{+}		O^{+2}	
	r_{12}	$f\left(r_{12}\right)$	r_{12}	$f\left(r_{12}\right)$
1 s	0.2515	2.6028	0.2179	2.9971
2 s	1.5496	0.53358	1.2904	0.64889
2 p	1.4508	0.51315	1.1614	0.65307

Table 3. The one-particle expectation values $\left\langle r_{1}^{n}\right\rangle$ where ($\mathrm{n}=-\mathbf{1 , 1 , 2}$) and standard deviation for each system

Shell					N^{+}	O^{+2}
1 s	$\left\langle r_{1}^{-1}\right\rangle$	6.65657	7.65037			
	$\left\langle r_{1}^{1}\right\rangle$	0.22808	0.19821			
	$\left\langle r_{1}^{2}\right\rangle$	0.07009	0.05289			
	Δr_{1}	0.13442	0.11661			
	$\left\langle r_{1}^{-1}\right\rangle$	1.14084	1.38855			
	$\left\langle r_{1}^{1}\right\rangle$	1.25284	1.03371			
	$\left\langle r_{1}^{2}\right\rangle$	1.87455	1.26794			
	Δr_{1}	0.55221	0.44653			
2 p	$\left\langle r_{1}^{-1}\right\rangle$	1.05597	1.31909			
	$\left\langle r_{1}^{1}\right\rangle$	1.24366	0.98447			
	$\left\langle r_{1}^{2}\right\rangle$	1.93255	1.19954			
	Δr_{1}	0.62118	0.47996			

Table 3 and Table 4 have contained the one-particle $\left\langle r_{1}^{n}\right\rangle$ and inter-particle $\left\langle r_{12}^{n}\right\rangle$ expectation values and standard deviation. When $n=-1$ the expectation values increase when the atomic number increase and the highest value of $\left\langle r_{1}^{-1}\right\rangle$ in 1 s shell and lowest value in 2 p shell. When $n=1,2$ the expectation values decrease when Z increase. The highest value in 2s shell and lowest value in 1s shell.

Table 4. the inter-particle expectation values $\left\langle r_{12}^{n}\right\rangle$ where ($\mathrm{n}=-1,1,2$) and standard deviation for each system

Shell		N^{+}	O^{+2}
1s	$\left\langle r_{12}^{-1}\right\rangle$	4.12789	4.74807
	$\left\langle r_{12}^{1}\right\rangle$	0.33334	0.28964
	$\left\langle r_{12}^{2}\right\rangle$	0.14018	0.10577
	Δr_{12}	0.17047	0.14793
2s	$\left\langle r_{12}^{-1}\right\rangle$	0.72448	0.87655
	$\left\langle r_{12}^{1}\right\rangle$	1.7744	1.46203
	$\left\langle r_{12}^{2}\right\rangle$	3.74909	2.53585
	Δr_{12}	0.77499	0.63112
2p	$\left\langle r_{12}^{-1}\right\rangle$	0.73785	0.92953
	$\left\langle r_{12}^{1}\right\rangle$	1.78177	1.40714
	$\left\langle r_{12}^{2}\right\rangle$	3.86509	2.39905
	Δr_{12}	0.83088	0.64731

The standard deviation Δr_{1} and Δr_{12} decrease when atomic number increase because decrease the distance between electrons and between electrons and nucleus. in addition, the largest value of Δr_{1} in 2 p shell and smallest value in 1 s shell for each system.

Table 5. The expectation values for all attraction, repulsion, kinetic and total energies of intra-shells for each system.

Shell		N^{+}	O^{+2}
1 s	$-\left\langle V_{e n}\right\rangle$	79.87884	91.80444
	$\left\langle V_{e e}\right\rangle$	4.12789	4.74807
	$-\left\langle V_{T}\right\rangle$	75.75095	87.05637
	$\langle T\rangle$	37.87548	43.52819
	$-\left\langle E_{T}\right\rangle$	37.87548	43.52819
2 s	$-\left\langle V_{e n}\right\rangle$	13.69008	16.6626
	$\left\langle V_{e e}\right\rangle$	0.72448	0.87655
	$-\left\langle V_{T}\right\rangle$	12.9656	15.78605
	$\langle T\rangle$	6.4828	7.89302
	$-\left\langle E_{T}\right\rangle$	6.4828	7.89302
	$-\left\langle V_{e n}\right\rangle$	12.67164	15.82908
	$\left\langle V_{e e}\right\rangle$	0.73785	0.92953
	$-\left\langle V_{T}\right\rangle$	11.93379	14.89955
	$\langle T\rangle$	5.9669	7.44978
	$-\left\langle E_{T}\right\rangle$	5.9669	7.44978

Table 5 contained the results of expectation of energies which increase when atomic number increase. They have highest value in 1 s shell and lowest value in 2 p shell.

4. Conclusions

When to increase the atomic number, the one-particle distribution function, the inter-particle distribution function and the expectation values of energies are increased. These properties have highest values in 1 s shell and lowest values in $2 p$ shell. When $r_{1}=0$ or ∞ and $r_{12}=0$ or $\infty, \mathrm{D}\left(r_{1}\right)=0$ and $f\left(r_{12}\right)=0$ respectively. For expectation values $\left\langle r_{1}^{n}\right\rangle,\left\langle r_{12}^{n}\right\rangle$, where $n=-1$ increase when Z increase and the highest of $\left\langle r_{1}^{-1}\right\rangle$ in 1s shell. While when
$n=1,2$ the expectation values decrease when Z increase and lowest value in 1s shell.

References

[1] Szabo and N.S. Ostlund, "Modern Quantum Chemistry Introduction to Advanced Electronic Structure Theory", Dover Publications, INC., New York, 1989.
[2] I. N. Levine, "Quantum chemistry", Prentice-Hall, Inc. New Jersey. 2000.
[3] J. c. Slater, "Quantum theory of atomic structure." McGRAWHILL BOOK COMPANY, INC., New York, 1960.
[4] Q. S. Alkafaji, S. K. AL-Shebly, H. H. Bilal, and N. H. Ali, J. Adv. Phys., Vol. 5, pp. 1-4, 2016.
[5] B. H.Al-Asaad, S. A.Hasson and K. H.Al-Bayati, J. Um-Salama Sceience Vol. 4, No. 3, pp. 393-396, 2007.
[6] K.H.AL-bayati, K. A. Mohammed and K.O.AL-baiti, J.UmSalama Sceience, Vol. 2, No. 2, pp. 317-326, 2005.
[7] R. J. Dosh, J. Kufa of Physics, Vol. 6, No. 1, pp. 107-111, 2014.
[8] H. Matsuyama and T. Koga, Theor. Chem. Acc., Vol. 118, pp. 643-647, 2007.
[9] T. Oyamada, K. Hongo, Y. Kawazoe, and H. Yasuhara (2010) J. of Chem. Phys., Vol. 133.
[10] Koga et al. (1999) J. Chem. Phys., Vol. 110, No. 12, pp. 57635771.
[11] K. H. AL-bayati, A.K. Ahmed and N.CH.AL-Tamimei, J.UmSalama Sceience, Vol. 3, No. 2, pp. 246-253, 2006.
[12] C. A. Coulson and A. H. Neilson, Proc. Phys. Soc., Vol. 78, pp. 831-837, 1961.
[13] R. J. Boyd and C. A. Coulson, J. Phys. B At. Mol. Phys., Vol. 6, pp. 782-793, 1973.
[14] R. J.Dosh and Q. S. AL-Kafaji, J. Kufa of Physics, Vol. 5, No. 1, pp. 91-102, 2013.
[15] C. L. Ladera and E. Alomá, Lat. Am. J. Phys. Educ., Vol. 4, No. 2, pp. 260-266, 2010.

