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Abstract— This paper addresses optimal periodic training sig-
nal design for frequency offset estimation in frequency selective
multipath Rayleigh fading channels. For a fixed transmitted
training signal energy and within a fixed length block, the
optimal periodic training signal structure (the optimal location of
identical training sub-blocks) and the optimal training sub-block
signal are presented. The optimality is based on the minimum
Cramer-Rao bound (CRB) criterion. Based on the snap-shot
CRB, the optimal periodic training structure is derived. The
optimal training sub-block signal is obtained by utilizing the
average CRB and the received training signal statistics. The
optimal training structure with optimal training signals achieves
substantial performance improvement over non-optimal training
structure with non-optimal training signals.

I. INTRODUCTION

Training signals are commonly used in communications
systems for timing synchronization, frequency synchronization
and channel estimation. Training signal design is an important
issue since a proper design can significantly improve the esti-
mation performance and can drastically reduce the estimation
complexity.

In [1], periodic training sequences for channel equalization
were addressed and zero autocorrelation (ZAC) sequences
were shown to be optimal for the cyclic convolution type chan-
nel equalization. Periodic and aperiodic training sequences
for least-square channel estimation were considered in [2]
where best sequences obtained by computer search were
presented for several channel lengths and training sequence
lengths. Several design criteria and corresponding methods for
efficient computer search of optimal sequences for channel
estimation were presented in [3]-[4]. Constructions of optimal
complex sequences were discussed in [5]-[6] and references
therein. Optimal training sequences and pilot tones for OFDM
channel estimation were addressed in [7]. Recent treatments
on the optimal training structure and training signal design
for channel estimation can be found in [8], [9] and references
therein. Training sequence design for timing synchronization
was discussed in [10] in the context of MSK signal. The
best pattern (+ or - signs) of repetitive training sub-blocks

for timing synchronization were presented in [11].
Regarding training design for frequency synchronization,

[12] addressed optimal training signals in AWGN channel by
using the CRB. Optimal training signal design for frequency
offset estimation in frequency selective channels is not an
easy task. Recently, [13] nicely addressed this problem by
applying a minmax approach based on asymptotic CRB. The
channel gains remain constant within the training block and
the asymptotic CRB is obtained by setting the training block
length (in samples) N → ∞. For a fixed channel energy,
the minmax approach minimizes the asymptotic CRB for the
worst-case channel response. The optimality of the training
signal from [13] is limited by the minmax approach and the
asymptotic CRB but [13] does provide a neat solution to a long
standing problem. It is also noted that due to the fixed channel
energy constraint, the channel fading effect is not included
in the training signal design of [13]. The optimal training
signal design for frequency offset estimation in frequency
selective fading channel is still an open problem which will
be addressed in this paper.

For the ease of estimation complexity, we consider periodic
training signal consisting of several identical sub-blocks. Pe-
riodic training signals have been extensively used in practice
(e.g., GSM, IEEE 802.11a, 802.15, 802.16a). In this paper, we
will answer the following question: “For a fixed transmitted
training signal energy, what is the optimal periodic training
structure (the location of the training sub-blocks) within a
fixed-length block and what is the optimal training signal (of
a sub-block) that gives the minimum CRB of the frequency
offset estimation in frequency selective multipath Rayleigh
fading channels?”. It will be addressed by two steps. In the
first step, we will find the optimal training structure for a fixed
block length and a fixed received training energy. In the second
step, we will investigate the optimal training signal (of a sub-
block) for a fixed transmitted training energy in a frequency
selective multipath Rayleigh fading channel. The combination
of the results from the two steps will give the solution to the
above question.
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The rest of the paper is organized as follows. Section II de-
scribes the signal model and the CRB. Section III presents the
optimal periodic training structure. In Section IV, the optimal
training signal (of a sub-block) is addressed. Simulation results
and discussions are provided in Section V and conclusions are
given in Section VI.

II. SIGNAL MODEL AND CRB
We consider a wide-sense stationary uncorrelated scattering

frequency selective Rayleigh fading channel characterized by
L taps with uncorrelated complex baseband tap gains h(0),
h(1), . . ., h(L − 1) and tap-spacing of symbol duration Ts.
The channel is assumed to be quasi-static where the tap gains
remain essentially constant over the block length NTs. The
complex baseband received signal sampled at the symbol rate
can be expressed by

r(n) = x(n)ej2πnv + w(n), n = 0, 1, . . . , N − 1 (1)

where v is the carrier frequency offset normalized by the
symbol rate 1/Ts, {w(n)} are the uncorrelated samples of
a zero-mean complex Gaussian noise process each having
a variance of σ2

n, and {x(n)} are the channel output signal
samples corresponding to the transmitted signal samples {sn :
n = −L + 1, −L + 2, . . . , N − 1} and can be given by

x(n) =

L−1∑
k=0

h(k) sn−k, n = 0, 1, . . . , N − 1. (2)

In matrix form, the received signal vector is expressed as

r = Λ(v)Sh + w (3)

where r = [r(0), r(1), . . . , r(N − 1)]T , h= [h(0), h(1), . . . ,
h(L − 1)]T , w= [w(0), w(1), . . . , w(N − 1)]T , Λ(v) = diag{1,
ej2πv , . . . , ej2π(N−1)v} is a diagonal matrix, S is an N × L

matrix with entries Sij = si−j , 0 ≤ i ≤ N − 1, 0 ≤ j ≤ L − 1,
and the superscript T denotes the transpose operation. The
covariance matrices for w and h are given by Cw = E[wwH ]

= σ2
nIN and Ch = E[hhH ] = diag{σ2

h0 , σ2
h1 , . . . , σ2

hL−1
} where

trace(Ch) is assumed to be unity and IN is a N ×N identity
matrix. The superscript H represents the Hermitian transpose.

If {sk} are known training signal samples, then for a given
channel realization h, the conditional CRB (or the snap-shot
CRB) for the estimation of v based on the received vector r
is given by [14]

CRB|h =
σ2

n

8π2hH SH M (IN − B)MSh
(4)

where M = diag{0, 1, . . . , N − 1} and B = S(SH S)−1SH

is a projection matrix. If the whole training block of length
N+L samples is constructed by repeating (P+1) times the same
training signal sub-block of length L samples, the snap-shot
CRB for the obtained periodic training signal can be simplified
as [14]

CRB|h =
3 SNR−1

i

2π2(PL3)(P 2 − 1)
= CRB|SNRi

. (5)

where
SNRi =

E1/L

σ2
n

(6)

and E1 denotes the energy of a received training sub-block.
The snap-shot CRB depends only on SNRi for fixed values of

N Received Training Samples

3210

1i0i i

L

P-2 P-1

U-1

sub-block index

Fig. 1. An arbitrary periodic training structure illustrating the sub-blocks
with indexes [i0, i1, . . . , iU−1] used in the estimation. (The shaded sub-
blocks serve as CPs and hence are not included in the observation vector of
the estimation)

P and L. Hence, CRB|h of (5) can be considered as CRB|SNRi
,

the CRB conditioned on the snap-shot SNR of the received
training signal.

III. OPTIMAL PERIODIC TRAINING STRUCTURE

Periodic training signals are commonly used in practice due
to their advantage of complexity reduction in estimation. For
example, using a periodic training block, which consists of
(P +1) sub-blocks of length L samples each, rather than a non-
periodic training block of the same length N + L = (P + 1)L

would reduce the estimation complexity approximately by a
factor of L [14]. For the same reason, we consider periodic
training signals in this paper. Our interest is to find optimal
periodic training structure that gives the minimum CRB. The
CRB is derived for a joint estimation of the frequency offset
and the channel impulse response as in [14].

The problem is formulated as follows. For a block with a
fixed length of (N + L) samples, which may contain training
signals only or both training and data signals, and for a fixed
received training signal energy E , what is the best periodic
training structure? This problem is divided into two sub-
problems. In the first sub-problem, we will investigate the
best structure consisting of V identical training sub-blocks,
i.e., we have to find the best locations of V identical training
sub-blocks within the block of length N + L samples. Note
that E = V E1 and V ≤ (P + 1) if N + L = (P + 1)L. In the
second sub-problem, we will find the best value of V .

Note that if E1 = E/(P + 1), then V = P + 1. The first
received sub-block which serves as a cyclic prefix part to
absorb the channel dispersion, is discarded in the estimation.
Let U be the number of training sub-blocks used in the
estimation. Then U = P in this case. In general, if all V
sub-blocks are consecutively located as one group, U = V −1.
If V sub-blocks form two groups of consecutive sub-blocks,
where data signals are located between the two groups, then
U = V − 2. If there are G groups of consecutive training sub-
blocks, we have U = V − G. Hence, forming more groups
of consecutive training sub-blocks (a group may contain one
or more consecutive sub-blocks) will result in more loss of
training energy used in the estimation. We will denote this
training energy loss as the energy loss in the cyclic prefixes.

A general training structure can be defined by the location
index vector J = [i0, i1, . . . , iU−1] of the U sub-blocks used
in the estimation (see Fig. 1). The indexes within the block
are from −1 to P −1 and hence, we have i0 ≥ 0, iU−1 ≤ P −1
and ik < im for k < m. The corresponding snap-shot CRB can
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be given by (details are skipped due to space limitation)

CRB|SNRi
(J) =

SNR−1
i

8π2L3(
∑U−1

k=0 i2k − (
∑U−1

n=0 in)2

U
)
. (7)

For a general training structure consisting of V = 2(K + 1)
identical training sub-blocks, each having a received sub-block
energy E1 = E/(2K + 2), the best training structure can be
obtained by

J†
2K+2 = arg minJ2K+2CRB|SNRi

(J2K+2) (8)

where the vector J2K+2 is of variable length U , 0 ≤ U ≤
(2K + 1), corresponding to the location indexes of U sub-
blocks used in the estimation out of 2K+2 training sub-blocks.
For each fixed value of U , there are several different J2K+2’s
corresponding to different location index vectors.

Based on the snap-shot CRB in (7) and the result of the
optimal training signal design in the AWGN channel from
[12], the optimal training structure can be given by its location
index vector as follows:

J†
2K+2 = [0, 1, . . . , K − 1, P − K, P − K + 1, . . . , P − 1]. (9)

The corresponding snap-shot CRB can be expressed as

CRB|SNRi
(J†

2K+2) =
3 SNR−1

i

4Kπ2L3(4K2 + 3P 2 − 6PK − 1)
. (10)

If the block contains an odd number of training sub-blocks,
say 2K + 3 sub-blocks with the received sub-block energy of
E1 = E/(2K + 3), the optimal structure will take either of the
following two forms:

J†
2K+3 = [0, 1, . . . , K, P − K, P − K + 1, . . . , P − 1] (11)

J†
2K+3 = [0, 1, . . . , K − 1, , P − K − 1, P − K, . . . , P − 1].

(12)

Both structures will give the same performance. It can be
easily checked from (7) that J†

2K+2 gives a smaller snap-shot
CRB than J†

2K+3. Hence, it is sufficient to consider an even
number of training sub-blocks, i.e., (2K + 2).

Next, we investigate what value of K is the best for a block
with a fixed length of (P +1)L samples, a fixed total received
training energy E and a fixed noise variance σ2

n. Eq.(10) can
be expressed as

CRB|SNRi
(J†

2K+2) =
3σ2

n/E
2L2π2

K + 1

4K3 − 6PK2 + (3P 2 − 1)K

=
3σ2

n/E
2L2π2

f(K) (13)

where
f(K) =

K + 1

4K3 − 6PK2 + (3P 2 − 1)K
. (14)

Hence, the best value of K is determined by

K† = arg min1≤K≤�(P−1)/2�f(K) (15)

which can be easily evaluated numerically. A close form
solution can be obtained but due to space limitation, it is not
included. Note that since f(K) is independent of SNRi, the best
value K† holds for any SNRi and hence, for fading channels
as well.

IV. OPTIMAL TRAINING SUB-BLOCK SIGNAL

In the previous section, we design the optimal periodic
training structure for a fixed block length and a fixed received
training energy. Although the channel dispersion effect is
included in the design, the channel fading effect is excluded
from the design due to the condition of the fixed received
training energy. In this section, we will investigate the effect
of the channel fading on the average CRB and we will find
optimal training signal within a training sub-block so that
the average CRB is minimized. We consider a frequency
selective multipath Rayleigh fading channel. The problem can
be formulated as follows: “For a fixed transmitted energy of a
periodic training signal composed of several identical training
sub-blocks, what is the best training sub-block signal that
minimizes the average CRB in a frequency-selective multipath
Rayleigh fading channel ?”

The multipath channel fading causes fluctuation of the
received training energy (although the long-term average or the
expected value of the received training energy is fixed) which
in turn affects the average CRB. To minimize the average
CRB, the training signal should be designed such that the
received training energy fluctuation is minimized. This fact
will be proved later. In the context of a periodic training signal,
only one training sub-block is needed to be considered in the
training signal design.

Define the following:

Z =

L−1∑
k=0

|x(k)|2 = E1. (16)

Then for a given periodic training structure, we know from
(7) that

CRB|SNRi
=

α

Z
= CRB|Z (17)

where

α =
σ2

n

8π2L2(
∑U−1

k=0 i2k − (
∑U−1

n=0 in)2

U
)
. (18)

In a multipath Rayleigh fading channel, Z can be well
approximated by a Gamma random variable with the parameter
n. Note that |x(k)|2 is a chi-square random variable. The sum
of chi-square random variables is often represented by another
chi-square random variable (see [15] and references therein).
The Gamma distribution is a generalization of the chi-square
distribution in that n is an integer in the latter but can be
any positive real number in the former. In our case, n ≥ 2.
The mean and variance of Z are given by E[Z] = nσ2 and
σ2

Z = 2nσ4 where the values of n and σ2 depend on the training
signal but E[Z] = nσ2 =

∑L−1
k=0 |sk|2 is a constant equal to the

transmitted energy of one training sub-block (assuming the
total channel power transfer gain is unity). Let pZ(z) denote
the probability density function of Z. The average CRB in the
multipath Rayleigh fading channel can be given by

CRB =

∫ ∞

0

CRB|Z pZ(z) dz (19)

�
∫ ∞

0

α

z

1

σ2 2n/2 Γ(n/2)
zn/2 e

− z
2σ2 dz (20)

=
α

E[Z] − σ2
Z/E[Z]

. (21)
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Eq.(21) indicates that the larger received training energy
fluctuation (larger σ2

Z) causes the larger CRB in the multipath
Rayleigh fading channel. In other words, the training signal
which gives the minimum fluctuation of the received training
energy is the optimal training signal.

After some calculation, the variance of Z is given by

σ2
Z =

L−1∑
k=0

(CS(k, k))2E[|h(k)|4]

+

L−1∑
m=0

L−1∑
n=0,n�=m

CS(m, n)CS(n, m)σ2
hm

σ2
hn

+

L−1∑
i=0

L−1∑
l=0,l�=i

CS(i, i)CS(l, l)σ2
hi

σ2
hl

− (E[Z])2 (22)

where CS(m, n) is the (m,n)-th element of CS = SH S

which represents the periodic autocorrelation of the training
signal {sk : k = 0, 1, . . . , L − 1}. Note that CS(n, n) =∑L−1

k=0 |sk|2 for all n and CS(m, n) = C∗
S(n, m). From (22),

it is clear that σ2
Z is minimized when CS(l, k) = 0 for

l �= k. In other words, the training signal which possesses
zero periodic autocorrelation for any non-zero correlation lag
(usually referred to as ZAC signal) minimizes the received
training energy fluctuation in the multipath Rayleigh fading
channel. Combining this result with that of (21) indicates
that the ZAC training signals are optimal for frequency offset
estimation in multipath Rayleigh fading channels.

V. SIMULATION RESULTS AND DISCUSSIONS

We assume that the channel gains remain unchanged over a
block of length 40L samples (i.e., P = 39) where the channel
length L is 16 samples. The channel is assumed to have a
power delay profile with a 3 dB per tap decaying factor.
We first evaluate various training structures which have the
same total transmitted training energy ETx and are composed
of identical training sub-blocks of length L samples each.
Structure#1 denotes a structure where the first 20 sub-blocks
are training signals. Structure#2 represents a structure where
all 40 sub-blocks are training signals (sub-block energy in this
case will be smaller than that in Structure#1). The Optimal
structure is the one where the first and the last K + 1 sub-
blocks are training signals. The training sub-block signal used
is the one from IEEE 802.11a (OFDM). Note that Structure#1
corresponds to the training signal proposed in [16]. The
frequency offset estimation method of [17] (Method-B) is used
in the evaluation of the training structures. For very low SNR,
the initial frequency offset compensation of [17] is done by the
method of [16] with 64-point FFT. The results are presented
for different values of γ = ETx/(160 σ2

n). For the optimal
structure with the optimal K value (K = 4), γ equals to SNR.

Fig. 2 shows the frequency offset estimation performance
in terms of the snap-shot CRBs (7), the average CRBs ((19)
evaluated by simulation) and MSE (simulation results) for
different training structures in the multipath Rayleigh fading
channel. Both CRBs and MSEs indicate the same information
on the training structures. Structure#2 performs better than

Structure#1 but at the cost of more system resource (time).
The optimal structures with K = 4 and K = 9 perform
significantly better than Structure#1 and Structure#2. The op-
timal structure with K = 9 utilizes the same system resource
(time) as Structure#1. The optimal structure with K = 4 uses
less system resource (time). Although smaller K needs less
system resource (time), it may not give a better estimation
performance. The best value of K, denoted by K†, in terms
of estimation performance is given by (15). For the considered
parameters, K† = 4. The simulation results and the snap-shot
CRBs are presented in Fig. 3 for the optimal structure with
different values of K. They agree with the theoretical result
of (15) indicating K† = 4.

Next, using the optimal training structure with the best value
of K, we investigate several training sub-block signals. The
considered signals are the OFDM training sub-block signal
from IEEE 802.11a, several constant amplitude sequences
including a m-sequence (1-bit augmented to have an even
length) and a constant amplitude ZAC sequence (CAZAC) and
two arbitrary non-ZAC sequences. The snap-shot CRB (which
is independent of the training sub-block signal), the average
CRBs and the MSEs for different training sub-block signals
are presented in Fig. 4. Among them, the ZAC sequence is
the best. Since the IEEE 802.11a training sub-block signal
and the m-sequence have correlation properties very close to
that of ZAC, their performance are almost the same as ZAC
sequence (not distinguishable in the figure). The performances
of two arbitrary non-ZAC sequences are worse than the ZAC
sequence, as expected.

The optimal training sub-block (ZAC sequence) improves
about 1.5 to 2 dB in CRB or MSE performance over the two
arbitrary non-ZAC sequences. For the considered parameters,
the proposed optimal training structure has approximately
9 dB improvement in CRB or MSE performance over the
conventional consecutive periodic training structure such as
Structure#1.

VI. CONCLUSIONS

We have presented an optimal periodic training signal
design for frequency offset estimation in frequency selective
multipath Rayleigh fading channels. The optimality is based on
the minimum average CRB in the frequency selective fading
channel within the framework of a fixed total transmitted
training signal energy and a fixed block length over which
the channel gains remain unchanged. The training design is
addressed in terms of the optimal periodic training structure
(the optimal location of identical training sub-blocks within
the block) and the optimal training sub-block signal. Signals
having zero autocorrelation (ZAC) property experience the
minimum received energy fluctuation in frequency selective
Rayleigh fading channels which translates into the minimum
average CRB. Hence, the optimal training sub-block is a
ZAC signal. This result also provides the missing proof of
the optimality or near-optimality of several training signals
adopted in many standards. The optimal periodic training
structure consists of (2K† + 2) identical training sub-blocks,
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each having length L samples (the channel length) within the
block of length (P+1)L samples. The first K†+1 training sub-
blocks are located at the beginning and the rest resides at the
end of the block. The value of K† is a function of P and can
easily be calculated. The optimal periodic training structure
achieves a significant estimation performance improvement
over the conventional consecutive periodic training structure.
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