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Abstract

One of the prevailing ideas in geometric and topological data analysis is to provide descriptors that encode
useful information about hidden objects from observed data. The Reeb graph is one such descriptor for a given
scalar function. The Reeb graph provides a simple yet meaningful abstraction of the input domain, and can also
be computed efficiently. Given the popularity of the Reeb graph in applications, it is important to understand its
stability and robustness with respect to changes in the input function, as well as to be able to compare the Reeb
graphs resulting from different functions.

In this paper, we propose a metric for Reeb graphs, called the functional distortion distance. Under this
distance measure, the Reeb graph is stable against small changes of input functions. At the same time, it
remains discriminative at differentiating input functions. In particular, the main result is that the functional
distortion distance between two Reeb graphs is bounded from below by (and thus more discriminative than) the
bottleneck distance between both the ordinary and extended persistence diagrams for appropriate dimensions.

As an application of our results, we analyze a natural simplification scheme for Reeb graphs, and show
that persistent features in Reeb graph remains persistent under simplification. Understanding the stability of
important features of the Reeb graph under simplification is an interesting problem on its own right, and critical
to the practical usage of Reeb graphs.
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1 Introduction

One of the prevailing ideas in geometric and topological data analysis is to provide descriptors that encode useful
information about hidden objects from observed data. The Reeb graph is one such descriptor for a given function.
Specifically, given a continuous scalar function f : X → IR defined on a domain X, the levelset of f at value a
is the set f −1(a) = {x ∈ X | f (x) = a}. As the scalar value a increases, connected components appear, disappear,
split and merge in the level set, and the Reeb graph of f tracks such changes. It provides a simple yet meaningful
abstraction of the input domain. The Reeb graph was first termed and used for shape understanding by Shinagawa
et al. [30]. Since then, it has been used in a variety of applications in fields such as graphics and scientific
visualization [2, 4, 19, 20, 22, 28, 29, 30, 32, 33, 35, 36]; also see [5] for a survey.

The Reeb graph can be computed efficiently in O(m log m) time for a piecewise-linear function defined on an
arbitrary simplicial complex domain with m vertices, edges and triangles [26] (a randomized algorithm was given
in [18]). This is in contrast to, for example, the O(m3) time (or matrix multiplication time) needed to compute
even just the first-dimensional homology information for the same simplicial complex. Being a graph structure, it
is also simple to represent and manipulate. These properties make the Reeb graph also appealing for analyzing
high-dimensional points data. For example, a variant of the Reeb graph is proposed in [31] for analyzing high
dimensional data, and in [17], the Reeb graph is used to recover a hidden geometric graph from its point samples.
Very recently in [11], it is shown that a certain Reeb graph can reconstruct a metric graph with respect to the
Gromov-Hausdorff distance.

Given the popularity of the Reeb graph in both low and high dimensional data analysis, it is important to
understand its stability and robustness with respect to changes in the input function (both in function values and in
the domain). To measure the stability, we need to first define distance between two Reeb graphs. Furthermore,
an important usage of the Reeb graph is as a summary for the hidden function that is easier to process than the
original domain or the function. For example, one can compare shapes by comparing Reeb graphs of appropriate
functions defined on them, or compute the average of a collection of input function in the space of Reeb graphs.
Again, a central problem involved is to have a meaningful distance measure between Reeb graphs.

In this paper, we propose a metric for Reeb graphs, called the functional distortion distance, drawing intuition
from the Gromov-Hausdorff distance for measuring metric distortion. Under this distance, the Reeb graph is stable
against small changes of input functions; at the same time it remains discriminative at differentiating functions
(these statements will be made precise in Section 4). In particular, the main result is that the functional distortion
distance between two Reeb graphs is bounded from below by (and thus more discriminative than) the bottleneck
distance between the (ordinary and extended) persistence diagrams for appropriate dimensions. On the other hand,
the functional distortion distance yields the same type of L∞ stability that persistence diagrams enjoy [12, 9, 10].
The persistence diagram has been a popular topological summary of shapes and functions, and the bottleneck
distance is introduced in [12] as a natural distance measure for persistence diagrams. However, as the simple
example in Figure 1 (a) shows, the Reeb graph takes the structure of the domain (and the function) into account,
and can be strictly more discriminative than the persistence diagrams in differentiating functions.

As an application of our results, we show in Section 5 that “important” features in the Reeb graph remains
important under the simplification of the Reeb graph. Understanding the stability of Reeb graph features under
simplification is an interesting problem on its own right: In practice, one often collapses small branches and loops
in the Reeb graph to remove noise; e.g [14, 17, 27]. It is crucial that by collapsing a collection of small features,
there is no cascading effect that causes larger features to be destroyed, and our results in Section 5 confirm that.

Very recently, there has been some interesting work on developing a distance measure for the merge trees,
which are closely related to loop-free Reeb graphs (i.e, the contour trees). In particular, the ε-interleaving distance
based on the idea of interleaving between 0-dimensional persistence modules is proposed in [24]. Similar stability
and discriminative results relating this measure to the ordinary persistent homology are obtained. However, it is
not clear how to extend these results to loops, an important family of features encoded in the Reeb graph. The
proposed functional distortion distance is similar to this ε-interleaving distance when applied to merge trees.
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However, the main technical challenge involved in our work is to relate the proposed distance to the 1st extended
persistent homology, which describes loops in the Reeb graph and whose handling relies on a very different
approach. Finally, another distance measure based on the branch decomposition of contour trees is proposed in
[3], and a polynomial time algorithm to compute it for two merge trees is given. This measure, however, is not
stable with respect to changes in the function. It is also not clear how to extend this measure to Reeb graphs.

2 Preliminaries and Problem Definition

Reeb graphs. Given a continuous function f : X→ IR defined on a triangulable topological space X, for each
scalar value α ∈ IR, a level set of f w.r.t α is a set f −1(α) = {x ∈ X : f (x) = α}. A level set may contain several
connected components. Two points x, y ∈ X are in the same equivalent class iff they are in the same connected
component, denoted by x ∼ y. The Reeb graph of the function f : X→ IR, denoted by R f , is the quotient space
X/∼, which is the set of equivalent classes equipped with the quotient topology induced by this equivalent relation.

f X Rf
µ

µ(x) µ(y) = µ(z)
x y z

Intuitively, R f is obtained by continuously collapsing every component of
each level set into a single point, and there is a natural surjection µ : X→ R f

(the quotient map) associated with this process, satisfying µ(x) = µ(y) if and
only if x ∼ y. The input function f on X also induces a continuous function
f̃ : R f → IR defined as f̃ (z) = f (x) for any preimage x ∈ µ−1(z) of z. To
simplify notation, we often write f : R f → IR instead of f̃ when there is no
ambiguity. In all illustrations of this paper, we plot the Reeb graph with the
height of a point z corresponding to f (z).

Given a point x ∈ R f , we use the term up-degree (resp. down-degree) of x to denote the number of branches
incident to x that are higher (resp. lower) than x w.r.t. values of f . A point is regular if both of its up-degree and
down-degree equal to 1, and critical otherwise. A critical point is a minimum (maximum) if it has down-degree 0
(up-degree 0), and a down-fork saddle (up-fork saddle) if it has down-degree (up-degree) larger than 1. A critical
point can be degenerate, having more than one types of criticality (such as both a minimum and an up-fork saddle
if it has down-degree 0 and up-degree 2). From now on, we use the term node to refer to a critical point in the
Reeb graph. For simplicity of exposition, we assume that all nodes of the Reeb graph have distinct f function
values. Note that because of the monotonicity of f at regular points, the Reeb graph together with its associated
function is completely described by the function values on the nodes.

Persistent homology and persistence diagrams. The notion of persistence was originally introduced by Edels-
brunner et al. in [16]. There has since been a great amount of development both in theory and in applications;
see e.g [37, 7, 10]. This paper does not concern the theory of persistence, hence below we only provide a simple
description so as to introduce the notion of persistence diagrams, which will be used later. We refer the readers to
[25] for a more detailed treatment of homology groups in general and [15] for persistent homology.

Given a function f : X → IR defined on a topological space, we call X≤a = {x ∈ X | f (x) ≤ a} the sublevel
set of X w.r.t. f . Let Hp(Y) denote the p-th homology group of a topological space Y. In this paper, we always
consider homology with Z2 coefficients, so Hp(Y) is a vector space. As we sweep through X in increasing values
of a we inspect the changes in Hp(X≤a). Sometimes, new homology classes (such as a family of loops, which
gives 1-dimensional homology classes) will be created. Sometimes, existing homology classes will be destroyed
(such as a loop now bounds a surface patch and thus becomes null-homologous). More specifically, consider the
following sequence of vector spaces,

0 = Hp(X≤a0)→ Hp(X≤a1)→ · · · → Hp(X≤aN ) = Hp(X), (1)

where each homomorphism µ
j
i : Hp(X≤ai) → Hp(X≤a j) is induced by the canonical inclusion X≤ai ↪→ X≤a j .

Throughout this paper, we assume that f is tame, i.e., N < ∞ and Hp(X≤ai) < ∞ for all i. A homology class
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Figure 1: (a) The two trees have the same persistence diagrams (thus the bottleneck distance between their persistence
diagrams is 0), but their tree structures are different. The functional distortion distance measure will differentiate these
two cases. In (b), solid dots are minimum and maximum, empty dots are essential saddles, and crossed-dots are ordinary
saddles. The ordinary saddle x6 merges components C1 and C2 in the sublevel set below it, represented by minima x1 and
x2 respectively. The resulting critical pair (x2, x6) gives rise to the point (a2, x6) in Dg0(R f ) in (c), where ai = f (xi) for
i ∈ [1, 12]. The essential saddle x9 is paired with the up-fork saddle x4, corresponding to the thin loop x4x8x6x5x9x4 created
at x9. This gives rise to the point (a4, a9) in the extended persistence diagram ExDg1(R f ) in (d).

is created at time ai if it exists in Hp(X≤ai) but does not have preimage in Hp(X≤ai−1) under the map µi
i−1. A

homology class is destroyed at time a j if it exists in Hp(X≤a j) but its image is zero in Hp(X≤a j+1). Persistent
homology records such birth and death events, and one can encode the information in the ordinary persistence
diagram. In particular, the p-th ordinary persistence diagram of f , denoted by Dgp( f ), consists of a multi-set of
points in the 2-dimensional plane, where each point (b, d) corresponds uniquely to the birth time b and death time
d of some p-dimensional homology class. See Figure 1 (c) for an example of the 0-th dimensional persistence
diagram. In general, since Hp(X) may not be trivial, any nontrivial homology class of Hp(X), referred to as an
essential homology class, will never die during the sequence (1). For example, there is a point (a1,∞) in Figure 1
(b) indicating a 0-dimensional homology class that was created at a1 but never dies.

One can use the following sequence, where an extended sequence of relative homology groups is appended at
the end of Sequence (1), to obtain a pairing of the essential homology classes (i.e, homology classes of Hp(X)):

0 = Hp(X≤a0)→ · · · → Hp(X)→ Hp(X,X≥aN )→ Hp(X,X≥aN−1)→ · · · → Hp(X,X≥a0) = 0. (2)

Here X≥a denotes the super-level set X≥a = {x ∈ X | f (x) ≥ a}. Since the last vector space Hp(X,X≥a0) = 0, each
essential homology class will necessarily die in the extended part of the above sequence at some relative homology
group Hp(X,X≥a j). We refer to the multi-set of points encoding the birth and death time of p-dimensional
homology classes born in the original part and die in the extended part of Sequence (2), as the p-th extended
persistence diagram of f , denoted by ExDgp( f ). In particular, each point (b, d) in ExDgp( f ) uniquely refers to a
p-dimensional (essential) homology class that is born in Hp(X≤b) and died after Hp(X,X≥d). See Figure 1 (d) for
an example.

Relation of Reeb graph and persistent homology. There is a natural way to define “features” of the Reeb
graph and their “importance”, which turns out to be consistent with information encoded in the diagrams Dg0(R f )
and ExDg1(R f ) of the function f : R f → IR. Since R f is a graph, we only need to consider the 0- and 1-dimensional
(persistent) homology. We provide an intuitive treatment below.

Imagine that we sweep through R f in increasing values of a and inspect the changes in H0((R f )≤a) (i.e, the
connected components of the sublevel set (R f )≤a). New components in the sublevel sets are created at local
minima of R f . At any moment, associate each connected component C in the sublevel set with the lowest local
minimum m contained in C: intuitively, C is created by m.

Consider a down-fork saddle node s with a = f (s); for now, assume for the sake of simplicity that its down
degree is 2. By the construction of Reeb graph, s merges two connected components from the level set just below
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it into a single one in the level set (R f )a. If these two connected components are also disjoint within the open
sublevel set (R f )<a, for reasons that will become obvious soon we call s an ordinary saddle; otherwise, it is an
essential saddle. In other words, an ordinary saddle not only merges two components in the level set, it also
merges two components, say C1 and C2, in the sublevel set. Let x1 and x2 be the global minimum of C1 and C2,
respectively. After the merging in the sublevel set (R f )≤a, the new component is represented by the lower of x1
and x2. We say that the component represented (created) by the higher minimum, say x2, is killed by the ordinary
saddle s, and we obtain a critical pair (x2, s). The critical pair (x2, s) gives rise to a unique point ( f (x2), f (s)) in
the 0-th ordinary persistence diagram Dg0(R f ), representing a connected component created at time f (x2) and
killed at f (s). Indeed, there is a one-to-one correspondence between the set of such pairs of minima and ordinary
down-fork saddles and points in the 0th persistence diagram Dg0(R f ) with finite coordinates; see Figure 1 (b) and
(c). A symmetric procedure with − f will produce critical pairs between maxima and ordinary up-fork saddles,
corresponding to points in the 0th persistence diagram Dg0(R− f ). These critical pairs capture the branching
features of a Reeb graph.

For an essential saddle s with down-degree 2, its two lower branches are connected in the sublevel set; see
Figure 1 (b) and (d). Hence, the introduction of s will create a family of cycles Γs in the sublevel set (R f )≤ f (s), all
with s being the highest point. Since R f is a graph, these cycles are non-trivial in R f , and their corresponding
homology classes will not be destroyed in ordinary persistent homology. Consider the cycle γ with largest
minimum value of f among all cycles in Γs. We use γ to represent the cycle feature (1-cycle) created by s and pair
s with the point s′ achieving the minimum on γ. The persistence of this feature is f (s) − f (s′), which measures
the size (height) of this cycle w.r.t. f . It turns out that s′ is necessarily an essential up-fork saddle [1], and we call
such a pair (s′, s) an essential pair. The essential pair (s′, s) gives rise to a unique point ( f (s′), f (s)) in the 1st
extended persistence diagram of f . Indeed, the collection of essential pairs has a one-to-one correspondence to
points in ExDg1(R f ). (The extended persistence diagram ExDg1(R− f ) is the reflection of ExDg1(R f ) and thus
encodes the same information as ExDg1(R f ).) These essential pairs capture the cycle features of a Reeb graph.

In short, the branching features and cycle features of a Reeb graph give rise to points in the 0th ordinary and
1st extended persistence diagrams, respectively. However, the persistence diagram captures only the lifetime of
features, but not how these features are connected; see Figure 1 (a). In this paper we aim to develop a way of
measuring distance between Reeb graphs which also takes into account the graph structure.

3 A Distance Measure for Reeb Graphs

From now on, consider two Reeb graphs R f and Rg, with functions f : R f → IR and g : Rg → IR defined on them.
While topologically each Reeb graph is simply a graph, it is important to note that it also has a function define on
it (induced from the input scalar field). Hence the distance measure should depend on both the graph structures
and the functions f and g. Approaching the problem through graph isomorphisms does not seem viable, as small
perturbation of the function f can create arbitrary number of new branches and loops in the graph. To this end, we
first put the following metric structure on a Reeb graph R f to capture the function f information.

Specifically, for any two points (not necessarily nodes) u, v ∈ R f , let π be a path between u and v. The range of
this path is the interval range(π) := [minx∈π f (x),maxx∈π f (x)], and its height is simply the length of this interval,
denoted by height(π) = maxx∈π f (x) −minx∈π f (x). We define the distance

d f (u, v) = min
π:u;v

height(π), (3)

where π ranges over all paths from u to v. Note that this is in fact a metric, since on Reeb graphs there is no path of
constant function value between two points u , v. We put f in the subscript to emphasize the dependency on the
input function. Intuitively, d f (u, v) is the minimal function difference one has to overcome to move from u to v.

To define a distance between R f and Rg, we need to connect the spaces R f and Rg, which is achieved by
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continuous maps φ→ : R f → Rg and φ← : Rg → R f . The functional distortion distance is defined as:

dFD(R f ,Rg) := inf
φ→:R f→Rg, φ←:Rg→R f

max{max
x∈R f
| f (x) − g(φ→(x))|, max

y∈Rg
|g(y) − f (φ←(y))|,

max
x∈R f

d f (x, φ← ◦ φ→(x)), max
y∈Rg

dg(y, φ→ ◦ φ←(y))}, (4)

where φ→ and φ← range over all continuous maps between R f and Rg. The first two terms measure the distortion
between the function values of f and g under these two maps, respectively. The last two terms measure intuitively
how far these two maps are to the “inverse” of each other. In particular, the point x′ = φ← ◦ φ→(x) and x are
connected within some interval level set {x ∈ R f | f (x) ∈ I} for an interval I with height d f (x, φ← ◦ φ→(x)) ≤
dFD(R f ,Rg).

Remarks. Interestingly, it turns out that by treating R f and Rg as metric graphs (equipped with the metrics d f and
dg, respectively), δ = dFD(R f ,Rg) approximates some variant of the Gromov-Hausdorff distance between these
metric graphs within a constant factor; see Appendix A for details. Roughly speaking, this means that there exists
correspondences of points in R f and in Rg such that for any points x, y ∈ R f , the distance dg(x̃, ỹ) between (any of)
their correspondences x̃, ỹ ∈ Rg is close to the distance d f (x, y) between x and y with |d f (x, y) − dg(x̃, ỹ)| = O(δ).
Furthermore, for any possible set of correspondences between R f and Rg, this metric distortion |d f (x, y) − dg(x̃, ỹ)|
can be Θ(δ) for some corresponding pairs (x, x̃) and (y, ỹ). That is, δ corresponds to the minimal metric distortion
possible. Intuitively, the distance distortion between the two trees in Figure 1 (a) is large (no matter how we
identify correspondences between points from them). Thus the functional distortion distance between them is also
large, making it more discriminative than the bottleneck distance between persistence diagrams.

4 Properties of the functional distortion distance

In this section, we show that the functional distortion distance is both stable and discriminative. Note that it is
somewhat meaningless to discuss the stability of a distance measure alone without understanding its discriminative
power – It is easy to have a distance measure that is stable, such as simply always returning the value 0. The goal
is to have a distance measure that can reflect the information encoded in the Reeb graph while being stable.

4.1 Stability and Relation to Ordinary Persistence Diagram

Suppose that the domains X,Y where f and g are defined are homeomorphic. (Note that this homeomorphism
condition is only required for the stability result so that we can define distance between input scalar fields f
and g. It is not necessary for Theorem 4.2 and 4.3.) Define the L∞-distance between the functions f and g as
D∞( f , g) = infh:X→Y ‖ f − g ◦ h‖∞, where h ranges over all homeomorphisms from X to Y. Then we have the
following stability result for the metric dFD for Reeb graphs:

Theorem 4.1 dFD(R f ,Rg) ≤ D∞( f , g).

Proof: Simply consider the homeomorphism h that gives rise to D∞( f , g). Composed with the quotient map
between a domain and its Reeb graph, h and h−1 induce two maps φh

→ and φh
← between R f and Rg. Under φh

→ and
φh
←, the maximum of the four terms in the right-hand-side of Eqn (4) is D∞( f , g).

The above result is similar to the stability result obtained for the bottleneck distance between persistence
diagrams [13], as well as for the ε-interleaving distance between merge trees[24].

The main part of this section is devoted to discussing the discriminative power of the functional distortion
distance for Reeb graphs. In particular, we relate this distance with the bottleneck distance between persistence
diagrams. We have already seen in Figure 1 (a) that there are cases where the functional distortion distance
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is strictly larger (more discriminative) than the bottleneck distance between persistence diagrams of according
dimensions (0th ordinary and 1st extended persistence diagrams). Below we show that the functional distortion
distance is always at least as large as (as discriminative as) the bottleneck distance. We will discuss separately the
branching features (ordinary persistence diagram) and the cycle features (extended persistence diagram). For the
former, we have the following main result. The proof is rather standard, and similar to the result on ε-interleaving
distance between merge trees in [24]. It can be found in Appendix B.

Theorem 4.2 dB(Dg0(R f ),Dg0(Rg)) ≤ dFD(R f ,Rg). Similarly, we have dB(Dg0(R− f ),Dg0(R−g)) ≤ dFD(R f ,Rg).

4.2 Relation to Extended Persistence Diagram

Recall that the range of cycle features in the Reeb graph correspond to points in the 1st extended persistence
diagram. In what follows we will show the follow main theorem, which states that dFD(R f ,Rg) is at least as
discriminative as the bottleneck distance between the 1st extended persistence diagrams for R f and Rg, denoted by
ExDg1(R f ) and ExDg1(Rg), respectively.1

Theorem 4.3 dB(ExDg1(R f ),ExDg1(Rg)) ≤ 3dFD(R f ,Rg).

For simplicity of exposition, we assume that dFD(R f ,Rg) can be achieved by optimal continuous maps
φ→ : R f → Rg and φ← : Rg → R f . The case where dFD(R f ,Rg) is achieved in the limit can be handled by taking
the limit of a sequence of continuous maps. Let δ = dFD(R f ,Rg).

Thin bases. Let Z1(R f ) be the 1-dimensional cycle group of R f with Z2 coefficients. Since the Reeb graph has
a graph structure, every 1-cycle of R f represents a unique homology class in H1(R f ); that is, H1(R f ) � Z1(R f ).
Let range(γ) = [minx∈γ f (x),maxx∈γ f (x)] denote the range of a cycle γ, and let height(γ) be the length of this
interval. A cycle is thinner than another one if its height is strictly smaller. A cycle γ is thin if there is no other
cycle with smaller height than γ but having the same minimum or maximum value in f as γ. See Figure 1 (b),
where the cycle x4x8x6x5x9x4 is thin, while the cycle x3x4x9x5x6x3 is not. Given a basis of Z1(R f ), consider the
sequence of the heights of the cycles in it ordered in non-decreasing order. A basis for Z1(R f ) is a thin basis if its
height sequence is smaller than or equal in lexicographic order to that of any other basis of Z1(R f ).

From now on, we fix an arbitrary thin basis G f = {γ1, . . . , γn} of Z1(R f ) and Gg = {ζ1, . . . , ζm} of Z1(Rg), with
n and m being the rank of Z1(R f ) and Z1(Rg), respectively. It is known [13] that every cycle in a thin basis of
R f is necessarily a thin cycle, and the ranges [b, d] of cycles in G f (resp. in Gg) correspond one-to-one to the
points (b, d) in the 1st extended persistence diagram ExDg1(R f ) (resp. in ExDg1(Rg)). For example, in Figure
1 (b), the two cycles x3x4x8x6x3 and x4x8x6x5x9x4 form a thin basis, corresponding to points ( f (x3), f (x8)), and
( f (x4), f (x9)) in ExDg1(R f ) in (d).

Given any cycle ` of R f (resp. of Rg), we can represent ` uniquely as a linear combination of cycles in G f

(resp. Gg), which we call the thin basis decomposition of ` with respect to G f (resp. Gg); we omit the reference
to G f and Gg since they will be fixed from now on. The thin cycle with the largest height from the thin basis
decomposition of ` is called the dominating cycle of `, denoted by dom(`). If there are multiple cycles with
the same maximal height, then by convention we choose the one with smallest index in G f (resp. in Gg) as
the dominating cycle. A cycle ` is α-stable if its dominating cycle has height strictly larger than 2α; that is,
height(dom(`)) > 2α. The following property of the dominating cycle is easy to see (a proof is given in Appendix
C.1).

Lemma 4.4 A set of cycles `1, . . . `k in R f with distinct dominating cycles is linearly independent.

1Some readers may wonder why we have not employed an approach similar to the one above handling branching features. A discussion
can be found in Appendix C.6.
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α-matching. The main use of thin cycles is that we will prove Theorem 4.3 by showing the existence of an
α-matching between G f and Gg. Specifically, two thin cycles `1 and `2 are α-close if their ranges [a, b] and [c, d]
are within Hausdorff distance α, i.e., |c − a| ≤ α and |d − b| ≤ α. (Note that two α-close cycles can differ in height
by at most 2α.) An α-matching for G f and Gg is a set of pairsM = {〈γi, ζ j〉 | γi ∈ G f , ζ j ∈ Gg} such that:

(I) For each pair 〈γi, ζ j〉 ∈ M, γi and ζ j are α-close; and

(II) Every α-stable cycle in G f and Gg (i.e., with height larger than 2α) appears in exactly one pair inM.

Since each point (b, d) in the extended persistence diagram corresponds to the range [b, d] of a unique cycle in a
given thin basis, dB(ExDg1(R f ),ExDg1(Rg)) ≤ α if and only if there is an α-matching for G f and Gg. Hence our
goal now is to prove that there exists a 3δ-matching for G f and Gg, which will then imply Theorem 4.3.

Properties of φ→ and φ←. Recall that φ→ : R f → Rg and φ← : Rg → R f are the optimal continuous maps that
achieve δ = dFD(R f ,Rg). Below we first provide several results on the effect of these maps on thin cycles. Let
Zδ1(R f ) denote the subgroup of Z1(R f ) generated by cycles with height at most 2δ. Note that a cycle is in Zδ1(R f ) if
and only if this cycle is not δ-stable. Lemma 4.5 below states that φ← is “close” to the inverse of φ→, and Lemma
4.6 relates the range of φ→(γ) with the range of γ. Their proofs are in Appendix C.2 and C.3, respectively.

Lemma 4.5 Given any cycle ` of R f , we have φ← ◦ φ→(`) ∈ ` + Zδ1(R f ). That is, φ← ◦ φ→(`) = ` + `′, where `′ is
not δ-stable. A symmetric statement holds for any cycle in Rg.

Lemma 4.6 Given any thin cycle γ of R f with range [b, d], we have that the range of any cycle in the thin basis
decomposition of φ→(γ) must be contained in the interval [b − δ, d + δ].

Lemma 4.7 For any cycle ` of R f , we have height(dom(φ→(`))) ≥ height(dom(`)) − 2δ. A symmetric statement
holds for any cycle of Rg.

Proof: Let γs = dom(`). If height(γs) ≤ 2δ, the claim follows directly from non negativity of the height. Now
assume that height(γs) > 2δ. First, we claim that dom(φ← ◦ φ→(`)) = γs. This is because by Lemma 4.5,
φ← ◦ φ→(`) ∈ ` + Zδ1(R f ). Since height(γs) > 2δ, γs still belongs to the thin basis decomposition of φ← ◦ φ→(`)
and still has the largest height.

Now set ζ̃ = φ→(`) with ζi1 + · · ·+ ζia being its thin basis decomposition. Observe that for any loop `′ in R f , we
have that height(φ→(`′)) ≤ height(`′) + 2δ, which follows from the fact that for any x ∈ R f , | f (x) − g(φ→(x))| ≤ δ;
recall Eqn (4). A symmetric statement holds for a loop from Rg. We thus have:

height(dom(φ←(ζ̃))) = height(dom(
a∑

j=1

φ←(ζi j))) ≤
a

max
j=1

height(φ←(ζi j))

≤
a

max
j=1

[height(ζi j) + 2δ] =
a

max
j=1

height(ζi j) + 2δ = height(dom(ζ̃)) + 2δ. (5)

Since we have shown earlier that dom(φ← ◦ φ→(γ)) = γs, it follows that dom(φ←(ζ̃)) = dom(φ← ◦ φ→(γ)) = γs =

dom(`). Combining this with Eqn (5), we have that

height(dom(φ→(`)) = height(dom(ζ̃)) ≥ height(dom(φ←(ζ̃))) − 2δ = height(dom(`)) − 2δ.

In fact, while the above result is sufficient for our later argument, a more careful argument shows that
dom(φ→(γ)) is δ-close to γ if γ is a thin cycle. Intuitively, this already provides some mapping of base cycles from
G f to cycles from Gg such that each pair of corresponding cycles are δ-close. However, the main challenge is to
show that there exists a one-to-one correspondence for all 3δ-stable cycles (recall the definition of a 3δ-matching
of G f and Gg). For this, we need to take a slight detour to relate cycles in G f with those in Gg in a stronger sense:
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Proposition 4.8 For any thin cycle γk from G f , one can compute a (not necessarily thin) cycle γ̂k such that
γk = dom(̂γk) and:

φ→(̂γk) ∈
r∑

j=1

ζk j + Zδ1(Rg),

where each ζk j is 3δ-close to γk, for any j ∈ [1, r].

Proof: Assume the thin basis decomposition of φ→(γk) has the form:

φ→(γk) ∈
r∑

j=1

ζk j +

s∑
j=1

ζ̃ j + Zδ1(Rg),

where the first term contains the “good” thin cycles whose range is 3δ-Hausdorff close to range(γk), the last
term contains the “small” thin cycles that are δ-stable, and the middle term contains those “bad” thin cycles ζ̃ j

that are neither 3δ-close to γk nor small. (If a “good” thin cycle 3δ-close to γk is also δ-stable, i.e, “small”, we
put it in either category.) We wish to remove the middle term ζ̃ =

∑s
j=1 ζ̃ j. Set γ′ = φ←(ζ̃). It then follows

from Lemma 4.5 that φ→(γ′) = φ→ ◦ φ←(ζ̃) ∈ ζ̃ + Zδ1(Rg). Set γ̂k := γk + γ′. It is then easy to verify that
φ→(̂γk) = φ→(γk) + φ→(γ′) ∈

∑r
j=1 ζk j + Zδ1(Rg).

What remains is to show that dom(̂γk) = γk. Set [b, d] := range(γk). By Lemma 4.6, range(ζ̃ j) ⊆ [b − δ, d + δ],
for any j ∈ [1, s]. Since the each ζ̃ j is not 3δ-close to γk, it is then necessary that either range(ζ̃ j) ⊆ [b − δ, d − 3δ)
or range(ζ̃ j) ⊆ (b + 3δ, d + δ], for any j ∈ [1, s]. This means that height(ζ̃ j) < d − b − 2δ. Apply Lemma 4.6
to the loop ζ̃ j. We have that the height of any loop in the thin basis decomposition of φ←(ζ̃ j) is strictly smaller
than d − b − 2δ + 2δ = d − b for any j ∈ [1, s]. Hence all loops in the thin basis decomposition of γ′ = φ←(ζ̃)
have a height strictly smaller than d − b (= height(γk)). This means γk has the largest height among the loops of
the thin basis decomposition of γ̂k = γk + γ′, and it is the only loop with this largest height. It then follows that
γk = dom(̂γk).

Corollary 4.9 Let Ĝ f denote the set of cycles {̂γk}
n
k=1, where each γ̂k is as specified in Proposition 4.8. Ĝ f forms

a basis for Z1(R f ).

Proof: Since the dominating cycles for cycles in Ĝ f are all distinct, it follows from Lemma 4.4 that all cycles in
Ĝ f are linearly independent. Hence Ĝ f also forms a (not necessarily thin) basis for Z1(R f ).

Let Φ denote the matrix of the mapping from the base cycles in Ĝ f (columns, domain) to those in Gg (rows,
range) as induced by φ→, i.e., the ith column of Φ specifies the representation of φ→(̂γi) using basis elements from
Gg, with Φ[i][ j] = 1 if ζ j is in the thin basis decomposition of φ→(̂γi). Let Φ̃ be the submatrix of Φ with columns
corresponding to basis elements γ̂i that are 3δ-stable, and rows corresponding to basis elements ζ j that are δ-stable.
See Figure 2 (a). By Proposition 4.8, Φ̃[i][ j] = 1 implies that the basis element ζ j ∈ Gg is 3δ-close to the basis
element γi ∈ G f . Recall that our goal is to show that there is a 3δ-matching for G f and Gg. Intuitively, non-zero
entries in Φ̃ will provide potential matchings for basis elements in G f to establish a 3δ-matching between G f and
Gg that we need. The proofs of the following two results can be found in Appendix C.4 and C.5, respectively.

Lemma 4.10 The columns of Φ̃ are linearly independent.

Corollary 4.11 We can identify a unique row index j for each column index i in Φ̃ such that Φ̃[i][ j] = 1.

Proof of Theorem 4.3. Recall that by Proposition 4.8, Φ̃[i][ j] = 1 implies that the cycle γi and ζ j are 3δ-close.
It follows from Corollary 4.11 that there is an injective map F from the set of 3δ-stable cycles in G f to cycles in
Gg such that each pair of corresponding cycles are 3δ-close. By a symmetric argument (switching the role of R f
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and Rg), there is also an injective map G from the 3δ-stable cycles in Gg to cycles in G f where each corresponding
pair of cycles are 3δ-close. However, F and G may not be consistent and do not directly give rise to a 3δ-matching
of G f and Gg yet. In what follows, we will modify F to obtain another injective map F̂ such that (i) for any cycle
of G f , its image under F̂ is 3δ-close to it; (ii) any 3δ-stable cycle in G f is mapped by F̂ to a cycle in Gg that is
3δ-close, and (iii) all 3δ-stable cycles in Gg are contained in im F̂, the image of F̂. Note that F̂ provides exactly
the set of correspondences necessary in a 3δ-matching between G f and Gg. As discussed at the beginning of this
section, this then means that dB(ExDg1(R f ),ExDg1(Rg)) ≤ 3δ = 3dFD(R f ,Rg), proving Theorem 4.3.

γ̂1 γ̂2 γ̂3 γ̂i γ̂n

ζ1
ζ2

ζa

ζm

Φ ˜Φ

δ -stable

3δ-stable P (Gf) Q(Gg)

3δ -stable

y0

y1x1

x2

y2

yk−1

xk

y0

y1x1

x2

y2

yk−1

xk

P (Gf) Q(Gg)

(a) (b)

Figure 2: (a). The ith column in the matrix Φ specifies the representation of φ→(̂γi) using the basis elements in Gg. The
shaded submatrix represents Φ̃. (b). A bipartite graph view of the augmenting process. Left: Thick path alternates between
an F-induced (solid) and an G-induced (dash-dotted) edge. Right: Thick solid edges are induced by the modified injective
map F̃ (which are used to be G-induced edges in the left figure).

It remains to show how to construct F̂ satisfying conditions (i), (ii) and (iii) above. Conditions (i) and (ii)
already hold for F, so the main task is to establish condition (iii) while maintaining (i) and (ii). Start with F̂ = F.
Let y0 < im F̂ be any 3δ-stable cycle in Gg that is not yet in im F̂. Let x1 = G(y0) ∈ G f . We continue with yi = F̂(xi)
if xi is 3δ-stable. Next, if yi is 3δ-stable, then set xi+1 = G(yi). We repeat this process, until we reach xk or yk

which is not 3δ-stable any more. At this time, we modify F̂(xi) to be yi−1 for each j ∈ [1, k] (originally, F̂(xi) = yi).
Throughout this process, all yi other than y0 are already in im F̂. After the modification of F̂, we have y0 ∈ im F̂,
while all other yi remain in im F̂. The only exception is when the above process terminates by reaching some yk

which is not 3δ-stable (the termination condition), in which case yk will not be in im F̂ after the modification of F̂.
Nevertheless, the number of 3δ-stable cycles contained in im F̂ increases by one (i.e., y0) by the above process.
An alternative way to view this is to consider the specific bipartite graph G′ = (P ∪ Q, E′), where nodes in P and
Q correspond to basis cycles in G f and Gg, respectively, and edges E′ are those corresponding to a cycle and its
image under either the map F̂ or G. The sequence y0, x1, y1, . . . specifies a path with edges alternating between the
F̂-induced and the G-induced matchings. The modified assignment of F̂(x j) changes a G-induced matching to an
F̂-induced matching along this path, much similar to the use of augmenting paths to obtain maximum bipartite
matching. See Figure 2 (b) for an illustration.

We repeat the above path augmentation process for any remaining 3δ-stable cycle in Gg \ im F̂. This process
will terminate because after each augmentation process, the number of 3δ-stable cycles contained in im F̂ strictly
increases. In the end, we obtain an injective map F̂ from the set of 3δ-stable cycles of G f to cycles in Gg such that
im F̂ contains all 3δ-stable cycles of Gg. Putting everything together proves Theorem 4.3.

5 Simplification of Reeb Graphs

Simplifying a Reeb graph can help to remove noise and to create multi-resolution representation of input scalar
fields; see e.g, [14, 17, 27]. As described in Section 2, there is a natural way to define “importance” of branching
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Figure 3: (a) Removing a branching feature spanned by (m, s) by merging paths π1 and π2. This removes the point
( f (m), f (s)) from the 0-th ordinary persistence diagram. (b) Removing a cycle feature spanned by (s1, s2); this removes the
point ( f (s1), f (s2)) from the 1st extended persistence diagram. There are other branches potentially connected to nodes such
as a, b, c, d, represented as dashed un-finished curves, which will not be affected by the merging process.

and cycle features, which is equivalent to ordinary and extended persistence in according dimensions. It is common
in practice to simplify the Reeb graph by removing all features with persistence smaller than a certain threshold δ.
In Figure 3, we illustrate a natural merging strategy (see e.g, [17, 27]) to remove branching and cycle features; a
detailed description of this simplification scheme is in Appendix D.1. The main result is the following.

Theorem 5.1 Suppose we simplify a Reeb graph R by removing features of persistence ≤ δ using the strategy
shown in Figure 3 and detailed in Appendix D.1. The bottleneck distance between the (ordinary and extended)
persistence diagram for R and for its simplification R̃ is at most 6δ.

This result is obtained by showing that the functional distortion distance dFD(R, R̃) between a Reeb graph and
its simplification is bounded by 2δ, where δ is the largest persistence of features removed. See Appendix D for
details. Interestingly, we remark that a similar approach can also be used to show that the distance between the
standard Reeb graph for a function f and the α-Reeb graph as introduced in [11] is bounded by 3α. We omit the
rather straightforward details here.

6 Concluding Remarks

In this paper, we propose a distance measure for Reeb graphs, under which the Reeb graph is stable with respect to
changes in the input function under the L∞ norm. More importantly, we show that this distance measure is bounded
from below by and is strictly more discriminative at differentiating scalar fields than the bottleneck distance
between both 0-th ordinary and 1st extended persistence diagrams. Similar to the use of the Gromov-Hausdorff
distance for metric spaces, having the Reeb graph distance metric provides a formal language for describing and
studying various properties of the Reeb graphs. Indeed, we have already shown that, by bounding the functional
distortion distance between a Reeb graph and its simplification, we can prove that important (persistent) features
are preserved under simplification, which addresses a key practical issue.

A natural question is how to compute the functional distortion distance for Reeb graphs. We believe that there
is an exponential time algorithm to approximate dFD(R f ,Rg), similar to what is known for the ε-interleaving
distance for merge trees [24]. However, it remains an open prolbem to develop more efficient algorithms. We
remark that comparing unlabeled trees is a computationally hard problem in general: The commonly used tree
edit distance and tree alignment distance are NP-hard to compute (and sometimes even to approximate) [6, 21].
Similarly, no polynomial time algorithms yet exist for the Gromov-Hausdorff distance in general. It will be
interesting to see whether by using the extra scalar field information associated with merge trees and Reeb graphs,
more efficient exact or approximation algorithms for computing functional distortion distance can be developed.
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A Relation to Gromov-Hausdorff Distance

We can view the Reeb graphs R f and Rg as metric graphs R f = (R f , d f ) and Rg = (R f , dg), equipped with metrics
d f and dg, respectively. A natural distance for metric spaces is the Gromov-Hausdorff distance, which we define
below, following the definitions and results from [23].

Definition A.1 (Correspondence [23]) For sets A and B, a subset C ⊂ A × B is a correspondence (between A
and B) if and only if:
(1) ∀a ∈ A, there exists b ∈ B s.t. (a, b) ∈ R;
(2) ∀b ∈ B, there exists a ∈ A s.t. (a, b) ∈ R.
Let Π(A, B) denote the set of all possible correspondences between sets A and B.

Definition A.2 (GH-distance, Proposition 5 of [23]) The Gromov-Hausdorff distance between two metric spaces
X = (X, dX) and Y = (Y, dY ) is

dGH(X,Y) =
1
2

inf
C∈Π(A,B)

max
(x,y),(x′,y′)∈C

|dX(x, x′) − dY (y, y′)|.

We can now talk about the Gromov-Hausdorff distance between R f and Rg. However, note that translation
f + c and negation − f do not change the metric structures of the Reeb graph R f . However, such changes in the
functions do affect our functional distortion distance. To remove the effect of the difference in the function values,
we now define the following functional GH distance between R f and Rg, which measures not only the distance
distortion, but also the changes in the function value between corresponding points.

Definition A.3 (functional GH distance) The functional GH distance between two metric Reeb graphs R f =

(R f , d f ) and Rg = (R f , dg) is defined as:

d fGH(R f ,Rg) = inf
C∈Π(R f ,Rg)

max{ max
(x,y)∈C

| f (x) − g(y)|, max
(x,y),(x′,y′)∈C

|d f (x, x′) − dg(y, y′)}.

It turns out that we have the following relations, which imply that our functional distortion distance roughly
measures the minimum distortion in both function values (between f and g) and in their induced metrics (between
d f to dg). We note that this relation does not generalize to spaces with dimension higher than 1.

Theorem A.4 1
3 dFD(R f ,Rg) ≤ d fGH(R f ,Rg) ≤ 4dFD(R f ,Rg).

Proof: Part I: First, we prove the left inequality 1
3 dFD(R f ,Rg) ≤ d fGH(R f ,Rg). Fix an arbitrary positive real

value ε. Let C denote an ε-optimal correspondence, i.e., the maximum of the two terms in Def. A.3 is less than or
equal to d fGH(R f ,Rg) + ε. Set β = d fGH(R f ,Rg). Our final goal is to show that dFD(R f ,Rg) ≤ 3β. We do this by
constructing continuous maps φε→ : R f → Rg and φε← : Rg → R f based on the ε-optimal correspondence C such
that each of the four terms in Eqn (4) can be bounded by 3β + Θ(ε).

We now show how to construct a certain continuous map φε→ : R f → Rg. First, construct an ε-subdivision of
R f as described in Section D.2 (see also Figure 4): the graph R f is augmented with a set of nodes Vε = {v1, . . . , vN}

such that f is monotonic on each resulting arc, and the height of an arc viv j (which is | f (vi) − f (v j)| since f is
monotonic on viv j) is at most ε. We set φε→(vi) to be an arbitrary but fixed ṽi such that (vi, ṽi) ∈ C (this choice can
be made canonical by, saying, taking the ṽi that has the smallest g-function value among all points in Rg that form
a corresponding pair with vi).

Next, we extend such mappings over nodes in Vε to a continuous map over the entire Rg. In particular,
consider an arc viv j and assume w.l.o.g. that f (vi) ≤ f (v j). Consider ṽi = φε→(vi) and ṽ j = φε→(v j). Since both
(vi, ṽi), (v j, ṽ j) ∈ C and C is ε-optimal, we know that |d f (vi, v j)−dg(ṽi, ṽ j)| ≤ β+ε, thus dg(ṽi, ṽ j) ≤ d f (vi, v j) +β ≤
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β + 2ε. This means that there is a path π(ṽi, ṽ j) in Rg connecting ṽi to ṽ j whose height is at most β + 2ε. We now
extend φε→ to any homeomorphism from the arc viv j of R f to this path π(ṽi, ṽ j) with φε→(vi) = ṽi and φε→(v j) = ṽ j.
For example, one can take the arc-length parametrizations of the arc viv j and of the path π(ṽi, ṽ j), and then map up
points proportionally. The concatenation of all these pieces of φε→ on each arc of R f gives rise to the continuous
map φε→ : R f → Rg.

Given any point x ∈ R f , assume that x is from arc viv j. Then x̃ := φε→(x) is mapped to some point in
π(ṽi, ṽ j). Since C is an ε-optimal correspondence, by definition in Def. A.3, g(ṽi) ∈ [ f (vi) − β − ε, f (v j) + β + ε]
and g(ṽ j) ∈ [ f (v j) − β − ε, f (v j) + β + ε]. Since the path π(ṽi, ṽ j) has height at most β + 2ε, we then have
range(π(ṽi, ṽ j)) ∈ [ f (vi) − 2β − 3ε, f (v j) + 2β + 3ε]. Since x ∈ viv j and x̃ ∈ π(ṽi, ṽ j), it then follows that
g(x̃) ∈ [ f (vi) − 2β − 3ε, f (v j) + 2β + 3ε] and thus |g(x̃) − f (x)| ≤ 2β + 4ε for any x ∈ R f .

Symmetrically, we can take an ε-subdivision of Rg with nodes Uε = {ũ1, . . . , ũM}, and construct a continuous
map φε← : Rg → R f . Using the same argument as above, we have that maxỹ∈Rg |g(ỹ) − f (φε←(ỹ))| ≤ 2β + 4ε.

vi

vj ṽi

ṽjũb

ũax

x̃

ubua
x′

φε→

φε←
We now bound d f (x, φε← ◦ φ

ε
→(x)) for any x ∈ R f . Set x̃ = φε→(x) and

x′ = φε← ◦ φ
ε
→(x). Assume that x is on some arc viv j and x̃ is on some

arc ũaũb; see the right figure for an illustration. Since x is from arc viv j,
we have that d f (x, vi) ≤ ε. By construction of φε→, there is a path π(ṽi, ṽ j)
with height at most β + 2ε between ṽi = φε→(vi) and ṽ j = φε→(v j), as both
(vi, ṽi), (v j, ṽ j) ∈ C. Since x̃ is in π(ṽi, ṽ j) and x̃ is also in arc ũa, ũb, we
thus have that dg(ũa, ṽi) ≤ β + 3ε. On the other hand, by construction of φε←, there is a path π(ua, ub) with
height at most β + 2ε between ua = φε←(ũa) and ub = φε←(ũb). Since x′ ∈ π(ua, ub), d f (x′, ua) ≤ β + 2ε. Finally,
since (ua, ũa), (vi, ṽi) are both from the ε-optimal correspondence C, we have that |d f (ua, vi) − dg(ũa, ṽi)| ≤ β + ε;
in particular, d f (ua, vi) ≤ dg(ũa, ṽi) + β ≤ 2β + 4ε. Hence d f (x, x′) ≤ d f (x, vi) + d f (vi, ua) + d f (ua, x′) ≤
ε + (2β + 4ε) + (β + 2ε) = 3β + 7ε.

In other words, maxx∈R f d f (x, φε← ◦ φ
ε
→(x)) ≤ 3β + 7ε. A symmetric argument shows that maxỹ∈Rg dg(ỹ, φε← ◦

φε→(ỹ)) ≤ 3β + 7ε. Hence the following distance is bounded from above by 3β + 7ε:

Dφε→,φ
ε
←

:= max{max
x∈R f
{| f (x) − g(φε→(x))|, d f (x, φε← ◦ φ

ε
→(x))},max

ỹ∈Rg
{|g(ỹ) − f (φε←(ỹ))|, dg(ỹ, φε→ ◦ φ

ε
←(ỹ))} }.

Putting everything together, we have that dFD(R f ,Rg) ≤ limε→0 Dφε→,φ
ε
←

= 3β = 3d fGH(R f ,Rg).

Part II: We now prove the right inequality. Set δ = dFD(R f ,Rg), and let φ→ : R f → Rg and φ← : Rg → R f

be the optimal continuous maps that achieve δ 2. Let C denote the correspondence generated by φ→ and φ←,
i.e., C consists of corresponding pairs of the form (x, φ→(x)) or (φ←(ỹ), ỹ). It is easy to see that the first term in
Def. A.3 satisfies max(x,y)∈C | f (x) − g(y)| ≤ δ. We now bound the second term from above. Specifically, consider
two arbitrary pairs (x, x̃) and (y, ỹ) from C. There are four cases: (i) x̃ = φ→(x) and ỹ = φ→(y); (ii) x = φ←(x̃),
y = φ←(ỹ); (iii) x = φ←(x̃) but ỹ = φ→(y); or (iv) x̃ = φ→(x) but y = φ←(ỹ). Below we only show the proof for
case (i). The handling of other cases is similar.

Consider the path π(x, y) from x to y in R f whose height equals to d f (x, y). Let the path π′ be π′ = φ→(π(x, y)).
Since maxx′∈R f | f (x′) − g(φ→(x′))| ≤ δ, we have

dg(x̃, ỹ) ≤ height(π′) ≤ height(π(x, y)) + 2δ = d f (x, y) + 2δ. (6)

On the other hand, consider the optimal path π̃(x̃, ỹ) between x̃ and ỹ that realizes dg(x̃, ỹ). Set x′ = φ←(x̃)
and y′ = φ←(ỹ). Using a similar argument as above, the path π̃′ = φ←(π̃(x̃, ỹ)) connecting x′ and y′ satisfies
d f (x′, y′) ≤ height(π̃′) ≤ dg(x̃, ỹ) + 2δ. Furthermore, note that x′ = φ←(x̃) = φ← ◦ φ→(x). Hence by definition of
dFD(R f ,Rg), we have that d f (x, x′) ≤ δ. Similarly, d f (y, y′) ≤ δ. Hence

d f (x, y) ≤ d f (x, x′) + d f (x′, y′) + d f (y′, y) ≤ δ + (dg(x̃, ỹ) + 2δ) + δ = dg(x̃, ỹ) + 4δ. (7)

2The case where dFD(R f ,Rg) is achieved in the limit can be handled by taking a sequence of continuous maps.
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Putting Eqns (6) and (7) together, we have that max(x,x̃),(y,ỹ)∈C |d f (x, y) − dg(x̃, ỹ)| ≤ 4δ, which in turn proves the
right inequality.

B Relation to Ordinary Persistence Diagram

B.1 Proof of Theorem 4.2

Recall that φ→ : R f → Rg and φ← : Rg → R f are the optimal continuous maps that achieve δ = dFD(R f ,Rg). We
now show that maps in following diagrams are well-defined for an arbitrary real values α ≤ α′, and the induced
homomorphisms commute at the 0th homology level, where i, j stand for canonical inclusion maps.

(R f )≤α
i //

φ→

%%

(R f )≤α′+2δ

(Rg)≤α+δ
j // (Rg)≤α′+δ

φ←
88

(R f )≤α+δ
i // (R f )≤α′+δ

(Rg)≤α
j //

φ←
99

(Rg)≤α′

φ←
88

(8)

By Eqn (4), maxx∈R f | f (x) − g(φ→(x))| ≤ δ. Hence φ→ : (R f )≤α−→(Rg)≤α+δ is well defined for any α ∈ R.
Similarly, φ← : (Rg)≤β−→(R f )≤β+δ is well defined for any β ∈ R. It is easy to see that the second diagram above
commutes. We now show that the first diagram commutes at the homology level for the 0th dimension. We need
to show that for any 0-cycle c in (R f )≤α, [i(c)] = [φ← ◦ j ◦ φ→(c)], where [c′] is the homology class represented
by a cycle c′. Assume w.l.o.g that the 0-cycle c = x1 + x2 contains only two points x1, x2 from (R f )≤α; the
argument easily extends to the case where c contains an arbitrary even number of points. Let x′1 = φ← ◦ φ→(x1)
and x′2 = φ← ◦ φ→(x2). Since d f (x1, x′1) ≤ δ, we know that there is a path (1-chain) π(x1, x′1) with height at most δ
connecting x1 and x′1. In other words, x1 and x′1 are connected in (R f )≤α+δ ⊆ (R f )≤α′+2δ. Similarly, x2 and x′2 are
connected in (R f )≤α′+2δ. Hence the new 0-cycle c′ = x′1 + x′2 = φ← ◦ j ◦ φ→(c) is homologous to c in (R f )≤α+2δ.
Thus, [i(c)] = [c′] = [φ← ◦ j ◦ φ→(c)].

A similar argument also shows that the symmetric versions of the diagrams in Eqn (8) (by switching the roles
of R f and Rg) also commute at the 0th homology level. This means that the two persistence modules {H0((R f )≤α)}α
and {H0((Rg)≤β)}β are strongly δ-interleaved. The first half of Theorem 4.2 then follows from Theorem 4.8 of [9].

The same argument works for the scalar fields − f : R f → IR and −g : Rg → IR, which proves the second
half of Theorem 4.2. Recall that while Dg0(R f ) captures (minimum, down-saddle) persistence pairs, Dg0(R− f )
captures (up-saddle,maximum) persistence pairs.

We remark that in the proof of Theorem 4.2, we considered the ordinary persistence diagrams for the functions
f̃ : R f → R and g̃ : Rg → R induced on the Reeb graphs. However, the same argument holds for the ordinary
persistence diagrams for the functions f : X → R and g : Y → R as induced by the persistence modules
{H0(X≤α)}α and {H0(Y≤β)}β. Indeed, Dg0( f ) is identical to Dg0( f̃ ), and Dg0(− f ) is identical to Dg0(− f̃ ). Similar
statements hold for g and g̃. Furthermore, it is easy to check that Eqns. (3) and (4) can be extended for the original
functions f : X→ IR and g : Y→ IR that produce the Reeb graphs. The distance dFD(X,Y) defined this way is
fully captured by the distance between the corresponding Reeb graphs: dFD(R f ,Rg) = dFD(X,Y). Putting these
together, we have that Theorem 4.2 still holds if we replace f̃ by f and g̃ by g.

C Relation to Extended Persistence Diagram

C.1 Proof of Lemma 4.4

We show that
∑a

j=1 `i j , 0 for any subset {i1, . . . , ia} ⊆ {1, 2, . . . , k}. Specifically, consider the maximum height
of dominating cycles of any cycle in {`i j}

a
j=1. First, assume that there is only a unique cycle, say `ia , whose
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dominating cycle dom(`ia) has this maximum height. It then follows that this thin cycle dom(`ia) is not in the thin
basis decomposition of any other loop `i j , j , a. Since the thin basis decomposition of the cycle

∑a
j=1 `i j is simply

the sum (modulo 2) of thin basis decomposition of each `i j , dom(`ia) must exist in the thin basis decomposition of
the cycle

∑a
j=1 `i j ; in fact, dom(

∑a
j=1 `i j) = dom(`ia). Therefore

∑a
j=1 `i j , 0.

If there are multiple cycles whose dominating cycle has the maximal height, then we consider the one whose
dominating cycle has the smallest index among all of them. The same argument as above shows that this cycle
will present in the thin basis decomposition of the loop

∑a
j=1 `i j , implying that

∑a
j=1 `i j , 0.

C.2 Proof of Lemma 4.5

The input Reeb graph R f is a finite graph, and there are only a finite number of cycles. Hence there are only
a finite number of height values (reals) that these cycles can have. Let α denote the lowest height of any cycle
whose height is strictly larger than 2δ — if the height of a cycle is strictly smaller than this value α, then it must be
smaller than or equal to 2δ. We set ε to be any positive constant between 0 and α/2 − δ; that is, 2δ + 2ε < α. Thus
if a cycle γ satisfies height(γ) ≤ 2δ + 2ε < α, then necessarily height(γ) ≤ 2δ.

Now for the given cycle `, let ˜̀ denote φ← ◦ φ→(`), and for any point x ∈ `, let x̃ ∈ ˜̀ denote φ← ◦ φ→(x). By
Eqn (4), there is a path π(x, x̃) connecting x to x̃ with height(π(x, x̃)) ≤ δ. Assume that the cycle ` has only a single
connected component – the case with multiple components can be handled in a component-wise manner. This
means that we can consider ` as a closed curve on R f . Fix an arbitrary orientation on ` and consider the induced
orientation on ˜̀ by the map φ← ◦ φ→. Let `[x, x′] ⊆ ` denote the subcurve from x to x′ under this orientation; and
similarly for `′[x, x′]. Start with an arbitrary point x = x0 ∈ `, and consider x̃0 ∈ ˜̀. Since φ← ◦ φ→ is a continuous
map, as we move x along ` continuously, x̃ moves continuously. In step i, as we move along ` (starting from xi),
we set xi+1 to be the first point such that the loop ci = `[xi, xi+1] ◦ π(xi+1, x̃i+1) ◦ (− ˜̀[x̃i, x̃i+1]) ◦ π(x̃i, xi) satisfies
height(ci) = 2δ + 2ε. If no such ci exists, then we set xi+1 to be x0, and the process terminates. It is easy to see
that by construction, we have that ` = ˜̀ +

∑
i ci. Since each ci satisfies height(ci) ≤ 2δ + 2ε < α, as discussed

earlier it then follows that height(ci) ≤ 2δ. Hence ci ∈ Zδ1(R f ) for each i and `′ =
∑

i ci ∈ Zδ1(R f ), implying that
˜̀ = ` + `′ ∈ ` + Zδ1(R f ).

C.3 Proof of Lemma 4.6

First, by Eqn (4), we have maxx∈R f | f (x) − g(φ→(x))| ≤ δ. Hence range(φ→(γ)) ⊆ [b − δ, d + δ]. Now let b′ be
the smallest left endpoint of the range of any loop in the thin basis decomposition of φ→(γ). We will prove that
b′ ≥ b − δ.

Suppose this is not case and b′ < b − δ. Then let ζi1 , . . . , ζia ∈ Gg, a ≥ 1, be the set of cycles from the thin
basis decomposition of φ→(γ) that have b′ as the left endpoint of their range. Set ρ = ζi1 + · · · ζia . Assume ζia has
the largest height among these thin cycles. Note that range(ζi j) ⊆ range(ζia) for any j < a, as all these ranges share
the same left endpoint b′. Hence range(ρ) ⊆ range(ζia).

On the other hand, recall that the left endpoint of range(φ→(γ)) is at least b − δ, which is strictly larger than b′.
This means that range(ρ) is a proper subset of range(ζia); i.e., range(ρ) ⊂ range(ζia). Hence ρ has strictly smaller
height than ζia . This however contradicts that Gg is a thin basis, because we can replace ζia in Gg with ρ and obtain
a basis element with smaller height (the resulting set of cycles remain independent). Therefore it is not possible
that b′ < b − δ.

A symmetric argument shows that the largest right endpoint of the range of any loop in the thin basis
decomposition of φ→(γ) is at most d + δ. Hence the range of any loop in the thin basis decomposition of φ→(γ) is
a subset of [b − δ, d + δ].
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C.4 Proof of Lemma 4.10

Consider an arbitrary subset of indices i1, . . . , is whose corresponding columns are in Φ̃ (i.e, each γ̂ia is 3δ-stable),
and let γ̂ = γ̂i1 + · · · + γ̂is . We will show that φ→(̂γ) is δ-stable; that is, dom(φ→(̂γ)) has height at least 2δ. This
means that the linear combination of the corresponding columns in Φ̃ contains a non-zero element. Since this
holds for any subset of columns from Φ̃, we have that the columns in Φ̃ are linearly independent.

It remains to show that γ̂ is δ-stable. Recall that for any index a, γa is the dominating cycle of γ̂a. Assume
w.l.o.g. that γi1 has the largest height among all γi j , for j ∈ [1, s]. (If there are multiple cycles from {γi j}

s
j=1 having

this largest height, let γis be the one with smallest index.) From the end of the proof of Proposition 4.8, we note
that for any index a, γa is the only cycle with maximum height among all cycles in the thin basis decomposition
of γ̂a. In other words, all other cycles in the thin basis decomposition of γ̂a have strictly smaller height than γa.
Putting these together, it follows that γi1 must exist in the thin basis decomposition of γ̂ w.r.t. the original thinnest
basis G f and in fact, γi1 = dom(̂γ). Since γi1 is 3δ-stable (thus its height at least 6δ), it then follows from Lemma
4.7 that height(dom(φ→(̂γ))) ≥ height(dom(̂γ)) − 2δ ≥ 4δ > 2δ. So φ→(̂γ) is δ-stable.

C.5 Proof of Corollory 4.11

View the matrix Φ̃ as the adjacency graph for the following bipartite graph G = (P ∪ Q, E), where P are the
columns of Φ̃, Q are the rows, and there is an edge between p ∈ P and q ∈ Q iff the corresponding entry in the
matrix Φ̃ is 1. We now claim that there is a P-saturated matching for G: that is, there is a matching of G such that
every node in P is matched exactly once, and each node in Q is matched at most once. Note that this immediately
implies the lemma. Specifically, for any subset of nodes P′ ⊆ P, let Q′ ⊆ Q be the union of neighbors of nodes
from P′. In other words, Q′ is the set of rows with at least one non-zero entry in the columns P′. If |Q′| < |P′|,
then these columns of Φ̃ will be linearly dependent, which violates Lemma 4.10. Hence we have |Q′| ≥ |P′|. Now
by Hall’s Theorem (e.g, Page 35 of [34]), a P-satuated matching exist for G.

C.6 Further Discussion

The proof of Theorem 4.2 leverages a beautiful stability result for a pair of interleaving persistence modules,
originally introduced in [9] and recently generalized in [10]. This approach however, is not immediately applicable
to bound the relation to the extended persistence diagrams in our case (i.e, to prove Theorem 4.3), since the
extended persistence module is not parametrized over the reals, but over two copies of the real line. Therefore,
the notion of interleaving distance does not apply directly. A better choice to capture the extended persistence
diagrams as we define in this paper seems to be the level-set zigzag persistence module [7, 8] (specifically see
the discussion on relation of the extended persistence diagrams and level-set zigzag persistence modules in [8]).
Unfortunately, it is not yet clear how to extend the interleaving concept to zigzag persistence modules and obtain
similar type of stability results as given in [9].

Our approach in Section 4.2 instead aims to provide explicit correspondences between certain basis cycles
of H1(R f ) and of H1(Rg), by intuitively treating the correspondences as edges in a specific bipartite graph, and
establishing an 3δ-matching in this graph. Interestingly, it appears that this approach can be potentially generalized
to establish matching between certain basis cycles generating two input p-th levelset zigzag persistence modules
for arbitrary dimension p (instead of p = 1 in our case). This will then lead to stability results for two general
levelset zigzag persistence modules, and it will be very interesting to investigate this direction. We note, however,
that the stability result obtained in Theorem 4.3 does not seem to be tight. We conjecture that the tight bound is
dB(ExDg1(R f ),ExDg1(Rg)) ≤ δ = dFD(R f ,Rg) instead of dB(ExDg1(R f ),ExDg1(Rg)) ≤ 3δ. It will be interesting
to see whether the upper bound can be improved.
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D Simplification of Reeb graphs

Reeb graphs have been used as a meaningful summary of the input functions. Simplifying a Reeb graph can help
to remove noise or single out major features, and to create multi-resolution representation of input domains; see
e.g, [14, 17, 27]. As we described in Section 2, there is a natural way to define “importance” of both branching and
loop features, which turns out to be equivalent to ordinary and extended persistence in the according dimensions.
Indeed, it is common practice to simplify the Reeb graph by removing all features with persistence smaller than
a threshold, say δ. In this section, we prove that by removing small features using a natural merging strategy,
(branching and loop) features with large persistence will not be killed, and will roughly maintain their persistence
(“importance”).

D.1 A Natural Simplification Scheme for Reeb graphs

We now introduce a natural simplification scheme for Reeb graphs (see, e.g., [17, 27]). See Figure 3 for an
illustration.

Given an ordinary persistence pair (m, s), assume that m is a minimum and s a down-saddle point. Recall that
the down-fork saddle s merges two disjoint lower branches C1 and C2, and m is the higher global minimum of the
two. To remove the feature (m, s), we wish to merge the branch containing m, say C1, into the other branch C2, so
that afterwards, m and s become regular points (i.e., with up-degree and down-degree both being 1). In particular,
we perform the following operation (see Figure 3 (a)). Let m2 denote the global minimum of C2. We choose an
arbitrary path π1 ⊆ C1 from s to m, and an arbitrary π′ ⊆ C2 from s to m2. Now imagine we traverse π′ starting
from s. We stop when we encounter the first point x ∈ π′ such that f (x) = f (m), and set π2 be the subcurve of π′

from s to x. We now merge π1 and π2 into a new monotonic arc π3 between s and x such that any point p ∈ π1 ∪ π2
is mapped to q ∈ π3 such that f (q) = f (p). Pairs of type (up-saddle, maximum) are treated in a symmetric way.

Given an extended persistence pair (s1, s2) between an up-saddle s1 and a down-saddle s2, let γ be a thin cycle
that spans it. W.l.o.g. assume that γ consists only of a single connected component: if γ has multiple connected
components, then there must exist one that contains both s1 and s2. That loop is necessarily thin and thus we
can simply set γ to be that loop. Let π1 and π2 denote the two disjoint sub-curves of γ connecting s1 and s2. To
cancel the this feature, intuitively, we wish to merge π1 and π2 to kill the cycle γ. Note that π1 and π2 may not be
monotonic (w.r.t. the input function f ); however, all points in π1 and π2 have function values within the range
[ f (s1), f (s2)]. The merging of π1 and π2 results in a new monotonic arc π3 from s1 and s2, such that for every
point p ∈ γ is mapped to q ∈ π3 such that f (q) = f (p). See Figure 3 (b) for an illustration.

Note that since a critical pair (m, s) (resp. an essential pair (s1, s2)) corresponds uniquely to a persistence pair
( f (m), f (s)) (resp. ( f (s1), f (s2))) in the ordinary (resp. extended) persistence diagram, the above process also
removes a point from the respective persistence diagram.

Let R (induced by function f ) and R′ denote the Reeb graph before and after the simplification of a persistence
pair τ = (b,d) by collapsing its corresponding branching or loop feature. Let πτ1 and πτ2 be as introduced above3.
Call γτ = πτ1 ∪ π

τ
2 the merging path w.r.t. τ: γτ is a closed curve corresponding to a thin cycle spanning (b,d)

when it is an extended persistence pair, and a connected path with b and d being the respective minimum and
maximum function values on it otherwise. The merging path γτ will be collapsed into a single monotonic arc
to kill the persistence pair τ. We can view the removal of τ in a more formal way as follows: We say that two
points x, y ∈ R are τ-equivalent, denoted by x ∼τ y, if f (x) = f (y) and x, y ∈ γτ. The simplified Reeb graph R′

is the quotient space R/∼τ; the corresponding quotient map µτ : R → R′ satisfies µτ(x) = µτ(y) if and only if
x ∼τ y. The function f : R→ IR induces a function f ′ : R′ → IR such that for any x′ ∈ R′, f ′(x′) = f (x) for any
x ∈ µ−1

τ (x′).

3Note that the choices of πτ1 and πτ2 are not canonical. However, these choices do not affect the final results. Alternatively, one can make
a canonical choice by say choosing πτ1 and πτ2 (or the thin cycle γ for a loop feature) as the shortest possible among all such choices.
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Now given an input Reeb graph R, suppose we wish to eliminate a set of persistence pairs {τ1 = (b1,d1), τ2 =

(b2,d2), . . . , τk = (bk,dk)}. Compute the merging path γτi for each persistence pair τi in R. Similar to above, two
points x, y are τi-equivalent, denoted by ∼τi if x, y ∈ γτi and f (x) = f (x). We now define an equivalence relation ∼
as the transitive closure of all ∼τis for i ∈ [1, k]. This is equivalent to collapsing γτis for all i ∈ [1, k] in an arbitrary
order to kill the persistence pairs τ1, . . . , τk

4. The final simplified Reeb graph R̃ is obtained as the quotient space
R/∼. The quotient map µ : R→ R̃ satisfies µ(x) = µ(y) if and only if x ∼ y, and we have a well-defined function
g : R̃ → IR induced by function f : R → IR such that g(µ(x)) = f (x) for any x ∈ R. Let δ denote the largest
persistence of τ1, . . . , τk. We have the following properties of R̃.

Observation D.1 (i) Given any two points x, y ∈ R, we have that dg(µ(x), µ(y)) ≤ d f (x, y).
(ii) Given a point x̃ ∈ R̃, for any two points x0, x1 ∈ µ

−1(x̃), we have d f (x0, x1) ≤ 2δ.

Proof: Claim (i) follows easily since the continuous map µ is surjective. We now prove (ii). Since µ(x0) =

µ(x1) = x̃, by the definition of µ, there exists a set of equivalent relations ∼τ j1
, . . . ,∼τ ja

with the index set
{ j1, . . . , ja} ⊆ {1, . . . , k} such that y0 := x0 ∼τ j1

y1 ∼τ j2
y2 · · · ∼τ ja

ya := x1. Set α = f (x0) = f (x1). All yi have the
same function value α. For each i ∈ [1, a], we have that yi−1 ∼τ ji

yi, which is induced by the merging path γτ ji

with height(γτ ji ) ≤ δ. In other words, there is a path πi ⊆ γ
τ ji connecting yi−1 to yi and range(πi) ⊆ [α − δ, α + δ].

The concatenation of these πis gives rise to a path π connecting y0 = x0 and ya = x1, and range(π) ⊆ [α − δ, α + δ].
Thus proves Claim (ii).

ṽi

R̃

ṽj

R

vj

vi

f(vj) + δ

f(vi)− δ

π(vi, vj)

π̃(ṽi, ṽj)

Figure 4: Left: An ε-subdivision of the simplified Reeb graph R̃ such that each arc is monotonic and of height at
most ε. Right: For an arc π̃(ṽi, ṽ j), we map it under φε← to a certain path π(vi, v j) such that µ(vi) = ṽi, µ(v j) = ṽ j,
and the range of the path π(vi, v j) ⊆ R is contained within the interval [ f (vi) − δ, f (v j) + δ]. Note that the paths
π(vi, v j) and π(vi′ , v j′) for different arcs π̃(ṽi, ṽ j) and π̃(ṽi′ , ṽ j′) from R̃ are not necessarily disjoint.

D.2 Distance between R and R̃

Note that while the simplification scheme removes persistence pairs τ1, . . . , τk, it is not clear how other points
in the persistence diagram for the original Reeb graph R are affected. In this section, we bound the bottleneck
distance between the persistence diagrams for R and for R̃. Specifically, we bound the functional distortion
distance dFD(R, R̃), where we have f : R→ IR and g : R̃ :→ IR (defined at the end of Section D.1). We do so by
constructing continuous maps φ→ : R→ R̃ and φ← : R̃→ R, and bounding the four terms in Eqn (4), which in
turn provides an upper bound for dFD(R, R̃).

The continuous map φ→ : R → R̃ can simply be taken as the surjective map µ : R → R̃. For the opposite
continuous map φ← : R̃→ R, we will in fact construct a sequence of them. First, we need the following result,
which is a slight generalization of Observation D.1, and whose proof is similar but more tedious.

4For example, assume w.l.o.g. we merge in increasing order of i. Let Ri−1 denote the simplified Reeb graph after merging the first i − 1
persistence pairs. In the ith stage, we will collapse the image of γτi in Ri−1.
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Lemma D.2 Let x̃, ỹ ∈ R̃ be two points in R̃ with a monotonic path π̃ between x̃ and ỹ such that dg(x̃, ỹ) =

g(ỹ) − g(x̃) = ε. Let x and y be arbitrary preimages for x̃ and ỹ, respectively. Then d f (x, y) ≤ 2δ + ε.
In fact, there is a path π from x to y such that the highest point t in π satisfies f (t) ≤ f (y) + δ, and the lowest

point b in π satisfies f (b) ≥ f (x) − δ.

Now for a fixed positive real ε, we use the following procedure to construct a continuous map φε← : R̃→ R
(see Figure 4 for an illustration). First, we subdivide the simplified Reeb graph R̃ by adding a set of nodes, so that
for the resulting graph (still denoted by R̃) with nodes Vε = {ṽ1, . . . ṽm}, every arc is monotonic and has height at
most ε: note the height of an monotonic path from x to y is simply the difference in the function values of x and y.
We refer to the resulting augmented graph R̃ as an ε-subdivision of R̃. Now for each ṽi ∈ Vε, we set φε←(ṽi) to be
an arbitrary but fixed pre-image vi ∈ µ

−1(ṽi). For each arc π̃(ṽi, ṽ j) from R̃, consider the path π(vi, v j) connecting
the two pre-image points vi and v j as stated in Lemma D.2. We set the restriction of φε← over the arc π̃(ṽi, ṽ j) to be
any homeomorphism from π̃(ṽi, ṽ j) to π(vi, v j) with φε←(ṽi) = vi and φε←(ṽ j) = v j. The union of φε←(π̃(ṽi, ṽ j))s for
all arcs π̃(ṽi, ṽ j) from R̃ gives rise to the continuous map φε← : R̃→ R.

By definition, for any x ∈ R, | f (x) − g(φ→(x))| = | f (x) − g(µ(x))| = 0; hence maxx∈R | f (x) − g ◦ φ→(x)| = 0.
Furthermore, let x̃ = µ(x) = φ→(x) and x′ = φε←(x̃) = φε← ◦ φ→(x). Assume w.l.o.g. that x̃ is contained in arc
π̃(ṽi, ṽ j). Obviously, we have g(x̃) = f (x) ∈ [ f (vi), f (v j)] = [g(ṽi), g(ṽ j)]. Since the sub-arc π̃(ṽi, x̃) ⊆ π̃(ṽi, ṽ j) is
also monotonic with height at most ε, by Lemma D.2, we have that x and vi is connected by a path π1 whose range is
contained within [ f (vi)−δ, f (x)+δ] ⊆ [ f (vi)−δ, f (v j)+δ]. At the same time, since x̃ ∈ π̃(ṽi, ṽ j), x′ is contained in the
path π(vi, v j) by the construction of φε← above. Hence x′ and vi is connected by a path π2 whose range is contained
within [ f (vi) − δ, f (v j) + δ]. By concatenating π1 and π2, we have that d f (x, x′) = d f (x, φε← ◦ φ→(x)) ≤ 2δ + ε.

Next, consider any point x̃ ∈ R̃. Assume that x̃ is from the arc π̃(ṽi, ṽ j) in R̃, and assume w.l.o.g. that
g(ṽi) ≤ g(ṽ j). By construction, g(x̃) ∈ [g(ṽi), g(ṽ j)] = [ f (vi), f (v j)]. Set x = φε←(x̃). By the construction of
φε←, f (x) ∈ [ f (vi) − δ, f (v j) + δ]. Since | f (v j) − f (vi)| ≤ ε, we thus have that | f (x) − g(x̃)| ≤ δ + ε. Thus
maxx̃∈R̃ | f (φε←(x̃)) − g(x̃)| ≤ δ + ε. Furthermore, by Lemma D.2, d f (x, vi) ≤ 2δ + ε. By Observation D.1, this
means that dg(µ(x), µ(vi)) = dg(φ→ ◦ φε←(x̃), ṽi) ≤ 2δ + ε. Since dg(x̃, ṽi) ≤ dg(ṽi, ṽ j) ≤ ε, it then follows that
dg(x̃, φ→ ◦ φε←(x̃)) ≤ dg(x̃, ṽi) + dg(ṽi, φ→ ◦ φ

ε
←(x̃)) ≤ 2δ+ 2ε. Hence maxx̃∈R̃ dg(x̃, φ→ ◦ φε←(x̃)) ≤ 2δ+ 2ε. Putting

everything together, we have that under the maps φ→ and φε←, we have that

dφ→,φε← := max{max
x∈R
| f (x) − g ◦ φ→(x)|, max

x∈R
d f (x, φε← ◦ φ→(x))

max
x̃∈R̃
|g(x̃) − f ◦ φε←(x̃)|, max

x̃∈R̃
dg(x̃, φ→ ◦ φε←(x̃))} ≤ 2δ + 2ε.

By Eqn (4), we have that dFD(R, R̃) ≤ limε→0 dφ→,φε← = 2δ. Combining this with Theorems 4.2 and 4.3, we thus
have that dB(Dg0(R f ),Dg0(Rg)) ≤ dFD(R, R̃) = 2δ, dB(Dg0(R− f ),Dg0(R−g)) ≤ 2δ, and dB(ExDg1(R f ),ExDg1(Rg)) ≤
3dFD(R, R̃) = 6δ.
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