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Dedication
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Preface

Philosophy of an Online Text

| think of myself as an educator rather than an engineer. And it has
long seemed to me that, as educators, we should endeavor to bring
to the student not only as much information as possible, but we
should strive to make that information as accessible as possible,
and as inexpensive as possible.

The technology of the Internet and the World Wide Web now allows
us to virtually give away knowledge! Yet, we don’t, choosing
instead to write another conventional text book, and print, sell, and
use it in the conventional manner. The “whys” are undoubtedly
intricate and many; | offer only a few observations:

® Anychange is difficult and resisted. This is true in the habits
we form, the tasks we perform, the relationships we engage.
It is simply easier not to change than it is to change. Though
change is inevitable, it is not well-suited to the behavior of any
organism.

® The proper reward structure is not in place. Faculty are
supposedly rewarded for writing textbooks, thereby bringing
fame and immortality to the institution of their employ.” The
recognition and reward structure are simply not there for a text
that is simply “posted on the web.”

® No economic incentive exists to create and maintain a

'l use the word “supposedly” because, in my view, the official rewards for textbook
authoring fall far short of what is appropriate and what is achievable through an equivalent
research effort, despite all the administrative lip service to the contrary. These arguments,
though, are more appropriately left to a different soapbox.
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structure that allows all authors to publish in this manner; that
allows students easy access to all such material, and that
rigorously ensures the material will exceed a minimum
acceptable quality.

If | were to do this the way | think it ought to be done, | would have
prepared the course material in two formats. The first would be a
text, identical to the textbooks with which you are familiar, but
available online, and intended to be used in printed form. The
second would be a slide presentation, a la Corel® Presentations™
or Microsoft® PowerPoint®, intended for use in the classroom or in
an independent study.

But, alas, | am still on that journey, so what | offer you is a hybrid of
these two concepts: an online text somewhat less verbose than a
conventional text, but one that can also serve as classroom
overhead transparencies.

Other compromises have been made. It would be advantageous to
produce two online versions - one intended for use in printed form,
and a second optimized for viewing on a computer screen. The two
would carry identical information, but would be formatted with
different page and font sizes. Also, to minimize file size, and
therefore download times, font selection and variations are
somewhat limited when compared to those normally encountered
in a conventional textbook.

You may also note that exercise problems are notincluded with this
text. By their very nature problems quickly can become “worn out.”
| believe it is best to include problems in a separate document.

Until all of these enhancements exist, | hope you will find this a
suitable and worthwhile compromise.

Enough of this; let’s get on with it...
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Notes for Printing This Document

This document can be printed directly from the Acrobat® Reader -
see the Acrobat® Reader help files for details.

If you wish to print the entire document, do so in two sections, as

most printer drivers will only spool a maximum of 255 pages at one
time.

Copyright Notice and Information

This entire document is ©1999 by Bob Zulinski. All rights reserved.

| copyrighted this online text because it required a lot of work, and
because | hold a faint hope that | may use it to acquire
immeasurable wealth, thereby supporting the insatiable, salacious
lifestyle that I've always dreamed of.

Thus, you will need my permission to print it. You may obtain that
permission simply by asking: tell me who you are and what you
want it for. Route your requests via email to rzulinsk@mtu.edu, or
by USPS mail to Bob Zulinski, Dept. of Electrical Engineering,
Michigan Technological University, Houghton MI 49931-1295.

Generous monetary donations included with your request will be
looked upon with great favor.
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Rev

iew of Linear Circuit Techniques

Resistors in Series

R/ 2 This is the simple one!!!

R, 2

Ry =R +R, +R;y +-- (1)

Resistors must carry the same current!!!

R’sFiri\gé;Eies. L’s is series and C’s in parallel have same form.
“““ Resistors in Parallel
R1§ R2§ Resistors must have the same voltage!!!
Equation takes either of two forms:
R's ;igp'afé”d_ Product Over Sum:
R,R
R — 172 2
total R +R, (2)

Only valid for two resistors. Not calculator-efficient!!!

Inverse of Inverses:

1
1 1 1 ()
+
R Ry Rs

Rtotal =

Always valid for multiple resistors. Very calculator-efficient!!!

L’s in parallel and C’s in series have same forms.




Review of Linear Circuit Techniques Introduction to Electronics

i
N

Ideal Voltage Sources

Cannot be connected in parallel!!!

Real voltage sources include a series
resistance (“Thevenin equivalent”), and can
be paralleled.

Fig. 3. Ideal voltage
sources in parallel???

Ideal Current Sources

Cannot be connected in series!!!

Real current sources include a parallel
resistance (“Norton equivalent”), and can be
connected in series.

Fig. 4. Ideal current
sources in series???

Real Sources

All sources we observe in nature exhibit a
decreasing voltage as they supply increasing
current.

We presume that i-v relationship to be linear,
so we can write the equations:

VO C

Fig. 5. Typical lineari- v v=Voc—iRy, or i=lg,—— (4)
characteristic of a real source. RTH
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The linear equations help us visualize what might be inside of a real

source:
P N r [N
[ AV ‘o) [ ' ‘o)
| Ry |+ | i+ Note that:
I + I I I
1

i C Voc=Vry i v | <4\> Isc §RTHI v VOC
T~ | ' ' R;, = (5)
| | : ! TH
| . g sc
| : i —o
!_______________! S |

Fig. 6. Thevenin Fig. 7. Norton equivalent

equivalent circuit. circuit.

We can generalize this — any linear resistive circuit can be
represented as in Figs. 6 and 7.

Voltage Dividers

D

AN\~
O

~ *

Example - finding the voltage across Rj:

— Re vV
X
R, +Rs; +R.

J;

()
N\
><<

Py

w

WV
m<+ |

Vs (6)

A
<+L

Resistors must be in series, i.e., they must

Fig. 8. Example of a carry the same current!!!

voltage divider.

(Sometimes we cheat a little, and use the divider equation if the
currents through the resistors are almost the same - we’ll note this
in class if that is the case)
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\V Current Dividers
B
1
Iy ’]\> RA§ RBg ch —
I, = Re / 7
e "
+ +
Fig. 9. Example of a current divider. RA RB RC

Resistors must be in parallel, i.e.,
have the same voltage!!!

Superposition

Superposition applies to any linear circuit - in fact, this is the
definition of a linear circuit!!!

An example of finding a response using superposition:

iL NN \V AN AN l/A AN iL 4A"A% \I//B AN/
T = 2

g ™ g @ F
Fig. 10. The total Fig. 11. .. .is the sum of Fig. 12. ... and the
response current / . . . the response /. . . response /5. . .

A quick exercise:

Use superposition and voltage division to show that V,, =6 V:

10 kQ 30 kQ
4 Vo AN l AN o012V

Vx
Fig. 13. A quick exercise . . .
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What's missing from this review???

Node voltages / mesh currents . . .

For the kinds of problems you’ll encounter in this course, | think you
should forget about these analysis methods!!!

If there is any other way to solve a circuit problem, do it that other
way . .. you'll arrive at the answer more efficiently, and with more
insight.

You'll still need Ohm’s and Kirchoff’s Laws:

KVL: Sum of voltages around a closed loop is zero.
We’'ll more often use a different form:

Sum of voltages from point A to point B is the same
regardless of the path taken.

KCL: Sum of currents into a node (or area) is zero.

| won'’t insult you by repeating Ohm’s Law here . . .
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Basic Amplifier Concepts

Signal | % —9
'gna v;(t) | Amplifier |v, (1) Load
Source ) -
_O_ _O_
JT—Ground

Fig. 14. Block diagram of basic amplifier.

Signal Source

A signal source is anything that provides the signal, e.g., . ..
. . . the carbon microphone in a telephone handset . . .

. . . the fuel-level sensor in an automobile gas tank . . .

Amplifier
An amplifier is a system that provides gain . . .

. . . sometimes voltage gain (illustrated below), sometimes current
gain, always power gain.

f\/\\__,-l‘ \///t /\\\l‘

Fig. 15. Generic input Fig. 16. Output voltage Fig. 17. Output voltage
signal voltage. of noninverting of inverting amplifier.
amplifier.
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Si | ? 2
'gna v;(t) | Amplifier |v, (1) Load
Source - -
- O0— - O—
JT— Ground

Fig. 18. Block diagram of basic amplifier (Fig. 14 repeated).
Load
The load is anything we deliver the amplified signal to, e.g., . ..
. .. loudspeaker . ..

.. . the leg of lamb in a microwave oven . . .

Ground Terminal

Usually there is a ground connection . . .
. usually common to input and output . . .
. maybe connected to a metal chassis . . .
. maybe connected to power-line ground . . .

. maybe connected to both . . .

. maybe connected to neither . . . use caution!!!

To work with (analyze and design) amplifiers

we need to visualize what might be inside all three blocks of Fig. 18,
i.e., we need models!!!
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Voltage Amplifier Model

This is usually the one we have the most intuition about . . .

T
[ | I |
| F?S | h F?O | IO |
| AMN———2 WMW——2 |
! I I !
| | [ |
I . . I
I Vs D : i gR/ Avocv' : ogRL I
[ A A [
| | [ |
| [ [ [
| A S |
I h 4 - Y I
| __Source | ______ Amplifier _______ i _load |
Fig. 19. Modeling the source, amplifier, and load with the emphasis on
voltage.

Signal Source

Our emphasis is voltage . . . source voltage decreases as source
current increases, as with any real source . . .

. .. SO we use a Thevenin equivalent.

Ampilifier Input

When the source is connected to the amplifier, current flows . . .

. . . the amplifier must have an input resistance, R,.

Ampilifier Output

Output voltage decreases as load current increases . . .

. .. again we use a Thevenin equivalent.

Load

Load current flows . . . the load appears as a resistance, R, .
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T Tt T T T T T-=TTTTTTTT
! Rs | R, | :
L — W= —— W\ —6——2 !
I i i I
| | i |
I | + | + i
i Vs :P i A §RI >AVOCVI i _ogRL i
! I I :
| I | |
I ? ? !
| __Source ___I_______ Amplifier ________1__Load .

Fig. 20. Voltage amplifier model (Fig. 19 repeated).

Open-Circuit Voltage Gain

If we remove R, (i.e., with R, = <) the voltage of the Thevenin
source in the amplifier output is the open-circuit output voltage of
the ampilifier. Thus, A, is called the open-circuit voltage gain:

A =Y (8)
V.

Voltage Gain

With a load in place our concept of voltage gain changes slightly:

A, _Yo = Vv, = Ri ——A,.,V, = A =A,.,—— Ri (9)
V. R, +R, R, +R,

We can think of this as the amplifier voltage gain if the source were

ideal:

FeeTTTT T F==7777TT

L R Vo, I

b—— MA—O——=2 |

| i !

I | I

+ I+ I+ i

Vi (—) i i § RI Avocv i ‘{o g RL i
| | i

0 < !
| Amplifier_________ | __load__i

o r

Fig. 21. A, = v,/v;illustrate
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Tt T T 0 T-=,777777T
| Re | i R, | i |
' —AM—O——2, — AMW———2 !
I i i I
| | i |
| | + | + i
i Vs :P i Vi § RI >Avocvi i \io § RL i
! ! I !
| __Source ___| ______ Amplifier ________ ! _Load !

Fig. 22. Voltage amplifier model (Fig. 19 repeated).

With our “real” source model we define another useful voltage gain:

A =Y - v,=ivs = A,.=A,. R; Ry (10)
v Rs +R, Rs +R, R, +R,

Notice that A,and A . are both less than A, .., due to [oading effects.

voc?

Current Gain

We can also define the amplifier current gain:

. V/
A =l RO_V R =AV& (11)
vV, R R,

i .
I; %i i T\

Power Gain

Because the amplifier input and load are resistances, we have
P,=V,l,,and P,= V.l (rms values). Thus:

Volo _p a =4
V.1

11

(12)

G:i: V2&=A.2RL
F R,

R
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Power Supplies, Power Conservation, and Efficiency
L
4 |
la \J/T AA + || - ‘I—‘
FomTTTTT T S FoTTTTTTTT Van
| RS | II RO | IO :
| A ———= W—o——=2 |
I I I 1
| I | I
I [ ! + I
i Vs C_D i _/ gRl Avocvi i ‘iogRL i
| | | |
| $ $ :
L__Source ___1_ ______Amplifier ________ i __Load__| V
1
“Ves =

Fig. 23. Our voltage amplifier model showing power supply and ground connections. _

The signal power delivered to the load is converted from the dc
power provided by the power supplies.

DC Input Power

Py =Vl +Vgsls (13)

This is sometimes noted as P,,. Use care not to confuse this with
the signal input power P,;.

Conservation of Power

Signal power is delivered to the load = P,
Power is dissipated within the amplifier as heat = P,
The total input power must equal the total output power:

P, +P =P, +P, (14)

Virtually always P, << Pg and is neglected.
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I
4 |

IA \]/T AA R K i J___
Fm—TTT T Tt T T T T T T T T T Vaa
i Rs I Il Ro | IO I
i AV ¢| — AV ? —= !

|

| I | I
| | |
| I, T !
{ Vs _D I i gR, Avocvi { VogRL i
| L N .
1 I | I
| $ : :
L__Source ___ 1 ______Amplifier ________ | __Load__| V

/ -0+

# V0 Vs i

Fig. 24. Our voltage amplifier model showing power supply and ground connections
(Fig. 23 repeated).
Efficiency
Efficiency is a figure of merit describing amplifier performance:
P
n= P—" x100% (15)

S
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Amplifier Cascades
Amplifier stages may be connected together (cascaded) :
C T I
I i R I i R | I
I i1 | i2 02 02 |
o= MW———= M— |
| | |
| I+ I
[ + [ +
I Vit an Vo1= Vi §Ri2 Voz |
| - | - |
I A voc1 Vi1 I A v002vi2 :
| | |
| o— ¢ o |
L Amplifier1 R Amplifier2
Fig. 25. A two-amplifier cascade.
Notice that stage 1 is loaded by the input resistance of stage 2.
Gain of stage 1: v
| Ay=-2 (16)
Vit
Gain of stage 2: v v
° A =0t =02 (17)
Vio Vo
Gain of cascade: V.V
Avoc =—ol o2 - Av1Av2 (18)
Vit Vo

We can replace the two models by a single model (remember, the
model is just a visualization of what might be inside):

li1 Ros oy

o—a ’\N\/—o;
+ +

Vig § Ris Vo2
) AvocVi1 )
o—— o

Fig. 26. Model of cascade.
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Decibel Notation

Amplifier gains are often not expressed as simple ratios . . . rather
they are mapped into a logarithmic scale.

The fundamental definition begins with a power ratio.

Power Gain
Recall that G = P,/P;, and define:
G, =10logG (19)

G5 is expressed in units of decibels, abbreviated dB.

Cascaded Amplifiers
We know that G, = G, G,. Thus:

Gt i =10l0gG,G, =10logG, +10logG, =G, ;5 +G, 45 (20)
Thus, the product of gains becomes the sum of gains in decibels.

Voltage Gain

To derive the expression for voltage gain in decibels, we begin by
recalling from eq. (12) that G = A AR,/R,). Thus:
10l0gG =1OlogAV2g

L

=10logA,” +10logR, —10logR, (21)

=20logA, +10logR; —10logR,
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Even though R, may not equal R, in most cases, we define:
A, s =20logA, (22)

Only when R, does equal R, , will the numerical values of G, and
A, ;s be the same. In all other cases they will differ.

From eq. (22) we can see that in an amplifier cascade the product
of voltage gains becomes the sum of voltage gains in decibels.

Current Gain

Ina manner similar to the preceding voltage-gain derivation, we can
arrive at a similar definition for current gain:

A ;5 =20log A, (23)

Using Decibels to Indicate Specific Magnitudes

Decibels are defined in terms of ratios, but are often used to
indicate a specific magnitude of voltage or power.

This is done by defining a reference and referring to it in the units
notation:

Voltage levels:

dBV, decibels with respectto 1V . . . for example,

316 V

3.16 V =20log =10 dBV (24)
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Power levels:

dBm, decibels with respectto 1 mW . . . for example

5mW
1T mW

5 mW =10log =6.99 dBm (25)

dBW, decibels with respectto 1 W . . . for example

5mW

5 mW =10log —23.0 dbW (26)
1W

There is a 30 dB difference between the two previous examples
because 1 mW =-30 dBW and 1 W = +30 dBm.
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Other Amplifier Models

Recall, our voltage amplifier model arose from our visualization of
what might be inside a real amplifier:

[T T == = =" 1|' ““““““““““““ r“.‘ “““ I
I RS | II RO | IO I
! MA———2 AM—O——2 !
a a a a
| | + | + |
i Vs D i _/ §RI Avocv' i _ogRL i
: I I :
| | | |
! % - !
| __Source____! ______ Amplifier ________ __load__!

Fig. 27. Modeling the source, amplifier, and load with the emphasis on
voltage (Fig. 19 repeated).

Current Amplifier Model

Suppose we choose to emphasize current. In this case we use
Norton equivalents for the signal source and the amplifier:

e o o e o e e e e e e e e e o —— ——— —

Fig. 28. Modeling the source, amplifier, and load with the emphasis on
current.

The short-circuit current gain is given by:

Ase = (27)
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Transconductance Amplifier Model
Or, we could emphasize input voltage and output current:
T T T T T“'. """"""""""" T
| N b,
! ANA— . !
| | | |
I I I I
| ¥ Lo+ ! |
O iEr () RERER
- msc’i |
I I I I
I ! ! I
| ___Source ____I_Transconductance Amplifier | _Load __ |
Fig. 29. The transconductance amplifier model.
The short-circuit transconductance gain is given by:
I ,
G, = " (siemens, S) (28)
"R =0
Transresistance Amplifier Model
Our last choice emphasizes input current and output voltage:
Tt TS, Tt |
I o R, 1 !
|
| I I I
| I I I
L. L+ + I+ ,
(D SRy | VIR (ORud | VSR
! I I :
| I I I
I ? Q !
| ___Source ____ ! __Transresistance Amplifier || _ Load _ i
Fig. 30. The transresistance amplifier model.
The open-circuit transresistance gain is given by:
VO
R0 = (ohms, Q) (29)

l; R, =
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Any of these four models can be used to represent what might be
inside of a real amplifier.

Any of the four can be used to model the same amplifier!!!
® Models obviously will be different inside the amplifier.

® If the model parameters are chosen properly, they will
behave identically at the amplifier terminals!!!

We can change from any kind of model to any other kind:

® Change Norton equivalent to Thevenin equivalent (if
necessary).

® Change the dependent source’s variable of dependency
with Ohm’s Law = v, =R, (if necessary).

Try it/!! Pick some values and practice!!!
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Amplifier Resistances and Ideal Amplifiers

Ideal Voltage Amplifier

Let’s re-visit our voltage amplifier model:

T Tt T T T T T TT=7777777T
| Re | i R i
! ANN—O—— AMA———2 !
| | |
| - - |
+ |
i Vs <_> i ‘ii §RI Avocvi i ‘iogRL i
! | l !
| ___Source ___|___ Voltage Amplifier ___| _Load__|

Fig. 31. Voltage amplifier model.

We're thinking voltage, and we’re thinking amplifier . . . so how can
we maximize the voltage that gets delivered to the load ?

® \We can get the most voltage out of the signal source if
R,>> Rg, i.e., if the amplifier can “measure” the signal voltage
with a high input resistance, like a voltmeter does.

In fact, if R, = o=, we won’t have to worry about the value of
Rs at all!!!

® \We can get the most voltage out of the amplifier if R, << R,
l.e., if the amplifier can look as much like a voltage source as
possible.

Infact, if R, =0, we won’t have to worry about the value of R,
at all!l!l

So, in an ideal world, we could have an ideal amplifier!!!
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o O
+
Vi A vocv'
o O

Fig. 32. Ideal voltage amplifier. Signal
source and load are omitted for clarity.

An ideal amplifier is only a concept; we cannot build one.

But an amplifier may approach the ideal, and we may use the
model, if only for its simplicity.

Ideal Current Amplifier

Now let’s revisit our current amplifier model:

T T 1
| | | |
| | | |
| ] | |
| | | |
| | | |
| | | |
. |+ |+ |
i I @‘) §RS i V; § R, hoi Ro§ i \{oé R, !
: : - isc'i : i
| | | |
| ___Source ___1___Current Amplifier _____|_Load__|

Fig. 33. Current amplifier model (Fig. 28 repeated).

How can we maximize the current that gets delivered to the load ?

® We can get the most current out of the signal source if
R, << R, i.e., if the amplifier can “measure” the signal current
with a low input resistance, like an ammeter does.

Infact, if R, =0, we won’t have to worry about the value of R
at all!l!l
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® \We can get the most current out of the amplifier if R, >> R,
i.e., if the amplifier can look as much like a current source as

possible.

In fact, if R, = <=, we won'’t have to worry about the value of
R, at allll!

This leads us to our conceptual ideal current amplifier:

o0— O
Ii \l/ Aisc’i
o—— O

Fig. 34. ldeal current amplifier.

Ideal Transconductance Amplifier

With a mixture of the previous concepts we can conceptualize an
ideal transconductance amplifier.

This amplifier ideally measures the input voltage and produces an
output current:

o0——— O
+
Vi Gmscvi
o——- O

Fig. 35. ldeal transconductance amplifier.
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Ideal Transresistance Amplifier

Our final ideal amplifier concept measures input current and
produces an output voltage:

oO0— O
Ii \I/ Rmocli
o—— O

Fig. 36. Ideal transresistance amplifier.

Uniqueness of Ideal Amplifiers

Unlike our models of “real” amplifiers, ideal amplifier models cannot
be converted from one type to another (try it . . .).
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Frequency Response of Amplifiers

Terms and Definitions

In real amplifiers, gain changes with frequency . . .

“Frequency” implies sinusoidal excitation which, in turn, implies
phasors . . . using voltage gain to illustrate the general case:

Av — Vo — ‘VO‘LVO
v, Vv

= \AV\LAV (30)

Both |A,| and Z A, are functions of frequency and can be plotted.

Magnitude Response:

A plot of |A,| vs. fis called the magnitude response of the amplifier.

Phase Response:

A plot of Z A, vs. fis called the phase response of the amplifier.

Frequency Response:

Taken together the two responses are called the frequency
response . . . though often in common usage the term frequency
response is used to mean only the magnitude response.

Amplifier Gain:

The gain of an amplifier usually refers only to the magnitudes:

A, |, =20logA,| (31)
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The Magnitude Response

Much terminology and measures of amplifier performance are
derived from the magnitude response . . .

|Av midldB

|Av|dB

e midband region — i

l

~

)
3dB

<—  Bandwidth, B———>

f(log scale)

f

Fig. 37. Magnitude response of a dc-coupled, or direct-coupled amplifier.

|Av midldB

|Av|dB
i« midband region i
| |
| i |
7 N\
1 ! !
3dB | l
| |
ie Bandwidth, B —>|
|
| : f(log scale)
f, f

Fig. 38. Magnitude response of an ac-coupled, or RC-coupled amplifier.

|A, midlas 1S called the midband gain . . .

f, and f, are the 3-dB frequencies, the corner frequencies, or the

half-power frequencies (why this last one?) . . .
B is the 3-dB bandwidth, the half-power bandwidth, or simply the

bandwidth (of the midband region) . . .
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Causes of Reduced Gain at Higher Frequencies

Stray wiring inductances . . .
Stray capacitances . . .

Capacitances in the amplifying devices (not yet included in our
amplifier models) . . .

The figure immediately below provides an example:

o0— ~"MW\—O0—~YYY\ _o o0—

g T 3

O

O O O o]

Fig. 39. Two-stage amplifier model including stray

wiring inductance and stray capacitance between

stages. These effects are also found within each
amplifier stage.

Causes of Reduced Gain at Lower Frequencies

This decrease is due to capacitors placed between amplifier stages
(in RC-coupled or capacitively-coupled amplifiers) . . .

This prevents dc voltages in one stage from affecting the next.

Signal source and load are often coupled in this manner also.

1 O
1T ~

['o S—

g g

(o, O O O

Fig. 40. Two-stage amplifier model showing
capacitive coupling between stages.
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Differential Amplifiers

Many desired signals are weak, differential signals in the presence
of much stronger, common-mode signals.

Example:

Telephone lines, which carry the desired voice signal between the
green and red (called tip and ring) wires.

The lines often run parallel to power lines for miles along highway
right-of-ways . . . resulting in an induced 60 Hz voltage (as much as
30 V or so) from each wire to ground.

We must extract and amplify the voltage difference between the
wires, while ignoring the large voltage common to the wires.

Modeling Differential and Common-Mode Signals

S | D
| I I |
I o1 | ! + !
i ! | DVpl2
| —2t L QO
| «—> ! e |
I + | ! J_ O+ !
IV” V) V/2 [a W) I | = + |
i <> <> | | @VID /2 i
L 1 | | |
! ' | |

|

Fig. 41. Representing two sources by their differential and
common-mode components.

As shown above, any two signals can be modeled by a differential
component, v,;, and a common-mode component, v,.,,, if:

_ Vi _ Vi
Vit =Viem +7 and Viz =Vieum Y (32)
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Solving these simultaneous equations for v,; and v,g,:
_ViutVp
Vio =Vin =V and Viem = T (33)

Note that the differential voltage v, is the difference between the
signals v,, and v, , while the common-mode voltage v/, is the
average of the two (a measure of how they are similar).

Amplifying Differential and Common-Mode Signals

We can use superposition to describe the performance of an
amplifier with these signals as inputs:

-\8/+ +
l <\J>v,d/2

g B
d\)v,d/Z
j Amplifier V,=AyViy tA,, VY,

cm " icr

—O

Fig. 42. Amplifier with differential and common-mode input signals.

A differential amplifier is designed so that A, is very large and A_,,
is very small, preferably zero.

Differential amplifier circuits are quite clever - they are the basic
building block of all operational amplifiers

Common-Mode Rejection Ratio

A figure of merit for “diff amps,” CMRR is expressed in decibels:

CMRR ; =20 Iog% (34)




Ideal Operational Amplifiers Introduction to Electronics 29

Ideal Operational Amplifiers

The ideal operational amplifieris an

Vio—— ideal differential amplifier:
Vo Aj=Ay=c A, =0
V. o— Vo=As(Vi-V.)  R=-eo Ro=0

Fig. 43. The ideal operational amplifier: B
schematic symbol, input and output voltages,
and input-output relationship.

The input marked “+” is called the noninverting input . . .

(1]

The input marked “-” is called the inverting input . . .

The model, just a voltage-dependent voltage source with the gain
A, (v, - v.), is so simple that you should get used to analyzing
circuits with just the schematic symbol.

Ideal Operational Amplifier Operation

With A, = «, we can conceive of three rules of operation:
1. Ifv.>v theny,increases. ..
2. Ifv,<v thenyv,decreases...
3. |Ifv,=v_ then v, does not change. ..

In a real op amp v, cannot exceed the dc power supply voltages,
which are not shown in Fig. 43.

In normal use as an amplifier, an operational amplifier circuit
employs negative feedback - a fraction of the output voltage is
applied to the inverting input.




Ideal Operational Amplifiers Introduction to Electronics

30

Op Amp Operation with Negative Feedback

Consider the effect of negative feedback:

If v. > v_then v, increases . ..

Because a fraction of v, is applied to the inverting input,
v_increases . . .

The “gap” between v, and v_is reduced and will eventually
become zero . . .

Thus, v, takes on the value that causes v, - v. = 0!l

If v, < v. then v, decreases . ..

Because a fraction of v, is applied to the inverting input,
v. decreases . ..

The “gap” between v, and v_is reduced and will eventually
become zero . . .

Thus, v, takes on the value that causes v, - v. = 0!l

In either case, the output voltage takes on whatever value that
causes v, -v_=0lll

In analyzing circuits, then, we need only determine the value of v,
which will cause v, - v. = 0.

Slew Rate

So far we have said nothing about the rafe at which v, increases or
decreases . . . this is called the slew rate.

In our ideal op amp, we’ll presume the slew rate is as fast as we
need it to be (i.e., infinitely fast).
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Op Amp Circuits - The Inverting Amplifier

Let’s put our ideal op amp concepts to work in this basic circuit:

Fig. 44. Inverting amplifier circuit.

Voltage Gain

Because the ideal op amp has R, = «, the current into the inputs
will be zero.

This means i, = i,, i.e., resistors R, and R, form a voltage dividerlll

Therefore, we can use superposition to find the voltage v..

(Remember the quick exercise on p. 4 ??? This is the identical
problem!!!):
Ly = V,R, +V R,
) R, +R,

(33)

Now, because there is negative feedback, v, takes on whatever
value that causesv,-v.=0,and v, =0 /!

Thus, setting eq. (35) to zero, we can solve for v, :

viR,+v,R, =0 = voz—&v, = A =——>= (36)
R1 R1
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Fig. 45. Inverting amplifier circuit
(Fig. 44 repeated).

Input Resistance

This means resistance “seen” by the signal source v;, not the input
resistance of the op amp, which is infinite.

Because v_= 0, the voltage across R, is v;. Thus:

L =R, (37)

Output Resistance

This is the Thevenin resistance which would be “seen” by a load
looking back into the circuit (Fig. 45 does not show a load attached).

Our op amp is ideal; its Thevenin output resistance is zero:

R, =0 (38)
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Op Amp Circuits - The Noninverting Amplifier

If we switch the v, and ground connections on the inverting
amplifier, we obtain the noninverting amplifier:

= R,

Fig. 46. Noninverting amplifier circuit.

Voltage Gain

This time our rules of operation and a voltage divider equation lead
to:

v—v—v—F\J1 % 39
i + _R1+R2O (39)

from which:

v, :R1 +R, V; =(1+&)/, = A, =1+& (40)
R, R,

1

Input and Output Resistance

The source is connected directly to the ideal op amp, so:
R, =R, =o° (41)
Aload “sees” the same ideal Thevenin resistance as in the inverting

case:
R, =0 (42)
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Op Amp Circuits - The Voltage Follower

- .
T

Fig. 47. The voltage follower.

Voltage Gain

This one is easy:
v, =v, =v_=v, = A =1 (43)
i.e., the output voltage follows the input voltage.

Input and Output Resistance

By inspection, we should see that these values are the same as for
the noninverting amplifier . . .

R, =o° and R, =0 (44)

n

In fact, the follower is just a special case of the noninverting
amplifier, with R, = « and R, = 0//!




Op Amp Circuits - The Inverting Summer Introduction to Electronics 35

Op Amp Circuits - The Inverting Summer

This is a variation of the inverting amplifier:

Fig. 48. The inverting summer.

Voltage Gain

We could use the superposition approach as we did for the
standard inverter, but with three sources the equations become
unnecessarily complicated . . . so let’s try this instead . . .

Recall . . . v, takes on the value that causesv. = v, =0 . ..

So the voltage across R, is v, and the voltage across Rz is vy

.V, . Vg
[, =— and g =—> (45)
RA RB
Because the current into the op amp is zero:
. . Vv v
ir=i,+i; and v, =RF(/A+/B):RF(—A+—BJ (46)
§ RA RB

Finally, the voltage rise to v, equals the drop across R.:

(R, LR
Vo=-p% VA+R Vg (47)
A B
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Op Amp Circuits - Another Inverting Ampilifier

If we want very large gains with the standard inverting amplifier of
Fig. 44, one of the resistors will be unacceptably large or
unacceptably small . . .

We solve this problem with the following circuit:

Fig. ;19. An inverting amplifier with a resistive T-network
for the feedback element.

Voltage Gain

One common approach to a solution begins with a KCL equation at
the R, - R; - R,junction . . .

. we’ll use the superposition & voltage divider approach, after we
apply some network reduction techniques.

Notice that R;, R, and the op amp output voltage source can be
replaced with a Thevenin equivalent:

——— e 1 e e o o o e e e e e e e e e e e

F|g 50. Replacing part of the original circuit with a
Thevenin equivalent
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The values of the Thevenin elements in Fig. 50 are:
__Rs d R, =R,||IR
Vo an m =Rs||IR, (48)

With the substitution of Fig. 50 we can simplify the original circuit:

R, Reo= R, + Ry
Vi o AN l MW OVry

v.=0

Fig. 51. Equivalent circuit to original amplifier.

Again, v,, and therefore v;,, takes on the value necessary to make
vV,-v.=0...

We've now solved this problem twice before (the “quick exercise” on
p. 4, and the standard inverting amplifier analysis of p. 31):

REQ
Vo =——=2V, (49)
R,

Substituting for v;;, and R, and solving for v, and A, :

Ry :_R2+(R3||R4)V_: R,  RallRi ), (50)
R3+R4 © R1 I R1 R1 I

AV :V_O: 1+R4 RZ +R3||R4 (51)
v, R, \R, R,
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Op Amp Circuits - Differential Amplifier

The op amp is a differential amplifier to begin with, so of course we
can build one of these!!!

R, Voltage Gain

Again, v, takes on the value
+ % required to make v, = v_.

V2 R, v. Thus:
0]

L 1 R
0 i V, =55V, =V_ (52

= W % R +R,

R1 R2

- Fig. 52. The differential amplifier.

We can now find the current
i, , which must equal the
current /,:

oV R V, =1, (53)
R, R, R(R/+R,)

I, =

Knowing i,, we can calculate the voltage across R,. . .

R R,R
Vo =i,R, =—2v, — Z 2 __y 54
R, = 122 R, 1 R1(R1+R2) 2 (54)
Then we sum voltage rises to the output terminal:
Vo =V, —V R, v ——R2v+ Rl % 55
o~ 2 1 R1(R1+R2) 2 (55)

TR TR YR, R,




Op Amp Circuits - The Differential Amplifier Introduction to Electronics 39

Working with just the v, terms from eq. (55) . ..

R, R,R, RiR, R,R,
RiR 2 RRAR)? RR+RV2 T R(R IR 2 ®©9
1R, 1(1"‘ 2) 1(1"‘ 2) 1(1"‘ 2)

R(R+R,) 7 R(R +R2)V2 R,

And, finally, returning the resulting term to eq. (55):

Hz Hz Hz
Vvai=——=V,+—V, =—=(\V, —V 58

So, under the conditions that we can have identical resistors (and
an ideal op amp) we truly have a differential amplifier!!!
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Op Amp Circuits - Integrators and Differentiators

Op amp circuits are not limited to resistive elements!!!

The Integrator

From our rules and previous
= experience we know that v.= 0

—o Vg
and i =i., S0 ...
Ir Ic
. — AN\ . +H_9 I'thzic (59)
? " ; R

L From the j-v relationship of a

Fig. 53. Op amp integrator. capacitor:

1 | 11

Ve = E__[’cdt :EB[ICdt +v,(0) (60)

Combining the two previous equations, and recognizing that
VO = - VC

1¢v, 1
Vo :—EIE’dt+vC(O):—R—CB[v,dt+vc(0) (61)

0

Normally v, (0) = 0 (but not always). Thus the output is the integral
of v,, inverted, and scaled by 1/RC.
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The Differentiator

This analysis proceeds in the
same fashion as the previous

i ic \ analysis.

Vi ¢ From our rules and previous
| experience we know that v. = 0
"Fig. 54. The op amp differentiator. andi- =iy ...

From the j-v relationship of a capacitor:

: dv, dv, .
© 7 dt a =
Recognizing that v, = -v,:
Vo =—Vgp =—iR=—RC av; (63)
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Op Amp Circuits - Designing with Real Op Amps

Resistor Values

Our ideal op amp can supply unlimited current; real ones can'’t . . .

Fig. 55. Noninverting amplifier with Ioaa.

? _ Vie Vi

—WM——wW, Ry gf"o

To limit iz + i, to a reasonable
value, we adopt the “rule of
thumb” that resistances should
be greater than approx. 100 Q.

Of course this is highly
dependent of the type of op amp
to be used in a design.

Larger resistances render circuits more susceptible to noise and
more susceptible to environmental factors.

To limit these problems we adopt the “rule of thumb” that
resistances should be less than approximately 1 MQ.

Source Resistance and Resistor Tolerances

m AN/ O—ANN
? Rs R,
V;

In some designs R will
affect desired gain.

Resistor tolerances will
also affect gain.

Fig. 56. Inverting amplifier including source resistance.

If we wish to ignore source resistance effects, resistances must be

much larger than Rg (if possible).

Resistor tolerances must also be selected carefully.
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Graphical Solution of Simultaneous Equations

Let’s re-visit some 7"-grade algebra . . .we can find the solution of
two simultaneous equations by plotting them on the same set of
axes.

Here’s a trivial example:

y =X and y =4 (64)

We plot both equations:

10

8

c 1 2 3 4 5 6 7 8 9 10

Fig. 57. Simple example of obtaining the solution to simultaneous
equations using a graphical method.

Obviously, the solution is where the two plots intersect, at x = 4,
y=4...
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Let’s try another one:

B 0, for x <0 5
y= 0.4x2, for x >0 (69)
and
y= —4—X (66)
5
10
8 /
6 \\ /
Ty
y 7(
4 /
2 // \\\
/ N
O e

o 1 2 3 4 5 6 7 8 9 10
X

Fig. 58. Another example of graphically finding the solution to
simultaneous equations.

Here we see that the solution is approximately at x = 3.6, y = 5.2.

Note that we lose some accuracy with a graphical method, but, we
gain the insight that comes with the “picture.”
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If we change the previous example slightly, we’ll see that we can’t
arbitrarily neglect the other quadrants:

y =04x?, for all x (67)
and
4 x
=8 —— (68)
Y 5
20
16
12
Y
8
4
0

-0 8 6 4 -2 0 2 4 6 8 10
X

Fig. 59. Graphically finding multiple solutions.

Now we have two solutions - the first one we found before, at
x=3.6,y=95.2...the second solutionis at x=-5.5, y = 12.5.

In the pages and weeks to come, we will often use a graphical
method to find current and voltage in a circuit.

This technique is especially well-suited to circuits with nonlinear
elements.
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Diodes

When we “place” p-type semiconductor adjacent to n-type
semiconductor, the resultis an element that easily allows current to
flow in one direction, but restricts current flow in the opposite
direction . . . this is our first nonlinear element:

free free

lect
holes” \ Anode Cathode /eec one

© 20 © o ©
ptype n-type o
@@ @ @@@@

O ID I\I O
P
Vp

Fig. 60. Simplified physical construction and schematic symbol of
a diode.

The free holes “wish” to combine with the free electrons . . .

When we apply an external voltage that facilitates this combination
(a forward voltage, v, > 0), current flows easily.

When we apply an external voltage that opposes this combination,
(a reverse voltage, v, < 0), current flow is essentially zero.

Of course, we can apply a large enough reverse voltage to force
current to flow . . .this is not necessarily destructive.
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Thus, the typical diode i-v characteristic:

S

Forward Bias

-

VB

Breakdown

#/F Reverse Bias VE D

Fig. 61. PSpice-generated i-v characteristic for a 1N750 diode showing the various regions of

operation.

V- is called the forward knee voltage, or simply, the forward voltage.

@® |t is typically approximately 0.7 V, and has a temperature
coefficient of approximately -2 mV/K

Vy is called the breakdown voltage.

® Itranges from 3.3 V to kV, and is usually given as a positive
value.

Diodes intended for use in the breakdown region are called zener
diodes (or, less often, avalanche diodes).

In the reverse bias region, |i)] = 1 nA for low-power (“signal’)
diodes.
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Graphical Analysis of Diode Circuits

We can analyze simple diode circuits using the graphical method
described previously:

R We need two equations to find the
M\ o J/io two unknowns i, and v,.
+  The first equation is “provided” by
Vs 6) ¥ Vo the diode i-v characteristic.
) The second equation comes from
o the circuit to which the diode is
Fig. 62. Example circuit to illustrate connected.

graphical diode circuit analysis.

; This is just a standard Thevenin

=R) |
RTH,\(N\,R)QO equivalent circuit . . .
+ ¥ . . . and we already know its i-v
vV (=Vy) v characteristic . . . from Fig. 5 and eq.
OC€> > i (4) on p. 2:
. . 0 V4
FIgIF?S.' 6T2hi3\§1?ilfri]ezc.]' o V=Voc —IiRy, or i=lgc——— (69)
TH

=i,

... Where V. and /g are the open-
circuit voltage and the short-circuit
current, respectively.

A plot of this line is called the load
line, and the graphical procedure is
called load-line analysis.

Fig. 64. Graphical solution.
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vi O

Examples of Load-Line Analysis

R .

M\ O J/ID
n Casel:Vg=25Vand R=125Q
¥Vo Case2: Vg=1Vand R=25Q

Case 3: Vo.=10V and R=1kQ

)

Fig. 65. Example circuit
(Fig. 62 repeated).

Case1: Vo, c=Vs=25V and I,=25V /125 Q=20 mA.
We locate the intercepts, and draw the line.

The solutionis at v, = 0.71V, i, = 14.3 mA

Case2: Vopc=Vs=1V and l;c=1V /25 Q=40 mA

. . 1 __40mA __ 20mA
Isc is not on scale, so we use the slope: w5 =7 =452y

The solutionisat v, = 0.70V, i, = 12.0 mA

n
o

diode current, mA
[—
o

[
(&)

($)]
P T R T B A

(@]

Case 31 Vope=Vs=10V
N I =10V /1kQ =10 mA
\ N\
} \ N V¢ Not on scale, use slope:
\\ Tl 1T/A = 2fsva
0 05 1 15 ) 25 The solution is at:
diode voh‘age, \ VD —_ 068 V, iD — 93 mA

Fig. 66. Example solutions.
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Diode Models

Graphical solutions provide insight, but neither convenience nor
accuracy . . . for accuracy, we need an equation.

The Shockley Equation
: v
i, =1s| ex P_1-1 70
D s|: p(nVT) :| (70)

Vp =nVTIn(’I£+1) (71)

S

or conversely

where,

I5 is the saturation current, =10 fA for signal diodes

Is approx. doubles for every 5 K increase in temp.

n is the emission coefficient, 1 <n <2

n =1 is usually accurate for signal diodes (i, < 10 mA)

V; is the thermal voltage, V; :E (72)

q
k, Boltzmann’s constant, k = 1.38 (10%°) J/K

T. temperature in kelvins

q, charge of an electron, g = 1.6 (10™"%) C

Note: at T=300 K, V;=25.9 mV

we’'ll use V=25 mV as a matter of convenience.
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Repeating the two forms of the Shockley equation:

ip =g [exp(nv\? )— 1:| (73)
T

vV, =nV; In(’l£ + 1) (74)

S

Forward Bias Approximation:

For v, greater than a few tenths of a volt, exp(v,/nV;) >> 1, and:

i =l exp(nV\L; ) (75)
T

Reverse Bias Approximation:

For v, less than a few tenths (negative), exp(v,/nV;) << 1, and:

Ip =—lIg (76)
At High Currents:

v, =nV. In(;ﬂ + 1) +i,Rs (77)

S

where Rj is the resistance of the bulk semiconductor material,
usually between 10 Q and 100 Q.
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Let’s stop and review . . .
® Graphical solutions provide insight, not accuracy.

® The Shockley equation provides accuracy, not convenience.

But we can approximate the diode i-v characteristic to provide
convenience, and reasonable accuracy in many cases . . .

The Ideal Diode

Ip This is the diode we’'d like to have.
A

—— bog-
We normally ignore the breakdown
<— fwd bias (ON) region (although we could model this,

too).
— Vb

Both segments are linear . . . if we
rev bias (OFF) knew the correct segment we could

use linear analysis!!!
Fig. 67. ldeal diode i-v characteristic.

In general we don’t know which line segment is correct . . .so we
must guess , and then determine if our guess is correct.

If we guess “ON,” we know that v, = 0, and that i, must turn out to
be positive if our guess is correct.

If we guess “OFF,” we know that i, = 0, and that v, must turn out to
be negative if our guess is correct.
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An ldeal Diode Example:
4kQ I L Vo 7 kQ We need first to
NN > NN .
assume a diode state,
+ + .
.y 26k 3kQ3 Orov i.e., ON or OFF.

Fig. 68.Circuit for an ideal diode example.

4 kQ

AN

26 kQ

7 kQ

3kQZ

4"\

+

O1ov

Fig. 69.Equivalent circuit if the diode is OFF.

10vd§

4 kQ

WV

+

6 VZ6kQ

VD -

7 kQ

WV

3kQZ 3J_rv

ér)mv

Fig. 70.Calculating v, for the OFF diode.

Ip

7 kQ

WV

+

10v(9

26 kQ

3kQ§ <>1ov

Fig. 71.Equivalent circuit if the diode is ON.

i 2.1 kQ
4"A"A%
667 LA

6V (B i}sv

2.4 kQ
MW

Fig. 72.Calculating i, for the ON diode.

We'll arbitrarily choose
OFF.

If OFF, i, = 0, i.e., the
diode is an open circuit.

We can easily find v,
using voltage division
and KVL = v,=3 V.

Vv, is not negative, so
diode must be ON.

If ON, v, = 0, i.e., the
diode is a short circuit.

We can easily find i,
using Thevenin eqgs.
= I, = 667 pA.

No contradictions !/!!
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Let’s review the techniques, or rules, used in analyzing ideal diode
circuits. These rules apply even to circuits with multiple diodes:

Ip

<— fwd bias (ON)

—€ Vb

rev bias (OFF)

Fig. 73. Ideal diode i-v characteristic.
(Fig. 67 repeated)

1. Make assumptions about diode states.
2. Calculate v, for all OFF diodes, and i, for all ON diodes.

3. If all OFF diodes have v, < 0, and all ON diodes have i, > 0,
the initial assumption was correct. If not make new
assumption and repeat.
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Piecewise-Linear Diode Models

This is a generalization of the ideal diode concept.

Piecewise-linear modeling uses straight line segments to
approximate various parts of a nonlinear i-v characteristic.

_ The line segment at left has the
! /7 equation:

v =V, +iR, (78)

The same equation is provided
by the following circuit:

_VX/RX
, Vi Ry i
/ o—|IF—w—
Fig. 74. A piecewise-linear segment. - "4 +

Fig. 75. Circuit producing eq. (?).

Thus, we can use the line segments of Fig. 74 to approximate
portions of an element’s nonlinear i-v characteristic . . .

. and use the equivalent circuits of Fig. 75 to represent the
element with the approximated characteristic!!!
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A “complete” piecewise-linear diode model looks like this:

Ip

e

L—__ ==
=

X
:

\
F

L

<
O

1R, Ve

Fig. 76. A diode i-v characteristic (red) and
its piecewise-linear equivalent (blue).

® Inthe forward bias region . . .

... the approximating segment is characterized by the forward
voltage, V-, and the forward resistance, R-.

® Inthe reverse bias region . ..

.. . the approximating segment is characterized by i, =0, i.e.,
an open circuit.

® Inthe breakdown region . . .

. . . the approximating segment is characterized by the zener
voltage, V, , (or breakdown voltage, V; ) and the zener
resistance, R, .




Diode Models Introduction to Electronics 57

A Piecewise-Linear Diode Example:
We have modeled a diode using piecewise-linear segments with:
Ve=05V,R-=10 Q, and V,=75V,R,=25Q

Let us find i, and v, in the following circuit:

500 Q We need to “guess” a line segment.

W \]/iD

+ + Because the 5 V source would tend to
d) YV, force current to flow in a clockwise

S5V direction, and that is the direction of

forward diode current, let us choose the

forward bias region first.

Fig. 77. Circuit for piecewise-

linear example. . . . .
g Our equivalent circuit for the forward bias

region is shown at left. We have

500 Q
Wy \l/iD + jo= SV-05V =882mA (79)
° 500 Q+10Q
+ 100Q%
5\/6) Vp and
- +
— =05V +(882mA)10 Q
0.5 V= vp =05V +(882mA)10©)
- - =0.588 V

Fig. 78. Equivalent circuit in forward
bias region.

This solution does not contradict our forward bias assumption, so
it must be the correct one for our model.
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Other Piecewise-Linear Models

> - o
A
<— fwd bias (ON)
— Vb
rev bias (OFF)

Fig. 79. ldeal diode i-v characteristic.
(Fig. 67 repeated)

i
S b= D
<—fwd bias (ON)
—€ Vb
Ve
rev bias (OFF)

Fig. 80. I-v characteristic of constant voltage
drop diode model.

Our ideal diode model is a
special case . ..

...ithas V.=0, R-.=0in the
forward bias region . . .

oo it doesn't have a
breakdown region.

The constant voltage drop
diode model is also a special
case...

...ithas R-=0in the forward
bias region . . .

... Veusually0.6to 0.7 V...

. it doesn’t have a
breakdown region
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Diode Applications - The Zener Diode Voltage Regulator

Introduction

This application uses diodes in the breakdown region . . .

For V, < 6 V the physical breakdown phenomenon is called zener
breakdown (high electric field). It has a negative temperature
coefficient.

For V, > 6 V the mechanism is called avalanche breakdown (high
kinetic energy). It has a positive temperature coefficient.

For V, =6 V the breakdown voltage has nearly zero temperature
coefficient, and a nearly vertical i-v char. in breakdown region, i.e.,
a very small R;.

These circuits can produce nearly constant voltages when used
with voltage supplies that have variable or unpredictable output
voltages. Hence, they are called voltage requlators.

Load-Line Analysis of Zener Regulators

R, =500 Q Note: when intended for use
ANV o as a zener diode, the
N - * schematic symbol changes
VTH CP IZSI_:_/D Vour S||ght|y
75Vt 10V |- (A With V,, positive, zener
o :
Fig. 81. Thevenin equivalent source with Current. Ca.n flow Only it the
unpredictable voltage and zener diode. zener is in the breakdown
region . . .

We can use load line analysis with the zener diode i-v characteristic
to examine the behavior of this circuit.
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R.,=500 Q :
LoV o Note that v,,; = -v, . Fig. 83
- +  below shows the graphical
Vo, ; =~ -I‘-/D vy CONStruction.
7.5Vto 10V |- /I\I. i Because the zeneris upside-down
D

Fig. 82. Thevenin equivalent source with
unpredictable voltage and zener diode.
(Fig. 81 repeated)

o the Thevenin equivalent load line
is in the 3" quadrant of the diode
characteristic.

As V., varies from 7.5 V to 10 V, the load line moves from its blue
position, to its green position.

As long as the zener remains in breakdown, v, remains nearly

constant, at =4.7 V.

As long as the minimum V., is somewhat greater than V, (in this
case V,=4.7 V) the zener remains in the breakdown region.

If we’re willing to give up some output voltage magnitude, in return
we get a very constant output voltage.

olov -7{ Vv
\\ N
T 5 AN
“E~ \ \\
p ) \\
é -10 N
Q \\ \\
-§ -15 \\\ 5lmA
5 N
-20 -20 mA
-10 -8 -6 -4 -2 0

diode voltage, V

Fig. 83. 1N750 zener (V,=4.7 V) i-v
characteristic in breakdown region, with load
lines from source voltage extremes.

This is an example of a zener diode voltage regulator providing line

voltage requlation . . .

V., is called the line voltage.
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Numerical Analysis of Zener Regulators

To describe line voltage regulation numerically we use linear circuit
analysis with a piecewise-linear model for the diode.

To obtain the model we draw a tangent to the curve in the vicinity
of the operating point:

-10

diode current, mA

-15

-20
-10 -8 -6 -4 -2 0
diode voltage, V

Fig. 84. Zener i-v characteristic of Fig. 83 with
piecewise-linear segment.

From the intercept and slope of the piecewise-linear segment we
obtain V,=4.6 V and R, = 8 Q. Our circuit model then becomes:

R,,=500 Q
A% o]
Vi CP . Vour
_ o)

Fig. 85. Regulator circuit of Fig. 81 with piecewise-
linear model replacing the diode.
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R;,=500 Q
A% 'o)

N 80

Vo P N Vour
— o
Fig. 86. Regulator with diode model
(Fig. 85 repeated).

Important: The model above is valid only if zener is in
breakdown region !!!

Circuit Analysis:

The 500 Q and 8 Q resistors are in series, forming a voltage divider.

For V,,=7.5V:
8 Q
Voo = 715V —-46V)=4567mV 81
5000480 ) e
Vo =46V +4567 mV =4.64567 V (82)
For V,, =10 V:
8 Q

V. = 10V —4.6 V)=8504 V
52 =500 018 O ) (63)

Vo, =46V +85.04 mV =4.68504 V (84)

Thus, for a 2.5 V change in the line voltage, the output voltage
change is only 39.4 mV Il!
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Zener Regulators with Attached Load

Now let’s add a load to our regulator circuit . . .

Rs
WV

(@)

+

Vss <§ = -|‘-/D RL§ Vour

l]\i D -

Fig. 87. Zener regulator wi;’h load.

Only the zener is nonlinear, so we approach this problem by finding
the Thevenin equivalent seen by the diode:

: Rs | : Ry |
! N —o0 I ANN Lo
: | + : | +
| { | ~ v | { | ~ v
| |
SR B R 1 e o
| 1 : | 1 :
| I . b
e | e |

Fig. 88. Regulator drawn with zener and Fig. 89. Regulator of Fig. 87 with Vg, R,

load in reversed positions. and R, replaced by Thevenin eq.

The resulting circuit is topologically identical to the circuit we just
analyzed!!!

Different loads will result in different values for V;, and R, but the
analysis procedure remains the same!!!
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Example - Graphical Analysis of Loaded Regulator
Let’s examine graphically the behavior of a loaded zener regulator.
Let Vs =10V, Rs =500 Q and,

(@R, =10kQ (b) R, =1kQ

Rs=500 Q
NN

(@]

+

.
Ve (Otov BV R.2 Vour

+
TiD -

Fig. 90. Example of loaded zener regulator for
graphical analysis.

We find the load lines in each case by calculating the open-circuit
(Thevenin) voltage and the short-circuit current:

(a) 10 kQ
V.=V = 10V =952V
0c =V =10 kQ+500 Q (89
o =Lss 21OV o5 ma (86)
Rs 500

(b) B B 1kQ _
VOC_VTH_1kQ+500£21OV 6.67 V (87)
_Ves _ 10V =20 mA (88)

| = —
Ry 500Q
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(c) 100 Q
Voo =V, = 10V =167V 89
o¢ =¥ =100 Q4500 Q .
lsc _ Vs _ 1OV =20mA (90)|
R, 500Q

The three load lines are plotted on the zener characteristic below:

0 —9.52\V -6.67 V -1.67 V
RN \
T N \
= N \
g -10 \ \\ \
3 N\ \
s S
S N
-20 \
10 -8 6 4 2 0

diode voltage, V

Fig. 91. Load line analysis for the loaded zener regulator.

As long as R, (and therefore V) is large enough so that the zener
remains in breakdown, the output voltage is nearly constant !!!

This is an example of a zener diode voltage regulator providing load
voltage regulation (or simply, load regulation).




The Half-Wave Redctifier

Introduction to Electronics 66

Diode Applications - The Half-Wave Rectifier

+VD_
N
| g

O
A

+ +
A @Vmsin ot R 2V,

O
A

Fig. 92. The half-wave rectifier circuit.

%
\S

Y
Fig. 93. Waveform of voltage source.

Vo
/\ .

1
|

Fig. 94. Output voltage waveform.

v
AP

Fig. 95. Diode voltage waveform.

Introduction

This diode application changes
ac into dc. The voltage source is
most often a sinusoid (but can be
anything).

We’'ll assume the diode is ideal
for our analysis.

During positive half-cycle . . .

... diode conducts (“ON”)
.. vp=0

Vo = Vg

During negative half-cycle . . .
... diode “OFF”
... ip=0,v5=0

. Vp = Vg

Peak Inverse Voltage, PIV:

Another term for breakdown
voltage rating . . .

. . . In this circuit, the diode
PI1V rating must be > V..
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A Typical Battery Charging Circuit

Rtotal D [Cm=——mm

_______ VWV > 3 |
+ |+ I

110 Vs V. sin ot = Vearrery i
- i ] |

! |

_______ ® 3 :

e e e i

Fig. 96. A circuit typical of most battery chargers.

In the figure above . ..
. Vearrery represents the battery to be charged . . .
... Ryyincludes all resistance (wiring, diode, battery, etc.) reflected
to the transformer secondary winding.
Charging current flows only when V. sin wt > Vg,r7ery - - -

.. . inertia of meter movement allows indication of average current.

A Vs
m Charging
current

-Vm_v
Fig. 97. Battery charger waveforms.
Here vg represents the transformer secondary voltage, and Vg, .+
represents the battery voltage.
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The Filtered Half-Wave Rectifier

Also called a peak rectifier, a half-wave rectifier with a smoothing
capacitor, or a half-wave rectifier with a capacitor-input filter.

We create it by placing a capacitor in parallel with the rectifier load
(creating a low-pass filter):

—> —>

Analysis of this circuit
with a nonlinear element

+ + . . "
Vs (t) @ C = RL§ v, (t) is very difficult . . .
) - . so we will use the

ideal diode model.

N
1

Fig. 98. Filtered half-wave rectifier.

A lot happens in this circuit!!! Let’s look at the load voltage:

v, (t)

Ripple voltage, V/,

t

<— diode off 9|on
< T >

|on <— diode off %lon
< T >

Fig. 99. Load voltage waveform in the filtered half-wave rectifier.
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v, (t)

Ripple voltage, V,

<— diode off e|on
< T >

|on <— diode off %|on
< T >

Fig. 100. Load voltage waveform (Fig. 99 repeated).

We let vo(t) = V, sin wt . . . and assume steady-state . . .

1.

When v4 > v, (shown in blue), the diode is on, and the voltage
source charges the capacitor.

(Because the diode and source are ideal, v4 can only be
infinitesimally greater than v,)

When vg <y, (shown in red), the diode is off, and C discharges
exponentially through R, .

We define peak-to-peak ripple voltage, V., as the total change
in v, over one cycle.

In practice, V.is much smaller than shown here, typically being
1% to 0.01% of V_ (e.g., a few mV). This means that:

(a) the load voltage is essentially “pure” dc

(b) the diode is off for almost the entire period, T !!!
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v, (t)

Ripple voltage, V,

<— diode off e|on
< T >

|on <— diode off %|on
< T >

Fig. 101. Load voltage waveform (Fig. 99 repeated).

Relating Capacitance to Ripple Voltage

Because the diode is off for nearly the entire period, T, the capacitor
must supply the “dc” load current during this interval.

The charge taken from the capacitor in this interval is:

v v
Q=~|T=2mT="m
“TRUTR ®1)

The capacitor voltage decreases by V., in this interval, which
requires a decrease in the charge stored in the capacitor:

Q=VC (92)

Equating these equations and solving for C gives us a design
equation that is valid only for small V.:
V., vV

VvC="" — (C=—-Dn
~ IR, VIR, ©3)
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Because all of the charge supplied to the load must come from the
source only when the diode is ON, i, o4« Can be very large, as
illustrated below..
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Fig. 102. Load voltage waveform (Fig. 99 repeated).
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Fig. 103. Current waveforms in filtered half-wave rectifier.
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Diode Applications - The Full-Wave Rectifier

The full-wave rectifier makes use of a center-tapped transformer to
effectively create two equal input sources:

Vy (1)

Fig. 104. The full-wave rectifier.
Operation

Note that the upper half of the transformer secondary voltage has
its negative reference at ground, while the lower half of the
secondary voltage has its positive reference at ground.

1° (Positive) Half-Cycle:

Current flows from upper source, through D, and R,, returning to
upper source via ground. Any current through D; would be in
reverse direction, thus Dy is off.

2" (Negative) Half-Cycle:

Current flows from lower source, through Dg and R,, returning to
lower source via ground. Any current through D, would be in
reverse direction, thus D, is off.

y

\\/ \/ Fig. 106. Full-wave load voltage.

Fig. 105. Voltage across each half of the

transformer secondary.
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Fig. 107. The full-wave rectifier (Fig. 104 repeated).-

Diode Peak Inverse Voltage

When D, is on, Dgis off . . . a KVL path around the “outside” loop of
the transformer secondary shows that D; must withstand a voltage
of 2vg.

When Dgis on, D, is off . . . now a KVL path shows that D; must
withstand 2vg.

Thus the diode PIV rating must be 2V,,. Diode voltage waveforms
are shown below . . .

SVERV N VARV,

Fig. 108. Voltage across diode D, . Fig. 109. Voltage across diode D .
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Diode Applications - The Bridge Rectifier

The bridge rectifier is also a full-wave rectifier, but uses a diode
bridge rather than a center-tapped transformer:

Vin (t)

Fig. 110. The bridge rectifier.

Y

Fig. 111. Input voltage to diode bridge.

v,

Fig. 112. Full-wave load voltage.
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Fig. 113. Diode voltage for D, and D,.

V,, Vy
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Fig. 114. Diode voltage for D, and D, .

Operation

1%t (Positive) Half-Cycle:

Current flows from top end of vy,
through D, and R, , then via
ground through D,, and back to
Vs .

2" (Negative) Half-Cycle:

Current flows from bottom end
of vg, through D, and R, , then
via ground through D,, and back
to vs.

Peak Inverse Voltage:

In each half-cycle the OFF
diodes are directly across vg ,
thus the diode PIVis V,,.
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Diode Applications - Full-Wave/Bridge Rectifier Features

Bridge Rectifier

Much cheaper transformer more than offsets the negligible cost of
two more diodes.

Full-Wave Rectifier

Archaic since vacuum tube rectifiers have largely been replaced by
semiconductor rectifiers.

Preferable only at low voltages (one less diode forward-voltage
drop), if at all.

Filtered Full-Wave and Bridge Rectifiers

Because the rectifier output voltage is “full-wave,” C discharges for
approximately only half as long as in the half-wave case.

Thus, for a given ripple voltage, only half the capacitance is
required (all other parameters being equal).

That is, a factor of 2 appears in denominator of eq. (93):

V.C = Vin = C _ Vi (94)
2R, 2V IR,

Remember though, the design equation is valid only for small V..
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Bipolar Junction Transistors (BJTs)

Introduction

The BJT is a nonlinear, 3-terminal device based on the junction
diode. A representative structure sandwiches one semiconductor
type between layers of the opposite type. We first examine the npn

BJT:

TC
n-type
collector

B o—{ p-type base

n-type
emitter

SE

Ve

OF

Fig. 115. The npn BJT representative physical
structure (left), and circuit symbol (right).

Two junctions: collector-
base junction (CBJ);
emitter-base junction
(EBJ).

Current in one p-n
junction affects the
current in the other p-n
junction.

There are four regions of
operation:

Operating Region EBJ cBJ Feature
cutoff rev. rev. ic=lc=ig=
active fwd. rev. amplifier

saturation fwd. fwd. Ve Nearly zero
inverse rev. fwd. limited use

We're most interested in the active region, but will have to deal with
cutoff and saturation, as well.

Discussion of inverse region operation is left for another time.
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Qualitative Description of BJT Active-Region Operation

Emitter region is heavily doped . . .lots of electrons available
to conduct current.

Base region very lightly doped and very narrow . . .very few
holes available to conduct current.

Rev-biased CBJ = collector positive w.r.t base.
Fwd-biased EBJ = base positive w.r.t emitter.

Emitter current, i-, consists mostly of electrons being injected
into base region; because the base is lightly doped, iz is small.

Some of the injected electrons combine with holes in base
region.

Most of the electrons travel across the narrow base and are
attracted to the positive collector voltage, creating a collector
currentl!!!

TC ® The relative current magnitudes are
n indicated by the arrow thicknesses in the
figure.

Bo—

® Because i;is so small, a small change in
base current can cause a large change in
collector current - this is how we get this
device to amplify!!!

e

Fig. 116. Active-region
BJT currents.
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Quantitative Description of BJT Active-Region Operation

The emitter-base junction (EBJ) is a diode and

C is governed by the Shockley eqgn.:

o

e
: : v
Ig + e = IES[exp(i)—q (95)
—>
B o—|+ Vee Vi
where, I.s ranges from pA to fA

i
VE and nis usually = 1
oE

Fig. 117. Npn BJT
schematic symbol.

Also, from KCL:

e =ig+ig (96)

In the active region (only!!!) i is a fixed % of i, which is dependent
on the manufacturing process.

We assign the symbol « to that ratio, thus:

o= (97)

Ie

|deally, we would like oo = 1. Usually, o falls between 0.9 and 1.0,
with 0.99 being typical.

Remember!!! Egs. (95) and (96) apply always.

Eq. (97) applies only in the active region.
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From egs. (95) and (97) we have:

e =0l =0z [exp(vﬁ] — 1] (98)
VT

and for a forward-biased EBJ, we may approximate:

i =g exp(‘(/ﬁ) (99)

T

where the scale current, I = ol .

Also, from egs. (96) and (97) we have:
ie =ic+ig = ig=dig+iy = ig=(1-a)i (100)

thus lo ol _ © =p (101)
iy (1—a)i 1-a

Solving the right-hand half of eq. (101) for o

B

o=——"
B +1

(102)

For o = 0.99, we have 3 = 100. Rearranging eq. (101) gives:

ic = PBig (103)

Thus, small changes in i; produce large changes in i, so again we
see that the BJT can act as an amplifier!!!
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BJT Common-Emitter Characteristics
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Fig. 118.Circuit for measuring

BJT characteristics.

Input Characteristic

Introduction

We use the term common-emitter
characteristics because the emitter is
common to both voltage sources.

The figure at left represents only how we
might envision measuring these
characteristics. In practice we would
never connect sources to any device
without current-limiting resistors in
series!!!

First, we measure the iy - vy relationship (with v fixed). Not
surprisingly, we see a typical diode curve:

1
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Fig. 119. Typical input characteristic of an npn BJT.

This is called the input characteristic because the base-emitter will
become the input terminals of our amplifier.
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Output Characteristics

Next, we measure a family of i, - v curves for various values of
base current:

=50 A
5 B
i + + [
v - B <
BE_ = 3 30 M
o
L 5] 20/uA
Fig. 120. Circuit for {
measuring BJT characteristics 1 10iuA
(Fig. 118 repeated).
0 igF 0
o 1 2 3 4 5 6 7 8 9 10

Vee V
Fig. 121. Typical output characteristics of an npn BJT.
Active Region:

Recall that the active region requires that the EBJ be forward-
biased, and that the CBJ be reverse-biased.

A forward-biased EBJ means that vz = 0.7 V. Thus, the CBJ will
be reverse-biased as long as v > 0.7 V.

Note that i, and iy are related by the ratio 3, as long as the BJT is
in the active region.

We can also identify the cutoff and saturation regions . . .
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Fig. 122. BJT output characteristics with cutoff and saturation
regions identified.

Cutoff:

The EBJ is not forward-biased (sufficiently) if i; = 0. Thus the cutoff
region is the particular curve for iz = 0 (i.e., the horizontal axis).

Saturation:

When the EBJ is forward-biased, v, = 0.7 V. Then, the CBJ is
reverse-biased for any v > 0.7 V. Thus, the saturation region lies

to the left of v = 0.7 V.

Note that the CBJ must become forward-biased by 0.4 V to 0.5V

before the i, = Bi; relationship disappears, just as a diode must be

forward-biased by 0.4 V to 0.5 V before appreciable forwardcurrent

flows.
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The pnp BJT

We get the same behavio