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Abstract

This thesis describes the first application of alkali-hybrid spin-exchange optical

pumping (SEOP) to polarized 3He targets used in electron scattering experiments.

Over the last decade, polarized 3He targets have been used at the Thomas Jef-

ferson National Accelerator Facility (JLab) to measure the structure of the neu-

tron via its spin degrees of freedom. In this thesis, two experiments, E97110 &

E02013, receive special attention. The first, E97110, measured the absolute inclu-

sive cross section differences for a longitudinally polarized electron beam scatter-

ing from a traditional SEOP 3He target polarized both parallel & perpendicular to

the beam. These cross section differences were used to extract the 3He spin struc-

ture functions g1(x,Q2) & g2(x,Q2) over a Bjorken-x range of 0.01 < x < 0.50 for

Q2 = 0.04,0.06,0.08,0.10,0.12,& 0.24 GeV2. Integrals of g1 & g2 over x were used

to extract In
A (the generalized Gerasimov-Drell-Hearn integral) and Γn

1 (the first mo-

ment of g1) for the neutron. Preliminary results for these quantities are used to test

the predictions of Baryon Chiral Perturbation Theory.

The second, E02013, measured the asymmetry for a longitudinally polarized

electron beam scattering from an alkali-hybrid SEOP 3He target polarized perpen-

dicular to the q-vector. The electric form factor of the neutron, Gn
E, was extracted

from this asymmetry for Q2 = 1.7,2.5,& 3.4 GeV2. Near final results for Gn
E are
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compared to predictions from a variety of nucleon models.

Alkali-hybrid SEOP using rubidium & potassium ([K]/[Rb] ≈ 5± 2), coupled

with narrowband (laser linewidth is roughly equal to Rb absorption linewidth)

laser diode arrays, have resulted in a consistent & reliable in-beam 3He polariza-

tion increase from 37% to 65%. We describe how to implement these improvements

and why they are effective. Furthermore, we summarize what we’ve learned over

the past decade about the 3He polarization limits of SEOP. Finally, we present a

detailed analysis of 3He polarimetry based on nuclear magnetic resonance (NMR)

and electron paramagnetic resonance frequency shifts (EPR), with a special em-

phasis on corrections due to magnetic field gradients and polarization gradients

within the target cell.
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rowband) laser with FWHM = 2 (0.2) nm. The dashed red curve in the

right plot is the fraction in the broadband limit. . . . . . . . . . . . . . 413
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5.2 Sensitivity of the Off Resonant Absorption Rate to the Td Parameter.

The red (blue) lines are evaluated in the broadband (narrowband)

limit. These curves were calculated assuming Tpc = 235oC, [3He]pc =

6.5 amg, and [N2]/[3He] = 0.01. The shifts, widths, and oscillator

strengths of each transition are listed in Tab. (5.5). . . . . . . . . . . . 416

5.3 Sensitivity of the Maximum Alkali Polarization to the D and Td.

Only the contributions due to off-resonant absorption were included

in the calculation of PA. These curves were calculated assuming

Tpc = 235oC, [3He]pc = 6.5 amg, and [N2]/[3He] = 0.01. The outer

(inner) vertical dashed lines depict the FWHM of a typical broadband

(narrowband) laser. The true alkali polarization is found by aver-

aging PA over the laser spectral profile. A narrowband laser has

a much smaller sensitivity to imperfections due to off-resonant ab-

sorption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418

5.4 Photon Cost Factors. The unitless factor nback is the due to the re-

quirement that the laser power is large enough to penetrate to the

back of the cell. The factor npath is a relative measure of the amount

of photons absorbed over the path length due to ΓA. . . . . . . . . . 422
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5.5 Illustrative Example of the Photon Cost for “GEN II-Style” Target

Cells. In the left plot, the solid circles (dashed line) is the exponential

factor exp(−`/zx) (alkali relaxation rate ΓA). In the right plot, the

minimum power requirement occurs near D = 35, where it should

be noted that this crude model assumes PK = PRb (i.e. ηK = 1) for all

values of D. The following parameters were used in the calculation:

1/γse = 3.5 hrs, Rpc = 5.9 cm, and Pmin
A = 0.9. All other parameters

are from Tab. (5.3). According to this crude model, it would require

250 W of narrowband light for a D ≈ 35 hybrid ratio to polarize the

alkali vapor > 0.9 throughout the pumping chamber. With a 3He X-

factor of 0.15, beam current of 60 µA, and cell lifetime of 25 hrs, the

expected 3He polarization is about 0.65. . . . . . . . . . . . . . . . . . 425
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5.10 Spin Exchange Efficiency for Na, K, Rb, & Cs. The spin exchange

efficiency is defined as the fraction of angular momentum that suc-

cessfully transferred from the alkali atom to the 3He nucleus: 1/ηA =

1 + (ksd/kse) + (k′sd/kse)([A]/[3He]) + (k′′sd/kse)([N2]/[3He]). At low

temperatures and alkali densities, it is approximately kse/(kse + ksd).

At high temperatures, it approaches kse[3He]/(k′sd[A]). The blue lines

are calculated from the values in Tab. (??). The red data points are

from [69]. In the left figure, the solid blue lines represent an alkali

density range of (1014 to 1015)/cm3. In the right figure, the red line

is a parameterization of the data given by ηK(T) = 0.756− 0.00109T

and ηRb(T) = 0.337− 0.00102T(1− 0.0007T). . . . . . . . . . . . . . . 436

6.1 Basic Geometry of a “Standard” Small Pumping Chamber Cell. Drawn

to 5:2 scale with nominal outer dimensions. Dashed red line repre-

sents path of electron beam. . . . . . . . . . . . . . . . . . . . . . . . . 450
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6.2 Slow (upper) and Fast (lower) Time Constants for Two Chambered

Cells. Time constants (inverse rates) are plotted as a function of the

spin-exchange time constant (γ−1
se ). Leading order (dotted black),

next to leading order (dashed red), and full (solid black) calculations

are depicted. The next to leading order (dashed red) is nearly identi-

cal to the full calculation (solid black). A typical “Standard SPC Rb”

cell has dimensions Ltt = 6 cm & Vpc = 90 cc and contains pure Rb;

whereas a typical “Gn
E LPC K/Rb” cell has dimensions Ltt = 9 cm

& Vpc = 310 cc and contains a hybrid mix of mostly K and some

Rb. The observed spin-up time constant, which is essentially Γ−1
s ,

is always longer than the spin-exchange time constant. In addition,

the spin-up time constants for the two different cells converge for

sufficiently fast spin exchange. . . . . . . . . . . . . . . . . . . . . . . 458

6.3 Upper: Relative Energy Loss to Collisions and to Radiation for Elec-

trons in Helium gas at 1 atm and 20 oC. Energy loss is relative to the

collisional energy loss for an electron beam energy of 2 GeV. Data is

from NIST-ESTAR [12]. Lower: Relative Photoabsorption Cross Sec-

tions in Helium. Cross section is relative to the total photoabsorp-

tion cross section of a 2 GeV photon. Data is from NIST-XCOM [13]. 467
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6.4 Upper: Bremsstrahlung Spectrum (adapted without permission from

[16]). The horizontal axis is the photon frequency relative to the

beam energy (u = hν/E). The vertical axis is the total photon en-

ergy per frequency bin normalized to the average value over all

frequencies
(

u
Φrad

[
1
ρ

d2Φ(u)
du·dx

])
. The lower bound of the pink shaded

region corresponds to a beam energy of 500 MeV; while, the upper

bound to the limit of infinite beam energy. In the convolution in-

tegral, Eqn. (6.79), this curve is taken to be independent of both u

& Ebeam and set equal to 1, which corresponds to the horizontal red

line. Lower: Average Fraction of Bremsstrahlung Photons Absorbed

as a Function of Photon Energy. The horizontal axis is the log base

10 of the photon energy in MeV. The vertical axis is the log base

10 of 〈 f (u)〉 evaluated for a 10 amg/40 cm cell. The black curve is

the true form of 〈 f (u)〉 and the red curve is the rectangular approx-

imation used for the integral Eqn. (6.84). In summary, the integral

of Eqn. (6.79) is a convolution of the black curves in these two plots;

whereas we approximate this integral by taking a convolution of the

red curves in these plots. . . . . . . . . . . . . . . . . . . . . . . . . . 472
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6.5 Mean Number of Spin Flips Due to Atomic Ions. Upper: na as func-

tion of r and Ω. This is a recreation of Fig. (1) from [38] with the addi-

tion of the red curve which corresponds to a 3He density of 10 amg.

The red point corresponds to values for na and r when the N2 to 3He

density (ρ) is 1%. Lower: na as a function of 3He density for three

different values of ρ. The black curves are obtained from the full

calculation, Eqns. (6.99); whereas the red points are obtained from

the matrix parameterization, Eqn. (6.102). This parameterization re-

produces the full calculation to better 2% over (0.5 ≤ h ≤ 1.5) and

(0 ≤ ρ ≤ 5). Note that increasing the relative density of N2 helps

suppress na. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484
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Left: dtc as function of temperatures. Upper Right: dpc as a function

of temperatures. Lower: Unitless temperature parameter ϒ(t,Ttc) as

a function of temperature. Solid curves are for SPC (small pump-

ing chamber cells), whereas dotted curves are for LPC (large pump-

ing chamber cells). Only the volume ratio v is varied between the

SPC and LPC curves with all else being equal. The blue curves and

axis represent varying pumping chamber temperatures for a con-

stant target chamber temperature. The red curves and axis repre-

sent varying target chamber temperatures for a constant pumping

chamber temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
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7.1 Masing Effect in the Target Cell Astralweeks. The red data points

are the NMR signal in either chamber. The solid blue lines are the
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(target) chamber. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524

7.2 Alkali EPR RF Spectra at 18.3 MHz. . . . . . . . . . . . . . . . . . . . . 525

7.3 Target Cell Performance as a Function of Alkali-Hybrid Ratio and

Laser Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
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meyanov formula [12]. The dotted lines represent Killian [14]. . . . . 543
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4.2 Demagnetization Factors for Different Uniformly Magnetized Shapes.
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is constant and given by ~B = (2/3)µ0κgeo ~M = µ0
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1− D/(4π)

)
~M.
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ratio of the minor to major axis of the ellipse is ρ where ρ = 1 for a

circle. The eccentricity of the ellipse is e =
√

1− ρ2 where e = 0 for

a circle. The result for the infinite cylinder is the same for a cylinder
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4.5 Temperature Test Results for E97110. All tests were done with the

cell Priapus and 3 lasers unless otherwise noted. The average time

interval between measurements is 〈∆t〉. The difference between the

calculated pumping chamber temperature and the measured value
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was performed to estimate the size of the temperature difference
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Pon
tc /Poff
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tc /Poff

tc =
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4.6 Measured Coil-to-cell & Coil-to-coil Distances for E97110. The first

8 rows are the distances in cm. The pickup coils were moved on July

12 due to space constraints and on July 23 because the cell Penelope

ruptured. The last 4 rows are the percent change in the flux factor Φtc
x

when the distance corresponding to that column is changed by ±1

mm for the water cell (09/01) and the cell Priapus (08/29). The flux

gain Gx
Φ

(0) changes by less than 0.1% relative for a±1 mm variation

in the coil positions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

4.7 Temperature/Density and Polarization Gradient Parameters for E97110.

NMR measurements were made with lasers on in the longitudinal

configuration. The polarization gradient parameters are given for

both no beam (subscript 0) and with a beam current of 〈Ibeam〉 (sub-
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4.8 Cell Dimensions Used for Flux Factor Calculation. All units are cm.
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Φ
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polarization gradient (TG/PG) along the target chamber length. The
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4.13 3He Lineshape Factor, Width Parameter, and AFP Loss Parameters.

For the 9 degree configuration with the cell Priapus, a coil position
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before the cell was removed (b) at the end of the experiment. The

final value for 9 degree configuration with the cell Priapus is the

average of these two measurements. . . . . . . . . . . . . . . . . . . . 345

4.14 Percent Relative Uncertainties in the Water & 3He Lineshape Fac-

tors. The 3He lineshape factor uncertainties depend on the septum

current. The largest uncertainties occur for the lowest septum cur-

rents. The uncertainty in T2 for 3He comes from the difference in

the determination of the afp loss described in Fig. (4.22). The un-

certainty due to the lockin signal averaging is very small since time

constant was always 30 msec and only ratios of lineshape factors

were used to calculate the calibration constant. . . . . . . . . . . . . . 351
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4.20 Average 3He Polarizations. The statistical (stat.) and systematic

(syst.) uncertainties are quoted at % relative. Only the final sys-

tematic uncertainty (last row) include the 1% relative interpolata-

tion uncertainty. These uncertainties are for the polarization density

product. An additional 1.6% relative uncertainty must be added in

quadrature to obtain the uncertainties on the polarizations them-

selves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

5.1 Typical Excited State Polarization Moments and Multipole Rates.

We’ve assumed broadband pumping of the Rb D1 transition with

R = 100 kHz and R′/R = 0.0011. The rates were calculated using

data from Sec. (D.4) assuming Tpc = 210oC, [3He]pc = 6.5 amg, and

[N2]/[3He] = 0.01. For a pure Rb cell, this correponds to [Rb] =

1.38× 1015/cm3 and 1/γse = 3 hrs. Under these conditions, all of the

effective branching ratios are 0.500± 0.001. . . . . . . . . . . . . . . . 389

5.2 Parameters for Estimating the Excited State Hyperfine Coupling.

Hyperfine structure constants A & B are from Tab. (A.6). Parameters

τ and Γp were calculated from Tab. (5.1). We’ll note that these values

are quite sensitive to the relative populations of the excited P states

and the mixing rates between them. Because of the relatively large

uncertainties in the off resonant absorption rate and the fine struc-

ture mixing cross sections & their temperature dependance, these

values may easily be too large or too small by an order of magni-

tude. Details of how these rates were determined are described in

Sec. (D.4.3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
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5.3 Estimates for Alkali X-Factors. These values were calculated assum-

ing D = [K]/[Rb] = 6, Tpc = 235oC, [3He]pc = 6.5 amg, [N2]/[3He] =

0.01, Td = 0, I0 = 75 W/23 cm2, and θ= 3o. The values without (with)

the curly brackets {· · · } were calculated in the broadband (narrow-

band) laser spectrum limit with FWHM = 2 (0.2) nm. The detuning

from the Rb D1 transition frequency is denoted by ∆. The maximum

alkali polarization estimated from this table is signifcantly larger

than the value of 0.91 from [7] for traditional SEOP with broad-

band lasers. It should be noted, however, that off resonant pumping

makes a larger contribution as the light penetrates deeper into the

cell (where the on resonant optical pumping rate is smaller). This

implies that the average XA due to off resonant pumping can be

very sensitive to the cell geometry, alkali number density, and laser

intensity. Even for such a high estimate for P∞ listed in this table,

the photon cost can be significant, see Sec. (5.4.7). Finally, [7] found

no apparent 3He pressure dependence on PA. This may be because

those measurements were taken in a regime where the decrease in

off resonant pumping of the Rb D2 transition was partially/wholly

compensated by the increase in the P1/2 excited state hyperfine cou-

pling with decreasing 3He pressure. . . . . . . . . . . . . . . . . . . . 419
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5.4 Illustrative Example of the Photon Cost for “Transversity-Style” Tar-

get Cells. Unless otherwise noted, the following parameters were

used in the calculation: 1/γse = 3 hrs, Rpc = 3.6 cm, and Pmin
A = 0.9.

The first six (last two) rows were calculated using D = 0 (D = 6).

Rows 1–5 & 7 (6 & 8) were calculated using FWHM = 2.0 & fγ = 0.17

(FWHM = 0.2 & fγ = 0.77). All other parameters were from Tab. (5.3)

and nback ≈ 10. According to this crude model, it would require

P0 ≈ 200 W of narrowband light to polarize the alkali vapor > 0.9

throughout the pumping chamber. With a 3He X-factor of 0.2, beam

current of 10 µA, and cell lifetime of 30 hrs, the expected 3He polarization

is about 0.65. The target cells used for the “Transversity” experi-

ments, see Tab. (3.1), achieved this level of performance with roughly

P0 ≈ 100 W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
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5.5 Optical Pumping Parameters. The wavelengths and oscillator strengths

( f1,2) are from the NIST Atomic Spectra Database Version 3 [61]. The

parameters have be rescaled from 4He to 3He by the square root of

the ratio of the reduced mass where we’re assuming that the only

difference is the relative thermal velocity. The width and shift pa-

rameters have a temperture dependence given by (T/Tref)n, where

n is the temperature coefficient. The K pressure broadening num-

bers as well as the Rb pressure broadening temperature coefficients

are from our preliminary measurements and will be published sep-

arately. The other pressure broadenign temperature coefficients are

set to an average between the value assuming a van der Waals po-

tential (n = 0.3) and typical theoretical calulations (n≈ 0.4) [62]. The

pressure shift temperature coefficients are set equal to Rb, the only

one that’s been measured. . . . . . . . . . . . . . . . . . . . . . . . . . 427

5.6 Spin Exchange & Spin Destruction Parameters at T = 200oC. See

Chp. (D) for more details about data selection and temperature de-

pendences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
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5.7 Baseline Input Parameters to the Numerical Simulation. The op-

tically pumped alkali atom is labelled as “op alkali,” whereas the
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Chapter 1

Historical Introduction

1.1 Overview

Over the last 25 years, laser polarized noble gases have found applications in, just

to name a few, polarized targets for electron scattering experiments [1], magnetic

resonance imaging [2], tests of fundamental symmetries [3], and neutron scattering

experiments [4]. During the past decade, significant progress has been made to-

wards understanding & improving the dynamics of spin exchange optical pump-

ing (SEOP) of noble gases. For polarizing 3He, the two most important advances

have been alkali-hybrid SEOP [5, 6] and the use of high power, spectrally-narrow

diode lasers [7]. The application of these two technologies together to polarized

3He targets has resulted in a dramatic increase in the typical 3He polarizations (in-

beam) from 37% to 65%.

The upper plot in Fig. (1.1) shows the number of days of beamtime required

to perform a typical electron scattering experiment (see caption for details). Each

band represents the range of 3He polarizations that was acheived during electron
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Figure 1.1: Improvement in SEOP Polarized 3He Targets. The upper plot shows the
number of days of data taking necessary to achieve a statistical precision of 10% on
an asymmetry of 0.02 with a count rate of 0.5 Hz. These are typical numbers for a
measurement of the neutron electric form factor Gn

E at high resolution (
√

Q2). The
lower plot shows the the number of polarized nuclei divided by the polarization
time scale. This quantity is given by the product of the 3He density, target cell
volume, 3He polarization, and polarization (i.e. spinup) rate.
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scattering experiments at the time. The most obvious improvement is the factor

of 3 increase in the average performance of the target cells. We are now within a

factor of 2 of what is currently understood to be the highest possible performance

for SEOP 3He , based only on the limits of the 3He polarization. The improvements

described in this dissertation are critical for the polarized 3He program at Thomas

Jefferson National Accelerator Facility (JLab) after the 12 GeV upgrade. Because

the scattering rates drop significantly at higher resolution (
√

Q2, four-momentum

transfer), one must compensate with increased luminosity. Higher polarizations

and shorter polarization time constants are two key components to achieving this

goal.

The second improvement is the substantial reduction in the variation in the

performance of the target cells. These new technologies essentially guarantee con-

sistent and reproducible high performance. Given the time & expense required

to prepare a target cell for use in an electron scattering experiment and the recent

scarcity of 3He gas [8], one could argue that this advance is nearly as important as

the improvement in performance. These advances also have a substantial impact

on hyperpolarized magnetic resonance imaging (MRI). A crude metric to gauge the

performance in this context is the amount of polarized gas produced per unit time,

see lower plot in Fig. (1.1). Alkali-hybrid SEOP coupled with spectrally-narrow

(narrowband) diode lasers can now produce twice as much polarized 3He gas in

half the time with half the laser power. This is roughly an order of magnitude im-

provement over traditional SEOP with spectrally-broad (broadband) diode lasers.

This dissertation is divided into two parts. In the first part, I’ll present a de-

scription of polarized electron scattering, Chp. (2), and briefly summarize my con-

tributions to the JLab Hall A Polarized 3He Program, Chp. (3), with a particular
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emphasis on 3He polarimetry, Chp. (4). Two experiments in particular will receive

special attention. The first is E97110: “the GDH Sum Rule, the Spin Structure

of 3He and the Neutron using Nearly Real Photons.” Measurements of the neu-

tron spin structure functions were made over a Q2 range of 0.04 to 0.25 GeV2 in

the Summer of 2003. Moments of these spin structure functions can be related to

the generalized Gerasimov-Drell-Hearn integral and spin polarizabilities. Baryon

Chiral Perturbation Theory allows one to calculate the values and slopes of these

quantities at and near Q2 = 0. The interplay between theory & experiment will

provide a better understanding of the effective hadronic degrees of freedom that

are necessary to understand the long-distance scale structure of the neutron. Pre-

liminary results for the spin structure function moment Γn
1 and the generalized

GDH integral In
A will be presented.

The second experiment is E02013: “Measurement of the Neutron Electric Form

Factor GE
n at High Q2.” Measurements of double polarization asymmetries for

quasielastic kinematics were made over a Q2 range of 1.7 to 3.4 GeV2 in the Spring

of 2006. The scattered neutron was detected in coincidence with the scattered elec-

tron to minimize backgrounds. This was the first experiment to feature alkali-

hybrid SEOP polarized 3He targets in electron scattering, which yielded 3He po-

larizations consistently near or above 50% in-beam for the first time. Elastic form

factors are related to electric charge and magnetic current density distributions.

These are among the most fundamental properties of nucleons and their measure-

ments, Gn
E in particular [9], were part of the original scientific motivation behind

JLab. Final results for the Gn
E will be presented.

In the second part of this dissertation, I will discuss the spin exchange optical

pumping of polarized 3He targets with a special emphasis on the factors that ulti-
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mately limit the 3He polarization. In Chp. (5), I will describe optical pumping and

how it is modified by alkali-hybrid mixtures. I have attempted to relax as many as-

sumptions as possible in rederiving the relevant equations in order to identify po-

tential sources of imperfections and estimate their size. Even small imperfections

in optical pumping can dramatically reduce the photon economy (i.e. increase the

laser intensity required to achieve unity alkali polarization). In Chp. (6), I will

describe the polarization dynamics in target cells with two chambers. These calcu-

lations provide a framework for determining (1) the equilibrium 3He polarizations

in both chambers and (2) the proper interpretation of experimentally determined

time constants associated with the polarization & diffusion processes.

In Chp. (7), I will present a brief summary of the parasitic experimental tests

that we have performed over the last decade on the target cells constructed for

use in JLab experiments. These tests have confirmed several features that are ex-

pected based on (1) numerical simulations of the optical pumping process and (2)

experimental observations made by other groups in cells with different geometries

& 3He densities. This agreement gives us confidence that we are starting to truly

understand (1) the limits of the 3He polarization in these targets and (2) how to

reliably extrapolate to more demanding experimental conditions. Finally, the ap-

pendices include, among other things, a catalog of reference data relevant to the

optical pumping of alkali atoms & SEOP of 3He and detailed derivations of several

results used for extracting the alkali & 3He polarizations & densities.
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Electron source

vacuum pump

Target window“Detector”

“fuzzy”
scattering

Figure 1.2: Lénárd’s Cathode Ray Experiment. Electrons are accelerated from the
cathode (C) towards a thin target window (which is sealed at points m & m).
The electrons are scattered at small angles which is indicative of a “fuzzy” atomic
charge distribution. [10]

1.2 Pictures of the Nucleon from Electron Scattering

The structure of an object can be functionally defined by its response to a probe.

This response is used to infer the object’s parts and the rules that determine how

they behave and interact with each other. These parts and rules together form the

degrees of freedom that describe the object in a manner that can be very different at

various size scales. By varying the probe resolution, different size scales within the

object can be studied. From this perspective, the goals of science are to enumerate

the degrees of freedom at each size scale and then find the relationship, if any, that

exists between these different scales.

1.2.1 Point Particle

The size scale relevant to nucleons covers the approximate range from 0.1 fm to

1 fm (1 fm = 10−15 m). An extremely well-suited probe is electron scattering, which,
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in its modern form, has been used to explore nucleon structure since the pioneer-

ing measurements of Hofstadter in the 1950’s. However, the basic conceptual ar-

guments regarding the need and utility of electron scattering can be traced at least

as far back as Philipp E. A. von Lénárd’s Nobel Lecture [10] titled “On cathode

rays” delivered on May 28, 1906 (my emphasis in bold, his in italics):

What are these fine constituents of atoms? That in all atoms they are

the same, only present in varying numbers, we have already concluded

from the law of proportionality between mass and absorption. We can

now learn further details. We can use the quanta of the cathode rays

as small test particles which we allow to traverse the interior of the

atoms and thus provide us with information thereon. . . . As far

as we know, cathode rays experience such a deflection owing only to

electrical and magnetic forces. To assume magnetic forces within the

atoms would imply the assumption of mobile electricity in the atoms,

thus again electrical forces. We must therefore regard the diffusion of

cathode rays in matter as proof for the existence of electrical forces in the

interior of the atoms. The magnitude of these forces can be estimated

by considering the extent of the deflection . . .

Lénárd studied the small angle deflections (θmax ≈ 20◦) of electrons through very

thin sheets of various materials. He mostly used discharge tubes which provided

an electron energy of about 30 keV, which can be converted into a size scale using:

(
energy scale

)
× (size scale) = ~c ≈ 200 MeV · fm (1.1)
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Figure 1.3: Geiger-Marsden Gold Foil Experiment. (Left) Schematic of experimen-
tal apparatus. (Right) Data on gold foil [11].

where ~ is the Planck constant divided by 2π, c is the speed of light, and the energy

scale for small angular deflections is estimated by:

(
energy scale

)
≈ Eθ (1.2)

where E is the energy of the particle and θ is the deflection angle in radians.

These formulas explicitly stipulate that higher energy and/or larger angles are re-

quired for higher resolution. Since Lénárd’s apparatus, Fig. (1.2), could only probe

size scales as small as 20000 fm, he understandably concluded that “The proba-

ble proper volume of the positive electricity, provided it too were not extremely

small, should be regarded as completely penetrable for negative quanta.” He did,

however, anticipate Rutherford by noting that “the fastest rays are also capable of

supplying the answer to the question whether perhaps these centres have a special,

impenetrable proper volume.” [10]
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The true classical archetype for the scattering technique is Geiger and Mars-

den’s famous gold foil experiment, Fig. (1.3). They originally observed (1909) that

about 1 in 8000 α particles (4He nuclei) fired at a 60µm thick gold foil were re-

flected back at angles greater than 90◦ [12]. This inspired Rutherford (1911) to

derive the Coulombic scattering formula that still bears his name [13]. Geiger and

Marsden set out to confirm (1912) Rutherford’s celebrated formula. Their source

was a collimated beam of 6.0 & 7.7 MeV α particles from the decay of radium-226

and its daughter nuclei. Their targets were silver and gold with air equivalent

thicknesses of 0.1 cm to 0.45 cm. Their detector was a zinc sulfide screen which pro-

duced visible scintillations when struck by a scattered α particle. They themselves

were the data acquisition system: they simply counted the number of scintillations

(100,000 total!) at 14 different scattering angles between 5◦ and 150◦. Geiger and

Marsden confirmed every aspect of the formula and provided strong evidence for

a small dense positive core at the center of atoms [11]. Because the size scale that

they probed was between 10 and 400 fm, they could not resolve any further nuclear

structure beyond a simple point particle, see Fig. (1.4).

In scattering experiments, elastic scattering refers to the case when the probe

and target particles remain in their ground state. For inelastic electron scattering,

the target particle is excited out of its ground state or smashed apart creating new

particles. The first inelastic electron scattering experiments were performed by

J. Franck and G. Hertz [14]. A beam of electrons accelerated up to 100 eV were

sent through a vapor of mercury atoms, see Fig. (1.5). The number of undeflected

electrons (current) was measured as a function of accelerating voltage. Franck and

Hertz found that at certain sharp & discrete steps, characteristic to mercury atoms,

all of the electrons were deflected. Their results clearly showed the excitation of
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Figure 1.4: “Fuzzy” scattering vs. “Point” scattering. In the top left figure, the size
of the nucleus is not resolved. This results in a small angle scattering from an ap-
parent “fuzzy” atomic charge distribution as observed by Lénárd. In the top right
figure, the nucleus is sufficiently resolved to result in large angle back scattering
as observed by Geiger & Marsden. The two central plots depict the intrinsic scat-
tering probability as a function of resolution scale for both “fuzzy” and “point”
targets. The bottom pictures of the Moon are an attempt to demonstrate what we
mean by “resolution scale.” The far left picture is the Moon in its entirety. Each
succeeding picture depicts the Moon at a different resolution scale starting at the
lowest and ending at the highest.
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Figure 1.5: Franck-Hertz Experiment. The left figure is a schematic of the experi-
ment. The right figure depicts the drops in the anode current when the accelerating
voltage equals an integer multiple of the strong Hg intercombination line at 254 nm
(4.9 eV). [14]

an atom’s constituents, namely orbital electrons. They did not realize it at the time

but they had provided a “most direct confirmation for the general interpretation

of spectra” based on Bohr’s quantum theory [15, 16]. Although they only probed

mercury atoms at a size scale of 1 million fm (atomic scales), their experiment

demonstrated the general principle that one could measure the collective excitation

spectrum of a particle’s constituents via inelastic scattering.

1.2.2 Protons, Neutrons, and a Cloud of Virtual Pions

Elastic scattering experiments of alpha rays from nuclei continued over the next

two decades. Convinced by his experiments of alpha scattering from nitrogen in

1919, Rutherford declared that nuclei contained protons [17]. By his Bakerian lec-

ture to the Royal Society in 1920, he was prepared to posit “the possible existence of

an atom of mass 1 which has zero nucleus charge.” [18] In 1932 his former student
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James Chadwick conclusively identified neutrons ejected from beryllium by alpha

scattering [19]. At sufficiently low resolution, the structure of the alpha particles

themselves can be ignored and they can be thought of as heavy spinless electrons.

However, at even moderate resolutions, the scattering process becomes sensitive

to both the structure of the alpha particle and the strong interactions between the

alpha and the target nucleus. These effects had already started to manifest them-

selves with Rutherford’s experiments with light nuclei [20].

Electrons (and leptons in general) are a much cleaner probe in this regard. Their

degrees of freedom are very well understood in the form of Quantum Electrody-

namics (QED). In addition, their effect on the target can be treated perturbatively

in powers of α≈ 1/137. Neville Mott generalized Rutherford’s formula to account

for spin in scattering between two ideal point-like spin-1/2 particles [21]. These

particles are also sometimes called Dirac particles because their relativistic behav-

ior can be described by the Dirac equation. Deviations from the Mott formula were

immediately observed [22] in the first proton-proton scattering experiments in the

early 1930’s. However, this was not conclusive evidence that protons were not

Dirac particles, since these deviations were legitimately attributable to the strong

interactions between nucleons.

The earliest and more compelling evidence that nucleons are not purely Dirac

particles were measurements of proton and deuteron magnetic moments by Otto

Stern. The ratio of a Dirac particle’s magnetic moment to its spin is simply its

charge to mass ratio. Stern found a value 2.5 times larger than what was expected

for the proton [23]. Using his now famous molecular beam techniques, I. I. Rabi

confirmed the result for the proton [24]. Both Stern and Rabi (separately) measured

the deuteron magnetic moment and inferred a significantly non-zero and negative
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value for the neutron [25, 26]. At Rabi’s urging, this was directly confirmed by

J.R. Dunning’s group at Columbia in the mid-1930’s [27]. The first precision mea-

surement of the neutron magnetic moment was published in 1940 by Alvarez and

Bloch [28].

For electrons, the anomalous magnetic moment is quite small and is directly

attributable to the effects of a cloud of virtual photons & other particles that sur-

rounds the bare electron. One had to wait for Yukawa’s Meson Theory to use this

picture to explain the anomalous magnetic moment of nucleons. Yukawa imag-

ined an exchange of a new type of particle to mediate strong interactions between

nucleons. He furthermore argued that these particles, unlike photons, must be

massive in order to explain the apparent short range of the strong interaction. To

complete the analogy, the anomalous magnetic moment of nucleons is the effect of

a surrounding cloud of virtual pions & nucleons, Fig. (1.6). The substantial size of

this anomalous magnetic moment is a direct consequence of the strength of inter-

actions among nucleons and pions. W. Pauli showed that an anomalous magnetic

moment can be accommodated by the Dirac equation without violating special

relativity (Lorentz invariance) or conservation of charge (gauge invariance) [29].

Thus one could have reasonably argued that an anomalous magnetic moment by

itself did not constitute proof that nucleons are not point particles. An anomalous

magnetic moment, therefore, does not address the question of whether nucleons

have any spatial extent.

At sufficiently high resolution, the non-point like structure of the nucleus should

make itself apparent. M.E. Rose was among the first to address this point for nu-

clei [30]:

It is pointed out that the finite size of the nucleus will give rise to large
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deviations from Mott scattering when the change in wave-length of the

electrons is of order of the nuclear dimensions. This deviation from

Mott scattering at large scattering angles therefore provides a possibil-

ity for determination of the shape of the charge distribution and size of

nuclei.

M.N. Rosenbluth extended this argument to nucleons and explicitly stated that

high energy elastic electron scattering “should yield data on the nature of the me-

son cloud of the proton.” [31] These deviations are encoded in quantities called

form factors. For a purely electromagnetic process involving a spin-1/2 particle,

there are, in general, two form factors. It is convenient to associate one with the

electrical properties of the target and the other with the magnetic properties of the

target. The form factors for a point target are simply the target’s charge & mag-

netic moment. For a non-point like particle, the form factors are no longer con-

stants and vary with the resolution of the probe. In the kinematic regime where

the target recoil is negligible (i.e. nonrelativistic), these form factors have a simple

physical interpretation: they are the Fourier transforms of the static spatial charge

and magnetization distributions of the particle in the lab frame.

The first attempt to measure nuclear charge distributions in the modern era

of high energy electron scattering was by Lyman, Hanson, & Scott in 1951. They

measured elastic scattering of 16 MeV electrons from carbon, aluminum, copper,

silver and gold [34]. They probed a size scale of 5 to 25 fm and their results indi-

cated a uniform charge distribution for heavy nuclei. After making the definitive

measurements of several heavy nuclei in the mid-1950’s, Robert Hofstadter and

his students turned their attention to nucleon structure. They probed a size scale

of 0.3 to 2 fm and found that the number of scattered electrons for a given angle
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Figure 1.6: Pictures of the Proton. The left figure is from a review article on nucleon
structure from 1957 [32]. The right plot is from Hofstadter’s measurement of elastic
scattering of electrons from protons. [33].

were less than what one would expect for a Dirac like point particle with the same

magnetic moment as the proton [33], Fig. (1.6). This indicated that the proton form

factor was not constant and dropped quite rapidly as one increased the resolu-

tion. Hofstadter could describe their data with a exponentially decaying charge

and magnetization distribution with a radius of about 0.8 fm [35]. However, for

their highest resolution data, the target recoil was sizable, as it often is for light

nuclei and nucleons, and the lab frame spatial distribution interpretation breaks

down due to relativistic effects. Regardless, Hofstadter’s measurements showed

that nucleons have a spatial extent and found the size scale where their non-point

like behavior finally becomes apparent.
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1.2.3 Constituent Quarks

Throughout the 50’s and 60’s, many new mesons, baryons, and resonances were

discovered. However, all approaches to describe these new strongly interacting

particles using the ideas from QED failed. As a result, the predominant theoretical

idea was to focus only on the most general properties of the scattering process

[36–38]. Specifically it was argued that one should only be concerned with the

initial and final state of the scattered particles and ignore the microscopic details of

their interaction. For this reason, one could not give nucleons any special priority

as being fundamental. All hadrons were considered equal, establishing a kind of

“nuclear democracy” [39].

One powerful mathematical formulation of these arguments comes in the form

of dispersion relations. The general properties that they encode are the conserva-

tion of probability and the idea that cause precedes effect. Combined with con-

servation of charge and enforcing consistency with special relativity, dispersion

relations were used to derive an important sum rule by Gerasimov and Drell &

Hearn [40, 41]. Nowadays referred to as the GDH sum rule, it describes the con-

sequences of polarized photon scattering from a polarized target. The GDH sum

rule relates a particle’s deviations from point-like behavior (anomalous magnetic

moment) to the collective excitations of its constituents (its differential polarized

inelastic spectrum). A photon can only interact with global properties of a particle

(charge, magnetic moment). Therefore this sum rule is only true for “zero” resolu-

tion. It has been generalized to electron scattering [42] and therefore can be related

to the a particle’s structure at all resolution scales.

An alternative and minority view at the time took advantage of the patterns

found across hadrons. Gell-Man, Ne’eman, and Zweig showed that hadrons could
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be ordered by their spin, isospin, and strangeness [43, 44]. Furthermore, the reg-

ularity of these patterns suggested that hadrons are composed of a discrete set of

subnuclear particles referred to as “quarks” or “aces” [45, 46]. This idea is in com-

plete analogy to atoms where different combinations of protons, neutrons, and

electrons can fully explain their atomic number, weights, and chemistry. Just as

Mendeleev had done with atoms and the periodic table a century earlier, a par-

ticle’s properties could be predicted based its position in a table, see for exam-

ple [47]. The model could explain nearly all the masses, charges, magnetic mo-

ments, spin, isospin, and strangeness on the basis of three fractionally charged

flavors of constituents called up, down, and strange.

Using the structure of atoms as a guide, Dalitz was able to incorporate or-

bital angular momentum into the quark model [48, 49]. His symmetric quark

model could explain several of the resonance states as orbital excitations of nu-

cleons. It could not, however, explain the existence of certain hadrons that had

three quarks all with the same quantum numbers. Much like Uhlenbeck and

Goudsmit’s conjecture of electron spin to explain Pauli’s principle, Owen Green-

berg [50] (also Han & Nambu [51]) proposed a new quantum number which is

now referred to as “color.” Although the mathematical utility of constituent quarks

was not doubted, the physical reality of quarks was (except notably by Zweig and

Dalitz) [45,46,49,52–55]. All searches for “free” quarks at the time (1960’s) returned

with negative results, see for example [56].

During this same time at the Stanford Linear Accelerator Center (SLAC), Panof-

sky & Allton (0.3 to 0.9 fm) [58] and Ohlsen (0.3 to 0.6 fm) [59] and Hand (0.2 to 0.7

fm) [60] performed the first series of inelastic studies on the proton. They demon-

strated electropion production and observed the ∆ resonance (near W = 1.2 GeV)



1.2. PICTURES OF THE NUCLEON FROM ELECTRON SCATTERING 18

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

pr
ob

ab
ili

ty
 o

f s
ca

tte
rin

g 
(a

rb
. u

ni
ts

)

high
resolution

low
resolutionfinal energy of decay products (W in GeV)

1 2 3

“resonance region” “DIS” region

Figure 1.7: Response of the Nucleon at Different Resolutions. Compare the “res-
onance region” in the middle spectra to the spectrum in Fig. (1.5). Spectra were
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which is the lowest energy collective excitation of the nucleon, see the “resonance

region” in Fig. (1.7). In 1965, Cone et al. (0.1 to 0.4 fm) expanded these studies at

Harvard and observed all known resonances up to 1920 MeV [61]. These results

were expected based on earlier results from pion-nucleon and nucleon-nucleon

scattering.

As these resonances get heavier, more decay modes become available (i.e. the

decay phase space increases due to more ways to conserve energy and momen-

tum). More decay modes imply a shorter lifetime which leads to broader energy

width. Therefore, it was expected that these resonances would become very wide.

For resonance masses above twice the mass of nucleons, it was observed that the

resonances essentially smear out into a gradually decreasing continuum, see the

“DIS” region of the middle two spectra in Fig. (1.7). Just like the ground state nu-

cleon, these resonances were expected to have analogous form factors that drop

off appreciably at sufficiently high resolution (� 1 fm). For example, the Delta

(∆) resonance in Fig. (1.7) is only apparent at a range of resolutions scales that is

on the order of its characteristic size. At resolutions much lower or higher than

this range, the probability of scattering is flat and nearly zero. This is essentially

the same argument made in the SLAC Proposal E4B “The Electron-Proton Inelastic

Scattering Experiment:”

Because the inelastic cross section contains q2 dependencies which are

similar to that of the form factors describing elastic scattering, the count-

ing rates drop rapidly as a function of four-momentum transfer . . .

where “q2” (the four-momentum transfer squared, Q2 in modern notation) is the

parameter that defines the resolution scale in electron scattering [62]. The expecta-

tion was that, at sufficiently high resolution (
√

Q2), the probability of scattering in
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Figure 1.8: SLAC Deep Inelastic Scattering Data. Adapted from [63].

the “DIS” region (high W) would be nearly zero.

1.2.4 Partons

With this expectation, Friedman, Kendall, and Taylor performed their legendary

deep inelastic scattering (DIS) experiments at the newly upgraded SLAC linear ac-

celerator. Their original goals were to “search for new nucleon resonances” above

1.8 GeV (i.e. the right half of the spectra in Fig. (1.7)) and to “separate the inelastic

longitudinal and transverse form factors.” They fired 7 to 17 GeV electrons at a

liquid hydrogen target and measured the scattering rates at 6 and 10 degrees [64].

Unexpectedly, they found [63] that the inelastic form factors for resonance masses

above 2 GeV were essentially constant or, in other words, had no resolution de-

pendence, see the “DIS” region in the top two spectra of Fig. (1.7). The immediate
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interpretation of this observation was that the electrons were scattering elastically

from point-like particles within the proton, see Fig. (1.8).

Bjorken had earlier considered [65] the possibility of such an observation and

nowadays it is referred to Bjorken scaling. Feynman provided the first clear physi-

cal picture of what was being measured during this process [66]. He imagined the

scattering process in a reference frame where the electron and nucleon are traveling

at each other fast enough so that one could ignore the transverse motion of these

objects he called partons. In this frame, the interaction would occur so quickly that

the struck parton would be scattered out of the nucleon before it could interact

with another parton. The struck parton would carry a fraction of the total momen-

tum of the nucleon. In this picture, the electron scattering probes the longitudinal

momentum distribution of partons within the nucleon. Unpolarized electron scat-

tering indicated that partons behaved like point-like spin-1/2 fractionally charged

particles. For this reason, it was difficult to avoid associating partons with quarks.

Including the impressive data from neutrino-nucleon scattering, the evidence for

the quark-parton model became overwhelming.

1.2.5 How are these pictures related?

At nuclear distance scale, above 1 fm, protons and neutrons interact as point par-

ticles would through pion exchange. One can very successfully model this inter-

action based on effective short range potentials inspired by atomic physics. On

the 35th anniversary of the Lyman-Scott-Hansen electron scattering experiment,

J.D. Walecka recalled Herb Anderson asking the question, “We have been doing

nuclear physics for 50 years without quarks. Why do we need them now?” [67].

Quark and gluon degrees of freedom are absolutely necessary at very short
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distance scales, below ≈ 0.2 fm. By the mid-1970’s, all of the theoretical tools and

experimental observations necessary to describe these degrees of freedom had be-

come available. An early synthesis of the relevant ideas was fully outlined in 1973

by Gross & Wilczek [68, 69] and dubbed Quantum Chromodynamics. The charges

that cause attraction and repulsion in QCD are labeled by three colors (in analogy

to the two “colors” in QED: positive and negative electrical charge). The attraction

and repulsion between quarks is mediated by gluons just like photons between

electrical charges. Unlike photons, the gluons themselves carry charge. This dif-

ference is what explains the dramatic difference in the small distance scale behav-

ior between QED and QCD. In QED, the strength of the interaction becomes much

larger as two electrons are brought together. In QCD, the strength of the interaction

becomes much smaller as two quarks are brought together. This property is called

“asymptotic freedom” and allows theorists to make accurate calculations about

quark behavior at distance scale below about 0.1 fm. At larger distance scales,

the strength of the interactions between quarks becomes so large that enough en-

ergy is available for the creation of more quarks and gluons. For this reason, QCD

calculations become intractable and one is left to wonder if “more is different.”

What happens between 0.1 to 1 fm? It is believed that, through a mecha-

nism called “confinement,” quarks accumulate a cloud of virtual quarks and glu-

ons. The resulting blobs are the constituent quarks of the original quark model of

hadrons. To differentiate between the two, short distance scale quarks are some-

times referred to current quarks. A constituent quark obtains its quantum num-

bers from the current quark at its core. This current quark is referred to as the

valence quark. Almost all of the mass of a constituent quark is generated by the

cloud of virtual particles that surround the nearly massless valence quark. This
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surrounding cloud of virtual quarks is referred to as the sea quarks. Finally, these

constituent quarks then bind together to form hadrons in direct analogy to the

binding of nucleons in nuclei.

One of the central goals of Nuclear Physics is to better understand how the

transition from quarks to nuclei occurs between 0.1 and 1 fm. The nucleon is a

natural place to investigate this transition since it has the size scale characteristic

of the relevant physics. This intermediate size scale regime is a fertile ground for

theorists to build effective models of nucleon structure in an effort to bridge the

very long and very short distance scale physics of the strong interaction. There are

several complimentary experimental approaches to this problem. The one empha-

sized here takes advantage of the spin degrees of freedom to access polarization

observables.

1.3 Polarized He-3 Targets

1.3.1 The Importance of Polarization Observables

The spin of the nucleon is interesting in itself and also provides “an extra knob

to turn” to access nucleon structure. The importance of these degrees of free-

dom was well known for a long time, but several technological barriers had to

be overcome before double polarized (i.e. beam and target) scattering experiments

could become practical. By the early 70’s, polarized electron scattering from po-

larized nuclear targets had become realizable and the first such experiment was

E80 at SLAC led by V.W. Hughes. The polarized electron beam was produced

by photo-ionization of a Li-6 atomic beam. They could deliver a 120 Hz pulsed

beam with an average beam current of 0.04 µA at 50% polarization. The target was
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butanol doped by porphyrexide radicals which achieved a proton polarization of

50%. They measured asymmetries for elastic scattering [70] and deep inelastic scat-

tering [71,72]. In the DIS region, their first results showed positive asymmetries as

expected from the quark-parton model. A subsequent experiment, E130, took data

in the resonance region for the first time and found a negative asymmetry for the

delta resonance as expected from the constituent quark model [73].

Experiments of this type are now routine and a great deal has been learned

about the spin structure of the nucleon, see for example [74]. For the sake of brevity,

we’ll highlight the famously surprising result [75] from the European Muon Col-

laboration. They found that the contribution to the spin of the nucleon due to the

spin of the quarks was consistent with zero. After a considerable amount of ex-

perimental effort over the past two decades, we now know that the value for this

quantity is closer to 0.3 [76]. At present, firm statements about the gluon contri-

bution to the spin of the nucleon are impossible to make because of the limited

kinematic coverage of data presently available. With that caveat in mind, a recent

global analysis [76] of the world data has hinted, in the limited kinematic region

explored, that the gluons contribute little to the spin of the nucleon. These two

experimental observations have provided some credence to idea that quark orbital

angular momentum plays a significant role in the dynamics of nucleons.

More recently, additional hints of nonzero quark orbital angular momentum

have come from measurements of the proton form factors. High resolution mea-

surements of the proton form factors at SLAC in 1989 seemed to indicate that there

was no significant difference in the spatial distribution of charge and magnetiza-

tion within the proton [77]. This view was upended by experiments at JLab in the

early part of this decade. These later experiments took advantage of polarization
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degrees of freedom to directly measure the ratio of the electric to magnetic form

factor of the proton. This type of measurement is regarded as being relatively free

of systematic effects that plague the determination of this ratio using data from

unpolarized electron scattering [78]. These experiments famously observed & con-

firmed a linear decrease in the ratio of the electric to magnetic form factors with

increasing resolution [79]. One natural explanation for this observation involves

nonzero quark orbital angular momentum [74].

These two discoveries simply would not have been possible without the abil-

ity to control and measure the spin of the beam and target. One could argue that

improvements in polarized beams & targets lays the foundation for future unex-

pected discoveries.

1.3.2 Effective Neutron Target

Most precision electron scattering experiments require many hours of beamtime

to accumulate enough scattering events to achieve a prescribed statistical preci-

sion. A dense, free neutron target for these types of experiments simply does not

exist. Two possible effective neutron targets are deuterons and 3He nuclei. As an

unpolarized target, deuterons are ideal because they are a simpler two body nu-

clear system and a single proton produces less background. As a polarized target,

deuterons are less attractive because of the large uncanceled spin of the spectator

proton and the tensor polarization effects due to the spin-1 nature of deuterons. On

the other hand, the spins of the two spectator protons in the 3He nucleus largely

cancel due to the Pauli exclusion principle. In the most simple picture, a fully po-

larized 3He nucleus can be thought of as a bag of loosely bound nucleons with an

effective neutron polarization of 86% and an effective proton polarization of −2%.
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1.3.3 Polarizing He-3

There are at least three ways to polarize 3He nuclei. The first and most inefficient

is the brute force method where one applies large magnetic fields and low temper-

atures to produce large Boltzmann polarizations. It would require a 50 T field to

produce 1% polarization in 3He at liquid helium temperatures.

The second is called metastability exchange optical pumping (MEOP) and was

first demonstrated by Schearer, Colegrove, & Walters in 1963 [80]. In this method,

an RF (radiofrequency) discharge excites 3He atoms in the 11S0 ground state into

the 23S1 metastable state. These metastable atoms are polarized via optically pump-

ing (described in the following section) to the 23P states. Finally, metastable atoms

exchange their electronic configuration with atoms in the ground state via col-

lisions. The “metastability exchange” collisions are sudden with respect to the

3He nuclear spin. Therefore, the nuclear polarization is preserved as the 3He atom

returns to the ground state. This method requires low pressures to insure suffi-

ciently long lifetimes in the metastable state for optical pumping. This technique

is the preferred polarization method for internal polarized 3He targets.

The third method and, historically, the first one to be realized experimentally

is a two step process referred to as spin exchange optical pumping (SEOP). Alkali

atoms are first polarized via optical pumping. This electronic polarization is then

transferred to 3He nuclei via spin exchange collisions. This process is one of the

main topics of this dissertation.
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1.3.4 Spin Exchange Optical Pumping

There were three key ideas that had to established before the demonstration of

spin exchange optical pumping of 3He . The first was optical pumping, which

involves the redistribution of the populations of the Zeeman levels of a particular

state using polarized light. Kastler’s key idea in 1950 was to suggest the use of

circularly polarized light to selectively depopulate or populate a given atomic state

[81]. This was soon demonstrated in sodium in 1952 by Brossel, Kastler, and Winter

[82] and in 1953 by Hawkins and Dicke [83].

At the time, most optical pumping experiments on alkali atoms used light pro-

duced from a discharge lamp of the same alkali atom. These lamps produced a

spectrum that was a mixture of wavelengths associated with both the D1 and D2

transitions. Due to electric dipole selection rules, optical pumping with light origi-

nating from the D1 & D2 transitions results in ground state polarizations of +100%

& -50% respectively. In 1957, Franzen and Emslie were among the first to suggest

that nearly “one hundred percent orientation of alkali atoms” could be obtained

by “illuminating them with circularly polarized resonance radiation” comprised

only of D1 light [84].

The last piece of the puzzle was the concept of spin exchange, which was first

used to describe collisions between atomic hydrogen in 1956 by Purcell & Field [85]

and Wittke & Dicke [86]. However, the prediction and observation of the Over-

hauser effect more directly led to the first demonstration of SEOP of 3He . As it was

originally imagined by Overhauser [87], conduction electrons in metals could, un-

der the proper conditions, polarize nuclei via a hyperfine coupling between their

spins. Carver and Slichter were soon able to verify this prediction [88]. As this

result was a part of Carver’s dissertation work [89], it’s not surprising he, along
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with Bouchiat and Varnum, sought to reproduce this effect in 3He using optically

pumped Rb. In 1960, they succeeded in polarizing a 3 amagat sample of 3He to

0.01% [90]. They observed very short (≈ 1 hr) 3He relaxation time constants, which

they noted limited the applicability of this method to polarized nuclear targets.

Because SEOP relies on a very weak coupling between alkali atoms and 3He

nuclei, a very high density of alkali atoms is required to provide a spin exchange

rate high enough to overcome the 3He relaxation rate. To provide some context,

optical pumping experiments at the time were performed at alkali densities of one

hundred to one million times smaller than the alkali densities used in the target

cells described in this dissertation. Rb lamps used for optical pumping cannot

provide the light intensity required to polarize such a high density of atoms. For

this reason, the possibility of using SEOP was not seriously explored again un-

til 25 years later when high power lasers of the appropriate wavelength became

available.

1.3.5 SEOP Polarized He-3 Targets

Even as late as 1984, as reported in the Proceedings of the Workshop on Polarized

He-3 Beams and Targets, not one mention is made of utilizing spin exchange opti-

cal pumping for polarizing 3He . There is, however, a discussion about polariz-

ing 3He ions, produced by collisions with a charged particle beam, using optically

pumped Rb atoms [91]. The 3He nuclei would then be polarized by the hyperfine

coupling between the spin of the valence electron of the 3He ion and its nuclear

spin. Within three years of this workshop, it was shown that small volumes (a

few cm3) of 3He at a density of roughly 3 amg could be polarized to 40% using

SEOP [92].
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Figure 1.9: SEOP Polarized Target Cell Used for Gn
E (E02013). Image provided by

Al Gavalya.

The basic design and operational parameters of the type of polarized 3He tar-

gets that are the focus of this dissertation were established with the SLAC exper-

iments E142 [93] & E154 [94]. The developments of these targets benefitted from

several other polarized 3He efforts that were already in progress [92, 95–97]. JLab

style target cells have a pumping chamber (2.5 in to 3.5 in diameter sphere) and

a target chamber (15 cm to 40 cm in length) connected via a transfer tube, see

Fig. (1.9). These cells have a total volume that ranges from 200 cm3 to 400 cm3. The

3He operating density in the target chamber is typically 10 amg, while the density

in the pumping chamber is about 7 amg.

The prescription to insure sufficiently long wall relaxation time constants in

target cells was developed during the run up to E142 [98]. The precision 3He

polarimetry techniques developed for E154, with a few modifications, are what

we still use today [99]. Each of these advances were carried over to and built



1.3. POLARIZED HE-3 TARGETS 30

0

20

40

60

80
3 H

e 
Po

la
riz

at
io

n 
(in

-b
ea

m
) (

%
)

Fall 1998

Fall 2008

Figure 1.10: Target Polarization for the First (E94010) and Most Recent (E06010)
JLab 3He Experiments. Data from E94010, taken in the Fall of 1998, are on the
left [101]. Preliminary data from E06010, taken in the Fall of 2008, are on the right
(figure provided by C. Dutta).

upon by the JLab polarized 3He program [100–105]. Starting from the first JLab

3He experiment, E94010 [106], the capabilities of polarized 3He targets at JLab have

steadily advanced, with more than an order of magnitude increase in the appro-

priate figure of merit. The success of this program can be attested to by the fact

that, averaged over the past decade, at least one new polarized 3He experiment

per year has completed data taking.



31

Bibliography

[1] P. L. Anthony, R. G. Arnold, H. R. Band, H. Borel, P. E. Bosted, V. Breton,

G. D. Cates, T. E. Chupp, F. S. Dietrich, J. Dunne, R. Erbacher, J. Fellbaum,

H. Fonvieille, R. Gearhart, R. Holmes, E. W. Hughes, J. R. Johnson, D. Kawall,

C. Keppel, S. E. Kuhn, R. M. Lombard-Nelsen, J. Marroncle, T. Maruyama,

W. Meyer, Z.-E. Meziani, H. Middleton, and J. Morgenstern. Determination

of the neutron spin structure function. Phys. Rev. Lett., 71(7):959–962, Aug

1993.

[2] M. S. Albert, G. D. Cates, B. Driehuys, W. Happer, B. Saam, C. S. Springer,

and A. Wishnia. Biological magnetic resonance imaging using laser-

polarized 129Xe. Nature, 370(6486).

[3] D. Bear, R. E. Stoner, R. L. Walsworth, V. Alan Kostelecký, and Charles D.
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[25] I. Estermann and O. Stern. Über die magnetische Ablenkung von iso-

topen Wasserstoffmoleklen und das magnetische Moment des “Deutons”.

Zeitschrift für Physik, 86(1–2):132–134, 1933.

[26] I. I. Rabi, J. M. B. Kellogg, and J. R. Zacharias. The Magnetic Moment of the

Deuton. Phys. Rev., 46(3):163–165, Aug 1934.

[27] P. N. Powers, H. Carroll, H. Beyer, and J. R. Dunning. The Sign of the Mag-

netic Moment of the Neutron. Phys. Rev., 52(1):38–39, Jul 1937.

[28] Luis W. Alvarez and F. Bloch. A Quantitative Determination of the Neutron

Moment in Absolute Nuclear Magnetons. Phys. Rev., 57(2):111–122, Jan 1940.

[29] W. Pauli. Relativistic Field Theories of Elementary Particles. Rev. Mod. Phys.,

13(3):203–232, Jul 1941.

[30] M. E. Rose. The Charge Distribution in Nuclei and the Scattering of High

Energy Electrons. Phys. Rev., 73(4):279–284, Feb 1948.

[31] M. N. Rosenbluth. High Energy Elastic Scattering of Electrons on Protons.

Phys. Rev., 79(4):615–619, Aug 1950.
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Chapter 2

Nucleon Structure via Electron

Scattering

2.1 Basic Elements of A Scattering Experiment

2.1.1 Units and Conventions

The speed of light (c = 1) and Planck constant divided by 2π (~ = h/2π = 1) are set

equal to 1. Momentum and mass can be converted from energy units by dividing

by c and c2 respectively. One can convert between energy units and distance units

by [1]:

~c = (0.1973269631± 0.0000000049) GeV · fm (2.1)

A useful approximation based on this relationship between energy and distance is:

(
energy scale

)
× (size scale) ≈ 1 GeV · fm

5
(2.2)
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All vectors are relativistic four-vectors (x = xµ = (x0, ~x)), unless noted otherwise.

Three dimensional spatial vectors will be denoted with arrows. The metric tensor

is given by:

gµν =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


(2.3)

The Levi-Civita symbol is defined in the following way using the Bjorken & Drell

convention [2]:

εµναβ =


+1 (µναβ) = even permutation of (0123)

−1 (µναβ) = odd permutation of (0123)

0 otherwise

 (2.4)

Note also that εµναβ =−εµναβ . All quantities are evaluated in the lab frame, unless

otherwise noted.

2.1.2 Kinematic Variables

We’ll only consider the case for a fixed target experiment. The kinematic variables

are depicted in the Feynman diagram on the left half of Fig. (2.1). The incoming

and outgoing electron momenta are p and p′ respectively:

p = (E, ~p ) p′ = (E′, ~p ′) (2.5)
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}

(out of the page)

Figure 2.1: Kinematic Variables & Coordinate Systems for Electron Scattering

At JLab energies E� m, we can safely ignore the small electron rest mass (m):

p2 = 0↔ E = |~p | p′2 = 0↔ E′ = |~p ′| (2.6)

The scattering angle between the incoming and outgoing electron is θ:

~p · ~p ′ = EE′ cos(θ) (2.7)

The momentum transfer carried by the exchanged virtual photon is q:

p− p′ = q = (ν,~q ) (2.8)

where the energy lost by the scattering electron is ν:

ν = E− E′ ≥ 0 (2.9)
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By convention, the square of the invariant four-momentum transfer is Q2 = −q2:

Q2 = ~q 2− ν2 = 2EE′(1− cos(θ)) = 4EE′ sin2
(
θ

2

)
(2.10)

The initial momentum of a target particle with rest mass M is:

P =
(

M,~0
)

(2.11)

The total momentum of carried away by the decay products is P′:

p + P = p′+ P′→ P′ = q + P (2.12)

The invariant mass of the decay products is W:

P′2 = W2 = P2 + 2q · P + q2 (2.13)

which can be rewritten as:

W2 = M2 + 2Mν − Q2 (2.14)

Three useful unitless quantities are the fraction of energy loss in the lab frame y, the

Bjorken scaling variable x, and the parameter that completely specifies the virtual
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photon polarization vector ε (see Sec. (2.5.7)):

y =
q · P
p · P =

ν

E
(2.15)

x =
Q2

2Mν
(2.16)

ε =
[

1 +
2~q 2

Q2 tan2
(
θ

2

)]−1

(2.17)

The smallest energy loss occurs for elastic scattering Wmin = M:

νmin =
Q2

2M
(2.18)

xmax = 1 (2.19)

which can be solved to give:

ymin =
νmin

E
=

(
2E/M

)
sin2( θ

2

)
1 +

(
2E/M

)
sin2( θ

2

) (2.20)

E′max

E
=

1
1 +

(
2E/M

)
sin2( θ

2

) (2.21)

This also corresponds to the largest Q2:

Q2
max =

4E2 sin2( θ
2

)
1 +

(
2E/M

)
sin2( θ

2

) (2.22)

Finally, plugging ν = νmin into Eqn. (2.10) gives τ which is a common kinematic

factor used for elastic scattering only:

τ =
Q2

4M2 =
~q 2

Q2 − 1 =
ν2

Q2 (2.23)
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For the case of the largest energy loss, we cannot ignore the electron rest mass m

and in this case p′ = (m,~0), which gives:

E′min = m (2.24)

νmax = E−m (2.25)

ymax = 1− m
E

(2.26)

Q2
min = 2Em (2.27)

xmin =
m

M
(
1− m

E

) (2.28)

Wmax

M
=

√
1 +

2E
M

(
1− m

E
− m

M

)
(2.29)

2.1.3 Coordinate Systems

For inclusive scattering experiments, there are two coordinate systems useful for

describing the kinematics, see right half of Fig. (2.1). The zxy-system is defined

with respect to the incident electron momentum ~p where ẑ = p̂. The ltn-system

(longitudinal, transverse, normal) is defined with respect to the momentum trans-

fer vector ~q where q̂ = l̂. The incident & scattered electron momenta and conse-

quently the q-vector all lie in the scattering plane which is defined by zx or equiv-

alently lt. The 2̂ (= ŷ = n̂) direction is normal to this plane and, by choice, points

up. Applying the conservation of momentum gives:

~p = Eẑ = E
(

l̂ cos(θq) + t̂ sin(θq)
)

(2.30)

~p ′ = E′ (ẑ cos(θ) + x̂ sin(θ)) = E′
(

l̂ cos(θ+ θq) + t̂ sin(θ+ θq)
)

(2.31)

~q = ~p− ~p ′ =
(

E− E′ cos(θ)
)

ẑ− E′ sin(θ)x̂ (2.32)
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where the zxy unit vectors are (θ 6= 0):

ẑ = p̂ = l̂ cos(θq) + t̂ sin(θq) (2.33)

x̂ =
p̂′− p̂ cos(θ)

sin(θ)
= t̂ cos(θq)− l̂ sin(θq) (2.34)

ŷ =
p̂× p̂′

sin(θ)
= n̂ (2.35)

the ltn units vectors are:

l̂ = q̂ = ẑ cos(θq)− x̂ sin(θq) (2.36)

t̂ = n̂× l̂ = x̂ cos(θq) + ẑ sin(θq) (2.37)

n̂ = ŷ (2.38)

and finally θq is the angle between ~p & ~q :

cos(θq) =
E− E′ cos(θ)

|~q | (2.39)

sin(θq) =
E′ sin(θ)
|~q | (2.40)

where |~q | =
√

Q2 + ν2.

2.1.4 Measuring Cross Sections

In a typical scattering experiment, one fires a beam of particles at an interaction

region filled with target centers. If the target center density is very dilute, then the

rate at which the detector counts the scattered beam particles Ncount/∆t is given by:

Ncount

∆t
=

Nbeam

∆t
× pint× pdet (2.41)
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where Nbeam/∆t is the average number of incident beam particles per unit time, pint

is the interaction probability, and pdet is the detection probability. The interaction

probability is given by:

pint =
total effective area of target centers
total area of the interaction region

=
ρVintσ

Aint
= ρLintσ (2.42)

where ρ is the number of target centers per unit volume, σ is the effective cross

sectional area of each target center, and Vint, Aint, & Lint are the volume, cross sec-

tional area, & length of the interaction region. The detection probability is given

by:

pdet =
(
detector efficiency

)
× (effective size of the detector) = fdet∆Ω (2.43)

where fdet is the detector efficiency and ∆Ω is the solid angle subtended by the

detector which can be estimated by:

∆Ω =
Adet

4πr2
det

(2.44)

where Adet is the physical area of the detector and rdet is the distance of the detector

from the target. All of the intrinsic properties of the scattering process are isolated

in the differential scattering cross section given by:

dσ
dΩ

=
(Ncount/∆t)/ fdet

(Nbeam/∆t)ρ (Lint∆Ω)
(2.45)
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If the energy of the scattered particle is measured and not constrained kinemati-

cally, then the formula is generalized to include the size of the energy bin ∆E′:

d2σ

dΩdE′
=

(Ncount/∆t)/ fdet

(Nbeam/∆t)ρ (Lint∆Ω) ∆E′
(2.46)

Finally, the relative uncertainty in the cross section due only to counting statistics

(σN =
√

N) is given by 1/
√

Ncount [3].

2.1.5 Asymmetries & Cross Section Differences

We’ll consider cross sections in the Born approximation [4]. Quantum mechan-

ically, this amounts to the assumption that the incoming and outgoing particles

can be described by a plane wave. In the language of quantum field theory, this

is equivalent to the one photon exchange diagram. For electromagnetic processes,

this approximation is valid for Zα� 1, where α ≈ 1/137 is the fine structure con-

stant. In experiments where both the beam and target are polarized, the differential

cross section can be written with both spin-independent & spin-dependent parts.

We’ll only consider the case of a longitudinally polarized beam, Sec. (2.4.2), with a

helicity defined by hb = ŝ · p̂, where the incident electron spin unit vector is given

by ŝ = ±p̂. In this case, the differential cross section can be written as:

σ(hb P̂t) =
(

dσ
dΩ

)
hb P̂t

or
(

d2σ

dΩdE′

)
hb P̂t

= σ̄
(

1 + hb P̂t ·
[↔

A q̂
])

(2.47)

where σ̄ is the unpolarized cross section (spin-independent part), P̂t is the target

polarization unit vector, q̂ is the momentum transfer unit vector, and
↔
A is the asym-
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metry matrix (spin-dependent part) defined with respect to the q-vector (lt axes):

↔
A= (Along) ·

↔
1 +(Atrans) · n̂× Along = ATT Atrans = ALT (2.48)

where
↔
1 is the identity matrix, Along is the longitudinal asymmetry (due to the

transverse polarization of the virtual photon, Sec. (2.5.7)), Atrans is the transverse

asymmetry (due to the interference between the longitudinal and transverse po-

larizations of the virtual photon, Sec. (2.5.7))), n̂ is the unit vector normal to the

scattering plane, and × refers to a cross product. As we’ll see later in both polar-

ized elastic & inelastic scattering, these two asymmetries naturally encode a more

convenient separation of the physics. Experimentally, however, it is usually easier

to measure the two asymmetries A‖ & A⊥ that are formed with respect to the target

orientation relative to the zx axes:

A‖ =
σ
⇒→− σ

⇒←

σ
⇒→+ σ

⇒←
(2.49)

A⊥ =
σ
⇑→− σ

⇑←

σ
⇑→+ σ

⇑←
(2.50)

where → (←) refers to positive (negative) beam helicity hb = +(−) and ⇒ (⇑)

refers to a longitudinally (transversely) polarized target with a polarization unit

vector of P̂t = +ẑ(x̂). These two sets of asymmetries can be related to each other

by a rotation in the scattering plane about the normal unit vector by the angle θq:

 A‖

A⊥

=

 cos(θq) sin(θq)

− sin(θq) cos(θq)


 Along

Atrans

 (2.51)
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Averaging over the beam helicity yields the unpolarized cross section (as expected):

1
2 ∑

hb

σ(hb P̂t) =
σ(+P̂t) + σ(−P̂t)

2
=
σ
⇒→+ σ

⇒←

2
=
σ
⇑→+ σ

⇑←

2
= σ̄ (2.52)

The cross section difference between the two beam helicities (∆σ)P̂t
is given by:

(∆σ)P̂t
= σ(+P̂t)− σ(−P̂t) = 2σ̄ P̂t · [

↔
A q̂] = 2∆̄P̂t

(2.53)

(∆σ)‖ = σ
⇒→− σ

⇒← = 2σ̄ ẑ · [
↔
A q̂] = 2σ̄A‖ = 2∆̄‖ (2.54)

(∆σ)⊥ = σ
⇑→− σ

⇑← = 2σ̄x̂ · [
↔
A q̂] = 2σ̄A⊥ = 2∆̄⊥ (2.55)

where ∆̄P̂t
is the mean cross section difference. For an arbitrary target orientation,

the asymmetry is given by:

A =
σ→− σ←
σ→+ σ←

= P̂t ·
[↔

A q̂
]

=
[
P̂t · ẑ

]
A‖+

[
P̂t · x̂

]
A⊥ (2.56)

=
[
P̂t · q̂

]
Along +

[
P̂t · (n̂× q̂)

]
Atrans (2.57)

Finally, we’ll consider the practical case when the beam & target polarizations are

non-unity (< 1) and when there is some unpolarized background. In this case

the total cross section is an average over the four possible combinations of beam

helicity & target orientation { (hb = +1,+P̂t), (hb = −1,+P̂t), (hb = +1,−P̂t), (hb =

−1,−P̂t)} and the cross section for the unpolarized background σ̄B. The fraction

of target particles is given by f and the fraction of background particles by (1− f ).

Each configuration is weighted by the fraction of the beam particles with± helicity

(1± Pb)/2 and by the fraction of target particles with± orientation (1± Pt)/2 where

Pb & Pt are the beam & target polarizations. This weighted average cross section is
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given by:

σ = f
[

1 + Pb

2

][
1 + Pt

2

]
σ(hb = 1, P̂t) + f

[
1− Pb

2

][
1 + Pt

2

]
σ(hb = −1, P̂t)

+ f
[

1 + Pb

2

][
1− Pt

2

]
σ(hb = 1,−P̂t) + f

[
1− Pb

2

][
1− Pt

2

]
σ(hb = −1,−P̂t)

+(1− f )σ̄B (2.58)

After some algebra, we find that the it can be written as:

σ(Pb, ~Pt) = f σ̄
(

1 + Pb~Pt ·
[↔

A q̂
])

+ (1− f )σ̄B (2.59)

where the Pb is the beam polarization and ~Pt = Pt P̂t is the target polarization vector.

The measured or raw asymmetry Araw that is formed when the beam polarization

is flipped is related to the physics asymmetry A by:

Araw =
σ(+Pb, ~Pt)− σ(−Pb, ~Pt)
σ(+Pb, ~Pt) + σ(−Pb, ~Pt)

= DPbPt A (2.60)

where the dilution factor D is given by:

D =
[

1 +
(

1− f
f

)
σ̄B

σ̄

]−1

(2.61)

where f is the fraction of target particles and σ̄B is the unpolarized cross section

of the background. The absolute uncertainty in the raw asymmetry due only to

counting statistics (σN =
√

N) is given by:

σraw =

√
4N→N←2 + 4N→2N←

N4 =

√
1− A2

raw

N
(2.62)
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where N = N→ + N← is the total number of counts, N
→← = N(1± Araw)/2 is the

total number of counts for ± beam helicity, and Araw = (N→− N←)/(N→+ N←) is

the raw asymmetry. This can be propagated through to the absolute uncertainty in

the physics asymmetry A due only to the counting statistics from Araw:

σA =
1

PbPtD
√

N
(2.63)

where we’ve ignored the higher order effect of A2
raw which is negligible when

Araw � 1. To achieve an absolute precision of σA when the uncertainty is domi-

nated by counting statistics, the minimum total number of counts must be:

Nmin =
1

(PbPtDσA)2 (2.64)

2.1.6 The Scale for Cross Sections: Rutherford Formula

For the nonrelativistic case of elastic scattering of a beam of spinless point particles

with charge Zbeam from a target of heavy (i.e. no recoil) spinless point particles of

charge Ztarget at rest, one can calculate the following differential cross section using

classical mechanics [5]:
dσ
dΩ

=
Z2

beamZ2
targetα

2

16T2
KE sin4( θ

2

) (2.65)

where α is the fine structure constant, TKE is the kinetic energy of the beam parti-

cles, and θ is the scattering angle. This is the famous Rutherford scattering formula

(in modern notation) and, generalized to relativistic beam velocities, it contains the
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basic ingredients for all of the forthcoming scattering formulas:

dσ
dΩ

=

[
α2

4E2β4 sin4( θ
2

)]︸ ︷︷ ︸
scale

×
structure of beam︷ ︸︸ ︷

[Zbeam]2 ×
[
Ztarget

]2︸ ︷︷ ︸
structure of target

(2.66)

where E & β are the relativistic energy & speed of the beam particles. The electro-

magnetic structure of a point particle is given by its global properties. In the case

of a spinless point particle, the only structure is it’s charge Z. Next we’ll consider

the case for a beam with non-zero spin.

2.1.7 Beam with Spin: Mott Formula

The differential cross section for a relativistic beam of Dirac (spin-1/2 point) par-

ticles with charge Zbeam = ±1 elastically scattering from a heavy (i.e. no recoil)

spinless point particle with charge Z was first derived by Mott in 1929 [6]. To

lowest order in α for a beam of particles moving at a speed β, it is given by:

dσ
dΩ

=
[
σR

β4

]
×
[

1− β2 sin2
(
θ

2

)]
× [Z]2 (2.67)

where we’ve defined the scale to be the Rutherford cross section:

(
dσ
dΩ

)
Rutherford

= σR =
α2

4E2 sin4( θ
2

) (2.68)

In high energy electron scattering, β = 1 and, by convention, the first two terms

are collectively known as the Mott cross section. This quantity sets the scale for
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electron scattering experiments:

(
dσ
dΩ

)
Mott

= σM ≡ σR cos2
(
θ

2

)
=

α2

4E2 sin4( θ
2

) cos2
(
θ

2

)
(2.69)

2.1.8 Target with Structure: Form Factors & Charge Distributions

If the heavy spinless target particles have some finite extent, then the Mott formula

is multiplied by a quantity encodes these deviations from point scattering:

dσ
dΩ

=
[(

dσ
dΩ

)
Mott

]
×
∣∣F(Q2)∣∣2 (2.70)

where F
(

Q2
)

is known as the form factor. An early derivation of this formula in the

context of electron scattering from nuclei was given by Rose in 1948 [7]. All we’ve

really done is replaced a constant (Z) with a function (F
(

Q2
)
) which depends on

Q2. The form factor is normalized such that F(0) = Z. Therefore, the form factor

for a point particle is just F
(

Q2
)

= Z.

The physical interpretation of a form factor is straightforward at sufficiently

low energies when Q2 ≈ ~q 2. It is the Fourier transform of the charge distribution

of the target:

F(Q2) =
Z
ρ(~r) ei~q ·~r d3r (2.71)

The gross features of nuclear charge distributions are well described by the spher-

ically symmetric Fermi distribution [8]:

ρ(r) = ρ1(Z,A)
[

1 + exp
(

r− c(A)
z1

)]−1

(2.72)
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where the parameters are given by:

ρ1(Z,A) =

(
0.19/fm3

1 + 2.6/ 3
√

A2

)
· Ze

A
c(A) = (1.07 fm) · 3

√
A z1 = 0.55 fm (2.73)

where ρ1 is the central charge density, c(A) encodes the size of the nucleus, and z1 is

a universal parameter that describes that size of the edge roll-off (skin thickness).

This distribution is essentially flat at the center with an exponentially decaying

edge. It underestimates (overestimates) the charge density at the center of light

(heavy) nuclei. One method to parametrize the detailed shape of nuclear charge

distributions was developed by Sick [9] using a sum of Gaussians (SOG):

ρ(r) =
F(0)

2(γ
√
π)3

n

∑
i=1

Qi

1 + 2R2
i /γ

2

[
exp

(
−(r− Ri)2

γ2

)
+ exp

(
−(r + Ri)2

γ2

)]
(2.74)

where γ is the width of the Gaussians, Ri is the relative position of the i-th Gaus-

sian, Qi the fraction of charged enclosed by the i-th Gaussian such that ∑
n
i=1 Qi = 1.

{Ri,Qi} are obtained by fits to the data. A benefit to this parameterization is that

the form factor can be represented using the same parameters by a simple form in

a model independent way:

F(Q) = F(0) exp
(
−Q2γ2

4

) n

∑
i=1

Qi

1 + 2R2
i /γ

2

[
cos(QRi) +

(
2R2

i

γ2

)
sin(QRi)

QRi

]
(2.75)

where the normalization is given by 4π
R∞

0 r2ρ(r) dr = F(0). A comparison among

the form factors (left) and their corresponding charge distributions (right) for six

different spinless nuclei is depicted in Fig. (2.2). The solid blue line is the SOG

charge distribution and the dashed red line gives the equivalent Fermi charge dis-

tribution.
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Figure 2.2: Form Factors & Nuclear Charge Distributions. Solid blue lines are from
a SOG parameterization [10] and dashed red lines are Fermi distributions [8].
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2.2 Magnetic Moments

2.2.1 Point Particles

Quantum mechanics requires that the magnetic moment vector ~µ of a spin-S par-

ticle be proportional to its spin vector ~S:

~µ = µ

(
~S
S

)
(2.76)

where µ is its magnetic moment. The magnetic moment of a spin-1/2 point particle

is prescribed by the Dirac equation to be [11]:

µDirac =
Ze
2M

(2.77)

where Z & M are the particle’s charge & mass respectively and e is the elementary

unit of charge. The magnetic moments of a Dirac electron and Dirac proton are:

µe = −µB µp = +µN (2.78)

where µB is the Bohr magneton:

µB =
e

2m
=

e~
2m

(SI) =
e~

2mc
(cgs) (2.79)

where m is the mass of the electron and µN is the nuclear magneton:

µN =
e

2Mp
=

e~
2Mp

(SI) =
e~

2Mpc
(cgs) (2.80)
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where Mp is the mass of the proton. In general, nuclear (atomic) magnetic mo-

ments are written as:

µ = gµN(B)S (2.81)

where g is called the g-factor.

The classical magnetic moment for a charged particle with orbital angular mo-

mentum ~L is [12]:

~µ =
(

Ze
2M

)
~L (2.82)

It is for this reason (by analogy) that the intrinsic quantum mechanical magnetic mo-

ment for a particle is also written as:

~µ = g?
(

Ze
2M

)
~S (2.83)

where g? is also called the g-factor. The ? is included to avoid confusion between

the forms of the g-factor, which are related by:

µ = g?
(

Ze
2M

)
S = gµN S (2.84)

g? =
g
Z

(
M
Mp

)
(2.85)

Similar equations can be written for atomic magnetic moments by replacing Mp

with m and µN with µB. Note that for the electron & proton, g = g?, and for the neu-

tron, g? is undefined because an uncharged point particle would not be expected

to have a magnetic moment. The natural choice appears to be the g? convention

since it measures a particle’s magnetic moment in units of its own mass, whereas

g measures a particle’s magnetic moment in units of the proton’s mass. On the
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other hand, a benefit to the g convention is that, unlike g?, g is well-defined for a

neutral particle. As we’ll explore later, these two conventions lead to two different

definitions for the anomalous magnetic moment.

The ratio of the magnetic moment to the spin of a point particle is given strictly

by its charge to mass ratio:

(µ
S

)
point

=
(

Z
M

)
e =

(
Z
M

)
2µNMp ⇒ µpoint =

(
Ze
M

)
S (2.86)

which implies that g? = 2 for all point particles regardless of spin. To be explicit, by

“point” particle, we mean, following Kim & Tsai [13], that it does not: (1) couple

via the strong interaction, (2) have a permanent electric dipole moment, and (3)

have any radiative corrections (it’s a “bare” particle). There is some disagreement

in the literature about what the magnetic moment for such a particle should be.

Using the formalism of Fierz & Pauli [14], Belinfante conjectured [15] that the

magnetic moment for all point particles is given by:

µBelinfante
point =

(
Ze
2M

)
(2.87)

which implies that g? = 1/S. A key ingredient to the argument g? = 1/S is the

“minimal electromagnetic interaction” prescription [16]. In this prescription, one

writes down the free Lagrangian for a field, performs a local gauge transforma-

tion, adds terms that couple the field to the electromagnetic field, and keeps only

the terms necessary to insure gauge invariance. Pauli showed [17] how these

additional terms (now known as Pauli terms) could be added to the Lagrangian

that were gauge invariant, but were not required to insure gauge invariance. T.D.

Lee showed [18] that fields with spins greater than 1/2 that follow the “minimal
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electromagnetic interaction” prescription do not have unique couplings. Because

gauge invariance is not restrictive enough, these “proofs” that g? = 1/S really just

amounted to the choice that g? = 1/S.

An alternative approach to deduce g? for spin> 1/2 point particles is to require

that they have “good” high energy behavior. For example, Weinberg [19] and Kim

& Tsai [13] have both made the argument that a point particle with “good” high

energy behavior will obey the Gerasimov-Drell-Hearn sum rule, Sec. (2.5.6), im-

plying that g? = 2. Pagels goes a step further [20] arguing that the coefficients of

the lowest order terms of the forward Compton amplitude, Sec. (2.5.5), define the

charge & the anomalous magnetic moment of a particle. This directly implies that

g? = 2 regardless of spin. More recently, this conclusion has been reached using

string theory considerations [21], within a general study of the low energy behav-

ior of massive spin-3/2 particles [22], from a calculation of the graviton elastic scat-

tering amplitude [23], and by assuming that helicity (defined in terms of light-cone

variables) is conserved to lowest order in the infinite momentum frame [24].

In the Standard Model, additional ingredients (spontaneously broken gauge

symmetries, renormalizability) add terms to the Lagrangian that do not strictly

follow the “minimal electromagnetic interaction” prescription but do fix g? = 2 for

charged leptons & W± bosons:

µe∓ = ∓ e
2m

µµ∓ = ∓ e
2mµ

µτ∓ = ∓ e
2mτ

µW± = ± e
MW

(2.88)

It is the W± magnetic moment that discriminates between the two possible forms

of g? for point particles and identifies g? = 2. This has been verified experimentally
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for the W± at tree level [1]:

|g?W±| = 2.22+0.20
−0.19 (2.89)

2.2.2 Anomalous Magnetic Moments

The anomalous magnetic moment (amm) is the part of the magnetic moment that

differs from the expected point magnetic moment. In other words, the anomalous

magnetic moment should be called the anomalous part of the magnetic moment.

The amm is usually defined in such a way to indicate an excess of charge:

µ = 2
(

Z
Mp

M
+ κ

)
µNS =

(Z + κ?) e
M

S (2.90)

where the two definitions are a direct result of the two conventions for the g-factor.

By convention it is a unitless quantity and is related to the g-factors by:

κ =
g
2
− Z

Mp

M
= Z

Mp

M

(
g?

2
− 1
)

(2.91)

κ? = Z
(

g?

2
− 1
)

=
g
2

(
M
Mp

)
− Z (2.92)

where the two definitions are related to each other by the ratio M/Mp:

κ

Mp
=
κ?

M
=
µ− µpoint

eS
=

g
2Mp

− Z
M

=
Z
M

(
g?

2
− 1
)

(2.93)

Recently Ji & Li have suggested [25] yet another definition for the amm:

µ =
(
2ZS + κJi

)
e

2M
= 2

(
Z +

κJi

2S

) Mp

M
µNS (2.94)

κJi = 2Sκ? = 2S
(

M
Mp

)
κ =

(
gM
Mp
− 2Z

)
S (2.95)
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This definition is a generalization of the one made by Pagels [20] for a spin-1 par-

ticle with charge of +1. Note that for the proton, all of these definitions become

degenerate:

κp
Ji = κ?p = κp =

gp

2
− 1 = +1.793 (2.96)

and for the neutron, they are all nearly degenerate because Mn ≈ Mp:

κn
Ji = κ?n =

gn

2

(
Mn

Mp

)
= −1.916 ≈ κn =

gn

2
= −1.913 (2.97)

Differences among these definitions truly manifest themselves when applied to

nuclei with Z > 1, M > Mp, and S > 1/2, see Tab. (2.2). For example, consider the

3He nucleus:

κ3
Ji = κ?3 =

g3

2

(
M3

Mp

)
− 2 = −8.368 (2.98)

κ3 =
g3

2
−

2Mp

M3
= −2.796 (2.99)

where M3 is the 3He nuclear mass. For complete nondegeneracy among the defi-

nitions, consider the deuteron:

κd
Ji = gd

(
Md

Mp

)
− 2 = −0.286 (2.100)

κ?d =
gd

2

(
Md

Mp

)
− 1 = −0.143 (2.101)

κd =
gd

2
−

Mp

Md
= −0.072 (2.102)

where Md is the deuteron mass. From an informal survey of the literature, unless

otherwise noted, most authors are referring to κ? when they refer to the anomalous



2.3. ELASTIC SCATTERING 68

magnetic moment. Finally we’ll note that, for a spin-1 particle with charge of +1,

Brodsky & Hiller [26] explicitly define the anomalous magnetic moment to be κ?.

2.3 Elastic Scattering

2.3.1 Target with Structure & Spin: Rosenbluth Formula

The differential cross section for a relativistic beam of Dirac particles elastically

scattering from a target composed of Dirac particle with charge Z and mass M

including the effect of target recoil is

(
dσ
dΩ

)
Dirac

= [σM]×
(

E′

E

)
× Z2

[
1 + 2τ tan2

(
θ

2

)]
(2.103)

where the factor (E′/E) appears when the recoil of the target is so large that the

lab frame is no longer coincident with the center of mass frame and τ = Q2/(4M2)

is a kinematic factor often used in elastic scattering given by Eqn. (2.23). A Dirac

particle acquires an anomalous magnetic moment κ?( 6= 0) through radiative cor-

rections [27]. As mentioned before, it can be accounted for by including a Pauli

term in the Quantum Electrodynamics (QED) Lagrangian [17]. Propagating this

term through gives the following differential cross section for a relativistic beam

of Dirac particles elastically scattering from a Dirac particle with an anomalous

magnetic moment κ?:

(
dσ
dΩ

)
amm

= [σM]×
(

E′

E

)
×
[

Z2 + τ

{
κ?2 + 2 [Z + κ?]2 tan2

(
θ

2

)}]
(2.104)

Anomalous magnetic moments are often attributed to the effects of a cloud of
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virtual particles that surround the bare particle. As the beam particle penetrates

the cloud, it “sees” less of the cloud and more of the bare particle. This picture

implies that there should be a resolution dependence of the anomalous magnetic

moment κ? = κ?
(

Q2
)
. This argument can be generalized to the charge as well.

Making this argument and consequently these replacements Z→ F1
(

Q2
)

and κ?→

F2
(

Q2
)
, Rosenbluth obtained the following differential cross section for elastically

scattering of a beam of Dirac particles from an extended particle [28]:

(
dσ
dΩ

)
Rosenbluth

= [σM]×
(

E′

E

)
×
[

F2
1

(
Q2)+ τ

{
F2

2

(
Q2)+ 2

[
F1
(

Q2)+ F2
(

Q2)]2
tan2

(
θ

2

)}]
(2.105)

where F1
(

Q2
)

and F2
(

Q2
)

are the Dirac and Pauli form factors which are normal-

ized at Q2 = 0 in the following way:

F1(0) = Z (2.106)

F2(0) = κ? (2.107)

In principle, one could also introduce a pair of form factors for the electron as

well. Measurements from electron-positron scattering imply that |Fe
1

(
Q2
)
| = 1 for

Q2 well into the TeV range [1]. In addition, the electron Pauli from factor scales as

m2/Q2 for Q2 � m2 where m is the electron mass [29]. Therefore, in this context,

electrons can reliably be thought of as Dirac particles and the effect of its anoma-

lous magnetic moment is completely negligible.
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An alternative set of form factors is commonly used in the literature [30, 31]:

GE
(

Q2) = F1
(

Q2)− τ F2
(

Q2) (2.108)

GM
(

Q2) = F1
(

Q2)+ F2
(

Q2) (2.109)

These are known as the Sachs form factors with the following normalizations:

GE(0) = F1(0)− (0) · F2(0) = Z (2.110)

GM(0) = F1(0) + F2(0) = Z + κ? (2.111)

The differential cross section in terms of Sachs form factors can be obtained using:

F1
(

Q2) =
GE
(

Q2
)
+ τGM

(
Q2
)

1 + τ
(2.112)

F2
(

Q2) =
GM
(

Q2
)
−GE

(
Q2
)

1 + τ
(2.113)

which gives:

(
dσ
dΩ

)
Sachs

= [σM]×
(

E′

E

)
×
[

G2
E

(
Q2
)
+ τG2

M

(
Q2
)

1 + τ
+ 2τG2

M

(
Q2) tan2

(
θ

2

)]
(2.114)

This cross section can be written in terms of the virtual photon polarization [32]:

(
dσ
dΩ

)
Sachs

= [σM]×
(

E′

E

)
×
(

1
1 + τ

)[
G2

E

(
Q2)+

τ

ε
G2

M

(
Q2)]︸ ︷︷ ︸

reduced cross section

(2.115)

By varying the beam energy & scattering angle in such a way that Q2 (and con-

sequently τ ) is fixed, one can attempt to disentangle G2
E from G2

M by plotting the
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reduced cross section as a function of tan2
(
θ
2

)
, ε, or some other variable that de-

pends on the scattering angle θ at a fixed Q2. This procedure is called Rosenbluth

separation and is the standard method to obtain GE & GM using unpolarized tar-

gets. At high (low) Q2, the unpolarized cross section is, generally speaking, more

sensitive to G2
M (G2

E). In either case, the sign of either form factor cannot be deter-

mined from Rosenbluth separation alone.

Finally, in general, a spin-S particle will have 2S + 1 form factors [33]. For

example, the elastic cross section for an unpolarized spin-1 particle is given by [34]:

dσ
dΩ

= [σM]×
(

E′

E

)
×
[

A
(

Q2)+ B
(

Q2) tan2
(
θ

2

)]
(2.116)

where the elastic response (or structure) functions A & B are combinations of the

charge GC, quadrupole GQ, and magnetic GM form factors as:

A
(

Q2) = G2
C

(
Q2)+

8
9
τ 2G2

Q

(
Q2)+

2
3
τG2

M

(
Q2) (2.117)

B
(

Q2) =
4
3
τ (1 + τ )G2

M

(
Q2) (2.118)

The form factors have the normalizations GC(0) = Z, GQ(0) = Q?, and GM = Z +κ?

where Q? is the quadrupole moment in units of e/M2.

2.3.2 Nucleons Inside Nuclear Targets: Quasi-elastic Scattering

In quasi-elastic scattering, the incident lepton scatters off of one of the nucleons

inside the nucleus. The struck nucleon remains intact and is ejected out of the

nucleus leaving behind a “spectator” nucleus. In the impulse approximation, the

cross section for this process can be written as an incoherent sum of the nucleon
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elastic cross sections:

(
d2σ

dΩdE′

)
IA

= ZσQE
p + (A− Z)σQE

n (2.119)

where Z is the number of protons (charge of the nucleus) and (A−Z) is the number

of neutrons (atomic weight). Due to the motion of the nucleons inside the nucleus

and binding effects, the elastic cross sections are smeared out and broadened. This

is encoded by an integral over the momentum of the struck nucleon inside the

nucleus before the scattering~k and over the total change in energy of the spectator

nucleus νs [35]:

σQE = σM

Z Z G2
E

(
Q′2
)

+ τ ′G2
M

(
Q′2
)

1 + τ ′
K2 + 2τ ′G2

M

(
Q′2
)

tan2
(
θ

2

)
K1


×S
(
νs,~k

)
× δ

(
ν ′− Q′2

2M

)
dνs d3k (2.120)

where K1 & K2 are kinematic factors, ν ′ = ν − νs is the energy change of the struck

nucleon, q′ = (ν ′, ~q ) is the momentum transferred to the struck nucleon, Q′2 =−q′2,

τ ′ = Q′2/(4M2), M is the mass of the struck nucleon, and the motion & binding

effects are given by the nucleon spectral function S(νs,~k). If the struck nucleon

is detected in coincidence with the scattered electron, then the cross section also

includes effects due to final state interactions:

σQE+FSI =
Z
σQE(k, k′′)F(k′′, k′) d4k′′ (2.121)

where k′′(k) is the momentum of the struck nucleon immediately after (before) be-

ing struck by the electron, k′ is the final momentum of the struck nucleon after
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leaving the nucleus, and F(k′′, k′) encodes of the information due to final state in-

teractions.

2.3.3 Polarization Observables

Following Donnelly & Raskin [36] (N.B. the sign convention for Q2), the polarized

part of the elastic scattering cross section for a spin-1/2 can be written as:

∆̄ = −hbσ̄
[
2τ (1 + τ )G2

MvT′ cos(θ?)− 2(1 + τ )
√

2τ (1 + τ )GEGMvTL′ sin(θ?) cos(φ?)
]

(2.122)

where the unpolarized cross section σ̄ is given by
(

dσ
dΩ

)
Sachs and the kinematic &

geometric factors are given by:

vT′ = tan
(
θ

2

)√
Q2

|~q |2 + tan2

(
θ

2

)
(2.123)

vTL′ =
−Q2

|~q |2
√

2
tan
(
θ

2

)
(2.124)

cos(θ?) = P̂t · q̂ (2.125)

sin(θ?) cos(φ?) = P̂t · (n̂× q̂) (2.126)

After some considerable algebra, for elastic scattering only, we can derive the fol-

lowing useful equalities:

− vT′

vTL′

√
2τ

1 + τ
=

√
τ

(
1 + (1 + τ ) tan2

(
θ

2

))
=

√
τ (1 + ε)

2ε
=

(E + E′) tan
(
θ
2

)
2M

(2.127)
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Putting this altogether allows us to identify the polarized part in terms of the com-

ponents of the asymmetry matrix defined relative to the q-vector:

Along = A0

(
(E + E′) tan

(
θ
2

)
2M

)
(2.128)

Atrans = A0

(
GE

GM

)
(2.129)

where the “scale asymmetry” A0 is given by:

A0 = −
[

2 tan
(
θ
2

)√
τ (1 + τ )(

GE/GM
)2 + τ/ε

]
(2.130)

We’ll note that the transverse asymmetry is sensitive to the ratio and relative sign

of the elastic form factors [37].

Assuming (GE/GM)2 is small enough to ignore in the denominator, then Atrans

is essentially proportional to GE/GM. To take advantage of this, we should orient,

in the scattering plane, the target polarization vector perpendicular to the q-vector

(P̂t · (n̂× q̂) ≈ 1 & P̂t · q̂ ≈ 0) such that the physics asymmetry A would be more

sensitive to Atrans than Along:

GE

GM
≈ −A

[ √
τ

2ε tan
(
θ
2

)√
1 + τ [P̂t · (n̂× q̂)]

]
−
[

(P̂t · q̂)(E + E′) tan
(
θ
2

)
[P̂t · (n̂× q̂)]2M

]
(2.131)

where we’ve ignored the higher order effects of (GE/GM)2 in the denominator of

A0. If it cannot be neglected, then we must solve [38] the following quadratic

equation: (
GE

GM

)2

−B
(

GE

GM

)
+ C = 0 (2.132)
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where the factors B & C are given by:

B =
−2 tan

(
θ
2

)√
τ (1 + τ )[P̂t · (n̂× q̂)]

A
C =

τ

ε
−B

[
(P̂t · q̂)(E + E′) tan

(
θ
2

)
[P̂t · (n̂× q̂)]2M

]
(2.133)

and the two solutions are given by:

GE

GM
=

2C /B

1 +
√

1− 4C
B2

or
B
2

[
1 +

√
1− 4C

B2

]
(2.134)

Care must be taken to choose the correct solution given the kinematics and we’ll

note that when the ratio is small GE/GM� 1, the first solution is the correct one.

Furthermore, if Along and Atrans can be measured independently & simultane-

ously, then their ratio directly gives GE/GM:

GE

GM
=

Atrans

Along

(
(E + E′) tan

(
θ
2

)
2M

)
(2.135)

In practice this could be done by defining two scattering planes (with their own

corresponding q-vectors) by an appropriate placement of detectors. In one, the tar-

get polarization vector would be parallel to the q-vector (P̂t · (n̂× q̂)≈ 0 & P̂t · q̂≈ 1)

making the physics asymmetry most sensitive to A ≈ Along. In the other, the tar-

get polarization vector would be perpendicular to the q′-vector (P̂t · (n̂′ × q̂′) ≈ 1

& P̂t · q̂′ ≈ 0) making the physics asymmetry most sensitive to A′ ≈ Atrans. Al-

though technically difficult, it has the advantage that the target polarization, beam

polarization, and dilution factor all essentially cancel in the ratio (Atrans/Along) ≈

(A′/A) = (A′raw/Araw). Assuming the average beam & target polarizations are sta-

ble, this type of measurement can also be performed by switching the target spin
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angle between parallel & perpendicular to the q-vector to measure Along & Atrans

separately.

One can alternatively measure the polarization transferred to an unpolarized

target from a polarized beam [37, 39]. The polarization of the recoiling particle is

related to the asymmetries by “turn-around” relations given by [36]:

Plong = +Along Ptrans = −Atrans (2.136)

where Plong(trans) is the longitudinal (transverse) polarization with respect to mo-

mentum transfer axis. If the target particle is initially at rest, then this axis corre-

sponds with the recoiling particle’s direction of propagation. The ratio GE/GM can

expressed as the transferred polarization ratio, which does not require any knowl-

edge of the beam polarization:

GE

GM
= −Ptrans

Plong

(
(E + E′) tan

(
θ
2

)
2M

)
(2.137)

2.3.4 Nucleon Form Factors

There are two complications that make the interpretation of nucleon form factors

difficult. First, unlike the spinless case, there are two form factors for spin-1/2

particles. One way to approach the solution to this problem is to expand the form

factors for low Q2 (assuming a spherically symmetric distribution):

F
(

Q2) = F(0)− 2πQ2

3

Z
r4ρ(r) dr + · · · (2.138)
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where the term linear in Q2 is proportional to the root mean square (rms) radius of

the distribution described by ρ(r). Yennie, Lévy, & Ravenhall showed [40] that the

rms charge radius was related to GE in the following way:

〈
r2〉 =

Z
r2ρ(r) d3r = 4π

Z
r4ρ(r) dr = −6

[
dF1

dQ2

∣∣∣∣
Q2=0
− F2(0)

2M

]
= −6

dGE

dQ2

∣∣∣∣
Q2=0
(2.139)

This reason, among others, lead to the interpretation of the GE & GM as the Fourier

transform of the charge and magnetization distributions [31, 41–43]. Note that at

sufficiently low Q2, specifically τ � 1→ Q2� 4M2, the choice between F1 and GE

as the charge distribution is less critical.

Second, relativistic effects due to the recoil of the target are significant. For each

Q2, there is a frame of reference, called the Breit frame, where the target recoil is

zero, ν = 0. The Breit frame (also called the “brick wall” frame) travels along the

direction of the momentum transfer (q-vector) in the scattering plane at a veloc-

ity given by ν/|~q |, which is
√
τ/(1 + τ ) for elastic scattering. It is in this frame

that the form factor is interpreted as the Fourier transform of a distribution. To

calculate the static charge and magnetization distributions of nucleons in the lab

frame, one must first boost both GE & GM from the Breit frame into the lab frame.

At sufficiently low Q2 (τ � 1), this is straightforward since the Breit frame travels

at nonrelativistic velocities with respect to the lab frame. At higher Q2, the Breit

frame travels at relativistic velocities. It is difficult, in a model independent way,

to disentangle relativistic “boost” effects from structure information. Regardless

of their connection to static lab-frame distributions, nucleon form factors provide

an important link between meson cloud effects at low Q2 [44] and coherent hard

scattering from three Dirac constituents at high Q2 [45].
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The first measurements of proton form factors [46,47] by Hofstadter & McAllis-

ter in the mid-1950’s indicated that they were not constant and decreased with Q2.

Based on subsequent measurements [48] up to Q2 < 0.55 GeV2, the proton Dirac &

Pauli proton factors were well parametrized by the “dipole” form factor:

Fp
1 = Fp

2 = GD(Q2) =
[

1 +
Q2

Q2
D

]−2

(2.140)

where Q2
D = 0.73 GeV2. This form factor can represent the Fourier transform of an

exponentially decaying distribution with an R.M.S. radius given of 0.80 fm. An-

other early parameterization [49], motivated by the possibility of the breakdown of

electrodynamics at short distances or alternatively arguments based on dispersion

relations, has the form:

F(Q2) =
N

∑
i=0

ai

1 + biQ2 (2.141)

where ai, bi, and N are fit to the data. In the language of vector meson dominance,

Sec. (2.3.5), these parameters can related to the number of vector mesons included

in the sum (N), their masses (1/
√

bi), and the product of the vector meson-photon

coupling constant & the vector meson-nucleon-nucleon coupling constant (ai). In

the early 60’s, both Fp
1 & Fp

2 [50] and Gp
E & Gp

M [31] were parametrized by this form.

F1 & F2 were separated by essentially solving two simultaneous quadratic equa-

tions using the method of “intersecting ellipses” [51]. Data taken up to Q2 = 1 GeV2

and analyzed using this method indicated that, above Q2≈ 0.5 GeV2, (Fp
2 /κ

?
p)/Fp

1 <

1 as Q2 increased. Gp
E & Gp

M were obtained by Rosenbluth separation and data

taken up to Q2 = 1.8 GeV2 indicated that Gp
M(Q2) ≈ Gp

M(0)Gp
E(Q2). Measurements

between the mid 60’s and early 80’s for the proton form factors (using Rosenbluth

separation) extended to Q2 < 4 GeV2. Their coarse structure was described (within
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10%) by the dipole form factor [52]:

Gp
E(Q2)

Gp
E(0)

=
Gp

M(Q2)
Gp

M(0)
= GD(Q2) (2.142)

where Q2
D = 0.71 GeV2, Gp

E(0) = 1, and Gp
M(0) = 1 + κ?p. By the mid-90’s, measure-

ments of Gp
E & Gp

M were extended up to Q2 = 7 GeV2 & Q2 = 30 GeV2 respectively.

The world data at the time was parametrized by an empirical inverse polynomial

form [56]:

F(Q2)/F(0) =
1

1 + ∑
N
i=1 aiQi

(2.143)

where ai and N are determined by fits to the data. The upper (lower) half of

Fig. (2.3) depicts a representative sample of parameterizations for Gp
M before (af-

ter) 1995. The experimental picture at that time can be summarized as Gp
E/Gp

M ≈

constant. Therefore it was quite striking when the first high Q2 measurements [62]

obtained from the polarization transfer technique indicated that Gp
E/Gp

M decreased

linearly with increasing Q2. The difference in these two techniques are thought

[66, 67] to be due to, at least partly, previously unaccounted for radiative correc-

tions due to two photon exchange at the nucleon vertex [68, 69]. Fig. (2.4) shows a

comparison of the polarization transfer data with more recent Rosenbluth separa-

tion experiments.

Neutron form factor data are much more limited in both quantity & quality due

to a lack of a free neutron target. For this reason, the traditional approach (until the

mid-90’s) was to extract neutron form factors from both elastic and quasi-elastic

scattering from an unpolarized deuterium target. The first quasi-elastic experi-

ments were carried out by Yearian & Hofstadter [70] in the late-50’s and resulted

in the conclusion that Fn
2 ≈ Fp within large uncertainties assuming that Fn

1 = 0.



2.3. ELASTIC SCATTERING 80

0 1 2 3 4 5 6

0.85

0.90

0.95

1.00

1.05

1.10

1.15

0 1 2 3 4 5 6

)2 (GeV2Q

DG
p

μ

p
MG

Hofstadter61

Hand63

Hughes65

Hohler76

Simon80

Bosted95

0 1 2 3 4 5 6

0.85

0.90

0.95

1.00

1.05

1.10

1.15

0 1 2 3 4 5 6

)2 (GeV2Q

DG
p

μ

p
MG

ABGG09
AMT07

Kelly04

FW03

Brash02

Bosted95

Figure 2.3: Parameterizations of Gp
M before & after 1995. The parameterizations are

from Hofstadter61 [50], Hand63 [31], Hughes65 [53], Simon80 [54], Hohler76 [55],
Bosted95 [56], Brash02 [57], FW03 [58], Kelly04 [59], AMT07 [60], & ABGG09 [61].
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Figure 2.4: Comparison of µpGp
E/Gp

M from the Polarization Transfer Method with
Rosenbluth Separation. Polarization transfer data (left) are from Jones00 [62] and
Gayou02 [63]. Rosenbluth separation data (right) from Christy04 [64] and Qat-
tan05 [65].

This technique measures (σQE
p + σQE

n ) which requires corrections due to the con-

tribution from the proton (Gp
E & Gp

M) and nucleon motion & binding effects (nu-

cleon spectral functions S(νs,~k)). Sensitivity to nucleon motion & binding effects

can be reduced by also measuring a struck proton in coincidence with the scat-

tered electron. In this method, the neutron form factors are extracted from the ra-

tio (σQE
p + σQE

n )/σQE+FSI
p , which is mainly sensitive to final state interactions of the

struck proton exiting the nucleus. Sensitivity to FSI can be reduced by also mea-

suring a struck neutron in coincidence to the scattered electron. In this method, the

neutron form factors are extracted from the ratio σQE+FSI
n /σQE+FSI

p , which is mainly

sensitive to the neutron detection efficiency and differences between the proton &

neutron FSI. All of these methods have been used to extract Gn
M and it is isolated

from Gn
E by assuming that Gn

E ≈ 0, by choosing a large scattering angle to enhance

sensitivity to “magnetic” scattering, and/or by Rosenbluth separation. Within
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±10% up to Q2 = 6 GeV2, the coarse structure of Gn
M is also given by the dipole

form factor as Gn
M

(
Q2
)

= Gn
M(0)GD

(
Q2
)

where Gn
M(0) = κ?n. The upper (lower) half

of Fig. (2.5) depicts a representative sample of parameterizations for Gp
M before

(after) 1995.

Of the four electromagnetic nucleon form factors, Gn
E is the most difficult to ex-

tract cleanly. The most precise constraint to Gn
E comes from the neutron-electron

scattering length bne. The first non-zero observation of this quantity (or equiva-

lently a spin-& velocity-independent neutron-electron interaction) [71] came from

neutron scattering from Pb by Havens, Rabi &, Rainwater [72] and from Xe by

Fermi & Marshall [73] in 1947. Foldy argued [74] that this interaction could, at

least partly, be attributed to the neutron’s anomalous magnetic moment. Subse-

quent, higher precision experiments demonstrated [75] that almost all of the inter-

action was accounted for by the anomalous magnetic moment. In the language of

elastic electron scattering, this process is measuring the slope of Gn
E at Q2 = 0:

V0 =
(

3m
2αr2

e Mn

)
bne =

(
α

2r3
e

)〈
r2

n

〉
= −

(
3α
r3

e

)
dGn

E

dQ2

∣∣∣∣
Q2=0

(2.144)

where the early experiments expressed their results as the equivalent potential V0

on the surface of sphere with the classical electron radius re = α/m. A world aver-

age of the results from modern versions of this type of neutron scattering give [76]:

〈
r2

n

〉
=− (0.1161± 0.0022) fm2 ⇒ dGn

E

dQ2

∣∣∣∣
Q2=0

= (0.4969± 0.0094)/GeV2 (2.145)

The left side of Fig. (2.6) shows a comparison between this slope and low Q2 elec-

tron scattering data & parameterizations.

For non-zero Q2, until the mid-90’s, Gn
E was extracted from both elastic and
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Figure 2.5: Parameterizations of Gn
M before & after 1995. The parameterizations are

the same as in Fig. (2.5).
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Figure 2.6: Left: Gn
E for Q2 ≤ 0.05 GeV2. Data from Drickey62 [77], Hughes65 [53],

Grosstete66 [78], Bulmiller70 [79], Simon81 [80], Platchkov90 [81], & SS2001 [82].
Right: Parameterizations of Gn

E with Different NN-potentials. Fits to data from
Galster71 (G71) [83] using the Feshbach-Lomon (F-L) [84] and Hamada-Johnston
(H-J) [85] potentials. Fits to data from Platchkov90 (P90) [81] using the Nijmegen
[86], Argonne-14 (AV14) [87] (with b = 21.2), Paris [88], and Reid Soft Core (RSC)
[89] potentials.

quasi-elastic scattering from unpolarized deuterium targets. Extracting Gn
E from

quasi-elastic scattering [53, 90–95] is analogous to extracting Gn
M. The most precise

determinations of Gn
E, however, came from elastic scattering [54,77–79,81,83,96]. At

sufficiently low Q2� 4M2
d, the Ad

(
Q2
)

deuteron elastic structure function is most

sensitive to the charge & quadrupole form factors Gd
C

(
Q2
)

& Gd
Q

(
Q2
)
. These two

form factors can be written in terms of Gp
E & Gn

E using knowledge of the ground

state wave function of the deuteron. This must be calculated from a theoretical

model for the nucleon-nucleon (NN) potential. The extraction of Gn
E is especially

sensitive to the choice of the NN-potential, see right side of Fig. (2.6). In 1971,

Galster et al. [83] made an early use of this technique and parametrized Gn
E up to

Q2 ≈ 1 GeV2 as:

Gn
E

(
Q2) = −Gn

M(0)GD
(

Q2) AGτ

1 + BGτ
(2.146)
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where τ = Q2/(4M2
n) and a best fit to the world data at the time gave AG = 1.0

& BG = 5.6. In 1990, Platchkov et al. [81] repeated this analysis with their higher

precision data (0.04 GeV2 ≤ Q2 ≤ 0.70 GeV2) and their best fit (RSC) constrained by

dGn
E/dQ2 is AG = 0.944 & BG = 16.6. In 2001, Schiavilla & Sick extracted Gn

E from

a global analysis of the world data for Gd
Q, which they argue is less sensitive to

the choice of NN-potential. Fig (2.7) shows a representative selection of the world

data for Gn
E extracted from scattering from unpolarized deuterium targets before

(upper) & after (lower) 1990.

Since the early-90’s, the neutron form factors have been extracted from quasi-

elastic polarized electron scattering. These experiments can be broken down into

four categories based on the type of target: Metastability Exchange Optical Pump-

ing (MEOP) 3He targets [97–101], Spin Exchange Optical Pumping (SEOP) 3He tar-

gets [102] & E02013, polarization transfer to unpolarized deuterium targets [103–

108], & polarized deuterium targets [109–112]. The first experiments [97, 102] of

this type had large systematic uncertainties due to corrections for the proton con-

tribution [113]. All subsequent experiments measured the struck neutron in co-

incidence with the scattered electron. Corrections due to final state interactions

(FSI) and meson exchange currents (MEC) for deuterium targets are made using

the prescription of Arenhövel et al. (see [114] and references therein). The analysis

of Golak et al. [115] has been used [99–101] to treat FSI & MEC for 3He targets.

Fig. (2.9) shows a comparison between extractions of Gn
E using spin-independent

& spin-dependent observables.
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Figure 2.7: Gn
E from Elastic & Quasi-elastic Scattering from Unpolarized Deuterium

Targets Before (upper) & After (lower) 1990. Data are from 1962-65 [53, 77, 90, 91],
1966-70 [78, 79, 92, 96], 1971-81 [80, 83, 93, 94], & after 1990 [81, 82, 95].
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M from the Polarization Observables.

2.3.5 Perspectives From Theory

From the perspective of theory, the “physics” of a scattering cross section (σ) is

provided by the modulus square of the scattering amplitude (|M |2). Form factors

(F) always appear quadratically in cross section formulas, which implies that they

are linear in the scattering amplitudes (M ). This scattering amplitude is described

by a product of the matrix elements for the electron and the nucleon. The electron

matrix element is determined from QED, whereas the nucleon matrix element is

unknown. Most (but not all) theoretical approaches are essentially an exercise in

constructing & evaluating the nucleon matrix element:

σ ∼ |M 2|

σ ∼ F2

 ⇒ F ∼M ∼ 〈N′|O |N〉 (2.147)
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Figure 2.9: Comparison of Gn
E from Unpolarized (upper) & Polarized (Lower) Scat-

tering Experiments Since 1990.
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Finally, from the point of view of theory, it is usually more convenient to describe

proton and neutron form factors by their isospin components:

Fp = FS + FV (2.148)

Fn = FS− FV (2.149)

FS =
Fp + Fn

2
(2.150)

FV =
Fp− Fn

2
(2.151)

where FS & FV are the isoscalar & isovector nucleon form factors. This isospin

decomposition is valid for both conventions and ignores the small mass difference

between protons & neutrons.

Dispersion Relations

Dispersion relations are mathematical relationships that are derived from the phys-

ical requirement of causality, see Sec.(2.5.4). They provide a general constraint to

the form of the response of an object, represented by f , by relating the real part of

f to its imaginary part:

< f
(

Q2) =
1
π

Z ∞
Q2

0

= f
(

Q′2
)

Q′2 + Q2
dQ′2 (2.152)

In the context of elastic electron-nucleon scattering, f can be thought of as a complex-

valued “generalized” form factor with a real part that is given by the usual nucleon

form factors. The imaginary part of f represents the closely related process of

nucleon-antinucleon (NN) pair production from e± collisions [116]. From the per-

spective of quantum field theory, the Feynman diagrams for these two processes
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Figure 2.10: Elastic Scattering & e± Collisions. The elastic scattering (e± collision)
diagram involves the exchange of a “space-like” (“time-like”) virtual photon with
Q > 0 (Q2 < 0).

are nearly identical and differ by a 90◦ “rotation in spacetime,” see Fig (2.10).

Vector Meson Dominance

The traditional modeling of form factors amounts to determining the imaginary

part of f usually with hadronic degrees of freedom. After the e± annihilation,

the virtual photon can fluctuate into an intermediate particle with mass m, which

is suggested by the propagator-like form of the denominator with Q′ = m. The

dispersion relation can then be interpreted as a spectral decomposition [117, 118]

and rewritten as:

FS,V
1,2 =

1
π

Z ∞
(mS,V

0 )2

wS,V
1,2 (m2)

m2 + Q2 dm2 (2.153)

where wS,V
1,2 = = f S,V

1.2 is known as the spectral weight function. The integration

threshold mS(V)
0 = 2(3)mπ is given by isospin symmetry considerations. The spec-
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tral weights give the naive nucleon distributions by [119]:

ρ(r) =
1

4π2

Z ∞
m2

0

e−mr

r
w(m2) dm2 (2.154)

An early model called Vector Meson Dominance (VMD) [120, 121] argued that

these intermediate particles are vector mesons, which have same same quantum

numbers as a photon (zero charge, spin-1, odd parity). In this picture, a cloud of

virtual vector mesons with mass m surround the “intrinsic” nucleon with a range

1/m. The spectral function w is then a product of the photon-vector meson (gγV)

coupling constant and the vector meson-NN (FVNN) “form factor.” The lightest

vector mesons, ρ& ω, are expected to have the dominant weights. One can account

for the possibility of strangeness in the nucleon by including a term for the φ-

meson. Early motivations for VMD included the prediction of the existence of the

ω-meson by Y. Nambu [122] and the strong resonances due to vector mesons in the

e± collisional cross section [123]. The simplest versions of this model had limited

success in describing the nucleon form factors [124, 125].

Modifications to the basic VMD model which improve the fit to experimental

data include an additional term (related to the pion form factor Fπ) for two pion

exchange for the isovector form factors [126–130], an additional term for two kaon

exchange for the isoscalar form factors [131, 132], an “intrinsic” form factor that

acts as the core of the nucleon (that is surrounded by a cloud of vector mesons),

and/or the requirement that the high Q2 scaling behavior is constrained by pQCD,

see Sec. (2.3.5). Fig (2.11) depicts Feynman diagrams that represent these processes.

The model of Iachello et al. [133] includes an intrinsic form factor (g) and has

been updated to include pQCD scaling [134]. The model of Hohler et al. [55] was
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Figure 2.11: Feynman Diagrams Describing Different Approaches to Elastic Scat-
tering. (UL) Intrinsic Form Factor, (UR) Two Pion Exchange, (LL) Vector Meson
Exchange, (LR) pQCD.

among the first to include two pion exchange. It has been updated to include

pQCD scaling [135] and new calculations for the contributions due to two pion &

two kaon exchange [136]. Although it has its roots in VMD, this updated model is

more properly described as a “dispersion relation analysis.” The model of Gari &

Krümpelmann [137–140] was among the first to include pQCD scaling. It has been

extended by E.L. Lomon to include additional heavier vector mesons and two pion

exchange [141–143].
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Perturbative QCD

Partonic (quark & gluon) degrees of freedom can provide constraints to the asymp-

totic short distance scale behavior of the form factors using perturbative QCD

(pQCD). Based on dimensional scaling rules, Brodsky & Farrar argued [144] that

at very high Q2 the form factors F1 & F2 should scale as 1/Q4 & 1/Q6 respectively.

Lepage & Brodsky came to the same conclusion [145, 146] by factorizing the scat-

tering process into two parts [147]: “soft” and “hard.” The soft parts represent the

probabilities of finding the nucleon (hadron) in a three (n) quark state before and

after scattering. The hard part represents the virtual photon and gluon exchanges

among the three (n) quarks. The simplest (lowest order) way for this to happen

is for an exchange of two (n− 1) gluons. Each gluon exchange implies one 1/Q2

factor from the gluon propagator, which gives 1/Q4 for F1. If one assumes that

the nucleon (hadron) helicity is conserved during the scattering process to low-

est order, then one additional gluon exchange is required to mediate a helicity flip.

This implies a 1/Q6 scaling for F2. Generalizing the dimensional scaling rules [148]

and pQCD factorization analysis [149] to include quark orbital angular momentum

(OAM) have reconfirmed these arguments and give:

lim
Q2→∞

F2

F1
∝
[
log(Q2/Λ2)

]2

Q2 (2.155)

where Λ is a “soft scale related to the size of the nucleon.” Ralston & Jain argue

[150], that to properly include the effect of quark OAM, the transverse momenta

of the quarks must be included in the calculation. Consequently they find that F2

scales as 1/Q5 and F2/F1 scales as 1/Q.
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Figure 2.12: F2/F1 Ratios from the Polarization Observables.
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Effective Chiral Field Theories

An alternative approach using hadronic degrees of freedom is to write down an

“effective” field theory that approximates the low energy behavior of the “full”

theory. In the context of QCD (the “full” theory), the concept of chiral symmetry is

used to deduce the degrees of freedom for the effective theory [151]. The family of

particles that include pions (light pseudoscalar mesons) are the required degrees

of freedom. One way to implement this idea is called Chiral Perturbation Theory,

which will be described more fully in Sec. (2.5.10). See [32] for a recent review of

nucleon form factors calculated within this framework.

A soliton is a mathematical object that has a spatial distribution that is localized

and stable in time [152–154]. The form factor of such an object can be calculated

from knowledge of its spatial distribution. To obtain nucleon form factors using

a soliton model, the soliton must represent a nucleon. This is usually done by

designing a field theory with a Lagrangian that satisfies two criteria. First, it has

terms that mimic the chiral symmetry properties of QCD. (Specifically, some form

of the nonlinear sigma model [27] is included to spontaneously break the chiral

symmetry that is also built into the Lagrangian). Second, it includes a type of non-

linear interaction that necessarily results in a soliton solution. Soliton models differ

on how these two criteria are satisfied. In the limit where the number of colors is

infinite (Nc� 1, for example [155]), the effective field theories that represent these

models have a deep relationship with QCD [156].

Chiral Soliton Models start with a Lagrangian (originally proposed by Skyrme

[157]) with only pion degrees of freedom. The solutions are “topological” chiral

solitons that are named Skyrmions [158]. One of the invariant parameters that

describes the topology of a Skyrmion (the winding number) can be related to the
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baryon number B. When B = 1, the Skyrmion can be thought of as a baryon and

more specifically a nucleon. Its spatial (chiral) profile (specified as a part of the

solution to the Lagrangian) is related to its baryon density and moment of inertia

density. These densities represent the charge and magnetization densities of the

nucleon which can be immediately inverted to give the nucleon form factors [159].

This form of the model is only useful at very low Q2. Holzwarth has extended this

model [160,161] to higher Q2 by including the effects of the lightest vectors mesons

(ρ & ω) and boosting the densities [162] from the Skyrmion rest frame to the Breit

frame.

Chiral Quark Soliton Models use a Lagrangian (the Nambu & Jona-Lasinio

Model [163, 164]) which involve both pion and quark degrees of freedom [165].

In this case, the solutions are “non-topological” solitons which represent a local-

ized three valence quark bound state [166]. Consequently, the baryon number of

this object is due to the valence quarks. The pion degrees of freedom result in sea

quarks that surround the valence quarks which are bound by their individual in-

teraction with the sea. Remarkably this model manages to approximate the chiral

symmetry properties of QCD and produce a nucleon-like object that has a spatial

extent, three quarks, and a pion cloud. In these models, form factors are obtained

by calculating the matrix element for the nucleon electromagnetic current (which

will be described shortly). See [32,167] for a recent review of Chiral Soliton Models

& Chiral Quark Soliton Models as they relate to form factors.

Relativistic Constituent Quark Models

Quark degrees of freedom can also be used to represent the nucleon in the form of

the nucleon wavefunction |N, h, P〉. This wavefunction can then be used to calcu-
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late the matrix element of nucleon electromagnetic current which is related to the

form factors by [2]:

〈P′, S′| Jµ |P, S〉 = ū(P′, S′)
[
γµF1(Q2) + iσµνqv

(
F2(Q2)

2M

)]
u(P, S) (2.156)

where S(S′) & P(P′) are the initial (final) nucleon spin vector and momentum, ū

& u are Dirac spinors, M is the mass of the nucleon, and γµ & σµν are the given

by the Dirac matrices. The wavefunction can usually be decomposed into helicity

non-flip (h′ = Ŝ′ · P̂′ = h = Ŝ · P̂) and flip (h′ = −h) parts that directly correspond

to the Dirac F1 and Pauli F2 form factors respectively.

In the constituent quark model, the nucleon wavefunction is represented by an

effective three-quark wavefunction that is written as [168]:

|P, S〉 = ξspatialζflavorχspinφcolor (2.157)

where the total wavefunction must be antisymmetric under an interchange of any

two quarks. This is accomplished by an antisymmetric color wavefunction φcolor

and a totally symmetric spatial-flavor-spin product wavefunction ξspatialζflavorχspin.

For nucleons (and more generally spin-1/2 baryons), the spin-flavor product and

spatial wavefunctions are each separately symmetric. The spatial wavefunction

is usually represented in the momentum basis and its exact form is either chosen

to have some simple functional form or deduced from a chosen intra-nucleon po-

tential that confines the quarks. If the energy scale of the confining potential is

much larger than the constituent quark masses, then the wavefunction must be

constructed within a relativistic framework. Finally, depending on the Lorentz

frame in which the incoming (outgoing) wavefunction is constructed, it must be
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boosted into the appropriate frame that corresponds to the motion of the nucleon

before (after) scattering. Relativistic constituent quark models differ in:

1. the choice of relativistic framework (i.e. instant, point, light-front) [169–171]

2. the functional form of the spatial wavefunction (e.g. “power law” [172–174],

Gaussian [175]) or (equivalently) the intra-nucleon potential [176, 177]

3. the effective form factor of the constituent quarks themselves (e.g. [178, 179])

4. the inclusion of quark-quark interactions (e.g. [176, 178])

5. the inclusion of pion effects (e.g. [179, 180])

See [32, 167] for a recent review of different models and comparisons to data.

Lattice QCD & Dyson-Schwinger Equations

An alternative approach using quark degrees of freedom is to solve QCD non-

perturbatively by calculating the appropriate correlation function. Once again the

matrix element of the nucleon electromagnetic current provides that link that con-

nects the nucleon form factors with calculable quantities which, in this case, are

the correlation functions. In quantum field theory, a two-point correlation function

gives the probability amplitude [27] for the process where a particle is first created

at a spacetime point x1, then propagates from x1 to x2, and finally is annihilated at

x2. It is denoted by 〈Ω|T (φ(x1)φ(x2)) |Ω〉where Ω is the ground state of the theory,

T is the time ordering operator, and φ is a (scalar) field that corresponds to the par-

ticle. This quantity can be calculated by finding the Green’s function G(x1, x2) that

solves the field equations that governs the particle’s behavior. Nonperturbative ap-
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proaches for finding the Green’s function (and thereby calculating the correlation

function) are Lattice QCD (LQCD) and the Dyson-Schwinger equations (DSE).

A two-point Green’s function can be represented by path integrals [27] in the

following way:

〈Ω|T (φ(x1)φ(x2)) |Ω〉 = G(x1, x2) = lim
T→∞(1−iε)

R
Dφ φ(x1)φ(x2) exp

[
i
R +T
−T L d4x

]
R

Dφ exp
[
i
R +T
−T L d4x

]
(2.158)

where
R

Dφ denotes a path (functional) integral and L is the Lagrangian (density)

of the field theory. These integrals are numerically computed by discretizing the

paths by representing QCD on a spacetime lattice [181–183]. The lattice spacing

is inversely proportional to both the energy scale probed and the computational

cost. Elastic scattering from a nucleon can be represented by a three-point Green’s

function [184]. The nucleon is created at x1, it then propagates to x2 where it inter-

acts with the incoming electron via a virtual photon, and finally it propagates to x3

where it is annihilated. Only certain types of diagrams, representing a subset of all

the paths from x1 to x2 to x3, are calculated with the currently available computa-

tional resources [185]. These diagrams are chosen so that the isovector form factors

can be calculated (i.e. the uncomputed diagrams are needed for the isoscalar form

factors). LQCD calculations vary in the size of the lattice (number of lattice points),

the energy scale studied (the lattice spacing), how the valence quarks are repre-

sented on the lattice (i.e. naive, Wilson, or staggered), and whether the sea quarks

are included (i.e. no sea quarks refers to a “quenched” calculation). See [32,67] for

a recent discussion of Lattice QCD calculations of nucleon form factors.

The Dyson-Schwinger equations [186, 187] are a set of nonlinear integral equa-

tions that recursively relate a group of m n-point Green’s function, where n repre-
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sents the number of fields and m depends on the exact form of the interaction. Be-

cause there are an unlimited number of field configurations, there are, correspond-

ingly, an infinite number (or “ladder”) of coupled equations. The benefit, however,

is that each of these n-point Green’s functions is exact and non-perturbative. For

this approach to be useful, the number of coupled equations needed to be solved

must be finite and still be representative of the underlying field theory. This proce-

dure is called “truncation” and results in approximate, but non-perturbative solu-

tions for the Green’s functions. A truncation procedure has been developed to treat

hadrons using QCD [188,189]. Because the Green’s functions are non-perturbative

(all higher order diagrams are included), the three quarks include a surrounding

cloud of sea quarks. In a recent approach [190], these three “dressed” quarks are

represented by a quark and diquark pair. The nucleon is “bound” by an inter-

change of quarks between the single quark and diquark pair. The Green’s function

is obtained from the three-body (Faddeev) field equations which represent a sum

over all possible quark-virtual photon interactions & quark interchanges. See [67]

for a recent discussion of this approach.

Generalized Parton Distributions

Finally, a new framework has been developed to describe nucleons called General-

ized Parton Distributions (GPDs). GPDs are related to both the parton distribution

functions (Sec. (2.4.3)) obtained from deep inelastic scattering and the nucleon elec-

tromagnetic form factors. Because GPDs are partially determined by nucleon form

factors [191,192], we’ll end the discussion here. See [193,194] for a review of GPDs

and [32, 195] for a special emphasis on the connection between GPDs and nucleon

form factors.
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2.4 Inelastic Scattering at High Q2

We’ll introduce inelastic scattering in the context of high Q2 first. At this scale,

the “containers of information” (F1, F2, g1, & g2) are more easily understood with

respect to quark & gluon degrees of freedom. In Sec. (2.5), we’ll develop the rela-

tionship between the theoretical frameworks used to describe the high & low Q2

regimes. Sec. (2.4.1) & (2.4.2) are general for all Q2.

2.4.1 General Formulation

Following Anselmino, Efremov, & Leader [196,197], the differential scattering cross

section for polarized lepton-nucleon inelastic scattering can be written as:

d2σ

dΩdE′
(p, s, P, S; p′, s′, q) =

α2

2MQ4

(
E′

E

)
Lµν(p, s; p′, s′)Wµν(P, S; q) (2.159)

where M is the nucleon mass, (p, s) are the momentum & spin for the incident

lepton, (p′, s′) are the momentum & spin for the scattered lepton, (P, S) are the mo-

mentum and spin for the target nucleon, and Lµν & Wµν are the leptonic & hadronic

tensors. Each tensor is given by the µν component of the modulus squared ma-

trix element of the corresponding electromagnetic current and explicitly, for the

hadronic tensor, it is:

Wµν(P, S; q) =
1

2π

Z
∑
X
〈P, S| Jµ(x) |X〉 〈X| Jν(0) |P, S〉exp(iq · x) d4x (2.160)

=
1

2π

Z
〈P, S|

[
Jµ(x), Jν(0)

]
|P, S〉exp(iq · x) d4x (2.161)
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where Jµ(x) is the nucleon electromagnetic current evaluated at a spacetime point

x, |X〉 is some final state, and the sum over all final states ∑X |X〉 〈X| = 1 is a com-

pleteness relation. Both tensors can be split into symmetric (s) and antisymmetric

(a) components relative to a swap between the indices µ↔ ν:

Lµν(p, s; p′, s′) = Ls
µν(p; p′) + iLa

µν(p, s; p′) + Ls′
µν(p, s; p′, s′) + iLa′

µν(p; p′, s′)

(2.162)

Wµν(P, S; q) = Ws
µν(P; q) + iWa

µν(P, S; q) (2.163)

The only terms that depend on the scattered electron spin are the two primed

leptonic terms Ls′
µν & La′

µν . These terms sum to zero when the scattered electron

polarization is not measured. The mean differential cross section is obtained by

averaging over the incident lepton & target nucleon spins and summing over the

scattered lepton spin:

σ̄ =
∑s,S,s′

4

[
d2σ

dΩdE′
(p, s, P, S; p′, s′, q)

]
=

α2

2MQ4

(
E′

E

)
2Lµνs (p; p′)Ws

µν(P; q) (2.164)

The mean difference in the differential cross section for opposite target spin orien-

tations (after summing over the scattered lepton spin) is given by:

∆̄ = ∑s′

2

[
d2σ

dΩdE′
(p, s, P,+S; p′, s′, q)− d2σ

dΩdE′
(p, s, P,−S; p′, s′, q)

]
=

α2

2MQ4

(
E′

E

)
2Lµνa (p, s; p′)Wa

µν(P, S; q) (2.165)
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The symmetric and antisymmetric components of the leptonic tensor are given by:

Ls
µν = pµp′ν + p′µpν − gµν(p · p′−m2) = pµp′ν + p′µpν − gµν

(
Q2

2

)
(2.166)

La
µν = mεµναβsαqβ (2.167)

where m is the lepton mass and we’ve used −q2 = Q2 = 2(p · p′ −m2). The sym-

metric and antisymmetric components of the hadronic tensor are given by:

Ws
µν

2M
=

[
−gµν −

qµqν
Q2

]
W1(P · q,Q2)

+
[(

Pµ +
P · q
Q2 qµ

)(
Pν +

P · q
Q2 qν

)]
W2(P · q,Q2)

M2

(2.168)
Wa

µν

2M
= εµναβqα

×
{[

MSβ
]

G1(P · q,Q2) +
[
(P · q)Sβ − (S · q)Pβ

] G2(P · q,Q2)
M

}
(2.169)

where W1 & W2 describe the spin-independent response of the nucleon with units

of (energy)−1 and G1 & G2 describe the spin-dependent response of the nucleon

with units of (energy)−3. Noting that gµνgµν = 4 and taking advantage of the con-

servation of current [198] in the form of qµLµν = qνLµν = 0, we can contract the

indices for Eqn. (2.164) and get the unpolarized part:

σ̄ =
α2

Q4

(
E′

E

)[
2
(

Q2− 2m2)W1 +
(

4(p · P)(p′ · P)
M2 − Q2

)
W2

]
(2.170)
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Noting that εµναβεµνα
′β ′ = −2

[
δα
′

α δ
β ′

β − δαδβ
′
δβδα

′
]

[199], we can contract the in-

dices for Eqn. (2.165) and get the polarized part:

∆̄ =
4mα2

Q4

(
E′

E

)[{
(q · s)(q · S) + Q2(s · S)

}
MG1

+Q2 {(q · P)(s · S)− (q · S)(s · P)}G2/M
]

(2.171)

2.4.2 Longitudinally Polarized Beam on a Fixed Target

The equations in the previous section are frame independent and do not make

the assumption that the lepton mass is negligible. In this section, we’ll choose to

work in the lab frame, ignore the lepton mass, and consider the situation where the

nucleon target is at rest. It is straightforward to show that the mean unpolarized

cross section σ̄ is given by:

σ̄ = σM×
[

W2(ν,Q2) + 2W1(ν,Q2) tan2
(
θ

2

)]
(2.172)

To calculate
↔
A under these conditions, we’ll note that the lepton (s) and target (S)

spin vectors are given by:

sµ =
hbE
m
(
1, p̂
)

(2.173)

Sµ =
(
0, P̂t

)
(2.174)

where hb is the helicity of the electron beam and P̂t is the target polarization unit

vector. After some algebra, we find:

↔
A= −

(
2(σR− σM)

σ̄

)[
M
(

Ep̂ + E′ p̂′
)

G1(ν,Q2)− 2EE′
(

p̂− p̂′
)

G2(ν,Q2)
]

(2.175)
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For a target polarization in the scattering plane that is either parallel or perpendic-

ular to the electron beam, we find the following two asymmetries:

A‖ = −
(

2(σR− σM)
σ̄

)[
M
(

E + E′ cos(θ)
)

G1(ν,Q2)− Q2G2(ν,Q2)
]

A⊥ = −
(

2(σR− σM)
σ̄

)[
E′ sin(θ)

] [
MG1(ν,Q2) + 2EG2(ν,Q2)

]
(2.176)

2.4.3 Partons and Structure Functions

If the nucleon is made up of some number of Dirac constituents (spin-1/2 point

particles) with a mass that is some fraction of the nucleon mass xM, then at suffi-

ciently high Q2, the electron should elastically scatter off these constituents, which

we’ll call partons. These partons recoil causing the incident electron to lose some

energy given by:

ν =
Q2

2(xM)
→ x =

Q2

2Mν
(2.177)

The elastic cross section for electron-parton collisions (ignoring the possible anoma-

lous magnetic moment of the parton) is given by:

dσ
dΩ

= σM×
(

E′

E

)
×
[

1 + 2τ tan2
(
θ

2

)]
Z2 (2.178)

where τ = Q2/(4(xM)2) and Z is the parton charge. If the parton mass is not fixed

but is probabilistic, then we have to multiply the cross section by the probability

of having a mass fraction between x and x + dx:

dσ
dΩ

= σM×
(

E′

E

)
×
[

1 + 2τ tan2
(
θ

2

)]
Z2P(x)dx (2.179)
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If there are different types (flavors) of partons and the scattering occurs hard & fast

enough, then the total cross section is simply an incoherent sum over all parton

types (in direct analogy to quasi-elastic scattering):

[
dσ
dΩ

]
tot

= ∑
i
σM×

(
E′

E

)
×
[

1 + 2τ tan2
(
θ

2

)]
Z2

i Pi(x)dx (2.180)

It is straightforward to show that (at constant Q2) dx = (Ex)/(E′ν)dE′ and plugging

this into the total electron-parton elastic cross section gives the inelastic electron-

nucleon cross section:

d2σ

dΩdE′
=

1
dE′

[
dσ
dΩ

]
tot

= ∑
i
σM×

(
E′

E

)
×
[

1 + 2τ tan2
(
θ

2

)]
Z2

i Pi(x)
Ex
E′ν

(2.181)

Rearranging a few things, we find:

d2σ

dΩdE′
= σM

[
1
ν

(
x∑

i
Z2

i Pi(x)

)
+

2
M

(
1
2 ∑

i
Z2

i Pi(x)

)
tan2

(
θ

2

)]
(2.182)

By comparing this to the inelastic cross section from the previous section, we can

immediately make the following identifications:

νW2(ν,Q2) → x∑
i

Z2
i Pi(x) = F2(x) (2.183)

MW1(ν,Q2) → 1
2 ∑

i
Z2

i Pi(x) = F1(x) (2.184)

We find that, in the deep (Q2→∞) inelastic (ν→∞) scattering regime, the inelas-

tic response functions W1 and W2 no longer depend on ν and Q2 separately. They

only depend on a single scaling variable called Bjorken x (famously predicted by

Bjorken [200]). The traditional interpretation [121, 201] of x is that it is the fraction
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Figure 2.13: Deep Inelastic Scattering in the Breit Frame. At high Q2, the par-
tons are traveling essentially collinear to each other with very small transverse
momenta.

of the nucleon’s longitudinal momentum P carried by the struck parton in the Breit

frame, see Fig. (2.13).

In this high Q2 regime, it is more convenient to refer to the unitless (unpolar-

ized) structure function F1 and F2. We see for Dirac particles that:

F2(x) = 2xF1(x) (2.185)

which is known as the Callan-Gross relation [202] and its experimental verifica-

tion was among the earliest & strongest evidence that charged partons are Dirac

particles. In the quark-parton model, F2(x) given by [203]:

F2(x) = x∑
i

Z2
i

[
pi(x) + p̄i(x)

]
(2.186)

where i refers to the parton flavors (up, down, strange, charm, bottom, top, glu-

ons), Zi is the parton charge in units of the elementary charge, and pi(x) & p̄i(x)

are the parton and antiparton fractional momentum distributions. Gluons are

their own antiparticles so they only have one fractional momentum distribution

pi(x) + p̄i(x)→ g(x). However, since gluons are chargeless Zg = 0, they do not con-

tribute to the sum. For protons and neutrons, considering only the three lightest
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quark flavors (u = up, d = down, s = strange), we get:

Fp
2 (x) = x

[
4
9

(up(x) + ūp(x)) +
1
9
(
dp(x) + d̄p(x)

)
+

1
9

(sp(x) + s̄p(x))
]

(2.187)

Fn
2 (x) = x

[
4
9

(un(x) + ūn(x)) +
1
9
(
dn(x) + d̄n(x)

)
+

1
9

(sn(x) + s̄n(x))
]

(2.188)

Assuming charge symmetry for the u and d quarks and that the s distributions are

the same for protons and neutrons:

u(x) = up(x) = dn(x) d(x) = dp(x) = un(x) s(x) = sp(x) = sn(x) (2.189)

we find:

Fp
2 (x) = x

[
4
9

(u(x) + ū(x)) +
1
9
(
d(x) + d̄(x)

)
+

1
9

(s(x) + s̄(x))
]

(2.190)

Fn
2 (x) = x

[
4
9
(
d(x) + d̄(x)

)
+

1
9

(u(x) + ū(x)) +
1
9

(s(x) + s̄(x))
]

(2.191)

where the nucleon is described by a total of 6 quark and antiquark distributions.

The physical significance of these distributions can be seen by the following sum

rules:

Uv =
Z 1

0
(u− ū) dx = 2 valence up quarks (2.192)

Dv =
Z 1

0
(d− d̄) dx = 1 valence down quark (2.193)

Sv =
Z 1

0
(s− s̄) dx = 0 valence strange quarks (2.194)

The Gross-Llewellyn-Smith [204] & Adler [205, 206] sum rules relate the unpolar-

ized proton structure functions from neutrino & antineutrino scattering experi-
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ments to Uv + Dv = 3 & Uv − Dv = 1 respectively. They have both been verified

to better than 10% [203]. At finite Q2, these distributions and structure functions

become a function of both x and Q2: F(x)→ F(x,Q2). This soft dependence on Q2

is refered to as a “scaling violation.”

2.4.4 Scaling Violations & High Q2 Evolution

A striking success of QCD is its ability to describe how Bjorken scaling is violated

in DIS once we know the quark distributions at some reference Q2 [198,203]. These

violation occur due to gluon emission. Before the quark emits a gluon, it carries

a momentum fraction y of the nucleon. After emitting a gluon, it carries a mo-

mentum fraction x(< y) of the nucleon or alternatively a relative fraction x/y of

its original momentum fraction. The probability of emitting a gluon which car-

ries away the remaining momentum (y − x) is given by the “splitting function”

Pqq(x/y). Analogous arguments can be made for when the parent parton and/or

the struck parton is a gluon and this results in four splitting functions: Pqq,Pqg,Pgq,

& Pgg. The parton distribution probed by the virtual photon p(x,Q2) depends on

both the parent parton distribution p(y,Q2) and the splitting functions. This re-

lationship is defined by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)

evolution equation given by [207]:

dp(x,Q2)
d(log Q2)

=
αS(Q2)

2π

Z 1

x

[
∑

f
q f (y,Q2)Ppq(z) + g(y,Q2)Ppg(z)

]
dy
y

(2.195)

where the sum over flavors f is dropped when the parton being considered is a

quark and the strong coupling constant αs has a Q2 dependence famously given
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by [203, 208, 209]:

αs(Q2) =
4π[

11− 2N f/3
]

log(Q2/Λ2
QCD)

(2.196)

where N f is the number of quark flavors resolvable at Q2 and ΛQCD ≈ 0.2 GeV is

the QCD scale.

2.4.5 Spin Structure Functions & Moments

In the deep (Q2 → ∞) inelastic (ν → ∞) scattering regime, the spin-dependent

response functions G1 & G2 also exhibit Bjorken scaling [210, 211]:

lim
(ν,Q2)→∞

M2νG1(ν,Q2) = g1(x) (2.197)

lim
(ν,Q2)→∞

Mν2G2(ν,Q2) = g2(x) (2.198)

where g1(x) and g2(x) are the unitless spin structure functions. In the quark-parton

model, g1(x) is given by [212]:

g1(x) = ∑
i,m

mZ2
i

[
pm

i (x) + p̄m
i (x)

]
(2.199)

where m = ±1/2 labels the spin state of the quark. Assuming charge symmetry

for the u and d quarks and that the s distributions are the same for protons and

neutrons, then g1 can be written as:

gp
1(x) =

1
2

[
4
9

∆u(x) +
1
9

∆d(x) +
1
9

∆s(x)
]

(2.200)

gn
1(x) =

1
2

[
4
9

∆d(x) +
1
9

∆u(x) +
1
9

∆s(x)
]

(2.201)



2.4. INELASTIC SCATTERING AT HIGH Q2 111

where the quark polarized distribution ∆q is given by:

∆q(x) =
[
q↑(x)− q↓(x)

]
+
[
q̄↑(x)− q̄↓(x)

]
(2.202)

Summing over quark flavors and integrating over x gives:

∆Σ =
Z 1

0
(∆u + ∆d + ∆s) dx (2.203)

which represents the fraction of the spin of the proton that is carried by the spin of

the quarks. For the proton, ∆Σ has been found to be only about 1/3 at Q2 = 5 GeV2

[213].

Because g2(x) is expected to be zero in the quark parton model, it does not

have a simple physical interpretation. Using a technique called operator product

expansion, see Sec. (2.4.7), it can be written as:

g2(x,Q2) = −g1(x,Q2) +
Z 1

x

g1(y,Q2)
y

dy︸ ︷︷ ︸
gWW

2

+g(3)
2 (x,Q2) (2.204)

where gWW
2 was first derived by Wandzura & Wilzcek [214] and is completely de-

termined by g1. The second term, g(3)
2 , is related to higher order spin-dependent

correlations (higher twists) between quarks and gluons. At finite Q2, the distri-

butions and spin structure functions become a function of both x and Q2: g(x)→

g(x,Q2). Analogous DGLAP evolution equations can be written for the polarized

parton distributions with the substitutions q f → ∆q f and g→ ∆G [215], where ∆G

is the gluon polarization. Integrating the spin structure functions over x gives their
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moments:

Γ1(Q2) =
Z 1

0
g1(x,Q2) dx (2.205)

Γ2(Q2) =
Z 1

0
g2(x,Q2) dx (2.206)

2.4.6 Bjorken Sum Rule

Following Close [216], the number of valence quarks for the proton and neutron

are given by:

Up
v − Dp

v = +1 Un
v − Dn

v = −1 (2.207)

which indicate that the quark distributions are related to nucleon isospin matrix

element by:

Up,n
v − Dp,n

v =
Z 1

0

(
up,n(x)− ūp,n(x)

)
−
(
dp,n(x)− d̄p,n(x)

)
dx = 〈p,n|2τ3 |p,n〉

(2.208)

where |p,n〉 is the nucleon wavefunction in terms of its quark content and τ3 is

the isospin operator that acts in the quark flavor space. By analogy the quark

polarization distributions are related to isospin-spin matrix element:

Z 1

0

(
∆up,n(x)− ∆dp,n(x)

)
dx = 〈p,n|2τ3Sz |p,n〉 (2.209)

where Sz is the spin operator that acts in the quark spin space. The isospin &

isospin-spin matrix elements are directly related to the vector & axial matrix ele-
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ments responsible for neutron beta decay [168]. Their ratios given by:

〈τ3Sz〉p
〈τ3〉p

=
spin flip (Gamow− Teller)

non flip (Fermi)
=
〈

p↑
∣∣ τ+S+

∣∣n↓〉
〈p↑| τ+ |n↑〉

=
〈

p↑
∣∣Az

+

∣∣n↓〉
〈p↑|Vz

+ |n↑〉
=

gA

gV

(2.210)

where τ+ & S+ are the isospin & spin ladder operators, Vz
+ & Az

+ are the vector &

axial currents, and gV & gA are the weak vector & axial coupling constants. Since

〈2τ3〉p = +1 for the proton, we immediately find that 〈2τ3Sz〉p = gA/gV. This can

be related to the proton and neutron spin structure moments giving the celebrated

Bjorken Sum Rule (once referred to as the “worthless equation”) [210, 211, 217]:

Γ
p
1 − Γ

n
1 =

1
2

Z 1

0

(
4− 1

9

)
(∆u(x)− ∆d(x)) dx =

1
6
〈2τ3Sz〉 =

1
6

(
gA

gV

)
(2.211)

Calculations from pQCD for 3 quarks flavors give the Q2 evolution as [218]:

Γ
p
1(Q2)− Γ

n
1(Q2) =

1
6

(
gA

gV

)[
1− αs(Q2)

π
− 3.5833

α2
s (Q2)
π2 − 20.2153

α3
s (Q2)
π3

]
(2.212)

and has been verified to better than 10% [212].

2.4.7 Operator Product Expansion

Operator product expansion (OPE) is a general prescription for separating the

perturbative, short-distance scale physics from the nonperturbative, long-distance

scale physics in asymptotically free quantum field theories. OPE allows us to un-

derstand the behavior of the matrix element 〈N′|A(x)B(0) |N〉 as x→ 0 for all states

|N′〉 & |N〉 [219], where A(x) & B(x) are called “local” operators because they de-

pend on the position & time (x = xµ = (t, ~x), not to be confused with Bjorken-x).
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Wilson [220] has argued that the “operator product” A(x)B(0) can be written as the

following expansion:

A(x)B(0) = ∑
n

Cn(x)On(0) (2.213)

where Cn(x) is a complex valued “coefficient function” that contains the short-

distance physics and On(0) is a local operator that describes the long-distance scale

physics. The units of A, B, Cn, and On are given by [energy]a, [energy]b , [energy]cn ,

and [energy]on respectively. By simple dimensional analysis, the “dimensions” a,

b, cn & on satisfy the relationship cn = a + b − on. This expansion is analogous

to a Taylor series expansion in the sense that the terms are ordered in powers of

on [221]. The operators {On} are formed by combinations of x and the fields &

derivative operators of the quantum field theory in question. These combinations

are constrained by the quantum numbers of the operator product and the sym-

metry properties of underlying theory [222]. Because the operators {On} can be

thought of as forming a “basis” in a linear “operator space,” the expansion can

be considered a linear decomposition with weights given by the coefficient func-

tions [27].

In the context of deep inelastic scattering, OPE is a systematic technique for

calculating higher order QCD corrections to the parton distributions [221, 223]. It

can be applied by recalling that the hadronic tensor is the Fourier transform of the

matrix element of the electromagnetic current product Jµ(x)Jν(0), see Eqn. (2.161).

The Fourier transform implies that q and x are conjugate variables such that Q2→

∞ corresponds to x→ 0. As a consequence, the dominant terms of the expansion

in this limit are ones for which Cn(x) have the form 1/xcn where cn > 0. The exact

form of Cn(x) is given by dimensional analysis in combination with a calculation
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of the Green’s function that corresponds to the matrix element of On:

〈N|On(0) |N〉 = xµ1 · · · xµJn
〈N|Oµ1···µJn

n (0) |N〉︸ ︷︷ ︸
Green′s function

(2.214)

where On
µ1···µn

is a Lorentz tensor of rank Jn and has units of [energy]Jn+τn . The

quantity τn is called “twist” and it determines the dimensions of Cn by cn = a +

b− τn [224]. The most dominant terms in the expansion have the largest cn which

corresponds to the smallest twists. By applying dispersion relations, the coefficient

functions {Cn} can be related to the moments of the F1, F2, g1, & g2 [196, 197].

Lattice QCD can then be used to calculate these moments via a direct numerical

calculation of the Green’s function
〈
Oµ1···µJn

n
〉

[225].

2.5 Inelastic Scattering at Low Q2

At low Q2, it’s usually more useful to talk about “virtual” photons interacting with

the nucleon as a whole rather than electrons “elastically” scattering off of partons.

In the Breit frame, the electron beam acts as a source of virtual photons being fired

at a nucleon target, see Fig. (2.14). The virtual photon flux Γ? is the number of

virtual photons being fired at the nucleon per unit solid angle per unit time. The

number of photons that are absorbed or scattered by the nucleon is given by the to-

tal virtual photoabsorption cross section σ?tot. The electron inelastic scattering cross

section is therefore written as a product of these two quantities Γ?σ?tot. Photon scat-

tering in this context is more generally referred to as Compton scattering. This

framework uses the same language as real Compton scattering, which we’ll intro-

duce first.
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Figure 2.14: Inelastic Scattering at Low Q2 in the Breit Frame. A virtual photon
beam is fired at a nucleon. The absorbed photons excite the nucleon into a “blob”
which then disintegrates into some hadronic debris.

2.5.1 Polarization Vector for Real Photons

The polarization vector for arbitrarily polarized real photons can be written in the

circular polarization basis as, see Sec. (E.4.4):

~ε =

√
1 + Pγ

2
e−iφγ ε̂+ +

√
1− Pγ

2
e+iφγ ε̂− (2.215)

where Pγ is the degree of circular polarization and φγ is the angle of the residual

linear polarization in the xy-plane as measured from the x-axis. Right (left) circu-

larly polarized photons have a positive (negative) helicity hγ = Pγ = +1(−1). It

will be more useful to represent this vector in the linear polarization basis:

~ε=
[√

1− Pγ
e+iφγ

2
+
√

1 + Pγ
e−iφγ

2

]
x̂ +

[√
1− Pγ

e+iφγ

2i
−
√

1 + Pγ
e−iφγ

2i

]
ŷ (2.216)

The polarization state of a photon can also be described by its density matrix:

↔
ρ= ~ε∗~ε =


ε∗xεx ε∗xεy 0

ε∗yεx ε∗yεy 0

0 0 0

 (2.217)
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(out of the page)

Figure 2.15: Kinematic Variables for Real Compton Scattering

The polarization vector can be written covariantly as εµ = (0,~ε) which gives the

corresponding covariant photon density matrix:

ρµν = εµ∗εν =



0 0 0 0

0 ε∗xεx ε∗xεy 0

0 ε∗yεx ε∗yεy 0

0 0 0 0


(2.218)

2.5.2 Real Compton Scattering from a Spin-1/2 Particle

A real photon with initial energy ω scatters from a particle at rest with mass M &

charge Z through an angle θ with final energy ω ′, Fig. (2.15). In the lab frame, the

directions of incoming and outgoing momenta of the photon are given by k̂ = ẑ

and k̂′ = x̂ sin(θ) + ẑ cos(θ) respectively. For the case of elastic scattering (P2 =

P′2 = M2 where P & P′ are the initial & final momenta of the particle), applying

the conservation of momentum in the lab frame yields [226]:

ω ′

ω
=

1
1 +

(
2ω/M

)
sin2( θ

2

) (2.219)
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which is the identical to the formula for the elastic scattering of relativistic electrons

with ω↔ E & ω ′↔ E′. In the Born approximation, the differential scattering cross

section has the general form [27]:

dσ
dΩ

=
(
ω ′

ω

)2( 1
4M

)2( 1
4π

)2 ∣∣∣4παεµ∗f ενi Tµν
∣∣∣2 (2.220)

where εµ∗f (ενi ) is the final (initial) photon polarization vector and the Compton

tensor is represented by:

Tµν = i
Z
〈P′, S′|T(Jµ(x)Jν(0)) |P, S〉 eik′·x d4x (2.221)

where S(S′) is the initial (final) target polarization vector and Jµ is the electromag-

netic current of the target particle. Its useful to rewrite the cross section in terms of

the initial (ρβνi ) and final (ρµαf ) photon densities:

dσ
dΩ

= r2
c

(
ω ′

ω

)2 [1
4
ρµαf ρ

βν
i T∗αβTµν

]
(2.222)

where rc = α/M is the “classical” radius for a charged point particle [227]. Using

the form of the Compton tensor for Dirac particles prescribed by QED, Lipps &

Tolhoek have found [228, 229]:

1
4
ρµαf ρ

βν
i T∗αβTµν = Z4

4

∑
n=0
{Φn} (2.223)

and {Φn} are a group of functions that involves every combination of n of the 4

polarization vectors that describe the photon and the target particle before and

after scattering. Since we’re only interested in specifying the initial polarizations,
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we’ll sum over the final polarizations to get:

∑
ε f

∑
S′

[
1
4
ρµαf ρ

βν
i T∗αβTµν

]
= Z4(2 · 2) [Φ0 + Φ1(εi) + Φ1(S) + Φ(εi, S)] (2.224)

where the Φn functions (N.B. the sign convention of [228] and the typo in [229], for

example compare to [230]) for photons of elliptically polarized light are given by:

Φ0 =
1
8

[
1 + cos2(θ) +

(ω− ω ′)
M

(1− cos(θ))
]

(2.225)

Φ1(ε) = +
1
8

[
−
√

1− P2
γ cos(2φγ)

]
sin2(θ) (2.226)

Φ1(S) = 0 (2.227)

Φ2(ε, S) = −1
8
[
Pγ
]

(1− cos(θ)) ~Pt ·
[
~k
M

cos(θ) +
~k′

M

]
(2.228)

We can write the cross section as the sum of each type of photon polarization (none,

circular, linear):

∑
~ε′

∑
~P′t

dσ
dΩ

= Z4σKN

(
F0− Pγ ~Pt ·

[↔
G0 k̂

]
−
√

1− P2
γ cos(2φγ)H0

)
(2.229)

where the scale is given by σKN which is labeled after Klein & Nishina who first

calculated [231] the polarization independent part F0 for photon-electron scatter-

ing, the circular polarization dependent part is given by the matrix
↔
G0, and the part

that depends only on the residual linear polarization of the light is H0. By noting
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that 1− cos(θ) = M(1/ω ′− 1/ω), these terms are given by:

σKN =
α2

2M2

(
ω ′

ω

)2

(2.230)

F0 =
ω ′

ω
+
ω

ω ′
− sin2(θ) (2.231)

↔
G0 = Gz

0

↔
1 +Gx

0 n̂× (2.232)

Gz
0 =

(
ω

ω ′
− ω ′

ω

)
cos(θ) (2.233)

Gx
0 =

(
1− ω ′

ω

)
sin(θ) (2.234)

H0 = sin2(θ) (2.235)

Averaging over all initial photon polarizations (Pγ = ±1 and φγ = 0, π/2) gives

the usual Klein-Nishina formula. This result was generalized by Powell (among

others) to include the effect of an anomalous magnetic moment (κ? 6= 0) [17, 232]:

(
dσ
dΩ

)
Powell

= σKN

(
Z4F0 +

[
8ωω ′

M2

][ 4

∑
n=1

fnκ
?n sin2

(
θ

2

)
+
(
κ?

2

)4
])

(2.236)

where { fn} are given in Tab. (2.1). Integrating over dΩ gives the total cross section:

σtot

2πα2/M2 = Z4
[

u +
1 + η

(1 + 2η)2 +
2{1− (1 + η) u}

η2

]
+

4

∑
n=1

an

[
u− bn

(1 + 2η)2

]
κ?n

(2.237)

where {an, bn} are given in Tab. (2.1) and η & u are given by:

η =
ω

M
u =

log(1 + 2η)
2η

(2.238)
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n fn an bn

1 sin2( θ
2

)
+2 1 + 3η

2 1 + 1
4 sin2( θ

2

)
+1/2 1 + 3η− 8η2

3 1− 1
2 sin2( θ

2

)
−1 1 + 3η+ 4η2

4 1
8 cos2

(
θ
2

)
−1/4 1 + 3η+ 4η2 + 2η3

Table 2.1: Parameters for AMM Compton Scattering calculated by Powell [232].

In the low energy limit ω� M, u ≈ 1− η+ 4η2/3 + · · · , η→ 0, and we recover the

classical result first derived by Thomson for electrons [227]:

lim
ω→0

σtot =
8π
3

(
Z4α2

M2

)
(2.239)

This is the limit regardless of the spin of the particle [233].

2.5.3 Forward Compton Scattering & The Optical Theorem

The probability for a particle to be scattered in the same direction as its original mo-

mentum is described by the “forward” scattering amplitude (M (0)). The conser-

vation of probability (unitarity) implies that the imaginary part of this amplitude

(=M(0)) encodes the amount of attenuation of a beam of particles due to scattering.

The total scattering cross section (σtot) quantifies precisely the same thing which

implies that =M (0) is proportional to σtot. This exact form of this relationship is

the content of the optical theorem which states [234, 235]:

dσ
dΩ

= |M (θ)|2 ⇒
Z dσ

dΩ
dΩ = σtot =

4π
ω
=M (0) (2.240)



2.5. INELASTIC SCATTERING AT LOW Q2 122

where M (θ) is the scattering amplitude. By inspecting Eqn. (2.220), we can write

down the Compton scattering amplitude:

M (θ) =
(
αω ′

4Mω

)
εµ∗f ε

ν
i Tµν(θ) (2.241)

where the angular dependence is buried deep in Tµν . For forward scattering θ = 0,

the initial and final photon polarizations are the same (ε f = εi) which allows us to

identify εµ∗f ε
ν
i with the initial photon density matrix ρµνi . In addition P′ = P and

S′ = S which implies that the forward Compton tensor is now given by:

Tµν(θ = 0) = i
Z

d4x eik′·x 〈P, S|T(Jµ(x)Jν(0)) |P, S〉 (2.242)

If the particle in question is a nucleon, then we can immediately relate the forward

Compton tensor to the nucleon hadronic tensor given in Eqn. (2.161) by:

Z
(· · · )

〈[
Jµ(x), Jν(0)

]〉
= 2

Z
(· · · ) 〈T(Jµ(x)Jν(0))〉 ⇒ Tµν(θ= 0) = iπWµν (2.243)

where the integral over the commutator product “double counts” the time-ordered

product. This relationship can be used to relate the nucleonic structure functions

contained in Wµν to the total real photon absorption cross sections via the optical

theorem. For the case of real Compton scattering from a polarized nucleon with

an unobserved final photon state, we find:

σtot = ∑
ε f

∑
S′

4π
ω
=M (0) =

8π
ω

( α

4M

)
={εµ∗i ε

ν
i Tµν(θ = 0)} =

4π2α

ω
=
{
ρµνi

iWµν

2M

}
(2.244)
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The sum over ε f results in an additional factor of 2, whereas the sum over S′ is

implicit in the structure of Wµν . To explicitly evaluate the tensor contraction, we’ll

note that q = k = k′ = ω(1, ẑ) & Q2 = 0 and use the following useful identity:

εµναβMµNνAαBβ =
+M0[(~N× ~A) · ~B]− B0[( ~M× ~N) · ~A]

+A0[(~B× ~M) · ~N]− N0[(~A× ~B) · ~M]
(2.245)

which gives:

ρµνi
iWµν

2M
=

i
M
(

F1− Pγ
[
P̂t · q̂

]
g1
)

(2.246)

For pure circularly polarized photons, Pγ = hγ = ±1 and the total real photoab-

sorption cross sections are [236]:

σ3/2 ≡ σtot
(
hγ P̂t · q̂ = +1

)
=
(

4π2α

Mω

)[
F1− g1

]
(2.247)

σ1/2 ≡ σtot
(
hγ P̂t · q̂ = −1

)
=
(

4π2α

Mω

)[
F1 + g1

]
(2.248)

σT ≡
σ3/2 + σ1/2

2
=
(

4π2α

Mω

)
F1 (2.249)

σ ′TT = −σTT ≡
σ3/2− σ1/2

2
= −

(
4π2α

Mω

)
g1 (2.250)

We can now compare the spin-independent cross section σT to the total Powell

cross section to find the functional form for the structure function F1(ν,Q2) at Q2 =

0 for a Dirac particle with an anomalous magnetic moment:

F1(ν,0) =
αη

2π

[
Z4
[

u +
1 + η

(1 + 2η)2 +
2{1− (1 + η) u}

η2

]
+

4

∑
n=1

an

[
u− bn

(1 + 2η)2

]
κ?n

]
(2.251)

where ω = ν and η = ω/M, see Tab. (2.1).
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2.5.4 Dispersion Relations

“Dispersion relations” are a consequence of the requirement that cause precedes

effect (causality), see for example [237]. For example, a target particle will not be

scattered until it is struck by the beam. The mathematical consequence of causality

is that the Fourier transform of the scattering amplitude vanishes for all times t< 0,

where t = 0 is when the interaction takes place [238]. This immediately implies,

by the Titsmarch theorem [239], that the real and imaginary parts of the scattering

amplitude are related by:

<{M (ν)} = +
1
π

PV
Z +∞

−∞

={M (ω)}
ω− ν dω (2.252)

={M (ν)} = − 1
π

PV
Z +∞

−∞

<{M (ω)}
ω− ν dω (2.253)

where PV refers to the Cauchy principal value and we’ve assumed that |M (ω)| → 0

as ω→ 0. If M exhibits crossing symmetry such that M (−ω) = +(−)M ∗(ω), then

<M is an even (odd) function and=M is an odd (even) function. This can be used

to reduce the integration limits to ω > 0:

<{M (ν)}even =
2
π

PV
Z +∞

0

ω={M (ω)}odd

ω2− ν2 dω (2.254)

<{M (ν)}odd =
2
π

PV
Z +∞

0

ν={M (ω)}even

ω2− ν2 dω (2.255)

which can be done for =M as well. We’ll assume that M can be decomposed into

an even symmetric part f (ω) and an odd symmetric part g(ω). Dispersion relations

can be formed independently for f (ω) and g(ω). In this case, we can improve

the convergence of the integral as |ω| → ∞ by forming a dispersion relation for



2.5. INELASTIC SCATTERING AT LOW Q2 125

f (ω)/ω2n and g(ω)/ω2n+1 where n is an integer ≥ 0:

<
{

f (ν)
ν2n

}
=

2
π

PV
Z ∞

0
=
{

f (ω)
ω2n

}
ω

ω2− ν2 dω (2.256)

<
{

g(ν)
ν2n+1

}
=

2
π

PV
Z ∞

0
=
{

g(ω)
ω2n+1

}
ω

ω2− ν2 dω (2.257)

where <{· · · } is even in both cases implying that ={· · · } is odd. The assumption

that the ωk factor in the denominator does not introduce a pole at ω = 0 is called

the “no subtraction hypothesis.” [238] This form of the dispersion relation is sug-

gestive of a Taylor expansion of f (ω) & g(ω) about ω = 0.

2.5.5 Low Energy Theorems and Expansions

The Compton scattering amplitude can be written as a series of terms that are com-

posed of scalar quantities formed from combinations of the initial & final photon

& particle polarizations & momenta. Each of these scalars are multiplied by coeffi-

cients that are functions of the initial & final photon energies and the electromag-

netic properties of the particle. Gauge invariance (conservation of charge [240]),

Lorentz invariance (“intrinsic” or dynamical probability of interaction is indepen-

dent of reference frame [27]), and crossing symmetry constrains the exact form of

these terms and their corresponding coefficients. Based on these arguments, the

Low Energy Theorem states that the lowest order terms (in photon energies) are

given solely by the particle’s mass M, charge Z, and anomalous magnetic moment

κ? [241,242]. In other words, it states that the longest wavelength photons are only

sensitive to the global properties of the system (target particle).

If the wavelength is shortened slightly (resolution is increased), then these pho-

tons are additionally sensitive to the characteristic size of the particle and to the
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ability of its internal degrees of freedom to reconfigure itself in response to the

electric and magnetic fields associated with the photons [243–246]. The “electro-

magnetic” size of the particle characterized by the root mean square radius (
〈
r2

E,M

〉
)

of its charge and magnetization distributions. The measure of its ability to recon-

figure itself is known as its polarizability (αE, βM). In atomic systems, polarizabil-

ities are directly related to the medium’s index of refraction and, in the context of

quantum mechanics, provide a link between microscopic structure and the macro-

scopic optical phenomenon caused by it (i.e. refraction, absorption, Faraday rota-

tion). Because
〈
r2

E,M

〉
, αE, βM have to be calculated from a theory that describes the

detailed electromagnetic structure of the particle, the terms that involve them are

said to be a consequence of a Low Energy “Expansion.”

In general, each coefficient includes terms that have even and odd powers of

the photon energies [246]. For the special case of forward scattering, the even &

odd terms decouple and the forward real Compton scattering amplitude can be

written as:

M (θ = 0) = f (ω) [~ε∗ ·~ε] + g(ω)
[
iP̂t · (~ε∗×~ε)

]
(2.258)

where f (g) is a real function even (odd) in ω and spin independent (dependent)

given by [236]:

f (ω) = −αZ2

M
+ (αE + βM)ω2 + O(ω4) (2.259)

g(ω) =
(
−ακ

?2

2M2

)
ω+ (γ0)ω3 + O(ω5) (2.260)

where Z, κ?, & M are the charge, anomalous magnetic moment, and mass of the

spin-1/2 particle and αE, βM, & γ0 are the electric, magnetic, and forward-spin

polarizabilities. In atomic systems, the electric polarizability is related to the index
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of refraction n by n− 1 = [N]αE where [N] is the number density of the medium.

Furthermore, the forward-spin polarizability is responsible for the Faraday effect

(i.e. Faraday rotation) and is calculated explicitly for alkali atoms in Sec. (E).

2.5.6 Gerasimov-Drell-Hearn Sum Rule

The real part of the forward Compton scattering amplitude is given to lowest or-

ders in ω by the Low Energy Theorem & Expansion. The imaginary part of the

forward Compton scattering amplitude is given by the total photoabsorption cross

sections via the optical theorem. Making this connection explicitly order by order

gives:

−
(

4π2αZ2

M

)
?

Z ∞
ν0

(
σ3/2 + σ1/2

)
dν →∞ (2.261)

2π2ακ?2

M2 = +
Z ∞
ν0

(
σ3/2− σ1/2

ν

)
dν = IGDH (2.262)

αE + βM = +
1

4π2

Z ∞
ν0

(
σ3/2 + σ1/2

ν2

)
dν = IBaldin (2.263)

γ0 = − 1
4π2

Z ∞
ν0

(
σ3/2− σ1/2

ν3

)
dν (2.264)

where ν0 is the inelastic threshold and, in this case, the amplitudes are defined to

ignore elastic scattering. The first line is nonsensical both because the bracketed

term on the l.h.s. & the cross sections are positive definite and because the integral

does not converge. The second line gives the Gerasimov-Drell-Hearn sum rule

for any spin-1/2 object [247, 248]. The third line is known as the Baldin sum rule

[244] and is an unpolarized analog to the GDH sum rule. Finally, the last simply

provides a definition for the forward spin polarizability.

In a paper received on October 26, 1964 and published on April 26, 1965, C.K.



2.5. INELASTIC SCATTERING AT LOW Q2 128

Iddings [249] anticipated the GDH sum rule in the course of studying the hyper-

fine structure of Hydrogen (at the urging of V.W. Hughes). The main ingredients

were present (dispersion relations and low energy theorem) but the sum rule was

not explicitly formed [250]. Therefore, the earliest known publication of the GDH

sum rule is S.B. Gerasimov’s submission to Yadernaya Fizika on March 9, 1965 (pub-

lished October 1965 [247], translated by J.G. Adashko for Soviet Journal of Nuclear

Physics in April 1966 [251]). Quoting S.D. Drell and A.C. Hearn, their paper’s con-

tribution “is very simply that of joining the dispersion relation [Eq. (3)] and the low

energy theorem [Eq. (4)] with the no-subtraction assumption” (received April 20,

1966, published May 16, 1966) [248]. Using current algebra techniques, Masataka

Hosoda and Kunio Yamamoto derived the sum rule for Dirac particles [252] (re-

ceived May 20, 1966) and extended the argument for all spin-1/2 and spin-3/2 nu-

clei [253] (received June 6, 1966). At the time, there was some discussion in the liter-

ature as to whether the sum rule holds for composite objects as well [254–256], for

example the 3He nucleus. In his original paper, Gerasimov claims without proof

that the sum rule is true for nuclei and uses the sum rule to study nuclear binding

effects. The issue was essentially settled by the early 70’s in favor of the generality

of the sum rule [257–262], see in particular Brodsky & Primack [258]. The general-

ization to spin greater than 1/2 was written down in the original Gerasimov paper

and has been rederived many times [19, 20, 25, 26, 257, 263].

Making the identification that σ3/2(1/2) refers to the cross section when the pho-

ton helicity is parallel (antiparallel) with the particle’s spin, the S ≥ 1/2 general-
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ization for all three conventions of the anomalous magnetic moment is written as:

IGDH(mS)
4π2α|mS|

=
1

4π2α|mS|

Z ∞
0

(
σP− σA

ν

)
dν =

(
κ

MP

)2

=
(
κ?

M

)2

=
(

κJi

(2S)M

)2

(2.265)

where mS is the Sz component of the particle’s spin state (e.g. mS = ±1/2 for S =

1/2), Mp is the mass of the proton, and the three conventions for the anomalous

magnetic moment are:

κ ≡ g
2
− Z

MP

M
κ? ≡ g

2

(
M
MP

)
− Z κJi ≡ gS

M
MP
− 2ZS (2.266)

where the total magnetic moment of the particle is given by µ = gµN S. It is useful

to express the sum rule in terms of the Gerasimov cross section defined by:

σG ≡
2π2α~2

M2
Pc2 = 63.7104 µb (SI) (2.267)

which gives:

IGDH(mS) = 2σG|mS|κ2 = 2σG|mS|
(

κ?

M/MP

)2

= 2σG|mS|
(

κJi

(2S)M/MP

)2

(2.268)

Recently, X.Ji and Y.Li [25] have derived a closely related form of sum rule:

IJL =
+S

∑
mS=−S

|mS|
2

IGDH(mS) = π2α

[
2S(S + 1)(2S + 1)

3

](
κJi

(2S)M

)2

(2.269)

See Helbing for a recent review of the GDH sum rule and the status of its verifica-

tion for protons [264].
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Species 1H 1n 2H 3He 3H

Z +1 0 +1 +2 +1
S 1/2 1/2 1 1/2 1/2

mS ±1/2 ±1/2 0,±1 ±1/2 ±1/2
M(MP) 1.0000 1.0014 1.9990 2.9932 2.9937
µ(µN) +2.7928 −1.9130 +0.8574 −2.1275 +2.9790

g +5.5857 −3.8261 +0.8574 −4.2550 +5.9579
κ +1.7928 −1.9130 −0.0715 −2.7957 +2.6449
κ? +1.7928 −1.9157 −0.1430 −8.3679 +7.9182
κJi +1.7928 −1.9157 −0.2860 −8.3679 +7.9182

IGDH(mS)(µb) 204.78 233.16 0,0.65194 497.95 445.70

Table 2.2: GDH Sum Rule evaluated for the proton, neutron, deuteron, and helion.
Data from [265, 266].

2.5.7 Polarization Vector for Virtual Photons

There are two differences between real photons and virtual photons. First, virtual

photons are “off mass shell” or, in other words, they are not constrained to have

the same rest mass as real photons (q2 = −Q2 6= 0). Second, a direct consequence

of the first, virtual photons may have a component of their polarization parallel

to its momentum (~ε · ~q 6= 0). The polarization state of the virtual photon involved

in electron scattering is prescribed by the leptonic tensor. It is straightforward to

show (after some tedious algebra) that the leptonic tensor (summed over the final

electron spin state s′) for a longitudinally polarized electron beam with polariza-

tion Pb = hb = ±1 can be written as [37, 267]:

∑
s′

Lµν =
(

2Q2

1− ε

)
ρµν (2.270)
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where ε is the virtual photon polarization parameter and ρµν in the lab frame is

given by:



γ2
βε γβ

√
ε(1 + ε)/2 ihbγβ

√
ε(1− ε)/2 βγ2

βε

γβ
√
ε(1 + ε)/2 (1 + ε)/2 ihb

√
1− ε2/2 βγβ

√
ε(1 + ε)/2

−ihbγβ
√
ε(1− ε)/2 −ihb

√
1− ε2/2 (1− ε)/2 −ihbβγβ

√
ε(1− ε)/2

βγ2
βε βγβ

√
ε(1 + ε)/2 ihbβγβ

√
ε(1− ε)/2 β2γ2

βε


(2.271)

where β is the velocity of the Breit frame relative to the lab frame and, along with

γβ , it is given by:

β =
ν

|~q | γβ =
|~q |
Q

βγβ =
ν

Q
γ2
β =

1
1− β2 (2.272)

Careful inspection of ρµν allows us to interpret it as the virtual photon density

matrix for a polarization vector given by:

εµ =

(
γβ
√
ε ,

√
1 + ε

2
, ihb

√
1− ε

2
, βγβ

√
ε

)T

(2.273)

The polarization vector has the normalization εµ∗εµ = ε− 1. By noting that q =

(v, ~q ) = Q(βγβ ,0,0, γβ), we find εµqµ = 0. It is useful to rewrite εµ as a sum of

mutually orthogonal transverse (T) & longitudinal (L) parts ~εT ·~εL = 0:

εµ = εµT + εµL (2.274)

εµT =

(
0 ,

√
1 + ε

2
, ihb

√
1− ε

2
, 0

)T

(2.275)

εµL =
√
ε
(
γβ , 0 , 0 , βγβ

)T (2.276)
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which gives the following spatial dot & cross products:

~ε∗ ·~ε = |~εT|2 + |~εL|2 = 1 + β2γ2
βε (2.277)

~ε∗×~ε = ~ε∗T×~εT + (~ε∗T−~εT)×~εL = ihbPγ
[↔

1 − (λLT) n̂×
]

q̂ (2.278)

where q̂ is the direction of the momentum of the virtual photon and n̂ is a unit

vector that is perpendicular to the scattering plane, see Sec. (2.1.3). Comparing

these relationships to those for real photons leads to the interpretation of ε as a

measure of the degree of virtually or non-realness of the photon (ε = 0 for real

photons), Pγ as the degree of circular polarization as before, and λLT as the ratio of

the longitudinal linear polarization to the transverse linear polarization:

Pγ =
√

1− ε2 λLT =
βγβ
√
ε√

(1 + ε)/2
=
βγβ
√

2ε(1− ε)
Pγ

(2.279)

In the limit of Q2 → 0, ε→ 0 and the virtual photons become circularly polarized

real photons. In the limit of Q2 → ∞, ε → 1 and the virtual photons becomes

completely linearly polarized.

2.5.8 Virtual Compton Scattering

There are a few different processes that could be referred to as “virtual Compton

scattering” [203]. Bethe-Heitler (BH) is the process where the incoming or outgoing

electron emits a “soft” (low energy) photon. Virtual Compton scattering (VCS) is

the process (generally speaking) where the incoming nucleon absorbs a virtual

photon from the electron and then emits a real photon. Doubly virtual Compton

scattering (V2CS) is the term used to describe electron scattering and the one that
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we’re interested in the following sections.

It is straightforward to the generalize the various integrals in Sec. (2.5.6) by sim-

ply allowing the integrands to have a Q2 dependence. What’s desired, however, is

a sum “rule”’ which equates the generalized integral (to be measured) to some fun-

damental property of the system (to be calculated) over the entire Q2 range. This

can be done by generalizing the forward Compton scattering amplitude for the

case of virtual photons and calculating the virtual photoabsorption cross sections

using the optical theorem:

σV =
4π2α

K
=
{
ρµν

iWµν

2M

}
(2.280)

where we’ve introduced the parameter K in place of ω to make units “work out.”

Unlike the case for real photons, there is some ambiguity as to what the parameter

K should represent. There are three standard conventions for this virtual photon

flux “factor” K (that reduce to ν for real photons):

1. K0 = ν

2. KG = |~q |=
√
ν2 + Q2 = ν

√
1 + 4M2x2

Q2 , Gilman convention, “the magnitude of

the laboratory photon three-momentum” [268].

3. KH = (W2−M2)/(2M) = ν−Q2/(2M) = ν(1− x), Hand convention, “the lab-

oratory photon energy producing a final state of total center-of-mass energy”

W after absorption by a nucleon at rest [269].

It’s important to note that the extraction of structure functions (F1, F2, g1, g2) and

their moments do not depend on the choice of K.
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Using the Eqn. (2.245), we find:

ρµνi
iWµν

2M
=

i
M

[
(1− ε)F1 + εγ2

β

(
M
ν

)
F2

−hbPγ P̂t ·
{

q̂

(
g1−

g2

β2γ2
β

)
+ (n̂× q̂)

(
λLT

βγβ

)(
g1 + g2

βγβ

)}]
(2.281)

It is conventional [236] to split the total photoabsorption cross section σV into parts

that depend on 1, ε, P̂t · q̂, and P̂t · (n̂× q̂):

σV = σT + εσL− hb(P̂t · q̂)
√

1− ε2σTT− hb P̂t · (n̂× q̂)
√

2ε(1− ε)σLT (2.282)

where the individual cross sections are given by:

σT =
σ1/2 + σ3/2

2
= σK [F1] (2.283)

σL = σK

[
γ2
β

(
M
ν

)
F2− F1

]
(2.284)

σTT = −σ ′TT = σlong =
σ1/2− σ3/2

2
= σK

[
g1−

g2

β2γ2
β

]
(2.285)

σLT = −σ ′LT = σtrans = σK

[
g1 + g2

βγβ

]
(2.286)

σK =
4π2α

MK
(2.287)

where βγβ = ν/Q and γ2
β = 1 + ν2/Q2. These virtual photoabsorption cross sec-

tions are directly related to the inclusive inelastic electron scattering cross section

by:

d2σ

dΩdE′
=

α2

2MQ4

(
E′

E

){
∑
s′

Lµν
}

Wµν =
α2

Q4

(
E′

E

)(
2Q2

1− ε

)
ρµν

Wµν

2M
= ΓVσV

(2.288)
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where ΓV is the virtual photon flux (number of virtual photons per unit time per

unit solid angle):

ΓV =
α

2π2

(
E′

E

)
K
Q2

[
1

1− ε

]
=

2(σR− σM)
σK M(1− ε)

(2.289)

In this case, there are two extra cross sections: σL, which is solely due to the longi-

tudinal polarization component of the virtual photon, and σLT, which is an inter-

ference term between the longitudinal and transverse polarization components of

the virtual photon. In the real photon limit Q2→ 0, we find:

K→ ν ε→ 0 σTT→ σKg1 σLT→ 0 εσL ∝ F2 (2.290)

2.5.9 Generalized Spin-Dependent Integrals and Sum Rules

All that’s left now is to associate each virtual photoabsorption cross section with

it’s corresponding virtual Compton amplitude. We’ll still use the mechanism of

dispersion relations, but one must account for elastic scattering which has large

contributions at low Q2. In terms of calculating the amplitude, this is a subtle

technical issue pertaining to the pole structure of the amplitude for ν below the

inelastic threshold [236, 270]. In terms of writing down a sum rule, we’ll simply

place a bar over the amplitude to symbolically indicate the elastic contribution has

been removed. The forward virtual Compton scattering amplitude has the same

form as Eqn. (2.258). However, it is conventional to use Eqns. (2.277) & (2.278) to

separate the components that are due to the longitudinal polarization of the virtual
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photon:

MV(θγ = 0) = fT(ν,Q2) [~ε∗T ·~εT] + fL(ν,Q2)

[
~ε∗L ·~εL

β2γ2
β

]

+gTT(ν,Q2)
[

iP̂t ·
(
~ε∗T×~εT

hbPγ

)]
+gLT(ν,Q2)

[
iP̂t ·

{
(~ε∗T−~εT)×~εL

hbPγλLT/(βγβ)

}]
(2.291)

Anticipating their use in a dispersion relation, we’ll perform a low energy expan-

sion of the real part of the elastic-subtracted spin-dependent amplitudes [236]:

<ḡTT(ν,Q2) =
(

2αIA(Q2)
M2

)
ν +

(
γ0(Q2)

)
ν3 + O(ν5) (2.292)

<ḡLT(ν,Q2) =
(

2αQI3(Q2)
M2

)
+
(

QδLT(Q2)
)
ν2 + O(ν4) (2.293)

where we’ve defined the expansion parameters as functions of Q2 such that in the

real photon limit:

IA(Q2)→−κ
?2

4
γ0(Q2)→ γ0 QI3(Q2)→ 0 QδLT(Q2)→ 0 (2.294)

By inspection, the imaginary parts of these amplitudes are given by:

=gTT =
K
4π
σTT =

πα

M

[
g1−

g2

β2γ2
β

]
=gLT =

K
4π
σLT =

πα

M

[
g1 + g2

β2γ2
β

]
(2.295)

where βγβ = ν/Q = Q/(2Mx). Equating the real part of the amplitudes order by

order to the corresponding photoabsorption cross sections via the optical theorem
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gives [236, 271, 272]:

IA(Q2) =
M2

4π2α

Z ∞
ν0

[
K(ν,Q2)

ν

[[σTT

ν

]
dν =

2M2

Q2

Z x0

0

[
g1−

4M2

Q2 x2g2

]
dx

(2.296)

γ0(Q2) =
1

2π2

Z ∞
ν0

[
K(ν,Q2)

ν

][σTT

ν3

]
dν =

16αM2

Q6

Z x0

0
x2
[

g1−
4M2

Q2 x2g2

]
dx

(2.297)

I3(Q2) =
M2

4π2α

Z ∞
ν0

[
K(ν,Q2)

ν

][
σLT

Q

]
dν =

2M2

Q2

Z x0

0

[
g1 + g2

]
dx (2.298)

δLT(Q2) =
1

2π2

Z ∞
ν0

[
K(ν,Q2)

ν

][
σLT

Qν2

]
dν =

16αM2

Q6

Z x0

0
x2 [g1 + g2

]
dx (2.299)

where dx/x = −dν/ν at constant Q2. We can now identify the first line as essen-

tially the generalized GDH integral, the second line as the generalized forward

(transverse) spin polarizability, and the last line defines the forward longitudinal

spin polarizability which has no real photon analog. While K & σ(TT,LT) are flux-

factor-convention dependent, their product Kσ(TT,LT) and, consequently, the inte-

grands are not.

An alternative approach is to define the elastic-subtracted amplitudes in such

a way that g1 & g2 are decoupled and that the resulting integrals relate to partial

spin structure moments in the following way:

I1,2(Q2) =
2M2

Q2 Γ̄1,2(Q2) I3(Q2) = I1(Q2) + I2(Q2) (2.300)

where the partial moments are given by:

Γ̄1,2(Q2) =
Z x0

0
g1,2(x,Q2) dx. (2.301)
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and x0 corresponds to inelastic threshold. In terms of the photoabsorption cross

sections, I1 and I2 can be written as:

I1(Q2) =
M2

4π2α

Z ∞
ν0

[
1

1 + Q2/ν2

][
K(ν,Q2)

ν

][
+σTT + QσLT/ν

ν

]
dν (2.302)

I2(Q2) =
M2

4π2α

Z ∞
ν0

[
1

1 + Q2/ν2

][
K(ν,Q2)

ν

][
−σTT + νσLT/Q

ν

]
dν (2.303)

Along these lines, Ji & Osbourne [270] define (with slightly different normaliza-

tions) the spin-dependent forward Compton amplitude in analogy to the antisym-

metric part of the hadronic tensor:

MV(θγ = 0) =
{

iεµναβρµν
(

qα

M

)
Sβ
}

S1(ν,Q2)

+
{

iεµναβρµν
(

qα

M

)[(
P · q
M2

)
Sβ − S ·

( q
M

) Pβ

M

]}
S2(ν,Q2)

(2.304)

Comparing this to the cross sections in Eqn. (2.280) gives:

=
{

S1(ν,Q2)
}

=
πα

ν
g1(ν,Q2) =

(
M
ν

)
=
{

gTT + β2γ2
βgLT

1 + β2γ2
β

}
(2.305)

=
{

S2(ν,Q2)
}

=
παM
ν2 g2(ν,Q2) =

(
M
ν

)2

=
{(
−gTT + β2γ2

βgLT
) (

1 + β2γ2
β

)}
(2.306)
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By convention, the corresponding low energy expansions are given by [236]:

<S̄1(ν,Q2) =
(

2αI1(Q2)
M

)
+
(

2α
M

[
IA(Q2)− I1(Q2)

Q2

]
+ MδLT(Q2)

)
ν2 + O(ν4)

<ν S̄2(ν,Q2) =
(
2αI2(Q2)

)
−
(

2α
[

IA(Q2)− I1(Q2)
Q2

])
ν2

+
1

Q2

(
2α
[

IA(Q2)− I1(Q2)
Q2

]
+ M2 [δLT(Q2)−γ0(Q2)

])
ν4 + O(ν6)

(2.307)

Finally, we’ll note two other conventions found in the literature for the gener-

alized GDH integral [271]:

IB(Q2) =
M2

4π2α

Z ∞
ν0

[
1√

1 + Q2/ν2

][
K(ν,Q2)

ν

[[σTT

ν

]
dν (2.308)

=
2M2

Q2

Z x0

0

[
1√

1 + 4M2x2/Q2

][
g1−

4M2

Q2 x2g2

]
dx (2.309)

IC(Q2) =
M2

4π2α

Z ∞
ν0

[
1

1− Q2/(2Mν)

][
K(ν,Q2)

ν

[[σTT

ν

]
dν (2.310)

=
2M2

Q2

Z x0

0

[
1

1− x

][
g1−

4M2

Q2 x2g2

]
dx (2.311)

At the real photon point, each of these unitless generalized integrals reduces to the

same value and are related to the GDH integral by:

I1(0) = IA(0) = IB(0) = IC(0) =
M2

4π2α

Z ∞
ν0

[σTT

ν

]
dν = − M2

8π2α
IGDH = −κ

?2

4
(2.312)

which implies that (to lowest order):

Γ̄1(Q2) =
Q2

2M2

[
−κ

?2

4
+ Q2 dI1(Q2)

dQ2

∣∣∣∣
Q2=0

+ · · ·
]

(2.313)
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2.5.10 Chiral Perturbation Theory

Chiral Perturbation Theory (ChPT) [273–278] is an effective field theory that rep-

resents QCD at low energies. In this energy regime, QCD becomes nonpertur-

bative and the interactions between quark and gluons become very strong. We

can hide the nonperturbative physics by dealing only with “effective” interactions

among “bound states” of quarks and gluons, namely hadrons. Compared to some

reference energy scale, these effective interactions are weak and can therefore be

treated perturbatively. It has been shown [279] that if one includes every effective

interaction that is consistent with the symmetries of the underlying theory, then

the effective theory is equivalent to the underlying theory. ChPT is a systematic

implementation of these ideas which relies on the spontaneous breaking of the

approximate chiral symmetry of QCD.

Chiral Symmetry

The QCD Lagrangian [203] with N f quark flavors and Nc colors can be written as:

LQCD =



q̄
(
iγµ∂µ− M

)
q (quark kinetic energy)

−1
2

[
∂µAν

a − ∂νAµ
a
] [
∂µAa

ν − ∂νAa
µ

]
(gluon kinetic energy)

+ gsλa
2 q̄γµAa

µq (quark− gluon interaction)

+ igs
2 fabc Aµ

b Aν
c

[
∂µAa

ν − ∂νAa
µ

]
(three gluon interaction)

+ g2
s

8 fabc f ade Aµ
b Aν

c Ad
µAe

ν (four gluon interaction)


(2.314)

where γµ are the usual Dirac matrices, q is the quark field, M is the quark mass

matrix, Aµ
a is one of the eight (a = 1..8) gluon vector fields, gs is the strong coupling

constant, λa is one the eight Gell-Mann matrices, and fabc are the antisymmetric
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structure constants. This can be rewritten in a much more compact notation:

LQCD = ψ̄
(
iγµDµ− M

)
ψ− 1

2
Ga
µνGµν

a (2.315)

where Dµ = ∂− igλa Aa
µ/2 is the “covariant derivative” and Gµν

a = ∂µAν
a −∂nuAµ

a +

g fabc Aµ
b Aν

c is the “dual gluon field tensor.” If we decompose the quark fields into

their “chiral” components:

q = qL + qR qL =
(

1 + γ5

2

)
q qR =

(
1− γ5

2

)
q (2.316)

where qL (qR) is the “left-handed” (“right-handed”) chiral quark field, then the

QCD Lagrangian can be written as:

LQCD = iψ̄Lγ
µDµψL + iψ̄Rγ

µDµψR− ψ̄LMψR− ψ̄RMψL−
1
2

Ga
µνGµν

a (2.317)

= L0
QCD− ψ̄LMψR− ψ̄RMψL (2.318)

where we’ve used the anticommutation property {γ5, γµ} of the Dirac matrices

and L0
QCD does not contain terms that mix chiral quark fields.

A chiral transformation can be defined as qL,R → exp(iθL,R) and, for example,

performing this transformation yields:

ψ̄Lγ
µDµψL→ e+i(θL−θL)ψ̄Lγ

µDµψL = ψ̄Lγ
µDµψL ψ̄LMψR→−e+i(θR−θL)ψ̄LMψR

(2.319)

where, in general, θL 6= θR. This implies that L0
QCD is invariant under chiral trans-

formation and is therefore said to exhibit chiral symmetry. The quark mass term in

not invariant and is therefore said to break this symmetry “explicitly.” If the quark
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masses are set to zero (M = 0), then the QCD Lagrangian exhibits chiral symmetry.

In this limit (called the chiral limit), the chirality of a quark is given by its helicity.

Spontaneous Symmetry Breaking

In the chiral limit, the QCD Lagrangian can be decomposed into two parts la-

beled by handedness. Therefore, solutions to the Lagrangian are expected to have

a definite parity. As a consequence, the hadronic spectrum (quark bound states)

should consist of pairs of hadrons with identical properties but opposite parity. For

approximate chiral symmetry, these “parity doublets” would still exist but with

slightly different masses directly attributable to the non-zero quark masses. In the

real world, parity doublets with small mass separations are not a feature of the

hadronic spectrum. For this reason (among others), it is strongly believed that the

approximate chiral symmetry of QCD is spontaneously broken.

Spontaneous symmetry breaking (SSB) occurs when the a continuous global

symmetry exhibited by the equations of motion is not exhibited by the ground

state of the system. SSB implies:

1. the existence of massless pseudoscalar (Goldstone) bosons

2. that the interactions among these bosons decrease in strength with increasing

separation (decreasing energy scale).

With the exception of their mass, the lightest mesons (i.e. spin-0 pseudoscalar me-

son nonet: π,η,K) have exactly the properties of the Goldstone bosons that would

be present due to the breaking of chiral symmetry. In the language of condensed

matter physics, SSB is a phase transition that occurs as the energy scale is varied. If

the quark masses are much smaller than the energy scale at which this phase tran-
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sition occurs in QCD (Λχ), then the Goldstone bosons acquire small masses that

are proportional to the quark masses. For this reason, the group of lightest mesons

are known as “pseudo”-Goldstone bosons. The SSB mechanism not only allows us

to identify the correct degrees of freedom, but also implies that their interactions

can be treated perturbatively.

Effective Lagrangian & Power Counting: Mesonic ChPT

A low energy effective theory of QCD should be described by a set of (N2
f − 1) light

pseudoscalar bosons with a Lagrangian that exhibits approximate chiral symme-

try. For simplicity, we’ll consider only the case of up and down quarks (N f = 2).

One can construct a chiral symmetric field using pionic degrees of freedom in the

following way [278]:

U(x) = exp
(

i
√

2φ(x)/F
)

φ(x) =

 +π0/
√

2 π+

π− −π0/
√

2

 (2.320)

where F is a low energy constant (LEC). In this case, F refers to the pion decay

constant and is related to the SSB energy scale by:

Λχ = 4πF (2.321)

The effective Lagrangian contains any and all interaction terms involving U that

are allowed by the symmetries of QCD. Since SSB implies that the interactions

“turn off” as the energy scale goes to zero, only derivatives of U (∂µU) appear in

chiral limit. In momentum space, the derivative of U transforms into the product of

the pion momentum and U, ∂µU→ pµU. This insures that the interaction vanishes
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in the limit that the pion momentum goes to zero (pµ→ 0).

Since chiral symmetry is only approximate, the effective Lagrangian can also

contain interaction terms with the field U itself. These additional terms are due to

explicit chiral symmetry breaking and therefore necessarily include a factor pro-

portional to the up and down quark masses. Therefore the effective Lagrangian

is composed of all allowed combinations of MU and ∂µU, where M is the quark

mass matrix. If the pion momentum is small compared to the SSB energy scale

(pµ� 1 GeV), then U can be expanded by a Taylor series:

U =
↔
1 +

i
√

2φ(x)
F

− 2φ2

F2 + · · · (2.322)

As such, each term involving the field U or its derivative actually represents a

infinite set of terms involving φ(x) and its derivatives.

Using dimensional analysis, Weinberg [279] was the first to outline a systematic

prescription for determining the relative importance of each of these terms. The

units of U and ∂µU are 1 and p respectively. The units of the quark mass matrix M

in terms of the pion momentum p can be inferred by expanding the product MU. It

can be shown that the lowest order term results in the following relationship:

m2
π = B (mu + md) (2.323)

where mπ,u,d are the masses of the pion, up quark, & down quark and B is another

LEC which, in this case, is related to chiral quark condensate 〈0| q̄q |0〉 (i.e. the vac-

uum expectation value of the quark-antiquark field operators). This implies that

the units of M is p2. The units of each term in the expansion can now be given by pD

where D is the chiral dimension and this process is called “power counting.” This
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allows one to know ahead of time which diagrams make the largest contributions.

The effective Lagrangian can be systematically grouped by D and calculated order

by order.

The coupling constants that describe each of these terms are known as Low

Energy Constants (LEC). LECs have to be renormalized which implies that they

depend on the energy scale being probed. The number of LECs that describe all

the terms with a specific chiral order D increases with D. Thus to calculate higher

order terms, one needs to know the values of an increasing number of LECs. For-

tunately, each LEC can be related to some experimental observable. Theoretical

values of LEC usually come from some low energy model for QCD and may one

day be calculated directly by Lattice QCD.

Including the Nucleon and ∆: Baryon ChPT

When considering low energy interactions among pions, the pion mass and mo-

menta are considered small perturbations relative to the scale set by SSB (mπ/Λχ ,

p < Λχ� 1). This leads naturally to a power counting scheme that systematically

organizes the infinite number of terms that constitute the effective Lagrangian. The

situation is not as well defined when a nucleon is included among the hadronic

initial and final states due to the large nucleon mass (mN/Λχ ≈ 1). The general

strategy is to isolate a part of the nucleon momentum that is small relative to the

nucleon mass or equivalently the SSB energy scale:

Pµ = mNvµ + kµ
k

mN
� 1 (2.324)
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where Pµ is the total nucleon momentum and kµ is some small momentum relative

to the nucleon rest mass. By construction, this small nucleon momentum k con-

tributes at the same order as the pion mass (k/Λχ ≈ mπ/Λχ). There are two basic

frameworks for accomplishing this goal [277, 278, 280, 281]: Heavy Baryon ChPT

(HBChPT) and Relativistic (aka Lorentz Invariant) Baryon ChPT (RBChPT).

In HBChPT, the nucleon field (Φ(x)) itself is split into two nucleon velocity-

dependent fields (Hv(x) and Nv(x)) labeled as “light” and “heavy:”

Φ =

 p+

n0

 Hv(x) = eimNv·xP−v Φ(x) Nv(x) = eimNv·xP+
v Φ(x) P±v =

1± γµvµ
2

(2.325)

where P±v is the velocity projection operator. The Dirac equation for the nucleon

field is used to derive the equations of motion for the “heavy” field component.

This equation of motion is essentially a modified form of the Dirac equation and

is used to eliminate the “heavy” field from the effective Lagrangian. Alternatively

within the path integral representation, the “heavy” field can be “integrated out.”

In either case, what results is an expansion in powers of k/mN & k/Λχ and conse-

quently a power counting scheme. The fact that this approach is nonrelativisitic

can lead to problems evaluating certain types of “loop” diagrams (i.e. the types of

diagrams that lead to mass renormalization in QED). RBChPT was developed in

part to address this situation.

A loop diagram involves an integral from 0 to∞ over the undetermined mo-

mentum of the virtual particle that makes the loop and has the general form:

H = C
Z d4k

(2π)4

1
(k2 + a1k + a0)(k2 + b1k + b0)

(2.326)
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where C, a0,1, & b0,1 are constants that depend on the coupling constant, nucleon

mass, pion mass, and external momenta. The basic idea in RBChPT is to split this

integral into two pieces, H = R + I. The first piece (R) is essentially an integral

over k from mπ to ∞. It is well behaved (“regular”) and dropped because it can

be absorbed by the coupling constant (after redefining the coupling constant). The

second piece (I) is essentially an integral over k from 0 to mπ. This integral blows

up at k = 0 (i.e. infrared divergent) and is compensated by a counter term. The

final steps are to expand the integrand via a Taylor series in powers of k/mN and

then integrate term by term. The benefit of this approach, asides from being mani-

festly Lorentz invariant, is that it is expected to have, in certain situations, a higher

energy domain of applicability than HBChPT. Finally, we note in passing that the

∆-resonance can be handled in a similar manner with three modifications:

1. The mass difference between the ∆ and the nucleon is treated as another order

parameter ((m∆−mN)/Λχ < 1) in the power counting scheme.

2. A more complicated set of equations of motion (Rarita Schwinger equations

[282]) are required to describe the ∆ since it is a spin-3/2 object.

3. The probability of creating a ∆ resonance depends strongly on Q2. This can

be described phenomenologically with a ∆ “form factor.”
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2.5.11 Predictions from BChPT for Spin-Dependent Quantities

The Heavy BChPT result, calculated by Ji et al. [283], for the slopes of the general-

ized GDH integrals can be given in closed form:

dI1

dQ2

∣∣∣∣
0

=
πMN

48mπ

[
gA

4πFπ

]2

[1 + 3κV + 2(1 + 3κS)τ3] (2.327)

dIA

dQ2

∣∣∣∣
0

=
M2

N

6m2
π

[
gA

4πFπ

]2 [
1− πmπ

4MN
(13 + 2τ3 + 2κV)

]
(2.328)

where MN = 0.9389 GeV is the average nucleon mass, mπ = 0.1380 GeV is the av-

erage pion mass, gA = 1.267 is the axial coupling constant, Fπ = 0.09242 GeV is the

pion decay constant, τ3 = +(−)1 for protons (neutrons), κS = κ?p + κ?n = −0.123 is

the isoscalar anomalous magnetic moment, κV = κ?p−κ?n = +3.709 is the isovector

anomalous magnetic moment, and we’ve ignored the small mass difference be-

tween protons and neutrons. For the same quantities, the numerical values for the

Relativistic BChPT calculation by Bernard et al. [284] are:

dIp
1

dQ2

∣∣∣∣
0

=
M2

p

16πα

[
−0.4 + 1.2

GeV4

]
= +

1.92
GeV2 (2.329)

dIn
1

dQ2

∣∣∣∣
0

=
M2

n

16πα

[
−1.7 + 1.9

GeV4

]
= +

0.48
GeV2 (2.330)

dIp
A

dQ2

∣∣∣∣
0

=
M2

p

16πα

[
+3.2 + 1.8

GeV4

]
= +

12.0
GeV2 (2.331)

dIn
A

dQ2

∣∣∣∣
0

=
M2

n

16πα

[
−0.3− 1.8

GeV4

]
= − 5.05

GeV2 (2.332)

where Mp = 0.9383 GeV is the proton mass, Mn = 0.9396 GeV is the neutron mass,

and α= 1/137.036 is the fine structure constant. The slope for IA at the real photon

point differs in sign for the proton and only a factor of 2 for the neutron. In a later

publication [272], Bernard et al. found indications that the ∆-resonance does not
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change the sign of the slope.

Kao et al. have applied Heavy BChPT to calculate the Q2 dependence of the

generalized polarizabilities [285]. The slopes and values at the real photon point

from the pion loop are given by:

γ0(Q2 = 0) =
2α

3m2
π

[
gA

4πFπ

]2 [
1− πmπ

8MN
(15 + 3κV + (6 + κS)τ3)

]
(2.333)

δLT(Q2 = 0) =
α

3m2
π

[
gA

4πFπ

]2 [
1 +

πmπ

8MN
(−3 + κV + (−6 + 4κS)τ3)

]
(2.334)

dγ0

dQ2

∣∣∣∣
0

= +
4α

45m4
π

[
gA

4πFπ

]2 [
1− πmπ

1024MN
(5451 + 267κV + (−75 + 21κS)τ3)

]
(2.335)

dδLT

dQ2

∣∣∣∣
0

= − α

18m4
π

[
gA

4πFπ

]2 [
1 +

πmπ

80MN
(54− 9κV − (27 + 24κS)τ3)

]
(2.336)

They also estimated the contribution from the ∆-resonance and found that the ∆

makes almost no contribution to δLT.

Within the Relativistic BChPT framework, Bernard et al. [272] provide a closed

form formula for the first four terms in the pion loop expansion for the transverse

spin polarizability:

γ0(Q2 = 0) =
2α

3m2
π

[
gA

4πFπ

]2{
1− πmπ

8MN
[15 + 3κV + (6 + κS) τ3]

− 5m2
π

4M2
N

[
10 + 3κV +

3
5
κS + 3

(
2 +

κV

5
+ κS

)
τ3

]
− m2

π

M2
N

log
(

mπ

MN

)
[15 + 4κV + 3κS + (11 + 3κV + 4κS) τ3]

+
15πm3

π

64M3
N

[65 + 32κV + 21κS + (60 + 17κV − 42κS)τ3]
}

(2.337)
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and for the longitudinal spin polarizability:

δLT(Q2 = 0) =
α

3m2
π

[
gA

4πFπ

]2{
1 +

πmπ

8MN
[−3 + κV + (−6 + 4κS) τ3]

+
m2
π

32M2
N

[64 + 93κV + 9κS− (160 + 3κV − 57κS) τ3]

+
3m2

π

16M2
N

log
(

mπ

MN

)
[32− κV + 3κS− (32 + κV − 19κS) τ3]

− 3πm3
π

128M3
N

[394− 75κV + 15κS− (156 + 45κV − 135κS)τ3]
}

(2.338)

The two lowest order terms in the Relativistic BChPT calculation exactly matches

the Heavy BChPT calculation. The large difference in γ0(0) for the proton is due

to the large contributions from the higher order terms within Relativisitic BChPT.

The estimate for the ∆ contribution is consistent between these two calculations.

Tab. (2.3) lists the numerical values for these calculations at each order, the esti-

mates for the ∆-resonance contributions, and the values from the phenomenologi-

cal MAID model [286, 287].

2.5.12 Polarization Observables in Inelastic Scattering

The subscripts L & T refer to components of the virtual photon polarization vector.

The subscripts long & trans refer to the orientation relative to the q-vector. The cross

product between two transverse polarization components (TT) results in a longi-

tudinal vector (long). On the other hand, the cross product between a longitudinal

and a transverse polarization component (LT) results in a transverse vector (trans).

Finally, the subscripts ‖ & ⊥ refer to the orientation relative to the momentum of

the incoming electron beam.
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quantity Baryon ChPT MAID unitsHeavy Relativistic 2003 2007

Ip
A(0) = Ip

1 (0) −κ?p2/4 = −0.804 −0.644 −0.650 unitless
In

A(0) = In
1 (0) −κ?n2/4 = −0.917 −0.487 −0.521 unitless

dIp
A/dQ2|0 −14.6 +12.0 −4.53 −2.87 GeV−2

dIn
A/dQ2|0 −10.3 −5.05 −7.75 −6.04 GeV−2

dIp
1 /dQ2|0 +7.09 +1.92 +3.47 +5.35 GeV−2

dIn
1 /dQ2|0 +5.76 +0.48 +1.12 +2.07 GeV−2

ref. [283] [284] [286] [287]

γ p
0 , loop −3.91 +4.64 10−4 fm4

γn
0 , loop −0.78 +1.82 10−4 fm4

γ p,n
0 , ∆ −2.85 −2.83± 0.80 10−4 fm4

γ p
0 , tot −6.75 +1.80± 0.80 −0.63 −0.73 10−4 fm4

γn
0 , tot −3.63 −1.00± 0.80 +0.10 −0.01 10−4 fm4

δp
LT, loop +1.53 +2.04 10−4 fm4

δn
LT, loop +3.26 +2.66 10−4 fm4

δp,n
LT , ∆ +0.04 −0.10± 0.25 10−4 fm4

δp
LT, tot +1.57 +1.95± 0.25 +1.38 +1.34 10−4 fm4

δn
LT, tot +3.30 +2.55± 0.25 +2.32 +2.03 10−4 fm4

dγ p
0 /dQ2|0, loop −60.3 (≈ 0) 10−4 fm4/GeV2

dγn
0 /dQ2|0, loop −62.6 (−) 10−4 fm4/GeV2

dγ p,n
0 /dQ2|0, ∆ −29.8 (+) 10−4 fm4/GeV2

dγ p
0 /dQ2|0, tot −90.1 (+) −26.6 −21.2 10−4 fm4/GeV2

dγn
0 /dQ2|0, tot −92.4 (−) −44.3 −38.8 10−4 fm4/GeV2

dδp
LT/dQ2|0, loop −19.8 (−) 10−4 fm4/GeV2

dδn
LT/dQ2|0, loop −25.4 (−) 10−4 fm4/GeV2

dδp,n
LT /dQ2|0, ∆ −0.32 (≈ 0) 10−4 fm4/GeV2

dδp
LT/dQ2|0, tot −20.7 (−) −25.3 −22.9 10−4 fm4/GeV2

dδn
LT/dQ2|0, tot −25.7 (−) −41.3 −35.7 10−4 fm4/GeV2

ref. [285] [272] [286] [287]

Table 2.3: Values from BChPT & MAID for Spin-Dependent Quantities.
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Normalizing the total virtual photoabsorption cross section by σT allows us to

define three new quantities:

σV

σT
= 1 + εR− hb(P̂t · q̂)

√
1− ε2A1− hb P̂t · (n̂× q̂)

√
2ε(1− ε)A2 (2.339)

where R, A1, & A2 are given by:

R ≡ σL

σT
=
[
1 + γ2][ F2

2xF1

]
− 1 (2.340)

A1 ≡
σTT

σT
=
σ1/2− σ3/2

σ1/2 + σ3/2
=

g1− γ2g2

F1
(2.341)

A2 ≡
σLT

σT
=

2σLT

σ1/2 + σ3/2
= γ

[
g1 + g2

F1

]
(2.342)

where γ is a common kinematic factor:

γ ≡ 1
βγβ

=
Q
ν

=
2Mx

Q
(2.343)

Eqn. (2.176) can be used to equate measured cross section differences to g1 and g2:

∆σ‖ = 2σ̄A‖ = − 8α2

MQ2

(
1− y

y

)[(
1− y

2
− y2γ2

4

)
g1−

(
yγ2

2

)
g2

]
(2.344)

∆σ⊥ = 2σ̄A⊥ = − 8α2

MQ2

(
1− y

y

)
γ

√
1− y− y2γ2

4

[( y
2

)
g1 + g2

]
(2.345)

where y = ν/E and we’re using the “dΩdE′” convention (as opposed to the “dxdy”

convention):

∆σ‖,⊥ ≡
[

d2σ

dΩdE′

]
‖,⊥

d2σ

dxdy
=

d2σ

dΩdE′

[
2πMy
1− y

]
(2.346)
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These can be inverted to extract g1 and g2:

g1 = −MQ2

8α2

[
y

(1− y)(2− y)

][
2∆σ‖+

(
yγ√

1− y− y2γ2/4

)
∆σ⊥

]
(2.347)

g2 = −MQ2

8α2

[
y

(1− y)(2− y)

][
−y∆σ‖+

2
γ

(
1− y/2− y2γ2/4√

1− y− y2γ2/4

)
∆σ⊥

]
(2.348)

Using the following:

g1 =
F1(A1 + γA2)

1 + γ2 g2 =
F1(A2− γA1)
γ(1 + γ2)

(2.349)

we find:

A‖ = D(A1 + ηA2) A⊥ = d(A2− ξA1) (2.350)

where, after some considerable algebra, the kinematic factors are given by [288]:

D =
y(1 + yγ2/2)(2− y)

y2(1 + γ2) + 2(1 + R)(1− y− y2γ2/4)
(2.351)

η =
γ(1− y− y2γ2/4)

(1− y/2)(1 + yγ2/2)
(2.352)

d =
2y(1 + yγ2/2)

√
1− y− y2γ2/4

y2(1 + γ2) + 2(1 + R)(1− y− y2γ2/4)
(2.353)

ξ =
γ(1− y/2)
1 + yγ2/2

(2.354)
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[24] Cédric Lorcé. Electromagnetic properties for arbitrary spin particles: Natu-

ral electromagnetic moments from light-cone arguments. Physical Review D

(Particles and Fields), 79(11):113011, 2009.

http://link.aps.org/doi/10.1103/RevModPhys.13.203
http://link.aps.org/doi/10.1103/PhysRev.140.B967
http://www.worldcat.org/isbn/9780262540131
http://link.aps.org/doi/10.1103/PhysRev.158.1566
http://link.aps.org/doi/10.1103/PhysRev.158.1566
http://link.aps.org/doi/10.1103/PhysRevD.46.3529
http://link.aps.org/doi/10.1103/PhysRevD.46.3529
http://link.aps.org/doi/10.1103/PhysRevD.62.105031
http://link.aps.org/abstract/PRD/v74/e085002
http://link.aps.org/abstract/PRD/v74/e085002
http://link.aps.org/abstract/PRD/v79/e113011
http://link.aps.org/abstract/PRD/v79/e113011


BIBLIOGRAPHY 157

[25] Xiangdong Ji and Yingchuan Li. Sum rules and spin-dependent polarizabil-

ities of the deuteron in effective field theory. Physics Letters B, 591(1-2):76 –

82, 2004.

[26] Stanley J. Brodsky and John R. Hiller. Universal properties of the electro-

magnetic interactions of spin-one systems. Phys. Rev. D, 46(5):2141–2149,

Sep 1992.

[27] Michael E. Peskin and Daniel E. Schroeder. An Introduction to Quantum Field

Theory. Perseus Books, Reading, MA, 1995.

[28] M. N. Rosenbluth. High Energy Elastic Scattering of Electrons on Protons.

Phys. Rev., 79(4):615–619, Aug 1950.

[29] D. Drechsel and K. Bermuth. Comment on Rosenbluth scattering with Pauli

moment for the electron. J. Phys. G: Nucl. Part. Phys., 17:1779–1782, 1991.

[30] L. N. Hand, D. G. Miller, and R. Wilson. Alternative Nucleon form Factors.

Phys. Rev. Lett., 8(3):110–112, Feb 1962.

[31] L. N. Hand, D. G. Miller, and Richard Wilson. Electric and Magnetic Form

Factors of the Nucleon. Rev. Mod. Phys., 35(2):335–349, Apr 1963.

[32] C.F. Perdrisat, V. Punjabi, and M. Vanderhaeghen. Nucleon electromagnetic

form factors. Progress in Particle and Nuclear Physics, 59(2):694 – 764, 2007.

[33] M. Gourdin. Weak and electromagnetic form factors of hadrons. Physics

Reports, 11(2):29 – 98, 1974.

[34] R Gilman and F Gross. Electromagnetic structure of the deuteron. Journal of

Physics G: Nuclear and Particle Physics, 28(4):R37–R116, 2002.

http://dx.doi.org/10.1016/j.physletb.2004.04.020
http://dx.doi.org/10.1016/j.physletb.2004.04.020
http://link.aps.org/doi/10.1103/PhysRevD.46.2141
http://link.aps.org/doi/10.1103/PhysRevD.46.2141
http://www.worldcat.org/oclc/20393204
http://www.worldcat.org/oclc/20393204
http://link.aps.org/doi/10.1103/PhysRev.79.615
http://dx.doi.org/10.1088/0954-3899/17/11/022
http://dx.doi.org/10.1088/0954-3899/17/11/022
http://link.aps.org/doi/10.1103/PhysRevLett.8.110
http://link.aps.org/doi/10.1103/RevModPhys.35.335
http://link.aps.org/doi/10.1103/RevModPhys.35.335
http://dx.doi.org/10.1016/j.ppnp.2007.05.001
http://dx.doi.org/10.1016/j.ppnp.2007.05.001
http://dx.doi.org/10.1016/0370-1573(74)90036-2
http://dx.doi.org/10.1088/0954-3899/28/4/201


BIBLIOGRAPHY 158

[35] Omar Benhar, Donal Day, and Ingo Sick. Inclusive quasielastic electron-

nucleus scattering. Reviews of Modern Physics, 80(1):189, 2008.

[36] T. W. Donnelly and A. S. Raskin. Considerations of polarization in inclusive

electron scattering from nuclei. Annals of Physics, 169(2):247 – 351, 1986.

[37] NORMAN DOMBEY. Scattering of Polarized Leptons at High Energy. Rev.

Mod. Phys., 41(1):236–246, Jan 1969.

[38] M. K. Jones et al. Proton GE/GM from beam-target asymmetry. Physical

Review C (Nuclear Physics), 74(3):035201, 2006.

[39] Raymond G. Arnold, Carl E. Carlson, and Franz Gross. Polarization trans-

fer in elastic electron scattering from nucleons and deuterons. Phys. Rev. C,

23(1):363–374, Jan 1981.
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[55] G. Höhler, E. Pietarinen, I. Sabba-Stefanescu, F. Borkowski, G. G. Simon,

V. H. Walther, and R. D. Wendling. Analysis of electromagnetic nucleon

form factors. Nuclear Physics B, 114(3):505 – 534, 1976.

[56] P. E. Bosted. Empirical fit to the nucleon electromagnetic form factors. Phys.

Rev. C, 51(1):409–411, Jan 1995.

[57] E. J. Brash, A. Kozlov, Sh. Li, and G. M. Huber. New empirical fits to the

proton electromagnetic form factors. Phys. Rev. C, 65(5):051001, Apr 2002.

[58] J. Friedrich and Th. Walcher. A coherent interpretation of the form factors

of the nucleon in terms of a pion cloud and constituent quarks. European

Physical Journal A, 17(4):607–623, Aug 2003.

[59] J. J. Kelly. Simple parametrization of nucleon form factors. Phys. Rev. C,

70(6):068202, Dec 2004.

[60] J. Arrington, W. Melnitchouk, and J. A. Tjon. Global analysis of proton elastic

form factor data with two-photon exchange corrections. Physical Review C

(Nuclear Physics), 76(3):035205, 2007.

[61] W. M. Alberico, S. M. Bilenky, C. Giunti, and K. M. Graczyk. Electromagnetic

form factors of the nucleon: New fit and analysis of uncertainties. Physical

Review C (Nuclear Physics), 79(6):065204, 2009.

http://dx.doi.org/10.1016/0375-9474(80)90104-9
http://dx.doi.org/10.1016/0375-9474(80)90104-9
http://dx.doi.org/10.1016/0375-9474(80)90104-9
http://dx.doi.org/10.1016/0550-3213(76)90449-1
http://dx.doi.org/10.1016/0550-3213(76)90449-1
http://link.aps.org/doi/10.1103/PhysRevC.51.409
http://link.aps.org/doi/10.1103/PhysRevC.65.051001
http://link.aps.org/doi/10.1103/PhysRevC.65.051001
http://dx.doi.org/10.1140/epja/i2003-10025-3
http://dx.doi.org/10.1140/epja/i2003-10025-3
http://link.aps.org/doi/10.1103/PhysRevC.70.068202
http://link.aps.org/abstract/PRC/v76/e035205
http://link.aps.org/abstract/PRC/v76/e035205
http://link.aps.org/abstract/PRC/v79/e065204
http://link.aps.org/abstract/PRC/v79/e065204


BIBLIOGRAPHY 161

[62] M. K. Jones et al. Gp
E/Gp

M Ratio by Polarization Transfer in ~ep→ e~p. Phys.

Rev. Lett., 84(7):1398–1402, Feb 2000.

[63] O. Gayou et al. Measurement of Gp
E/Gp

M in ~ep→ e~p to Q2 = 5.6 GeV2. Phys.

Rev. Lett., 88(9):092301, Feb 2002.

[64] M.E. Christy et al. Measurements of electron-proton elastic cross sections for

0.4 < Q2 < 5.5 (GeV/c)2. Phys. Rev. C, 70(1):015206, Jul 2004.

[65] I.A. Qattan et al. Precision Rosenbluth Measurement of the Proton Elastic

Form Factors. Phys. Rev. Lett., 94(14):142301, Apr 2005.

[66] J. Arrington. Evidence for two-photon exchange contributions in electron-

proton and positron-proton elastic scattering. Phys. Rev. C, 69(3):032201, Mar

2004.

[67] J Arrington, C D Roberts, and J M Zanotti. Nucleon electromagnetic form

factors. Journal of Physics G: Nuclear and Particle Physics, 34(7):S23–S51, 2007.

[68] Richard Wilson. Some features of electromagnetic interactions. In T. W. Preist

and L. L. J. Vick, editors, Particle Interactions at High Energies: Scottish Univer-

sities’ Summer School 1966. Plenum Press, New York, 1967.

[69] Carl E. Carlson and Marc Vanderhaeghen. Two-Photon Physics in Hadronic

Processes. Annual Review of Nuclear and Particle Science, 57(1):171–204, 2007.

[70] M. R. Yearian and Robert Hofstadter. Magnetic Form Factor of the Neutron.

Phys. Rev., 110(2):552–564, Apr 1958.

[71] N. F. Ramsey. The Rabi School. European Journal of Physics, 11(3):137–141,

1990.

http://link.aps.org/doi/10.1103/PhysRevLett.84.1398
http://link.aps.org/doi/10.1103/PhysRevLett.88.092301
http://link.aps.org/doi/10.1103/PhysRevC.70.015206
http://link.aps.org/doi/10.1103/PhysRevC.70.015206
http://link.aps.org/doi/10.1103/PhysRevLett.94.142301
http://link.aps.org/doi/10.1103/PhysRevLett.94.142301
http://link.aps.org/doi/10.1103/PhysRevC.69.032201
http://link.aps.org/doi/10.1103/PhysRevC.69.032201
http://dx.doi.org/10.1088/0954-3899/34/7/S03
http://dx.doi.org/10.1088/0954-3899/34/7/S03
http://www.worldcat.org/title/particle-interactions-at-high-energies-scottish-universities-summer-school-1966/oclc/315716092
http://www.worldcat.org/title/particle-interactions-at-high-energies-scottish-universities-summer-school-1966/oclc/315716092
http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.nucl.57.090506.123116
http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.nucl.57.090506.123116
http://link.aps.org/doi/10.1103/PhysRev.110.552
http://dx.doi.org/10.1088/0143-0807/11/3/001


BIBLIOGRAPHY 162

[72] W. W. Havens, I. I. Rabi, and L. J. Rainwater. Interaction of Neutrons with

Electrons in Lead. Phys. Rev., 72(7):634–636, Oct 1947.

[73] E. Fermi and L. Marshall. On the Interaction Between Neutrons and Elec-

trons. Phys. Rev., 72(12):1139–1146, Dec 1947.

[74] L. L. Foldy. The Electron-Neutron Interaction. Phys. Rev., 83(3):688, Aug

1951.

[75] Leslie L. Foldy. Neutron-Electron Interaction. Rev. Mod. Phys., 30(2):471–481,

Apr 1958.

[76] Hartmut Abele. The neutron. Its properties and basic interactions. Progress

in Particle and Nuclear Physics, 60(1):1 – 81, 2008.

[77] D. J. Drickey and L. N. Hand. Precise Neutron and Proton Form Factors at

Low Momentum Transfers. Phys. Rev. Lett., 9(12):521–524, Dec 1962.

[78] B. Grossetête, D. Drickey, and P. Lehmann. Elastic Electron-Deuteron Scat-

tering. Phys. Rev., 141(4):1425–1434, Jan 1966.

[79] F. A. Bumiller, F. R. Buskirk, J. W. Stewart, and E. B. Dally. Form-Factor Ratio

Gn
E/Gp

E at Low Momentum Transfers. Phys. Rev. Lett., 25(26):1774–1778, Dec

1970.

[80] G. G. Simon, Ch. Schmitt, and V. H. Walther. Elastic electric and magnetic

e-d scattering at low momentum transfer. Nuclear Physics A, 364(2-3):285 –

296, 1981.

[81] S. Platchkov et al. The deuteron A(Q2) structure function and the neutron

electric form factor. Nuclear Physics A, 510(4):740 – 758, 1990.

http://link.aps.org/doi/10.1103/PhysRev.72.634
http://link.aps.org/doi/10.1103/PhysRev.72.634
http://link.aps.org/doi/10.1103/PhysRev.72.1139
http://link.aps.org/doi/10.1103/PhysRev.72.1139
http://link.aps.org/doi/10.1103/PhysRev.83.688
http://link.aps.org/doi/10.1103/RevModPhys.30.471
http://dx.doi.org/10.1016/j.ppnp.2007.05.002
http://link.aps.org/doi/10.1103/PhysRevLett.9.521
http://link.aps.org/doi/10.1103/PhysRevLett.9.521
http://link.aps.org/doi/10.1103/PhysRev.141.1425
http://link.aps.org/doi/10.1103/PhysRev.141.1425
http://link.aps.org/doi/10.1103/PhysRevLett.25.1774
http://link.aps.org/doi/10.1103/PhysRevLett.25.1774
http://www.sciencedirect.com/science/article/B6TVB-47315BK-1RW/2/beaf15a4cef1c170e60c8bb014274b48
http://www.sciencedirect.com/science/article/B6TVB-47315BK-1RW/2/beaf15a4cef1c170e60c8bb014274b48
http://www.sciencedirect.com/science/article/B6TVB-471XGHR-1HM/2/4a0a4a95dc09bdd38609188034be7595
http://www.sciencedirect.com/science/article/B6TVB-471XGHR-1HM/2/4a0a4a95dc09bdd38609188034be7595


BIBLIOGRAPHY 163

[82] R. Schiavilla and I. Sick. Neutron charge form factor at large q2. Phys. Rev. C,

64(4):041002, Sep 2001.

[83] S. Galster et al. Elastic electron-deuteron scattering and the electric neutron

form factor at four-momentum transfers 5 fm−2 < q2 < 14 fm−2. Nuclear

Physics B, 32(1):221 – 237, 1971.

[84] E. Lomon and H. Feshbach. A Nucleon-Nucleon Interaction Consistent with

Theory and Experiment. Rev. Mod. Phys., 39(3):611–621, Jul 1967.

[85] T. Hamada and I. D. Johnston. A potential model representation of two-

nucleon data below 315 MeV. Nuclear Physics, 34(2):382 – 403, 1962.

[86] M. M. Nagels, T. A. Rijken, and J. J. de Swart. Low-energy nucleon-nucleon

potential from Regge-pole theory. Phys. Rev. D, 17(3):768–776, Feb 1978.

[87] R. B. Wiringa, R. A. Smith, and T. L. Ainsworth. Nucleon-nucleon potentials

with and without ∆(1232) degrees of freedom. Phys. Rev. C, 29(4):1207–1221,

Apr 1984.

[88] M. Lacombe, B. Loiseau, R. Vinh Mau, J. Côtè, P. Pirès, and R. de Tourreil.
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[141] Earle L. Lomon. Extended Gari-Krümpelmann model fits to nucleon electro-

magnetic form factors. Phys. Rev. C, 64(3):035204, Aug 2001.

[142] Earle L. Lomon. Effect of recent Rp and Rn measurements on extended Gari-

Krümpelmann model fits to nucleon electromagnetic form factors. Phys. Rev.

C, 66(4):045501, Oct 2002.

http://dx.doi.org/10.1016/0375-9474(95)00339-8
http://dx.doi.org/10.1016/0375-9474(95)00339-8
http://link.aps.org/abstract/PRC/v75/e035202
http://link.aps.org/abstract/PRC/v75/e035202
http://www.springerlink.com/content/l124272659xq1950
http://www.springerlink.com/content/l124272659xq1950
http://dx.doi.org/10.1016/0370-2693(86)91220-7
http://dx.doi.org/10.1016/0370-2693(86)91220-7
http://dx.doi.org/10.1016/0370-2693(92)90516-7
http://dx.doi.org/10.1016/0370-2693(92)90516-7
http://dx.doi.org/10.1016/0370-2693(92)90673-R
http://dx.doi.org/10.1016/0370-2693(92)90673-R
http://link.aps.org/doi/10.1103/PhysRevC.64.035204
http://link.aps.org/doi/10.1103/PhysRevC.64.035204
http://link.aps.org/doi/10.1103/PhysRevC.66.045501
http://link.aps.org/doi/10.1103/PhysRevC.66.045501


BIBLIOGRAPHY 170

[143] Earle L. Lomon. Effect of revised Rn measurements on extended
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Chapter 3

The Hall A Polarized 3He Program

E97110 (Small Angle GDH) & E02013 (Gn
E) will be described and preliminary &

final results will be presented. These two experiments are a part of the Hall A

polarized 3He program summarized in Tab. (3.1). Generally speaking, the pro-

gram seeks to elucidate the electromagnetic structure of the neutron at different

resolutions and in different kinematic regimes. The experimental motif is electron

scattering from a polarized 3He target. One could summarize the three basic com-

ponents of these and, in general, all electron scattering experiments as:

1. the “Beam,” which includes a source, an accelerator, and a “beamline” used

to measure & control properties of the electron beam before scattering.

2. the “Target,” which includes the target material and all other equipment used

to measure & control properties of the target material.

3. the “Detector,” which includes the data acquisition system (DAQ) and any

equipment used to redirect & measure the properties of the scattered elec-

trons and/or particles associated with the reaction.
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In our case, the “Beam” is the Continuous Electron Beam Accelerator Facility (CE-

BAF) at the Thomas Jefferson National Accelerator Facility (Jefferson Lab or JLab)

in Newport News, VA. The “Target” is a spin-exchange optical pumping (SEOP)

polarized 3He target which is used as an effective polarized neutron target. The

implementation of the “Target” and the “Detector” are specific to each experiment

and will be described in the appropriate sections. My main contributions to these

experiments have been:

1. to provide a better understanding of the physics of SEOP, including alkali-

hybrid SEOP, see Chps. (5) & (6)

2. the design & optimization of the optical pumping apparatus, see Chp. 5)

3. the design, construction, & characterization of the glass target cells, see Secs.

(3.2) & (3.3)

3.1 Effective Polarized Neutron

In the simplest picture, the “neutron-in-3He” spin structure functions g3
1,2 are equal

to the neutron spin structure functions gn
1,2. This naive picture neglects several im-

portant nuclear corrections which depend crucially on the kinematics being con-

sidered. Under most conditions, the largest of these corrections are due to the effec-

tive polarizations of the neutron (Pn < 1) and proton (Pp 6= 0) within a 3He nucleus.

These effective polarizations depend on the exact form of the 3He ground state

wavefunction. This wavefunction describes the motion of three nucleons and can

be represented by a linear combination of angular momentum basis states.
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yr quantity Q2 W 〈Pb〉 〈Pt〉 ref.
GeV2 GeV

E94010 98 IA, γ0, δLT 0.1–0.9 Mn–2.5 0.70 0.35 [1–7]
E95001 99 GM 0.1–0.6 ≈ Mn 0.70 0.30 [8–11]

E99117 01 A1 2.7–4.8 2.0–2.5 0.80 0.40 [12, 13]
E97103 01 g2 0.6–1.3 1.8–2.5 0.76 0.40 [14]

E01012 03 Γ1 1.2–3.0 1.1–1.8 0.78 0.38 [15]
*E97110* 03 IA, γ0, δLT 0.04–0.24 Mn–2.0 0.71 0.37 [16]

*E02013* 06 GE 1.4–3.4 ≈ Mn 0.85 0.47 [17]

E06010 08–09 AN 1.0–3.0 1.8–2.2


0.80 0.65

[18]
E07013 08–09 AN 1.3–3.1 2.3–3.1 [19]

E06014 09 d2 2.0–6.0 1.7–3.0 [20]

E05015 09 AN 1.0–2.3 ≈ Mn [21]
E08005 09 AN 0.7–1.0 ≈ Mn [22]

E05102 09 AT,L(GE) (0.36) ≈ Mn [23]

Table 3.1: Hall A Polarized 3He Experiments up to 2009. Mn = 0.94 GeV is neu-
tron mass. 〈Pb,t〉 are the average beam and target polarizations. Note the dramatic
improvement in the 〈Pt〉 starting with E02013. AN is the target single spin asymme-
tries measured with the target spin normal to the scattering plane. dn

2 is related to
higher moments of g1 & g2. AT,L are the beam-target asymmetries measured with
the target spin transverse & longitudinal to the q-vector in the the scattering plane.
E05102 also made a parasitic measurement Gn

E.
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Figure 3.1: Effective Neutron and Proton Polarizations in 3He from [26].

A total of 9 degrees of freedom are required to fully specify the motion of each

nucleon in a three-nucleon (or alternatively “trinucleon”) system; however, we can

eliminate the 3 “external” degrees of freedom that specify the absolute motion of

the center of mass. It is conventional [24] to specify the remaining 6 “internal”

degrees of freedom using the LS-coupling scheme of Derrick & Blatt [25]:

1. the three intranucleon distances r12, r23, and r13

2. the three Euler angles that represent the rotation of the triangle formed by

r12, r23, and r13

In this scheme, the total orbital angular momentum L (specified by the Euler an-

gles) couples to the total nucleonic spin S. The sum (L + S) results in the total

angular momentum J of the trinucleon system. In the ground state, J must equal

the spin I of the trinucleon nucleus (i.e. J = I = 1/2).

The three largest contributions to the ground state 3He wavefunction are de-

picted in Fig. (3.1). The spin-isospin component of the S basis state is antisymmet-

ric, whereas the spin-isospin component of the S′ basis state has mixed symmetry.

The contribution of the P basis states is suppressed because they have the opposite

parity of the S basis states. There is a relatively large contribution from the D basis
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Reid Soft Core AV14 “Best Fit”

P(S) 0.8864 0.89680 0.8920
P(D) 0.0837 0.08931 0.0945
P(S′) 0.0154 0.01314 0.0135

∆ 0.0609 0.0639 0.0675
∆′ 0.0114 0.0127 0.0135

Pn +0.878 +0.872 +0.865
Pp −0.023 −0.025 −0.027

ref. [28, 29] [30] [26]

Table 3.2: Contributions to the Ground State 3He Wavefunction and the Effective
Nucleon Polarizations for Different NN-potentials. “Best Fit” refers to the best fit
for ∆ & ∆′ from several different NN-potentials (see [26] for more details).

states due to the tensor LS-coupling within nuclei [27]. The relative contributions

of each of these basis states is given in Tab. (3.2).

Using the following result for the trinucleon magnetic moment from [31]:

µ = µS
[
P(S) + P(S′)− P(D)

]
− 2τ3µV

[
P(S)− P(S′)

3
+

P(D)
3

]
+
[

3 + 2τ3

6

]
P(D)

(3.1)

where µS,V = (µp± µn)/2 are the isoscalar & isovector nucleon magnetic moments

and 2τ3 = ±1 is the isospin of the trinucleon nucleus (2τ3 = +1 for 3He ), it has

been shown [26] that the effective nucleon polarizations can be written as:

Pn = 1− 2∆ Pp = −2∆
′ (3.2)
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where ∆ and ∆′ are related to the ground state wavefunction contributions by:

∆ =
P(S′) + 2P(D)

3
∆
′ =

P(D)− P(S′)
6

∆− ∆
′ =

1− P(S)
2

(3.3)

where the contribution of the P basis states is taken to be zero (P(P) = 0) and the

effective nucleon polarizations (Pn & Pp) are listed in Tab. (3.2).

Another group of corrections involve nuclear binding effects and the Fermi mo-

tion of the nucleons within the nucleus. These types of corrections involve “con-

volution integrals” over the neutron & proton spin structure functions and have

been considered for the quasielastic [29,30,32], resonance [33,34], & DIS kinematic

regimes [35, 36]. It has been argued that the convolution integrals essentially re-

duce to the result obtained from the “effective polarization method” for g1 in the

DIS regime [35] and for integrals of g1 down to the resonance region [33]:

g3
1 = Pngn

1 + 2Pp

[
Mn

Mp

]
gp

1 in the DIS region (3.4)

I3
A = Pn In

A + 2Pp

[
Mn

Mp

]2

Ip
A including the resonance and DIS regions (3.5)

where the superscripts (3,n, p) refer to “neutron-in-3He,” neutron, & proton and

the neutron to proton mass ratio (Mn/Mp) is usually approximated as 1. Analo-

gous expressions exist for g2 & I1. Recently, corrections due to “off-shell” effects,

meson exchange currents, the ∆ isobar, and nuclear shadowing & antishadowing

have also been considered in the DIS regime [36].

Finally we’ll note that we’ve defined the “neutron-in-3He” spin structure func-

tions (g3
1,2) such that g3

1,2 = gn
1,2 absent nuclear corrections. We’ll denote this con-

vention as the “effective neutron” convention. This is different than the “per nu-
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cleon” convention also used in the literature where the “neutron-in-3He” spin

structure functions are defined as “per nucleon,” see for example [37, 38]. In the

“per nucleon” convention, g3
1,2 = gn

1,2/3 absent nuclear corrections. Unless oth-

erwise noted, we’ll use the “effective neutron” convention. Lastly, the 3He spin

structure functions g3He
1,2 (M = 2808.4 MeV) are distinguished from the “neutron-

in-3He” spin structure functions g3
1,2 (M = 939.57 MeV) based on the mass used in

Eqns. (2.347) & (2.348).

3.2 Target Cell Fabrication & Characterization

Several aspects of target cell preparation are now standard. For the sake of brevity,

we refer to previous dissertations. Details regarding target cell fabrication can be

found in [39]. Details regarding the UVa/Princeton gas filling station can be found

in [40]. Details regarding the the determination of the target cell volumes and wall

& window thicknesses can be found in [41]. Details regarding the determination

of the target cell 3He density can be found in [41] and Sec. (E.8.3). Finally, a catalog

of cells and their measured properties can be found at the group web site:

http : //galileo.phys.virginia.edu/research/groups/spinphysics/

The application of alkali-hybrid SEOP is a new contribution to the 3He program.

Therefore, in the following section, I will describe in some detail how to create

alkali-hybrid mixtures for use in target cells.
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3.3 Creating Alkali Hybrid Mixes

3.3.1 Predicting the Hybrid Vapor Ratio

To estimate the vapor number density above an impure sample of an alkali metal,

we use Raoult’s law:

[A] = fA[A]pvp (3.6)

where [A]pvp is the vapor number density above a pure sample of the alkali metal

and fA is the mole fraction of pure alkali metal within the impure mix (liquid or

solid). Raoult’s law is a very good approximation because the interaction between

two alkali atoms of the same species is very similar to the interaction between two

alkali atoms of different species. If two alkali metals are mixed together, then the

hybrid vapor ratio above the mix is simply:

[A1]
[A2]

=
f1

f2
· [A1]pvp

[A2]pvp
(3.7)

3.3.2 Finding the Desired Mole Fraction

Our goal is to produce some prescribed hybrid vapor ratio of alkali to Rb,(
[A]/[Rb]

)
goal, with some prescribed operating alkali number density, [A]. There-

fore, we have to work backwards from the hybrid vapor ratio and operating alkali

density to find the mole fraction ratio in the solid mix that would produce it. In

principle, this is done by assuming that there are no other impurities in the alkali

mix and solving the following system of equations numerically for the operating
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temperature Top and the mole fraction ratio fA/ fRb:

[A]goal = fA[A]pvp
(
Top

)
&

(
[A]
[Rb]

)
goal

=
fA
fRb
·

[A]pvp
(
Top

)
[Rb]pvp

(
Top

) & fA + fRb = 1

(3.8)

where we’ve explicitly written out the temperature dependence of the pure vapor

pressure curves.

In practice, however, we’re able to derive a simple formula for the required

mole fraction ratio. This is done by first finding a parameterization of the pure va-

por pressure ratio as a function of the pure alkali density. Note that normally, we

obtain the pure vapor pressure ratio for two alkali metals by specifying an operat-

ing temperature. Instead what we want now is to obtain the pure vapor pressure

ratio by specifying the number density of a pure alkali metal corresponding to that

operating temperature. This is done by fitting ratios from the CRC formula, see

App. (A.3), to the following functional form:

(
[A]
[Rb]

)
pvp

=
(
[A]pvp/[A]0

)n(
[Rb]/[A]

)
0

(3.9)

where
(
[Rb]/[A]

)
0 is the pure vapor pressure ratio for a density of [A]0 of a pure

alkali metal and the fit parameters n,
(
[Rb]/[A]

)
0, & [A]0 are listed in Tab. (3.3).

Plugging this parameterization of the pure vapor pressure ratio into the hybrid

vapor ratio equation, we find:

(
[A]
[Rb]

)
goal

=
fA
fRb
·
(

[A]
[Rb]

)
pvp

=
fA
fRb
·
(
[A]pvp/[A]0

)n(
[Rb]/[A]

)
0

=
fA
fRb
·
(
[A]goal/[A]0/fA

)n(
[Rb]/[A]

)
0
(3.10)

Under our conditions, the alkali metal is lighter than Rb, which implies that pure

vapor pressure ratio
(
[A]/[Rb]

)
pvp

is less than one, and the desired operating alkali
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Figure 3.2: Alkali to Rb pure vapor pressure curve ratio vs. Temperature and Pure
Alkali Density. These use the CRC formulas [42].

to Rb ratio is never less than 1. Therefore, the mole fraction of the alkali metal will

be high, fA ≥ 0.8. When this is true or when the coefficient n is much less than 1,

we can make approximation
(

fA
)n ≈ 1, which allows us to analytically solve for

the required mole fraction:

fRb
fA
≈
(
[A]goal/[A]0

)n(
[Rb]/[A]

)
0

·
(

[Rb]
[A]

)
goal

(3.11)

Finally, we can use Eqn. (A.38) to calculate the required operating temperature for

the prescribed alkali operating density.

Traditionally for pure Rb cells, the operating temperature is about 190 oC. This

corresponds to a Rb density of about 6×1014/cm3. Since the alkali-3He spin ex-

change rate constants are roughly the same, we’ll specify that we want roughly

the same total (alkali+Rb) density for the hybrid cells. Tab. (3.4) lists the molecu-

lar weights needed for this method and Tab. (3.5) lists the required mole fraction

ratios for typical hybrid vapor ratios.
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CRC Pure Alkali to Pure Rb Ratio

Li Na K Cs

Tmin (K) 453.65 370.87 336.53 312.46
Tmin (oC) 180.5 97.72 63.38 39.31
[A]min (1/cm3) 3.79×106 3.18×109 3.23×1010 1.90×1011(
[A]/[Rb]

)
min

8.87×10−9 6.06×10−4 0.0727 3.36

Tmax (K) 1050 700 600 550
Tmax (oC) 777 427 327 277
[A]max (1/cm3) 1.81×1016 1.10×1016 1.17×1016 2.12×1016(
[A]/[Rb]

)
max

8.68×10−4 0.0301 0.252 1.72

[A]0 (1/cm3) 1014(
[Rb]/[A]

)
0 16800 112 6.31 0.427

n 0.516 0.259 0.0970 −0.0575

Table 3.3: Alkali to Rb Pure Vapor Pressure Curve Ratio. These parameters are
used in Eqns. (3.9), (3.10), & (3.11). The function is fit to values from the CRC
formula [42] over a temperature range that covers the higher melting point to a
temperature that corresponds to at least 1016/cm3. The formula reproduces the
CRC values to ±3.5% for Li and ±1.0% for all others.

Element Symbol Mol. Wgt. Melting Boiling
g/mol oC K oC K

Lithium Li 6.941 180.5 453.65 1342 1615
Sodium Na 22.989770 97.72 370.87 883 1156
Potassium K 39.0983 63.38 336.53 759 1032
Rubidium Rb 85.4678 39.31 312.46 688 961
Cesium Cs 132.90545 28.44 301.59 671 944

Calcium Ca 40.078 842 1115 1484 1757
Chlorine Cl 35.453 -101.5 171.65 -34.04 239.11

Table 3.4: Physical Properties of Selected Elements. Molecular weights from [43]
and temperatures from [42].
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3.3.3 Glovebox Method

In this method, an appropriate amount of Rb is added to approximately one gram

of the alkali metal:

mass of Rb
mass of A

=
(

Mol. Wgt. of Rb
Mol. Wgt. of A

)[
fRb
fA

]
need

(3.12)

Because alkali metals are highly reactive to both water vapor and oxygen, the alkali

handling is done in a dry N2 environment within a glovebox. Care is taken to

ensure that the glovebox has low levels of contaminants that react with the alkali

metals. Both alkali metals are weighed to within 0.3 mg and inserted into an empty

ampuole. The mix is then heated to a temperature above the highest individual

melting point of the two metals. The ampuole is then capped with rubber stopper

and removed from the glovebox. The ampuole is sealed under the flow of argon

gas. Once the ampuole is sealed, it is once again heated above the melting point

and vigorously agitated. In all went well, the two metals have been melted and

mixed together to produce a homogeneous hybrid mix.

3.3.4 Reaction Method

An alternative technique [44,45] is to reduce appropriate amounts of RbCl and ACl

with calcium chips. The reaction is given by:

2ACl + excess Ca + metal impurities HEAT−→ 2A + CaCl2 +
(
Ca + metal impurities

)
(3.13)

where A is Li, Na, or K. The reaction is catalyzed by heat provided by a flame that

is kept under the melting point of calcium. High vapor pressure impurities are
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pumped away. The mass ratio of RbCl to ACl needed to produce a necessary ratio

of Rb to A in the solid mix is given by:

mass of RbCl
mass of ACl

=
(

Mol. Wgt. of RbCl
Mol. Wgt. of ACl

)[
fRb
fA

]
need

(3.14)

The minimum amount of calcium to add is obtained from this inequality:

mass of Ca
mass of ACl

≥ 1
2

(
1 +

[
fRb
fA

]
need

)(
Mol. Wgt. of Ca

Mol. Wgt. of ACl

)
(3.15)

Tab. (3.4) lists molecular weight and melting point data needed for this method and

Tab. (3.5) lists the required mass ratios for typical hybrid vapor ratios. We have not

attempted this method because we’ve found the glovebox method adequate for

our purposes. In addition, it is not clear how one determines that all of the alkali

salt has been reacted.



3.3. CREATING ALKALI HYBRID MIXES 200

Hybrid Mole Fractions

Li Na K

1:1 & 3×1014/cm3

fRb/ fA 1.05×10−4 0.0119 0.176
mRb (mg) 1.29 44.1 385

mRbCl/mACl 3.00×10−4 0.0246 0.285
mCa/mACl 0.473 0.347 0.316

Top (K) 843 577 493
Top (oC) 570 303 220

5:1 & 6×1014/cm3

fRb/ fA 3.00×10−5 2.84×10−3 0.0377
mRb (mg) 0.370 10.6 82.4

mRbCl/mACl 8.56×10−5 5.88×10−3 0.0611
mCa/mACl 0.473 0.344 0.279

Top (K) 872 596 508
Top (oC) 599 323 235

20:1 & 6×1014/cm3

fRb/ fA 7.50×10−6 7.10×10−4 9.43×10−3

mRb (mg) 0.0924 2.64 20.6

mRbCl/mACl 2.14×10−5 1.47×10−3 0.0153
mCa/mACl 0.473 0.343 0.271

Top (K) 872 596 507
Top (oC) 599 323 234

Table 3.5: Required Mole Fraction Ratios, Mass Ratios, and Operating Tempera-
tures. The mass of Rb is specified assuming an alkali mass of 1 gram. The desired
operating hybrid vapor ratios of alkali to Rb are 1:1, 5:1, and 20:1. The difference
between these values and ones obtained from a “full” numerical solution is about
a few percent.
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Figure 3.3: Schematic of CEBAF as of 2009. Adapted from [46].

3.4 The Electron Beam

CEBAF can simultaneously deliver up to three CW (continuous wave) interleaved

polarized electron beams at three different energies to three experimental halls (A,

B, & C). Each hall consists of a beamline, a set of targets, and a set of specialized

detectors. The experiments listed in Tab. (3.1) took place in Hall A.

3.4.1 CEBAF

The electrons start at the polarized source where they are photoemitted. In a solid-

state analogy to optical pumping, a circularly polarized laser beam selectively pho-

toemits electrons from one of two energy levels of a strained GaAs crystal. The

helicity of the laser (and consequently the helicity of the electron beam) is rapidly

toggled at 30 Hz in a pseudorandom pattern. For an accurate measurement of elec-
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tron scattering asymmetries, the properties of the electron beam must not change

very much when the helicity is toggled. This is mainly achieved by careful control

of the purity of the circular polarization of the laser beam through which one can

suppress helicity-correlated differences in the intensity, size, location, and energy

of the electron beam (see for example [47]). Each hall has a designated laser that

is pulsed at 499 MHz with a unique phase offset. The timing of the pulses from

the three lasers is such that the GaAs crystal is struck at a rate of 1497 MHz. The

electrons leave the polarized source and enter the Injector at 100 keV. The Injector

then accelerates the electrons up to about 70 MeV before injecting them into the

North linear accelerator (linac).

The North linac is composed of 20 cryomodules each of which is a group of

8 superconducting RF cavities. Presently, one pass through the North linac can

accelerate electrons up to 0.6 GeV. These electrons are then recirculated back into

an identical South linac. The beam can then either be delivered into one of the

three halls or recirculated back into the North linac. An energy up to 6 GeV can be

obtained by a maximum of 5 passes through the linacs via the recirculating arcs.

Finally, a beam extractor separates the beams and redirects them into the three

experimental halls. More details about CEBAF can be found in [48] and references

therein.

3.4.2 Hall A Beamline

The beamline in Hall A controls the position & angle of the beam on the target,

measures its properties (e.g. current, position, energy, polarization), and provides

a “dump” for the unscattered portion of the beam. All “invasive” measurements

require dedicated beamtime, whereas “noninvasive” measurements can be per-
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Figure 3.4: Schematic of the Hall A Beamline and High Resolution Spectrometers
(HRS) as of 2009. Adapted from [46].

formed during physics data taking. Since the intrinsic size of the beam is a few

hundred microns, an electromagnet called the Raster is used to scan the beam

over an area of a few mm2. Measurements from a pair of beam position monitors

(BPMs) (noninvasive) are used to extrapolate the position on the target and the

incident angle. Beam current monitors (BCMs) (noninvasive) measure both the in-

stantaneous current and the total charge accumulated over a run. The beam energy

can be measured in one of three ways: the “Tiefenbach” method (noninvasive), an

“ARC” measurement (invasive), or an “eP” measurement (invasive). The Tiefen-

bach method and the ARC measurement both infer the momentum of the beam by

its angular deflection in a magnetic field. An eP measurement extracts the beam

energy by measuring the recoil angles of protons and electrons via elastic scatter-

ing from a thin polyethylene (CH2) tape. The beam polarization is obtained from

scattering asymmetries measured for Compton scattering (see Sec. (2.5.2)) from a
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date run number angle cell 〈E〉 〈P0
b〉

start end first last (deg) MeV (Møller)

07/15 07/23 2294 2709 6 penelope 2134.3 0.742
07/25 07/28 2782 2948 6 priapus 4208.8 0.652
07/28 07/30 2949 3059 6 priapus 2134.9 0.747
07/31 08/05 3061 3260 6 priapus 2844.8 0.767

08/08 08/13 3266 3487 9 priapus 3775.5 0.765
08/14 08/16 3488 3641 9 priapus 1147.3 0.762
08/16 08/21 3642 3850 9 priapus 2233.9 0.761
08/21 08/25 3851 4066 9 priapus 4404.2 0.756
08/26 08/30 4067 4218 9 priapus 3318.8 0.778

Table 3.6: Run Information for Production Data for E97110.

laser beam (noninvasive) and Møller scattering (see for example [49–52]) from a

magnetized iron foil (invasive). More details about the Hall A instrumentation can

be found in [46] and references therein.

3.5 E97110: Small Angle GDH

3.5.1 Introduction

E97110 (“The GDH Sum Rule and the Spin Structure of 3He and the Neutron Us-

ing Nearly Real Photons”) ran between March and August 2003. We measured the

“neutron-in-3He” spin structure functions g3
1 & g3

2, see Sec. (2.4.5), or equivalently

the 3He virtual photoabsorption cross sections σ3
TT & σ3

LT, see Sec. (2.5.8). Integrals

of these quantities are related to the generalized Gerasimov-Drell-Hearn (GDH)

integrals (IA, I1) and generalized spin polarizabilities (γ0, δLT) for the neutron, see

Sec. (2.5.9). In the Bjorken limit (Q2 →∞), the generalized GDH integral I1 is re-

lated to the Bjorken sum rule, see Sec. (2.4.6). In the real photon limit (Q2 = 0), both
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generalized GDH integrals I1 & IA reduce to the GDH sum rule, see Sec. (2.5.6).

Baryon Chiral Perturbation Theory (BChPT), see Sec. (2.5.10), is the relevant the-

oretical approach for the low Q2 kinematic regime covered by this experiment.

Our data extends the measurement of the Bjorken integral to low Q2 and is a test

of BChPT, which predicts the values & slopes of I1, IA, γ0, & δLT at Q2 = 0, see

Tab. (2.3).

We measured the inclusive scattering of polarized electrons from a polarized

3He target using the standard Hall A equipment and a “septum” magnet. During

the March to May running, the septum magnet was miswired which severely re-

duced its acceptance; therefore, only the production data from the July to August

data taking period will be described here. Data were taken over a Q2 range of 0.04

to 0.24 GeV2 at scattering angles of 6 and 9 degrees with the beam energies listed

in Tab. (3.6). Both g3
1 & g3

2 (or equivalently σ3
TT & σ3

LT) were extracted because data

was taken for both parallel & perpendicular target polarizations, see Sec. (2.5.12).

A previous experiment, E94010, measured the same quantities at a higher Q2

range of 0.1–0.9 GeV2, see Fig. (3.5). They found that the generalized GDH integral

(IA) starts at about 0 at high Q2 and drops below the GDH sum rule for their lowest

Q2 point. The MAID model [53] and both Heavy & Relativistic BChPT calculations,

which predict a negative slope at Q2 = 0 (i.e. a “turnover” a low Q2), are consistent

with the data. Our data covers the Q2 range where this “turnover” is expected and

allows for an extraction of the slope at Q2 = 0.

The generalized spin polarizabilities for the the lowest Q2 points of E94010

were also extracted. The results for both γ0 and δLT are consistent with the MAID

model. The Heavy BChPT calculations appear inconsistent with the data, which

may be an indication that the Q2 range represented by the data is still too high to
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Figure 3.5: E94010 Results for IA, γ0, & δLT from [1, 3].

be applicable. The Relativistic BChPT calculation (with the ∆ contribution) shows

good agreement γ0 but not δLT. This is intriguing because the calculations indicate

that the ∆ contribution to δLT is essentially zero. The Q2 range accessible to E97110

is more appropriate to the BChPT calculations. Our data more fully explores the

low Q2 regime, allows for an extraction of the slope at Q2 = 0, and may allow for

an extrapolation to Q2 = 0.

At the low Q2 covered in this experiment, the dominant contribution to IA,

I1, γ0, & δLT is expected to be from the resonance region and, in particular, the

∆-resonance. The kinematics were chosen to provide complete coverage of the res-

onance region and also the quasielastic region, see Fig. (3.6). The low Q2 regime is

accessed by detecting electrons at small angles. Due to the size of the High Reso-

lution Spectrometers (HRS), see Fig. (3.4), the smallest central scattering angle that

can be detected, for the HRS alone, is 12.5 degrees. For this experiment (and a few

others), scattering angles below this limit was accessed with the use of a septum

magnet. Placed between the target and the right HRS, the septum magnet bent the
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Figure 3.6: Kinematic Coverage for E97110. The yellow band denotes the ∆-
resonance region.
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trajectory of scattered electrons towards the HRS. The left HRS detected scatter-

ing from an downstream carbon target and used to check for false asymmetries &

monitor the beam luminosity. The experimental layout is depicted in Fig (3.7).

3.5.2 The Polarized He-3 Target

The standard polarized 3He target (i.e. the same as E94010) was used for this exper-

iment. The target was polarized using traditional spin-exchange optical pumping

(i.e. pure Rb) with three or four 30 Watt broadband laser diode arrays. Two sets

of laser beams and Helmholtz coils were required to pump parallel (“longitudi-

nal”) and perpendicular (“transverse”) to the beamline. The target polarization

was monitored using NMR and EPR. Absolute calibration of the NMR signal was

obtained from EPR and water NMR. The target ladder included carbon foils used

for optics calibration, a “no target” position, and a “reference cell” used to account

for scattering due to the glass and N2 .

Two target cells were used for this experiment: “Penelope” and “Priapus.”

These cell were fabricated at Princeton by Mike Souza and filled at the Univer-

sity of Virginia (UVa). Because we detected electrons that scattered at very small

angles, we made two modifications to reduce the size of radiative corrections:

1. Corning 1720 (C1720) glass was used instead of General Electric 180 (GE180)

because C1720 has a radiation thickness that is longer by a factor of 1.5, see

App. (B.6).

2. The sides walls of the target chamber were made thinner by a factor of two.
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Figure 3.7: Experimental Layout Near that Target Region for E97110.
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Figure 3.8: Standard Polarized 3He Target for E97110.

cell Penelope Ref. Cell 1 Priapus Ref. Cell 2

window, upstream (µm) 132± 2 127± 2 128± 2 131± 2
window, downstream (µm) 138± 2 120± 2 142± 2 150± 2

wall, beam right (µm) 622± 10 638± 10 600± 10 610± 10
wall, beam left (µm) 694± 10 693± 10 760± 10 711± 10

outer diameter (cm) 1.9249 1.920 1.9160 1.920
external length (cm) 39.6875 39.5288 39.3700 39.5288〈[

3He
]〉

op (amg) 10.65 - 10.46/10.49 -
〈[N2]〉op (amg) 0.107 9.48 0.111/0.112 9.50/9.38

Table 3.7: Cell Parameters. Densities for Priapus refer to 6/9 degrees.
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Figure 3.9: Schematic of the HRS Detector Package. Adapted from [46].

3.5.3 The “Detector”

In general, after scattering from the target, the scattered electrons enter the “De-

tector.” The goal of the “Detector” is to count the number of “good” scattered

electrons for a given momentum & scattering angle. A “good” electron has the

following properties:

1. Its initial properties, such as helicity, are unambiguous.

2. Its momentum and scattering angle are unambiguous.

3. It successfully triggers the data acquisition system (DAQ).

4. It scatters from the target material and not from any surrounding material.

5. It is an electron as opposed to some other negatively charged particle.
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For this experiment, the “Detector” was the septum/right HRS pair. The right HRS

was placed at 12.5 degrees relative to the “old target center.” The orientation and

magnetic field of the septum magnet was chosen to bend electrons scattered at 6

and 9 degrees out to the right HRS. The HRS consists of a quadrupole-quadrupole-

dipole-quadrupole (QQDQ) “magnetic transport system” and a “detector pack-

age.” For this experiment, the detector package consisted of a pair of vertical drift

chambers (VDCs), a pair of scintillators, a Cerenkov detector, and an electromag-

netic calorimeter. These detectors measured the final trajectory & momentum of

the scattered particle, triggered the DAQ, and identified the particle as an electron.

A significant fraction of beamtime was allotted to taking data required to cal-

ibrate the magnetic transport system of the septum magnet/HRS pair. The mag-

netic transport system bends the scattered electrons vertically by an angle inversely

proportional to its momentum. This approximately maps the particle’s momen-

tum to a vertical displacement. In addition, the magnetic transport system is de-

signed such that the particle’s relative scattering angle is approximately mapped to

a horizontal displacement. Finally, the scattered particle exits the magnetic trans-

port system and enters the detector package.

The final trajectory & momentum of the scattered particle was measured by a

pair of VDCs. In reality, the scattered particle’s final trajectory is a complicated

quasi-linear combination of its initial trajectory & momentum before entering the

HRS. With detailed knowledge of the magnetic transport system, the particle’s ini-

tial trajectory & momentum was deconvoluted from its final trajectory & momen-

tum. The initial trajectory allowed us to determine whether the particle scattered

from the target material or some surrounding material.
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Next, the data taking by the DAQ was triggered by a pair of scintillators. Only

negatively charged particles were bent up into the detector package. Therefore,

given the kinematics, the most likely particles were electrons, muons, and neg-

atively charged pions. Electrons can be very effectively distinguished by other

particles due to their small mass which implies:

1. For the same momentum, electrons are faster (β = 1/
√

1 + (m/p)2).

2. At JLab energies, electrons suffer greater energy loss due to bremsstrahlung.

The first method indirectly determines the particle’s speed via the Cerenkov effect.

A flash of light (Cerenkov radiation) is emitted when a charged particle travels

through a medium with a velocity greater than the speed of light in that medium.

Therefore, the index of refraction of the material in the Cerenkov detector is chosen

such that an electron will emit a flash of light whereas a pion would not. The sec-

ond method is a direct measurement of the energy loss by the particle in a shower

counter. In a carefully designed shower counter:

1. Electrons lose all of their energy near the front of the counter.

2. Heavier particles lose a relatively small fraction of their energy more uni-

formly throughout the counter.

Therefore, both the total energy deposited in the counter and spatial distribution

of the energy loss can be used to distinguish electrons from heavier particles.

With the exception of the VDCs, all of the detectors have the same basic oper-

ating principle. Some or all of the energy of the charged particle is converted into

light by some physical mechanism. This light is then collected using mirrors or

waveguides and detected by sensitive photomultiplier tubes (PMTs).
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3.5.4 Analysis & Results

Overview

Full details of the analysis can be found in [54]. The goal was to compute the gen-

eralized GDH integrals, IA & I1, and the generalized spin polarizabilities, γ0 & δLT,

for the neutron at Q2 = 0.04, 0.06, 0.08, 0.10, 0.12, & 0.24 GeV2. First, the “exper-

imental” parallel & perpendicular cross section differences, ∆σexp
‖ & ∆σexp

⊥ , were

formed from the unpolarized cross section σphys and the parallel & perpendicular

asymmetries, Aphys
‖ & Aphys

⊥ :

∆σexp
‖,⊥ = 2Aphys

‖,⊥ σ
phys (3.16)

These experimental cross section differences ∆σexp
‖,⊥ underwent “radiative correc-

tions” which result in the (“Born”) cross section differences ∆σborn
‖,⊥ in the Born ap-

proximation. We then interpolated these cross section differences, binned by the

invariant mass W, from constant beam energy to constant Q2. After subtracting

out the contribution from quasielastic scattering that “leaks” into the resonance

region, ∆σ‖,⊥ = ∆σborn
‖,⊥ − ∆σQE

‖,⊥, we extracted the “neutron-in-3He” spin structure

functions using the results of Sec. (2.5.12) in the form of:

g3
1 = −MnQ2

8α2

[
y

(1− y)(2− y)

][
2∆σ‖+

(
yγ√

1− y− y2γ2/4

)
∆σ⊥

]
(3.17)

g3
2 = −MnQ2

8α2

[
y

(1− y)(2− y)

][
−y∆σ‖+

2
γ

(
1− y/2− y2γ2/4√

1− y− y2γ2/4

)
∆σ⊥

]
(3.18)
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Figure 3.10: Analysis Flowchart.
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where Mn = 939.57 MeV is the neutron mass, y = ν/E, and γ = Q/ν. These spin

structure functions are integrated to give the following “neutron-in-3He” quanti-

ties:

I3
A(Q2) =

2M2
n

Q2

Z x0

0

[
g3

1(x,Q2)− 4M2
n

Q2 x2g3
2(x,Q2)

]
dx (3.19)

Γ̄
3
1 =

Q2

2M2
n

I3
1 (Q2) =

Z x0

0
g3

1(x,Q2)dx (3.20)

where x0 = 1/[1 + mπ(mπ + 2Mn)/Q2] is the pion threshold (mπ is the pion mass).

We’ll also note that the generalized GDH integrand (for I3
A in the “Hand” conven-

tion K = (1− x)ν) is given by:

(1− x)σ3
TT

ν
= −

[
16π2Mnαx2

Q4

][
g3

1−
4M2

n

Q2 x2g3
2

]
(3.21)

Finally, using the “effective polarization method,” we extracted the neutron spin

structure moment Γ̄n
1 (only covering the inelastic regime):

Γ̄
n
1 =

Γ̄3
1− 2PpΓ̄

p
1

Pn
(3.22)

where we’ve ignored the small mass difference between protons and neutrons

Mn = Mp. These steps are summarized in the analysis flowchart in Fig. (3.10).

We’ll now discuss these steps in more detail.

Unpolarized Cross Sections & Asymmetries

For each kinematic setting, data were taken for (1) parallel & perpendicular po-

larized 3He target orientations, (2) an “empty” reference cell, and (3) a reference

cell filled with about 9.4 amagats of N2 . Identical “detector & acceptance cuts”
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were placed on each data set to select electrons scattering from the inner part of

the target cell with well-reconstructed momenta & scattering angles. Relatively

“tight” (“loose”) acceptance cuts were made to select a clean (large) subset of the

data for the calculation of the unpolarized cross section (perpendicular & parallel

asymmetries). The total and helicity gated yields (Y & Y±) for each data set were

calculated by:

Y =
N

(Q/e)L
Y± =

N±

(Q±/e)L±
(3.23)

where N,N± are the total number of counts surviving the cuts, Q,Q± are the total

charge of the electron beam delivered to the target, e is the charge of the electron,

and L, L± are the “lifetimes.”

For the kinematics of this experiment, the scattering rates were high enough to

potentially damage the detectors in the HRS. Consequently, the beam current was

kept between 1 to 10 µA to limit the rate in the detectors. A current calibration was

performed to verify the linear response of the BCM belows 5 µA. Over 90% of the

runs had a charge asymmetry (Q+− Q−)/(Q+− Q−) of less than 200 ppm.

After an event is triggered, the DAQ and detectors require a finite amount of

time to “reset” and be available for the next event. The fraction of time that the

DAQ & detectors is unavailable is referred to as the “deadtime.” The livetime L is

simply 1 minus the deadtime. At sufficiently low rates (< 4kHz) or equivalently

low deadtime < 15%, the number of “good” electrons missed during the deadtime

can be accounted for by simply dividing N by L. Over 80% of the runs had a

deadtime less than 10% and all of the runs had a deadtime less than 15%.

Any background (i.e. scattering not due to the contents of the target cell) that is

still present after the acceptance cuts is subtracted away using data from the empty

reference cell run. This gives the “corrected” yields for the target cell, Y & Y±, and
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the reference cell with N2 , YN
2 :

Y = Yt− Yb Y± = Y±t − Y±b YN2 = YN2
t − Yb (3.24)

where the subscript t refers to raw (uncorrected) yield and the subscript b refers

to the empty reference cell. The N2 dilution factor DN2 is calculated from the cor-

rected yields by Eqn. (2.61):

DN2 ≡
σphys

σraw = 1−
(
ρtc

N2

ρref
N2

)(
YN2

Y

)
(3.25)

where σphys is the “true” unpolarized 3He cross section, σexp is unpolarized 3He

cross section measured from a target cell “diluted” by a small of N2 , ρtc
N2

is the

density of N2 in the target cell, and ρref
N2

is the density of N2 in the reference cell.

The nitrogen dilution factor was typically around 0.92.

The unpolarized cross section is calculated using Eqn. (2.46):

[
d2σ

dΩdE′

]phys

= σphys =
σraw

DN2

=
Y/ fdet

ρ (Lint∆Ω∆E′)
(3.26)

where fdet is the combined efficiencies of the detectors, ρ is the number density of

3He in the target chamber of the target cell, and (Lint∆Ω∆E′) is the “acceptance fac-

tor.” The scintillator trigger efficiency and particle identification efficiencies were

over 0.99 throughout the experiment. Because the raw rates were very high in this

experiment, a multitrack correction was applied to account for the fact that it was

quite likely that more than one track in the VDC counted as a “good” electron.

These factors are all folded into fdet. The 3He density was determined from “tem-

perature tests,” see Sec. (4.6.3), and are listed in Tab. (3.7). The acceptance factor
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was calculated from a Monte Carlo simulation of the magnetic transport system of

the septum/right HRS pair.

The parallel & perpendicular asymmetries were calculated using Eqn. (2.60):

Aphys
‖,⊥ =

Araw
‖,⊥

DN2 PbPt
=

1
DN2 PbPt

[
Y+− Y−

Y+ + Y−

]
(3.27)

The target polarization Pt will be discussed is Sec. (4.6). The beam polarization

was measured at each energy using the Møller polarimeter. During these mea-

surements, it was found that the polarization changed when the Hall C beam was

turned on. The beam polarization was being diluted by “bleedthrough” of the Hall

C beam into Hall A. Combined with the polarization of the bleedthrough (PC), the

beam polarization was corrected on a run by run basis using:

Pbeam = P0
beam

[
1− I ′C

IA

(
1− PC

P0
beam

)]
(3.28)

where Pbeam is the beam polarization with the Hall C beam on, P0
beam is the beam po-

larization with the Hall C beam off, IA is the Hall A beam current, and the amount

of bleedthrough I ′C into Hall A depends on the Hall A slit position S and the Hall

C beam current IC:

I ′C
IA

=
m

1000

(
IC

IA
− R0

)
valid for S = −1 and IC > R0 IA (3.29)

I ′C
IA

=
m

1000

(
IC

IA

[
S
60

]2

− R0

)
valid for 0 ≤ S ≤ 60 and IC > R0 IA(60/S)2

(3.30)

where m & R0 were empirically determined and listed in Tab. (3.8). This correction
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time period slit position m R0

before run 3263 S = −1 4.310 +0.43735
0 ≤ S ≤ 60 3.791 +0.04685

after run 3263 S = −1 1.902 −0.06572
0 ≤ S ≤ 60 3.226 +0.05505

Table 3.8: Bleedthrough correction parameters. S = −1 corresponds to the case
when the Hall A slit is “out.”

can be as large as 15% relative, see Fig. (3.11). These results are consistent with the

beam polarizations extracted from the Compton polarimeter.

For the asymmetries, a loose acceptance cut was chosen to reduce the statistical

uncertainty. For the unpolarized cross section, a tight acceptance cut was chosen to

select a particularly “clean” subset of the data. Since two different subsets of data

were used, the kinematics of the asymmetry and unpolarized cross were slightly

different. Therefore, before the “experimental” cross section differences ∆σexp
‖,⊥ were

calculated, the asymmetries and unpolarized cross section were interpolated to the

same kinematics (i.e. “kinematically matched”).

Radiative Corrections

The experimental cross section differences are not the same as the “Born” cross

section differences (i.e. one photon exchange). This is because ∆σexp (1) includes

higher order diagrams beyond the Born approximation and (2) is actually a con-

volution of cross sections from different kinematics due to the energy lost by the
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electron before and after scattering:

∆σexp(E, ν) =
Z T

0

dt
T

Z ν

0
dνb

Z ν

0
dνaP(νb, t) (1 + δHO) ∆σborn(E0, ν0)P(νa,T− t) (3.31)

where the incident beam energy is E, the total energy lost is ν, T is the total ra-

diation thickness, νb is the energy lost before scattering, νa is the energy lost af-

ter scattering, δHO is the contribution due to higher order diagrams, P(ν ′, t′) is the

probability (per unit energy bin) of losing energy ν ′ after a radiation thickness of t′,

E0 = E− νb is energy before scattering, and ν0 = ν − νb − νa is energy lost during

scattering. “Radiative corrections” refers to the process of “unfolding” the Born

cross section difference from the experimental cross section difference. The radi-

ation thicknesses for this experiment are based on Fig. (3.7) & Tab. (3.7) and are

listed in Sec. (B.6).

The polarized elastic tail contribution ∆σelastic
3He was calculated using the FOR-
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TRAN program ROSETAIL.F, which uses the formalism of Mo & Tsai [55,56] and the

notation of Stein et al [57]. The 3He elastic form factors used to generate the tail are

given by Eqn. (2.75) where {Qi,Ri} are from Table 1 of [58] and γ = (0.8 fm)/
√

3/2

(N.B. the typo in Eqn. (1) of [58], for discussion see [59]). After the elastic tail have

been subtracted out from ∆σexp, the spectra were “smoothened out” using a cubic

spline and interpolated in order to “fill in any gaps” in the data. Energy losses

that occur before & after scattering due to materials in the path of the incident &

scattered electrons lead to “external” radiative corrections. External corrections

are spin-independent (i.e. “unpolarized”) and are performed using the FORTRAN

program RADCOR.F, which uses the formalism of Mo & Tsai [55, 56]. Energy losses

that occur in the field of the nucleus that causes scattering lead to “internal” radia-

tive corrections. Internal corrections are spin-dependent (i.e. “polarized”) and are

performed using the FORTRAN program POLRAD.F, which is based on the original

program & formalism of [60]. The radiative corrections, ∆external
RC & ∆internal

RC , are cal-

culated from the difference between the spectra output from the programs and the

input “smoothed” spectra. Finally, the Born cross section differences are given by:

∆σborn = ∆σexp− ∆σelastic
3He − ∆

external
RC − ∆

internal
RC (3.32)

Preliminary Results for Neutron Quantities & Discussion

The Born cross section differences were rebinned by W and then interpolated to

constant Q2. For the results presented here, the contribution from the quasielas-

tic tail has not been subtracted away yet.. The “neutron-in-3He” spin structure

functions, g3
1 & g3

2, at constant Q2 were then extracted from these parallel & per-

pendicular cross section differences, see Eqns. (3.17) & (3.18). The generalized
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GDH integrand for I3
A using the “Hand” convention was calculated using g3

1 &

g3
2, see Eqn. (3.21). The first moment Γ̄3

1 was calculated by integrating over g3
1, see

Eqn. (3.20). Since our data only covered the resonance region, the small contribu-

tion from the DIS region was calculated using the Thomas & Bianchi parameteriza-

tion [61]. Finally, Γ̄1 for the neutron was extracted using the effective polarization

method, see Eqn. (3.22).

Preliminary results for g3
1,2 are depicted in Figs. (3.12). Just as for E94010, g3

2

is, to a very good approximation, the negative of g3
1, as naively expected by the

Wandzura & Wilzcek relation, see Eqn. (2.204). The generalized GDH integrand is

shown in (3.13). The large negative peak near W = 1.2GeV due to the ∆-resonance

is readily apparent. Whereas the statistical uncertainties are very small, the sys-

tematic uncertainties are quite large. This intergrand still includes the tail of the

quasielastic peak.

Fig. 3.14) depicts the preliminary results for Γ̄n
1 and In

A. These plots include

radiative corrections but not the final polarimetry results described in Sec. (4.6).

There is excellent agreement between the second lowest Q2 point for E94010 and

the highest Q2point for E97110 at Q2 ≈ 0.25 GeV2. Within the quoted system-

atic uncertainies, the lowest Q2 point for E94010 and the second highest Q2point

for E97110 at Q2 ≈ 0.1 GeV2 are in agreement. Although the systematic uncer-

tainies are quite large, the E97110 data indicate that generalized GDH integral

“turns over” at ≈ 0.1 GeV2 which is in good agreement with the MAID model.

Finally, we’ll note that the lowest three Q2points appear to indicate a much shal-

lower slope for the GDH integral at low Q2than both the BChPT predictions and

the MAID model at Q2 = 0.
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3.6 E02013: GEN

3.6.1 Introduction

E02013 (“Measurement of the Neutron Electric Form Factor Gn
E at High Q2”) ran

from February to May 2006. The double polarization method was used to measure

the transverse asymmetry Atrans, which is directly related to ratio of the electric to

magnetic form factor Gn
E/Gn

M. Combined with recent precision measurements [62]

of Gn
M over the same Q2 range, the neutron electric form factor Gn

E was extracted.

Although complicated by relativistic effects, electromagnetic form factors of nucle-

ons encode information about the spatial distribution of their charge and magne-

tization, see Sec. (2.3.4). At low Q2, these distributions are indicative of a virtual

pion cloud. At high Q2, these distributions are attributable to quarks degrees of

freedom. In this regime (Q2 > 1 GeV), the ratio of the proton’s electric to magnetic

form factor drops linearly with increasing Q2, see Fig. (2.4). This surprising obser-

vation may have intriguing implications about the spatial distributions of quarks

withing in the nucleon.

Precise data free of significant nuclear effects & model dependence for the neu-

tron electric form factor are limited and, before this experiment, essentially no data

existed above Q2 = 1.65 GeV2, see Fig. (2.9). Towards that end, since the mid-90’s,

Gn
E has been exclusively accessed via polarization observables from quasielastic

scattering from deuterium and 3He targets. Although limited in Q2 range and

statistics, these data seem to indicate that, unlike for the proton, Gn
E/Gn

M increases

linearly, see Fig. (2.8), and τ Fn
2 /κ

?
nF2

1 is constant for increasing Q2, see Fig. (2.12).

Our data doubled the Q2 range of Gn
E extracted from polarization observables and

helped determine whether these trends continue, see Sec. (3.6.4).
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Figure 3.15: Schematic of E02013. (Provided by S. Riordan)

We measured the semi-inclusive quasielastic scattering of polarized electrons

from a polarized 3He target. The scattered electron was detected in coincidence

with the recoiling neutron, see Fig. (3.15). Data were taken for Q2 values of 1.4, 1.7,

2.5, & 3.4 GeV2, see Tab. (3.9). Our data are a critical test of theoretical models can

successfully reproduce the proton form factor ratio. In addition, our data provide

important constraints to generalized parton distribution (GPD) models at high Q2.

3.6.2 The Polarized He-3 Target

The target for this experiment was significantly different than the standard Hall A

polarized 3He target described in the previous section:
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Q2 (GeV2) 1.4 1.7 2.5 3.4

kinematic 1 4 2a,2b 3a,3b

dates 03/05–03/08 05/03–05/12 03/09–03/21
04/17–04/24

03/24–04/17
04/24–05/03

cell barbara edna dolly
edna edna

〈Pb〉 (0.85) 0.85 0.85 0.83
〈Pt〉 (0.40) 0.49 0.45 0.48

E (GeV) 1.52 2.08 2.64 3.29
−θ (deg) 56 52 52 52
E′ (GeV) 0.88 1.13 1.28 1.41

βn 0.80 0.87 0.91 0.94
−θn (deg) 36 33 28 25
dND (m) 8.2 8.2 11 11

Table 3.9: Nominal Experimental Parameters for E02013

1. To shield the target cell from fringe fields from Big Bite, the target cell was

enclosed in a large iron box, see Fig. (3.16). The field inside the box was

sufficiently uniform to maintain high target polarization and minimize any

losses during an adiabatic fast passage (AFP) spin flip.

2. A second set of NMR coils was used to monitor the relative polarization in

the pumping chamber. This helped minimize the uncertainty in the polariza-

tion gradient corrections between the two chambers, see Sec. (6.4.3).

3. The UNRAT optics system, see Sec. (??), in combination with 75 m armored

optical fibers were used to deliver the optical pumping laser light to the tar-

get. This mitigated the need to install a shielded laser hut (saving much

needed space in the Hall). In addition, this significantly reduced any possi-

ble optical pumping inefficiencies due to “skew” pumping, see Sec. (5.4.1).
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Figure 3.16: Schematic of the Target for E02013. (Provided by A. Kelleher)

4. Alkali-hybrid SEOP, see Chp. (5), was used for the first time in a polarized

3He target for electron scattering. This resulted in record high (at the time) in-

beam target polarizations, see Fig. (3.17), that, in addition, were significantly

higher than the proposal goal.

5. The target cell had a significantly larger pumping chamber which reduced

the sensitivity to beam depolarization, see. (6.3).

The changes in the target were so successful that pumping chamber NMR coils, the

UNRAT optics system, alkali-hybrid SEOP cells, and larger pumping chambers are

all now part of the standard polarized 3He target. Further details about the target

and polarimetry can be found in [63, 64].

3.6.3 The “Detector”

Because Gn
E is a naturally small quantity and nucleon elastic scattering cross sec-

tions drop off as Q−12(!), a very acceptance large electron spectrometer was re-
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Figure 3.17: Target Polarization During E02013. (Provided by A. Kelleher)

quired to accumulate statistics at sufficiently high rate. To that end, a non-super-

conducting non-focusing dipole magnet called “Big Bite” was installed in Hall A.

Big Bite has a combined momentum & solid angle acceptance that is about 70 times

larger than that for the HRS. It was outfitted with, see Fig. (3.18):

1. a set of three custom built multiwire drift chambers used for tracking.

2. a set of preshower & shower counters for triggering the DAQ, particle iden-

tification, and coarse tracking.

3. a single scintillator plane used to obtain precise timing information necessary

for forming a coincidence with the neutron detector.

Except for the first kinematic setting, Big Bite was kept at fixed position with re-

spect to the target.
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One additional criteria for being a “good” electron was required for this exper-

iment: scattering quasielastically from a neutron. This was accomplished by tag-

ging each electron scattering event measured in Big Bite with a coincident neutron

event in a neutron detector. The main task of the neutron detector was to identify

neutrons and determine their momentum via their time of flight. For each beam

energy, the neutron detector had to be moved to a different location as prescribed

by the kinematics. The distance between the target and the neutron detector was

chosen to achieve a given timing resolution for the time of flight determination.

The physical size (cross sectional area) of the detector was chosen to match the

kinematic acceptance of Big Bite.

The neutron detector consisted of a pair scintillating layers in front of a set

of seven alternating layers of converter material and scintillating material, see

Fig. (3.18). A converter layer, composed of iron or lead, increased the probabil-

ity that the neutron will create an electromagnetic shower. First, charged particles

(protons) were distinguished from uncharged particles (neutrons and gammas) by

their greater likelihood of producing a signal in surface layers of scintillators (the

“veto” layer). Second, the time of flight (calculated by a timing signal from the Big

Bite spectrometer and the signal from the inner scintillators of the neutron detec-

tor) was used to help distinguish neutrons from gammas.

3.6.4 Analysis & Results

Overview

Full details of the analysis can be found in [63–65]. The goal is to extract Gn
E from

the quasielastic transverse asymmetry Atrans for polarized electron scattering from
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Figure 3.18: Schematic of the Big Bite & Neutron Detector. (Provided by A. Kelle-
her)

a polarized 3He target. Using Eqns. (2.57), (2.128), & (2.129), the physics asymme-

try can be written as [66]:

Aphys = A0(Λ)

{[
P̂t · q̂

]((E + E′) tan
(
θ
2

)
2Mn

)
+
[
P̂t · (n̂× q̂)

]
Λ

}
=
∞

∑
n=0

TnΛ
n (3.33)

where Λ = Gn
E/Gn

M, A0(Λ) is the “scale” asymmetry that depends on Λ & is defined

by Eqn. (2.130), and the vectors are defined in Secs. (2.1.3) & (2.3.3). The experiment

was designed such that P̂t · (n̂× q̂)� P̂t · q̂ ≈ 0, which makes Aphys ≈ Atrans. Since

Λ is small, A0(Λ) is Taylor expanded about Λ = 0, and, multiplying everything out,

yields the “polynomial sum” in Eqn. (3.33), where the expansion coefficients Tn are

given by:

T2n = −
[
P̂t · q̂

]√
1− ε2

(
− ε
τ

)n
(3.34)

T2n+1 = −
[
P̂t · (n̂× q̂)

]√2ε(1− ε)
τ

(
− ε
τ

)n
(3.35)
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The ratio Λ = Gn
E/Gn

M was solved for numerically using the polynomial sum trun-

cated at fifth order in Λ. Finally, Gn
E was extracted by multiplying Λ by Gn

M from a

recent precision measurement from Hall B at JLab [62]. We’ll now describe these

steps in more detail.

“Good” Electron Selection

Tracking information from Big Bite identifies negatively charged particles scattered

from the target and determines the 4-momentum transfer q. Cuts on the energy de-

posited in preshower & shower separates electrons from pions. The timing infor-

mation from the scintillator in Big Bite combined with the signal from the Neutron

Detector creates a coincidence signal and determines the momentum of the scat-

tered nucleon pn via time of flight. Quasielastic neutron events are distinguished

from inelastic events by a cut on the invariant mass W =
√

M2
n + 2Mnν − Q2 ≈ Mn

and a coincidence signal from the neutron detector. Cuts on the missing mass W ′ =√
(P3 + q− pn)2, where P3 = (M3,~0) is the initial momentum of the 3He nucleus

with mass M3, help eliminate the pion electroproduction events.

The missing momentum (~q− ~pn) is a measure of the the neutron momentum

within the 3He nucleus before scattering. Scattering from neutrons with low ini-

tial momenta are considered quasi-free. Therefore cuts are placed on the miss-

ing momentum to selects these events. This cut minimizes the effect of final state

interactions (FSI) due to scattering of the struck nucleon from the spectator nu-

cleons. In addition, this cut preferentially selects neutrons in the S basis state of

the 3He ground state wavefunction, which modifies the calculation of the effective

neutron polarization Pn inside the 3He nucleus presented in Sec. (3.1).
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Extracting Aphys

The raw asymmetry is formed from events N± that survive these cuts and is related

to the physics asymmetry by:

Araw =
N+− N−

N+ + N−
= DN2 DBDpDFSIPbPtPn Aphys + A′N2

+ A′B + A′p + A′other (3.36)

where DN2 ,B,p,FSI & A′N2 ,B,p,FSI are the dilution factors & “apparent asymmetries”

due to N2 in the target cell, background, protons, & final state interactions/other

sources and Pb,t,n are the beam, 3He , and effective neutron polarizations. The ap-

parent asymmetries are defined by A′X = (N+
X − N−X )/(N+ + N−), where N±X are

events due to X that survived past the cuts. The dilution and apparent asymmetry

due to the background is measured using a subset of the data selected by an “in-

verse” cut on the time of flight. The dilution due to nitrogen is measured using a

reference cell with N2 , while the apparent asymmetry is taken to be 0. Corrections,

Dp & A′p, due to the possible misidentification of protons as neutrons are calculated

using a Monte Carlo simulation and cross-checked by comparing yields from dif-

ferent nuclear targets. The correction, DFSI, due to final state interactions (already

suppressed by a cut on the missing momentum) are calculated from theory.

Extracting Gn
E

The scattering angle of the electron varies over the acceptance of the Big Bite spec-

trometer. Therefore, Aphys is really a “kinematic weighted average” over the accep-

tance of Big Bite [66]:

Aphys =
∞

∑
n=0
〈TnΛ〉BB ≈

5

∑
n=0
〈Tn〉BB 〈Λ〉

n
Q2 (3.37)
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where 〈· · · 〉BB refers to the average over the acceptance of Big Bite. By assuming

that Λ varies linearly with Q2 across the acceptance, we can calculate acceptance

averaged expansion coefficients 〈Tn〉BB using a Monte Carlo simulation. Further-

more, 〈Λ〉Q2 can be interpreted as the neutron form factor ratio at an average 〈Q2〉

given by 〈T1Q2〉BB / 〈T1〉BB. The ratio 〈Λ〉Q2 can be solved for numerically by trun-

cating the polynomial sum at fifth order n = 5. Finally, Gn
E(Q2) is obtained by

〈Λ〉Q2 Gn
M(Q2).

Near Final Results & Discussion

Near final results are depicted for the Q2 = 1.7, 2.5, & 3.4 GeV points in Fig. (3.19).

The E02013 data has nearly the doubled Q2 range over which Gn
E has been mea-

sured. The pQCD scaling with two different values for the “soft scale” parameter

Λ do not describe the high Q2 data of this experiment very well. The relativistic

constitutent quark model and the vector meson domiinace model depicted in the

plot are all within one sigma of the data, but consistently overestimate the mea-

sured values. The calculation using a solution to the Dyson-Schwinger Equations

(i.e. the diquark model) appears to describe the data the best. Finally, although

the highest Q2 measurement before this experiment (Q2 ≈ 1.4 GeV2) appears to

be quite higher than the lowest Q2 point for this experiment (Q2 ≈ 1.7 GeV2), the

difference between these two measurements is not statistically significant.
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Figure 3.19: Ratio of Gn
E to Gn

M with near final Results for E02013. (Provided by
S. Riordan) Red triangles are the data from E02013. The other data are the same
as discussed in Sec. (2.3.4) and shown in Fig. (2.8). The F2/F1 ratios are calcula-
tions from pQCD [67], see Sec. (2.3.5). RCQM is the prediction from Miller’s rel-
ativisitic constituent quark model [68], see Sec. (2.3.5). GPD is a parameterization
of generalized parton distributions from prior nucleon form factor data [69, 70],
see Sec. (2.3.5). VMD is the generalized vector meson dominance model of Lomon
[71, 72], see Sec. (2.3.5). Fadeev & DSE is the prediction from a solution to the
Dyson-Schwinger Equations [73], see Sec. (2.3.5).
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inelastic scattering of polarized electrons off polarized 3He and the neutron

spin structure functions. Phys. Rev. C, 48(3):R968–R972, Sep 1993.

[36] F. Bissey, V. Guzey, M. Strikman, and A. Thomas. Complete analysis of spin

structure function g1 of 3He. Phys. Rev. C, 65(6):064317, Jun 2002.

[37] M. Anselmino, A. Efremov, and E. Leader. The theory and phenomenology of

polarized deep inelastic scattering. Physics Reports, 261(1-2):1 – 124, 1995.

[38] M. Anselmino, A. Efremov, and E. Leader. Errata: The theory and phe-

nomenology of polarized deep inelastic scattering. Physics Reports, 281(5-

6):399 – 400, 1997.

[39] Hunter Leigh Middleton. The Spin Structure of the Neutron Determined Using a

Polarized 3He Target. PhD thesis, Princeton University, 1994.

http://www.sciencedirect.com/science/article/B6TVP-3YF4GX0-C/2/f7526a86f5494d2ac312172b73bea3bb
http://www.sciencedirect.com/science/article/B6TVP-3YF4GX0-C/2/f7526a86f5494d2ac312172b73bea3bb
http://www.sciencedirect.com/science/article/B6TVP-3SPGX2T-6/2/70ae8eb53d916e55c9b49072ddfae2d5
http://www.sciencedirect.com/science/article/B6TVP-3SPGX2T-6/2/70ae8eb53d916e55c9b49072ddfae2d5


BIBLIOGRAPHY 243

[40] Ioannis Kominis. Measurement of the Neutron (3He ) Spin Structure at Low Q2

and the Extended Gerasimov-Drell-Hearn Sum Rule. PhD thesis, Princeton Uni-

versity, 2001.

[41] Mikhail V. Romalis. Laser Polarizaed 3He Target Used for a Precision Measurement

of the Neutron Spin Structure. PhD thesis, Princeton University, 1997.

[42] David R. Lide (Editor-in Chief). CRC Handbook of Chemistry and Physics. CRC

Press, Boca Raton, FL, 75th student edition, 1994.

[43] M.A. Zucker, A.R. Kishore, R. Sukumar, and R.A. Dragoset. Elemental Data

Index (version 2.1). [Online] Available: http://physics.nist.gov/EDI [2008,

April 20].

[44] Christopher James Erickson. Measurements Of The Magnetic Field Dependence

Of The Spin Relaxation Rate In Alka¿¿¿li Metal Vapors. PhD thesis, Princeton

University, 2000.

[45] P.H. Schmidt. The Purification of Cesium and Rubidium Metals by Chloride

Reduction under High Vacuum Conditions. Journal of the Electrochemical Soci-

ety, 116:1279–1282, September 1969.

[46] J. Alcorn et al. Basic instrumentation for Hall A at Jefferson Lab. Nuclear In-

struments and Methods in Physics Research Section A: Accelerators, Spectrometers,

Detectors and Associated Equipment, 522(3):294 – 346, 2004.

[47] T. B. Humensky et al. SLAC’s polarized electron source laser system and min-

imization of electron beam helicity correlations for the E-158 parity violation

experiment. Nuclear Instruments and Methods in Physics Research Section A: Ac-

http://www.hbcpnetbase.com/
http://physics.nist.gov/EDI
http://physics.nist.gov/EDI
http://proquest.umi.com/pqdweb?did=731959461&sid=6&Fmt=2&clientId=3507&RQT=309&VName=PQD
http://proquest.umi.com/pqdweb?did=731959461&sid=6&Fmt=2&clientId=3507&RQT=309&VName=PQD
http://dx.doi.org/10.1149/1.2412298
http://dx.doi.org/10.1149/1.2412298


BIBLIOGRAPHY 244

celerators, Spectrometers, Detectors and Associated Equipment, 521(2-3):261 – 298,

2004.

[48] Christoph W. Leemann, David R. Douglas, and Geoffrey A. Krafft. The Con-

tinuous Electron Beam Accelerator Facility: CEBAF at the Jefferson Labora-

tory. Annual Review of Nuclear and Particle Science, 51(1):413–450, 2001.

[49] Adam M. Bincer. Scattering of Longitudinally Polarized Fermions. Phys. Rev.,

107(5):1434–1438, Sep 1957.

[50] G. W. Ford and C. J. Mullin. Scattering of Polarized Dirac Particles on Elec-

trons. Phys. Rev., 108(2):477–481, Oct 1957.

[51] G. W. Ford and C. J. Mullin. Errata: Scattering of Polarized Dirac Particles on

Electrons. Phys. Rev., 110(6):1485, Jun 1958.

[52] A. Ra̧czka and R. Ra̧czka. Møller Scattering of Arbitrarily Polarized Electrons.

Phys. Rev., 110(6):1469–1471, Jun 1958.

[53] D. Drechsel, O. Hanstein, S. S. Kamalov, and L. Tiator. A unitary isobar model

for pion photo- and electroproduction on the proton up to 1 GeV. Nuclear

Physics A, 645(1):145 – 174, 1999.

[54] Vincent Anthony Sulkosky. THE SPIN STRUCTURE OF 3He AND THE NEU-

TRON AT LOW Q2:A MEASUREMENT OF THE GENERALIZED GDH INTE-

GRAND. PhD thesis, College of William and Mary, 2007.

[55] L. W. Mo and Y. S. Tsai. Radiative Corrections to Elastic and Inelastic ep and

up Scattering. Rev. Mod. Phys., 41(1):205–235, Jan 1969.



BIBLIOGRAPHY 245

[56] Y. S. Tsai. SLAC-PUB-0848: Radiative Corrections to Electron Scattering. January

1971.

[57] S. Stein et al. Electron scattering at 4o with energies of 4.5–20 GeV. Phys. Rev.

D, 12(7):1884–1919, Oct 1975.

[58] A. Amroun et al. 3H and 3He electromagnetic form factors. Nuclear Physics A,

579(3-4):596 – 626, 1994.

[59] I. Sick. Elastic electron scattering from light nuclei. Progress in Particle and

Nuclear Physics, 47(1):245 – 318, 2001.

[60] I. Akushevich, A. Ilyichev, N. Shumeiko, A. Soroko, and A. Tolkachev. POL-

RAD 2.0. FORTRAN code for the radiative corrections calculation to deep

inelastic scattering of polarized particles. Computer Physics Communications,

104(1-3):201 – 244, 1997.

[61] E. Thomas and N. Bianchi. First Regge parameterisation of polarized DIS

cross section. Nuclear Physics B - Proceedings Supplements, 82:256 – 261, 2000.

Proceedings of the International Conference on the Structure and Interactions

of the Photon, including the 12th International Workshop on Photon-Photon

Collisions.

[62] J. Lachniet et al. Precise Measurement of the Neutron Magnetic Form Factor

Gn
M in the Few-GeV2 Region. Phys. Rev. Lett., 102(19):192001, May 2009.

[63] Aidan M. Kelleher. A MEASUREMENT OF THE NEUTRON ELECTRIC

FORM FACTOR AT VERY LARGE MOMENTUM TRANSFER USING POLAR-

IZED ELECTRONS SCATTERING FROM A POLARIZED HELIUM-3 TAR-

GET. PhD thesis, College of William and Mary, 2010.



BIBLIOGRAPHY 246

[64] Ameya Suresh Kolarkar. PRECISION MEASUREMENTS OF THE NEUTRON

ELECTRIC FORM FACTOR AT HIGH MOMENTUM TRANSFERS. PhD the-

sis, University of Kentucky, 2008.

[65] Seamus Patrick Riordan. Measurements of the Electric Form Factor of the Neutron

at Q2= 1.7 and 3.5 GeV2. PhD thesis, Carnegie Mellon, 2008.

[66] G. B. Franklin. Gn
E asymmetry corrections for finite angular acceptance.

Carnegie Mellon Technical Note.

[67] A. V. Belitsky, Xiangdong Ji, and Feng Yuan. Perturbative QCD Analysis of

the Nucleon’s Pauli Form Factor F2(Q2). Phys. Rev. Lett., 91(9):092003, Aug

2003.

[68] Gerald A. Miller. Light front cloudy bag model: Nucleon electromagnetic

form factors. Phys. Rev. C, 66(3):032201, Sep 2002.

[69] M. Diehl, Th Feldmann, R. Jakob, and P. Kroll. Generalized parton distribu-

tions from nucleon form factor data. The European Physical Journal C - Particles

and Fields, 39:1–39, 2005. 10.1140/epjc/s2004-02063-4.

[70] M. Guidal, M. V. Polyakov, A. V. Radyushkin, and M. Vanderhaeghen. Nu-

cleon form factors from generalized parton distributions. Phys. Rev. D,

72(5):054013, Sep 2005.
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Chapter 4

3He Polarimetry

The 3He polarization can be measured using two independent techniques. The

first is Nuclear Magnetic Resonance (NMR) technique of Adiabatic Fast Passage

(AFP). The second, referred to as “EPR”, is the Electron Paramagnetic Resonance

(EPR) frequency shift polarimetry. NMR is a relative polarization monitor that can

be calibrated using a signal from a sample of water or by comparison to EPR. We’ll

describe how to perform these measurements and how to extract 3He polarization

from them. In addition, we’ll describe a potentially large systematic error for EPR

due to the AC Zeeman Effect. The water NMR signal and the EPR frequency shift

can both be used to determine the sign of the 3He polarization relative to the hold-

ing field. Finally, we’ll describe the polarimetry analysis for E97110 (Small Angle

GDH).
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4.1 Introduction

The 3He polarization is obtained by measuring the effect of the magnetic field ~BHe

produced by the polarized 3He gas in the cell. This magnetic field depends on the

geometry of the cell and the location ~r of the measurement by [1]:

~BHe(~r, t) = ~∇× ~A(~r, t) ~A(~r, t) =
µ0

4π

Z ~M(~u, t)× (~r− ~u)

|~r− ~u|3
d3u (4.1)

where ~A(~r, t) is the magnetic vector potential of the polarized 3He gas, t is time, µ0

is magnetic permeability of free space (i.e. the relative magnetic permeability of air

and glass is essentially unity), ~M(~u, t) is the magnetization of the polarized 3He gas

at a location ~u, and the integral is performed over the inner volume of the cell. The

magnetization is defined as the average magnetic moment per unit volume:

~M(~u, t) = 〈~µ(~u, t)〉n(~u, t) (4.2)

where n is local 3He number density and 〈~µ〉 is the combined statistical & quantum

mechanical expectation value of the 3He magnetic dipole moment:

〈~µ(~u, t)〉 = gµN

〈
~S(~u, t)

〉
=

gµN

2
PHe~p(~u, t) (4.3)

where g is the 3He g-factor in units of the nuclear magneton µN, ~S is the spin-1/2

vector operator, PHe is the 3He polarization, and ~p is the polarization vector. Be-

cause BHe is so small (on order of mG under our typical conditions), a technique

called “Adiabatic Fast Passage” (AFP) is used to isolate ~BHe from larger surround-

ing fields by reversing the sign of B̂He (i.e. “flipping the spins”). The time depen-
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dence of this spin-flip process is encoded in the polarization vector which will be

calculated in the next section.

4.2 Adiabatic Fast Passage of the Polarization Vector

Both NMR & EPR make use of AFP to rotate the polarization vector (i.e. flip the

spins) of the 3He nuclei with a relatively small loss of polarization. In this section,

the motion of the polarization vector will be calculated quantum mechanically.

The Hamiltonian for a spin-1/2 particle in a longitudinal (ẑ) “holding” field with

magnitude B and a transverse (ŷ) RF (radiofrequency) field with magnitude 2B1 &

frequency ωrf is:

H = −gµN~S ·
[
Bẑ + 2B1 cos (ωrft) ŷ

]
= −s~

[
(ωrf + ∆) Sz + 2ω1 cos (ωrft) Sy

]
(4.4)

where s is the sign of the particle’s magnetic moment (s = g/|g|) and:

∆ = |γ|B− ωrf ω1 = |γ|B1 ω0 = |γ|B0 γ =
gµN

~
(4.5)

where ∆ is the “detuning”, B0 & ω0 are the field & frequency at which ∆ = 0, and

γ is the particle’s gyromagnetic ratio. We can represent the general spin state Ψ of

the particle in the {|±〉} basis as:

|Ψ〉 = a(t) exp
[
+

is(ωrf + ∆)t
2

]
|+〉+ b(t) exp

[
− is(ωrf + ∆)t

2

]
|−〉 (4.6)
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Plugging this into Schrodinger’s equation, i~∂ |Ψ〉/∂t = H |Ψ〉, results in two cou-

pled differential equations for the coefficients a & b:

da
dt

= ȧ = +
sbω1

2
(
1 + exp [−si2ωrft]

)
exp [−is∆t] (4.7)

db
dt

= ḃ = −saω1

2
(
1 + exp [+si2ωrft]

)
exp [+is∆t] (4.8)

We’ll now make the time honored “rotating wave approximation” (RWA) [2] and

simply drop the term occurring at a frequency 2ωrf:

ȧ = +
sbω1

2
exp [−is∆t] ḃ = −saω1

2
exp [+is∆t] (4.9)

Note that this term does have a small effect: (1) The main resonance is shifted

to ω0

(
1 + ω2

1
4ω2

0
+ · · ·

)
(i.e. the “Bloch-Siegert” shift [3]) and (2) There are, in gen-

eral, resonances at frequencies ωn = ω0
2n+1 where n ≥ 0 [4]. However, all resonances

for n 6= 0 are very weak under our conditions. Solving the equation for da/dt in

Eqn. (4.9) for b, differentiating with respect to t, and plugging in the equation for

db/dt gives:

ä + is∆ȧ +
ω2

1

4
a = 0 (4.10)

This is solved straightforwardly using the substitution a = eiλt:

λ =
−s∆±Ω

2
Ω =

√
∆2 + ω2

1 (4.11)

where Ω is the venerable Rabi frequency [5]. Note that the RWA is valid only for

Ω� 2ωrf. After enforcing unit normalization (〈Ψ | Ψ〉 = 1), the general solution
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for Ψ in the {|±〉} basis can be written as:

|Ψ〉 = A(t) exp
[
+is

ωrf

2
t
]
|+〉+ B(t) exp

[
−is

ωrf

2
t
]
|−〉 (4.12)

A(t) = a1 exp
[
+i

Ω

2
t
]

+ |a2|exp
[
−i

Ω

2
t− iφ

]
(4.13)

B(t) = ia1

√
1− s ∆

Ω

1 + s ∆

Ω

exp
[
+i

Ω

2
t
]
− i|a2|

√
1 + s ∆

Ω

1− s ∆

Ω

exp
[
−i

Ω

2
t− iφ

]
(4.14)

|a2|2 =
1
2

[
1− s

∆

Ω

]
− a2

1

[
1− s ∆

Ω

1 + s ∆

Ω

]
(4.15)

where the real constants a1 & φ are specified by initial conditions. The components

of the expectation value of 〈Ψ| ~S |Ψ〉 are:

〈Sx〉 = −sa1|a2|
{[

Ω + s∆

ω1

]
sin(sωrft + Ωt + φ)−

[
Ω− s∆

ω1

]
sin(sωrft−Ωt− φ)

}
+s
[

2|a1|2
(

Ω− s∆

ω1

)
− ω1

2Ω

]
sin(sωrft) (4.16)

〈
Sy
〉

= −sa1|a2|
{[

Ω + s∆

ω1

]
cos(sωrft + Ωt + φ)−

[
Ω− s∆

ω1

]
cos(sωrft−Ωt− φ)

}
+s
[

2|a1|2
(

Ω− s∆

ω1

)
− ω1

2Ω

]
cos(sωrft) (4.17)

〈Sz〉 =
s∆

2Ω

[
4|a1|2

1 + s ∆

Ω

− 1

]
+ 2a1|a2| cos(Ωt + φ) (4.18)

We’ll specify the initial condition that, when the detuning is large (|∆|� ω1), |Ψ0〉=

|±〉, which implies that the constants are:

 a1 = 1
2

[
1 + s ∆

Ω

]
a2 = 0

 for s∆ > 0

 a1 = 0

a2 = 1
2

[
1− s ∆

Ω

]
 for s∆ < 0 (4.19)



4.2. ADIABATIC FAST PASSAGE OF THE POLARIZATION VECTOR 253

If the fraction of particles with the initial condition |Ψ0〉 = |±〉 is given by fΨ0 =

(1± PHe)/2, then the statistical average of the expectation value of ~S is given by:

〈
~S
〉

= ∑
Ψ0

fΨ0

〈
~S
〉

Ψ0

=
(

1 + PHe

2

)〈
~S
〉

+
+
(

1− PHe

2

)〈
~S
〉
−

=
PHe

2
~p (4.20)

where the polarization vector is given by:

~p = s

(ω1

Ω

)x̂ sin(sωrft) + ŷ cos(sωrft)︸ ︷︷ ︸
ŷrot

+
∆

Ω
ẑ

 = s
[(ω1

Ω

)
ŷrot +

∆

Ω
ẑ
]

(4.21)

In the reference frame rotating at a frequency −sωrf about the axis ẑ defined by

holding field, the bracketed term ŷrot is the unit vector in the transverse direction

to ẑ. In this “rotating” frame, the polarization vector ~p is parallel to an effective

field given by:

~Beff =
ω1 ŷrot + ∆ẑ
|γ| =

~Ω

|γ| → ~p = s
~Ω

Ω
= sB̂eff (4.22)

If the detuning ∆ is varied slow enough, then ~p will follow adiabatically (i.e. stay

aligned) with ~Beff, see Fig. (4.1). At the “resonance” condition ∆ = 0, the polariza-

tion vector is aligned with the RF field transverse to the holding field.

The detuning ∆ is swept by ramping either the holding field B or the RF fre-

quency ωrf. The rate of change of ∆ is considered “slow” if the fractional change

in Ω over one period of Ω is very small:

δA ≡
(
fractional change in Ω

)
×
(
one period of Ω

)
=
∣∣∣∣ 1
Ω

∂Ω

∂t

∣∣∣∣(2π
Ω

)
� 1 (4.23)

This condition is most severely tested for the maximum value of δA and, assuming
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a linear sweep of ∆, it is given by:

δA ≤
4π

ω1
√

27

∣∣∣∣ ∆̇

ω1

∣∣∣∣ ∆̇ = |γ|dB
dt
− dωrf

dt
(4.24)

Therefore, δA� 1 is “adiabatic” condition. In this section, we’ve ignored the effect

of relaxation, which will be described more fully in Sec. (4.3.4), which provides a

lower limit on the rate of change:

δF ≡ polarization loss = (relaxation rate)× (time scale of relaxation)� 1 (4.25)

This condition is most severely tested for 3He near resonance:

δF ≤
1
T2

∣∣∣∣ω1

∆̇

∣∣∣∣ = D
B2

1

(
∂B
∂z

)2 ∣∣∣∣ω1

∆̇

∣∣∣∣ (4.26)

where T2 is the transverse relaxation rate, D is the 3He diffusion coefficient, and

we’ve assumed that the dominant 3He relaxation mechanism at resonance is due

to longitudinal magnetic field gradients [6–9], see Fig. (4.5). In summary, the rate of

change of the effective field must be slow enough for the spins to follow adiabatically

and fast enough to avoid polarization loss near resonance:

δF� 1� 1
δA

→ D
B2

1

(
∂B
∂z

)2

�
∣∣∣∣ Ḃ
B1
− ω̇rf

ω1

∣∣∣∣� ω1
√

27
4π

(4.27)

where ω̇rf = 0 (Ḃ = 0) for field (frequency) sweep AFP. Under our typical condi-

tions for 3He , Ḃ ≈ 1 G/s, 2B1 ≈ 100 mG, D ≈ 0.2 cm2/s, & ∂B/∂z = 10 mG/cm,

the AFP conditions are well satisfied (0.0004� 1� 20).
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“up” sweep “down” sweep

Rotating Frame

“up” sweep “down” sweep

Lab Frame

Figure 4.1: Adiabatic Fast Passage of SEOP Polarized 3He Spins in the Rotating &
Lab Frames. The thick red (thin black) arrow is the polarization vector (effective
field) in the rotating and lab frames. In the lab frame, the polarization vector is
precessing about the holding field at a RF frequency ωrf.
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4.3 NMR

According to Eqn. (4.21), the components of the polarization vector that are per-

pendicular to the holding field oscillate in time with a frequency of ωrf. This

motion of the spins results in an oscillating magnetic field due to the polarized

3He gas, see Fig. (4.1). In the NMR technique [4,10], a set of appropriately oriented

“pickup” coils are placed near the cell. The oscillating ~BHe induces a small oscil-

lating voltage in these pickup coils, which is then amplified by a lock-in amplifier

referenced to ωrf. Away from resonance |∆| � ω1, the induced voltage is small,

while, near resonance |∆| ≈ 0, the induced voltage is large. In the following sec-

tions, we will derive the lineshape (voltage measured by the lock-in as a function

of time) of the NMR signal as the detuning ∆ is swept linearly. The equations that

follow are equally valid for both field and frequency sweep AFP.

4.3.1 Pickup Coil Voltage

The voltage V induced in the pickup coils by the flipping spins is given by Fara-

day’s Law [11]:

V (t) = − d
dt

Z
~BHe(~r, t) · d~a (4.28)

where d~a infinitesimal area vector on the surface of the pickup coil. By representing

the field as the magnetic vector potential and applying Stokes’s Theorem, the flux

integral over the area of the coils can be reduced to an integral around the path of

the coils [12–14]:

Z
~BHe(~r, t) · d~a =

Z (
∇× ~A(~r, t)

)
· d~a =

I
~A(~r, t) · d~l (4.29)
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which gives:

V = −µ0

4π

Z I d ~M(~u, t)
dt

×
[
~r− ~u
|~r− ~u|3

]
· d~l d3u (4.30)

where ~u is the displacement vector from the origin to the infinitesimal volume

element d3u inside the cell and ~r is the displacement vector from the origin to the

infinitesimal line element d~l of the pickup coil.

The total time derivative of some vector ~V in the lab frame is related to its time

derivative in the rotating frame by:

[
d~V
dt

]
lab

=

[
∂~V
∂t

]
rot

+
[(
~ω+ t

d~ω
dt

)
× ~V

]
rot

(4.31)

where ~ω is the possibly time varying angular velocity of the rotating frame relative

to the lab frame. The dω/dt term is sometimes referred to as the “Euler force”

term [15] and it can neglected if the relative change in ω is small over the time

scale during which the vector ~V is changing the most. In our case, this occurs

for the magnetization vector during the time t0 ≈ ω1/|∆̇| near resonance, and with

ω = −sωrf, we find:

δR ≡
∣∣∣∣∣ 1
ω

∂ω

∂t

(
|∆~V|
|d~V/dt|

)∣∣∣∣∣ =
(
ω̇rf

ωrf

)(
ω1

|∆̇|

)
� 1 (4.32)

This is easily satisfied under our conditions because ω1 � ωrf and we’ll simply

ignore the Euler force (ω̇rf) terms going forward. Using the components (px, py, pz)

of the polarization vector in the rotating frame, we find that the time derivative of

the polarization vector in the lab frame is:

[
d~p
dt

]
lab

=
(

dpx

dt

)
x̂rot +

(
dpy

dt

)
ŷrot +

(
dpz

dt

)
ẑ− sωrf ẑ× ~p (4.33)
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which gives the total time derivative of the magnetization vector in the lab frame:

[
d ~M
dt

]
lab

=
[

gµN PHen
2

][ω1

Ω

][
ωrfx̂rot− s

Ω̇

Ω
ŷrot + s

∆̇ω1

Ω2 ẑ
]

(4.34)

where x̂rot is given by:

x̂rot =
(

s
ωrf

)
dŷrot

dt
= ŷrot× ẑ = x̂ cos(sωrft)− ŷ sin(sωrft) (4.35)

The terms related to ŷrot and ẑ are negligible when the RWA and adiabatic condi-

tion are valid (i.e. under our conditions):

∣∣∣∣−s
Ω̇

Ω

∣∣∣∣� Ω

2π
� ωrf

π
< ωrf

∣∣∣∣s ∆̇ω1

Ω2

∣∣∣∣ ≤ |∆̇|ω1
� ω1

√
27

4π
� ωrf (4.36)

Dropping these small terms, we can the write the induced voltage as:

V = −Vx cos(ωrft) + sVy sin(ωrft) (4.37)

where VN is defined as:

VN =
[µ0gµNωrf

8π

]Z I
PHe(~u)n(~u)

(
ω1(~u)
Ω(~u)

)
N̂(~u)×

[
~r− ~u
|~r− ~u|3

]
· d~l d3u (4.38)

where we’ve explicitly written out the position dependence of PHe, n, ω1, & Ω and

assumed that PHe & n do not change much during the measurement.
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4.3.2 The Flux Factor

Any spatial gradients in the 3He polarization PHe, 3He density n, the RF field ~B1,

and the holding field ~B are folded into the integral. Gradients in the magnitude

of B1 and B affect the shape, height, and resonance location of ω1/Ω. Gradients in

the pointing of the RF & holding fields affect the pointing of x̂rot. Because these

gradients are expected to be small, we’ll parametrize their effect by two unitless

quantities f (~u) and Gn
∇, which are equal to unity in the absence of all gradients.

First, a possible polarization and/or density gradient will be contained in the

function f (~u):

PHe(~u)n(~u) = 〈PHe〉V 〈n〉V f (~u)
Z

f (~u)
d3u
V

= 1 (4.39)

where the brackets 〈· · · 〉V refer to the average over a region with volume V. Sec-

ond, the effect due to magnetic field gradients can considered by expanding both

the lineshape ω1/Ω and unit vector N̂ about the center ~u0 of the region that contains

the spins:

[ω1

Ω

]
~u,t

=
[ω1

Ω

]
~u0,t

+ (~u− ~u0) ·
[
~∇ω1

Ω

]
~u0,t
· · ·

=
[ω1

Ω

]
~u0,t

+ (~u− ~u0) ·
[
~∇B0

] ∂

∂B0

[ω1

Ω

]
~u0,t
· · · (4.40)

~N(~u) = ~N(~u0) + (~u− ~u0) ·
[
~∇~N

]
~u0

+ · · · (4.41)

Putting this altogether gives:

Z I
PHe(~u)n(~u)

(
ω1(~u)
Ω(~u)

)
N̂(~u)×

[
~r− ~u
|~r− ~u|3

]
· d~l d3u = PHen

[ω1

Ω

]
~u0,t

GN
∇(t)ΦN (4.42)
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where PHe & n are volume average quantities and we’ve defined the “flux factor”

ΦN which contains all the geometrical information about the system:

ΦN =
Z I

f (~u) N̂(~u0)×
[
~r− ~u
|~r− ~u|3

]
· d~l d3u = c

VNtL
d2 (4.43)

where V is the volume of the region containing the spins, L is the length of the

coils, Nt is the number of turns, d is the distance between the center of the spin

region & the center of the pickup coils, and c is a unitless (and possibly negative)

number that contains all of the information about the integral & is of order 0.1

under our conditions. The “gain” due to magnetic field gradients is defined as:

GN
∇(t) =

1
ΦN

Z I
f (~u)

{
1 + (~u− ~u0) ·

[
~∇ω1

Ω

]
~u0,t

[
Ω

ω1

]
~u0,t

+ · · ·
}

·
[
~N(~u0) + (~u− ~u0) ·

[
~∇~N

]
~u0

+ · · ·
]
×
[
~r− ~u
|~r− ~u|3

]
· d~l d3u(4.44)

In practice, the pickup coils are usually placed near the target chamber. There-

fore, it is usually easier to discuss the flux factors from the target chamber Φtc
N of the

cell separately from the flux factors from the pumping chamber Φ
pc
N and transfer

tube Φtt
N. Putting this altogether, we find:

PHen
[ω1

Ω

]
~u0,t

GN
∇(t)ΦN = Ptcntc

[ω1

Ω

]
~u0,t

GN,tc
∇ (t)GN

Φ
Φ

tc
N (4.45)

where ~u0 is now chosen to be the center of the target chamber and we’ve defined

the “gain” due to the flux GN
Φ

:

GN
Φ

= 1 +
PttnttGN,tt

∇ Φtt
N + PpcnpcGN,pc

∇ Φ
pc
N

PtcntcGN,tc
∇ Φtc

N

→ 1 +
PttnttΦ

tt
N + PpcnpcΦ

pc
N

PtcntcΦ
tc
N

(4.46)
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where the arrow denotes the value in the absence of magnetic field gradients. Fi-

nally, each component of the induced voltage can be written as:

VN =
[µ0gµNωrf

8π

]
Ptcntc

[ω1

Ω

]
~u0,t

GN,tc
∇ (t)GN

Φ (t)Φtc
N (4.47)

4.3.3 Signal Shaping Effects

A lock-in amplifier is used to amplify the NMR signal from the pickup coils through

a preamplifier. This device essentially performs Fourier cosine and sine transforms

of the input signal at some reference frequency and outputs the RMS amplitudes

of the two components [16]:

V = −Vx cos(ωrft) + sVy sin(ωrft) ⇒

 Vx/
√

2

Vy/
√

2

 ⇒ Vin =
Vx√

2

√
1 +

V 2
y

V 2
x

(4.48)

where the signals from the two channels are added in quadrature by choosing the

phase of the lock-in such that most of the signal is “in” the x-channel. In practice,

the pickup coils are oriented such that their area vectors are approximately aligned

with x̂ and, as a consequence, Φy is much smaller than Φx. This is done to maximize

the voltage induced by the polarized 3He and minimize the voltage induced by the

RF field in the ŷ direction. Under these conditions, (Vy/Vx)2� 1 and Vin = Vx/
√

2.

The lock-in “performs” the Fourier transform using a mixer followed by a low

pass filter, which distorts the lineshape of the signal in the following way:

dVout

dt
=

Vin−Vout

τ
⇔ Vout(t) =

1
τ

Z t

−∞
exp

(
u− t
τ

)
Vin(u) du (4.49)

where τ is the lockin time constant. Note that since−∞< u≤ t, the quantity (u− t)
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will always be less than or equal to zero. The output signal is a time averaging of

the input signal with exponential weighting. Putting this altogether, we find:

Vout(t) = GLGPQ(ω0)
[
µ0gµNω0

8π
√

2

]
PtcntcΦ

tc
x `(t) (4.50)

where GL = 10 V/(lockin sensitivity) is the gain of the lockin, GP is the gain of the

preamp, and Q(ω) is the frequency dependent response of the pickup coil circuit

& BNC cables used for signal transmission, and the lineshape `(t) of the signal is

given by:

`(t) =
1
τ

Z t

−∞
exp

(
u− t
τ

)[
Q(ωrf(u))

Q(ω0)

][
ωrf(u)
ω0

][
Gx,tc
∇ (u)Gx

Φ
(u)√

1 + ∆2(u)/ω2
1

]
du (4.51)

4.3.4 Accounting for Relaxation: Modified Bloch Equations

Thus far, we’ve ignored the possibility of the relaxation of polarization to its equi-

librium value. For the case of proton NMR from a sample of liquid water, this

is an important omission because the relaxation time constants (T1,2 ≈ 3 s) are

on order of the total sweep time (2t0 ≈ 6 s). In other words, the “fast” condi-

tion (δF = 2t0/T1,2 � 1) is violated and the magnitude of the polarization changes

significantly during the sweep, see Figs. (4.2) & (4.3). The equations that govern

the time evolution of the magnetization vector as it approaches equilibrium in the

presence of static and RF fields are the modified Bloch equations (MBE) [4]. In

the lab frame, as the magnetization approaches the equilibrium value of ~M∞ at a

relaxation rate 1/T, the equations are, in SI units:

[
d ~M
dt

]
lab

= µ0γ
(
~M× ~Htot

)
−
(
~M− ~M∞

T

)
(4.52)



4.3. NMR 263

where we’ve assumed that the relative magnetic permeability of the air, glass,

& water are all unity and µ0 ~Htot = Bẑ + 2B1 cos(ωrft)ŷ in the lab frame. Using

Eqn. (4.31) to rewrite these equations in the rotating frame and allowing for differ-

ent longitudinal & transverse relaxation rates 1/T1 & 1/T2 and equilibrium polar-

ization ~M∞
long & ~M∞

trans, we find:

[
d ~M
dt

]
rot

= µ0γ
(
~M× ~Htot

)
−
(
~Mlong− ~M∞

long

T1

)

−
(
~Mtrans− ~M∞

trans

T2

)
−
(
~ω+ t

d~ω
dt

)
× ~M (4.53)

where Htot in the rotating frame is given by:

~Htot =
[
~Hlong

]
+
[
~Htrans

]
=
[

B
µ0

ẑ
]

+
[

B1

µ0
{ŷrot + ŷrot cos(2ωt) + x̂rot sin(2ωt)}

]
(4.54)

In the RWA (i.e. dropping the 2ω terms) and ignoring the Euler force (ω̇) terms,

Htot = ~Beff/µ0 in the rotating frame where ~Beff is given by Eqn. (4.22). It is more

convenient to represent the magnetization vector with the polarization vector in

the rotating frame:

~M =
gµN

2
nPscale

[
px x̂rot + py ŷrot + pz ẑ

]
(4.55)

where Pscale is some reference polarization used to set the scale for the polarization

vector. We can now rewrite the MBE Eqn. (4.53), again ignoring the Euler force (ω̇)
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terms following Eqn. (4.32), in the following way:

dpx

dt
= +s∆py−

(
px− p∞x

T2

)
− sω1 pz (4.56)

dpy

dt
= −

( py− p∞y
T2

)
− s∆px (4.57)

dpz

dt
= +sω1 px−

(
pz− p∞z

T1

)
(4.58)

where B1 = ω1/|γ| is the magnitude of the RF field in the rotating frame, ∆ =

(|γ|B− ωrf) is the detuning, B is the magnitude of the holding field, s is the sign

of the particle’s magnetic moment, 1/T1 & 1/T2 are the longitudinal & transverse

relaxation rates, and the equilibrium values are defined by:

~M∞
long =

gµN

2
nPscale

[
p∞x x̂rot + p∞y ŷrot

]
(4.59)

~M∞
trans =

gµN

2
nPscale p∞z ẑ (4.60)

These differential equations must be solved numerically using the appropriate ini-

tial conditions (p0
x, p0

y, p0
z). The values (peq

x , peq
y , peq

z ) for the polarization components

that give d~p/dt = 0 are:

peq
x =

p∞x + sT2

(
∆p∞y − ω1 p∞z

)
1 + ω2

1T1T2 + ∆2T2
2

peq
y = p∞y − s∆T2 peq

x

peq
z = p∞z + sω1T1 peq

x (4.61)

Because ωrf � ω1 � 1/T1,1/T2 under our conditions, ωrfpy is much greater than

the rotating frame derivatives ṗy & ṗz (which are essentially the approximations

made in Sec. (4.3.1)) and, in this case, ωrfpy� ṗx. Using these approximations and
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following the arguments of Sec. (4.3.3), we find:

Vout(t) = GLGPQ(ω0)
[
µ0gµNω0

8π
√

2

]
PscalentcΦ

tc
x `B(t) (4.62)

and the lineshape `B(t) of the signal is given by:

`B(t) =
1
τ

Z t

−∞
exp

(
u− t
τ

)[
Q(ωrf(u))

Q(ω0)

][
ωrf(u)
ω0

][
Gx,tc
∇ (u)Gx

Φ
(u)py(u)

]
du (4.63)

and it is straightforward to show that when the fast condition, Eqn. (4.25), is met,

py reduces to ω1/Ω.

For the case of protons in liquid water (i.e. thermal polarization), see Fig. (4.3),

we’ll make the choice to set the scale polarization to the thermal equilibrium po-

larization Pscale = χH0 at the resonance field B0 = ω0/|γ|:

Pth(B,T) = tanh
(

gµN B
2kT

)
≈ gµN B

2kT
=

gµNµ0H
2kT

= χH (4.64)

where Pth(B,T) is the thermal equilibrium polarization for a spin-1/2 particle due

to a field B at a temperature T, k is the Boltzmann constant, and the magnetic χ0 &

“reduced” magnetic χ susceptibilities are given by:

χ0 =
gµNn

2
χ =

γ2~2nµ0

4kT
χ =

gµNµ0

2kT
=
γ~µ0

2kT
(4.65)

We’ll make the same classic argument originally put forth by Bloch [20] that the

equilibrium polarizations approached are the thermal equilibrium polarizations
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“up” sweep “wait” “down” sweep “wait”

Figure 4.2: Adiabatic Passage of Thermally Polarized Proton Spins in the Rotating
Frame. The thick red (thin black) arrow is the polarization vector (effective field).
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Figure 4.3: Numerical Solution to MBE for Thermal Protons in Liquid Water. So-
lution was found using the “standard” 4th order Runge-Kutta algorithm [17–19]
with a time step size of 4.15 µs, T1 = 3.65 s, T2 = 3.25 s, Ḃ = 1.2 G/s, “wait” time
between sweeps of 5.83 s, “wait” time between sweep cycles of 24 s, B1 = 53 mG,
νrf = 91 kHz, a lockin time constant of τ = 30 ms, and no field gradients Gx,tc

∇ = 1.
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Figure 4.4: Top: Lockin Input (solid) vs. Lockin Output (dashed) for Field Sweep
AFP. Bottom: Frequency Sweep AFP (solid) vs. Field Sweep AFP (dashed) for
Lockin Output. The lockin time constant was τ = 30 ms and we’ve assumed that
Q(ωrf) = Q(ω0) for all ωrf. The field sweep was from 18 G to 25 G with νrf =
91.54 kHz, whereas the frequency sweep was from 105.4 kHz to 75.56 kHz with
B0 = 21.37 G. All other input parameters were the same as Fig. (4.3).
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Figure 4.5: 3He AFP polarization loss per spin flip vs. T2 and dBz/dz. We’ve used
Eqn. (4.26) using D = 0.2 cm2/s, B1 = 50 mG, and Ḃ = 1.2 G/s. See caption of
Fig. (4.6) for other 3He input parameters.
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due to the static and RF fields in the rotating frame:

p∞x = 0 p∞y =
B1

B0
p∞z =

B
B0

(4.66)

The initial conditions used in the numerical solution to these equations are the

values (peq
x , peq

y , peq
z ) given by:

p0
x = peq

x = −sω1T2

(
ωrf

ω0

)
η (4.67)

p0
y = peq

y =
ω1

ω0

[
1 + ∆ωrfT2

2η
]

(4.68)

p0
z = peq

z =
B
B0
− ω2

1T1T2

(
ωrf

ω0

)
η (4.69)

η =
[
1 + ω2

1T1T2 + ∆
2T2

2

]−1
(4.70)

For the case of SEOP polarized 3He (i.e. nonthermal polarization), see Fig. (4.6),

the scale polarization is the 3He polarization immediately before the measurement

Pscale = PHe. The equilibrium polarization are:

p∞x = 0 p∞y = χH1/PHe (4.71)

p∞z = χH/PHe (spindown) p∞z = P∞He/PHe (spinup) (4.72)

where p∞z depends on whether the 3He polarization is decaying to its thermal equi-

librium value (i.e. a “spindown”) or building up to its equilibrium value due to

spin-exchange (i.e. a “spinup”). The initial conditions used as input for the nu-

merical solution are given by:

p0
x = 0 p0

y =
ω1

Ω(t = 0)
p0

z =
∆(t = 0)
Ω(t = 0)

(4.73)
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Figure 4.6: Numerical Solution to MBE for SEOP Polarized 3He . Solution was
found using the “standard” 4th order Runge-Kutta algorithm [17–19] with a time
step size of 1.17 µs, T1 = 10 hr, T2 = 60 s, Ḃ = 1.2 G/s, B1 = 53 mG, νrf = 91 kHz,
PHe = 0.38, P∞He = 0.42, a lockin time constant of τ = 30 ms, and no field gradients
Gx,tc
∇ = 1.
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4.4 EPR Frequency Shift Polarimetry

4.4.1 Introduction

The optical detection of radiofrequency magnetic resonance in alkali atoms has a long

history that is intimately linked to the development of optical pumping, see for ex-

ample [21–26] and the optical pumping references in Sec. (5.2.2). Early on, it was

predicted and observed that the radiofrequency spectra of optically pumped al-

kali atoms are shifted due to spin exchange collisions, see for example [27,28]. The

“EPR” method described here [29–35] is a direct descendant of those techniques,

which takes advantage of the vaporized alkali metal present in the pumping cham-

ber of the target cell. These alkali metal atoms experience a small “effective” field

due to the presence of polarized 3He gas. According to Eqn. (4.21), when the NMR

RF frequency is far from resonance ∆� ω1, the effective field due to the 3He nuclei

points in the z-direction. This field (10’s of mG) produces small but precisely de-

tectable Zeeman shifts (10’s of kHz) in the alkali EPR spectrum that is proportional

to the 3He polarization and density. The average EPR transition frequency is lo-

cated by exciting the EPR transitions with a set of EPR RF coils and observing the

resulting change in some probe that is sensitive to the alkali polarization. This

probe has traditionally been the intensity of the D2 fluorescence that results from

optical pumping. The EPR RF coil frequency is modulated to transform the signal

from the photodiode into an error signal (i.e. a voltage linearly proportional to the

detuning from resonance). A proportional/integral (PI) feedback loop uses this

error signal to lock the RF coil frequency to the intensity averaged EPR frequency

while the direction of the 3He spins is reversed via AFP. This reversal isolates the

3He contribution to the EPR frequency and consequently the 3He polarization can
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be extracted from this frequency shift, Sec. (4.4.4). Additional sources of frequency

shifts correlated with the spin reversal include a drift in the baseline magnetic field,

the NMR RF AC Zeeman shift, Sec. (4.4.5), and a coupling between the fluores-

cence intensity to magnetic field gradients, Sec. (4.4.6).

4.4.2 The Error Signal: “FM Sweep” Lineshape

The EPR transitions are driven using a small RF coil, located near the pumping

chamber, producing an RF field perpendicular to the main holding field. The mod-

ulation of the EPR RF frequency is described by:

ωRF = ωm + (∆ω)m + Ωmod cos(ωmodt) (4.74)

where ωRF is the EPR coil frequency, (∆ω)m 1s the detuning between the coil fre-

quency and the EPR transition frequency ωm between the m and m− 1 states, m

is the z-component of the total alkali angular momentum, Ωmod is the FM ampli-

tude, and ωmod is the FM frequency. This excitation induces EPR transitions in

the alkali metal atoms and slightly lowers the alkali polarization. Because of the

rapid and efficient spin-exchange between alkali metal atoms, the equilibrium al-

kali polarization tracks the modulation of the excitation. When the excitation is off

resonance, the alkali polarization is high. When the excitation is on resonance, the

alkali polarization is lowered. This results in a modulation of the alkali polariza-

tion which in turn results in a modulation of the intensity of the fluorescence.

Although the presence of N2 molecules greatly suppresses the number of ra-

diative decays, a few percent of the transitions back to the ground state still occur

radiatively. The amount of D1 and D2 fluorescence is roughly the same due to
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the collisional mixing of the excited states by the N2 molecules. However, a filter

is placed in front of a photodiode to allow transmission of only the D2 fluores-

cence. This is because the large D1 background from the pump laser light could

potentially saturate the photodiode.

Combining Eqns. (5.70) & (5.20), assuming a pump light polarization of unity,

and neglecting the small contribution of off-resonant D2 absorption to the pop-

ulation of the P3/2 excited state, we can write the power of the D2 fluorescence

measured by the photodiode (on the order of mW under our typical operating

conditions) as:

PD2 = Apd ∑
q

Z
hν dΦ

q,2
f dν

=
Z Z [ Apd

4π|~u|2

]
f ′rad fd [1− PA] [Rb]VpchνRW(ν,~r, ~u)

(
d3u
Vpc

)(
dν
ν2

)
(4.75)

where Apd is the area the photodiode, f ′rad is probability that atom decays radia-

tively (≈
(
0.43% · amg

)
/[N2]), fd ≈ 1/7 is the probability of that the atom decays

from the P3/2 excited state, PA is the alkali polarization, [Rb] is the Rb number den-

sity, Vpc is the pumping chamber volume, h is Planck’s constant, R is the unpolar-

ized absorption rate, ν2 is the frequency of the D2 transition, and W is a geometric

factor that describes the transmission probability of a fluorescence photon with fre-

quency ν from a volume element d3u located at ~u to the surface of the photodiode

located at ~r:

W(ν,~r, ~u) = ∑
k,q

[
σ2(ν)R

σ2(ν) (dν/ν2)

]
Λ

q
k

(
dk

d

)
fq(θ)Tq(ν, ~u,~r)H(Rpc− |~r + ~u|) (4.76)

where the parameters are defined in Sec. (5.4.3). At equilibrium, the alkali polar-
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ization term can be rewritten using:

R(1− PA) = PA (ΓA + γrf) = R
[

ΓA + γrf
R + ΓA + γrf

]
≈ P0ΓA + P2

0γrf ↔ γrf� R + ΓA (4.77)

where γrf is the relaxation rate due the EPR RF excitation, ΓA is the alkali relaxation

rate without the EPR RF excitation, and P0 is the alkali polarization without the

EPR RF excitation.

The photodiode current is converted into a voltage by a transimpedance am-

plifier circuit which is then fed into a lockin amplifier:

Vin = −Rpdαpd

Z
Iscale(1− PA) dZ =

Z
VscaleP0

[
1 + P0

(
γrf
ΓA

)]
dZ (4.78)

where αpd is the photodiode sensitivity, Rpd is transimpedance resistor, Iscale &

Vscale are the “scale” intensity and voltage that hides all of the other factors, dZ =

(d3u/Vpc)(dν/ν2). The frequency modulation is hidden in the frequency depen-

dence of the EPR RF excitation relaxation rate γrf given by Eqn. (E.872), which is a

sum of Lorentzian lineshapes for each transition:

γrf(ωRF) = ∑
m

DaΓ
m
RF

[
γ2

m

(ωRF− ωm)2 + γ2
m

]
(4.79)

where Da = 1 (Da = D = [K]/[Rb]) when probing Rb (K) transitions, m labels the

m ↔ (m− 1) transition, Γm
RF is the relaxation rate at resonance (which is propor-

tional to the square of the EPR RF field, see Eqns. (E.872) & (E.407)) and γm is the

effective alkali hyperfine relaxation rate (on order of 10’s of kHz) which is domi-

nated by alkali-alkali spin-exchange collisions [36–38]. The Fourier integral (per-
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formed by the lockin mixer) is evaluated by integrating by parts to give [39]:

Fc(Vin) =
Z

cos(ωmodt)Vin dt =
sin(ωmodt)
ωmod

Vin−
1

ωmod

Z dVin

dt
sin(ωmodt) dt (4.80)

The high frequency parts are integrated away by the low pass filter to give the

lockin output:

Vout(t) = − GL

ωmodτ

Z Z
exp

[
t′− t
τ

]
sin(ωmodt′)Vscale

(
P2

0

ΓA

)
dγrf
dt′

dZ dt′ (4.81)

where τ is the lockin time constant and GL is the lockin gain. Expanding the

derivative of γrf using the chain rule dγrf/dt = (dγrf/dωRF)(dωRF/dt), noting that

sin2(ωmodt) = 1− cos2(ωmodt), dropping the high frequency terms, and averaging

the derivative near resonance, we find:

Vout(t) = GLΩmod

Z
Vscale

(
P2

0

ΓA

)〈
dγrf
dωRF

〉
dZ (4.82)

where the time averaged derivative near resonance is given by:

〈
dγrf(ωRF)

dωRF

〉
= ∑

m

2DaΓ
m
RFγ

2
m(ωm− ωRF)

(γ2
m + (∆ω)2

m)2 + (γ2
m + 3(∆ω)2

m) Ω2
mod + 3

8Ω4
mod

(4.83)

where (∆ω)m = 〈ωEPR〉 − ωm and 〈ωEPR〉 is the intensity averaged EPR frequency.

Because of the frequency modulation of the EPR excitation, the lineshape that

is produced when the lockin response is plotted against the detuning of the EPR

excitation is the derivative of a Lorentzian-like lineshape, see Fig. (4.7). This “FM

sweep” lineshape directly determines the behavior of the feedback loop [30] used

to lock to the EPR transition. Modulation and lock-in parameters (i.e. modula-
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Figure 4.7: FM Sweep lineshape. This is an example of a “good” FM sweep because
(1) the slope has the correct sign, (2) the lineshape is visibly symmetric, (3) there
does not appear to be an offset, and (4) the zero-crossing is in the middle of the
lineshape.

tion amplitude, modulation frequency, lockin sensitivity, lockin phase, lockin time

constant, absolute & relative gains on the PI feedback box) must be adjusted to pro-

duce an optimal FM sweep lineshape. The “feedback slope” is typically quoted in

units of µV per kHz and provides a conversion between the detuning of EPR RF

coil frequency and the voltage response of the excitation/sensing electronics:

mfs ≡
1

GL

∣∣∣∣dVout

dωRF

∣∣∣∣ = ∑
m

Z [
2VscaleP2

0/ΓA
] [

ΩmodDaΓ
m
RFγ

2
m

]
(γ2

m + (∆ω)2
m)2 + (γ2

m + 3(∆ω)2
m) Ω2

mod + 3
8Ω4

mod

dZ (4.84)

Increasing the modulation amplitude increases the slope when Ωmod� γm. An in-

crease in the temperature increases the alkali vapor number density. This increases

the alkali-alkali spin-exchange rate, which broadens the RF lineshape, reduces the

slope, and, consequently, reduces the signal to noise ratio of the EPR measurement
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at higher temperatures:

mfs ∝
Da[Rb]γ2

m

γ4
m

∝ Da[Rb][A]2

[A]4 =
Da[Rb]

[A]2 (4.85)

where [A] is the total alkali density and the 1/ΓA factor cancels the ΓA factor hidden

in Vscale. This scaling also indicates that when D > 1 for a hybrid cell, the signal to

noise ratio is roughly a factor D better for EPR with K transitions than EPR with

Rb transitions.

The analog voltage signal from the lockin is then processed by a PI feedback box

and converted into a frequency correction that is applied to the central frequency

of the Voltage Controlled Oscillator (VCO) that controls the frequency of the EPR

RF coils. The gains of the PI feedback box are chosen based on the feedback slope

extracted from the FM sweep lineshape:

frequency correction
frequency detuning

= mfsGLGattenGPI
absGVCO = -0.1 to -100 (4.86)

where Gatten is the unitless gain of attenuator (if present), GPI
abs is the absolute gain

of the PI feedback, GVCO is the gain of the VCO in kHz/µV, and the absolute size

of the correction to detuning ratio is determined empirically by whatever works

best. Once the zero crossing of the FM sweep lineshape is determined by the ex-

citation/sensing electronics, the EPR RF coil frequency is recorded by a counter

as a function of time. The 3He spins are then flipped twice relative to the hold-

ing field using NMR RF frequency sweep AFP. Enough counter data is taken with

the 3He in either state to result in a high precision determination of the intensity

averaged EPR frequencies of the alkali atoms. The difference in these frequencies

is largely insensitive to the holding field and is, to first order, proportional to the
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3He effective field.

4.4.3 Intensity Averaged EPR Frequency Difference

When the lockin output voltage is zero, the PI feedback loop has locked the EPR

RF coil frequency to a fluorescence intensity weighted average EPR frequency:

Vout = 0 → ωRF = 〈ωEPR〉 ≡
∑m

R
Am(P0)ωmdZ

∑m
R

Am(P0)dZ (4.87)

where Am(P0) is a position, temperature, photon frequency, and alkali polarization

dependent weight function for the m-th EPR transition which has a frequency ωm.

The quantity of interest is the intensity averaged frequency difference after the

3He spins are flipped via NMR RF frequency sweep AFP. This quantity isolates

any factors that either change sign after the 3He spin reversal or are in any way

correlated with the spin reversal process. The most important term that changes

sign is the 3He effective field. Because it is small relative to the holding field, we

can Taylor expand the the EPR transition frequency to give:

ω↑↓m = ω̄↑↓m ±
dω↑↓m
dB

BHe + · · · (4.88)

where ω̄↑↓m is the EPR transition frequency in the absence of the polarized 3He gas

and the derivative is evaluated at the field that corresponds to ω̄↑↓m . The superscript

↑↓ is used to indicate that the possibility that the quantity may have a correlation

to the spin reversal process independent of the 3He polarization.

The weight function Am(P0) is also sensitive to the 3He polarization through its

dependence on the alkali polarization [12]. A-3He spin exchange causes a small
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change in the equilibrium alkali polarization which can be determined from:

dP↑↓0

dt
= +R(1− P↑↓0 ) + γse(±PHe− P↑↓0 )− Γ

0
AP↑↓0 = 0 (at equilibrium) (4.89)

where R is the optical pumping rate, γse = kse[3He ], kse is the A-3He spin-exchange

rate constant, [3He ] is the 3He number density in the pumping chamber, and ΓA =

Γ0
A + γse. Using this equation, the equilibrium alkali polarization can be written in

terms of 3He spin independent P̄ and dependent (∆P) terms:

P↑↓0 = P̄± (∆P) P̄ =
R

R + ΓA
(∆P) =

γsePHe

R + ΓA
(4.90)

By Taylor expanding about P̄, the weight function can also be written as a sum of

3He spin independent and dependent terms:

A↑↓m (P0) = A↑↓m (P̄)± dAm

dP
(∆P) + · · · (4.91)

Plugging the Taylor expansions for ωm and Am(P0) into the frequency difference

and dropping all higher order terms involving the 3He polarization, we find:

ω↑RF− ω
↓
RF = ∆ωRF =

〈
dω↑m
dB

BHe

〉
↑

+

〈
dω↓m
dB

BHe

〉
↓

+
〈
ω̄↑m
〉
↑−

〈
ω̄↓m
〉
↓

+

〈
ω̄↑m

[
1

A↑m(P̄)
dA↑m
dP

(∆P)−
〈

1
A↑m(P̄)

dA↑m
dP

(∆P)

〉]〉
↑

+

〈
ω̄↓m

[
1

A↓m(P̄)
dA↓m
dP

(∆P)−
〈

1
A↓m(P̄)

dA↓m
dP

(∆P)

〉]〉
↓

(4.92)
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where the brackets 〈· · · 〉↑↓ indicate an fluorescence intensity average defined by:

〈X〉↑↓ = ∑m
R

A↑↓m (P̄)X dZ
∑m

R
A↑↓m (P̄) dZ

(4.93)

Am(P̄) = P̄2

[
f ′rad fd[A]VpcW

{
Apd/|~u|2

}
νΓm

rfγ
2
m

(γ2
m + (∆ω)2

m)2 + (γ2
m + 3(∆ω)2

m)Ω2
mod + 3

8Ω4
mod

]
(4.94)

4.4.4 Extracting the Helium Polarization

The first two terms of Eqn. (4.92 are the dominant terms and they indicate that BHe

can be calculated by:

BHe =
(∆B)

2
= (∆νRF)×

(
dν
dB

)−1

(4.95)

where ωRF = 2πνRF and the derivative of the frequency with respect to the field

is given by Eqns. (E.264) or (E.265). For 85Rb (39K) it is necessary to evaluate the

derivative up to first (second) order in field to insure an accuracy below 0.1%.

Traditionally, it is assumed that the alkali polarization is near unity and only the

end transition (m = F) ↔ (m − 1 = F − 1) is being excited by the EPR RF coils.

When this is a good approximation, BHe can be calculated using the analytic form

of B(ν), Eqn. (E.245), which is only valid for the end transition:

BHe =
(∆B)

2
=

B
(
ν↑RF

)
− B

(
ν↓RF

)
2

(4.96)

The 3He polarization is extracted from the 3He effective field using:

BHe =
2µ0

3
(
κ0− 1 + κgeo

)
[3He ]gµN

PHe

2
µ0µN = (1.70530) mG/amg (4.97)

where µ0 is the magnetic permeability of free space, κ0 is an empirical shift con-
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stant, κgeo is a geometric factor, [3He ] is the He-3 number density in the pump-

ing chamber, g is the 3He g-factor, µN is the nuclear magneton, PHe = 2 〈Sz〉 is the

3He polarization. Under typical operating conditions, about 1/6 of the 3He effective

field felt by the alkali atoms is due to the classical magnetic field produced by the

bulk magnetization of the polarized 3He gas. The rest is due to the very short but

frequent A-3He spin-exchange collisions. During these spin-exchange collisions,

the alkali valence electron is essentially located within the 3He nucleus thus facili-

tating a hyperfine-like Fermi contact interaction between their spins. The classical

field and effective field due to spin exchange are distinguished in at least three

important ways:

1. The size of the classical magnetic field is dependent on the geometry of the

target cell; whereas the spin-exchange effective field is not.

2. The size of the classical magnetic field is independent of the alkali metal be-

ing perturbed; whereas the size of the spin-exchange effective field does de-

pend on the alkali metal.

3. The classical magnetic field can be, in principle, detected by a sufficiently

sensitive external magnetic field probe; whereas the spin-exchange effective

field can not be detected in the way.

Because the spin-exchange effective field is difficult to calculate precisely from the-

ory, it is usually clumped together with the classical magnetic field and parametrized

by a unitless temperature dependent quantity called κ0, which has been measured

empirically. The temperature dependence of κ0 is given by:

κ0 = κ0(Tref) + mκ (T− Tref) (4.98)
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alkali temp. range oC κ0(Tref) σκ0 mκ σmκ Tref (oC) source

Rb 110–350 6.108 0.095 0.00916 0.00026 170 [34, 35]
K 150–225 5.99 0.11 0.0086 0.0020 200 [35, 40]

Na 210–350 4.72 0.09 0.00914 0.00056 200 [35]

Table 4.1: Values for κ0. The absolute value of κ0 is based only on the precision Rb
measurement of Romalis & Cates [34]. The measurements of Newbury et al [32]
and Barton et al [33] are excluded because they were performed over a substan-
tially lower temperature range. The Rb temperature dependence is a weighted
average of Romalis & Cates and Babcock et al. [35]. The K to Rb κ0 ratio was mea-
sured by Baranga et al [40]. The K & Na κ0 ratio with Rb along with the tempera-
ture dependencies were measured by Babcock et al. There are some inconsistencies
between the Na κ0 between Eqn. (8) and Tabs. I & II (quoted here) of [35].

where T & Tref are in degrees Celsius and the parameters for Rb, K, and Na are

listed in Tab. (4.1).

The geometric factor κgeo is the ratio of the classical magnetic field produced

by the 3He for the cell geometry to the classical magnetic field produced by a uni-

formly polarized spherical 3He sample:

κgeo =

〈
ẑ · ~B(~u)

〉
〈

ẑ · ~Bsphere

〉 =
〈

3
8π

Z [
P(~u ′)n(~u ′)

Ppcnpc

]
3(ẑ · n̂)2− 1
|~u− ~u ′|3 d3u′

〉
(4.99)

where ẑ is the direction of the holding field and consequently the magnetization

vector, ~Bsphere is constant inside a uniformly magnetized sphere, n̂ is the unit vec-

tor from a volume element d3u′ at ~u ′ to the observation point ~u, P(~u ′)n(~u ′) is the

polarization-density product at ~u ′, and the brackets 〈· · · 〉 indicate a weighted av-

erage defined by Eqn. (4.93). This factor κgeo is also closely related to the “demag-

netization factor” (or “coefficient of induced magnetization” or “demagnetizing

factor”) D used in calculations of the field inside of permanent magnets [41], see
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shape orientation D/(4π)

sphere - 1/3
prolate spheroid major axis

[
ρ2atanh (e)− ρ2e

]
/e3

prolate spheroid minor axis
[
e− ρ2atanh (e)

]
/(2e3)

oblate spheroid major axis
[
ρasin (e)− ρ2e

]
/(2e3)

oblate spheroid minor axis [e− ρasin (e)]/(e3)
infinite elliptical cylinder major axis ρ/(1 + ρ)
infinite elliptical cylinder minor axis 1/(1 + ρ)
infinite cylinder cylinder axis 0

Table 4.2: Demagnetization Factors for Different Uniformly Magnetized Shapes.
The classical magnetic field inside a uniformly magnetized ellipsoid is constant
and given by ~B = (2/3)µ0κgeo ~M = µ0

(
1− D/(4π)

)
~M. The factors listed here are

from Osborn [42] who also lists the results for a general ellipsoid. Orientation de-
notes the direction of the magnetization. A prolate (oblate) spheroid is an ellipsoid
formed from the revolution of an ellipse about its minor (major) axis. The ratio of
the minor to major axis of the ellipse is ρ where ρ = 1 for a circle. The eccentric-
ity of the ellipse is e =

√
1− ρ2 where e = 0 for a circle. The result for the infinite

cylinder is the same for a cylinder of any (but uniform) cross section.

Tab. (4.2):

κgeo =
1− D/(4π)

2/3
(4.100)

This indicates that the value of κgeo is 1 for a spherical pumping chamber, 3/2 for an

infinitely long cylindrical pumping chamber magnetized along its axis, and 3/4 for

an infinitely long circular cylindrical pumping chamber magnetized perpendicular

to its axis.

For the case of a target cell (in direct analogy to the “flux gain” Gx
Φ

see Eqn.

(4.46)), κgeo can be written as:

κgeo = 1 + κpc + κtt

(
Pttntt

Ppcnpc

)
+ κtc

(
Ptcntc

Ppcnpc

)
(4.101)

where the factor of 1 indicates that the pumping chamber is nearly a uniformly po-
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larized sphere, κpc is the factor that accounts for the non-sphericity of the pumping

chamber (i.e. the pull-off tip), κtt is the contribution from the transfer tube, and κtc

is the contribution from the target chamber. We can estimate the size of these three

factors by modeling them as spheres which gives κx = −(3Vx)/(8πd3
x), where Vx

is the volume of the region and d is the distance from the center of the region to

the center of the pumping chamber. For typical target cell geometries, we find

κgeo ≈ 0.97. Therefore ignoring these terms introduces only about a 0.5% error on

(κ0− 1 + κgeo) and BHe.

Since the effective field due to 3He is largely independent of the cell geometry

(when the pumping chamber is spherical), we can pull it out of the fluorescence

intensity averaging:

(∆B)
2

=
∆νRF

dν/dB
= BHe

1
2

dB
dω

〈dω↑m
dB

〉
↑

+

〈
dω↓m
dB

〉
↓

 (4.102)

In calculating BHe, we have, thus far, assumed that only the end transition is being

excited. In other words, the slope dν/dB used to convert from frequency to mag-

netic field is evaluated for the end transition. If the alkali polarization is very high,

the different transitions are well resolved (ωm−ωm−1� γm + γm−1), or the holding

field is sufficiently low, then the bracketed term in Eqn. (4.102) is to a very good

approximation 1.

The slope dν/dB is nearly constant and independent of the transition at low

field. Only higher terms order in the magnetic field have a dependence on the

transition, see Eqn. (E.265). “Low” field is judged by the strength of the Zeeman in-

teraction relative to the hyperfine interaction. For 39K and 85Rb, low field therefore

is defined to be much less than Bhfs = 165 gauss and Bhfs = 1080 gauss respectively.



4.4. EPR FREQUENCY SHIFT POLARIMETRY 285

The largest possible correction to the slope comes from the transition adjacent to

the end transition. We can estimate the lowest order contribution to the correction

by calculating the weighted average slope with weights given by the strength of

the transition, the relative populations of the states involved in the transitions, and

the frequency difference between the transitions:

dB
dω

〈
dωm

dB

〉
− 1 ≈ 4x

2I + 1

[
1 +

(
1 + P̄

a(1− P̄)

)
(1 + v2)2 + (1 + 3v2)u2 + 3u4/8

1 + u2 + 3u4/8

]−1

(4.103)

where x = B0/Bhfs is the relative field, u = 2Ωmod/(γm + γm−1) is the relative mod-

ulation amplitude, v = 8πνhfsx2/(2I + 1)2/(γm + γm−1) is the relative frequency dif-

ference between the transitions (see Eqn. (E.263)), and P̄ is the average alkali po-

larization. The transition matrix element ratio (see Eqn. (E.877)) is a = 7/3 (2), the

nuclear spin is I = 5/2 (3/2), and the hyperfine splitting is νhfs = 3036 (0.462) MHz

for 85Rb (39K). Under our typical conditions, B0 = 25 G, the 39K transitions are very

well resolved implying that v� 1 and the correction is completely negligible. The

worst case scenario occurs when u� 1, v, for 85Rb, we find that the correction is

0.5% when P̄ = 0.7. However, under our typical conditions, u< 1 & v≈ 1 implying

that the correction is 0.2% when P̄ = 0.7.

4.4.5 AC Zeeman Shift Due to the NMR RF Field

Introduction

The oscillating NMR RF field used for AFP also causes a small frequency shift

(∆ν)rf, in this case, due to the AC Zeeman effect. If the magnitude of the NMR RF

field changes during AFP, then its corresponding frequency shift is different for the

two directions of the 3He spins causing a correlation described by the second pair
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Figure 4.8: Typical EPR Measurement Sequence. The He spins are flipped using
frequency sweep NMR-AFP. The top plot shows the entire data set which includes
four 3He spin flips. The shift due to the NMR RF field at 30.0 kHz can be seen
at 75 sec < t < 175 sec, 250 sec < t < 325 sec, and finally 425 sec < t < 500 sec.
Note that the sign of the RF shift is independent of the direction of the 3He spins.
The shift due to the NMR RF field at 56.6 kHz is much smaller, but is visible at
0 sec < t < 70 sec, see the bottom plot. Because the NMR RF coil resonates at
about 20 kHz, the amplitude of the RF field at 30.0 kHz is much larger than the
amplitude of the RF field at 56.6 kHz for the same function generator set amplitude
Vset = 300 mV.

of terms in Eqn. (4.92). Under this condition, the partially canceled frequency shift

due to the NMR RF field also contributes to & contaminates the EPR frequency

difference: ∆νEPR = 2× (∆ν)He + [(∆ν)↑rf− (∆ν)↓rf)]. This could potentially be a large

systematic error in the determination of the 3He polarization.

The result of a typical EPR measurement at UVa is shown in Fig. (4.8). At the

start of an EPR polarization measurement, the total static magnetic field seen by

the alkali atoms is B = B0 + BHe, which corresponds to an EPR frequency of:

(ν↑EPR)off = ν0 + (∆ν)He (4.104)

Under our typical conditions, B0 = 13 G and, for the “well state” transition of 39K,

the EPR frequency is around 9.7 MHz. After measuring this EPR frequency for

several seconds, the NMR RF field is turned on with a frequency of 56.6 kHz. This
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NMR RF field causes an additional shift in the EPR frequency:

(ν↑EPR)on = ν0 + (∆ν)He + (∆ν)↑rf (4.105)

After again measuring the EPR frequency for several seconds, the NMR RF fre-

quency is swept over a period of 6 seconds from 56.6 kHz, through resonance

at 42.2 kHz, to 30.0 kHz. The rate is chosen to be fast enough to minimize the

3He relaxation at resonance, but slow enough for the 3He spins to follow the effec-

tive field in the rotating frame adiabatically. After the spins have been flipped, the

total static magnetic field felt by the alkali atoms is B = B0− BHe which corresponds

to an EPR frequency of:

(ν↓EPR)on = ν0− (∆ν)He + (∆ν)↓rf (4.106)

and then we turn the NMR RF off to measure:

(ν↓EPR)off = ν0− (∆ν)He (4.107)

To conclude the EPR measurement, we follow the same steps already mentioned,

but in reverse order: (1) the NMR RF on at 30.0 kHz, (2) measure the EPR fre-

quency, (3) sweep the NMR RF frequency from 30.0 kHz to 56.6 kHz, (4) measure

the EPR frequency, (5) turn the NMR RF off, and (6) measure the EPR frequency.

In addition to this measurement sequence, Fig. (4.8) also shows the results of an

analogous measurement sequence for which the NMR frequency sweep from 30.0

kHz to 56.6 kHz and then back to 30.0 kHz. Using these measurements, there are
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two frequency differences that can be used to extract the 3He polarization:

∆(νEPR)on = (ν↑EPR)on− (ν↓EPR)on = 2× (∆ν)He +
[
(∆ν)↑rf− (∆ν)↓rf)

]
(4.108)

∆(νEPR)off = (ν↑EPR)off− (ν↓EPR)off = 2× (∆ν)He (4.109)

If there is no shift associated with the NMR RF field ((∆ν)↑rf = (∆ν)↓rf = 0) or if the

size of frequency shift associated with the NMR RF field stays the same after the

3He spins are flipped ([(∆ν)↑rf − (∆ν)↓rf)] = 0), then the two frequency differences

are identical. However, at least at UVa, this is not the case.

Based on Figs. (4.8) & (4.9), we’ll make the following observations of the what

we call “NMR RF Shift” Effect:

1. the size of (∆ν)rf has no measurable dependence on the sign and magnitude

of the 3He polarization

2. the size of (∆ν)rf at 13 G appears to in the kHz range for both 85Rb and 39K

3. the sign of (∆ν)rf is positive for both the “well” state transition−(I + 1/2)↔

−(I − 1/2) and the “hat” state transition +(I + 1/2)↔ +(I − 1/2)

4. the size of (∆ν)rf increases with the NMR RF amplitude and decreases with

the NMR RF frequency

Originally, we thought that (∆ν)rf 6= 0 was due to a direct coupling between

the NMR RF coils and the photodiode used for EPR. We tested this hypothesis

by increasing the distance between the EPR photodiode and the NMR RF coils.

The fluorescence from the cell needed as an input to the EPR feedback circuit was

captured by an optical fiber instead of the photodiode directly. Because we used

a very long optical fiber, the distance between the EPR photodiode and NMR RF



4.4. EPR FREQUENCY SHIFT POLARIMETRY 289

0 50 100 150 200 250

8540

8550

8560

8570

8580

0 50 100 150 200 250

time (sec)

E
P

R
 F

re
q

u
en

cy
 (

kH
z)

 3
0.

0 
kH

z
→

56
.6

 k
H

z 

 56.6 kH
z

→
30.0 kH

z  3
5.

0 
kH

z
→

56
.6

 k
H

z 

 56.6 kH
z

→
35.0 kH

z  2
5.

0 
kH

z
→

56
.6

 k
H

z 

 56.6 kH
z

→
25.0 kH

z 

N
M

R
 R

F
 o

ff

N
M

R
 R

F
 o

ff

N
M

R
 R

F
 o

ff

 in kHz
rf

)νΔ(
0.6 1.5 4.5

 = 40 kHz
He

)νΔ(×2

0 20 40 60 80 100 120 140

5945

5950

5955

5960

5965

5970

0 20 40 60 80 100 120 140

time (sec)

E
P

R
 F

re
q

u
en

cy
 (

kH
z)

0 50 100 150 200 250

 3
0.

0 
kH

z
→

56
.6

 k
H

z 

 56.6 kH
z

→
30.0 kH

z 

N
M

R
 R

F
 o

ff

 = 1 kHz
rf

)νΔ(

 = 20 kHz
He

)νΔ(×2

 = 1 kHz
He

)νΔ(×2

Figure 4.9: EPR in the High Energy or “Hat” State for 39K (top) and 85Rb (bottom)
at 13 Gauss. In the top plot, we see that the shift depends on NMR frequency. This
is because circuit used to drive the NMR RF coils resonates at about 20 kHz. In the
bottom plot, we see that the NMR RF shift in independent of the size of the shift
due to the polarized 3He gas.

coils was several meters. When we performed the EPR measurement under these

conditions, we still observed a frequency shift when the NMR RF was turned on

and off.

Our new hypothesis (which we believe is correct) is that the NMR RF field

directly interacts with the alkali atoms to produce a frequency shift via the AC

Zeeman effect. Under our experimental conditions, B0 > 10 Gauss, ν0 > 5 MHz,

νrf = (40± 20) kHz, Brf < 0.5 Gauss, and, using the results of Sec. (4.4.5), the size

of the shift is given by:

(∆ν)rf =
F(F + 1)−m(m− 1)

4νEPR

[
∂ν

∂B
Brf

]2

(4.110)

where F = I ± 1/2, I is the nuclear spin of the alkali atom, νEPR is the frequency

of the |F,m〉 ↔ |F,m− 1〉 transition, ∂ν/∂B is given by Eqn. (E.265), and Brf is the

amplitude of the NMR RF Field in the lab frame. Tab. (4.3) lists the quantitative size

of the shift for 85Rb and 39K under our conditions. Because, for incidental historical

reasons, the NMR RF coils resonate at 20 kHz (see Fig. (4.11)), the NMR RF field
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amplitude is higher at 30.0 kHz than at 56.6 kHz for the same set control voltage,

which implies (∆ν)↑rf 6= (∆ν)↓rf. Therefore, in order to avoid all these difficulties, it

is much better to use ∆(νEPR)off than ∆(νEPR)on to calculate the 3He polarization. To

do this, all you have to do is take data with the NMR RF field off before and after

the AFP frequency sweep.

Calculating the Shift Due to the NMR RF Field: The AC Zeeman Effect

To calculate the shift due to the AC Zeeman effect, we’ll follow and in some cases

generalize the basic arguments found in problem 2.7 of [43]. Since we are only

interested in a given Zeeman transition within the EPR spectrum, we’ll focus only

on the states involved in the transition. This results in a two state system (|m〉 &

|m− 1〉) with a Hamiltonian written as:

H0 = ~ω0Fz (4.111)

where Fz is the z-component of the total atomic angular momentum, ~ is the Planck

constant divided by 2π, and ω0 is the EPR frequency for the transition for a mag-

netic field B0. If another much smaller magnetic field B1 � B0 is turned on, then

we can write the additional Zeeman interaction as:

H1 = −µ · ~B1 = −gµB~F · ~B1 (4.112)

where g is the effective or Landé g-factor, µB is the Bohr magneton, and ~F is the

total atomic angular momentum. In general, g depends on the total magnetic field

in the z-direction, the hyperfine manifold F, and the magnetic substate m. Its form

can be obtained by considering the case when ~B1 is in the z-direction (the same
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direction as ~B0). In this case, the total Hamiltonian can be written in two ways:

H = H0 + H1 = ~ωFz = ~ω0Fz− gµBFzB1 (4.113)

Taylor expanding ω = ω(B0 + B1) about B0 gives:

ω(B0 + B1) = ω(B0) + (B0 + B1− B0)
∂ω

∂B
= ω0 + B1

∂ω

∂B
(4.114)

Putting this together gives the form of the effective g-factor:

~ωFz− ~ω0Fz = −gµBFzB1 → g = −
(

~
µB

)
∂ω

∂B
(4.115)

where the derivative is evaluated at B0.

We’ll now consider the case of an oscillating RF field in the x-direction:

H = ~ω0Fz− gµBFxBrf cos(ωrft) (4.116)

where Brf is the amplitude of the RF field in the lab frame and ωrf is the angular

frequency of the RF field. In general, the non-zero matrix elements of Fz and Fx =

(F+ + F−)/2 are:

〈m| Fz |m〉 = m 〈m− 1| Fz |m− 1〉 = m− 1 (4.117)

〈m− 1| Fx |m〉 = 〈m| Fx |m− 1〉 = (1/2)
√

F(F + 1)−m(m− 1) (4.118)

Using these formulas, we can rewrite the Hamiltonian using the Pauli spin matri-

ces:

H = ~ω0m̄ + ~ω0σz/2 + ~Ωrfσx cos(ωrft)/2 (4.119)
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where m̄ = m− 1/2 is the mean m associated with the transition and Ωrf is given

by:

Ωrf =
∂ω

∂B
Brf

√
F(F + 1)−m(m− 1) (4.120)

Since ~ω0m̄ is an overall constant energy offset, we can safely drop it from the

Hamiltonian. For convenience, we’ll relabel two eigenstates of H0 as |a〉= |m〉 and

|b〉 = |m− 1〉. The eigenstates of the full Hamiltonian H are denoted as |1〉 & |2〉

and can be expanded as:

|1〉 = a1 exp(−iω0t/2) |a〉+ b1 exp(+iω0t/2) |b〉 (4.121)

|2〉 = a2 exp(−iω0t/2) |a〉+ b2 exp(+iω0t/2) |b〉 (4.122)

where orthonormality enforces:

|a1|2 + |b1|2 = |a2|2 + |b2|2 = 1 a∗1a2 + b∗1b2 = 0 (4.123)

Because we’ve chose to expand |1〉 & |2〉 in this way, they automatically satisfy the

Schrodinger equations with a1 = b2 = 1 & a2 = b1 = 0 when there is no RF field

Ωrf = 0. Our goal now is to obtain a solution correct to the lowest order for the

case when 0 < Ωrf� ω0.

Applying Schrodinger equation to |1〉, we get a pair of coupled equations:

i~(ȧ1− iω0a1/2) exp(−iω0t/2) = +(~ω0a1/2) exp(−iω0t/2)

+(~Ωrfb1/2) exp(+iω0t/2) cos(ωrft) (4.124)

i~(ḃ1 + iω0b1/2) exp(+iω0t/2) = −(~ω0b1/2) exp(+iω0t/2)

+(~Ωrfa1/2) exp(−iω0t/2) cos(ωrft) (4.125)
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After rearranging a few things we get:

ȧ1 = −(iΩrfb1/2) exp(+iω0t) cos(ωrft) (4.126)

ḃ1 = −(iΩrfa1/2) exp(−iω0t) cos(ωrft) (4.127)

Since Ωrf is small, it’s not unreasonable to assume that |a1| ≈ 1. In other words,

we’ll make the ansatz that a1 = exp(−iω!t). Using this form of a1 allows us to

directly integrate ḃ1 to give:

b1 =
Z

ḃ1 dt = −(iΩrf/2)
Z

exp(−i(ω1 + ω0)t) cos(ωrft) dt (4.128)

= −(iΩrf/4)
Z [

exp(−i(ω1 + ω0− ωrf)t) + exp(−i(ω1 + ω0 + ωrf)t)
]

dt

= −(iΩrf/4)
[

exp(−i(ω1 + ω0− ωrf)t)
−i(ω1 + ω0− ωrf)

+
exp(−i(ω1 + ω0 + ωrf)t)
−i(ω1 + ω0 + ωrf)

]
=

Ωrf

4

[
exp(−i(ω1 + ω0− ωrf)t)

ω1 + ω0− ωrf
+

exp(−i(ω1 + ω0 + ωrf)t)
ω1 + ω0 + ωrf

]
(4.129)

Using this solution for b1 and the ansatz for a1, we now apply the equation for ȧ1:

ȧ1 = −(iΩrfb1/2) exp(+iω0t) cos(ωrft)

−iω1 exp(−iω1t) = −i
Ω2
rf

8
exp(+iω0t) cos(ωrft)

×
[

exp(−i(ω1 + ω0− ωrf)t)
ω1 + ω0− ωrf

+
exp(−i(ω1 + ω0 + ωrf)t)

ω1 + ω0 + ωrf

]
ω1 =

Ω2
rf

8
cos(ωrft)

[
exp(+iωrft)
ω1 + ω0− ωrf

+
exp(−iωrft)
ω1 + ω0 + ωrf

]
=

Ω2
rf

16
[
exp(+iωrft) + exp(−iωrft)

][ exp(+iωrft)
ω1 + ω0− ωrf

+
exp(−iωrft)
ω1 + ω0 + ωrf

]
=

Ω2
rf

16

[
1 + exp(+2iωrft)
ω1 + ω0− ωrf

+
1 + exp(−2iωrft)
ω1 + ω0 + ωrf

]
(4.130)
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Our first approximation will be to drop the rapidly oscillating terms to get:

ω1 =
Ω2

rf

8

[
ω1 + ω0

(ω1 + ω0)2− ω2
rf

]
(4.131)

Our second approximation is that ω1� ω0, which allows us to solve for ω1:

ω1 =
Ω2

rf

8

[
ω0

ω2
0 − ω2

rf

][
1 +

ω1

ω0

][
1 +

2ω1ω0 + ω2
1

ω2
0 − ω2

rf

]−1

(4.132)

≈ Ω2
rf

8

[
ω0

ω2
0 − ω2

rf

][
1− ω1

ω0

(
ω2

0 + ω2
rf

ω2
0 − ω2

rf

)]
(4.133)

=
Ω2

rf

8

[
ω0

ω2
0 − ω2

rf

][
1 +

Ω2
rf(ω2

0 + ω2
rf)

8(ω2
0 − ω2

rf)2

]−1

(4.134)

For self-consistency, this approximation necessarily implies that Ωrf � ω0 which

is roughly equivalent to our earlier assertion that Brf � B0. Our third and final

approximation is that the frequency of the RF field is far from resonance, ωrf� ω0,

which finally gives:

ω1 =
Ω2

rf

8

[
ω0

ω2
0 − ω2

rf

][
1 +

Ω2
rf(ω2

0 + ω2
rf)

8(ω2
0 − ω2

rf)2

]−1

≈ Ω2
rf

8ω0
(4.135)

We can follow this same calculation for |2〉 where a2 plays the same role as b1,

b2 plays the same role as a1, and we must flip the sign of ω0:

a2 =
Ωrf

4

[
exp(−i(ω2− ω0− ωrf)t)

ω2− ω0− ωrf

+
exp(−i(ω2− ω0 + ωrf)t)

ω2− ω0 + ωrf

]
(4.136)

b2 = exp(−iω2t) (4.137)

ω2 ≈ −Ω2
rf

8ω0
(4.138)
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Putting this altogether gives:

|1〉 = exp(−i(ω0/2 + ω1)t) |a〉+ b1 exp(+iω0t/2) |b〉 (4.139)

|2〉 = a2 exp(−iω0t/2) |a〉+ exp(+i(ω0/2− ω2)t) |b〉 (4.140)

b1 = +
Ωrf

4ω0
exp(−i(ω1 + ω0)t) cos(ωrft) (4.141)

a2 = −Ωrf

4ω0
exp(−i(ω2− ω0)t) cos(ωrft) (4.142)

ω1 = −ω2 =
Ω2

rf

8ω0
(4.143)

To lowest order, the energy levels are:

〈1|H |1〉 = 〈1| i~∂ |1〉
∂t
≈ +~(ω0/2 + ω1) (4.144)

〈2|H |2〉 = 〈2| i~∂ |2〉
∂t
≈ −~(ω0/2− ω2) (4.145)

and finally the frequency is:

ω =
〈1|H |1〉 − 〈2|H |2〉

~
= ω0 + ω1− ω2 = ω0 +

Ω2
rf

4ω0

= ω0

[
1 +

(
∂ω

∂B
Brf

2ω0

)2

(F(F + 1)−m(m− 1))

]
(4.146)

The AC Zeeman frequency shift due to an RF field for the transition |F,m〉 ↔

|F,m− 1〉when Brf� B0 and νrf� ν0 is, to lowest order, given by:

(∆ν)rf =
F(F + 1)−m(m− 1)

4ν0

[
∂ν

∂B
Brf

]2

(4.147)

where Brf is the magnitude of the RF field in the lab frame, ν0 is the frequency of

the transition when Brf = 0, and the derivative for F = I ± 1/2 is given by (up to
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B0 isotope I m ν0 ∂ν/∂B (∆ν)rf (∆ν)He

Gauss ±[I]/2 MHz kHz/G kHz/G2 kHz/amg

13

85Rb 5/2 +3 6.01 458 52.4 −7.08
−3 6.13 476 55.4 +7.36

39K 3/2 +2 8.59 622 45.0 −9.01
−2 9.67 788 64.2 +11.4

23

85Rb 5/2 +3 10.55 451 28.9 −6.97
−3 10.93 484 32.1 +7.48

39K 3/2 +2 14.54 569 22.3 −8.24
−2 17.91 863 41.6 +12.5

Table 4.3: EPR Frequency Shifts for the End Transitions Due to the NMR RF Field
& Polarized 3He. We’ve assumed that Brf � B0 and νrf � ν0. The −(+) sign for
m refers to the “well” (“hat”) state. For the shift due to the polarized 3He, we’ve
assumed a spherical sample at a temperature of 200 oC and 100% polarization. The
sign of the polarization is taken to be the same as the sign of the alkali m state.

fifth order in field) Eqn. (E.265). For the special case of end transitions, F = I + 1/2

and m = I + 1/2 for I + 1/2↔ I − 1/2 & m = −I + 1/2 for −I + 1/2↔−I − 1/2

and the frequency shift is:

(∆ν)rf =
[I]
4ν0

[
∂ν

∂B
Brf

]2

(4.148)

An Experimental Study of the NMR RF Shift Effect

To study the NMR RF Shift effect, we took data for:
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1. fields of 13 Gauss and 23 Gauss

2. NMR RF frequencies of 25.0 kHz, 30.0 kHz, 35.0 kHz, and 56.6 kHz

3. NMR RF set amplitude from 25 mV up to 600 mV or whatever value the

NMR RF amplifier would overload

4. 39K in the “well” state

At typical sequence is depicted in Fig. (4.10). For each data set, we would measure

the EPR frequency, the current in the Helmholtz coils, and the current in the NMR

RF coils. For all of the measurements, the current in the Helmholtz coils was very

stable and the 3He polarization had reached equilibrium. Therefore any change in

the EPR frequency was mostly due to the NMR RF field.

After collecting this data, we plot the shift vs. NMR RF set amplitude, see

Fig. (4.12). The expected quadratic behavior is readily seen. We don’t expect the

NMR RF frequency to play a direct role in the shift. Therefore we measured the

current in the NMR RF coils vs. NMR RF frequency for a fixed set amplitude

Vset, see Fig. (4.11). To make all the data comparable, we convert the shift into

the amplitude of the RF field causing it using Eqn. (4.148). Since the same set

amplitude doesn’t correspond to the same current in the NMR RF coils for different

NMR RF frequencies, we plot the data vs. the current in the RF coils instead. When

we do this, if our calculation is correct, then all the data should lie on a line. To

better than 5%, this is true and we get a slope of 182 mG/A.

4.4.6 Sensitivity to Magnetic Field Gradients

The last two terms in Eqn. (4.92) relate to differences in the fluorescence intensity

due to changes in the alkali polarization induced by spin-exchange with 3He . If
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Figure 4.10: Shift in the EPR Frequency for an NMR RF Field at 25 kHz. The top plot
shows the magnitude of the holding field as measured from the current in the Helmholtz
coils. Over the course of the measurement, it was stable to a few mG. The middle plot
shows the current in NMR RF coils. During the measurement, the RF field was turned off
and on at linearly increasing amplitudes. The bottom plot shows the locked EPR frequency
as the NMR RF field is varied. The measurement was done at the end of a spin-up, so we
assume that the 3He polarization was at equilibrium. The field due to the polarized 3He
is about 40 mG, which corresponds to a frequency shift of about 30 kHz. The magnitude
of the NMR RF field is increased linearly, whereas the shift is increasing in a quadratic
manner. At around t = 700 sec, there was a glitch in the RF amplitude. In addition, the
NMR RF amplifier overloaded at around t = 1175 sec. Both of these features can be seen
in both the bottom two plots.
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Figure 4.11: Current in NMR RF coils for a set amplitude of Vset = 300 mV. The
NMR RF coils resonate at about 20 kHz.
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Figure 4.12: Measurement of (∆ν)rf under different conditions. We measured the
NMR RF shift at two different fields, four different NMR RF frequencies, and sev-
eral NMR RF field amplitudes. The top plot shows the shift plotted against set
amplitude. Except for the 25.0 kHz, 13 Gauss data set, there was a linear relation-
ship between the current in the NMR RF coils and the set amplitude. For the 25.0
kHz, 13 gauss data set, a glitch occurred during the measurement, see Fig. (4.10).
For the bottom plot, we’ve inserted the measured shift into Eqn. (4.148) and solved
for the amplitude of the NMR RF field in the lab frame. Once this value for Brf is
plotted against the measured current Irf in the NMR RF coils, the data cluster along
a line.
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the holding field were perfectly uniform throughout the pumping chamber, then

it’s contribution to the EPR frequency would be independent of position and the

two terms would be identically zero. To make this more manifest, we’ll expand

EPR frequency about its value at the center of the cell (located at ~u0) which gives:

〈
ω̄m

[
1

Am(P̄)
dAm

dP
(∆P)−

〈
1

Am(P̄)
dAm

dP
(∆P)

〉]〉
=
〈(

(~u− ~u0) · ~∇B0
dω̄m

dB
· · ·
)[

1
Am(P̄)

dAm

dP
(∆P)−

〈
1

Am(P̄)
dAm

dP
(∆P)

〉]〉
(4.149)

An estimate of the scale of this effect can be made by replacing (~u− ~u0) with the

characteristic size of the pumping chamber and using Eqn. (4.90) for ∆P, we find:

Rpc

(
∂B0

∂z

)(
dω̄m

dB

)(
PHeγse

R + ΓA

)
≈ 2 Hz (4.150)

where, under typical operating conditions, Rpc = 3 cm, ∂B0/∂z = 10 mG/cm,

dω̄m/dB = 470 kHz/G, PHe = 0.5, γse = 20 Hz, and R = 100 kHz. In other words,

the fractional change in the fluorescence weight function Am(P̄) would have to be

a few orders of magnitude to make a significant contribution to the frequency dif-

ference. This is mostly because the spin-exchange rate is very small compared to

the optical pumping rate. Even if the magnetic field gradient were increased by

an order of magnitude and the optical pumping rate were decreased by an order

of magnitude, this gradient coupling effect would only introduce a 1% systematic

error on the measurement of the 3He polarization.
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4.4.7 Summary & Discussion

The EPR technique provides a precise measurement of the 3He polarization that is

very insensitive to systematic effects. Because most of the frequency shift is due to

spin-exchange collisions, the measurement is relatively insensitive to the geometry

of cell. Fluorescence photons detected by the photodiode from the parts of the

pumping chamber where the alkali polarization & optical pumping rates are both

very high are very insensitive to the effects of the adjacent transition and magnetic

field gradients. If the NMR RF is turned off after each NMR RF frequency sweep

AFP, then the measurement is completely insensitive to the AC Zeeman effects due

to the NMR RF field. Furthermore, if the NMR signal is calibrated by EPRs taken

when pumping to both the low and high energy states, then the average calibration

constant suppresses sensitivity to both the NMR RF shift effect and shifts due to

magnetic field gradients. This is because the shift due to the effective field of the

polarized 3He gas changes sign when the laser helicity is flipped while the sign of

the shifts due to these two classes of systematics remains unchanged.

The largest source of uncertainty comes from knowledge of κ0 & its tempera-

ture dependence, the pumping chamber temperature, and the pumping chamber

3He density. For a 1% measurement, the main holding field must stable to within

200 ppm over the course of the measurement. Correcting for the effects of a sys-

tematic drift in the holding field are discussed in Sec. (4.6.8). If one is interested

in the target chamber polarization, then a polarization gradient correction must be

applied, see Sec. (4.6.8).



4.5. SIGN DETERMINATION 302

4.5 Sign Determination

4.5.1 The Sign of the 3He Polarization

Before going on further, it is imperative to reemphasize two important points:

1. The frequency shift due to polarized 3He is measured relative to the EPR

frequency when the 3He polarization is zero. In other words, the “baseline”

EPR frequency is due to the all the fields not associated with the 3He.

2. The sign of the 3He polarization is measured relative to the sign of the hold-

ing field (which is positive by definition).

The sign of the frequency shift ∆ν is determined by the product gK

(
~P · B̂0

)
. Since

the magnetic moment of 3He is negative (gK < 0), the sign of the polarization is

negative to the sign of the frequency shift:

sign
[
~P · B̂0

]
= −sign [∆ν] (4.151)

The physical interpretation of this result is straightforward to understand. When

the holding field and the field due to 3He are parallel (antiparallel), then the two

fields add (subtract). The resulting EPR frequency is consequently greater (smaller)

than the zero 3He polarization EPR frequency. Thus the frequency shift is positive

(negative). Because the magnetic moment of 3He is negative, the polarization of

3He and the magnetic field due to the 3He are always of opposite sign:

sign
[
~P
]

= −sign
[
~BHe

]
(4.152)
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whereas the sign of the expectation value of the spin state is always the same as

the sign of the polarization:

sign
[
~P
]

= sign
[〈
~K
〉]

(4.153)

A graphical depiction of this argument is given at the bottom of Figs. (4.13) & (4.14).

To summarize:

• well shape ⇒ ∆ν > 0⇒ BHe is parallel to B0(
3He is in low energy state

)
⇒ BHe > 0⇒ P < 0

• hat shape ⇒ ∆ν < 0⇒ BHe is antiparallel to B0(
3He is in high energy state

)
⇒ BHe < 0⇒ P > 0

The sign of the 3He polarization can also be inferred from the water signal. As-

suming that the electronics are identical for both 3He and water, then the field pro-

duced by the 3He is parallel to the field produced by the water when the 3He peak

points in the same direction as the up sweep for the water signal during field sweep

NMR, where the “up” sweep is defined as a sweep from low field to HIGH field.

Since the magnetic moment of 3He is negative, this implies that the sign of the

3He polarization is negative. On the other hand, if the 3He peak points in the op-

posite direction of the “up” sweep from the field sweep water NMR signal, then

the sign of the 3He polarization is positive.

4.5.2 The Sign of the Alkali Polarization

If the spin system in the cell is at equilibrium, then one can be certain that the

sign of the alkali polarization is the same as the sign of the 3He polarization. The
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phrase “at equilibrium” means that both the alkali and 3He polarizations have

reached their saturation values. The alkali and 3He spins are not at equilibrium

after the first spin flip and before the second spin flip during an EPR measurement.

During this middle period of an EPR measurement, the signs of the alkali and 3He

polarizations are opposite.

This observation can used to define a looser and more useful definition for “at

equilibrium:” the spin system is “at equilibrium” when the difference between the

number of alkali spin flips and the number of 3He spin flips is even. The alkali

spins are usually flipped by rotating the quarter waveplate used to circularly po-

larize the laser beam by 90 degrees. Suppose that both the alkali and 3He polariza-

tions are zero and the laser has just been turned on. In this case, the polarizations

of both the alkali atoms and 3He nuclei are changing with time. However, since

neither set of spins have been flipped, the signs of the polarizations should be the

same. In summary, as long as nothing “weird” has happened, the sign of the alkali

polarization should be the same as the sign of the 3He polarization.

An alternative way to determine the sign of the alkali polarization is from

the EPR frequency and the magnitude of the holding field. To lowest order, the

frequencies are linear in field and independent of the mF state. However, the

higher order terms (hidden in δg) give an mF dependence to the EPR frequency.

For example, at B0 = 25 gauss, the difference in EPR frequencies between the

mF = +(I + 1/2)↔ +(I − 1/2) transition and the mF = −(I + 1/2)↔ −(I − 1/2)

transition are -450 kHz and −4000 kHz for 85Rb and 39K respectively. To use this

method, one needs to know the magnitude of the holding field to only about 20%

for 39K EPR frequencies and to about 4% for 85Rb EPR frequencies. At 25 gauss, this

corresponds to only about 5 gauss for 39K EPR frequencies and to about 1 gauss for
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85Rb EPR frequencies.

Finally, the signs of the alkali polarizations in a hybrid cell are always essen-

tially the same. This is because the alkali spin exchange is very fast (>MHz). The

alkali atoms can always be thought of as being “at equilibrium” with each other.

4.5.3 The Sign of the Light Polarization

Once the sign of the alkali polarization is known, the sign of the light polariza-

tion can be determined from knowledge of the laser beam propagation direction

relative to the holding field. This is a very tricky argument because (1) there are

two different coordinate systems involved in this discussion and (2) there are two

different conventions for labeling the circular polarization of light. First let’s start

with the two different coordinate systems. From the point of view of the alkali

atom, the most natural coordinate system is the one in which the positive z di-

rection points along the direction of the holding field. Let’s call this the atomic

coordinate system. On the other hand, from the point of view of the photon in the

laser beam, the most natural coordinate system is the one in which the positive z

direction points along the direction of propagation of the laser beam. Let’s call this

the light coordinate system.

When the laser beam is traveling parallel to the the holding field, the atomic

system and the light system are one and the same. However, when the laser beam

is traveling antiparallel to the holding field, the atomic system and the light system

point in opposite directions!

Suppose we’ve found that the polarization of 85Rb is negative. This means that

the mF = −3 state is being filled and the mF = +3 is being depopulated by the po-

larized light. If we ignore the nuclear spin, then this corresponds to the mJ = +1/2
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state being filled while the mJ = −1/2 is being depopulated. For this to happen,

the Rb atom must be selectively undergoing transitions from the
∣∣S1/2,+1/2

〉
state

to the
∣∣P1/2,−1/2

〉
state. This implies that the angular momentum carried by the

photon in the atomic system must be −1. Consequently, the electric field vector of

the laser light is rotating clockwise around the z-axis of the atomic system. To be

clear, “rotating” is really just shorthand for “rotating at a fixed point as a function

of time.”

If the laser beam is traveling parallel to the holding field, then our work is

done. We can conclude that the electric field vector is rotating clockwise around the

laser beam propagation direction. Whether we call that “right” or “left” circularly

polarized light is a matter of convention that is discussed later. What happens in

the scenario where the laser beam is propagating antiparallel to the holding field?

Recall that the z direction in the light system points antiparallel to the z direction

in the atomic system. This means that the electric field vector is rotating counter-

clockwise around the laser beam propagation direction, even though it is rotating

clockwise around the holding field. This argument is depicted graphically in the

upper and middle portions of Figs. (4.13) & (4.14).

“Helicity” vs. “Optics” Sign Convention

Now we can finally address the question of what “handedness” to label circularly

polarized light: “right” or “left.” One approach is to define a quantity called he-

licity, which is the sign of the projection of the angular momentum of the photon

about the photon propagation direction ~Jγ onto the photon momentum~k:

h = sign
[
~Jγ ·~k

]
(4.154)
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Figure 4.13: “Well” Spectrum. The field due to 3He points parallel to the holding
field. The sign of the 3He and alkali polarizations are negative. The angular mo-
mentum of the light is antiparallel to the holding field. The EPR frequency shift
measurement probes the mF = −(I + 1/2)↔−(I − 1/2) transition. Using the he-
licity convention, the upper (middle) figure represents “left” (“right”) circularly
polarized light traveling parallel (antiparallel) to the holding field.
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Figure 4.14: “Hat” Spectrum. The field due to 3He points antiparallel to the hold-
ing field. The sign of the 3He and alkali polarizations are positive. The angular
momentum of the light is parallel to the holding field. The EPR frequency shift
measurement probes the mF = +(I + 1/2)↔ +(I − 1/2) transition. Using the he-
licity convention, the upper (middle) figure represents “right” (“left”) circularly
polarized light traveling parallel (antiparallel) to the holding field.
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Figure 4.15: Right (helicity) circularly polarized light. Left: fixed time, forward in
space. Right: fixed space, forward in time.

The helicity obeys the right hand rule: it is positive when the electric field vector

rotates counter-clockwise about the light propagation direction. Once again, to be

clear, by “rotate,” we mean “rotating as a function of time at a fixed point.” Let’s

call this the “helicity” convention. In this convention, it is natural to call light with

positive (negative) helicity , “right” (“left”) circularly polarized.

The other convention is the “standard optics” convention. In this case, we

imagine how the electric field vector rotates as a function of position at a fixed time.

Suppose we can “freeze” time and “look” at the electric field vector at different

positions. If we were to connect that electric field vectors from location to location,

we would end up with a “corkscrew” shape. A “right” handed laser beam in the

helicity convention looks like a “left” handed corkscrew. The difference between

these two conventions is depicted in Fig. (4.15). Useful discussions on this point

can be found in [44, 45].



4.6. POLARIMETRY FOR E97110 310

4.6 Polarimetry for E97110

4.6.1 NMR Calibration Constant

For this experiment, the NMR signal was calibrated using NMR signals from two

sources with known absolute polarizations. The first source was protons in liquid

water with a known thermal polarization given the magnetic field and temper-

ature. The second source was the polarized 3He itself with a pumping chamber

polarization determined by an EPR measurement. The NMR signal data was fit

to an appropriate analytic model function `model(t) which yielded the NMR signal

amplitude S. By comparing to Eqn. (4.62), we find that this amplitude is given by:

S = cS

[
GL

Gn
L

]
GPQ(ω0)gν0PscalentcΦ

tc
x `

fit
B =

Pscalentc`fit
B

cX
(4.155)

where Gn
L is the nominal gain of the lockin, GL is the actual gain of the lockin, GP is

the gain of the preamp, Q(ω0) is the frequency response of the pickup coil detection

circuitry at the resonance frequency ω0 = 2πν0, g is the g-factor of the particle in

units of the nuclear magneton, Pscale & ntc are the average scale polarization &

density in the target chamber, Φtc
x is the flux factor, `fit

B is the lineshape factor from a

fit to `B(t) using the model function `model(t), `B(t) is NMR lineshape obtained from

the numerical solution to the MBE which includes the effects of the lockin time

constant & magnetic field gradients, and cS is a constant independent of the signal

source and signal detection circuitry:

cS = constant =
µ0µN

4
√

2
=

1
4
√

2

(
17.0530 nV

amg · cm2 · kHz

)
(4.156)
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In theory, we could attempt to calculate the calibration constant cX by plugging in

each factor in Eqn. (4.155). In practice, however, it is more useful to express cX in

terms of ratios, which are expected to have smaller uncertainties:

cX =

[
ĜL/Ĝn

L

GL/Gn
L

][
ĜP

GP

][
Q̂(ω0)
Q(ω0)

][
ĝ
g

][
ν̂0

ν0

][
Φ̂tc

x

Φtc
x

][
P̂tcn̂tc ˆ̀fit

B

Ŝ

]
(4.157)

where the “hat” (ˆ) labels quantities for a calibration measurement. The “non-hat”

quantities refer to values during a “production” 3He polarization measurement

and yields a 3He polarization given by:

Ptc =
cXS

ntc`fit
B

(4.158)

4.6.2 Response of the Detection Circuitry

The lockin amplifier used for this experiment (SRS 844) amplified the input signal

to produce an output signal given by Vout = Vin(10 V/sens.) = GLVin. The voltage

recorded by the DAQ was rescaled by the nominal gain to give VDAQ = Vout/Gn
L =

(GL/Gn
L)Vin. The ratio of the true gain to the nominal gain is 1.000± 0.029 (±0.25

dB for frequencies below 50 MHz [16]). Although a precise determination of this

ratio could have been determined easily by a direct measurement, this was not

done. Therefore, comparing two signals from the lockin at two different sensitiv-

ity settings results in a 4.1% relative uncertainty. All NMR measurements of the

polarized 3He cell were taken with the lockin sensitivity at 30 mV. Since all wa-

ter calibration were performed with the lockin sensitivity at 100 mV, 300 mV, or 1

V, the ratio of lockin gains is 1.000± 0.041 for the water calibration constant. On

the other hand, the EPR calibrations were performed at the same sensitivity and,
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consequently, the ratio of the lockin gains cancels.

The same argument applies for the preamp (SRS 560) which has a gain accuracy

of 3.5% relative (±0.30 dB for nominal gains up to 1000 and frequencies below 300

kHz [46]). The preamp gain was 1 for 3He measurements and 100 or 200 for water

calibrations. Again, since the true gain was not measueed, we’ve assumed that

the preamp gain ratio for water calibration was 1.000± 0.050, whereas this factor

cancels for EPR calibrations.

The relative frequency response of the detection circuitry was monitored by

measurements of its “Q-Curve.” The pickup coils, preamp (with a nominal gain of

1 and frequency filters off), and BNC cabling can be modeled [12, 14, 47, 48] as an

equivalent series RLC-circuit with the induced signal E as a voltage source. In this

model, the voltage measured by the lockin is across the equivalent capacitor, which

we’ll assume also has a large intrinsic resistance in parallel. It is straightforward

to show that the amplitude of the frequency response is given by [47]:

Q(ω) =
∣∣∣∣Vout

E

∣∣∣∣ = [(1 + ρ− u2)2 +
u2

q2

]−1/2

× exp(−α) (4.159)

2α2 = ρ+ u2

[
−1 +

√
1 +

1/q2− 2ρ
u2 +

ρ2

u4

]
≈ 1

2q2

(
when u� 1/q,

√
ρ
)

where u = ω/ω0, ω0 = 1/
√

LC, ρ = Rs/Rp is the ratio of the series resistance Rs

to the parallel resistance Rp, q = Q0/(1 + ρQ2
0), Q0 = (1/Rs)

√
L/C, and α is due

to the attenuation of the signal due to the BNC cable. The Q-curve is measured

by recording the signal induced in the pickup coils due to a small “Q”-coil which

creates an RF field at a fixed amplitude. The lockin voltage (in the “R” channel) vs.



4.6. POLARIMETRY FOR E97110 313

Q-coil frequency is fit to:

f (ω) =
∣∣∣∣AQ(ω) + b + m

(
ω− ωref

ω0

)∣∣∣∣ (4.160)

where ωref = 2π(91 kHz), we’ve included a linear background to account for the

“drift” in signal due to the “warming-up” of the Q-coil, and the absolute value

insures that the voltage measured is positive, see Fig. (4.16). The results for E97110

are listed in Tab. (4.4), where the fits values for |ρ| were always below 0.003. The

response at 91 kHz Q(91 kHz) changed by (−4.6±0.5)% relative after the cell Pene-

lope ruptured on 07/23. Finally, the response while the oven is hot (i.e. operating

conditions for 3He ) is lower by (1.8± 0.3)% relative than the response while the

oven is cold (i.e. operating conditions for water calibrations). Since relatively few

Q-curve measurements were taken, we’ve used the variation in the July measure-

ments to assign a 1% relative uncertainity to the stability of the frequency response.

4.6.3 Target Density

The number density in the two chambers of the target cell can be calculated from

the temperature t and volume v ratios defined by:

v = Vpc/Vtc t = Tpc/Ttc (4.161)

where the temperatures of the pumping & target chambers are given in Kelvin by

Tpc & Ttc respectively, and the volumes of the pumping & target chambers are Vpc

& Vtc respectively. Assuming that the pressure is uniform throughout the cell and
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date conditions res. freq. (kHz) q Q(91 kHz)

07/09 19:33 cold 146.873± 0.009 28.3± 0.1 1.5930± 0.0004
07/10 00:24 cold 147.237± 0.014 32.8± 0.3 1.5907± 0.0006
07/10 00:37 cold 147.238± 0.014 32.8± 0.3 1.5907± 0.0006
07/12 17:29 cold 147.632± 0.004 28.9± 0.1 1.5900± 0.0002
07/12 18:14 cold 147.686± 0.008 28.0± 0.1 1.5873± 0.0003

08/05 19:01 cold 153.080± 0.004 40.1± 0.1 1.5261± 0.0002
08/30 19:24 cold 153.425± 0.004 41.3± 0.1 1.5272± 0.0002
08/30 19:34 cold 153.424± 0.004 41.3± 0.1 1.5273± 0.0002
08/30 22:29 cold 153.440± 0.004 41.3± 0.1 1.5266± 0.0002
09/01 21:56 cold 153.072± 0.005 40.1± 0.1 1.5264± 0.0002
09/01 22:06 cold 153.072± 0.005 40.1± 0.1 1.5264± 0.0002

09/02 10:52 hot 155.932± 0.010 43.5± 0.3 1.5017± 0.0003
09/02 11:02 hot 155.962± 0.010 43.4± 0.3 1.5005± 0.0003

07/09 penelope cold 1.590± 0.002
07/23 penelope hot 1.563± 0.004

07/23 priapus cold 1.5267± 0.0005
09/01 priapus hot 1.501± 0.003

Table 4.4: Results of “Q-Curve” Measurements for E97110. The rupture of the
cell Penelope on 07/23 is thought to have changed the response of the pickup
coils. Only two measurements were made while the cell & oven were hot. These
measurements were scaled to estimate the “hot” response before 07/23.
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Figure 4.16: Q-curve Measurements. The left (right) plot is depicts the fit to the
09/01 22:06 (09/02 10:52) measurement when the oven was cold (hot). The solid
points are data, the dashed line is the fit to Eqn. (4.160), and the solid line the re-
sponse, Eqn. (4.159), scaled by the normalization parameter A. The vertical dotted
line is at 91 kHz, which was the NMR RF frequency for all NMR measurements.
The “kink” in the hot measurement (right plot) is an artifact due to the fact that the
R channel of the lockin does not record sign information.

that the 3He behaves as an ideal gas, we find:

Pcell = nfill

[
1 + v
t + v

]
RTpc = npcRTpc = ntcRTtc (4.162)

where nfill is the fill density, R is the ideal gas constant, and we’ve ignored the effect

of the small transfer tube volume. This immediately yields the densities:

npc = nfill

[
1 + v
t + v

]
ntc = npct = nfill

[
1 + v
t + v

]
t (4.163)

Target Chamber Temperatures

The target chamber temperatures were monitored at 5 different locations along the

length of the chamber using RTDs (Resistance Temperature Detector), see Fig. (4.18)

and Tab. (4.7). There are several ways [12,49] to model the temperature distribution

in the target chamber and, provided the model results in a reasonable/smoothly-
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Figure 4.17: Target Chamber Temperature Gradient. The solid points are the mea-
sured temperatures. The open points are the extrapolated values used to construct
the cubic spline (denoted by the solid curve). The left (right) plot is for the cell
Penelope (Priapus) during the 6 (9) degree running. The vertical dashed lines rep-
resent the edges of the pickup coils.

varying function, the average target chamber density is very insensitive to the de-

tails of the model. Therefore, we used a cubic spline where the temperature at

the ends of the target chamber were determined by a linear extrapolation of two

nearest temperature readings, see Fig. (4.17). Since ntc is defined to be the aver-

age density in the target chamber, the value Ttc is understood to be 1/ 〈1/Ttc〉, the

inverse of the average value of the inverse temperature in the target chamber.

“Temperature Tests”

The laser light heats the 3He gas in the pumping chamber by a significant amount

[50, 51]. In addition, the light may also heat the RTDs monitoring the pumping

chamber temperature by some unknown amount. Therefore, the temperature of

the 3He gas in the pumping chamber can not be assumed to be the same as the

surface temperature of the pumping chamber. A “temperature test” is used to

infer the 3He gas temperature in the pumping chamber when the lasers are on by

comparing the size of the NMR signal with the lasers on & off. This test assumes
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that the 3He gas temperature is the same as the surface temperature of the glass for

those parts of the cell that are not being hit by the laser light.

The ratio of NMR signals with the laser on & off are given by:

Son

Soff =
coff

X Ponnon`on

con
X Poffnoff`off (4.164)

Because any change in the polarization or calibration constant can mimic a change

in the density when the laser is turned on/off, it is more useful to work with the

normalized NMR signal ratio ρ defined by:

ρ ≡ non

noff =
Soncon

X Poff`off

Soffcoff
X Pon`on

(4.165)

For the case where we can measure the NMR signal in both chambers simultane-

ously, we can take the ratio of the pumping & target chamber normalized NMR

signal ratios to get:

ρpc

ρtc
=

non
pc

noff
pc
× noff

tc

non
tc

=
non

pc

non
tc
× noff

tc

noff
pc

=
toff

ton (4.166)

which we can easily solve for ton:

ton = toffρtc/ρpc → Ton
pc = Toff

pc

[
Son

tc Soff
pc

Soff
tc Son

pc

][
con

tc coff
pc

coff
tc con

pc

][
Poff

tc Pon
pc

Pon
tc Poff

pc

][
`off

tc `
on
pc

`on
tc `

off
pc

][
Ton

tc

Toff
tc

]
(4.167)

If we only have NMR measurement in the pumping chamber, then we must start

with this equation:

ρpc =
non

pc

noff
pc

=
1 + v

ton + v
× toff + v

1 + v
=

toff + v
ton + v

(4.168)
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Solving for ton gives:

ton =
toff + v
ρpc

−v → Ton
pc = Ton

tc

(
Vpc

Vtc

)(
−1 +

[
1 +

Toff
pc Vtc

Toff
tc Vpc

][
Soff

pc

Son
pc

][
coff

pc

con
pc

][
Pon

pc

Poff
pc

][
`on

pc

`off
pc

])
(4.169)

If we can only measure the NMR signal in the target chamber, then we must start

with this equation:

ρtc =
non

tc

noff
tc

= ton
[

1 + v
ton + v

]
× 1

toff

[
toff + v
1 + v

]
=

ton

toff

[
toff + v
ton + v

]
(4.170)

Solving for ton gives:
1

ton =
1
ρtc

[
1

toff +
1
v

]
− 1

v
(4.171)

Rearranging some things and writing it out explicitly gives for NMR in the target

chamber only:

Ton
pc = Ton

tc

(
−Vtc

Vpc
+

[
Toff

tc

Toff
pc

+
Vtc

Vpc

][
Soff

tc

Son
tc

][
coff

tc

con
tc

][
Pon

tc

Poff
tc

][
`on

tc

`off
tc

])−1

(4.172)

Results for E97110

For E97110, only target chamber pickup coils were used, therefore, we’ll apply

Eqn. (4.172). This test is very sensitive to systematic differences between the NMR

signals when the laser is turned off. For example, in our case, a 1% relative dif-

ference between the “laser on” and “laser off” normalized NMR signals translates

into about a 5 degree difference between the calculated and measured pumping

chamber temperatures. Changes in the NMR signal are due to changes in both the

density (what we’re interested in) and the calibration constant & polarization. Dur-

ing these tests, there was usually a 0.3 K difference in target chamber temperature

when the lasers turned on/off. We have assumed that variations in the calibration



4.6. POLARIMETRY FOR E97110 319

date notes # meas. 〈∆t〉 Son
tc /Soff

tc Pon
tc /Poff

tc (∆T) 6=1 (∆T)=1

07/16 penelope 5 26 1.049 1.001 23 24
07/24 - 4 20 1.072 1.018 33 55
07/28 - 3 22 1.051 1.000 31 31
07/30 - 5 25 1.052 1.017 13 31
08/03 - 7 24 1.048 1.010 16 27
08/12 4 lasers 5 26 1.047 1.001 20 21
08/13 - 6 15 1.056 1.004 24 29
08/29 cooling jets on 5 19 1.065 0.997 43 39
08/29 cooling jets off 5 20 1.053 0.999 26 25
08/29 1 laser 7 15 1.025 0.998 17 15

min K K

Table 4.5: Temperature Test Results for E97110. All tests were done with the cell
Priapus and 3 lasers unless otherwise noted. The average time interval between
measurements is 〈∆t〉. The difference between the calculated pumping chamber
temperature and the measured value with the lasers on is (∆T). A temperature
test using only one laser was performed to estimate the size of the temperature
difference when there was less heating. The calculated temperature was obtained
by assuming that alkali vapor density (1) remains fixed ((∆T)6=1, Pon

tc /Poff
tc listed in

table) and (2) changes instantaneously ((∆T)=1,Pon
tc /Poff

tc = 1.0000± 0.0002).
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constant due to target chamber temperature fluctuations is linear; therefore, we

find con
tc /coff

tc = 1.000± 0.001.

The signals are typically measured five times with the laser sequence ON-off-

ON-off-ON with about a 20 minute interval between measurements, see Tab. (4.5).

Since most measurements are performed when the polarization is near its equilib-

rium value, it does not change much when the laser is on. However, the polariza-

tion may change significantly when the lasers are off because of the rapid (relative

to the cell lifetime) spin exchange with the unpolarized alkali vapor. This may

cause a systematic difference in the polarization when the lasers are turned off.

Studies of the polarization dynamics in the cell, see Sec. (6.1), indicate that the

polarization ratio Pon
tc /Poff

tc is most sensitive to alkali vapor density when the lasers

are turned off. Although the glass and 3He gas is expected to reach thermal equilib-

rium very quickly (several seconds), it is not clear how fast the alkali vapor density

changes. Therefore, we’ve calculated the polarization ratio assuming that the alkali

vapor density (1) remains fixed throughout the temperature test and (2) changes

instantaneously to its new equilibrium value when the laser is turned on/off. For

the first case, because the alkali vapor density remains high, the spin exchange rate

is relatively fast and the polarization ratios calculated from a numerical simulation

are listed in Tab. (4.5). For the second case, because the laser off pumping cham-

ber temperature is relatively low (compared to hybrid cells), the spin exchange

rate is relatively slow and a numerical simulation indicates that the polarization

ratio is essentially unity, Pon
tc /Poff

tc = (1.0000± 0.0002). On average, in our case,

the assumption that the polarization ratio is unity results in calculated pumping

chamber temperatures that are about 5 degrees hotter. Combing all of the second

period temperature tests and averaging the results from the two assumptions for
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the behavior of the alkali vapor density, we find:

∆T = Tcalc
pc − Tmeas

pc = (28± 8) K + [0.4± 0.6]
(

Tmeas
pc − 465 K

)
(4.173)

where the uncertainties in the calibration constant & polarization ratios have been

folded into uncertainties quoted in the equation. The pumping chamber temper-

ature was systematically 13 K lower when the laser light was incident from the

transverse direction (i.e. “transverse pumping”). Since a temperature test was

not possible under this condition, we’ve used the correction given by Eqn. (4.173)

for both longitudinal & transverse pumping. This was reasonable since the large

uncertainty in the linear term (0.4± 0.6) resulted in a larger uncertainty in the cal-

culated temperatures for transverse pumping.

Finally, we’ll note that the pumping chamber polarization ratio is much more

sensitive to the details of the dynamics and, in our case, we find Pon
pc /Poff

pc = 1.10±

0.05 for case (1) and Pon
pc /Poff

pc = 1.03± 0.02 for case (2). This causes a difference

in the ratio of the polarizations between the pumping & target chambers when

the lasers are turned on/off. Combined with the change in the ratio of pumping

chamber to target chamber density, this causes a systematic difference in the line-

shape factor when the lasers are turned on/off. Under our conditions, we found

that `on
tc /`

off
tc = 1.0025± 0.0025. Since we ignored this factor in the analysis, we’ve

assumed that `on
tc /`

off
tc = 1.000± 0.005, which results in only a small change in the

final value & uncertainty in the pumping chamber temperature.



4.6. POLARIMETRY FOR E97110 322

4.6.4 NMR Pickup Coil Flux Factor

The flux factor was calculated by a numeric integration of Eqn. (4.43). We assumed

two identical pickup coils on either side of the target chamber, each with 120 turns

using 32 gauge (AWG) wire. Measurements of the coil-to-coil (cc1,cc2,cc3,cc4)

and coil-to-cell (atp,atm,btp,btm) distances were usually made for each water cal-

ibration and for each time the polarized 3He cell was installed or removed, see

Tab. (4.6) and Fig. (4.18). The coil-to-coil distances were more reliable, so the cell-

to-coil distances were rescaled using the target chamber outer diameter (tcod), for

example:

atp′ = atp

[
cc1/2 + cc2/2− tcod

atp+ btp

]
(4.174)

The vertical (y) position of the coil with respect to the target chamber was de-

termined by the encoder reading from the stepper motor used to raise/lower the

target ladder assembly, see Fig. (3.8).

The density gradient in the target chamber was determined by the temperature

distribution, see Sec. (4.6.3). The polarization gradient was estimated using the

results of Sec. (6.4.6). Combining the polarization and density gradients, we find

for the target chamber:

f (~u) =
[

1 +
1
2

(
1− 4|~u · ẑ|

Ltc

)
∆Ptc

〈Ptc〉

]
1/ 〈1/Ttc〉
Ttc(~u · ẑ)

(4.175)

where ∆Ptc/ 〈Ptc〉 is difference in the polarization between the center & ends of the

target chamber relative to the average target chamber polarization and the values

used for this experiment are listed in Tab. (4.7).

The water cell used for this experiment had a different target chamber wall

thickness than for the two polarized 3He cells, see Tab. (4.8). Because the flux fac-
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date cell atp atm btm btp cc1 cc2 cc4 cc3

07/10 water 0.267 0.373 0.254 0.297 2.469 2.522 2.591 2.601
07/12 water 1.003 1.430 0.254 0.417 3.368 3.307 3.683 3.622
08/05 water 0.772 1.445 0.267 0.470 3.317 3.251 3.622 3.614
09/01 water 0.792 1.494 0.274 0.472 3.352 3.302 3.582 3.588

07/12 penelope 0.970 1.372 0.406 0.371 3.368 3.307 3.683 3.622

07/23 priapus 0.780 1.157 0.401 0.514 3.347 3.288 3.677 3.625
08/07 priapus 0.790 1.273 0.437 0.587 3.317 3.251 3.622 3.614
08/29 priapus 0.770 1.041 0.366 0.442 3.330 3.330 3.617 3.569

09/01
−1 mm -0.56 -0.27 +1.57 +1.07 +0.94 +0.94 +0.73 +0.73
+1 mm +0.52 +0.24 -1.24 -0.79 -0.92 -0.92 -0.72 -0.72

08/29
−1 mm -0.50 -0.44 +1.41 +1.01 +0.94 +0.94 +0.84 +0.84
+1 mm +0.47 +0.40 -1.02 -0.72 -0.92 -0.92 -0.83 -0.83

Table 4.6: Measured Coil-to-cell & Coil-to-coil Distances for E97110. The first 8
rows are the distances in cm. The pickup coils were moved on July 12 due to space
constraints and on July 23 because the cell Penelope ruptured. The last 4 rows
are the percent change in the flux factor Φtc

x when the distance corresponding to
that column is changed by ±1 mm for the water cell (09/01) and the cell Priapus
(08/29). The flux gain Gx

Φ
(0) changes by less than 0.1% relative for a±1 mm varia-

tion in the coil positions.
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Figure 4.18: Pickup Coil and Target Chamber Geometry. The positive z-axis points
towards the beam dump. The positive y-axis points towards the pumping chamber
and x̂ = ŷ× ẑ. The origin is the center of the target chamber. Each pickup coil is
20 turns wide by 6 turns high with a wire diameter of 202 µm. The lower plot
is the flux factor per z-slice in the target chamber of Priapus during the 9 degree
running, where the solid circles is the sum of the coil A (open triangles) and coil B
(open circles) contributions.
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parameter water penelope priapus
6 deg 9 deg

Tcalc
pc (oC) 24 227 216 221

rtd1 (cm) , Ttc (oC) 24 −14.5 , 46.0 −13.7 , 43.8 46.2
rtd2 (cm) , Ttc (oC) 24 −8.0 , 53.5 −7.0 , 55.6 53.0
rtd3 (cm) , Ttc (oC) 24 +1.3 , 58.1 +1.4 , 77.9 65.0
rtd4 (cm) , Ttc (oC) 24 +8.3 , 54.0 +6.9 , 86.4 77.6
rtd5 (cm) , Ttc (oC) 24 +14.5 , 47.5 +14.0 , 55.4 55.4
1/ 〈1/Ttc〉 (oC) 51.3 58.5 56.1
v = Vpc/Vtc 1.023 1.141
npc/ntc = 1/t 1 0.649 0.679 0.666
ntc (amg) 2482 10.82 10.53 10.62
〈Ibeam〉 (µA) 2.23 4.29 8.00
lifetime (hrs) 54 56 56(

1− P∞tc /P∞pc

)
beam

(%) 2.9 3.0 3.7(
1− P∞tc /P∞pc

)
0

(%) 0 2.5 2.2 2.2(
∆Ptc/ 〈Ptc〉

)
beam (%) 1.42 1.50 1.88(

∆Ptc/ 〈Ptc〉
)

0 (%) 0 1.20 1.08 1.10

Table 4.7: Temperature/Density and Polarization Gradient Parameters for E97110.
NMR measurements were made with lasers on in the longitudinal configuration.
The polarization gradient parameters are given for both no beam (subscript 0) and
with a beam current of 〈Ibeam〉 (subscript beam).
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tor drops off a 1/d2, where d is the distance between the coils and the spins, the

numerical integration took into account the size of the coil wire to determine the

relative position of each turn. The integration was performed using 2× (3 by 14)

line elements per turn, (2×64+1)× (16×4)2 volume elements for the target cham-

ber, (2× 8 + 1)× (8× 4)2 volume elements for the transfer tube, and 13025 volume

elements for the pumping chamber. The flux gain Gx
Φ

(0) is calculated using the pa-

rameters from Tab. (4.7) assuming that there are no magnetic field gradients. Final

results for the flux factor and flux gain for each measurement of the coil positions

are listed in Tab. (4.9). The uncertainty in the flux factor due to the uncertainty in

the coil position measurements is about 2.6% relative per 1 mm of uncertainty of

the measurements, see Tab. (4.6). From measurements of the coil positions from

the start and end of the 9 degree running with Priapus, we’ve assigned a 0.6% rel-

ative uncertainty due to the stablity of the coil positions. Finally, we’ve assigned

a 0.7% relative uncertaintity due to our understanding of the polarization & tem-

perature/density gradients along the target chamber.

4.6.5 NMR Lineshape Model Functions

Since a full numerical calculation of the NMR lineshape via the MBE is very time

consuming, the data were fit to analytic model functions. These functions are ap-

proximate but reproduce all the salient features of the lineshape. For the case of

polarized 3He (i.e. no relaxation), the model function is given by:

`model(t) = S

[
1 +

(
H(t)− H0

H1

)2
]−1/2

+ mbH(t) + cb (4.176)

where we’ve allowed for the possibility of a linear background.
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water penelope priapus

pcodV 6.72 6.16 6.33
pcodH 6.50 6.11 6.28
pcwall 0.193 0.193 0.193

ttod 1.25 1.26 1.27
ttlen 6.53 6.20 6.02
ttwall 0.173 0.181 0.181

tcod 1.92 1.91 1.91
tclen 39.9 39.7 39.4
tcwallA 0.115 0.0694 0.0760
tcwallB 0.115 0.0622 0.0600

Table 4.8: Cell Dimensions Used for Flux Factor Calculation. All units are cm.
The vertical & horizontal diameters of the pumping chamber are pcodV & pcodH

respectively. The wall thickness of the target chamber near coils A & B are tcwallA
& tcwallB respectively. Water cell dimensions were from [52].

For the case of thermally polarized protons in water (i.e. with relaxation),

a model function can be found by noting that (1) since η � 1, px starts small,

p0
x = peq

x � peq
y � peq

z , and (2) a numerical solution to the MBE confirms that px

stays small as the detuning is swept, px � py, pz for all t, see Fig. (4.3). There-

fore, by setting px & ṗx to zero in Eqn. (4.56), we find that the ratio of pz to py is

approximately ∆/ω1 and, consequently, the polarization vector can be written as:

~p ≈ p
Ω

[
ω1 ŷrot + ∆ẑ

]
= pB̂eff (4.177)

where p is the magnitude of the polarization relative to the thermal polarization

due to a field with magnitude B0. Once again the polarization vector is parallel to

the effective field in the rotating frame. However, in this case, the magnitude of
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date cell coil A coil B A+B
Φtc

x Gx
Φ

(0) Φtc
x Gx

Φ
(0) Φtc

x Gx
Φ

(0)

07/10 water 3781 0.949 3944 0.951 7725 0.950
07/12 water 1850 0.910 3689 0.948 5539 0.935
08/05 water 2001 0.915 3577 0.948 5578 0.936
09/01 water 2014 0.918 3626 0.950 5640 0.938

NG 0.76 -2.14 0.73 -1.26 0.74 -1.56
07/12 TG -0.22 0.12 -0.21 0.08 -0.22 0.09

penelope 2174 0.954 4032 0.970 6206 0.965

NG -0.91 -2.23 -1.06 -1.49 -1.00 -1.77
07/23 TG -0.23 0.14 -0.21 0.10 -0.22 0.11

priapus 2344 0.948 3680 0.964 6024 0.958

NG -1.25 -2.22 -1.29 -1.52 -1.27 -1.79
08/07 TG -0.30 0.17 -0.26 0.12 -0.28 0.14

priapus 2425 0.950 3667 0.965 6092 0.959

NG -1.26 -2.26 -1.28 -1.49 -1.27 -1.78
08/29 TG -0.29 0.17 -0.27 0.12 -0.28 0.14

priapus 2343 0.950 3769 0.965 6111 0.959

Table 4.9: Results for Flux Factors and Flux Gains for E97110. The flux factors Φtc
x

are given in cm2 and the flux gains Gx
Φ

(0) are unitless. For the polarized 3He cells,
the first row is the result ignoring polarization & temperature gradients, the second
row includes the effect of a temperature/density gradient (TG) along the target
chamber, and the third row includes both the temperature/density gradient and
the polarization gradient (TG/PG) along the target chamber length. The first &
second rows are given as the percent difference from the third row. The flux gain
quoted here is calculated assuming that there are no magnetic field gradients, see
Sec. (4.6.6) for further discussion.
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the polarization vector p is not unity and its time evolution is governed by:

dp
dt
≈ d

dt

[
s
√

p2
y + p2

z

]
=

1
p

[
py

dpy

dt
+ pz

dpz

dt

]
=

peq(t)− p
T

(4.178)

where we’ve made the additional approximation that T2 = T1 giving T = T1 and

peq(t) is the “equilibrium” polarization:

peq(t) =
ω2

1 + ∆(t)
(
ω0 + q∆(t)

)
ω0Ω(t)

q =

 0 frequency sweep

1 field sweep

 (4.179)

where q = 0 is the frequency sweep AFP and q = 1 for field sweep AFP. In di-

rect analogy to the lockin time constant equation (4.49), we can immediately write

down the integral form of this equation:

p(t) =
1
T

Z t

−∞
exp

(
u− t

T

)
peq(u) du (4.180)

In our case, the detuning is ramped “up,” held fixed for a some amount of time tw,

and then ramped “down:”

∆(t) =



∆start t ≤ 0

∆start + ∆̇t t ≤ 2t0

∆end t ≤ 2t0 + tw

∆end− ∆̇(t− 2t0− tw) t ≤ 4t0 + tw

∆start t > 4t0 + tw


(4.181)
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where ∆start is the initial detuning, and the final detuning ∆end & sweep rate ∆̇ are:

∆end = ∆start + ∆̇2t0 ∆̇ =
∆end− ∆start

2t0
(4.182)

To derive an analytic solution for this equation, we’ll make the usual approxima-

tions [12, 53, 54] that (1) far from resonance |∆| � ω1, the equilibrium polarization

is:

peq(t) ≈ sz

(
1 + q

∆(t)
ω0

)
sz ≡

∆

|∆| (4.183)

where sz is the sign of the detuning and (2) sufficiently close to resonance (|u− t0| ≤

ta & |u− 3t0− tw| ≤ ta), the exponential is expanded as:

exp
(

u− t
T

)
= exp (−srβz(t))

∞

∑
n=0

[srβz(u)]n

n!
(4.184)

where we’ve defined the unitless quantities z and β given by:

u− t
T

= srβ(z(u)− z(t)) z(t) =
∆(t)
ω1

β =
ω1

|∆̇|T
sr =

∆̇

|∆̇|
(4.185)

where sr is the sign of the detuning sweep rate that that the opposite (same) sign as

the detuning before (after) resonance. The integrals near resonance are evaluated

using the following:

srβω1

ω0

Z [
∞

∑
n=0

(srβz)n

n!

][
1 + ω0

ω1
z + qz2

√
1 + z2

]
dz =

∞

∑
n=0

cn(sr)In(z) (4.186)
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where the coefficients cn and integrals In(z) are defined by:

cn(sr) =
(srβ)n

n!

[
n + srβ

ω1

ω0

(
1 +

qn(n− 1)
β2

)]
(4.187)

In(z) =
Z zn
√

1 + z2
dz =

zn+1

n + 1

[
2F1

(
1
2
,

n + 1
2

;
n + 3

2
;−z2

)]
(4.188)

where 2F1 is the generalized hypergeometric function. For our purposes, truncat-

ing the sum to sixth order in z gives us considerable flexibility in choosing ta and

the closed form of the first seven integrals are given by:

I0 = asinh(z) I1 =
√

1 + z2 I2 = z
2 I1− 1

2 I0 I3 =
[

z2

3 −
2
3

]
I1 (4.189)

I4 =
[

z3

4 −
3z
8

]
I1 + 3

8 I0 I5 =
[

z4

5 −
4z2

15 + 8
15

]
I1 I6 =

[
z5

6 −
5z3

24 + 5z
16

]
I1− 5

16 I0

Putting all this together, we find:

p [t ≤ u0] = −sr

(
1 +

q∆start

ω0

)
p [t ≤ u1] = p′(u0, t)− sr I`

[(
1 +

q∆start

ω0

)
,

(
+

q∆̇

ω0

)
,u0, t

]
p [t ≤ u2] = p′(u1, t) + exp(−srβz(t))

6

∑
n=0

cn(+sr) [In(z(t))− In(z(u1))]

p [t ≤ u3] = p′(u2, t) + sr I`

[(
1 +

q∆start

ω0

)
,

(
+

q∆̇

ω0

)
,u2, t

]
p [t ≤ u4] = p′(u3, t) + sr

(
1 +

q∆end

ω0

)(
1− exp

[
u3− t

T

])
p [t ≤ u5] = p′(u4, t) + sr I`

[(
1 +

q∆end + q∆̇u4

ω0

)
,

(
−q∆̇

ω0

)
,u4, t

]
p [t ≤ u6] = p′(u5, t) + exp(+srβz(t))

6

∑
n=0

cn(−sr) [In(z(t))− In(z(u5))]

p [t ≤ u7] = p′(u6, t)− sr I`

[(
1 +

q∆end + q∆̇u4

ω0

)
,

(
−q∆̇

ω0

)
,u6, t

]
(4.190)
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where the times u0 · · ·u7 are given by:

u0 = 0 u1 = t0− ta u2 = t0 + ta u3 = 2t0 u4 = 2t0 + tw

u5 = 3t0 + tw− ta u6 = 3t0 + tw + ta u7 = 4t0 + tw (4.191)

and p′ & I` are both functions of t given by:

p′(u, t) = exp
(

u− t
T

)
p(u) (4.192)

I` (b,m,u, t) = b + m (t− T)− [b + m (u− T)] exp
[

u− t
T

]
(4.193)

When the resonance region integral sum is truncated at 6th order, then the higher

order terms contribute less than 0.1% over one T. Therefore a reasonable value for

the transition time ta between the two approximations is:

ta =

 t1 T > t1

T T ≤ t1

 t1 =
10ω1

∆̇
(4.194)

Finally, the model function used to fit water data is given by:

`model(t) = S
(
ωrf(t)
ω0

)
p(t) + qbt2 + mbt + cb (4.195)

where we’ve allowed for a quadratic background. This function is valid for both

frequency & field sweep AFP. In addition, although the heights of the up and down

sweeps are different due to relaxation, individual fits to the up and down sweeps

should result in the same value of the normalization S.
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4.6.6 Lineshape Factor

Introduction

The lineshape factor is calculated in the following way:

`fit
B = [AF0T0]

[
AaGT0

Aa0T0

][
Aa00d

Aa000

]
(4.196)

where the first term accounts for the differences between the full numerical so-

lution to the Modified Bloch Equations, Sec. (4.3.4), & the model function, see

previous section, and the signal averaging by the lockin amplifier. AF0T0 is the

normalization parameter determined by a fit to a numerical solution of Eqn. (4.49)

where the lockin time constant τ is 30 msec and the lockin input Vin is given by

py(t) which is determined by the numerical solution of MBE.

The second term accounts for distortions due to (1) magnetic field gradients

along the target chamber and (2) the small signals from the pumping chamber &

transfer tube. Aa0T0 is the normalization parameter determined by a fit to a numer-

ical solution of Eqn. (4.49) where τ = 30 msec and Vin(t) = `model(t). AaGT0 is the

normalization parameter determined by a fit to a numerical solution of Eqn. (4.49)

where τ = 30 msec and the lockin input is:

Vin(t) = Gx,tc
∇ (t)Gx

Φ
(t)py(t) ≈

+64

∑
n=−64

φtc
x (zn)
Φtc

x
`model(t, zn)

+
Pttntt

Ptcntc

+8

∑
m=−8

φtt
x (ym)
Φtc

x
`model(t, ym) +

Ppcnpc

Ptcntc

13024

∑
k=0

φpc
x (~uk)
Φtc

x
`model(t, ~uk)

→ Gx
Φ

(0)`model(t) (no magnetic field gradients) (4.197)

where φtc
x (zn) is the partial flux factor, Sec (4.3.2), for the nth-slice at location zn
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along the target chamber, Φtc
x = ∑

+64
n=−64 φ

tc
x (zn) is the total target chamber flux factor,

and `model(t, zn) is the model function, which has a position dependence through

the holding field sweep range.

Analogous terms are included for the pumping chamber & transfer tube to ac-

count for distortions to the lineshape due to a vertical magnetic field gradient. The

flux gain Gx
Φ

(0), as defined by the terms to the right of the arrow in Eqn. (4.46),

assumes that the resonance occurs at the same time for the target and pumping

chambers. Since the flux factor from the pumping chamber and transfer tube are

negative, the total signal at resonance is reduced by about 5% compared to the

signal from the target chamber alone. The presence of a vertical (∂Bz/∂y) mag-

netic field gradient shifts the resonance peak of the pumping chamber (and transfer

tube) relative to the target chamber. If the shift is large enough (∆y∂Bz/∂y� B1),

then the total signal at resonance is nearly the same as the signal from the target

chamber alone. For this experiment, there was an additional shift between the

pumping & target chamber due to the fact that the pickup coils were offset in the

z-direction relative to the centers of the target & pumping chambers.

The lowest order correction to Gx,tc
∇ from Eqn. (4.40) depends on:

[~u− ~u0] · ~∇B0 = ∆z
(

Bz

B0

)[
∂Bz

∂z
+

∆x
∆z
∂Bz

∂x
+

∆y
∆z
∂Bz

∂y

+
Bx

Bz

(
∂Bx

∂z
+

∆x
∆z
∂Bx

∂x
+

∆y
∆z
∂Bx

∂y

)
+

By

Bz

(
∂By

∂z
+

∆x
∆z
∂By

∂x
+

∆y
∆z
∂By

∂y

)]
(4.198)

In our case, most of field is in the z-direction which means that Bz≈ B0 and Bx, By�

Bz. In addition, since the target chamber is long and narrow, ∆z≈ 11 cm is roughly

the length of the pickup coils, while ∆x = ∆y ≈ 1.7 cm is roughly the target cham-
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ber inner diameter. For these two reasons, the lineshape is most sensitive to gradi-

ents in Bz and, in particular, ∂Bz/dz. For the same reason, the contribution from the

transfer tube is most sensitive to ∂Bz/∂y. Due to the spherical shape of the pump-

ing chamber, the contribution from the pumping chamber includes gradients in Bz

in all three directions.

The fields and gradients were determined by a magnetic field mapping [14]

in the target region with the septum magnet set to Isep = 175,250,325 Amps. We

made the questionable assumptions that the fringe field from the septum magnet

was (1) linear in septum current and (2) did not change when the magnet was

switched from the “6 degree” configuration to the “9 degree” configuration. By

combing the data sets, we determined the fields with the septum magnet on and

off, see Fig. (4.19). By comparing to a numerical calculation of the field due to a

Helmholtz pair, we determined that the dominant gradient with the septum off

was not due to the Helmholtz coils. As shown in Fig. (4.20), the gradient along

the target chamber of Bz at the center of the pickup coils decreases with increasing

septum current. Finally, by combining the gradients in the longitudinal (along

the target chamber) and vertical (along the transfer tube) directions, we calculated

the field shift between the pumping and target chamber for each septum current

Fig. (4.20).

The third term accounts for a slow drift in the holding field during a water

calibration. Aa00d is the normalization parameter determined by a fit to the average

of N model functions, where N is the total number of measurements each with a

different starting field. Aa000 is the normalization parameter determined by a fit

to the model function using the average starting field. The starting field for each

measurement was determined by the value of the current in the Helmholtz coils
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Figure 4.19: Spatial Variation of Bz with and without the Septum Magnet (2nd
period). The gradients listed in the plots are evaluated at the center of the pickup
coil region in the target chamber.



4.6. POLARIMETRY FOR E97110 337

0 100 200 300 400

-15

-10

-5

0

5

10

0 100 200 300 400

septum current (A)

 (
m

G
/c

m
) 

at
 c

en
te

r 
o

f 
co

ils
z

g
ra

d
ie

n
t 

in
 B

dy
zdB

dx
zdB

dz
zdB

0 100 200 300 400

0

50

100

150

0 100 200 300 400

septum current (A)

 (
m

G
)

tc z
 -

 B
p

c
z

B

Figure 4.20: Magnetic Field Gradients vs. Septum Current. (Left) Gradients in the
target chamber at the center of the pickup coils. (Right) The holding field at the
center of the pumping chamber relative to the target chamber.

date r.m.s. drift (mG) total drift (mG) Aa00d/Aa000

07/08 8.7 39.1 0.9938
07/10 8.4 35.5 0.9943
07/12 12.8 49.7 0.9877
08/05 5.1 28.4 0.9994

08/31-1 5.0 24.9 0.9979
08/31-2 6.9 32.0 0.9958
09/01-1 5.2 24.9 0.9973
09/01-2 5.4 24.9 0.9975

Table 4.10: Drift Corrections for Water Calibrations.

which was recorded about every 3 seconds, see Fig. (4.21). The typical size of of

the drifts and corresponding correction factor is listed in Tab. (4.10).

Determination of Parameters for Numerical Solution to MBE

The various parameters used in the numerical calculation of the water and 3He line-

shape factors are listed in Tab. (4.11). The RF frequency of the B1 field was 91 kHz

throughout the experiment. The total field sweep range was 7 Gauss at a rate of

1.2 G/s [14]. The starting fields (Bstart) were determined from the location of the
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Figure 4.21: Slow Drift in the Holding Field During Water Calibrations. The rel-
ative drift is defined by the difference from the average field scaled by B1 = 61.8
mG, which is the characteristic size of the broadened resonance peak. The size of
the signal drops by 30% at a distance of one B1 away from resonance. The smallest
(largest) correction was due to the drift depicted in the plot on the left (right).

parameter water he3 units

ν0 91 91 kHz
Bstart 17.8 24.5 G
Bend 24.8 31.5 G
B1 48.4 49.9 mG
µ 2.79285 -2.12750 µN

2t0 5.83 5.83 sec
tw 5.83 0 sec
T1 3.76 360000 sec
T2 3.35 27.6–60.6 sec
tcycle

w 24 0 sec
num. of sweeps 350–1000 1 unitless
sweep type (+1 = field, -1 = freq.) 1 1 unitless
τ , lockin time constant 30 30 msec
Pscale (0 for thermal pol.) 0 0.38 unitless
P∞z (0 for thermal pol.) 0 0.42 unitless

Table 4.11: Parameters Used for the Numerical Solution to the Modified Bloch
Equations.
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resonance peaks from the fits to the NMR data. The signal averaging of the lockin

causes the resonance peak to shift to a later time. Since the “up” and “dn” sweeps

were in different directions, the shift due to the lockin signal averaging largely

cancels in the average of the up and dn peak locations.

The amplitude of B1 was determined by the width parameter from fits to 3He

NMR data taken at 5 different NMR RF amplitude settings. This width was broad-

ened to due the signal averaging of the lockin and due to magnetic field gradients.

Therefore, the value of B1 put into the numerical lineshape calculation was var-

ied until the broadened fit width matched the fit width in the data. The average

value of B1 (or equivalently H1) from this method was about 10% lower than the

value determined using the “H1 coil” method [14, 55]. The magnitude of B1 was

different for water because those measurements were taken with the aluminum

covers removed. The 3He NMR data during production running was taken with

the aluminum covers in place.

The sweep time (2t0) and wait time (tw) were programmed into the function

generator controlling the holding field. The wait time between sweeps was de-

termined by the data transfer time of the DAQ. The T1 for water in the water cell

was determined by comparing the ratio of the up and dn peak fits amplitudes

in two different ways. In the first method, the water data and numerical calcu-

lations of the lineshape were both fit to the model function which included re-

laxation. The T used in this model function was varied until the ratio of the up

and dn peaks was 1.00094, which was the ratio of the up and dn fit amplitudes

determined by the numerical calculation of the lineshape. In the second method,

the water data and numerical calculations of the lineshape were both fit to the

model function used for the 3He NMR data (square root of a Lorentzian). The T1
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used in the numerical calculation of the lineshape was varied until the ratio of the

up and dn peaks was −0.86259, which was the ratio of the up and dn fit ampli-

tudes determined from the data after the effect of magnetic field gradients had

been removed. The first method gave T = 3.85s, while the second method gave

T1 = 3.67s. The uncertainty in the ratio of the up and dn peaks from fits to the

data (about 1 percent) corresponds to an uncertainty in T1 of 0.25 sec. The aver-

age value of T1 = (3.76± 0.25) s used in this analysis varies considerably from the

value T1 = 3.0 s used in past [14,56]. Finally, T2 was calculated from the difference

in the transverse and longitudinal relaxation rates (T−1
2 − T−1

1 = 33 mHz) used in

the past [14, 57].

From Eqn. (6.14), we find that the 3He T1 is given by:

1
T1

= Γtc + dtc

(
1−

Ppc

Ptc

)
(4.199)

where Γtc is the relaxation rate in the target chamber, dtc is the diffusion rate per

nucleus of 3He nuclei exiting the target camber, and Ppc/Ptc is the ratio of pumping

chamber to target chamber polarizations. As the polarization reaches equilibrium,

the longitudinal relaxation rate T−1
1 approaches 0. Because T1 is very long (hours)

relative to the sweep time, the final lineshape is relatively insensitive to the value

of T1 for 3He ; therefore, we used T1 = 100 hrs. T2 was determined by the AFP loss

per spin flip using:

afp loss per spin flip =
308.6%

T2

[
ω1

∆̇

]
= (308.6%) D

[
∂Bz/∂z

B1

]2 [
ω1

∆̇

]
(4.200)

where D = 0.189 cm2/s is the 3He diffusion coefficient in the target chamber under

operating conditions, ∆̇ is the detuning sweep rate, and 308.6% was determined
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by varying T2 in the numerical calculation of the lineshape, see Fig. (4.5). First, T2

was calculated from dedicated measurements of the AFP loss at 5 different septum

currents, see left plot of Fig. (4.22). These measurements were performed by taking

5 consecutive NMR measurements with a short time interval, typically ∆t = 3 min-

utes. Most of these AFP loss measurements were taken when the target chamber

polarization was near its equilibrium value. This insured that the change in polar-

ization between measurements was almost entirely due to the AFP loss. Second,

T2 was calculated by averaging the square of the longitudinal gradient throughout

the target chamber, see left plot of Fig. (4.22). Although the gradient in the region

defined by the pickup coils decreases with increasing septum current, the r.m.s.

gradient throughout the target chamber increases with septum current. Since we

were interested in the change in the average polarization throughout the target

chamber, we averaged the gradients throughout the target chamber. These two

methods were average to calculate the T2 as a function of septum current, see right

plot of Fig. (4.22).

Discussion & Uncertainty Analysis

The lineshape factors for the up and dn sweep for each water calibration are listed

in Tab. (4.12). The lineshape factors for 3He are a function of septum current, see

upper left Fig, (4.23). The functional form of the 3He lineshape was determined by

considering the effect of broadening mechanisms in general. The signal averaging

due to the lockin, magnetic field gradients, and slow magnetic drifts all broaden

the apparent width and reduce the apparent height of the resonance peak. The

basic effect of each broadening mechanism can be essentially described by the fol-
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Figure 4.22: AFP Loss and T2 for 3He NMR Measurements. (Left) AFP loss as a
function of septum current. The open squares (closed circles) are from dedicated
measurements of AFP loss during the 6 degree (9 degree) configuration. The red
line through the data points is a fit constrained by 0.15% for zero septum current.
The black line is based on a calculation of the magnetic field gradient in the target
chamber. (Right) Average T2 using the two methods described in the text as a
function of septum current.

date Aup
F0T0 Adn

F0T0 Aup
aGT0/Aup

a0T0 Adn
aGT0/Adn

a0T0 `fit,up
B `fit,dn

B

07/08 0.9018 0.8996 0.9177 0.9189 0.8224 0.8215
07/10 0.9018 0.8995 0.9177 0.9189 0.8229 0.8219
07/12 0.9018 0.8995 0.9027 0.9041 0.8041 0.8033
08/05 0.9018 0.8998 0.9034 0.9048 0.8141 0.8136

08/31-1 0.9018 0.8997 0.9053 0.9067 0.8147 0.8140
08/31-2 0.9018 0.8997 0.9053 0.9067 0.8130 0.8123
09/01-1 0.9018 0.8997 0.9053 0.9067 0.8142 0.8135
09/01-2 0.9018 0.8997 0.9053 0.9067 0.8144 0.8137

Table 4.12: Lineshape Factors for Water Calibrations. The drift corrections are
listed in Tab. (4.10).
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lowing integral:

f (t) =
Z

w(t, t0)`(t, t0) dt0→ f (z) =
Z w(z0)√

1 + (z− z0)2
dz0 (4.201)

where w(t, t0) is a weight function that describes the probability of the resonance

peak occurring at t0, z is a unitless parameter that defines the distance from reso-

nance, and z0 is an resonance offset caused by the broadening mechanism. If the

resonance offset z0 is uniformly distributed over the range −b to +b, the height of

the signal at z = 0 is reduced in the following way [13, 58]:

f (0) =
Z +b

−b

1/2b√
1 + z2

0

dz0 =
asinh(b)

b
(4.202)

Furthermore, a fit to the numerical calculation of the entire lineshape yields:

A(b) =
[

asinh(0.8b)
(0.8b)

]
w(b) =

√
1 +

(0.8b)2

2
(4.203)

where A(b) the is fit value for the amplitude and w(b) is the fit value for the width.

Therefore, a single “broadening parameter” b can be used to describe how both the

amplitude and width change due to a broadening mechanism. This is very useful

since the amplitude is very sensitive to various normalization factors whereas the

width is not. If we can determine the relationship between the width and broadening pa-

rameter, then we can use the broadening parameter to determine the amplitude (or equiv-

alently the lineshape factor). This result can be used to model both the effect of (1) a

linear magnetic field gradient with a uniform flux profile and (2) a slow linear drift
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in the following way:

b =
characteristic size of the broadening

characteristic size of the peak
=

(∂Bz/∂z)Lcoil/2
B1

=
(dBz/dt)∆T/2

B1

(4.204)

where Lcoil is the length of the pickup coil, dBz/dt is the field drift rate, and ∆T is

the total length of the measurement.

In our case, the weight function is much more complicated and the signal is

broadened by both the lockin and magnetic field gradients. Only one additional

higher order term was required to provide a fit to the calculation (which accounted

for these effects) to better than 0.1%:

b(I) = m
(

I − I0

B1

)
(4.205)

`fit
B (I) = `0

[
asinh(b)

b
− (cb)3

]
(4.206)

Bfit
1 (I) = B0

1

[√
1 +

b2

2
− (cb)4

]
(4.207)

α(I) = α0 + b2 (4.208)

where B1 = 49.9 mG and m, I0, & c are determined by fitting to the results of the

numerical calculation of the lineshape and are listed in Tab. (4.13). The parame-

ters that relate the septum current to the broadening parameter used to determine

the lineshape factor are very similar to the parameters used to relate the septum

current to the broadening parameter for the width parameter. In other words,

even with the complicated weight function due to the variation in the flux factor

throughout the target chamber, the calculated lineshape factor & width parameter

both still depend on a single broadening parameter, which has the simple linear
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penelope priapus6 priapus9a priapus9b

`up
0 0.9013 0.8991 0.8992 0.8993
I0 350.78 358.97 358.13 357.70
m 0.1133 0.1141 0.1138 0.1136
c 0.3434 0.3305 0.3321 0.3321

`dn
0 0.8983 0.8968 0.8965 0.8966
I0 346.55 347.03 348.50 348.09
m 0.1106 0.1204 0.1152 0.1150
c 0.3408 0.3456 0.3338 0.3340

B0
1 56.54 56.16 56.22 56.23

I0 330.99 333.90 333.44 333.19
m 0.1240 0.1281 0.1276 0.1274
c 0.5392 0.5296 0.5315 0.5316

α0 0.4253
I0 62.62
m 0.0994

Table 4.13: 3He Lineshape Factor, Width Parameter, and AFP Loss Parameters. For
the 9 degree configuration with the cell Priapus, a coil position measurement was
performed when the cell was installed (a) and before the cell was removed (b) at
the end of the experiment. The final value for 9 degree configuration with the cell
Priapus is the average of these two measurements.

relationship to the septum current.

Modeling the 3He lineshape factor in terms of the broadening parameters al-

lows us (1) to estimate the uncertainties due to the magnetic field measurements.

and (2) test the reliability of the calculation. First, the longitudinal gradient at the

center of the coil region is given as:

∂Bz

∂z
=
(
mz = −6.67± 0.10 mG/cm

) I
250 A

+
(
bz = 7.08± 0.22 mG/cm

)
(4.209)
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Figure 4.23: Calculated 3He Lineshape Factor, Width Parameter, and AFP loss vs.
Septum Current.
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which can be propagated using Eqn. (4.204) into an uncertainty in b:

σ2
b = σ2

mz

(
(I/250 A)Lcoil

2B1

)2

+ σ2
bz

(
Lcoil

2B1

)2

=
(

I/(420 A)
54.0

)
+
(

1
41.2

)2

(4.210)

where Lcoil = 11 cm. This can then be propagated into an uncertainty into the

lineshape factor and fit width as:

σ` =
∂`

∂b
σb σBfit

1
=
∂Bfit

1

∂b
σb (4.211)

Second, our numerical calculation should be able to reproduce septum cur-

rent functional dependence of both the width parameter & the lineshape factor

equally well. In other words, if we see that the width parameter from the cal-

culation matches (doesn’t match) the width parameter from the data, then we can

safely conclude that the corresponding lineshape factor is (isn’t) reliable. Fig, (4.24)

show the results of fits to the data (points) and numerical calculation (line). The

numerical calculation appears to describe the the width parameter from the data

very well when the septum current is over 250 A. Over the range 50–250 A, the

numerical calculation appears to systematically overestimate the width parameter

for the data. For a zero septum current, the calculation does reproduce the increase

in the width parameter. The implication is that, for zero septum current and sep-

tum currents above 250 A, we can trust the value of the lineshape factor from the

calculation. On the other hand, below 250 A, the implication is that the calculation

underestimates the lineshape factor.

Two things happen that affect the lineshape of the NMR signal when the sep-

tum magnet is turned on and the current is increased. First, within the pickup

region, the background magnetic field gradient is canceled to some degree by the
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Figure 4.24: Comparison between Fits to Data and Calculations. The open squares
(closed circles) are data from the 6 degree (9 degree) configuration. The solid curve
is from the numerical calculation of the lineshape. (Left) Width parameter as a
function of septum current. (Right) Holding field shift parameter as a function of
septum current (relative to Isep = 0).

fringe field from the septum magnet. Second, the resonance peak from the pump-

ing chamber and transfer tube becomes shifted relative to the resonance peak of

the target chamber. Both of these effects imply that we should see a “broad” peak

with a smaller amplitude (i.e. lineshape factor) at low septum currents relative to a

“narrow” peak with a larger amplitude at higher septum currents. The data (based

on the width parameter) supports this conclusion qualitatively. However, our cal-

culation, based on measurements of the background and septum fringe fields, in-

dicates a smooth transition from no cancellation at Isep = 0 to complete cancella-

tion at Isep ≈ 354A. However, the data appears to indicate that the cancellation is

nearly complete & essentially constant for all septum currents above Isep = 50 A.

In other words, the calculation indicates a smooth transition, whereas the data

implies a “step-function” transition. This implies that there is a nonlinear relation-

ship between the broadening parameter b and the septum current I. This is not an

unreasonable conclusion since we observed that the septum magnet appeared to

“saturate” at higher septum currents.
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The calculation of the lineshape for the water calibration gave an average width

parameter of 63.4 mG. This was in excellent agreement with the weighted average

of the width parameter from the water calibration data 62.54± 0.76. For this rea-

son, we’ve assumed that our calculation of the water lineshape factors is quite reli-

able and we’ve used the values listed in Tab. (4.12). To estimate the uncertainty, we

first calculate the broadening parameter that corresponds to the a septum current

of 0 A from the 3He lineshape data, Tab. (4.13):

bwater(I = 0) ≈
〈

m(0− I0)
48.4

〉
= −0.831 (4.212)

Using Eqn. (4.210), we find that the uncertainty in our water broadening param-

eter due to our measurements of magnetic field gradients is σwater
b ≈ 0.024. This

propagates into an uncertainty in the lineshape factor of 0.23% relative. The dom-

inant uncertainty in bwater comes from our knowledge of B1 which is only good to

about 10% relative. This translates into σwater
b = 0.08 which propagates into an un-

certainty of the lineshape factor of 0.85% relative. Finally, the T1 used to calculate

the lineshape was varied by ±0.25sec which translated into a variation of the line-

shape factors of ±0.95% relative. The total uncertainty for the water lineshape is

therefore 1.29% relative.

For the 3He lineshape, we’ll note that the data seems to imply the broadening

parameter b is a constant for septum current above 50 A. This implies that the

lineshape factor is also a constant, which we’ll take to be equal to the I = I0 or

equivalently b = 0 value. For the final value of the 3He lineshape factor, we’ll split

the difference between the constant value and value calculated taking into account
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the septum current:

b(I) = m
(

I − I0

B1

)
(4.213)

`fit
B (I) =

`0

2

[
1 +

arcsinh(b)
b

− (cb)3
]

(4.214)

σ
3He
` (I) =

`0

2

[
1− arcsinh(b)

b
+ (cb)3

]
(4.215)

where uncertainty in the 3He lineshape factor includes half the difference between

these two values, see Fig. (4.25). The net effect is that the lineshape factor for

3He measurements with septum currents between 50 and 250 A have a larger line-

shape factor with greater uncertainty compared to the fit of calculation alone. The

dominant uncertainty in the 3He lineshape factor is due to the uncertainty in re-

lationship between the septum current and broadening parameter, see Tab. (4.14).

Given the lack of complete agreement between the data & calculation for the 3He

width parameter and given our lack of understanding of the differences in the

septum fringe field between the 6 & 9 degree configurations, we’ve assigned a 3%

relative uncertainity in our calculation of the 3He lineshape factors.

4.6.7 Water Calibration Constant

The water calibration constant is given as:

cW =

[
ĜL/Ĝn

L

GL/Gn
L

][
RW

GPQ(ω0)Φtc
x

][
ĝ
g

][
ν̂0

ν0

]
(4.216)

where ĝ/g = gshielded
proton /gshielded

helion = −1/(0.7617861313) [59], the NMR RF frequency

was 91 kHz for all NMR measurements, and RW is a factor that accounts for all the
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Figure 4.25: Average 3He Lineshape Factor with Uncertainties. The lineshape fac-
tor and uncertainties are given by Eqns. (4.214) & (4.215).

source water penelope priapus6 priapus9

total (% rel.) 1.29 0.98 to 1.50 0.39 to 2.47 0.39 to 2.80

b(I) n/a 0.85 to 1.39 0.16 to 2.37 0.00 to 2.69
B1 0.84 0.39 to 0.50 0.16 to 0.64 0.18 to 0.71
T1 0.95 neg. neg. neg.
T2 neg. 0.15 0.15 0.15

∂Bz/∂z 0.25 0.26 0.27 0.28
τ , lockin time constant neg. neg. neg. neg.

drift neg. n/a n/a n/a

Imin
sep –Imax

sep (A) 0 148–197 87–293 58–420〈
Isep
〉

(A) 0 170 192 255

Table 4.14: Percent Relative Uncertainties in the Water & 3He Lineshape Factors.
The 3He lineshape factor uncertainties depend on the septum current. The largest
uncertainties occur for the lowest septum currents. The uncertainty in T2 for
3He comes from the difference in the determination of the afp loss described in
Fig. (4.22). The uncertainty due to the lockin signal averaging is very small since
time constant was always 30 msec and only ratios of lineshape factors were used
to calculate the calibration constant.
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Figure 4.26: Measured and Calculated 3He NMR Lineshape. The top (bottom) two
plots show the measured (calculated) lineshape and residuals. The x-axis is the
holding field in Gauss. The y-axis is in mV (arb. units) for the top (bottom) plot.
For both residuals plots, the y-axis is given as the percentage of the fit amplitude.
The shape and size of the residuals from the calculation match the data very well
which gives us some confidence in the lineshape calculation.
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variations among water calibrations measurements and should be a constant:

RW =
ĜPQ̂(ω0)Φ̂tc

x P̂tcn̂tc ˆ̀fit
B

Ŝ
(4.217)

Before the water cell was installed, the phase of the lockin was adjusted such that

all of the 3He signal was in the x-channel. It was assumed that the phase of the

water signal is nearly identical to the phase of the 3He NMR signal. Because the

water NMR signal is so small, several (≤ 1000) sweeps are taken per water calibra-

tion measurement. Each sweep was split in the middle and analyzed separately as

up and dn sweeps. A linear background was fit to each sweep and then subtracted

from each sweep. Sweeps that are considered excessively noisy were not included

in the average. The criteria used to determine whether a sweep was too noisy was

based on the following parameters calculated for each sweep:

1. range ≤ 160 µV - the difference between the highest and lowest signals mea-

sured during the sweep

2. standard deviation≤ 150 µV - the r.m.s. variation of signal during the sweep

3. maximum derivative ≤ 1800 µV/G - the forward difference is used to esti-

mate the numerical derivative of each sweep and the largest absolute value

is the maximum derivative

Each of these quantities was calculated after the linear background subtraction. If

any of these cut parameters were identically zero, then it was concluded that the

lockin was saturated and the sweep is thrown out. Large values for the standard

deviation usually implied that the sweep contained a visibly apparent oscillation

probably due to vibrations. Large values for the maximum derivative usually im-
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Figure 4.27: Water Calibration NMR Signal. The x-axis are seconds from the start
of the sweep and the y-axis is in µV.

plied that there was an abrupt shift in the signal during these sweeps. If the up

(dn) sweep failed to meet the cut criteria, then the dn (up) sweep was also thrown

out. Anywhere from 13% to 54% of the sweeps would not meet the noise criteria

and be thrown out. (The drift correction from the previous section used an average

of the sweeps that were kept.) The mean and standard deviation were calculated

on a point by point basis for each measurement. The water calibration amplitude

Ŝ was then determined from a fit of the averaged water NMR signal using the

model function that takes into account relaxation with T = 3.76 sec. The standard

deviation on each point of the sweep, typically 0.6µV, was used to the determine

the weight used for the fit and is reflected in uncertainty of the amplitude. Only

the region near the resonance peak (about half the sweep) was used in the fit, see

Fig. (4.27).
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date GP/sens. kept/sweeps Rup
W stat Rdn

W stat 〈RW〉 stat

07/08 100/1V 595/686 -1658 21 -1685 18 (-1671) (14)
07/10 200/300mV 291/350 -1732 36 -1635 29 -1684 23
07/12 200/300mV 314/600 -1763 111 -1505 60 -1634 63

08/05 100/1V 518/950 -1881 157 -1687 109 -1784 95
08/31-1 200/100mV 573/965 -1707 51 -1677 40 (-1692) (32)
08/31-2 200/100mV 461/1000 -1542 37 -1672 40 -1607 27
09/01-1 200/100mV 526/1000 -1563 36 -1622 31 -1593 24
09/01-2 200/100mV 433/710 -1598 36 -1642 30 -1620 23

before rupture of penelope -1678 21
after rupture of penelope -1614 13

Table 4.15: Water Calibration Fits. The units of RW are amg · cm2/mV. The values
in parenthesis were not included for the final weighted average.

The results of the fits are listed in Tab. (4.15). Two of the water calibrations were

thrown out. First, the 07/08 calibration was taken without any measurements of

the coil positions. Between the 07/08 and 07/10 measurements, the coils were

repositioned to minimize background pickup from the NMR RF field itself. For

comparison, the value listed in the table for this measurement used the same flux

factor as the 07/10 measurement. Second, the 08/31-1 calibration was found to

have many sweeps taken while the lockin was saturated. Because the rupture of

the cell Penelope could have modified the NMR signal detection apparatus in a

way that we may have not accounted for, the RW value was calculated for the time

period before and after the rupture separately. Final results and a list of uncertain-

ties are listed in Tab. (4.16).
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cell/angle calibration constant stat , syst (% rel.)

penelope 0.2266 amg/mV ±1.3± 8.2
priapus6 0.2339 amg/mV ±0.9± 8.2
priapus9 0.2310 amg/mV ±0.9± 8.2

source quantity % rel. uncertainty

preamp gain [46] Ĝp/Gp 5.0
lockin gain [16] (ĜL/Ĝn

L)/(GL/Gn
L) 4.1

coil positions Φ̂x/Φx 3.7
b(Isep) 3He ˆ̀fit

B 3.0
B1,T1 water ˆ̀fit

B 1.3
pickup coils/BNC cables Q̂(ω0)/Q(ω0) 1.0
polaization/density gradient Φ̂x/Φx 0.7
coil stablity Φ̂x/Φx 0.6
temperature P̂scale 0.3
temperature n̂tc neg.
NMR RF func. gen. ν̂0/ν0 neg.
[59] ĝ/g neg.

Table 4.16: Water Calibration Constants.
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4.6.8 Analysis of the EPR Measurements

Accounting for Baseline Field Drifts

A typical EPR measurement taken during E97110 is depicted in Fig. (4.28). The

3He spins are flipped twice providing two measurements of the frequency shift

due to 3He . Each measurement consisted of three “time slices:” (1) before the

first AFP, (2) between the two AFPs, (3) after the second AFP. The data were cut

such that the “transition regions” associated with spin flip were excluded from the

analysis. To account for a drift in the background field (e.g. due to a change in

septum set point during the EPR measurement), the EPR frequencies within each

time slice were fit to a line:

ν1(t) = m1t + b1 ν2(t) = m2t + b2 ν3(t) = m3t + b3 (4.218)

wherer mn & bn are the slopes & offsets in the n time slice. The numerical deriva-

tive of the EPR frequency vs. time data was taken to determine the time that cor-

responded to the “middle” of the AFP spin flip. The centers ta,b of the peaks in the

derivative were taken to the middle of the spin flip. The frequencies were extrap-

olated to the middle of each spin flip using the linear fits to give ν1(ta) & ν2(ta) for

the first flip and ν3(tb) & ν3(tb) for the second flip. The uncertainty on each of these

frequencies was given by [60]:

σν =
√

m2σ2
ta,b

+ σ2
mt2

a,b + σ2
b + 2σ2

bmta,b (4.219)

where the uncertainty in the slope σm, uncertainty in the offset σb, and covariance

between the slope & offset σ2
bm were determined from the linear fit. If the covari-
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ance term is neglected, then the uncertainty in the frequency at the midpoint is

greatly overestimated. Eqn. (E.245) was used to convert the frequencies into their

corresponding fields using the assumption that only the end transitions were being

excited. The effective field due to the 3He was calculated by:

BHe =
∆B
2

=
1
4

[B(ν1(ta))− B(ν2(ta)) + B(ν3(tb))− B(ν2(tb))] (4.220)

which was used to extract the 3He polarization in the target chamber using Eqn.

(4.97):

Ptc =

[
3BHe

µ0
(
κ0− 1 + κgeo

)
npcgµN

](
1

1− α/2

)(
Ptc

Ppc

)
(4.221)

where α is the AFP loss per EPR measurement (two spin flips) and (Ptc/Ppc) is the

polarization gradient correction factor used to obtain the polarization in the target

chamber.

The analysis was also performed by simply taking the average of the frequen-

cies within a time slice. Under most conditions, the resulting 3He polarization was

within 1% relative of the value determined by the extrapolated frequencies. In ad-

dition, there was no systematic difference between the two methods. Occasionally,

an EPR measurement was taken while the septum magnet was being ramped to a

new set point. This caused a corresponding change in the fringe field due to the

septum magnet that was visibly apparent during the EPR measurement. In these

cases, the extrapolated frequencies resulted in polarizations that were up to 5%

relative different than the value determined from the average frequencies. In all

cases, the extrapolated frequencies were used to determine the 3He polarization.
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Figure 4.28: Typical EPR Measurement with 85Rb at 24.4 Gauss. The right plot is
the numerical derivative of the left plot.

Correcting for AFP Losses

The AFP loss for the EPR measurements were typically larger than for NMR mea-

surements for four reasons. First, the magnetic field gradients were larger in the

pumping chamber. Second, the 3He spins were in the opposite state for a longer

period of time which increased the contribution to spin-exchange to the AFP loss.

Third, the effect of spin-exchange while in the opposite state is more immediately

felt in the pumping chamber than the target chamber. Fourth, the NMR RF field

used for AFP had a smaller amplitude than for the EPR measurements. AFP loss

data was taken at various septum currents, see left side of Fig. (4.29), and was very

well described by:

α = α0 +
(

Isep

I2

)2

+
(

Isep

I4

)4

(4.222)

where α0 = 0.527, I0 = 2077 A, and I4 = 251.3 A. For septum currents above 300 A,

the AFP losses became large enough that gradient correction coils were required

to partially cancel gradients due to the fringe field of the septum. These coils were

only used during EPR measurements and significantly reduced the AFP losses, see

right side of Fig. (4.29). For EPR measurements taken while the gradient correc-
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Figure 4.29: AFP Losses During EPR Measurements. The left plot is data taken
without the gradient correction coils. The right plot is data taken with the gradient
correction coils at septum current greater than 300 A and without the gradient
correction coils for septum currents below 100 A.

tions coils were on, the fit was constrained to give the same AFP loss at zero current

and the other fit parameters were I2 = 1.322E7 A and I4 = 367.4 A. If we assume

that the losses due to AFP occur mainly during the spin flips, then the pumping

chamber polarization extracted from Eqn. (4.97) corresponds to P0(1−α/2), where

P0 is the 3He pumping chamber polarization before the measurement. We’ve as-

signed a 0.2% relative uncertainty due to the AFP loss correction, which is mainly

due to our level of understanding on the dependence of the AFP loss in the pump-

ing chamber as a funcion of septum current.

Polarization Gradient Correction

The EPR measurements resulted in the polarization in the pumping chamber. A

polarization gradient correction was applied to determine the polarization in the

target chamber. The size of the correction was sensitive to the relaxation attributed

to the electron beam and the detailed polarization and diffusion dynamics within

the cell. In order to estimate the size of this correction, we assumed that the polar-

izations were at equilibrium when the electron beam was turned off. Immediately
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after the beam is turned off, the time evolution of the polarizations are given by

Eqns. (6.40) & (6.41), where mpc = 0 and mtc = +ΓbPtc(t = 0), which gives the ratio

of target to pumping chamber polarization to lowest order in t:

yt ≡
Ptc(t)
Ppc(t)

≈ Ptc(t = 0)
Ppc(t = 0)

[
1 + Γbt + O(t2)

1 + O(t2)

]
tΓf� 1 (4.223)

where Γb is the relaxation rate due to the electron beam in the target chamber.

This is only valid for tΓf � 1, where Γf ≈ dtc/ fpc is the fast time constant, dtc is

the diffusion rate out of the target chamber, and fpc = 1 − ftc is the fraction of

3He nuclei in the pumping chamber. When tΓf � 1, we can combine Eqns. (6.31)

by dropping the fast exponential term and after some considerable algebra we find:

yt ≈ y0

[
(xb− xt) + xb(xt− 1)

(
1− ftcΓb/dtc

)
xt(xb− 1)

]
tΓf� 1 (4.224)

where yt = Ptc(t)/Ppc(t) is the ratio of polarization at time t, y0 = P∞tc,0/P∞pc,0 ≈ 1−

Γtc/dtc is the ratio of equilibrium polarizations without the beam, xt = Ppc(t)/P∞pc,0 is

the polarization in the pumping chamber relative to its equilibrium value without

the beam, xb = P∞pc,b/P∞pc,0 = 1/(1 + τsu ftcΓb) is the ratio of the equilibrium polar-

ization in the pumping chamber with and without the beam (i.e. the pumping

chamber polarization immediately after the beam is turned off defining t = 0), and

τsu is the spin-up time constant without the beam. We’ve expressed the ratio of the

target chamber to pumping chamber polarizations in this form because Ppc, P∞pc,0,

P∞tc,0, & τsu were measured directly and Γb & dtc were calculated using the results of
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Secs. (6.3.1) & (6.4.1):

Γb =
[

1
42 hrs

][
Ibeam

10 µA

][
2.0 cm2

Atc

][ na

0.5

]
(4.225)

dtc =
[
0.80 hrs−1

][ Att

0.5 cm2

][
6 cm

Ltt

][
90 cm3

Vtc

][
10 amg

ntc

][
ϒ
(
Tpc,Ttc

)
4/3

]
(4.226)

where Ibeam is the beam current, Atc(tt) is the cross sectional area of the target cham-

ber (transfer tube), na is the mean number of nuclear spin flips per atomic ion,

see Eqn. (6.107), Ltt is the length of the transfer tube, Vtc is the volume fo the tar-

get chamber, and ϒ is defined by Eqn. (6.129). The uncertainties in this correction

were mainly due to the approximations made in deriving these results, the 15%

uncertainty in dtc due to the uncertainty of crossetional area of the transfer tube,

and the 15% uncertainty in Γb due to the uncertainty in na, see Sec. (6.3.4). The

largest error in the approximation occurs when tΓf ≈ 1, see Fig. (4.30). For t < ta

(t ≥ ta), we used Eqn. (4.223) (Eqn. (4.224)) where ta = 1.2/Γf was chosen to mini-

ize the approximation error. The total uncertainty in this correction is given by

(0.4 + 0.05Ibeam/(10 µA)) percent relative, where Ibeam is the beam current.

Discussion of Uncertainties

The dominant uncertainties are due to the knowledge of κ0 itself and due to our

understanding the polarization dynamics between the two chambers. Since the

polarization conditions varied from one EPR measurement to another, we’ve as-

signed a fairly large 1% relative uncertainty due to the polarization gradient cor-

rection. The statistical uncertainty on BHe due to the the linear fits were usually

0.9% relative. The contribution to the EPR frequency shift due the AC Zeeman

effect by the NMR RF field (which was *not* turned off during the measurement)
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Figure 4.30: Time Evolution of the Polarization Gradient. A 10 µA electron beam
is turned off at t = 0. The polarization in the target chamber immediately starts
to increase linearly whereas the pumping chamber polarization is constant to first
order in t. After some time, the target chamber to pumping chamber polarization
ratio increases linearly with the pumping chamber polarization. The broken red
(solid black) line is the approximate (full) calculation.

is about 1.2%. We’ve assumed that, during the frequency sweep AFP, the NMR RF

field does not change in magnitude by more than 50% relative, which introduces

a 0.6% relative uncertainty on BHe. Since the temperature dependnace of κ0 is an-

ticorrelated to npc, the total uncertainty on their product due to the uncertainty on

the pumping chamber tempertaure is greatly supprsessed, which in our case con-

tribites 0.2% relative. The effect of magnetic field gradients, altrhouhg large and

vargiable in the pumping chmabre due to the septum fringe fields, is expected to

tbe greatly suppressed due to the very small A–He spin-exchange rate to optical

pumping rate. Finally, we’ve used κgeo = 0.97 which introduces a 0.2% relative

uncertainty.
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source quantity % rel. uncertainty

total sytematic 2.0
statistical 0.9

[12] κ0 1.5
polarization gradient Ptc/Ppc 1.0
NMR RF shift ∆ν 0.6
afploss correction BHe 0.2
slope dν/dB BHe 0.2
Tpc,Ttc (κ0npc) 0.2
κgeo κ0 0.2
magnetic field gradients ∆ν 0.1

Table 4.17: EPR Measurement Uncertainties.

4.6.9 EPR-NMR Calibration Constant

The EPR-NMR calibration constant is given as:

cepr =
[

Φ̂tc
x

Φtc
x

][ ˆ̀fit
B

Ŝ

][
t

κ0− 1 + κgeo

][
3B̂He

gµ0µN

](
1

1− α̂/2

)(
P̂tc

P̂pc

)
=

Repr

Φtc
x

(4.227)

where t is the rato of pumping chamber to target chamber temperatures and Repr

isolates all the factors that vary from one measurement to the next. Six dedicated

EPR-NMR calibration measurements were taken and are listed in Tab. (4.18). Each

measurement typically consisted of four NMR measurements interleaved with

three EPR measurements. AFP losses were determined directly from the data.

For most of the measurements, the polarization gradient was well understood

since they were performed well after the electron beam had been turned off. Once

again, we’ve separated the calibration into two groups before and after Penelope

ruptured. The uncertainty in the coil positions measurement for the Penelope cal-

ibration is zero since the cell was not moved. On the other hand, the uncertainty
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date notes Isep (A) Ibeam (µA) BHe (mG) σstat
BHe

(mG) 〈S〉 (mV) Repr

07/17 penelope 204.2 0 46.96 0.54 -18.08 2120

07/25 - 88.1 0 42.72 0.54 -15.67 1979
08/03 - 0 0 46.57 0.73 -17.35 1956

08/16 - 58.6 4.8 43.91 0.72 -16.44 1996
08/30 - 0 0 40.56 0.27 -14.49 1927
08/30 1 laser 0 0 40.13 0.37 -13.65 2054

Table 4.18: EPR-NMR Calibration Measurements. All measurements are with
Priapus and full (3 or 4) laser power unless otherwise noted. Repr has units of
amg · cm2/mV and can be directly compared to Rw(gsheilded

proton /gsheilded
He ).

in the coil position measurements for Priapus larger since the cell was removed

and reinstalled during the switch from 6 to 9 degree configuration. Once again the

sensistivty to the uncertainty in the pumping chamber temperature is suppresd in

the ratio κ0/t. The final value and uncertainties are listed in Tab. (4.19).

4.6.10 Final Results for the Target Polarization

The polarization was monitored about every four hours during the experiement

with both NMR and stand-alone EPR measurements. The time dependence of the

polarization was modeled using a simple cubic spline. AFP losses in the target

chamber were accounted for after each measurement. Polarizations were deter-

mined on a run-by-run basis by averaging the cubic spline over the duration of the

run. Since the water calibration constant had a significantly larger uncertainty than

the EPR-NMR calibration constant, the EPR-NMR calibration was given twice the

weight. The stand-alone EPR measurements had a smaller systematic uncertainty

than the NMR measurements, but were taken less frequently. Therfore, we gave
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cell/angle calibration constant stat , syst (% rel.)

penelope 0.2185 amg/mV ±1.2± 3.7
priapus6 0.2180 amg/mV ±0.5± 4.3
priapus9 0.2152 amg/mV ±0.5± 4.0

source quantity % rel. uncertainty

b(Isep) 3He ˆ̀fit
B 3.0

coil positions Φ̂x/Φx 0.0/2.2/1.5
[12] κ0 1.5
pickup coils/BNC cables Q̂(ω0)/Q(ω0) 1.0
polaization/density gradient Φ̂x/Φx 0.7
NMR RF shift ∆ν 0.6
coil stablity Φ̂x/Φx 0.6
Tpc,Ttc (κ0/t) 0.5
polarization gradient Ptc/Ppc 0.4
slope dν/dB BHe 0.2
κgeo κ0 0.2
magnetic field gradients ∆ν 0.1
NMR RF func. gen. ν̂0/ν0 neg.
preamp gain [46] Ĝp/Gp neg.
lockin gain [16] (ĜL/Ĝn

L)/(GL/Gn
L) neg.

Table 4.19: EPR-NMR Calibration Constants.
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equal weights to the NMR and EPR polarizations to yield the final polarization:

Pfinal =
PW

NMR + 2Pepr
NMR + 3PEPR

6
(4.228)

where PW(epr)
NMR is the NMR polarization using the water (EPR-NMR) calibration con-

stant and PEPR is the EPR polarization. Since the EPR measurements were taken

less frequently for Priapus during the 6 degree running, the polarization for this

data set was given by:

Pfinal =
PW

NMR + 4Pepr
NMR + PEPR

6
(4.229)

Between runs 3891 and 3903, the polarization mysteriously dropped from 0.4 to

0.2 over the course of six hours. Since we did not know when the drop occurred,

we’ve simply performed a linear interpolation from 0.4 to 0.2 over these runs and

assigned very large uncertainties (50% relative) for these runs.

Since there are several correlations between the three measurements, we esti-

mated the uncertainty on the polarization using:

[σ
P

]
final

=
1
6

[σ
P

]W
NMR

+
1
3

[σ
P

]epr
NMR

+
1
2

[σ
P

]
EPR

(4.230)

where we’ve used an analogous equation for the Priapus 6 degree data set. The

total statistical unertainty is about 0.6% relative. The total systematic uncertainty

on the polarization density product is about 3.9% relative, where we’ve added a

1% relative uncertainty due to the run-by-run interpolation. The total systematic

uncertainty on the polarization is about 4.2% relative, which also includes an ad-

ditional 1.5% uncertainty due to the density.
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cell penelope priapus6 priapus9

〈PW
NMR〉 0.390 0.424 0.392

stat. 1.27 0.88 0.88
syst. 8.23 8.23 8.23

〈Pepr
NMR〉 0.376 0.395 0.365

stat. 1.20 0.47 0.47
syst. 3.73 4.34 4.01

〈PEPR〉 0.379 0.391 0.365
stat. 0.87 0.87 0.87
syst. 2.02 2.02 2.02

〈Pfinal〉 0.390 0.399 0.372
stat. 0.67 0.54 0.54
syst. 3.76 3.96 3.85

Table 4.20: Average 3He Polarizations. The statistical (stat.) and systematic (syst.)
uncertainties are quoted at % relative. Only the final systematic uncertainty (last
row) include the 1% relative interpolatation uncertainty. These uncertainties are
for the polarization density product. An additional 1.6% relative uncertainty must
be added in quadrature to obtain the uncertainties on the polarizations themselves.

The final polarizations are depicted in Fig. (4.31). The polarizations from NMR

measurements using the EPR-NMR calibration constant agreed within 1% relative

with the polarizations from stand alone EPR measurements. For Penelope, the

polarizations from NMR measurements using the water calibration constant were

typically 3.7% relative higher than from calibrations using EPR. For Priapus, the

polarizations from NMR measurements using the water calibration constant were

typically 7.3% relative higher than from calibrations using EPR. This is not unrea-

sonable since the total systematic uncertainty of the water calibration constant is

8.3% relative. The final average polarizations, statistcal uncertainties, and system-

atic uncertaintites are listed in Tab. (4.20).
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Figure 4.31: Final 3He Target Chamber Polarizations. The open black triangles
(red circles) are from NMR measurements using the water (EPR-NMR) calibration
constant. The red crosses are from stand-alone EPR measurements.
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Chapter 5

Optical Pumping of Alkali-Hybrid

Mixtures

5.1 Introduction

5.1.1 Traditional SEOP

In traditional SEOP [1], a single alkali species, usually Rb, is optically pumped

with broadband laser diode arrays. Optical pumping occurs by exciting the D1

transition of the vaporized Rb atoms by circularly polarized laser light tuned to

the appropriate wavelength (795 nm). Constrained by the conservation of energy

and angular momentum, only one of the two Zeeman levels (mJ = ±1/2) of the

5S1/2 ground state is excited to the 5P1/2 state, where we’ve ignored the Rb nuclear

spin. Collisions with 3He & N2 almost completely disorients the Zeeman levels of

the excited states. This insures that the Rb atom decays back to either Zeeman level

of the ground state with equal probability. Radiation trapping effects are greatly

suppressed by the addition of small amount of N2 which nonradiatively quenches
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the 5P → 5S1/2 transitions. Within milliseconds the Rb polarization reaches an

equilibrium value of PRb given by the balance between the optical pumping rate R

and the relaxation rate ΓRb:

PRb =
R

R + ΓRb
(5.1)

The optical pumping rate is given by the following integral over laser frequency ν:

R =
Z ∞

0
Φ(ν)σRb

1 (ν) dν (5.2)

where Φ(ν) is the total photon flux and σRb
1 (ν) is the unpolarized Rb D1 photon-

absorption cross section. The dominant mechanism of Rb spin relaxation are po-

larization destroying collisions with other Rb atoms, 3He atoms, and N2 molecules.

Spin exchange between Rb and 3He is largely mediated by a hyperfine-like

Fermi contact interaction. This couples the spin of the valence electron spin of the

Rb atom to the nucleus of the 3He atom. In the fast diffusion limit, see Sec. (6.1.6),

the spin-exchange rate is given by:

〈γse〉 = fpckse[Rb] (5.3)

where fpc is the fraction of 3He nuclei in the pumping chamber and kse is the Rb-

3He spin-exchange rate constant. After several hours, the 3He polarization reaches

an equilibrium value of PHe given by:

PHe =
PRb 〈γse〉
〈γse〉+ 〈ΓHe〉

(5.4)

where, in the fast diffusion limit, 〈ΓHe〉 is the volume averaged 3He spin relaxation

rate.
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According to these equations, if one could provide enough laser power to keep

a very high density of Rb polarized, then the 3He polarization could be, in princi-

ple, made to equilibrate at unity:

PHe =
[

lim
〈γse〉→∞

〈γse〉
〈γse〉+ 〈ΓHe〉

][
lim

R→∞

R
R + ΓRb

]
= 1 (5.5)

However, in practice with SEOP, the 3He polarization has never been recorded

higher than 0.85 and has rarely been made to exceed 0.80. The performance is

even lower in SLAC/JLab style target cells. There are two main reasons for non-

unity 3He polarization. First, it has been reported that there is a previously unac-

counted for 3He spin-relaxation mechanism [2]. This so-called ‘X’-factor is depen-

dent on the alkali density and/or has an alkali vapor pressure-like temperature

dependence, see Sec. (6.2.1). Second, it is difficult to provide enough photon flux

throughout the entire pumping chamber because of light absorption by the Rb va-

por. This absorption results in a spatial variation of the photon flux governed by:

dΦ(~r, ν)
dz

= −Φ(~r, ν)σRb
1 (ν)[Rb] (1− PRb(~r)) (5.6)

where z is the depth into the cell and [Rb] is the number density of Rb atoms. Be-

cause the Rb polarization rate (kHz) is much faster than its diffusion rate (mHz),

the local Rb polarization is given by the local optical-pumping rate, which in turn

depends on the local photon flux [3–5]. On the other hand, because the 3He diffu-

sion rate (mHz) is much faster than its polarization rate (µHz), the 3He polarization

depends on the average Rb polarization in the pumping chamber 〈PRb〉pc. Thus the
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3He equilibrium polarization is more realistically given by:

PHe =
〈PRb〉pc 〈γse〉

〈γse〉 (1 + X) + 〈ΓHe〉
(5.7)

To approach the 1/(1 + X) limit, the alkali density must be increased such that

〈ΓHe〉/ 〈γse〉 � 1 while enough photon flux must be supplied to insure 〈PRb〉pc ≈ 1.

5.1.2 An Outline of Alkali-Hybrid SEOP

In alkali-hybrid SEOP [6, 7], a mix of two alkali species, in our case potassium (K)

& rubidium (Rb), are used. As in traditional SEOP, Rb is polarized via optical

pumping. When the K to Rb vapor density ratio D = [K]/[Rb] is small (D� 1000),

polarization conserving alkali-alkali spin exchange collisions dominate and insure

that PK = PRb = PA. Now 3He is polarized by both Rb-3He & K-3He spin-exchange

collisions. The equations for the equilibrium polarizations have the same form

provided we relabel the subscript Rb→ A and account for the spin exchange &

relaxation due to K:

ΓA = ΓRb + D (ΓK + 2kA[Rb]) (5.8)

〈γse〉 = fpckse[Rb]
[

1 + D
(

k′se

kse

)]
(5.9)

where ΓK is the K spin-relaxation rate, kA is the mean Rb-K spin relaxation rate, and

k′se is the K-3He spin-exchange rate constant. For the same 〈γse〉, the Rb density is

smaller & the alkali relaxation rate is larger for alkali-hybrid SEOP than traditional

SEOP. K has a much smaller spin-relaxation rate than Rb and consequently the

increase in the alkali relaxation rate is not too substantial. At the optimal D, where
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the reduction in the Rb density maximally compensates for the increased alkali

relaxation rate, alkali-hybrid SEOP requires less laser power traditional SEOP to

keep the entire alkali vapor polarized throughout the pumping chamber.

5.2 Generalized Alkali Rate Equations

5.2.1 The Effect of the Alkali Nuclear Spin

The valence electron and nucleus of an alkali atom couple via the hyperfine inter-

action. Any collisional process that is “slow” relative to the hyperfine frequency

(1 GHz = 10−3/ps) interacts with the total (electronic+nuclear) angular momen-

tum of the alkali atom. These types of processes include Rb-noble gas van der

Waals molecular interactions [8, 9], which have a typical lifetime of 104 ps, and

diffusion to the cell wall [10]. In the high pressure (10 atm) regime, the lifetime

of Rb-3He van der Waals molecules is heavily suppressed and diffusion effects are

only important very close (10 µm) to the wall of the pumping chamber. Binary col-

lisions involving alkali atoms in vapor form have a characteristic duration |Td| of

1 ps, see Sec. (5.4.5). In this case, there are no slow processes and we can make the

standard argument [11] that optical pumping, spin exchange, and spin relaxation

are sudden with respect to the alkali nuclear spin. Consequently, the presence

of a non-zero alkali nuclear spin is relevant only in-between collisions and opti-

cal pumping cycles, during which the alkali valence electron & nucleus recouple

via the hyperfine interaction. This recoupling conserves but redistributes the total

atomic angular momentum between the valence electron and nuclear spins. Under

these conditions, the distribution of angular momentum within the alkali vapor is

characterized by a quantity called spin temperature β. Because the angular mo-
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mentum is slowly leaked into and stored by the alkali nuclear spin, the observed

alkali rates are slower by the ratio of the average atomic azimuthal angular mo-

mentum to the average electronic azimuthal spin, 〈Fz〉/ 〈Sz〉 = 1 + ε(I, P), where

I is the nuclear spin, P is the electronic polarization, and ε(I, P) is known as the

“paramagnetic coefficient” [1, 11]. This so-called “nuclear slowing down factor”

(1 + ε(I, P)) depends on the spin temperature and must be averaged over each al-

kali isotope. For the case of SEOP of 3He , the nuclear slowing down factor does

not effect the equilibrium alkali polarization, see howeever Sec. (5.4.4).

5.2.2 Depopulation and Repopulation Optical Pumping

In general, optical pumping [12–28] is the process of generating nonthermal equi-

librium populations in the ground and excited states in a sample of atoms or

molecules using polarized light. In our case, the optical pumping cycle of alkali

metal atom consists of depopulation pumping into the excited state and then re-

population pumping into the ground state. We’ll consider the possibility of pump-

ing both the D1 and D2 transitions. We’ll also assume that the pump beam is

a statistical mixture of purely circularly polarized photons. In this case, the rate

equations for s±, the fractional population of the m =±1/2 level of the S1/2 ground

state, are:

ṡ± = −s±

[
2R∓+

R′∓
2

+
3R′±

2

]
(depopulation)

+
( s

2
− s±

)
Γs (spin relaxation)

+
p±Λp

τ 0
p

+
p∓(1−Λp)

τ 0
p

+
d±Λd

τ 0
d

+
d∓(1−Λd)

τ 0
d

+
d′±
τ 0

d
(repopulation)

+p∓(2R∓) + d∓(R′∓/2) + d′±(3R′±/2) (stimulated emission)

(5.10)
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where R± (R′±) is the D1 (D2) absorption/stimulated emission rate of photons car-

rying ±1 unit of angular momentum, s = s+ + s− is the total fractional population

of the ground state, Γs is the ground state spin relaxation rate, p± (d±) is the frac-

tional population of the m =±1/2 level of the P1/2 (P3/2) excited state, d′± (d±) is the

fractional population of the m =±3/2 level of the P3/2 excited state, and Λp,d is the

probability of decaying from the m = ±1/2 excited level to the m = ±1/2 ground

level. The partial lifetimes of the P1/2 & P3/2 excited state, τ 0
p & τ 0

d respectively, are

the given by:
1
τ 0

p
= Γq +

1
τspon

1
τ 0

d
= Γ

′
q +

1
τ ′spon

(5.11)

where Γq & 1/τspon (Γ′q & 1/τ ′spon) are the nonradiative quenching & spontaneous

decay rates for the P1/2 (P3/2) excited state. Analogously, the rate equations for the

fractional excited state level populations are:

ṗ± = +(s∓− p±)(2R±) +
( p

2
− p±

)
Γp −

p±
τ 0

p
+ ∑

m

[
dmΓd,m→p,±− p±Γp,±→d,m

]
(5.12)

ḋ± = +(s∓− d±)(R′±/2)− d±
τ 0

d
+ ∑

m

[
dmΓd,m→d,±1/2− d±Γd±1/2→d,m

]
+∑

m

[
pmΓp,m→d,±1/2− d±Γd,±1/2→p,m

]
(5.13)

ḋ′± = +(s±− d′±)(3R′±/2)− d′±
τ 0

d
+ ∑

m

[
dmΓd,m→d,±3/2− d′±Γd±3/2→d,m

]
+∑

m

[
pmΓp,m→d,±3/2− d′±Γ

′
d,±3/2→p,m

]
(5.14)

where p = p+ + p− (d = d+ + d−+ d′+ + d′−) is the total fractional population of the

P1/2 (P3/2) excited state, Γp is the orientation desctruction rate for the P1/2 excited

state, and ΓJ,m→J′,m′ is the transfer rate from the (J,m) level to the (J ′,m′) level. These

equations obey the constraint s + p + d = 1.

It is more convenient to express these equations in the multipole representation
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which allows us to greatly reduce the number of linearly independant transfer

rates, see Sec. (D.1.1). At equilibrium, the total population of the ground & excited

states satisfy the following three equation:

ṡ = 0 = −sR(1− PγPs)− sR′
(

1 +
P′γPs

2

)
+

p
τ 0

p
+

d
τ 0

d

+pR(1 + PγPp) +
dR′

2

(
1 +

Qd

2
+

3P′γPd

2

)
(5.15)

ṗ = 0 = +sR(1− PγPs)− pR(1 + PγPp)− p
τ 0

p
− pΓm + dΓ

′
m (5.16)

ḋ = 0 = +sR′
(

1 +
P′γPs

2

)
− d
τ 0

d
− dΓ

′
m + pΓm −

dR′

2

(
1 +

Qd

2
+

3P′γPd

2

)
(5.17)

where R = R+ + R− (R′ = R′+R′−) is the total unpolarized D1 (D2) absorption &

stimulated emission rate, Pγ = (R+ − R−)/R (P
′
γ = (R′+ − R′−)/R′) is the D1 (D2)

cross section-weighted mean photon polarization, Ps = (s+ − s−)/s is the ground

state polarization, Pp = (p+− p−)/p is the P1/2 excited state orientation, Pd = (d′+ +

d+/3 − d−/3 − d′−)/d is the P3/2 excited state orientation, Qd = (d′+ − d+ − d− +

d′−)/d is the P3/2 excited state alignment, and Rd = (d′+ − 3d+ + 3d− − d′−)/d is the

P3/2 excited state octopole moment. When only the m = J state is populated (each

state is equally populated), each of these quantities is unity (zero). The mixing

rates Γm & Γ′m are related to the multipole mixing rates by:

Γm =
√

2Γ
(0→0)
1/2→3/2 Γ

′
m =

Γ
(0)
3/2→1/2 + QdΓ

(2→0)
3/2→1/2√

2
(5.18)

Solving these equations gives the relative fractional populations of the two excited
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states:

p
s

= fpτpR

[
1− PγPs + g′m

(
R′

R

)(
1 +

P
′
γPs

2

)]
(5.19)

d
s

= fdτdR

[
1− PγPs +

1
gm

(
R′

R

)(
1 +

P
′
γPs

2

)]
(5.20)

where fp ( fd) is the probability that the atom decays from the P1/2 (P3/2) excited

state and gm (g′m) is the relative mixing rate from the P1/2 (P3/2) excited state:

fp =
[

1− gm

1− gmg′m

]
fd = gm

[
1− g′m

1− gmg′m

]
gm =

τpΓm

1 + τpΓm
g′m =

τdΓ′m
1 + τdΓ′m

(5.21)

where fp + fd = 1 and the full lifetimes of the P1/2 & P3/2 excited states at equilib-

rium, τp & τd respectively, are the given by:

1
τp

=
1
τ 0

p
+ R(1 + PγPp)

1
τd

=
1
τ 0

d
+

R′

2

(
1 +

Qd

2
+

3P
′
γPd

2

)
(5.22)

These lifetimes differ from the partial lifetimes τ 0
p & τ 0

d only by terms due to stim-

ulated emmission.

At equilibrium, the ground state polarization satifies:

d(sPs)
dt

= 0 = +sR(Pγ − Ps)− sR′
(

P
′
γ

2
+ Ps

)
− sPsΓs

+
pPp

τ 0
p

(2Λp− 1) +
dPd

τ 0
d

+
3d(Pd− Rd)

5τ 0
d

[
Λd−

2
3

]
−pR(Pγ + Pp) + dR′

[
P
′
γ

(
1 + 2Qd

4

)
+

3
5

(
Pd +

Rd

4

)]
(5.23)

where we’re anticipating that Λd − 2/3 ≈ 0 and the excited state polarization mo-
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ments satisfy the following coupled equations:

d(pPp)
dt

= 0 = +sR(Pγ − Ps)− pR(Pγ + Pp)− pPp

[
Γp +

1
τ 0

p
+ Γm

]

+
d

10
[
3PdΓ

′
11 + RdΓ

′
31

]
(5.24)

d(dPd)
dt

= 0 = +sR′
[

5
6

P
′
γ +

2
3

Ps

]
− dR′

[
P
′
γ

3

(
5
4

+ Qd

)
+

1
10

(
7Pd +

Rd

2

)]

−dPd

[
Γ

(1)
d +

1
τ 0

d
+

Γ′00

2

]
+ pPp

Γ11

3
− dΓ′20

10
(4Pd + Rd) (5.25)

d(dQd)
dt

= 0 = +sR′
[

1
2

+ P
′
γPs

]
− dR′

[
3P
′
γ

5

(
Pd +

Rd

4

)
+
(

1 + 2Qd

4

)]

−dQd

[
Γ

(2)
d +

1
τ 0

d
+

Γ′00

2

]
+ pΓ02−

dΓ′20

2
(5.26)

d(dRd)
dt

= 0 = +sR′
(

3Ps

2

)
− dR′

[
3
4

P
′
γQd +

3
10

(
3Pd

2
+ Rd

)]
−dRd

[
Γ

(3)
d +

1
τ 0

d
+

Γ′00

2

]
+ pPpΓ13−

dΓ′20

10
(9Pd− 4Rd) (5.27)

where Γ
(k)
d is the k-th multipole destruction rate and the mixing rates between the

P1/2 & P3/2 levels differ from the multipole mixing rates only in normalization:

Γ
(0)
1/2→3/2 =

Γm√
2

Γ
(1)
1/2→3/2 =

Γ11√
10

Γ
(2)
1/2→3/2 =

Γ20√
2

Γ
(3)
1/2→3/2 =

Γ31√
10

Γ
(0)
3/2→1/2 =

Γ′00√
2

Γ
(1)
3/2→1/2 =

Γ′11√
10

Γ
(2)
3/2→1/2 =

Γ′20√
2

Γ
(3)
3/2→1/2 =

Γ′31√
10

(5.28)
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These can be solved to give the excited state polarization moments:

pPp =
sR
γp

[
Pγ
(

1− p
s

)
− Ps +

d
2sR

(
3PdΓ′11 + RdΓ′31

5

)]
(5.29)

dPd =
sR′

γ(1)
d

[
5P′γ

6

(
1− d

2s

[
1 +

4Qd

5

])
+

2Ps

3
− d

2s

[
1 +

2Γ′20

R′

]
Rd

10
+

p
sR′

Γ11Pp

3

]
(5.30)

dQd =
sR′

γ(2)
d

[
1
2
− d

4s
+ P′γPs −

d
2s

3P′γ
10

(4Pd + Rd) +
p

sR′
Γ02 −

d
2sR′

Γ
′
20

]
(5.31)

dRd =
sR′

γ(3)
d

[
3Ps

2
− d

2s
3
2

(
P′γQd +

3
5

Pd

)
+

p
sR′

PpΓ13 −
d

2sR′
9PdΓ′20

5

]
(5.32)

where γ(k)
d is the k-th multipole relaxation rate given by:

γp = Γp +
1
τ 0

p
+ Γm + R (5.33)

γ(1)
d = Γ

(1)
d +

1
τ 0

d
+

Γ′00

2
+

7R′

10
+

2Γ′20

5
(5.34)

γ(2)
d = Γ

(2)
d +

1
τ 0

d
+

Γ′00

2
+

R′

2
(5.35)

γ(3)
d = Γ

(3)
d +

1
τ 0

d
+

Γ′00

2
+

3R′

10
− 2Γ′20

5
(5.36)

Using these equations, we can finally solve for the ground state polarization:

Ps =
R1− R2/2

R0 + Γs
(5.37)

where the polarized D1 & D2 optical pumping rates R1 & R2 are given by:

R1 = 2Λ1

(
1− p

s

)
PγR R1 = 2Λ2

(
1− d

2s

)
P
′
γR′ (5.38)

and the total unpolarized (D1+D2) optical pumping rate R0 is given by:

R0 = 2Λ0R + 2Λ
′
0R′ (5.39)
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and the effective branching ratios Λ1, Λ2, Λ0, and Λ′0 are given by:

2Λ1 = 2Λ0 +
d

2sτ 0
p R

[
2Λp− 1− τ 0

p R

Pγ(1− p/s)

][
3PdΓ′11 + RdΓ′31

5γp

]
(5.40)

2Λ0 =
τ 0

p (Γp + Γm) + 2Λp

τ 0
p (Γp + Γm + R) + 1

(5.41)

2Λ2 = 2Λ
′
0−

1
τ 0

d γ
(1)
d

+

[
d/(2s)

P
′
γ

[
1− d/(2s)

]]∆Λ (5.42)

2Λ
′
0 =

τ 0
d γ

(1)
d − 2/3

τ 0
d γ

(1)
d

(5.43)

and ∆Λ is given by:

∆Λ =
6(Pd − Rd)

5τ 0
d R′

[
2
3
−Λd

]
+

[
2

3τ 0
d γ

(1)
d

− 1

]
P′γQd −

6Pd

5

+
[

1− 3τ 0
d γ

(1)
d +

2Γ′20
R′

]
Rd

10τ 0
d γ

(1)
d

− 2p
3d

[
Γ11

τ 0
d R′γ(1)

d

]
Pp (5.44)

Both nonradiative quenching [29] and spontaneous emission are “sudden” with

respect to the electron spin (at least for alkali species lighter than Cs [30]). As a

consequence, the electron spin is conserved during the decay, which implies the

following values for the branching ratios: Λp = 1/3 and Λd = 1−Λp = 2/3. If the

P1/2 orientation destruction rate is very small, the D2 to D1 optical pumping rate

ratio is very small, and there is very little mixing between the P1/2 & P3/2 levels,

then Λ1 = Λ0 = Λp ≈ 1/3. This implies that a large orientation destruction rate

of the P1/2 level is beneficial, since Λ1 = Λ0 ≈ 1/2 when τpΓp � 1. If the D2 op-

tical pumping rate is very small, but much larger than the D1 optical pumping

rate, and there is very little mixing between the P1/2 & P3/2 levels, then (after some

straightforward but very tedious algebra) we find Λ2 = Λ′0. This implies that there
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quantity S1/2 P1/2 P3/2 units

n = s, p, d 1-7E-07 2.84E-06 4.07E-06 -
Pn 0.978 4.02E-03 8.37E-05 -
Qd - - 6.93E-05 -
Rd - - 8.41E-05 -

Γn
q - 0.529 0.393 GHz

τ n
spon - 27.7 26.2 ns
τn - 1.77 2.32 ns

Γ
(1)
n 1.08E-06 104 472 GHz

Γ
(2)
n - - 570 GHz

Γ
(3)
n - - 469 GHz

Γn
m - 2.01 1.01 GHz

Γn
11 - -0.207 -0.104 GHz

gn
m - 0.781 0.702 -

fn - 0.485 0.515 -
abs. width - 126 150 GHz
abs. shift - 51.8 7.31 GHz

Table 5.1: Typical Excited State Polarization Moments and Multipole Rates. We’ve
assumed broadband pumping of the Rb D1 transition with R = 100 kHz and
R′/R = 0.0011. The rates were calculated using data from Sec. (D.4) assuming
Tpc = 210oC, [3He]pc = 6.5 amg, and [N2]/[3He] = 0.01. For a pure Rb cell, this cor-
reponds to [Rb] = 1.38× 1015/cm3 and 1/γse = 3 hrs. Under these conditions, all
of the effective branching ratios are 0.500± 0.001.

is a buffer gas pressure (corresponding to τ 0
d γ

(1)
d = 2/3) at which the ground state

polarization changes sign. Historically, finding this zero crossing was one early

method used to determine the P3/2 excited state multipole destruction rate [31].

Tab. (5.1) lists typical rates for nonradiative quenching, spontaneous emission,

excited state mixing, and multipole destruction. Nonradiative quenching is al-

most entirely due to collisions with N2 molecules. Excited state mixing is due to

collisions with 3He atoms and N2 molecules. The ground state spin relaxation and

excited state multipole destruction are dominated by collisions with 3He atoms
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and other alkali atoms. Starting from Eqn. (5.19), we’ve made the tacit assump-

tion that the absorption/stimulated emission rate is much smaller than the spon-

taneous decay and nonradiative quenching rates, R� 1/τspon � Γq. This is rea-

sonable since it would require about 5 & 65 kW of laser power to equal the spon-

taneous decay & quenching rates, under our conditions. Furthermore, the excited

state multipole destruction rates are much larger than the excited state decay rates,

τ 0
p,dΓp,d� 1. This implies that the excited state polarization moments are all nearly

zero, Pp, Pd,Qd,Rd < 0.01, and that all four effective branching ratios are nearly

1/2, 2Λ1 = 2Λ0 = 2Λ2 = 2Λ′0 = 1.

5.2.3 Two Species Rate Equations

Using the results of the previous, the polarization rate equation for traditional

SEOP with Rb is written as:

d[1 + ε(β)]PRb

dt
= +(R1− R2/2)− R0PRb− ΓRbPRb (5.45)

where we’ve hidden the explicit position dependence for the sake of clarity, 1 + ε

is the isotope averaged nuclear slowing down factor discussed in Sec. (5.2.1), R1,2

& R0 are the polarized & unpolarized Rb optical pumping rates, and the Rb spin

relaxation rate is written as:

ΓRb = kRb[Rb] + kHe[3He] + kN2[N2] + kse[3He]
(

1− PHe

PRb

)
(5.46)

where kRb is the Rb-Rb spin relaxation rate constant, kHe is the Rb-He spin relax-

ation rate constant, kN2 is the Rb-N2 spin relaxation rate constant, and the last term
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reminds us that spin exchange to 3He is a relaxation process only when the polar-

izations are unequal.

In the case of alkali-hybrid SEOP, we have a pair of coupled differential equa-

tions that include terms for Rb-K spin relaxation and spin exchange collisions:

d[1 + εRb(βRb)]PRb

dt
= +(R1− R2/2)− R0PRb− ΓRbPRb− kK[K]PRb + Ase[K](PK− PRb)

d[1 + εK(βK)]PK

dt
= +(K1− K2/2)− K0PK− ΓKPK− k′Rb[Rb]PK + Ase[Rb](PRb− PK)

(5.47)

where kK is the Rb spin relaxation rate constant due to K, Ase is the Rb-K spin

exchange rate constant, k′Rb is the K spin relaxation rate constant due to Rb, K1,2

& K0 are the polarized & unpolarized K optical pumping rates, and the K spin

relaxation rate is given by:

ΓK = k′K[K] + k′He[3He] + k′N2
[N2] + k′se[3He]

(
1− PHe

PK

)
(5.48)

where k′K is the K-K spin relaxation rate constant, k′He is the K-He spin relaxation

rate constant, k′N2
is the K-N2 spin relaxation rate constant, and k′se is the K-He spin

exchange rate constant. Solving these coupled equations for the equilibrium alkali

polarizations gives:

PRb =
R1− R2/2 + ηKD

[
K1− K2/2

]
R0 + ΓRb + kK[K] + ηKD{K0 + ΓK + k′Rb[Rb]} (5.49)

PK =
K1− K2/2 + (ηRb/D)

[
R1− R2/2

]
K0 + ΓK + k′Rb[Rb] + (ηRb/D){R0 + ΓRb + kK[K]} (5.50)

where D = [K]/[Rb] is the hybrid ratio and ηRb (ηK) is the relative alkali spin ex-
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change rate from K to Rb (Rb to K) given by:

ηK =
Ase[Rb]

Ase[Rb] + K0 + ΓK + k′Rb[Rb]
ηRb =

Ase[K]
Ase[K] + R0 + ΓRb + kK[K]

(5.51)

In general there are three different regimes for the alkali polarizations depend-

ing on the relative size of the alkali spin exchange rates compared to the opti-

cal pumping rates. When the relative alkali spin exchange rates are very low,

ηRb, ηK� 1, the polarizations are:

PRb =
R1− R2/2

R0 + ΓRb + kK[K]
PK =

K1− K2/2
K0 + ΓK + k′Rb[Rb]

(5.52)

Note that for this case, in general, PRb 6= PK. When the relative alkali spin exchange

rates are very high, ηRb, ηK ≈ 1, the polarizations are the same:

PRb = PK =
R1− R2/2 + D

[
K1− K2/2

]
R0 + ΓRb + D{K0 + ΓK + 2kA[Rb]} (5.53)

where kA = (kK + k′Rb)/2 is the mean Rb-K spin relaxation rate constant. Finally,

the last regimes are a mixture of the previous two: ηRb � 1 & ηK ≈ 1 or ηRb ≈ 1 &

ηK� 1.

Under our typical conditions, we’re directly pumping only the Rb D1 transi-

tion, which implies Ase[K] & R0 & R1 � R2 > K0 & K1 ≈ K2. and it is more useful

to write the K polarizations as:

PK = ηK

[
PRb +

(
K1− K2/2

Ase[Rb]

)]
(5.54)

To insure that K is polarized mainly due to spin exchange collisions with Rb and
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not off-resonant optical pumping, the Rb density must be sufficiently high [Rb]�

K0/Ase ≈ 0.4× 1011 cm−3/(75 W). Furthermore, to insure that the polarization ratio

PK/PRb is nearly unity, the Rb density must be sufficiently high [Rb]� ΓK/Ase ≈

1012 cm−3/(1 kHz). To maximize the alkali polarization, the main source of polar-

ization must be the on-resonant optical pumping of Rb and not the off-resonant

optical pumping of K. This condition can be satisfied by a sufficiently small K to

Rb vapor ratio D� R0/(ηKK0). To summarize, for a fixed spin exchange rate to

3He , γse, the hybrid ratio D must be sufficiently small to insure ηK ≈ 1 and to sat-

isfy D� R0/K0 ≈ 103 (104) assuming broadband (narrowband) light and Td = 0,

see Sec. (5.4.5).

5.3 Laser Light for Optical Pumping

5.3.1 Spatial Characteristics

The beam from a fiber-coupled laser diode array typically used for optical pump-

ing can be modeled as a Gaussian beam.Ignoring aberrations due the shape and

orientation of the beam shaping & polarizing optics, the intensity profile is given

by the fundamental mode by:

I(r, z) =
2P0

πw2(z)
exp

[
− 2r2

w2(z)

]
(5.55)

where P0 is the total power, r is the radial distance from the center of the beam, and

the beam radius w(z) at some location z is given by:

w(z) = w0

√
1 +ψ2

0

(
z− z0

w0

)2

(5.56)
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where w0 is the beam waist, z0 is the location of the beam waist, and ψ0 is the far

field divergence of the beam. These three parameters, w0, z0, ψ0, (i.e. Gaussian

beam parameters) obey the constraint w0ψ0 = M2λ/π, where λ is the wavelength

of the light. The beam quality factor M2 is unity for an ideal Gaussian beam and

around 300 for the types of beam we use for optical pumping. Once the Gaussian

beam parameters have been empirically determined, the size of the beam can be

calculated at any location.

The Gaussian beam parameters also determine the divergence ψ(z) = ∂w/∂z

of the beam. This quantity describes the beam’s “angular spread.” In other words,

the angle θr formed by the propagation vector of a photon located at distance r

from the center of beam is given by:

tan(θr) =
[

r
w(z)

]
ψ(z) =

r
w(z)

∂w(z)
∂z

= ψ0

( r
w

)[
1 +

(
w0

ψ0(z− z0)

)2
]−1/2

(5.57)

where θr is measured relative to the propagation vector at the center of the beam.

Far from beam waist, z� z0, and for small divergences, this angle is θr ≈ ψ0(r/w).

5.3.2 Forward Propagation

The photon flux Φ(~r, ν) is defined as the number of photons per unit area per unit

time per unit frequency interval. In general, it has a complicated shape and varies

significantly as a function of the depth into the cell z and the laser frequency ν. At

the front of the cell, however, Φ(z = 0, r, ν) can be written simply as a product of a

spatial profile, assuming a Gaussian beam, and a frequency spectrum. For the laser

diode arrays typically used for optical pumping, the spectrum can be reasonably
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represented by unit normalized Gaussian distribution:

Φ(0, r, ν) =
[

I(r, zcell)
hν

]
G(ν) =

[
I(r, zcell)

hν

][
2
√

log(2)/π
FWHM

exp

(
−4 log(2)

(
ν − νγ

)2

FWHM2

)]
(5.58)

where zcell is the location of the front of the cell relative to the beam waist loca-

tion, h is Planck’s constant, FWHM is the full width half maximum of the distribu-

tion, and νγ is the center of the distribution. This is a very good model when

the diode is “fresh,” but after it has aged the spectrum becomes broadened and

distorted. A “broadband” laser has a FWHM that is much larger than the absorption

linewidth, while a “narrowband” laser has a FWHM that is about equal to the absorp-

tion linewidth. Under typical operating conditions, the Rb D1 pressure broadened

absorption linewidth is about 120 GHz (0.25 nm), while broadband & narrowband

lasers typically have FWHM of 950 GHz (2 nm) & 95 GHz (0.2 nm) respectively.

As the light propagates through the alkali vapor, it polarizes layer after layer of

alkali atoms until the light is fully absorbs or exits the cell [32]. A “hole is burnt”

into the part of the laser spectrum that is near resonance, which modifies the shape

of the spectrum significantly. Using the results of Sec. (E.6.4) and dropping the

negligible field dependant terms, the frequency dependent attenuation of the beam

is given by:

[
1
Φ

dΦ

dz

]
R ,L

= ∑
a

{
pa

(
1± Pa

p cos(θ)
)
− sa (1∓ Pa

s cos(θ))
}
σa

1[A]a

+
{

da

2

(
1 +

Qd

2
± 3

2
Pd cos(θ)

)
− sa

(
1± Pa

s cos(θ)
2

)}
σa

2[A]a (5.59)

where a labels the alkali metal, σa
1(2) is the D1 (D2) absorption cross section, the

second (first) term on each line is due to absorption (stimulated emission), the first

(second) line is due to the D1 (D2) transition, the upper (lower) sign is taken for R
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(L) right (left) handed photons (helicity convention, see Sec. (4.5.3)), and the flux

of right & left handed photons is given by:

ΦR (~r, ν) = Φ(~r, ν)
[

1 + Pγ(~r, ν)
2

]
ΦL (~r, ν) = Φ(~r, ν)

[
1− Pγ(~r, ν)

2

]
(5.60)

where Pγ is the polarization of the light. The attenuation depends on the “skew”

angle θ between the polarization vector of the alkali atoms (i.e. the magnetic hold-

ing field direction) and the propagation direction of the photons (i.e. the k-vector).

For a Gaussian beam with divergence ψ and beam radius w, the skew angle at a

radial distance r from the center of the beam and at an azimuthal angle φmeasured

relative to the propagation axis of the beam center is given by:

cos(θ) = cos(θ0) cos(θr) + sin(θ0) sin(θr) cos(φ) =
cos(θ0) + (ψr/w) sin(θ0) cos(φ)√

1 + (ψr/w)2

(5.61)

where θ0 is the angle between the holding field and the k-vector at the center of the

beam. The propagation equations for ΦR & ΦL can be written in terms of the total

flux Φ and polarization Pγ :

1
Φ

dΦ

dz
= ∑

a

{
pa

(
1 + PγPa

p cos(θ)
)
− sa

(
1− PγPa

s cos(θ)
)}
σa

1[A]a

+
{

da

2

(
1 +

Qd

2
+

3
2

PγPd cos(θ)
)
− sa

(
1 + Pγ

Pa
s cos(θ)

2

)}
σa

2[A]a (5.62)

dPγ
dz

=
1
Φ

[
dΦR

dz
− dΦL

dz

]
− Pγ

Φ

dΦ

dz

=
(

1− P2
γ

)
cos(θ)∑

a

{[
paPa

p + saPa
s

]
σa

1 +
[

3daPa
d

4
− saPa

s
2

]
σa

2

}
[A]a (5.63)

This implies that, as the alkali atoms become polarized, they (1) “purify” the de-

gree of circular polarization of the laser beam as it propagtes through the polarized



5.4. LIMITS TO THE ALKALI POLARIZATION 397

alkali vapor and (2) the alkali atoms become nearly transparent to the beam.

5.4 Limits to the Alkali Polarization

5.4.1 Sources of Imperfection: Introduction

Stimulated Emission

An imperfection in optical pumping could be described as a mechanism that re-

duces the effective polarization of the pump light. The two types that we’ll dis-

cuss in this section either directly reduce the pump light polarization or com-

pete against the pump light. An example of the first type is the nonzero popu-

lation of the excited states which reduces the effective light polarization from Pγ to

Pγ(1− p/s).

Skew Pumping

Another example of this type is referred to as “skew pumping” [33], which is due

to a nonzero angle θ between the propagation vector of the light and the magnetic

field that defines the quantization axis of the atoms. This effect can be accounted

for by simply replacing Pγ with Pγ cos(θ), see Sec. (E.6.3).

Off-resonant Absorption

For the second type of mechanism, we can write the ground state polarization as

(assuming 2Λ(1− p/s) = 1 for simplicity):

Ps =
PγR + PxΓx

R + Γx + Γs
≈ Pγ

[
1−

(
1− Px

Pγ

)
Γx

R
− Γs

R
+ · · ·

]
(5.64)
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where Px and Γx are the polarization and rate of the competing mechanism. For

sufficiently high optical pumping rates, R� Γx + Γs, the effect of the competing

mechanism can be made arbitrarily small. However, if the competing mechanism

depends on the laser intensity or the optical pumping rate and Px < Pγ , then it pro-

vides a fundamental limit to the ground state alkali polarization [7]. Off resonant

pumping of the D2 transition is an example of this type of mechanism.

5.4.2 Excitation Energy Transfer Collisions

The rates Γm & Γ′m in Eqns. (5.16) & (5.17) represent collisions of the form:

Rb(P1/2) + X↔ Rb(P3/2) + X + ∆E (5.65)

where ∆E is the energy change during the collision and X could be a Rb atom, a

3He atom, or a N2 molecule [34]. These collisions are generally referred to as exci-

tation energy transfer collisioins. When the population of the P excited states of al-

kali atoms are being redistributed, these collisions are also refered to fine structure

mixing collisions. If the collision partner is another Rb atom, then these collisions

may represent another ground state relaxation mechanism.

There are two scenarios that could describe the collision. In the first, the ex-

cited atom simply changes energy and enters a different excited state. Since the

collision is electrostatic in origin, the spin state of the ground state alkali atom is

not expected to change. In the second scenario, the excited atom and ground state

atom can “swap” states. Since the mean electronic spin polarization in the excited

state is essentially zero, the net change in the ground state polarization is towards

zero. To provide an upper limit for the ground state relaxation rate, we’ll assume
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that every collision proceeds as the second scenario, which gives:

Γ
a
EET = ∑

b,J,J′
σb→a

J→J′vb pb,J[A]b (5.66)

where J (J ′) labels the initial (final) excited state, a (b) labels the initial (final) excited

alkali species, pb,J is the relative population of alkali atoms in the excited state, vb is

the mean relative thermal velocity between the alkali atoms, and σb→a
J→J′ is the cross

section of transfer for the process:

B(PJ) + A(S1/2)↔ B(S1/2) + A(PJ′) (5.67)

In hybrid cells, A & B could be Rb & Rb, K & K, Rb & K, and K & Rb, see

Sec. (D.4.3).

It has been shown [35–37] that the cross section for this process roughly scales

as 1/(∆E)n where ∆E is the energy difference between the intial & final excited

state energies. For this reason, the largest cross sections are expected for Na atoms

for P1/2 ↔ P3/2 collisions between similar atoms, Pk ↔ Pk collisions between sim-

ilar alkali atoms, and K & Rb for collisions between dissimilar atoms. We’ll note

that Pk ↔ Pk collisions between similar atoms are usually indistinuishable from

multipole destruction collisions with similar alkali atoms. We do not have to

limit ourselves to collisions involving only the P states. As was observed by

[38], cells lacking N2 emit a “purple glow.” This is attributable to the process

Rb(5PJ) + Rb(5PJ′)→ Rb(6PJ′′′) + Rb(S1/2)→ 2Rb(S1/2) + γ(λ = 421 nm). A more

recent study [39] observed no less than 8 additional peaks in the fluoresecene spec-

tra attributable to transitions between higher excited states to the 5P and 5S levels.

The addition of 50 torr of N2 reduced the intensity of fluoresence by a factor of
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two, which implies very large cross sections (> 106 Å2) for collisions between two

excited atoms.

If we take the cross section for PJ ↔ PJ collisions between Rb atoms to be equal

to the Rb-Rb multipole destruction scross section (104 Å2), then, using the results in

Tab. (5.1), we estimate an upper limit of ΓEET ≤ 0.005R. Although the cross section

for this process is very large, the sensitivity of the ground state polarization to this

mechanism is suppressed by the very low population of the excited state.

Polarization Transfer in Fine Structure Mixing Collisions

It has been shown that orientation and alignment can be transfered between P1/2

the P3/2 levels during mixing collisions, see for example [40]. Both the magni-

tude and sign of the polarization transferred is sensitive to the magnitude of the

magnetic field and the presence of nonzero nuclear spin. Polarization transfer can

cause an imperfection in optical pumping to the extent that it causes an imbal-

anace between the effective branching ratios. To lowest order, the effect on the

alkali polarization can be given by:

2Λ1R− 2Λ2R′/2
2Λ0R + 2Λ′0R′

≈ 1−
(

Λ1

Λ0
− 1
)
− R′

R

[
3
2

+
Λ2 + 2Λ′0− 3Λ0

2Λ0

]
(5.68)

When Λ1 < Λ0, the effective polarization of the light is reduced. When Λ2 + 2Λ′0 >

3Λ0, the effect of off-resonant absorption is enhanced. Under our conditions, the

multipole destruction rates are far greater than the mixing rates which insures that

the excited state polarization moments are nearly zero. This greatly suppresses

the sensitivity of the ground state polarization to the polarization transfer in the

excited state.
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5.4.3 Radiation Trapping

“Radiation trapping” [41–45] occurs when the fluorescence photons undergo sev-

eral cycles of reabsorption and emission by the atomic vapor before exiting the cell.

The unpolarized optical thickness of an alkali atom for wavelengths near the Dn

transitions can be estimated by:

1
σn(ν)[A]

= (2.13 mm)

[
1 +

(
2∆n

Γn

)2
](

1
3 fn

)(
Γn

120 GHz

)(
1014/cm3

[A]

)
(5.69)

where ∆n is detuning from resonance, Γn is the pressure broadened width, fn is the

oscillator strength, and [A] is the alkali density. Because the pumping chamber ra-

dius is several orders of magnitude larger than the unpolarized optical thickness,

radiation trapping could potentially limit the alkali polarization. Although this sit-

uation is greatly mitigated by nonradiative quenching collisions with N2 molecules,

a few percent of decays still occur via spontaneous emission.

The flux element of fluorescence photons carrying q = 0,±1 units of angular

momentum from the Dn transition at some point ~r (relative to the center of the

cell) in the cell from a volume element located a displacement of ~u (relative to ~r) is

given by:

dΦ
q,n
f = ∑

k

[
σn(ν)R
σn(ν) dν

]
1

τ n
spon

Λ
q
k pn

k (~u +~r)[A]
fq(θ)
4πu2 Tq(ν, ~u,~r)H(Rpc− |~r + ~u|) d3u

(5.70)

where we’ve summed over all the excited states k with population pn
k , Λ

q
k is the

branching ratio, [A] is the alkali density, H(x) is the Heaviside step-function de-

fined such that it is 1 (0) when ~r + ~u points to a location inside (outside) the cell,
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Rpc is the pumping chamber radius, fq is an angular factor given by [46]:

f±1 =
1 + cos2(θ)

4
f0 =

sin2(θ)
2

(5.71)

and Tq is the probability of transmission given by:

Tq(ν, ~u,~r) = exp
[
−∑

n

Z 1

0
σn(ν)[A]

(
1− q| cos(θ)|cnPA(x~u +~r)

)
dx
]

(5.72)

where PA is the position dependent alkali polarization and c1 = 1 (c2 = −1/2) for

D1 (D2) transitions.

Far from the wall of the pumping chamber, the transmission function can be

approximated by a step function that is nonzero only within a small region near ~r

of radius (σn[A](1− qcn| cos(θ))|PA(~r)). Making this approximation, we find:

dΦ
q,n
f = ∑

k

Λ
q
k pn

k (~r) fq(θ) sin(θ)
τ n

spon

[
1− qcn| cos(θ)|PA(~r)

]
[
R
σn(ν) dν]

dθ (5.73)

Using this flux element, we can calculate the unpolarized & polarized D1 optical

pumping rates due to the reabsorption of fluorescence photons using:

PFF =
Z
| cos(θ)|d

[
Φ

+1,1
f −Φ

−1,1
f

]Z
σ1 dν F =

Z
d
[
Φ

+1,1
f + Φ

0,1
f + Φ

−1,1
f

]Z
σ1 dν

(5.74)

where PF is the polarization of the fluorescence photons. The D2 optical pumping

rates can be calculated in a similar fashion. Assuming that Pp = Pd = Qd = Rd = 0,

setting cos(θ) = 1 in the denominator, and using Eqns. (5.19) & (5.20), we find that
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the unpolarized D1 and D2 optical pumping rates are given by:

F
R

= frad fp

(
1
3

)[
1− P2

s /3
1− P2

s

][
1− PγPs + g′m

R′

R

(
1 +

P
′
γPs

2

)]
(5.75)

F′

R
= f ′rad fd

(
25
96

)[
1− 8P2

s /75
1− P2

s /4

][
1− PγPs +

1
gm

R′

R

(
1 +

P
′
γPs

2

)]

where the fraction of decays, frad & f ′rad, from the P1/2 & P3/2 excited states that are

radiative are given by (ignoring stimulated emission):

frad =
τ 0

p

τspon
=

1
1 + τsponΓq

f ′rad =
τ 0

d

τ ′spon
=

1
1 + τ ′sponΓ′q

(5.76)

and the polarizations of the D1 & D2 fluorescence photons are given by:

PF =
4
15

[
Ps

1− P2
s /3

]
P′F = − 64

375

[
Ps

1− 8P2
s /75

]
(5.77)

The sign of these polarizations reflect the fact that the alkali vapor is relatively

more transparent to D1 (D2) photons that have the same (opposite) polarization

as the alkali atoms. The numerical factors are mainly due to the integral over θ

and, given the crudeness of our approximation for Tq, they should not be taken too

literally. Finally, it is important to note that polarization of the fluoresence that is

reabsorbed by the alkali atoms is very geometry dependant [15]. Our calculation

assumed a spherical pumping chamber. On the other hand, the polarization of the

fluoresence inside a long, thin cylindrical pumping chamber with its axis oriented

parallel (perpendicular) to the holding field is expected to be larger (smaller) due

to the angular factors given by Eqn. (5.71).
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5.4.4 Excited State Hyperfine Coupling

Introduction

Thus far, we’ve assumed that the alkali nuclear spin has no effect on the ground

state electronic polarization. If the alkali nuclear spin did couple to something

besides the alkali valence electron, then this coupling would provide a pathway

for the alkali electron polarization to “leak out” of the atom. If this occurred while

the atom was in the ground state, then this mechanism would only contribute to

Γs. However, if a leak through the nuclear spin occurred while the atom was in

an excited P state, then the effective relaxation rate due to this mechanism would

have to be proportional to the optical pumping rate R.

As discussed previously, the excited state orientation is very quickly lost in col-

lisions with the buffer gas. In this case, the angular momentum stored by the nu-

clear spin can leak out through hyperfine interactions with the disoriented electron

itself [47]. It is usually assumed [1, 11, 48] that processes that occur during the op-

tical pumping cycle are “sudden” with respect to the alkali nucleus. This implies

that the angular momentum stored by the alkali nuclear spin is fully conserved

throughout the optical pumping cycle. Bhaskar et al. [49] have considered the

more general case when only a “fraction εn of the nuclear spin is conserved” dur-

ing the optical pumping cycle. Following their reasoning, the time rate of change

in the mean azimuthal angular momentum of the ground state, 〈Fz〉 = 〈Iz〉+ 〈Sz〉,
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due only to depopulation & repopulation pumping can be written as:

d 〈Fz〉
dt

= −R 〈Iz〉+ R
(sz

2

)
+ RTr

(
ρFz~s · ~Θ

2

)
− R 〈Sz〉 (depopulation)

+R 〈Iz〉 εn− RTr

(
ρFz~s · ~Θ

2

)
(repopulation)

= R
(sz

2
− 〈Sz〉

)
+ R 〈Iz〉 (εn− 1) = R

(sz

2
− 〈Sz〉

)
+ R 〈∆Iz〉 (5.78)

where 〈Iz〉& 〈Sz〉 are the mean azimuthal nuclear & electronic spins, sz is z compo-

nent of the mean photon polarization vector ~s, ρ = ϕ+ ~S · ~Θ is the density matrix

for the ground state, ~S is the electron spin vector, and ϕ & ~Θ are the “purely nu-

clear operators” defined in [11]. Our goal is to estimate the change in the nuclear

spin 〈∆Iz〉 due to the excited state hyperfine coupling.

Probability of a Spin Flip

Once excited to the P1/2 state, the alkali atom undergoes an average of n = τΓp

disorienting collisions before decaying to the ground state (1/τ 0
p ) or transfering

collisionally to the P3/2 excited state (Γm), where τ = τ 0
p/(1 + τ 0

p Γm) is the mean

time the atom spends in the excited state. After a few collisions, the orientation

comes to equilibrium and is nearly zero, see Tab. (5.1). Immediately after a disori-

enting collision, the state of the atomic angular momentum can be written as the

uncoupled product |ψ(0)〉 = |±〉 |m〉, where m (±) labels the nuclear spin (electron

angular momentum) state. During the short time between collisions, the nucleus

and electron start to recouple and, in the mixed hyperfine coupled basis labeled by
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|F±,mF〉, see Sec. (E.3.4), the atomic state evolves as:

|ψ(t)〉 = (a1b1− a2b2) |F+,m± 1/2〉 e−iω+t∓ (a1b2 + a2b1) |F−,m± 1/2〉 e−iω−t (5.79)

where b1 & b2 are the Clebsch-Gordon coefficients given by Eqns. (E.215) & (E.216),

a1 & a2 are magnetic field dependant hyperfine mixing coefficients given by Eqns.

(E.212) & (E.213), and ω± = E±/~ are the hyperfine precession frequecies corre-

ponding to the energies E± given by Eqn. (E.197). At low fields, the probability of

a spin flip at some time t since the last collision is given by:

P±flip(t) = |〈∓,m± 1 | ψ(t)〉|2 =
2
(

I(I + 1)−m2)∓ 2m
[I]2 [1∓ υx + · · · ] [1− cos (ωhfs(x)t)]

(5.80)

where I is the nuclear spin, J = 1/2 is the total angular momentum of the electron

in the P1/2 excited state, x = B0/Bhfs is the Breit-Rabi parameter, B0 is the magnitude

of the holding field, Bhfs is the field at which the strength of Zeeman interaction

equals the strength of the hyperfine coupling, see Sec. (E.3.3) and Tab. (A.6), υ =

2(m± 1/2)/[I], [I] = 2I + 1, and ωhfs(x) is the hyperfine splitting between the F+ &

F+− 1 hyperfine levels given by:

ωhfs(x) = 2πF
[

A +
3B
4I J

]
(1 + υx + · · · ) (5.81)

where A & B are the hyperfine structure constants for the excited state, see Tab.

(A.6). For sufficiently small magnetic fields, the hyperfine mixing is small, F±

nearly equals I± J, and a1 (a2) is nearly unity (zero) with a small quadratic (linear)

field dependant term. Under our conditions, B0 ≤ 30 G and, for the P1/2 excited

state of 85Rb (87Rb), Bhfs = 388 (870) G which gives x ≤ 0.08. For our purposes, this
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is sufficiently small and we’ll drop all the field (x) dependant terms.

This probability of a spin flip P±flip(t) must be averaged (1) over all the possi-

ble time intervals between disorienting collisions and (2) over each nuclear state.

Assuming Pp is at equilibrium and ignoring the time dependance of the relative

populations of the nuclear states, the time averaging (with the stipuation that the

quenching/transfer collision occurs after the disorienting collision) is given by:

α2 ≡
Z ∞

0

{Z t′

0
[1− cos (ωhfs(0)t)] e−tΓp

dt
1/Γp

}
e−

t′
τ

dt′

τ
=

α2(
1 + n−1

)[(
1 + n−1

)2 + α2
](5.82)

where α = ωhfs(0)/Γp. Under our conditions, n� 1 & α� 1, which implies that

α ≈ α and allows us to safely ignore the short amount of time (≈ 1/Γp) that it

takes for the electron orientation to come to equilibrium. The probability that the

atom exits the excited state before undergoing even a single disorienting collision

is suppresed by a factor of 1/n2.

Since we’ve ignored the small Zeeman splitting of the hyperfine energy levels,

ωhfs is independant of m and the average over the electron & nuclear states is given

by:

∑
m

(
1± Pp

2

)
ρmm

(
2
(

I(I + 1)−m2
)
∓ 2m

[I]2

)
=
(

1± Pp

2

)
ε(I, Ps) (1∓ Ps)

[I]2 (5.83)

where Ps = 2 〈Sz〉 (Pp) is the ground state polarization (excited state orientation),

ρmm is the diagonal element of the density matrix corresponding to the relative

population of the nuclear state labelled by m, and the paramagnetic coefficient

ε(I, P) is defined by [11]:

ε(I, P) = 2
〈
~I 2− I2

z

〉
= 2

〈
I(I + 1)−m2〉 =

〈Iz〉
〈Sz〉

=
〈m〉
〈Sz〉

(5.84)
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Putting this altogether, the approximate mean time-averaged probability P±1 for a

single ± flip is given by:

P±1 =
〈〈

P±flip(t)
〉

t

〉
m

=
[

(1− PpPs)± (Pp− Ps)
2

][
ε(I, Ps)

[I]2

]
α2 (5.85)

Effective Relaxation Rate

We’ll assume that the probability of k spin flips out of n collisions can be simply de-

scribed by a binomial distribution. In that case, the average change in the nuclear

spin is given by:

〈∆Iz〉 = n
(

P+
1 − P−1

)
=
(

Pp− Ps
)

nα2
[
ε(I, Ps)

[I]2

]
=
(

Pp− Ps
)

Pn (5.86)

where Pn = nP1 and P1 is the “unpolarized” probability of a single spin flip. From

the perspective of the ground state, the excited state hyperfine coupling appears

as a spin relaxation mechanism that pushes the ground state polarization towards

Pp. The effective relaxation rate due to the hyperfine coupling in the excited state,

after averaging over the different isotopes of Rb labelled by i, is given by:

Γhfs

R
= ∑

i
(ηiη

′
p)Pi

n = ∑
i

(ηiη
′
p)

[(
ωi

hfs(0)
)2
τ

Γp

](
α2

i

α2
i

)[
ε(Ii, Ps)

[Ii]2

]
(5.87)

where ηi is the fractional abundance of the isotope, η ′p = p/(p + d) is the relative

population of the P1/2 excited state, 1/τ is the sum of total excited state decay rate

& the collisional transfer rate, Γp is the orientation destruction rate, and, under

our conditions (n� 1), α/α ≈ 1. This calculation is in agreement with the results

of Bhaskar et al. [49] for 133Cs when (1) alkali-alkali spin exchange is the fastest

process (i.e. the mean time T between alkali-alkali spin exchange collisions ap-
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proaches zero, T→ 0), (2) the ground state alkali polarization is very low Ps → 0

(i.e. ε(I, Ps → 0) → 4I(I + 1)/3), and (3) the excited state electron is completely

disoriented (Pp = 0). Tab. (5.2) lists the parameters used to calculate the effective

relaxation rate.

A similar calculation for the hyperfine coupling in the P3/2 excited state is more

involved since there are more than two hyperfine manifolds. (There are 2J + 1

manifolds when I ≥ J.) For our purposes (i.e. order of magnitude), we may safely

ignore this complication and simply treat the P3/2 level as if it had J = 1/2. In that

case, the formulas are unchanged provided we substitute the P3/2 rates, popula-

tion, & hyperfine constants in the place of the P1/2 ones in the appropriate places.

5.4.5 On- & Off-Resonant Absorption Rates

The unpolarized absorption/stimulated emission rates R & R′ for the D1 & D2

transitions are given by:

R{
′} = R{

′}
+ + R{

′}
− =

Z ∞
0

[
ΦR (ν) + ΦL (ν)

]
σ1{2}(ν) dν =

Z ∞
0

Φσ1{2} dν (5.88)

where σ1{2} is the unpolarized absorption cross sections for the D1 (D2) transition.

The polarized absorption/stimulated emission rates PγR & P
′
γR′ for the D1 & D2

transitions are given by:

P
{′}
γ R{

′} = R{
′}

+ − R{
′}
− =

Z ∞
0

[
ΦR (ν)−ΦL (ν)

]
σ1{2}(ν) dν (5.89)

The unpolarized absorption cross section for the Dn transition is given as

σn(ν) = πrec fnLn(ν) (5.90)
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excited state P1/2 P1/2 P3/2 P3/2

isotope 85Rb 87Rb 85Rb 87Rb units

I 2.50 1.50 2.50 1.50
J 0.50 0.50 1.50 1.50
F 3 2 4 3

Ahfs 121 406 25.0 84.7 MHz
Bhfs 0 0 26.0 12.5 MHz

ωhfs (F↔ F− 1) 2.27 5.10 0.760 1.68 GHz
τ 0.394 0.394 0.413 0.413 ns
Γp 104 104 472 472 GHz
n 40.9 40.9 195 195
α 2.19E-02 4.92E-02 1.61E-03 3.55E-03

ε(Ii,1) 5 3 5 3
[I] 6 4 6 4
P1 6.20E-05 4.21E-04 3.55E-07 2.33E-06
Pn 2.53E-03 1.72E-02 6.91E-05 4.53E-04
ηi 0.7217 0.2783 0.7217 0.2783
η ′p 0.412 0.412 0.588 0.588

Γi
hfs/R 7.53E-04 1.97E-03 2.93E-05 7.42E-05

Table 5.2: Parameters for Estimating the Excited State Hyperfine Coupling. Hy-
perfine structure constants A & B are from Tab. (A.6). Parameters τ and Γp were
calculated from Tab. (5.1). We’ll note that these values are quite sensitive to the
relative populations of the excited P states and the mixing rates between them.
Because of the relatively large uncertainties in the off resonant absorption rate and
the fine structure mixing cross sections & their temperature dependance, these val-
ues may easily be too large or too small by an order of magnitude. Details of how
these rates were determined are described in Sec. (D.4.3).

.
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where re is the classical electron radius, c is the speed of light in a vacuum, fn is the

oscillator strength, and Ln(ν) is the unit normalized absorption lineshape. Because

of the relatively high 3He pressure in the cells, the pressure broadened linewidth

(120 GHz) is much larger than both the Doppler linewidth (1 GHz) the hyperfine

splitting (3 GHz). In this pressure broadened regime, the alkali lineshape is given

by a modified Lorentzian profile:

Ln(ν) =
Γng(x)/(2π)
∆2

n + Γ2
n/4

x ≡ 2π∆nTd (5.91)

where ∆n = ν − νn is the detuning, νn the pressure shifted transition frequency, Γn

is the unperturbed full width at half maximum pressure broadening linewidth, Td

is the effective duration of alkali-buffer gas collisions, and x is the relative detun-

ing. The pressure shifts, pressure widths, and oscillator strengths for the D1 & D2

transitions of the alkali atoms are listed in Tab. (5.5).

The exact form of g(x) depends on critically on the interatomic potential be-

tween the alkali atom and the perturber atom. For a van der Waals potential,

Walkup et al. calculated g(x) in three regimes [50]:

g(x) ≈


(
π/6/0.3380

)√
|x| x < −2.4

1−
(
0.2245/0.3380

)
x −1.5 < x < 0.5(

0.8464/0.3380
)√

x exp
[
−2.1341x

5
9

]
x > 2.4

 (5.92)

where x ≈ 0 is near resonance, x� 0 is referred to the as the classically allowed

or “quasistatic” wing, x� 0 is referred to as the classically forbidden wing. Near

resonance, the lineshape is modified to include a small asymmetry term. When Td

is nonzero, the off resonant lineshape is, relative to the a pure Lorentzian lineshape,
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much larger on the quasistatic wing and much smaller on the classically forbidden

wing.

Combining the incident photon flux with the Rb D1 absorption cross section,

assuming Td = 0, gives the unpolarized absorption rate at the front of the cell:

R(0, r) = P0σ
Rb
1 (νγ)

[
2

hνγπw2

]
exp

(
−2r2

w2

)V
(

∆Rb
1 ,

FWHM

2
√

2 log(2)
,

ΓRb
1
2

)
LRb

1 (νγ)

 (5.93)

where νγ is the peak frequency of the laser spectrum, ∆Rb
1 = νγ− νRb

1 is the detuning

from the pressure shifted Rb D1 transition frequency νRb
1 , and V(∆, σ, γ) is the Voigt

profile [46, 51] defined by:

V(∆, σ, γ) =
Z ∞
−∞

G(∆′, σ)L(∆− ∆
′, γ) d∆

′ (5.94)

where G is a Gaussian with a full width half maximum of 2σ
√

2 log(2) and L is

Lorentzian with a full width half maximum of 2γ. The quantity fγ = V/LA
1 can be

thought of as the fraction of the total power that is participates in the absorption

and it is sensitive to the ratio of the laser linewidth to the absorption linewidth

FWHM/ΓA
n , see Fig. (5.1).

In the broadband limit, FWHM/ΓA
n →∞, the absorption cross section looks like a

δ-function LRb
1 → δ(ν − νRb

1 ), V → G(νRb
1 ), and the absorption rate at the center of

the beam (r = 0) is given by:

R(0,0) = 115 kHz
[

P
75 W

][
23 cm2

πw2/2

][
2 nm
FWHM

][
3 f Rb

1

]
exp

[
−

4 log(2)
(
∆Rb

1

)2

FWHM2

]
(5.95)

In the narrowband limit, FWHM/ΓA
n → 0, the laser spectrum looks like a δ-function
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Figure 5.1: Effective Fraction of “Useful” Photons. The black vertical dashed line
shows the fraction fγ = 0.17 (0.77) for a typical broadband (narrowband) laser with
FWHM = 2 (0.2) nm. The dashed red curve in the right plot is the fraction in the
broadband limit.

G(ν)→ δ(ν − νγ), V/LRb
1 (νγ)→ 1, the absorption rate at the center of the beam is

given by (assuming Td = 0):

R(0,0) = 612 kHz
[

P
75 W

][
23 cm2

πw2/2

][
120 GHz

ΓRb
1

][
3 f Rb

1

1 + 4(∆Rb
1 )2/(ΓRb

1 )2

]
(5.96)

The Rb D2 (∆Rb
2 = −7 THz), K D1 (∆K

1 = −12 THz), and K D2 (∆K
2 = −14 THz)

transitions are far enough away from the Rb D1 transition that the laser spectrum

looks like a δ-function relative to the tail of the absorption line, where we have

ignored the tail of the emission spectrum. In this limit, V/LA
n → 1 (since each

photon is roughly the same detuning from the other transition frequencies) and,

assuming a pure Lorentzian lineshape (i.e. Td = 0→ g(x) = 1), the central incident

off resonant absorption rate is given by:

A0
n(0,0) = 51.3 Hz

[
P

75 W

][
23 cm2

πw2/2

][
ΓA

n

140 GHz

][
10 THz

∆A
n

]2 [3 f A
n

2

]
(5.97)

For an attractive potential, Td > 0, the Rb D1 transition is on the quasistatic wing
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of the other three transitions and the off resonant absorption rate can be written as:

Aqs
n (0,0) ≈ 3.88×A0

n(0,0)

√∣∣∣∣( ∆A
n

10 THz

)
Tn

d

0.1 ps

∣∣∣∣ (5.98)

For a repulsive potential, Td < 0, the Rb D1 transition is on the classically forbid-

den wing of the other three transitions and the off resonant absorption rate can be

written as:

Acf
n (0,0)≈ 0.0168×A0

n(0,0)

√(
∆

10 THz

)
Tn

d

0.1 ps
exp

[
−5.92

{
(∆Tn

d )5/9− 1
}]

(5.99)

The off resonant absorption rate is extremely sensitive to the sign and magnitude

of Td. For example, Romalis et al. [52] have measured Td (near resonance) of order

−0.1 ps for Rb-He collisions, +1.0 ps for Rb-N2 collisions, and +3.5 ps for Rb-129Xe

collisions. This gives 2 Hz, 1 kHz, and 2 kHz, respectively, for the off resonant

absorption rate for the Rb D2 transition. The ratio of off-resonant to on-resonant

absorption rates for different values of Td are depicted in Fig. (5.2).

Using the framework of Walkup allows us to quantitatively describe the effect

on the absorption spectrum due to van der Waals interactions between excited Rb

atoms and He atoms using a single parameter Td. The measured value for Td near

resonance in Rb-He systems is too small and has the “wrong” sign to fully account

for the alkali X-factor. On the other hand, Walkup’s framework predicts a tem-

perature scaling for pressure broadening & shift and certain relationships between

the pressure broadening & shift that is not consistent with the measurements of

Romalis et al. In other words, the value for Td measured near resonance may not

be the appropriate value for calculating off resonance effects.

Alternatively, Hirano et al [53] have calculated ab initio the potential curves and
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excitation spectrum for Rb-He “exciplex” molecules. These molecules are formed

from a single excited Rb atom and n He atoms. For n = 1, they found that the

peak wavelengths that corresponded to the energy difference between the lowest

three vibrational states of the Π3/2 level and the Σ1/2 level are 830 nm, 805 nm, and

790 nm. Each peak has a FWHM of about 15 nm each. Their results compare fa-

vorably to their spectral measurements made at temperatures below 100 K and a

He density of 3.4 amg. Based on both their calculation and experimental results,

this seems to indicate that the formation of RbHe molecules would increase the off

resonant absorption cross section for the D2 transition at frequencies lower (wave-

lengths higher) than the unperturbed D2 frequency. Recently, Sell et al [54] have

found that the cross section for Rb fine structure mixing due to collisions with He

gas is quadratic in He density. This was not observed before [34] because the He

density at which the three body rate equals the binary rate is very high (roughly 3.4

amg). The existence of a three body rate could be indicative of the formation of a

short lived RbHe molecule facilitated by a collision with another He atom. This in-

terpretation provides additional evidence for the formation of RbHe molecules. If

so, they would negatively affect the optical pumping process by generating “satel-

lite” absorption lines with locations & widths that contaminate the D1 atomic line.

5.4.6 Maximum Alkali Polarization

Including imperfections to optical pumping, the Rb polarization can written as:

PRb =
2ΛPγR cos(θ)(1− X′A)

2ΛR(1 + XA) + ΓA
(5.100)
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Figure 5.2: Sensitivity of the Off Resonant Absorption Rate to the Td Parameter. The
red (blue) lines are evaluated in the broadband (narrowband) limit. These curves
were calculated assuming Tpc = 235oC, [3He]pc = 6.5 amg, and [N2]/[3He] = 0.01.
The shifts, widths, and oscillator strengths of each transition are listed in Tab. (5.5).

where ΓA is the total Rb relaxation rate that independent of the light and XA &

X′A due to imperfections in the optical pumping or alternatively light-dependent

alkali relaxation mechanisms. Mechanisms of such type have been observed by

the Wisconsin & NIST groups [7,55,56]. Assuming the imperfections are small and

ηK = 1, we can write the alkali X-factors to lowest order as:

X′A ≈ p
s

+
R′

2R
− DK

R
+

DK′

2R
− PFF

PγR
+

P′FF′

2PγR
+
[

1−
Pp

Pγ

]
Γhfs

R
+
[

1− Pd

Pγ

]
Γ′hfs

R

XA ≈ R′

R
+

DK
R

+
DK′

R
+

F
R

+
F′

R
(5.101)

Assuming the optical pumping rate is very high R1 � ΓA and Pγ ≈ P
′
γ , the alkali

polarization, to lowest order, can be written as:

PRb ≈ Pγ cos(θ)
[

1− p
s
− 3R′

2R
− 3DK′

2R
−
(

1− PF

Pγ

)
F
R
−
(

1 +
P′F

2Pγ

)
F′

R

−
(

1−
Pp

Pγ

)
Γhfs

R
−
(

1− Pd

Pγ

)
Γ′hfs

R
− ΓA

2ΛR

]
(5.102)

In the very high laser power limit, where ΓA/R→ 0 but [Rb]� K0/Ase, this can



5.4. LIMITS TO THE ALKALI POLARIZATION 417

rewritten using Eqn. 5.64) as:

PRb

Pγ
→ cos(θ)P∞ ≈ 1−{1− cos(θ)}−

[
XA + X′A

]
= 1−

[
∑

k

(
1− Pk

x

Pγ

)
Γk

x

R

]
(5.103)

where P∞ is the limiting alkali polarization. If one removes the contribution of

skew pumping and off-resonant K absorption, then P∞ reduces to the same quan-

tity defined in [7].

The effect of stimulated emission can be estimated using Eqn. (5.19). Skew

pumping effects can be estimated using θ ≈ θ0 + ψ, where θ0 is the central point-

ing of the beam and ψ is the divergence of the beam. The off resonant absorption

rates can be estimated using the results of the previous section assuming Td = 0.

The effect of different values for D & Td is depicted in Fig. (5.3). The parameters

used for estimating the effects of radiation trapping & excited state hyperfine cou-

pling are listed in Tabs. (5.1) & (5.2). A list of estimates for each alkali X-factor is

listed in Tab. (5.3). The two largest factors are the hyperfine coupling in the P1/2 ex-

cited state and radiation trapping of D1 fluorescence photons. Both of these factors

do not depend on the spectral linewidth of the laser. Although these estimates rel-

atively crude in some cases, it does provide a guide to the most important limiting

factors and their scaling behavior under typical conditions in polarized 3He target

cells. Because of the relatively large hyperfine interaction in the P1/2 excited state,

the effective relaxation rate due to excited state hyperfine coupling is about 2% of

the unpolarized optical pumping rate. This suprisingly large rate lowers the high-

est achievable alkali polarization to 0.97, which is consistent, within±0.05 absolute

uncertainties, with published results for various measurements of the absolute al-

kali polarization (e.g. > 0.95 in [55], > 0.97 in [2], > 0.98 in [7], > 0.97 in [57]).
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Figure 5.3: Sensitivity of the Maximum Alkali Polarization to the D and Td. Only
the contributions due to off-resonant absorption were included in the calculation
of PA. These curves were calculated assuming Tpc = 235oC, [3He]pc = 6.5 amg,
and [N2]/[3He] = 0.01. The outer (inner) vertical dashed lines depict the FWHM

of a typical broadband (narrowband) laser. The true alkali polarization is found
by averaging PA over the laser spectral profile. A narrowband laser has a much
smaller sensitivity to imperfections due to off-resonant absorption.

5.4.7 Photon Cost

If we are only directly pumping the Rb D1 transition, then it is convenient to

rewrite Eqn. (??) as:

dΦ(ν)
dz

= −Φ(ν)σRb
1 (ν)[Rb]

[
1 + Xγ(ν)− Pγ(ν)PRb cos(θ)

{
1− X′γ(ν)

}]
(5.104)

where Xγ(ν) & X′γ(ν) are, in general, additional light absorption mechanisms that

spoil the transparency of the alkali vapor when PγPRb cos(θ) = 1. Nonzero values

of these “photon X-factors” could potentially limit the volume averaged alkali po-

larization by preventing the light from penetrating to the back end of the cell.

Integrating over ν, assuming that R� ΓA throughout the pumping chamber &
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source Px 100
(
Γx/R

)
100 (XA + X′A) scaling

P1/2 HFS +0.01 2.008 1.987 [N2]−1[3He]−1

D1 rad. trap. +0.40 0.907 0.544 [N2]−1

K D2 abs. −0.50 0.144 0.217 {0.043} D[3He]1{2}∆−2

skew pump. +0.00 0.137 0.137 θ2

Rb D2 abs. −0.50 0.080 0.120 {0.024} [3He]1{2}∆−2

P3/2 HFS +0.00 0.012 0.012 [N2]−1[3He]−1

stim. emis. +0.00 0.011 0.011 {0.057} I0
(
FWHM{[3He]}

)−1 [N2]−1

D2 rad. trap. −0.19 0.003 0.003 [N2]−1

total 3.03 {2.81}
P∞ 0.973 {0.974}
PRb 0.970 {0.972}

Table 5.3: Estimates for Alkali X-Factors. These values were calculated assum-
ing D = [K]/[Rb] = 6, Tpc = 235oC, [3He]pc = 6.5 amg, [N2]/[3He] = 0.01, Td = 0,
I0 = 75 W/23 cm2, and θ = 3o. The values without (with) the curly brackets
{· · · } were calculated in the broadband (narrowband) laser spectrum limit with
FWHM = 2 (0.2) nm. The detuning from the Rb D1 transition frequency is denoted
by ∆. The maximum alkali polarization estimated from this table is signifcantly
larger than the value of 0.91 from [7] for traditional SEOP with broadband lasers. It
should be noted, however, that off resonant pumping makes a larger contribution
as the light penetrates deeper into the cell (where the on resonant optical pumping
rate is smaller). This implies that the average XA due to off resonant pumping can
be very sensitive to the cell geometry, alkali number density, and laser intensity.
Even for such a high estimate for P∞ listed in this table, the photon cost can be sig-
nificant, see Sec. (5.4.7). Finally, [7] found no apparent 3He pressure dependence
on PA. This may be because those measurements were taken in a regime where
the decrease in off resonant pumping of the Rb D2 transition was partially/wholly
compensated by the increase in the P1/2 excited state hyperfine coupling with de-
creasing 3He pressure.
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ηK = 1 such that PK = PRb, and keeping only the lowest order X terms, we find:

d
R

Φ dν
dz

= −R[Rb]
[

ΓA

2ΛR
+ Xabs

]
(5.105)

where Xabs and the cross section weighted photon X-factors are given by:

Xabs =
{

1− P
2
γ

}
+ sin2(θ) + Xγ + X

′
γ + XA + X′A (5.106)

Xγ = −2
( p

s

)
Rb

+
R′

R
+

DK
R

+
DK′

R
(5.107)

X
′
γ = +2

( p
s

)
Rb

+
R′

2R
+ D

(
PK

PRb

)[
−K

R
+

K′

2R

]
(5.108)

Assuming Pγ = 1, PK = PRb, and using the results from the last section, we find

100
(

Xγ + Xγ

)
= 0.34 (0.07) and 100Xabs = 3.6 (2.8) for broadband (narrowband)

lasers. At the front of the cell, ΓA/(2ΛR) ≈ 10−2, imperfect optical pumping in-

creases the local photon cost by about a factor of 4.

To estimate the laser power required to maintain a high alkali polarization

throughout the pumping chamber, it is useful to write R as βP0σRb
1 (νγ) fγ , where

β describes the transverse spatial profile of the beam and fγ is the fraction of pho-

tons useful for optical pumping. If we make the assumption that only photons

within this fraction are lost as the the light propagates through the vapor then we

find:

d
R

Φ dν
dz

=
dβP0dν

dz
= β

[
d(1− fγ)P0

dz
+

d( fγP0)
dz

]
= β

d( fγP0)
dz

(5.109)

where we’ve assumed that the divergence of the beam is small enough that dβ/dz≈
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0 and now we have:

d( fγP0)
dz

= −( fγP0)σRb
1 (νγ)[Rb]Xabs−

[Rb]ΓA

2Λβ
(5.110)

This can be solved go give:

( fγP0)(z) = ( fγP0)(0) exp
(
− z

zx

)
− ΓA

2Λβσ1
Rb(νγ)Xabs

[
1− exp

(
− z

zx

)]
(5.111)

where 1/zx = σRb
1 (νγ)[Rb]Xabs is the optical depth in the presence of imperfections.

In our case, using [A] = 1015/cm3, we find zx ≈ 6.2 (8.0) mm for broadband (nar-

rowband) lasers, which, in either case is much less than the diameter of the pump-

ing chamber (60–85 mm) that we typically use.

To determine the power needed at the front of the cell (i.e. the total power from

the laser), we’ll impose the boundary condition that ( fγP0) at the back of the cell,

z = `, is still large enough to keep alkali polarization high:

Pmin
A =

2ΛPγβ( fγP0)(`)σRb
1 (νγ) cos(θ)(1− X′A)

2Λβ( fγP0)(`)σRb
1 (νγ)(1 + XA) + ΓA

(5.112)

Solving this equation for ( fγP0)(`), then plugging it into Eqn. (5.111), and solving

for the power at the front of cell, we get:

P0(z = 0) = Pscale

[
nback + npath

100

]
exp

(
+`/zx

)
10

(5.113)
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Figure 5.4: Photon Cost Factors. The unitless factor nback is the due to the require-
ment that the laser power is large enough to penetrate to the back of the cell. The
factor npath is a relative measure of the amount of photons absorbed over the path
length due to ΓA.

where Pscale, nback, and npath are given by:

Pscale =
1000ΓA

2Λ fγβσ1
Rb(νγ)

(5.114)

nback =
Pmin

A

1−
{

1− Pγ
}
−{1− cos(θ)}− (XA + X′A)− Pmin

A

(5.115)

npath =
1− exp

(
−`/zx

)
Xabs

(5.116)

Fig. (5.4) depicts the sensitivity of nback & npath to Pmin
A & `/σRb

1 (νγ)/[Rb] and the

alkali & photon X-factors.

Assuming a Gaussian beam profile at the front of the cell (i.e. β = I(r, zcell/(hνγP0))
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and and using V/LRb
1 (νγ) for fγ , we can write the scale power as:

Pscale =
159 W

(2Λ)(3 f A
n )

[
0.771

fγ

][
ΓA

1 kHz

][
ΓA

n

120 GHz

][
795 nm
λA

n

][
πw2/2
23 cm2

]
×
[

1 +
(

2∆A
n

ΓA
n

)2
]

exp
(

2r2

w2

)
(5.117)

For a spherical cell, the laser power requirement is most severe at the center of the

cell, r = 0, where the path length is equal to the cell diameter ` = 2Rpc.

It is useful to express the Rb density in terms of the spin exchange rate γse to

3He and D:

[Rb] = 13.7× 1014/cm3
[

γse

1/(3 hrs)

][
1

1 + 0.764D

]
(5.118)

which we can use to express the argument of exponential factor of Eqn. (5.113) as:

`

zx
= 4.50 [100Xabs]

[
`

7 cm

][
γse

1/(3 hrs)

][
1

1 + 0.764D

]
×
[

1 +
(

2∆n

Γn

)2
]−1 (

3 fn
)[120 GHz

Γn

]
(5.119)

When `/zx � 1, npath becomes independent of Xabs, and the laser power require-

ment becomes:

P0(z = 0) ≈ Pscale

1000
[
nback + npath

] [
1 + npathXabs

]
(5.120)

npath ≈ `σRb
1 (νγ)[Rb] = 450

[
`

7 cm

][
γse

1/(3 hrs)

][
1

1 + 0.764D

]
×
[

1 +
(

2∆n

Γn

)2
]−1 (

3 fn
)[120 GHz

Γn

]
(5.121)

where `/zx ≈ npathXabs � 1 in this limit. Therefore, we see that, when Xabs → 0,
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100(XA + X′A) 100Xabs Pscale (W) npath `/zx P0 (W)

sph. cow 1/12 hrs 0.00 0.00 652 116 0.0 8.1E+01
sph. cow 1/3 hrs 0.00 0.00 652 463 0.0 3.1E+02
skew only 0.14 0.27 652 262 1.3 6.3E+02
skew + off-res. 0.26 0.51 652 177 2.4 1.3E+03
all sources 2.81 3.07 652 33 14.2 4.4E+07
narrowband only 2.76 2.91 144 34 13.5 4.7E+06
hybrid only 3.03 3.50 1652 27 2.9 1.2E+03
both 2.79 2.97 365 31 2.5 1.8E+02

Table 5.4: Illustrative Example of the Photon Cost for “Transversity-Style” Target
Cells. Unless otherwise noted, the following parameters were used in the calcu-
lation: 1/γse = 3 hrs, Rpc = 3.6 cm, and Pmin

A = 0.9. The first six (last two) rows
were calculated using D = 0 (D = 6). Rows 1–5 & 7 (6 & 8) were calculated us-
ing FWHM = 2.0 & fγ = 0.17 (FWHM = 0.2 & fγ = 0.77). All other parameters were
from Tab. (5.3) and nback ≈ 10. According to this crude model, it would require
P0 ≈ 200 W of narrowband light to polarize the alkali vapor > 0.9 throughout the
pumping chamber. With a 3He X-factor of 0.2, beam current of 10 µA, and cell life-
time of 30 hrs, the expected 3He polarization is about 0.65. The target cells used for
the “Transversity” experiments, see Tab. (3.1), achieved this level of performance
with roughly P0 ≈ 100 W.

we’ve recovered the “naive” R3
pcγse photon cost scaling that is usually expected

for spherical cells, where Pscale ∝ w2 and we’ve assumed w = Rpc. On the other

hand, when 100Xabs ≥ 1, the laser power requirement can very easily obtain an

exponential exp[· · ·Rpcγse/(1 + 0.8D) · · · ] dependence. This effect can be greatly

suppressed with a hybrid cell (D > 1.3). In addition, pumping with a narrowband

laser significantly reduces the sensitivity to off-resonant absorption effects and in-

creases fγ . Illustrative examples of the photon cost using Eqn. (5.113) for the most

recent 3He experiments and for upcoming 3He experiments are listed in Tab. (5.4)

and depicted in Fig. (5.5) respectively. Generally speaking, the biggest gains comes

first from alkali-hybrid SEOP and then in combination with narrowband lasers.
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Figure 5.5: Illustrative Example of the Photon Cost for “GEN II-Style” Target Cells.
In the left plot, the solid circles (dashed line) is the exponential factor exp(−`/zx)
(alkali relaxation rate ΓA). In the right plot, the minimum power requirement oc-
curs near D = 35, where it should be noted that this crude model assumes PK = PRb

(i.e. ηK = 1) for all values of D. The following parameters were used in the calcu-
lation: 1/γse = 3.5 hrs, Rpc = 5.9 cm, and Pmin

A = 0.9. All other parameters are from
Tab. (5.3). According to this crude model, it would require 250 W of narrowband
light for a D ≈ 35 hybrid ratio to polarize the alkali vapor > 0.9 throughout the
pumping chamber. With a 3He X-factor of 0.15, beam current of 60 µA, and cell
lifetime of 25 hrs, the expected 3He polarization is about 0.65.

5.5 Numerical Simulations

The effects discussed in this chapter become quite complicated as we consider a

realistic situation as one might encounter in an actual target cell. In particular, one

simplifying assumption made in the previous section is the invariance of the pump

beam spectral profile. Eqn. (5.59) indicates that this profile is modified dramati-

cally as the laser propagates through the alkali vapor. Absorption is largest near

the center of the profile, which, deeper into the cell, results in a spectrum with a

“hole” at center. The optical pumping rate associated with such a profile is lower

than that for a Gaussian profile with the same total power as given by Eqn. (5.95)

(Eqn. (5.96)) for broadband (narrowband) lasers. As a consquence, the alkali X-

factor associated with off resonant absorption depends on both the geometry of
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the cell and the shape of the pump beam spectral profile.

With the dynamics involved in a real target being complicated, the easiest way

to see the impact of the effects discussed previously is to perform a numerical

simulation of a realistic target cell. In this way, it is straightforward to appreciate

the considerable impact of the both alkali hybrid mixtures and narrowband light.

The conditions for optimizing a target design also become quickly apparent.

5.5.1 Simulation Ingredients

The simulation is a numerical integration of Eqn. (5.59) over a discretized path

through the pumping chamber. Assuming cylindrical symmetry, a spherical pump-

ing chamber is divided into 100 radial bins, each with a different path length. The

path for each radial bin is divided into slices with a thickness of 100 µm, which is

chosen as a balance between computational time and accuracy. The spectral profile

of the laser is binned by helicity and divided into 3000 frequency bins that repre-

sent a ±1500 GHz (±3.2 nm) window centered at the D1 absorption line of one

of the two alkali species. The pressure broadened alkali absorption cross section

is determined from Eqn. (E.800) and the parameters listed in Tab. (5.5), where Td

is input by the user. At the beginning of each slice, the D1 & D2 optical pumping

rates for both alkali species are calculated by a numerical integration of Eqns. (5.88)

& (5.89).

Armed with the optical pumping rates and the alkali relaxation rates deter-

mined from Tab. (5.6), Sec. (D.2) & Sec. (D.3), the alkali polarizations are calculated

using Eqn. (5.49) & (5.50). The alkali X-factors are calculated using this initial al-

kali polarization and, subsequently, these factors are then used to recalculate the

final alkali polarization. Since the alkali X-factors are relatively small, only a sin-
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parameter Na K Rb Cs units

λ1 (air) 589.5924 769.896 794.7603 894.347 nm
λ1 (vac.) 589.7558 770.108 794.9789 894.593 nm

ν1 508333.2 389286.3 377107.4 335116.0 GHz
νso = ν2− ν1 515.6 1729.9 7123.0 16609.8 GHz

f1 0.322 0.340 0.342 0.344
f2 0.647 0.682 0.695 0.7131

D1 width 17 15.6 18.7 25 GHz/amg
n (0.35) 0.41 0.11 (0.35)

D2 width 20 21.4 20.8 22 GHz/amg
n (0.35) 0.23 0.34 (0.35)

D1 shift (n = 1.1) 1.0 2.5 5.64 6.4 GHz/amg
D2 shift (n = 1.6) 0.6 1.5 0.68 2.3 GHz/amg

Tref 450 410 353 393 K

ref. [58] shift only: [59] [52] [60]

Table 5.5: Optical Pumping Parameters. The wavelengths and oscillator strengths
( f1,2) are from the NIST Atomic Spectra Database Version 3 [61]. The parameters
have be rescaled from 4He to 3He by the square root of the ratio of the reduced
mass where we’re assuming that the only difference is the relative thermal velocity.
The width and shift parameters have a temperture dependence given by (T/Tref)n,
where n is the temperature coefficient. The K pressure broadening numbers as well
as the Rb pressure broadening temperature coefficients are from our preliminary
measurements and will be published separately. The other pressure broadenign
temperature coefficients are set to an average between the value assuming a van
der Waals potential (n = 0.3) and typical theoretical calulations (n ≈ 0.4) [62]. The
pressure shift temperature coefficients are set equal to Rb, the only one that’s been
measured.
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parameter alkali value rel. err. experiment theory

σA
se(

Å2
)

Na 101 0.5% [24] [24]
K 158 4% [24] [24]
Rb 174 4% [24, 63]
Cs 186 4% [24] [24]

σA
sd(

Å2
)

Na 0.00557 10% [64]
K 0.0128 10% [65, 66]
Rb 0.0994 10% [65–69]
Cs 2.08 10% [66, 70]

kse

(Hz/amg)

Na 1.27 10% [64] [71–73]
K 1.38 3% [56, 74] [71–73]
Rb 1.81 3% [67, 69, 74–76]
Cs 2.97 10% [74] [71, 72]

kHe

(Hz/amg)

Na 0.15 30% [64] [77]
K 4.7 10% [78, 79] [77]
Rb 55.9 2% [66, 69, 80, 81]
Cs 530 10% [82, 83] [77]

kN2

(Hz/amg)

Na 150 100% no measurement
K 150 30% [84]
Rb 290 10% [66, 68, 80, 81, 85]
Cs 2100 20% [82, 83]

Table 5.6: Spin Exchange & Spin Destruction Parameters at T = 200oC. See
Chp. (D) for more details about data selection and temperature dependences.

gle iteration is required to converge to a final equilibrium alkali polarization. This

final alkali polarization is used to attenuate the spectral profile, which is then fed

into the next path slice. Finally, the volume averaged alkali polarization is calcu-

lated by weighing the polarization in each radial bin & path slice by the fractional

volume of that bin-slice.
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5.5.2 Hybrid vs. Traditional SEOP

In order to illustrate the impact of using the hybrid alkali mixtures and narrow-

band lasers, it is useful to focus our attention on examples that are reasonably

close to those used in the experiments described in Chp. (3). We will thus consider

the baseline parameters listed in Tab. (5.7) for a 3 in diameter spherical pumping

chamber. We will further restrict our attention to a spin-exchange rate such that

γse = 1/(3 hrs). Noting from Sec. (6.1.6) that the equilibrium 3He polarization in

the fast diffusion limit is given by:

PHe =
fpcγse 〈PA〉pc

fpcγse(1 + X) + 〈Γ〉 (5.122)

and that typically fpc ≈ 0.55, X ≈ 0.25, Γs ≈ 1/(20 hrs (with beam), this implies:

PHe = 〈PA〉pc (66%) (5.123)

where 〈PA〉pc is the volume averaged alkali polarization inside the pumping cham-

ber. While targets were certainly run with a range of values for γse, the value of

1/(3 hrs) was reasonably typical, and as will come evident, close to the fastest

value we could practically achieve. In Fig. (5.6), we show the volume averaged

alkali polarization as a function of D = [K]/[Rb]. We show this dependence for

two assumed values for the spectral with of the illuminating light, ∆ν = 0.2 nm

and 2.0 nm, which as discussed earlier, are typical values for narrowband and

broadband lasers respectively. In both cases, we assume a total power of 75 W.

Furthermore, we assume here that Td, the effective collision time, is zero. This rep-

resents a fairly optimistic or best case scenario, in which off resonant absorption
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parameter value units

[3He ]pc 6.5 amg
[N2 ]/[3He ] 0.01
1/γse 3 hrs

D 0 (pure)
6 (hybrid)

∆T 0 K
2Rpc 3 in
w/Rpc 1
P0 75 W
detuning 0 nm

FWHM
0.2 (narrowband) nm
2.0 (broadband) nm

Pγ 0.99
θ 3 deg
ψ 0 deg
op alkali 2 (Rb)
se alkail 1 (K)
Td (op D1) 0 ps
Td (op D2) 0 ps
Td (se D1) 0 ps
Td (se D2) 0 ps
off resonance absorption scale factor 1
radiation trapping 0
stimulated emission 0
excitation energy transfer 0
EET polarization transfer 0
excited state hyperfine coupling 0
diffusion layer correction 0

Table 5.7: Baseline Input Parameters to the Numerical Simulation. The optically
pumped alkali atom is labelled as “op alkali,” whereas the hybrid alkali species
is labelled as “se alkali.” The alkali species are enumerated as Na = 0, K = 1,
Rb = 2, and Cs = 3. The density ratio of “se alkali” to “op alkali” is given by D.
The alkali vapor pressure temperature and alkali number densities are determined
from γse and D. The cell temperature is given by the sum of ∆T and the alkali vapor
pressure temperature. The cell diameter is given by 2Rpc. The laser beam radius,
power, linewidth, polarization, skew angle, and divergence are given by w, P0,
FWHM, Pγ , θ, and ψ respectively.
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is still present but not enhanced by the interatomic interactions between Rband

3He which are known to exist at some level.

It is immediately clear from this that regardless of the laser linewidth, the maxi-

mum alkali polarization occurs for D = 6. Furthermore, the variation is sufficiently

slow that any value for D between say 4 and 10, results an alkali polarization fairly

clos to the maximum. This important results tells us that we do not need to be

overly precise in our alkali mixtures to achieve nice performance. It is also clear

from this Fig. (5.6) that for any value of D ≥ 1, the use of narrowband light results

in greatly improved polarization.

Next, in Fig. (5.7), we consider how to optimize a target depending on the

amount of laser power available. This process begins by constructing curves of

the sort shown in Fig. (5.6) and the resulting alkali polarization. Fig. (5.7) shows

the best value of PA that can obtained as a function of laser power, and next to

each plotted point is an annotation indicatin the value of D for which that alkali

polarization was achieved. For example, when P0 = 75 W, this value is D = 6 for

both the narrowband and broadband cases.

Finally, we show in Fig. (5.8) for P0 = 75 W the alkali polarization as a function

of depth into the cell. This plot provides insight into both the way in which the

laser’s spectral profile and the ratio D affects the spatial variation of the alkali

polarization. One qualitative feature is immediatly apparent. The narrowband

light is associated with a sharp drop-off of polarization, whereas, the broadband

light is associated with a more gradual rolloff. In the latter case, this is associated

with the reduced optical pumping rate R that results from a depletion of light near

the absorption maximum and the relative increase in the off resonant absorption.

It it also clear that for any type of laser light the point at which alkali polarization
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Figure 5.6: Alkali Polarization vs. Alkali-Hybrid Ratio.

is reduced is pushed further into the cell by employing a hybrid alkali mixture.

That is, as discussed earlier, hybrid mixtures greatly improve the photon economy.

5.5.3 The Effect of Imperfect Optical Pumping

Fig. (5.9) depicts the alkali polarization as a function of depth into the cell for three

different values of the alkali X-factor. In all three cases, we consider a hybrid cell

using narrowband lasers. To provide a baseline for comparison, we also include

the results for a pure Rb cell using broadband lasers with a zero alkali X-factor.

The results is fairly dramatic. Even for a relatively small alkali X-factor, for ex-

ample XA = 0.01 which implies a maximum alkali polarization per slice of 0.99,

the depth into the cell that the light can penetrate is reduced by 30% relative. The

implication, as described earlier, is that even small imperfections can greatly in-

crease the photon cost of polarizing a high density ( ≥ 1015/cm3) of alkali vapor.



5.5. NUMERICAL SIMULATIONS 433

40 60 80 100 120

0.4

0.5

0.6

0.7

0.8

0.9

1.0

40 60 80 100 120

Power (W)

vo
lu

m
e 

av
er

ag
ed

 a
lk

al
i p

ol
ar

iz
at

io
n

9

27
7

12

6

6

5

4

4

3

 = 3 hrsse
-1! = 2.0 nm , "#

 = 3 hrsse
-1! = 0.2 nm , "#

Figure 5.7: Optimal Alkali-Hybrid Ratio vs. Laser Power.
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Figure 5.9: Alkali Polarization Profile with Imperfect Optical Pumping.

Alkali X-factors of this size are known to exist, which explains the relatively poor

performance of pure Rb cell using broadband light. The combination of hybrid

cells and narrowband pumping significanty reduce our sensitivity to these small

imperfections, regardless of their origin.

5.5.4 Conclusion

There are several conclusions from the above discussion that are worth noting.

First, the use of alkali-hybrid mixtures greatly improves the photon economy that

can be achieved. Regarding the question of narrowband versus broadband lasers,

it is tempting to believe that , if money were no object, broadband lasers could do

as well as narrowband lasers if sufficient laser power were used. Unfortunately,

even in the absence of the various effects summarized in Tab. (5.3), there will still
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be unwanted off resonant pumping that limits the maximum alkali polarization

that can be achieved and that influences the optimal value for D. In fact, off res-

onant pumping associated with a given lasder sourece, limits somewhat the max-

imum alkali polarization that can be achieved. This is even true for a laser with

an arbitrarily narrow spectral profile. It is worth noting, however, that these ef-

fects can be reduced by polarizing the 3He at lower pressures where broadening is

reduced.

There are, however, important effects in addition to off resonant pumping that

result in what are effectively alkali X-factors. They include hyperfine interac-

tions in the excited states, radiation trapping, skew pumping, and the other phe-

nomenona listed in Sec. (5.4.6). These effects like off resonant pumping limit the

maximum alkali polarization that can be achieved regardless of the laser power

employed. The addition of more N2 (quenching gas) can reduce some of these

effects, but in eletron scattering, this is generally not an acceptable solution.

It is natural to ask whether there are further large gains to be had based on

the lessons learned here. Sodium, for instance, is even more efficient at transfer-

ring polarization to the 3He nuclei than either K or Rb, see Fig. (5.10). It is the

case, however, that Na would need to be run at higher temperatures, see Tab. (5.8),

where some of the other alkali spin relaxation mechanisms are greatly aggravated.

The benefits of Na-Rb SEOP probably require more study as do other potential

hybrid alkali mixtures.

Given the benefits of additioanl quenchnig gas, it might be interesteing to ex-

plore the use of H2 instead of N2 . The cross section for quenching is about 10 times

smaller [34], but, because it is 14 times lighter than N2 , the quenching rate is only

3 times smaller than N2 for the same density. Using H2 instead of N2 could allow
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Figure 5.10: Spin Exchange Efficiency for Na, K, Rb, & Cs. The spin ex-
change efficiency is defined as the fraction of angular momentum that success-
fully transferred from the alkali atom to the 3He nucleus: 1/ηA = 1 + (ksd/kse) +
(k′sd/kse)([A]/[3He]) + (k′′sd/kse)([N2]/[3He]). At low temperatures and alkali den-
sities, it is approximately kse/(kse + ksd). At high temperatures, it approaches
kse[3He]/(k′sd[A]). The blue lines are calculated from the values in Tab. (??). The
red data points are from [69]. In the left figure, the solid blue lines represent
an alkali density range of (1014 to 1015)/cm3. In the right figure, the red line is
a parameterization of the data given by ηK(T) = 0.756− 0.00109T and ηRb(T) =
0.337− 0.00102T(1− 0.0007T).

parameter Na K Rb Cs units

λD1 (air) 589.6 769.9 794.8 894.3 nm
spin orbit splitting 5.2E+02 1.7E+03 7.1E+03 1.7E+04 GHz
naive XD2

α (2.0 nm) 1.1E+01 3.7E−02 1.6E−03 2.6E−04
naive XD2

α (0.2 nm) 9.0E−02 5.7E−03 3.6E−04 7.8E−05
k−1

se /(1015/cm3) 5.86 5.39 4.12 2.51 hrs
[A]3 for γ−1

se = 3 hrs 1.95 1.80 1.37 0.84 1015/cm3

T3 for [A]3 634.3 537.6 483.5 453.2 K
σA

sd/σ
A
se 5.5E−05 8.1E−05 5.7E−04 1.1E−02

kHe/kse at T3 0.31 5.2 33 155
Xani 0.16 0.057 0.046 0.026

Table 5.8: Basic Alkali Parameters for SEOP.
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us to, for example, increase the quenching rate by a factor of 10 thereby suppress-

ing the alkali X-factors associated with excited state by a factor of 10, while only

doubling the dilution factor. H2 has the disadvantage that it reacts (albeit slowly)

with the alkali metal to form hydrides. It is certainly intriging to look at the huge

gains that have been made in SEOP and ask the quection of what can be done to

further advance th technique.
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Chapter 6

3He Polarization Dynamics in Target

Cells

6.1 Polarization Dynamics

6.1.1 Nuclei Number Rate Equations

A cell is composed of a pumping and target chamber that are connected by a trans-

fer tube, see Fig. (6.1). In Sec. (6.4.2), we will consider in more detail the polariza-

tion dynamics within the transfer tube; however, for now, we will simply ignore

the small transfer tube volume. The 3He nuclei in the pumping chamber are polar-

ized via spin-exchange collisions with polarized alkali atoms with a rate constant

kse, see Sec. (D.3.1). The 3He nuclei in the target chamber are polarized via transfer

through the transfer tube. Because of the low alkali vapor pressure in the target

chamber, we will ignore the spin exchange with alkali atoms in the target chamber.

The number of 3He nuclei is N±pc,tc where the superscript ± labels the spin state

and the subscript labels the chamber. Similarly the total number of 3He nuclei
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Pumping Chamber (PC)

15.75 in (40 cm)

0.75 in (1.9 cm)
0.45 in (1.15 cm) 2.5 in (6.35 cm)

2.5 in (6.35 cm)

Transfer Tube (TT)

Target Chamber (TC)

Figure 6.1: Basic Geometry of a “Standard” Small Pumping Chamber Cell. Drawn
to 5:2 scale with nominal outer dimensions. Dashed red line represents path of
electron beam.
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in a given chamber is Npc,tc

(
= N+

pc,tc + N−pc,tc

)
. Consequently the total number of

3He nuclei is N
(
= Npc + Ntc

)
and the fraction of 3He nuclei in either chamber is

fpc,tc
(
= Npc,tc/N

)
.

Assuming that the alkali polarization reaches equilibrium very quickly and re-

mains constant while the 3He polarization approaches equilibrium, the rate of

change of the number of ± nuclei in either chamber is governed by the follow-

ing equations:

dN+
pc

dt
= kse[A+]N−pc− kse[A−]N+

pc +
(

Npc

2
− N+

pc

)
Γpc + N+

tc dtc− N+
pcdpc

dN−pc

dt
= kse[A−]N+

pc− kse[A+]N−pc +
(

Npc

2
− N−pc

)
Γpc + N−tc dtc− N−pcdpc

dN+
tc

dt
= N+

pcdpc− N+
tc dtc +

(
Ntc

2
− N+

tc

)
Γtc

dN−tc
dt

= N−pcdpc− N−tc dtc +
(

Ntc

2
− N−tc

)
Γtc (6.1)

where [A±] is the alkali number density in the pumping chamber for the ± spin

state. The spin-relaxation rates per nucleus Γpc,tc represent interactions which show

no preference for either state and therefore push equilibrium towards equal num-

bers of± nuclei. The transfer rate dtc(pc) is the probability per unit time per nucleus

that a nucleus will exit the target (pumping) chamber and enter the pumping (tar-

get) chamber, where we have neglected the transfer tube volume. Alternatively,

one could define dtc(pc) as the fraction of particles in the target (pumping) chamber

that transfer out per unit time.
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6.1.2 Total Nuclei Number Equilibrium

The rates of change of the total number of nuclei in the two chambers are given by:

dNpc

dt
=

dN+
pc

dt
+

dN−pc

dt
= Ntcdtc− Npcdpc

dNtc

dt
=

dN+
tc

dt
+

dN−tc
dt

= Npcdpc− Ntcdtc

dN
dt

=
dNpc

dt
+

dNtc

dt
= 0 (6.2)

When the total number of nuclei in either chamber reaches equilibrium, the total

transfer rates into and out of each chamber must balance:

Ntcdtc = Npcdpc → ftcdtc = fpcdpc (6.3)

Equilibrium in this regard is achieved when the temperature of the two chambers

has stabilized and when the pressure throughout the cell is constant. To estimate

how long if takes for the pressure to equalize throughout the cell, we’ll look at two

limits. The slow limit is found by calculating the finite one dimensional diffusion

time scale:

τ ≈ L2
tt

π2D
≈ 20 sec (6.4)

where Ltt is the transfer tube length and D ≈ 0.2 cm2/s is the 3He diffusion con-

stant under operating conditions.

The fast limit is found by applying Poiseuille’s equation for viscous incom-

pressible flow through a tube due to a pressure differential [1]:

d
dt
(
ρpcVpc

)
= − A2

tt

8πηLtt

(
ppc− ptc

)
(6.5)
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where ρpc is the mass density of the 3He in the pumping chamber, Vpc is the

pumping chamber volume, Att is the cross sectional area of the transfer tube, η

is the viscosity, ppc is the pumping chamber pressure, and ptc is the target chamber

pressure. We’ll assume that the temperature in the pumping chamber is instanta-

neously changed to its operating value. Consequently the pressure in the pumping

chamber is initially higher than the pressure in the target chamber. The change in

the mass flow rate from the pumping chamber can be rewritten as:

d
dt
(
ρpcVpc

)
=

d
dt

(
M.W.×

ppcVpc

RTpc

)
(6.6)

where M.W. is the molecular weight of 3He and R is the ideal gas constant. Using

the fact the total number of particles in the cell is constant, we can rewrite the

pressure in the target chamber in terms of the pressure in the pumping chamber:

ptc = ntcRTtc =
(

N− Npc
) RTtc

Vtc
=

Vpc

Vtc

Ttc

Tpc

(
N− Npc

) RTpc

Vpc
=

v
t

(
NRTpc

Vpc
− ppc

)
(6.7)

where v and t are the pumping chamber to target chamber ratios of the volumes

and temperatures, respectively. Putting this altogether we get:

d
dt

(
M.W.×

ppcVpc

RTpc

)
= − A2

tt

8πηLtt

[
ppc−

v
t

(
NRTpc

Vpc
− ppc

)]
(6.8)

which can be rewritten as:
dppc

dt
=

p∞pc− ppc

τ
(6.9)
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where the time constant τ and equilibrium pressure p∞pc are given as:

τ =
8πηLtt×M.W.×Vpc ftc

A2
ttRTpc

& p∞pc =
fpcNRTpc

Vpc
(6.10)

To calculate τ , we have estimated the viscosity η ≈ D by using the diffusion con-

stant D which is reasonable for a mono-atomic gas [2]. Therefore the fast limit for

the pressure equilibration time scale is about 0.3 µsec.

Finally, we estimate how long it takes for the temperature of the glass wall of

the pumping chamber to equilibrate. Once again using the finite one dimensional

diffusion timescale [3]:

τ ≈
t2

pc

π2Dg
=

t2
pcC

g
pρg

π2kg
≈ 2 sec (6.11)

where we have the following values for the thermal conductivity of glass kg =

1 W/m/K [4], the heat capacity of glass Cg
p = 1 J/g/K, the density of glass ρg =

2.5 g/cm3, and the thickness of the pumping chamber tpc = 3 mm. All of these time

estimates indicate that the cell temperature & pressure equilibrate very quickly

compared to the polarization timescale. In reality, the main factor that determines

how quickly the cell reaches thermal equilibrium are the time scales related to the

forced air oven heater feedback system, which can be several minutes.

6.1.3 Polarization Rate Equations

Polarization for any spin-1/2 particle is defined as:

Ppc,tc =
N+

pc,tc− N−pc,tc

N+
pc,tc + N−pc,tc

=
N+

pc,tc− N−pc,tc

Npc,tc
= f +

pc,tc− f−pc,tc (6.12)
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Combining the nuclei number rate Eqns. (6.1) in the manner defined above, noting

the following relationships:

f±pc,tc =
1
2
(
1± Ppc,tc

)
fpc,tc = f +

pc,tc + f−pc,tc 1 = fpc + ftc (6.13)

and, to reiterate, assuming that the alkali polarization reaches equilibrium very

quickly and remains constant during the 3He polarization build-up, the polariza-

tions in the two chambers of the cell are given by:

dPpc

dt
= γse

(
PA− Ppc

)
− ΓpcPpc− dpcPpc +

(
dtcNtc

Npc

)
Ptc

dPtc

dt
=

(
dpcNpc

Ntc

)
Ppc− dtcPtc− ΓtcPtc (6.14)

where γse (= kse[A]) is the spin-exchange rate per nucleus and PA is the pumping

chamber volume averaged equilibrium alkali polarization. If we assume that the

total nuclei number in each chamber has reached equilibrium before the polariza-

tion process is initiated (i.e. the cell is brought to operating temperature before the

lasers are turned on), then we can take advantage of the relationship defined by

Eqn. (6.3) to give the following:

dPpc

dt
= γse

(
PA− Ppc

)
− ΓpcPpc− dpc

(
Ppc− Ptc

)
= aPpc + bPtc + B (6.15)

dPtc

dt
= dtc

(
Ppc− Ptc

)
− ΓtcPtc = cPpc + dPtc (6.16)

where the following substitutions are made:

a =−
(
γse + Γpc + dpc

)
b = dpc c = dtc d =− (Γtc + dtc) B = γsePA

(6.17)



6.1. POLARIZATION DYNAMICS 456

The coupled rate equations can be rewritten as a matrix equation:

d
dt

 Ppc

Ptc

 =

 a b

c d


 Ppc

Ptc

+

 B

0

 → d~P
dt

= M~P + ~B (6.18)

6.1.4 Analytic Solution to Polarization Rate Equations

Eqn. (6.18) is solved by finding the eigenvalues of the rate matrix M. These eigen-

values:

Γ± = −1
2

[
a + d±

√
(a− d)2 + 4bc

]
(6.19)

are the characteristic rates of the system and, as will be explained shortly, are la-

beled slow and fast:

Γs =
1
2

[
dpc+dtc+γse+Γpc+Γtc−

(
dpc+dtc

)√
1−2

(
fpc− ftc

)
u+u2

]
(6.20)

Γf = dpc + dtc + γse + Γpc + Γtc− Γs (6.21)

and u is given by:

u =
γse + Γpc− Γtc

dpc + dtc
=

difference in the total rates between the two chambers
sum of the transfer rates

(6.22)

These rates can be written as:

Γs = 〈γse〉+ 〈Γ〉 − δΓ (6.23)

Γf =
(
dpc + dtc

)
+
(
γse− 〈γse〉

)
+
(
Γpc + Γtc− 〈Γ〉

)
+ δΓ (6.24)
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where again we have made use of Eqn. (6.3) in the form of:

dpc− dtc

dpc + dtc
=

dtc

(
ftc
fpc

)
− dtc

dtc

(
ftc
fpc

)
+ dtc

=
ftc− fpc

ftc + fpc
= ftc− fpc (6.25)

and we have defined the following quantities:

〈γse〉 ≡ γse fpc (6.26)

〈Γ〉 ≡ Γpc fpc + Γtc ftc (6.27)

δΓ ≡
dpc + dtc

2

[√
1− 2

(
fpc− ftc

)
u + u2− 1 +

(
fpc− ftc

)
u
]

(6.28)

≈ fpc ftc

(
γse + Γpc− Γtc

)2

dpc + dtc
+ O

((
γse + Γpc− Γtc

)3(
dpc + dtc

)2

)
(6.29)

where the brackets 〈· · · 〉 refer to an average over all nuclei. Note that the correction

term δΓ is small and consequently Γs = 〈γse〉+ 〈Γ〉 is a very good approximation

when:

1. The transfer rates are the fastest rates in the cell, dpc, dtc� γse,Γpc,Γtc.

2. The difference in the total rates of the pumping chamber and target chamber

is small, γse + Γpc ≈ Γtc.

Both of these scenarios are true during the spindown of a long lifetime cell (>

40 hrs). Fig. (6.2) depicts the slow and fast time constants (note that a time constant

is defined to be the inverse rate, τ ≡ 1/γ) to different orders for two cell types.

The solutions to the coupled rate equations are given by:

Ppc(t) = P∞pc +
[

P0
pc− P∞pc − cpc

]
exp (−Γst) + cpc exp (−Γft) (6.30)

Ptc(t) = P∞tc +
[
P0

tc− P∞tc − ctc
]

exp (−Γst) + ctc exp (−Γft) (6.31)
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Figure 6.2: Slow (upper) and Fast (lower) Time Constants for Two Chambered
Cells. Time constants (inverse rates) are plotted as a function of the spin-exchange
time constant (γ−1

se ). Leading order (dotted black), next to leading order (dashed
red), and full (solid black) calculations are depicted. The next to leading order
(dashed red) is nearly identical to the full calculation (solid black). A typical “Stan-
dard SPC Rb” cell has dimensions Ltt = 6 cm & Vpc = 90 cc and contains pure Rb;
whereas a typical “Gn

E LPC K/Rb” cell has dimensions Ltt = 9 cm & Vpc = 310 cc
and contains a hybrid mix of mostly K and some Rb. The observed spin-up time
constant, which is essentially Γ−1

s , is always longer than the spin-exchange time
constant. In addition, the spin-up time constants for the two different cells con-
verge for sufficiently fast spin exchange.
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where P0
pc,tc are set by the initial conditions and the equilibrium (t→∞) polariza-

tions are found by setting the rate equations to zero:

P∞pc =
Bd

bc− ad
& P∞tc = −

( c
d

)
P∞pc (6.32)

The above can be written in a more illuminating form by using Eqn. (6.3) and after

some algebra:

P∞pc = PA

 γse fpc

γse fpc + Γpc fpc + Γtc ftc

(
1 + Γtc

dtc

)−1

 (6.33)

P∞tc = P∞pc

[
1 +

Γtc

dtc

]−1

(6.34)

Finally, the coefficients cpc,tc can be obtained by satisfying the coupled rate equa-

tions and after some algebra:

cpc =
Γs

(
P∞pc − P0

pc

)
− bP0

tc− aP0
pc− B

Γf− Γs
(6.35)

ctc =
Γs
(

P∞tc − P0
tc

)
− dP0

tc− cP0
pc

Γf− Γs
(6.36)

These can be written in terms of the rates themselves:

cpc

cscale
= ftc

(
P0

pc− P0
tc

)
+

Γs

(
P∞pc − P0

pc

)
+ γse

(
P0

pc− PA

)
+ ΓpcP0

pc

dpc + dtc
(6.37)

ctc

cscale
= fpc

(
P0

tc− P0
pc

)
+

Γs
(

P∞tc − P0
tc

)
+ ΓtcP0

tc

dpc + dtc
(6.38)

cscale = 1 +
γse + Γpc + Γtc− 2Γs

dpc + dtc
(6.39)
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6.1.5 Time Evolution Near t = 0

Near t = 0 when tΓf� 1, we can Taylor expand the exponentials to second order:

Ppc(t) = P∞pc +
[

P0
pc− P∞pc − cpc

][
1− Γst +

Γ2
s

2
t2
]

+ cpc

[
1− Γft +

Γ2
f

2
t2
]

= P0
pc + mpct +

qpc

2
t2 (6.40)

Ptc(t) = P∞tc +
[
P0

tc− P∞tc − ctc
][

1− Γst +
Γ2

s

2
t2
]

+ ctc

[
1− Γft +

Γ2
f

2
t2
]

= P0
tc + mtct +

qtc

2
t2 (6.41)

where the linear slopes are given by:

mpc = PAγse− P0
pc

(
γse + Γpc

)
+
(

P0
tc− P0

pc

)
dpc (6.42)

mtc = −P0
tcΓtc +

(
P0

pc− P0
tc

)
dtc (6.43)

and the quadratic slopes are given by:

qpc =
(

P∞pc − P0
pc

)
ΓfΓs− (Γf + Γs) mpc (6.44)

qtc =
(

P∞tc − P0
tc

)
ΓfΓs− (Γf + Γs) mtc (6.45)

For the special case of zero initial polarization, P0
pc = P0

tc = 0:

Ppc(t) = γsePA

[
1− t

2
(
γse + Γpc + dpc

)]
t (6.46)

Ptc(t) = γsePA

(
dtc

2

)
t2 (6.47)
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6.1.6 Fast Transfer Limit

In the limit the transfer rates approach infinity, dpc,tc →∞, the rates, equilibrium

polarizations, and coefficients become:

Γf → ∞ (6.48)

Γs → 〈γse〉+ 〈Γ〉 (6.49)

P∞pc → PA

[
γse fpc

γse fpc + Γpc fpc + Γtc ftc

]
= PA

[
〈γse〉

〈γse〉+ 〈Γ〉

]
=

fpcγsePA

Γs
(6.50)

P∞tc → P∞pc (6.51)

cpc → ftc

(
P0

pc− P0
tc

)
(6.52)

ctc → fpc

(
P0

tc− P0
pc

)
(6.53)

which gives for the polarizations in the two chambers:

Ppc(t) = Ptc(t) → P∞pc +
[

P0
pc fpc + P0

tc ftc− P∞pc

]
exp (−Γst)

= P∞
[
1− exp (−Γst)

]
+
〈

P0〉exp (−Γst) (6.54)

After the fast exponential has decayed away, the polarization in the two chambers

evolves identically as if the initial polarization in the two chambers had been a

volume of average of the true initial polarizations in the two chambers.

Near t = 0 when tΓs� 1, we can Taylor expand the exponential to second order:

P(t) = P∞+
[〈

P0〉− P∞
][

1− Γst +
Γ2

s

2
t2
]

(6.55)

=
〈

P0〉+
[

fpcγsePA− Γs
〈

P0〉] t
(

1− Γs

2
t
)

(6.56)
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6.2 Relaxation Mechanisms

In this section, we discuss the various relaxation mechanisms that contribute to Γpc

and Γtc. Although the wall relaxation can make the dominant contribution these

relaxation rates, not much is known the their origin. As a practical matter, an em-

piracally determined procedure has been developed to reduce wall relaxation rates

to a level that are tolerable. The most imporant and ultimately limiting relaxation

mechanism is the X-factor, which is discussed in the next section.

6.2.1 The X-Factor

The Wisconsin & NIST groups have determined [5] that there is a relaxation mech-

anism that appears to be proportional to the spin exchange rate γse. Becasue this

mechanism scale with γse, it can not be “turned off” by increasing γse and therefore

limits the 3He polarization. The relaxation rate associated with the X-factor can be

written in the following way:

Γx = Xγse =
[

X0 + X1

(
S
V

)]
γse (6.57)

where X is the X-factor and X0 (X1) is the part of X that is independant (dependant)

on the surface to volume ratio S/V. This could mean that this mechanism is due

to collisions with alkali atoms, has a temperature dependance that roughly follows

that alkali metal vapor pressure curve, or some combination of the two.

Based on the data presented in [5], we can make the following statements. For

smaller values of S/V (e.g. larger spheres), X is on average smaller and the vari-

ations in X are smaller. For larger values of S/V (e.g. smaller spheres), X is on
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average larger and the variations in X are larger. The preceding two statements

can be quantified and collapsed into the following inequality:

≈ 0.1 ≤ X ≤ (0.4 cm)
(

S
V

)
(6.58)

This inequality implies that X0 ≈ 0.1 and X1 ≈ 0.4 cm. For S/V ≈ 2.5/cm or, equiv-

alently, for a sphere with a ≈ 9.5 in diameter, the contribution from X0 equals the

contribututon from X1.

The lower limit of the inequality, namely X0, is intriguing since it suggests

a more fundamental limit to the 3He polarization. One obvious mechanism for

X0 6= 0 is anisotropic spin exchange between the alkali atom and 3He nucleus. To

understand the origin of anisotropic spin exchange, its useful to recall the Hamil-

tonian that describes the interaction between two dipoles ~µ1 & ~µ2 separated by a

displacement ~r [6]:

Hdip = −µ0

4π

[(
8π
3
δ(~r)− 1

|~r|3

)
~µ1 · ~µ2 +

3 (~r · ~µ1) (~r · ~µ2)
|~r|5

]
(6.59)

where µ0 is the magnetic constant and δ(~r) is a Dirac δ-function. The first term

generates isotropic spin exchange that we’re familiar with, whereas the second

term generates anisotropic spin exchange.

Walter et al. have shown [7] that the anisotropic spin exchange from a fully

polarized alkali atom to a 3He nucleus tends to polarize the 3He nucleus to −1/2.

Furthermore, they calculated the effective X-factor due to this mechanism Xani to

be as high as 0.16 for Na and as low as 0.03 for Cs. The same calculation finds

0.06 for K and 0.05 for Rb. These theoretical values can only account for half of the

observed X0 for pure Rb and K-Rb hybrid mixtures.
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Recently a method for experimentally determining Xani has been suggested by

Walker et al. [8]. The technique involves comparing the relaxation of the alkali

metal in the presence of 3He and 4He. They’ve applied this method to K and found

X0 = 0.11± 0.13. Although the uncertainty of this result is quite large, the cen-

tral value is exactly what one would expect based on Eqn. (6.58). Both X0 ≈ 0

and X0 ≈ 0.24 are within 1σ of the central value, which implies that the limiting

3He polarization is as low as 0.81. We note in passing that a 3He polarzation greater

than this value, to our knowledge, has never been reported.

6.2.2 Magnetic Field Gradients

The relaxation rate due to magnetic field inhomogeneities is given as [9, 10]:

Γ∇B = D

∣∣∣~∇Bt

∣∣∣2
Bz

(
1 + ω2τ 2

c

)−1
(6.60)

where D = 0.2 cm2/s is the diffusion constant, Bt is the transverse component of

the magnetic field, Bz is the longitudinal component of the field, ω is the Larmor

frequency associated with Bz, and τc ≈ D/v̄2 is the mean time between collisions.

This equation indicates the transverse gradients (relative to the holding field) con-

tributes to T1. On the other hand, as discussed in Sec. (4.2), longitudinal gradients

contribute to T2, see Eqn. (4.26).

6.2.3 Spin Relaxation Due to Nuclear Dipolar Interactions

The theoretical minimum spin-relaxation rate is due to a direct coupling between

two nearby 3He nuclei. Newbury et al. [11] have calculated this 3He -3He nuclear
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dipolar spin-relaxation rate per nucleus at 23 oC:

Γdip =
[

3He
](

744 amg · hrs
) (6.61)

This rate decreases with increasing temperature, see Sec. (D.5.1) for a parameteri-

zation of the temperature dependence.

6.3 Relaxation Associated with the Beam

6.3.1 Basic Mechanism of Beam Depolarization

Ionizing radiation increases the nuclear spin relaxation in the target chamber. Also

known as “beam depolarization,” it is essentially a two step process. First, the

beam ionizes an 3He atom which results in an free electron and an atomic ion
3He+. There is also the possibility that the atomic ion bonds with an neutral 3He

atom to form an molecular ion 3He+
2 . Second, interactions with 3He ions induce

3He nuclear spin flips. Therefore, the total relaxation rate due to ionization by the
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beam is given by:

Γbeam =

 ionization rate

per target chamber atom

 ·
 mean number of nuclear spin flips

per atomic ion


=


 electrons

per unit time

 ·
 atomic ions created

per electron

 · (atoms in tc)−1

 · (na + nm)

=
[(

I
e

)
·
(

total energy lost
mean energy per ion

)
·
(

1
Vtc[He]tc

)]
· (na + nm)

=

( I
e

)
·


[

1
ρ

dE
dx

]
Ltc[He]tc

Ei

 ·( 1
Vtc[He]tc

) · (na + nm)

=
(

I
e

1
Ei

[
1
ρ

dE
dx

]
1

Atc

)
· (na + nm)

= Γion · (na + nm) (6.62)

where I is the electron beam current, Ei is the mean energy for ion-electron pair

creation, Atc is the mean cross sectional area of the target chamber, Γion is the ion-

ization rate per 3He atom in the target chamber, and na & nm are the average num-

ber of spins lost per atomic ion created due to interactions with atomic & molecular

ions respectively.

6.3.2 Beam Energy Lost to Ionizing Interactions

The electron beam loses energy to ionizing collisions and to radiation in the form

of bremsstrahlung. For the electron energies relevant to JLab, the dominant mode

of energy loss is bremsstrahlung, see Fig. 6.3). We will show, however, that the

dominant mode of ionization is collisional energy loss. The energy lost to collisions

per unit density per unit length is given by the celebrated Bethe-Bloch formula
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Figure 6.3: Upper: Relative Energy Loss to Collisions and to Radiation for Elec-
trons in Helium gas at 1 atm and 20 oC. Energy loss is relative to the collisional
energy loss for an electron beam energy of 2 GeV. Data is from NIST-ESTAR [12].
Lower: Relative Photoabsorption Cross Sections in Helium. Cross section is rel-
ative to the total photoabsorption cross section of a 2 GeV photon. Data is from
NIST-XCOM [13].
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and, for an electron beam, it is [14]:

[
1
ρ

dE
dx

]
c

= 2πr2
emec2 Z

β2

[
log
(

[γ − 1]2 [γ + 1]
)
− δ+ 2 log

(
mec2

IBB

)
− F(γ)− 2

Cs

Z

]
(6.63)

2πr2
emec2 = 6.85 eV/amagat/cm (6.64)

F(γ) =
[

1 +
2
γ
− 1
γ2

]
log(2)− 1

8

[
1− 1

γ

]2

− 1
γ2 (6.65)

γ =
1√

1− β2
=

Ebeam

mec2 (6.66)

where Z is the target atomic number, β(= v/c) is the electron velocity relative to

the speed of light, IBB is the mean excitation potential of the target material, δ is

the density correction, and Cs is the shell correction. The shell correction is signif-

icant only when the incident electron velocity is roughly equal to or slower than

the bound electron orbital velocity. For JLab beam energies, this is not the case;

therefore the shell correction will be neglected (Cs = 0). The density correction δ is

given by [14, 15]:

δ(Y) =


δ0 exp

[
2 (Y− Y′0)

]
Y ≤ Y′0

2 (Y− Y′a) +
[
δ0− 2 (Y′0− Y′a)

] [ Y′1−Y
Y′1−Y′0

]m
Y′0 < Y ≤ Y′1

2 (Y− Y′a) Y′1 < Y

 (6.67)

Y = log (βγ) (6.68)

Y′a,0,1 = Ya,0,1− log
√

[N]/[N]0 (6.69)

where Ya, Y0, Y1, m, and [N]0 depend on the target material at 1 atm & 20 oC and

for 3He are listed in Tab. (6.1).

For a 3He density of 8.3 amg or higher, the equivalent beam energy for Y = Y′1

is 700 MeV or less. Therefore for typical 3He experiments at JLab, the density
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parameter value comments
Z 2 atomic number
IBB 41.8 eV mean excitation potential
Cs 0 for shell correction

δ0 0

for density correction (1 atm & 20 oC)

Ya 5.5697
Y0 5.0696
Y1 8.3174
m 5.8347

[N]0 0.93141 amg

Table 6.1: Bethe-Bloch Formula Parameters for Electron-Helium Interactions. All
values taken from [15].

correction is:

δ(Y) = 2 log(βγ)− 2Ya + log
(
[N]/[N]0

)
(6.70)

Plugging this into Eqn. (6.63) for 3He :

[
1
ρ

dE
dx

]
c

=
4πr2

emec2

β2

[
log

(
[γ − 1]2 [γ + 1]

[βγ]2

)
+ 2Ya − log

(
[N]
[N]0

)
+ 2 log

(
mec2

IBB

)
− F(γ)

]
(6.71)

and noting that for JLab beam energies ≥ 700 MeV:

β ≈ 1 & γ � 1 (6.72)

log

(
[γ − 1]2 [γ + 1]

[βγ]2

)
≈ log(γ) = log

(
Ebeam

mec2

)
(6.73)

F(γ) ≈ log(2)− 1
8

(6.74)
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we get:

[
1
ρ

dE
dx

]
c

= 4πr2
emec2

[
log
(

Ebeam

mec2

)
+ 2Ya − log

(
[N]
[N]0

)
+ 2 log

(
mec2

IBB

)
− log(2) +

1
8

]
(6.75)

= 4πr2
emec2

[
log
(

Ebeam

1 GeV

)
− log

(
[N]

10 amg

)
+ 34.6

]
(6.76)

4πr2
emec2 = 510 keV · barn = 13.70 eV/amagat/cm (6.77)

Above electron beam energies of 700 MeV, the previous equation gives the energy

loss due to collisions in helium to much better than one percent compared to the

full formula Eqn. (6.63).

Collisional energy loss leads directly to ionization of atoms in the target mate-

rial. On the other hand, energy loss to radiation ionizes atoms only if the emitted

bremsstrahlung photons subsequently interact with the target atoms. To provide

an upper limit for the ionization contribution from radiation, we assume the fol-

lowing:

1. The photoelectric effect, Compton scattering, and pair production can all re-

sult in ionization.

2. One rescattered/reabsorbed bremsstrahlung photon ionizes at most one atom.

3. Every photon must travel half the length of the target chamber before exiting.

The energy loss to radiation that contributes to ionization per unit density per unit

length is given by:

[
1
ρ

dE
dx

]
ri

=
(

total energy lost to radiation
per unit density per unit length

)
·
(
fraction of energy that ionizes

)
(6.78)
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Bremsstrahlung can produce any number of photons with any energy such that the

total energy does not exceed the energy of the incident electron. The probability

that any of these photons subsequently ionizes depends on its energy; therefore,

we must convolute the bremsstrahlung spectrum with the total photoabsorption

cross section over all photon energies:

[
1
ρ

dE
dx

]
ri

= E
Z 1

0
u
[

1
ρ

d2Φ(u)
du · dx

]
〈 f (u)〉du (6.79)

where u(= hν/E) (unitless) is the photon energy as a fraction of the electron energy,

d2Φ(u)/du/dx is the number of bremsstrahlung photons created per frequency bin

per unit length, and 〈 f (u)〉 is the average fraction of photons reabsorbed or rescat-

tered:

〈 f (u)〉 = 1− exp
(
−σγ(u)[He]tcLtc/2

)
(6.80)

In this case, we’ll assume [He]tc = 10 amg and Ltc = 40 cm.

Bethe and Heitler [16] have shown that the energy per frequency bin of the

bremsstrahlung spectrum is roughly constant, see Fig. (6.4), and when the electron

energy is so high that complete screening can be assumed, this constant is [17]:

1
E

[
1
ρ

dE
dx

]
rad

= Φrad ≡
Z 1

0
u
[

1
ρ

d2Φ(u)
du · dx

]
du = 4αr2

e

(
Z2 [L(Z)− f (Zα)

]
+ ZL′(Z)

)
(6.81)

4αr2
e = 2.318 millibarns (6.82)

where for Helium L(2) = 4.79, f (2α) = 2.56 × 10−4, L′(2) = 5.621 and therefore

Φrad = 70.47 millibarns. This reduces the convolution integral to an integral over
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Figure 6.4: Upper: Bremsstrahlung Spectrum (adapted without permission from
[16]). The horizontal axis is the photon frequency relative to the beam energy (u =
hν/E). The vertical axis is the total photon energy per frequency bin normalized
to the average value over all frequencies

(
u

Φrad

[
1
ρ

d2Φ(u)
du·dx

])
. The lower bound of the

pink shaded region corresponds to a beam energy of 500 MeV; while, the upper
bound to the limit of infinite beam energy. In the convolution integral, Eqn. (6.79),
this curve is taken to be independent of both u & Ebeam and set equal to 1, which
corresponds to the horizontal red line. Lower: Average Fraction of Bremsstrahlung
Photons Absorbed as a Function of Photon Energy. The horizontal axis is the log
base 10 of the photon energy in MeV. The vertical axis is the log base 10 of 〈 f (u)〉
evaluated for a 10 amg/40 cm cell. The black curve is the true form of 〈 f (u)〉 and
the red curve is the rectangular approximation used for the integral Eqn. (6.84). In
summary, the integral of Eqn. (6.79) is a convolution of the black curves in these
two plots; whereas we approximate this integral by taking a convolution of the red
curves in these plots.
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〈 f (u)〉: [
1
ρ

dE
dx

]
ri
≈ EΦrad

Z 1

0
〈 f (u)〉du =

[
1
ρ

dE
dx

]
rad

Z 1

0
〈 f (u)〉du (6.83)

To approximate this integral, we first note that small photon energies have large

photoabsorption cross sections (see Fig. (6.3)) but represent a small frequency range

in the bremsstrahlung spectrum. Therefore we separate 〈 f (u)〉 into three rectangu-

lar frequency bins and find:

Z 1

0
〈 f (u)〉du ≈ ∑

n
un 〈 f (u)〉n =

(
10−2 MeV

)
· (1.00)

Ebeam

+
(
10 MeV − 10−2 MeV

)
· (0.01)

Ebeam

+
(

Ebeam− 10 MeV − 10−2 MeV
)
·
(
3× 10−4

)
Ebeam

≈ 0.01 MeV
Ebeam

+
0.1 MeV

Ebeam
+ 3× 10−4

≈ 0.11 MeV
Ebeam

+ 3× 10−4 (6.84)

Using the above approximation for the integral in Eqn. (6.79) and dividing by the

energy loss due to collisions gives the following estimate for the ratio:

η ≡

[
1
ρ

dE
dx

]
ri[

1
ρ

dE
dx

]
c

≈
0.015 + 0.042 ·

(
Ebeam
1 GeV

)
log
(

Ebeam
1 GeV

)
+ 34.6

< 0.02 (for Ebeam ≤ 16 GeV) (6.85)

Even though the energy loss to radiation is about 3 to 30 times larger than the

energy loss due to collisions at JLab energies, it contributes very little to the ion-

ization.
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6.3.3 Mean Energy for Helium Ion-Electron Pair Creation

The mean energy per ion-electron creation has been measured in helium a num-

ber of times, see Tab. (6.2). The early measurements found about 32 eV per pair.

As later authors noted on more than one occasion [18–21], these early measure-

ments were performed on insufficiently pure helium samples. Later measure-

ments, which took great care to purify the helium sample, obtained results about

10 eV per pair higher. We need to know the value for pure He because we are inter-

ested in knowing how many He ions are created. Consequently, we use a weighted

average of five “modern” measurements that went to great lengths to purify their

He sample. As a side note, the mean energy per ion-electron creation Ei is entirely

different than the mean excitation potential IBB. It is merely a coincidence that they

have nearly the same value for He. We are finally in a position to calculate the

mean ionization rate per atom:

Γion =
(

1
eEi

[
1
ρ

dE
dx

]
c

)
I

Atc
= β

I
Atc

(6.86)

where e is the elementary charge, I is the beam current, Atc is the mean cross sec-

tional area of the target chamber, and β−1 is tabulated in Tab. (6.3) for various beam

energies. The dependence of β on the beam energy is soft; consequently the mean

ionization rate per atom within 5 percent over all JLab energies is:

Γion =
(

0.0095
cm2

µA · hr

)
I

Atc
=
(

1
21 hrs

)
·
(

I
10 µA

)
·
(

2.0 cm2

Atc

)
(6.87)
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Ei(eV) year comments ref.

26.2 1925 purified in charcoal at liquid air temps, possible double ionization of He? [22]
31 1927 purified in charcoal at liquid air temperatures [23]

31.0 1944 value listed in [24] and [25] [26]
29.9 1951 tank He at 99.95% purity with traces amounts of N2 and O2 [27]
30.9 1952 cited in [19, 28] [29]

(32.5± 0.5) 1952 He/Ar/CH4 mixture [30]
29.7 1952 He with 0.13% Ar [18]41.3 purified with charcoal at liquid air temperatures

(26.0± 1.6) 1953 was purified, but not pure enough? [31]
(42.7± 0.2)∗ 1953 purified with charcoal at liquid air temperatures [19]

33.8 1954 tank He with less than 0.02% N2 [32]
(44.2± 0.9)∗ 1954 purified with Ca-Mg chips at 470oC [28]
(46.0± 0.5)∗ 1954 two sets of He samples with different purification methods [20]
(42.3± 0.3)∗ 1955 purified with charcoal at liquid air temperatures [33]
(40.3± 0.8)∗ 1956 purified with charcoal at liquid air temperatures [34]
55,60 (±5%) 1957 used He-ethylene mix, but applied an “impurity” correction [35]

29.9/35.2 1954 theoretical calculation for impure He sample [21]41.1 theoretical calculation for pure He

42.7,42.3 1964 sensitivity to impurities discussed, but no original sources listed [36]
41 1994 [14]

Ei
(
weighted mean

)
= (43.2± 0.1) eV

Table 6.2: Mean Energy per Ion-e− Pair Creation in He Gas. Only measurements
performed on carefully purified samples (*) are used in the calculation of the
weighted mean. The different measurement techniques and their respective sen-
sitivities to impurities are discussed in the 1958 review article by Valentine and
Curran [37].

Ebeam

(GeV)

[
1
ρ

dE
dx

]
c

η
(%)

β−1(
hr · µA/cm2

)
0.7 0.97 0.1 110.1
1.0 0.98 0.2 109.0
2.0 1.00 0.3 106.8
4.0 1.02 0.5 104.8
8.0 1.04 1.0 102.8
16.0 1.06 1.8 100.9
32.0 1.08 3.6 99.04
64.0 1.10 7.0 97.26

Table 6.3: Variation of Ionizing Energy Loss Parameters with Electron Beam En-
ergy. The second column is the energy lost to collisions relative to the value at 2
GeV. The maximum relative ionization contribution from radiation, η, is estimated
assuming a 3He density of 10 amg and a target chamber length of 40 cm.
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6.3.4 Spin Relaxation Due to Atomic and Molecular Helium Ions

Atomic ions contribute to polarization loss due to a “spin-exchange”-like interac-

tion between the 3He nucleus and the unpaired electron in the atomic ion. Because

charge exchange occurs readily, electrons from highly polarized neutral atoms

jump to lowly polarized atomic ions. The newly formed atomic ion partially de-

polarizes until it undergoes charge exchange and so on. The cumulative effect is

at most one nuclear spin flip [38]. In addition to this process, molecular ions also

lose polarization to the rotational degrees of freedom via a spin-rotation interac-

tion [39]. Little mention is made in the literature about relaxation due to interac-

tions with free electrons, consequently, we’ll show in the next section that their

effect is negligible. Before estimating the number of spin flips induced by both

processes, it is useful to first estimate the fraction of ions of both types and their

typical lifetimes. First we write down the rate equations for the density of atomic

ions and molecular ions (in the target chamber) assuming that most of the atoms

are neutral:

d[He+]tc

dt
= +Γion[He]tc−∑

i
ki[Xi]tc[He+]tc− km[He+]tc[He]2

tc + D∇2[He+]tc (6.88)

d[He+
2 ]tc

dt
= +km[He+]tc[He]2

tc−∑
j

[X j]tc

(
k′j + k′′j [He]tc

)
[He+

2 ]tc + D∇2[He+
2 ]tc

(6.89)

where km, ki, k′j, & k′′j are the rate constants for molecular formation, atomic ion

charge transfer to Xi, binary molecular charge transfer to X j, and three body molec-

ular charge transfer to X j, see Tab. (D.17). Losses due to diffusion can be estimated
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parameter value units description

[He]tc 10 amg operating target chamber density
[N2]tc 0.1 amg operating target chamber density
ρ 1.0 - ratio of N2 to 3He densities relative to 0.01
h 1.0 - density of 3He relative to 10 amg
I 10 µA beam current

Atc 2 cm2 target chamber cross sectional area

Γion 1/20 hrs−1 ionization rate per atom
D 1.8 cm2/s 3He self-diffusion constant at STP

km[He]2
tc 6.0 GHz molecular ion formation rate

kn[N2]tc 2.7 GHz atomic ion rate of charge transfer to N2
k′n[N2]tc 3.0 GHz molecular ion binary rate of charge transfer to N2

k′′n [N2]tc[He]tc 9.8 GHz molecular ion 3-body rate of charge transfer to N2

τa 115 ps mean lifetime of atomic ions
τm 78 ps mean lifetime of molecular ions
τex 6.7 ps mean time between atomic charge transfers

h∞a 1.5× 10−15 - fraction of nuclei that are in atomic ions
h∞m 7.2× 10−16 - fraction of nuclei that are in molecular ions

Aa/h 8.66 GHz atomic ion hyperfine coupling constant [38]
γm N/h 29 MHz molecular ion spin-rotation coupling constant [39]

Qm ≤ 1 - relative molecular ion relaxation rate
nm ≤ 0.002 - spin flips due to molecular ions per atomic ion created

Ω 0.36 radians amount of nuclear spin precession in between charge transfers
r 17 - mean number of atomic charge transfers before neutralization

na 0.50± 0.07 - spin flips due to atomic ions per atomic ion created

Table 6.4: Parameters Relevant to Relaxation Due to Ion Formation. These values
are calculated for typical operating conditions.
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by:

D∇2→ γd ≈ Dπ2
[

1
R2 +

1
L2

]
(6.90)

where D is the 3He self-diffusion constant, R is the characteristic diffusion size

in the radial direction, and L is the characteristic diffusion size along the target

chamber. Using the intrinsic radius of the beam ≈ 100 µm and the target chamber

length≈ 40 cm, we get γd ≈ 200 kHz. Since all of the other rates are on the order of

GHz, we can safely ignore the effect of diffusion. In other words, the exact details

of the transverse spatial distribution of beam current is irrelevant. All that matters

is the total current that passes through the target chamber. Charge recombination

is assumed to be negligible. Dividing out the total 3He density and assuming that

N2 is the only other gas in the target chamber, we get rate equations for the fraction

of atoms ions ha and molecular ions hm, where we have assumed ha, hm� 1:

dha

dt
= +Γion−

ha

τa
(6.91)

τ−1
a = kn[N2]tc + km[He]2

tc (6.92)

dhm

dt
= +kmha[He]2

tc−
hm

τm
(6.93)

τ−1
m = [N2]tc

(
k′n + k′′n[He]tc

)
(6.94)

where τa and τm are the mean atomic and molecular ion lifetimes. The equilibrium

fractions are obtained from setting the rates to zero and give:

h∞a = Γionτa =
Γion

kn[N2]tc + km[He]2
tc

(6.95)

h∞m = km[He]2
tcτmh∞a =

Γion

[N2]tc (k′n + k′′n[He]tc)

(
1 +

kn[N2]tc

km[He]2
tc

)−1

(6.96)
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Under our conditions, we find τa, τm ≈ 100 ps and h∞a , h∞m ≈ 10−15, which justifies

our previous assumption that there are very few ions.

The presence of a foreign gas such as N2 greatly limits the lifetime of molecular

ions. Whereas molecular ions have the potential to depolarize many nuclei, their

effect is greatly reduced because they are so short lived. Relaxation due to molec-

ular ions is discussed in [39] and they derive an expression for nm of the following

form:

Γionnm =
〈
γmN

h

〉
h∞m Qm→ nm =

〈
γmN

h

〉(
h∞m
Γion

)
Qm (6.97)

where γmN/h is the molecular spin-rotation coupling constant and Qm is the unit-

less relative relaxation rate that depends on the magnitude of the magnetic field

and the density of 3He . Since Qm can be at most 1, the maximum value for nm is

given as:

nm ≤
〈
γm N

h

〉
[N2]tc (k′n + k′′n[He]tc)

(
1 +

kn[N2]tc

km[He]2
tc

)−1

≈ 0.002 (6.98)
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Relaxation due to atomic ions is discussed in [38] and their calculation gives:

na(r,Ω) = 1 +
a1

1− rγ1
+<

(
a2

1− rγ2

)
a1 =

−|γ2|2 + Ω2/2
|γ2|2 + 2γ1 (1 + γ1)

a2 =
2
(
Ω2/2− γ1γ∗2

)
(γ1− γ∗2 )(

γ∗2 − γ2
) [
|γ2|2 + 2γ1 (1 + γ1)

]
γ1 = S + T− 2

3

γ2 =

(
i
√

3− 1
2

)
S−

(
i
√

3 + 1
2

)
T− 2

3

S = (Q + R)1/3

T = (Q− R)1/3

Q =
1

108
(
4 + 9Ω

2)
R =

Ω

12
√

3

(
8− 13Ω

2 + 16Ω
4)1/2

Ω = 2π
(

Aa

h

)
τex

r =
τa

τex
(6.99)

where τex is the mean time between atomic charge exchange collisions, Aa/h is the

atomic ion hyperfine coupling constant, r is the mean number of charge exchange

collisions before the atomic ion is neutralized, and Ω is a measure of “how much”

the nuclear spin and unpaired electron interact before a charge exchange collision

occurs. Note that since Q and R are positive definite, γ1 and a1 are necessarily real

and we can and must choose T to be real as well. In our specific case, τa and τex can
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be calculated by:

τ−1
ex = kex[He]tc (6.100)

τ−1
a = kn[N2]tc + km[He]2

tc (6.101)

where kex is the binary He-He charge transfer rate constant, kn is the binary He-N2

charge transfer rate constant, and km is the three body He molecular ion formation

rate constant.

Fig. (6.5) depicts na for various values of r, Ω, 3He density, and N2 to 3He den-

sity ratio. The red point in the left plot corresponds to our typical conditions with

na = 0.50± 0.07, where all of the uncertainty comes from our (lack of) knowledge

of the atomic charge transfer and molecular formation rate constants. It is quite

tedious to calculate na directly from the above set of equations. Therefore we have

prepared a “homemade” parameterization in matrix form which reproduces the

full calculation of na to better than 2.0% for 3He densities from 5 to 15 amg with

N2 to 3He density ratios from 0% to 5%:

na (h, ρ) =
[

1 h− 1 (h− 1)2 (h− 1)3

]
Ma



1

ρ− 1

(ρ− 1)2

(ρ− 1)3


(6.102)
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where Ma is a 4 by 4 matrix given by:

Ma =



+5.0539E−1 −8.1948E−2 +1.1033E−2 −8.6382E−4

−6.5344E−1 +4.7939E−2 +9.9539E−4 −4.4021E−4

+1.8737E−1 +1.0659E−1 −2.2923E−2 +2.0191E−3

+2.5606E−1 −1.2834E−1 −9.7831E−3 −3.7214E−5


(6.103)

and h and ρ are given by:

h =
[3He ]tc

10 amg
& ρ = 100 · [N2 ]tc

[3He ]tc
(6.104)

The right half of Fig. (6.5) shows a comparison between the full calculation for na

and the matrix parameterization as a function of 3He density for different N2 to

3He density ratios. The desired amount of N2 in the cell is usually about one

percent or ρ = 1. In this case, the matrix form of na collapses to give:

na (h, ρ = 1) = 0.50539− 0.65344 · (h− 1) + 0.18737 · (h− 1)2 + 0.25606 · (h− 1)3

(6.105)

If the 3He density is 10 amg or h = 1, the matrix collapses to give:

na (h = 1, ρ) = 0.50539−0.081948 · (ρ−1)+0.011033 · (ρ−1)2−0.00086382 · (ρ−1)3

(6.106)

Over a 3He density range of 9 amg to 12 amg and a N2 to 3He density ratio range

of 0.5% to 2%, the following reproduces the full calculation to better than 3%:

na = 0.50618− [0.62409− 0.05691 · (ρ− 1)] · (h− 1)− 0.075812 · (ρ− 1) (6.107)
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6.4 Polarization Diffusion

Up to now, we have not specified by mechanism by which the particles transfer

between chambers. For the cells described in this dissertation, the transfer mecha-

nism is diffusion.

6.4.1 Diffusion Rate Per Atom

To calculate the diffusion rates, we’ll follow the arguments presented in [40, 41].

The flux of particles ~J of the ith type due to diffusion is [1]:

~Ji = −nD
[
~∇ fi − kT log(T)− kp log(p)

]
(6.108)

where fi is the fraction of particles of the ith particle type such that ∑i fi = 1, D is the

diffusion constant, kT(p) is the thermal diffusion (barodiffusion) ratio, n is the total

density of particles, and T(p) is the temperature (pressure) of the gas. Reducing

the problem to one dimension
(
~∇→ ẑ d

dz

)
, labeling i as the up and down spins,

and subtracting one from the other gives us the net polarization flux through the

transfer tube:

Jtt = ẑ ·
(
~J+− ~J−

)
= −n(z)D(z)ẑ · ~∇

(
f+− f−

)
= −n(z)D(z)

dP(z)
dz

(6.109)

Note that we have assumed that the diffusion ratios kT and kp depend only on

the type of chemical species and not on the specific spin state. To solve this equa-

tion for Jtt, we’ll make the assumption that Jtt is constant, dJtt
dz ≈ 0, and that there
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Figure 6.5: Mean Number of Spin Flips Due to Atomic Ions. Upper: na as function
of r and Ω. This is a recreation of Fig. (1) from [38] with the addition of the red
curve which corresponds to a 3He density of 10 amg. The red point corresponds to
values for na and r when the N2 to 3He density (ρ) is 1%. Lower: na as a function of
3He density for three different values of ρ. The black curves are obtained from the
full calculation, Eqns. (6.99); whereas the red points are obtained from the matrix
parameterization, Eqn. (6.102). This parameterization reproduces the full calcu-
lation to better 2% over (0.5 ≤ h ≤ 1.5) and (0 ≤ ρ ≤ 5). Note that increasing the
relative density of N2 helps suppress na.
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is a linear temperature gradient between the two chambers [41]. The temperature

dependence of the diffusion constant can be seen by considering the diffusion re-

lation for a gas using kinetic theory [2]:

D ≈ v̄lmfp =
√

8RT
πM

1
nσ

= D0

√
T
T0

(n0

n

)(σ0

σ

)
= D0

(
T
T0

)m−1 (n0

n

)
(6.110)

= D0

(
T
T0

)m

=
(
0.235 cm2/s

)( T
400 K

)0.7(10 amg
n

)
(6.111)

where v̄ is the mean thermal velocity, lmfp is the mean free path, n is the gas den-

sity, and σ is the collisional cross section. At constant pressure, the density has

an inverse temperature dependence and the cross section has some temperature

dependence that has to be determined empirically:

m =
1
2
(
from the velocity

)
+ 1

(
from the density

)
+ mσ (from the cross section)

(6.112)

Using this form of the diffusion constant, moving some things around, and inte-

grating along the transfer tube length gives:

Jtt = −n(z)D0

(
T
T0

)m−1 n0

n(z)
dP(z)

dz

− JttTm−1
0

D0n0

Z Ltt

0
T(z)1−m dz =

Z Ltt

0

dP(z)
dz

dz

− JttTm−1
0

D0n0

Ltt

Tpc− Ttc

Z Tpc

Ttc

u1−m du = P(Ltt)− P(0)

− JttTm−1
0

D0n0

Ltt

Tpc− Ttc

(
T2−m

pc − T2−m
tc

2−m

)
= Ppc− Ptc (6.113)
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parameter value units
D0 2.79 cm2/s
T0 353 K
n0 0.773 amg
m 1.70 -

Table 6.5: 3He Self-Diffusion Constant Parameters from [42].

Finally solving for Jtt gives:

Jtt = −
(

Ppc− Ptc
)[

D0

(
Ttc

T0

)m−1 n0

ntc

]
ntc

Ltt

(2−m) (t− 1)
(t2−m− 1)

& t =
Tpc

Ttc
(6.114)

where D0 is the diffusion constant at a reference temperature T0 and density n0

listed in Tab. (6.5), Ttc & ntc are the temperature and density of the target chamber,

and t is the ratio of the pumping chamber to target chamber temperature. Note that

Jtt is the total rate per unit area, whereas we want the rate per atom. Multiplying

by the transfer tube cross sectional area Att, dividing by the number of particles in

each chamber, and comparing to Eqns. (6.15) & (6.16) give the following relations

for the diffusion rates per atom:

dpc = − JttAtt

Vpcnpc
(

Ppc− Ptc
) =

Att

VpcLtt

[
D0

(
Tpc

T0

)m−1 n0

npc

]
(2−m)

(
1− t−1

)
(1− tm−2)

dtc = − JttAtt

Vtcntc
(

Ppc− Ptc
) =

Att

VtcLtt

[
D0

(
Ttc

T0

)m−1 n0

ntc

]
(2−m) (t− 1)

(t2−m− 1)
(6.115)

where we have made use of the following identity:

[(
Tpc

T0

)m−1
] (

1− t−1
)

(1− tm−2)
=

[(
Ttc

T0

)m−1
]

(t− 1)
(t2−m− 1)

(6.116)
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Therefore the following quantities are averages over a linear temperature gradient:

〈nD〉 =

[
n0 D0

(
Tpc

T0

)m−1
]

(2−m)
(
1− t−1)(

1− tm−2
) =

[
n0 D0

(
Ttc

T0

)m−1
]

(2−m) (t− 1)(
t2−m − 1

) (6.117)

=
(

0.706 amg·cm2/s
)( Tpc

400 K

)0.7[ 1−t−1

1−t−0.3

]
=
(

0.706 amg·cm2/s
)( Ttc

400 K

)0.7[ t−1
t0.3−1

]
(6.118)

〈D〉 =
[

D0

(
Tpc

T0

)m n0

npc

]
(m− 1)

(
1− t−1)(

tm−1 − 1
) =

[
D0

(
Ttc

T0

)m n0

ntc

]
(m− 1) (t− 1)(

1− t1−m
) (6.119)

=
(

0.187 cm2/s
)[ Tpc

400 K

]1.7[10 amg
npc

][
1−t−1

t0.7−1

]
=
(

0.187 cm2/s
)[ Ttc

400 K

]1.7[10 amg
ntc

][
t−1

1−t−0.7

]
(6.120)

Note that the pumping chamber and target chamber operating densities are related

by:

npc =
ntc

t
= nfill

(
1 + v
t + v

)
& v =

Vpc

Vtc
& t =

Tpc

Ttc
(6.121)

where v is the ratio of the pumping chamber volume to the target chamber vol-

ume and we have tacitly assumed that the fraction of nuclei in the transfer tube is

negligible. Combining this relation with Eqns. (6.115) & (6.3) gives:

fpc =
v

t + v
(6.122)

ftc =
t

t + v
(6.123)

dpc =
(

t
v

)
dtc (6.124)

dtc =
Att

VtcLttnfill

[
D0n0

(
273.15 K

T0

)m−1
]

(t + v) (2−m) (t− 1)
t (1 + v)

(
t2−m − 1

) ( Ttc

273.15 K

)m−1

(6.125)

where: [
D0n0

(
273.15 K

T0

)m−1
]

= 6488.21
cm2 · amg

hr
(6.126)
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Figure 6.6: Diffusion Rates per Nuclei As a Function of Temperature. Upper Left:
dtc as function of temperatures. Upper Right: dpc as a function of temperatures.
Lower: Unitless temperature parameter ϒ(t,Ttc) as a function of temperature. Solid
curves are for SPC (small pumping chamber cells), whereas dotted curves are for
LPC (large pumping chamber cells). Only the volume ratio v is varied between the
SPC and LPC curves with all else being equal. The blue curves and axis represent
varying pumping chamber temperatures for a constant target chamber tempera-
ture. The red curves and axis represent varying target chamber temperatures for a
constant pumping chamber temperature.

The diffusion rate out of the target chamber per atom can be alternatively written
as:

dtc =
(

0.60 hr−1
)( Att

0.5 cm2

)(
6 cm
Ltt

)(
90 cm3

Vtc

)(
10 amg

ntc

)(
0.3t− 0.3

t0.3 − 1

)(
Ttc

273.15 K

)0.7

(6.127)

=
(

0.80 hrs−1
)( Att

0.5 cm2

)(
6 cm
Ltt

)(
90 cm3

Vtc

)(
10 amg

ntc

)(
ϒ
(
Tpc,Ttc

)
4/3

)
(6.128)

ϒ
(
Tpc,Ttc

)
= 0.3

(
t− 1

t0.3 − 1

)(
Ttc

273.15 K

)0.7

(6.129)

where ϒ is a dimensionless factor, usually between 1.2 and 1.5, that depends only

on the cell temperatures. Note that when the cell is at a uniform temperature,

Tpc = Ttc:

lim
t→1

ϒ = lim
t→1

0.3
(

t− 1
t0.3− 1

)(
Ttc

273.15 K

)0.7

= lim
t→1

0.3
(

1
0.3

)(
Ttc

273.15 K

)0.7

=
(

Ttc

273.15 K

)0.7

(6.130)
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6.4.2 Depolarization Within the Transfer Tube

Thus far we have neglected the polarization dynamics in the transfer tube since

only a small fraction of 3He nuclei are in the transfer tube volume. In this section,

we will estimate the size of the correction needed to account for spin relaxation in

the transfer tube. First we need to estimate the fraction of nuclei in the transfer

tube volume. This is obtained from an integral over the transfer tube length:

ftt =
Ntt

Ntot
=

Att

nfillVtot

Z Ltt

0
ntt(z) dz (6.131)

Assuming a linear temperature gradient with one end being at the pumping cham-

ber temperature and the other end being at the target chamber temperature:

T(z) = Tpc +
(
Ttc− Tpc

) z
Ltt

(6.132)

gives the following equivalent integral over temperature:

ftt =
Vtt

nfillVtot

P
R
(
Ttc− Tpc

) Z Ttc

Tpc

dT
T

(6.133)

Rewriting in terms of densities gives:

ftt =
Vtt

Vtot

[
nfill

npc
− nfill

ntc

]−1

log
(

ntc

npc

)
(6.134)

If we make the assumption that ftt� 1, then we can use Eqn. (6.121) and fpc/ ftc =

v/t to get:

ftt =
Vtt

Vtc

log(t)(
1 + fpc/ ftc

)
(t− 1)

(6.135)
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Under typical conditions, t = 1.7, fpc/ ftc varies very roughly from 1 to 2, Vtt = 4 cc,

and Vtc = 90 cc, which gives ftt ≤ 0.02. This justifies our approximation that the

fraction of nuclei in the transfer tube is very small.

Next, we’ll model the transfer tube as a virtual “chamber” somewhere between

the pumping and target chambers. The spin relaxation that occurs throughout the

physical transfer tube will be averaged to find the equivalent spin relaxation in

this virtual chamber. Under these assumptions, it is straightforward to general-

ize the two chamber polarization rate equations, Eqn. (6.14), into three chamber

polarization rate equations:

dPpc

dt
= γse

(
PA− Ppc

)
− ΓpcPpc− dtt

pc

(
Ppc− Ptt

)
(6.136)

dPtt

dt
= −ΓttPtt− dpc

tt

(
Ptt− Ppc

)
− dtc

tt (Ptt− Ptc) (6.137)

dPtc

dt
= dtt

tc (Ptt− Ptc)− ΓtcPtc (6.138)

where Ptt is the effective transfer tube polarization and Γtt is the average transfer

tube relaxation rate. Note that we now have four diffusion rates which correspond

to diffusion from the pumping and target chambers into the virtual chamber and

vice versa. At nuclei number equilibrium, they must satisfy:

fpcdtt
pc = fttd

pc
tt & ftcdtt

tc = fttdtc
tt (6.139)

where the subscripts and superscripts on d refer to the source and destination

chambers respectively. At equilibrium, the polarizations in the three chambers
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are:

P∞tc
P∞tt

=
[

1 +
Γtc

dtt
tc

]−1

(6.140)

P∞tt
P∞pc

=

[
1 +

Γtt

dpc
tt

+
(

Γtc

dtt
tc

)(
dtc

tt

dpc
tt

)(
1 +

Γtc

dtt
tc

)−1
]−1

(6.141)

P∞pc

PA
=

[
1 +

Γpc

γse
+

dtt
pc

γse

(
Γtt

dpc
tt

[
1 +

Γtc

dtt
tc

]
+

Γtc

dtt
tc

dtc
tt

dpc
tt

)

×
([

1 +
Γtt

dpc
tt

][
1 +

Γtc

dtt
tc

]
+

Γtc

dtt
tc

dtc
tt

dpc
tt

)−1
]−1

(6.142)

If we assume that the system is at nuclei number equilibrium, then we can use
Eqn. (6.139) to write these equilibrium polarizations in a more illuminating form:

P∞pc =
PAγse fpc

γse fpc + Γpc fpc +
[(

1 + Γtc
dtt

tc

)
Γtt ftt + Γtc ftc

][
1 + Γtc ftc

(
1

ftcdtt
tc

+ 1
fpcdtt

pc

)
+
(

1 + Γtc
dtt

tc

)
ftt
fpc

Γtt
dtt

pc

]−1

(6.143)

P∞tc
P∞pc

=

[
1 + Γtc ftc

(
1

ftcdtt
tc

+
1

fpcdtt
pc

)
+
(

1 +
Γtc

dtt
tc

)(
ftt

fpc

)(
Γtt

dtt
pc

)]−1

(6.144)

In the limit that the diffusion rates approach infinity, dtt
pc, dtt

tc→∞, the above equa-

tions reduce to a very satisfying result:

P∞tc
P∞pc
→ 1 & P∞pc → PA

γse fpc

γse fpc + Γpc fpc + Γtt ftt + Γtc ftc
= PA

〈γse〉
〈γse〉+ 〈Γ〉

(6.145)

In the limit that the fraction of nuclei in the transfer tube approaches zero, ftt→ 0,

the three chamber equilibrium polarization equations reduce to the familiar two
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chamber results, Eqns. (6.33) & (6.34):

P∞pc =
PAγse fpc

γse fpc + Γpc fpc + Γtc ftc

[
1 + Γtc ftc

(
1

ftcdtt
tc

+ 1
fpcdtt

pc

)]−1 (6.146)

P∞tc
P∞pc

=

[
1 + Γtc ftc

(
1

ftcdtt
tc

+
1

fpcdtt
pc

)]−1

(6.147)

To make this reduction manifest, note our prior assumption that the nuclei flux is

constant throughout the transfer tube:

Jtt = constant =
dtcNtc

Att

(
Ppc− Ptc

)
=

dtt
tcNtc

Att
(Ptt− Ptc) =

dtt
pcNpc

Att

(
Ppc− Ptt

)
(6.148)

If, in addition to the above identities, we make the assumption that the polarization

varies linearly along the transfer tube and then dropping common factors gives:

dtc ftcLtt = dtt
tc ftcxLtt = dtt

pc fpc (1− x) Ltt (6.149)

where x is the “fractional distance” along the physical transfer tube length where

the virtual chamber “is located.” To recap, assuming a constant nuclei flux, a linear

temperature gradient along the transfer tube, and a linear polarization gradient

along the transfer tube, we get the following relationship among the diffusion rates

for the two chamber and three chamber systems:

ftc

(
1

ftcdtt
tc

+
1

fpcdtt
pc

)
= ftc

(
x

dtc ftc
+

1− x
dtc ftc

)
=

1
dtc

(6.150)

which insures that the three chamber solutions Eqns. (6.146) & (6.147) reduce to the

two chamber solutions Eqns. (6.33) & (6.34) in the limit that the fraction of nuclei
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in the transfer tube approaches zero.

The most significant source of spin relaxation in the transfer tube is spin ex-

change with alkali vapor. This vapor has a negligible polarization since it is not

directly exposed to laser light. Because there is a temperature gradient along the

transfer tube, there is also an alkali vapor density gradient as well as 3He den-

sity gradient. Therefore we collapse the alkali density gradient into a 3He density

weighted average alkali density:

〈[A]〉tt =
R Ltt

0 [A](z)n(z) dzR Ltt
0 n(z) dz

=

R Ttc
Tpc

[A](T)
(

P
RT

)(
L dT

Ttc−Tpc

)
R Ttc

Tpc

(
P

RT

)(
L dT

Ttc−Tpc

) =

R Ttc
Tpc

[A](T) dT
TR Ttc

Tpc

dT
T

(6.151)

The temperature dependence of the alkali density is obtained from the vapor pres-

sure curve combined with the ideal gas law:

[A](T) =
exp

(
Avp− Bvp

T

)
RT

= exp
[
−Bvp

(
T−1− T−1

pc

)](Tpc

T

)
[A]pc (6.152)

where Apc & Bpc are the vapor pressure constants listed in Tab. (A.7) and [A]pc

is the alkali density in the pumping chamber. Plugging in this form of the alkali

density and performing the integral in the numerator:

Z Ttc

Tpc

[A](T)
dT
T

= Tpc[A]pc exp
(

Bvp

Tpc

)Z Ttc

Tpc

exp
(
− Bvp

T

)
T2 dT

=
Tpc

Bvp
[A]pc exp

(
Bvp

Tpc

)[
exp

(
−

Bvp

Ttc

)
− exp

(
−

Bvp

Tpc

)]
=

Tpc

Bvp
[A]pc

[
−1 + exp

(
Bvp

Tpc
−

Bvp

Ttc

)]
=

Ttc[A]tc− Tpc[A]pc

Bvp
(6.153)
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Dividing this by the integral in the denominator gives:

〈[A]〉tt =
Tpc[A]pc− Ttc[A]tc

Bvp log
(

Tpc

Ttc

) (6.154)

The average alkali spin-exchange rate in the transfer tube is:

〈γse〉tt = γse

 Tpc

Bvp log
(

Tpc

Ttc

)
 (6.155)

where we’ve taken advantage of the fact that, under typical operating conditions,

the alkali density in the target chamber is negligible, see Tab. (6.6).

In principle, the same type of calculation should be done for all other sources

of spin relaxation in the transfer tube, such as the nuclear dipolar relaxation. How-

ever, since:

1. the spin exchange with essentially unpolarized alkali vapor dominates the

spin relaxation

2. the nuclear dipolar relaxation has a soft temperature dependence

3. we ignore, if any, the temperature dependence of the wall relaxation

it is much easier to simply use the geometric mean of the pumping chamber relax-

ation rate and the total non-beam related relaxation for the target chamber, which

gives:

Γtt = 〈γse〉tt +
〈
Γdip

〉
tt + 〈Γwall〉tt + 〈Γother〉tt ≈ 〈γse〉tt +

√
ΓpcΓ

0
tc (6.156)
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T [Rb] 1/γse [K] 1/γse [Na] 1/γse

(oC) (1014 cm−3) (hrs) (1014 cm−3) (hrs) (1014 cm−3) (hrs)

25.0 1.29×10−4 3.16×105 5.88×10−6 8.59×106 7.88×10−9 5.78×109

50.0 1.47×10−3 2.79×104 8.71×10−5 5.80×105 2.07×10−7 2.20×108

75.0 1.08×10−2 3.80×103 8.62×10−4 5.86×104 3.37×10−6 1.35×107

100.0 6.01×10−2 679 5.78×10−3 8.73×103 3.87×10−5 1.18×106

125.0 0.270 152 3.04×10−2 1.66×103 2.91×10−4 1.56×105

150.0 1.01 40.5 0.131 385 1.72×10−3 2.64×104

175.0 3.25 12.6 0.478 106 8.32×10−3 5.47×103

180.3 4.08 10.0 0.617 81.9 1.13×10−2 4.02×103

200.0 9.21 4.44 1.52 33.3 3.39×10−2 1.34×103

225.0 23.5 1.74 4.28 11.8 0.120 380
229.3 27.2 1.50 5.05 10.0 0.147 311
241.2 40.8 1.00 7.91 6.39 0.253 180
250.0 54.5 0.749 10.9 4.64 0.374 122
275.0 117 0.349 25.4 1.99 1.05 43.4
297.1 217 0.188 50.5 1.00 2.43 18.8
300.0 235 0.174 55.0 0.919 2.69 16.9
315.0 346 0.118 84.6 0.597 4.55 10.0
325.0 443 9.22×10−2 111 0.454 6.36 7.16
350.0 794 5.14×10−2 212 0.238 14.0 3.25
375.0 1.36×103 3.01×10−2 385 0.131 29.0 1.57
391.6 1.89×103 2.16×10−2 557 9.06×10−2 45.5 1.00
400.0 2.23×103 1.83×10−2 667 7.57×10−2 56.7 0.803

Table 6.6: Pure Alkali Number Density and 3He Spin-Exchange Rate vs. Temper-
ature.
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6.4.3 Polarization Gradient Between Pumping & Target Cham-

bers

The polarization gradient between the two chambers is given by:

∆ ≡ 1− P∞tc
P∞pc

= 1−
[

1 + Γtc ftc

(
1

ftcdtt
tc

+
1

fpcdtt
pc

)
+
(

1 +
Γtc

dtt
tc

)(
ftt

fpc

)(
Γtt

dtt
pc

)]−1

(6.157)

Assuming a linear polarization gradient along the physical transfer tube and plac-

ing the third virtual chamber half way between the two chambers gives the follow-

ing:

2dtc ftc = dtt
tc ftc = dtt

pc fpc (6.158)

Note that this amounts to choosing x = 1/2 in Eqn. (6.149). Using the above rela-

tionship and Eqn. (6.150) allows us to write the polarization gradient as:

∆3 chamber = 1−
[

1 +
Γtc

dtc
+
(

1 +
Γtc

2dtc

)(
ftt

ftc

)(
Γtt

2dtc

)]−1

(6.159)

which should be compared to the equation for a two chamber cell neglecting the

transfer tube volume:

∆2 chamber = 1−
[

1 +
Γtc

dtc

]−1

(6.160)

We will now perform a binomial expansion to estimate the size of (1) the polar-

ization loss in the transfer tube and (2) the lowest order term of the polarization

gradient. Under typical conditions, the diffusion rate dtc is faster than the relax-

ation rates in the transfer and target chamber. Applying this approximation to
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second order in dtc gives:

∆ = 1−
(

1−
[

Γtc +
Γtt

2
ftt

ftc

]
d−1

tc +
[

Γ
2
tc +

Γ2
tt

4
f 2
tt

f 2
tc

+
3ΓtcΓtt

4
ftt

ftc

]
d−2

tc

)
+ O

(
Γ3

tc

d3
tc

)
(6.161)

=

1 +
1
2

ftt

ftc

Γtt

Γtc

1−1
2

ftt

ftc

Γtt

dtc
− 3

2
Γtc

dtc︸ ︷︷ ︸
− Γtc

dtc

 Γtc

dtc
(6.162)

Note that under typical conditions, ftt/ ftc is roughly the same order of magnitude

as Γtc/dtc. Therefore we can drop the under-braced terms, which are essentially

third order, to give the lowest order terms of the polarization gradient:

∆ =
[

1 +
1
2

ftt

ftc

Γtt

Γtc
− Γtc

dtc

]
Γtc

dtc
+ O

(
Γ3

tc

d3
tc

)
(6.163)

Therefore the polarization lost traversing through the transfer tube is a second

order correction. When there is no beam depolarization in the target chamber, the

polarization gradient is written as:

∆0 =
[

1 +
1
2

ftt

ftc

Γtt

Γtc
− Γ0

tc

dtc

]
Γ0

tc

dtc
=

[
1 +

1
2

(
〈γse〉tt

Γ0
tc

+

√
Γpc

Γ0
tc

)
ftt

ftc
− Γ0

tc

dtc

]
Γ0

tc

dtc
(6.164)

where we have used Eqn. (6.156). The relaxation in the target chamber that is

independent of the beam current, Γ0
tc, can be estimated from the lifetime of the cell
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assuming that the wall relaxation is independent of temperature:

Γlifetime = τ−1
lifetime = Γwall + Γdip (Tlifetime) (6.165)

Γ
0
tc = Γwall + Γdip (Ttc) (6.166)

= Γlifetime− Γdip (Tlifetime) + Γdip (Ttc) (6.167)

= Γlifetime

[
1 +

Γdip (Ttc)− Γdip (Tlifetime)
Γlifetime

]
(6.168)

where Ttc is the target chamber temperature under operating conditions and Tlifetime

is the target chamber temperature during the lifetime measurement. Note that

the target chamber temperature affects both the density of the target chamber and

the nuclear dipolar rate constant. Finally, we can write the contributions to the

polarization gradient from both sources up to next to leading order:

∆ = ∆0 + ∆beam (6.169)

∆0 =
Γ0

tc

dtc

[
1 +

1
2

(
〈γse〉tt

Γ0
tc

+

√
Γpc

Γ0
tc

)
ftt

ftc
− Γ0

tc

dtc

]
(6.170)

∆beam =
Γbeam

dtc

[
1−

(
2Γ0

tc + Γbeam
)

dtc

]
(6.171)

It is now useful to enumerate every assumption and approximation used to derive

these relationships:

1. The transfer tube volume is very small compared to the volume of the cell.

2. The target chamber has a negligible vapor pressure of alkali metal.

3. The alkali vapor reaches equilibrium polarization very fast relative to the

3He polarization.



6.4. POLARIZATION DIFFUSION 499

4. The alkali polarization is independent of the 3He polarization.

5. The cell is at thermal equilibrium throughout the 3He polarization process.

6. The diffusion rates per nucleus are the fastest rates in the system.

7. The beam energy is in the range of 1–16 GeV.

8. Only a tiny fraction of the 3He atoms in the target chamber are ionized at

any instant of time.

9. Very little of the ionization is due to bremsstrahlung.

10. The electrons created during ionization contribute little to the beam depolar-

ization.

11. Diffusion in the radial direction of the target chamber is essentially instanta-

neous.

12. Molecular 3He ions contribute little to the beam depolarization.

13. There is a linear temperature gradient along the transfer tube.

14. There is a constant polarization flux through the transfer tube.

15. The wall relaxation is uniform throughout the cell and independent of tem-

perature.

6.4.4 Discussion and Representative Examples

To get a qualitative and lowest order quantitative handle on the polarization gra-

dient, we’ll drop all the higher order terms (including the polarization lost in the
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transfer tube). Using the reasonable approximation that Γ0
tc = Γlifetime, the beam

independent polarization gradient becomes:

∆0 =
Γ0

tc

dtc
+ higher order terms (6.172)

=
(

1 hr
6488.21 cm2 · amg

)(
Ltt ·Vtc · ntc

τlifetime · Att · ϒ
(
Tpc,Ttc

)) (6.173)

=
(

1
36

)(
40 hrs
τlifetime

)(
0.5 cm2

Att

)(
Ltt

6 cm

)(
Vtc

80 cm3

)(
ntc

10 amg

)(
4/3

ϒ
(
Tpc,Ttc

))
(6.174)

and the beam dependent polarization gradient is:

∆beam =
Γionna

dtc
+ higher order terms (6.175)

=
(

1
681262 µA · amg

)(
I · na · Ltc · Ltt · ntc

Att · ϒ
(
Tpc,Ttc

) ) (6.176)

=
(

1
38

)(
I

10 µA

)( na

0.5

)( Ltc

40 cm

)(
0.5 cm2

Att

)(
Ltt

6 cm

)(
ntc

10 amg

)(
4/3

ϒ
(
Tpc,Ttc

)) (6.177)

Both sources contribute equals amounts to the polarization gradient (∆0 = ∆beam)

to lowest order when the following relationship between cell lifetime and beam

current is true:

I · τlifetime =
(
420 µA · hrs · cm2)( Atc

2.0 cm2

)(
0.5
na

)
(6.178)

In other words, the contribution to the total polarization gradient due to a beam

current of 10 µA in a cell with a lifetime of 42 hrs is the same. Some representa-

tive values for past experiments are given in Tab. (6.7) assuming a beam current of

10 µA and a cell lifetime of 42 hr. The lowest order, next to leading order, and full

calculation for both a 2 chamber and 3 chamber cell model all produce that same



6.4. POLARIZATION DIFFUSION 501

polarization gradient within 10 percent relative. The parameter that varies largest

on a cell to cell basis is the transfer tube cross sectional area. Unfortunately the po-

larization gradient also happens to be very sensitive to this parameter. Increasing

the relative amount of N2 in the cell helps suppress beam depolarization. Alterna-

tively, a long lifetime cell helps suppress the polarization gradient that is indepen-

dent of the beam. The largest uncertainty comes from our imprecise knowledge

of the various ionic rate constants used to calculate the beam depolarization. In

practical terms, na is known to only about 15 percent.

The next largest source of uncertainty is in our knowledge of the wall relax-

ation. The target chamber has a larger surface area to volume ratio than the pump-

ing chamber, so, naively, one would imagine that the wall relaxation would be

greater in the target chamber. We also don’t know its temperature dependence;

however, the relative change in the target chamber temperature is at the level of

10 percent. Finally, we use a fairly simple diffusion model to estimate the diffu-

sion rates per nucleus. If we apply a 10 percent uncertainty to the diffusion rates

as well, then our overall uncertainty is about 20 percent relative on a usually 5

percent relative correction.

6.4.5 Estimating Diffusion and Beam Parameters Empirically

In principle, it is possible to estimate these parameters empirically from data rather

than having to rely upon theoretical calculations. To obtain information on the

diffusion rates, spin-up data can be taken on the target chamber, or even better

both chambers, and then fit to Eqn. (6.31). This method would probably benefit

from taking spin-up data under different initial conditions, for example:

1. Start with both chambers at zero polarization, P0
tc = 0 and P0

pc = 0.
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parameter E142 E154 GDH A1n g2n saGDH GEn-spc GEn-LPC units

[3He ]fill 7.88 8.83 9.62 8.69 8.19 8.78 8.25 7.40 amg
[N2 ]fill 0.0663 0.0776 0.0964 0.0824 0.0940 0.0913 0.125 0.112 amg

Rpc 2.64 2.62 2.94 3.02 3.02 2.93 2.90 4.12 cm
Att 0.704 0.709 1.01 0.537 0.537 0.645 0.385 0.385 cm2

Ltt 5.9 6.2 6.02 6.52 6.52 6.11 10.1 8.89 cm
Atc 3.09 3.56 2.27 2.05 2.05 2.47 2.03 2.03 cm2

Ltc 29.8 29.8 39.6 25.6 39.5 39.5 40.3 40.3 cm
Tpc 435 465 492 505 505 485 558 558 K
Ttc 338 343 330 333 333 331 309 309 K

Vpc 77.0 75.0 106 115 115 105 102 292 cm3

Vtt 4.15 4.39 6.08 3.50 3.50 3.94 3.88 3.42 cm3

Vtc 92 106 89.8 52.4 80.9 97.5 81.8 81.8 cm3

t 1.28 1.35 1.49 1.51 1.51 1.46 1.80 1.80 -
v 0.83 0.71 1.18 2.19 1.42 1.07 1.24 3.58 -

fpc 0.394 0.343 0.442 0.591 0.484 0.424 0.408 0.664 -
ftt 0.024 0.023 0.030 0.021 0.017 0.019 0.020 0.010 -
ftc 0.605 0.656 0.557 0.408 0.515 0.575 0.591 0.335 -

npc 6.81 7.31 7.85 7.48 6.75 7.17 6.07 6.29 amg
ntc 8.77 9.90 11.7 11.34 10.23 10.51 10.96 11.36 amg
pop 10.8 12.4 14.1 13.8 12.4 12.7 12.4 12.8 atm

ρ 0.84 0.87 1.00 0.94 1.14 1.03 1.51 1.51 -
Ω 0.413 0.366 0.309 0.319 0.354 0.345 0.33 0.319 rad
r 19.9 18.0 15.4 16.0 16.2 16.4 14.0 13.7 -

na 0.6007 0.5191 0.3998 0.4243 0.4761 0.4672 0.4066 0.3849 -
nmax

m 0.0024 0.0019 0.0012 0.0014 0.0013 0.0014 0.0008 0.0007 -
τbeam 54.6 73.1 60.9 51.7 46.0 56.5 53.4 56.5 hr
τ 0

tc 40.8 40.6 38.4 37.3 38.4 39.0 36.7 34.6 hr
τtc 23.3 26.1 23.5 21.7 20.9 23.1 21.8 21.5 hr

τtt 32.4 20.4 12.0 8.4 8.5 14.1 9.6 9.4 hr
ϒ 1.27 1.30 1.32 1.33 1.33 1.31 1.35 1.35 -

d−1
pc 0.533 0.566 0.581 1.207 1.089 0.839 1.846 4.828 hr

d−1
tc 0.820 1.081 0.731 0.832 1.159 1.138 2.669 2.434 hr

∆0
0, Eqn. (6.172) 2.00 2.66 1.91 2.23 3.02 2.92 7.27 7.04 % rel.

∆1
0, Eqn. (6.170) 2.01 2.69 2.04 2.45 3.17 2.97 7.23 6.94 % rel.

∆0
beam, Eqn. (6.177) 1.50 1.48 1.20 1.61 2.52 2.02 5.00 4.31 % rel.

∆1
beam, Eqn. (6.171) 1.41 1.38 1.14 1.51 2.31 1.86 4.02 3.52 % rel.

∆0, Eqn. (6.172;6.177) 3.51 4.14 3.11 3.84 5.54 4.93 12.3 11.4 % rel.
∆1, Eqn. (6.170;6.171) 3.43 4.07 3.18 3.96 5.47 4.82 11.3 10.5 % rel.

∆2ch, Eqn. (6.160) 3.39 3.98 3.02 3.70 5.25 4.70 10.9 10.2 % rel.
∆3ch, Eqn. (6.159) 3.43 4.07 3.18 3.95 5.47 4.83 11.3 10.5 % rel.

Table 6.7: Polarization Gradient for Representative Cells with I = 10 µA and
τlifetime = 42 hr.
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2. Start with both chambers at the opposite polarization, P0
tc = −P∞tc and P0

pc =

−P∞pc . This could easily be accomplished by reversing the spins by AFP after

the polarization has reached equilibrium.

3. Start with one chamber at the equilibrium polarization, while the other cham-

ber is at zero, P0
tc = 0 and P0

pc = +P∞pc . This could be accomplished by a tran-

sient burst of on-resonance RF localized near the target chamber.

Another way to get the diffusion rate dtc is to do the following:

1. Start with zero polarization in both chambers, P0
pc = P0

tc = 0.

2. Monitor the polarization of both chambers during a spinup over a time scale

much shorter than the diffusion time scale, t� 1/Γf.

3. Fit the pumping chamber polarization data to a second order polynomial.

4. Fit the target chamber polarization data to a third order polynomial.

5. From Eqns. (6.46) & (6.47), the ratio of the quadratic coefficient from the

target chamber (qtc) to the linear coefficient from the pumping chamber (mpc)

gives the target chamber diffusion rate, dtc:

qtc

mpc
=
γsePAdtc/2
γsePA

=
dtc

2
(6.179)

To obtain information about the beam depolarization, one can compare the equi-

librium polarizations with beam on and off. This works best when the diffusion
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Figure 6.7: Spinup Curves for Hyrbid Cells

rates are much faster than all other rates. Under those conditions:

P∞ = P∞pc = P∞tc =
PAγse fpc

γse fpc + Γpc fpc + Γtc ftc
(6.180)

P∞off =
PAγse fpc

γse fpc + Γpc fpc + Γ0
tc ftc

(6.181)

P∞on =
PAγse fpc

γse fpc + Γpc fpc + Γ0
tc ftc + Γbeam ftc

(6.182)

P∞off

P∞on
= 1 +

Γbeam ftc

γse fpc + Γpc fpc + Γ0
tc ftc

= 1 + τ off
slowΓbeam ftc (6.183)

Γbeam =
Γoff

s

ftc

[
P∞off

P∞on
− 1
]

(6.184)

This method requires knowledge of the “slow” spin-up time constant with the

beam off, Γs.
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Figure 6.8: Polarization Buildup at t = 0 With P0

pc = P0
tc = 0.

6.4.6 Polarization Gradient Within the Target Chamber

Thus far we’ve assumed that the polarization is uniform throughout the target

chamber. However, the polarization at the ends of the target chamber must be

lower than the polarization at the junction between the transfer tube and the target

chamber. In addition, the beam depolarizes only within an area defined by the

beam raster. To account for a spatial variation in polarization due to these effects,

we’ll model the transfer tube-target chamber junction as a delta function source

for polarization and the beam raster area as a sink for polarization. Therefore,

Eqn. (6.16) is generalized to:

dPtc(r, z, t)
dt

= dtcA
(

Ppc− Ptc
)
δ(z)δ(r− rtc)−

(
Γ

0
tc + ΓbeamΘ(r− r0)

)
Ptc + D∇2Ptc

(6.185)

where A is the characteristic area of the polarization source, Θ(r− r0) is the Heav-

iside function, r0 is the radius of the beam raster, and D is the diffusion constant

evaluated at the target chamber temperature and density.
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To solve this equation, we’ll have to make some simplifying arguments. First,

we will consider the system only at equilibrium, t→∞; therefore the polarization

has reached a steady state value throughout the cell, dPtc/dt = 0. Second, we will

assume that the polarization dynamics within the pumping chamber are sensitive

to only the volume averaged target chamber polarization 〈Ptc〉 (as opposed to some

small region localized near the transfer tube-target chamber junction). This is true

when the diffusion rates are fast relative to all other polarization/relaxation rates

in the cell. This implies that P∞tc in all previous equations is to be interpreted as the

volume averaged target chamber polarization.

Third, we will assume that the gradient in the radial direction is negligible rel-

ative to the gradient in the longitudinal direction [40]. To justify this assumption,

consider the characteristic distance that a 3He atom travels during the characteris-

tic relaxation time under typical conditions:

λ =
√

D
Γtc
≈

√
0.2 cm2/sec
1/20 hrs−1 ≈ 120 cm (6.186)

The polarization gradient within the target chamber scales as the ratio between the

characteristic size and this characteristic diffusion length:

rtc = 0.85 cm
λ

≈ 0.007� Ltc/2 = 20 cm
λ

≈ 0.17 < 1 (6.187)

This justifies our third assumption and finally we get:

0 = dtc`
(

P∞pc − 〈Ptc〉
)
δ(z)− ΓtcPtc + D

d2Ptc

dz2 (6.188)

where ` is the characteristic size of the polarization source. Note the we have tacitly
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defined the coordinate system such that the transfer tube-target chamber junction

occurs at z = 0 and the target chamber ends are at z = ±Ltc/2.

Finally we can solve this equation by performing a Laplace transform and solv-

ing for L Ptc:

− ΓtcL Ptc + D
[
k2

zL Ptc− kzPtc(0)− P′tc(0)
]

= −dtc`
(

P∞pc − 〈Ptc〉
)

[
−Γtc + Dk2

z

]
L Ptc = DkzPtc(0) + DP′tc(0)− dtc`

(
P∞pc − 〈Ptc〉

)
L Ptc =

kzPtc(0) + P′tc(0)− dtc`
D

(
P∞pc − 〈Ptc〉

)
k2

z − Γtc
D

(6.189)

where kz is the conjugate variable to z and Ptc(0) & P′tc(0) are the polarization and

first derivative of the polarization evaluated at z = 0. Substituting the characteristic

diffusion length and taking the inverse Laplace transform gives:

L Ptc =
kzPtc(0) + P′tc(0)− dtc`

D

(
P∞pc − 〈Ptc〉

)
k2

z − λ−2

L−1L Ptc = Ptc(0)L−1
(

kz

k2
z − λ−2

)
+ λ

[
P′tc(0)− dtc`

D

(
P∞pc − 〈Ptc〉

)]
L−1

(
λ−1

k2
z − λ−2

)
Ptc(z) = Ptc(0) cosh

( z
λ

)
+ λ

[
P′tc(0)− dtc`

D

(
P∞pc − 〈Ptc〉

)]
sinh

∣∣∣ z
λ

∣∣∣ (6.190)

The inverse Laplace transforms performed above are only valid for |kz|λ > 1 or

analogously |z| < λ. Since λ ≈ 120 cm and the maximum value is |z| = Ltc/2 =

20 cm, the above solution is valid and we can expand the hyperbolic trig functions

to lowest order to give:

Ptc(z) = Ptc(0) + |z|
[

P′tc(0)− dtc`

D

(
P∞pc − 〈Ptc〉

)]
+ O

(
|z|
λ

)2

(6.191)
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The value of the first derivative of the polarization at z = 0 can be estimated by

analogy to Eqn. (6.109):

Jtc(z) = ntcDP′tc(z) (6.192)

We’ll assume that the net total number of particles entering the target chamber at

the transfer tube-target chamber junction is conserved, which implies:

JttAtt = [Jtc(at 0 towards +z) + Jtc(0at 0 towards −z)] Atc (6.193)

Note that the number of particles entering the target chamber are equally split and

directed towards either end of the target chamber. Combining this with Eqn. (6.115)

gives:

P′tc(0) =
Jtc(0)
ntcD

=
1
2

Att

Atc

Jtt

ntcD
=

dtcLtc

2D

(
〈Ptc〉 − P∞pc

)
(6.194)

The difference in polarization at equilibrium between the two chambers is ob-

tained from Eqn. (6.34):

P∞pc − 〈Ptc〉 = 〈Ptc〉
(

1 +
Γtc

dtc

)
− 〈Ptc〉 = 〈Ptc〉

Γtc

dtc
(6.195)

Putting this altogether, calculating the average value of Ptc along the target cham-

ber, and solving for Ptc(0):

〈Ptc〉 =
1

Ltc

Z +Ltc/2

−Ltc/2
Ptc(z) dz =

1
Ltc

Z +Ltc/2

−Ltc/2
Ptc(0)− |z| 〈Ptc〉

Γtc

D

(
`+

Ltc

2

)
dz

= Ptc(0)− Ltc

4
〈Ptc〉

Γtc

D

(
`+

Ltc

2

)
dz (6.196)

Ptc(0) = 〈Ptc〉
[

1 +
Ltc

4
Γtc

D

(
`+

Ltc

2

)]
(6.197)
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Finally, using this form of Ptc(0) and rearranging a few things gives:

Ptc(z) = 〈Ptc〉
[

1 +
(

1− 4|z|
Ltc

)(
1 +

2`
Ltc

)(
L2

tc

8

)
Γtc

D

]
(6.198)

The total center to end relative polarization gradient is given by:

∆Ptc

〈Ptc〉
=
(

1 +
2`
Ltc

)(
L2

tc

4

)
Γtc

D
(6.199)

Finally, to quantify things, we need to estimate `, the characteristic size of the polar-

ization source. In this case, the “polarization source” is the transfer tube; therefore

it’s reasonable to use the transfer tube diameter or the square root of the transfer

tube cross sectional area. For ` =
√

Att� Ltc, we find:

∆Ptc

〈Ptc〉
= (3% relative)

(
Ltc

40 cm

)2

(Γtc · 20 hrs)
(

ntc

11 amg

)(
333.15 K

Ttc

)0.7

(6.200)

Therefore, under typical conditions, the polarization decreases linearly from the

center of the target chamber to the ends. The polarization across the target chamber

varies by about ±1.5% relative to the target chamber average.
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Chapter 7

Progress Towards Reaching the

Limiting 3He Polarization

In this final chapter, we illustrate the dramatic gains that have occurred in tar-

get performance and summarize the main lessons learned regarding optimization.

The data presented here were taken from the various measurements that were per-

formed as target cells were being tested for upcoming experiments. Quoted values

for 3He polarization PHe are generally fairly accurate (±5%), but the numbers for

some other quantities may be somewhat less accurate, as will be discussed later.

More importantly, the conditions of these various tests varied considerably over

the past decade during which they occurred. Few of these measurements were

part of an organized, systematic exploration of target cell performance, since our

immediate goal had been to determine the best cells to use for upcoming experi-

ments. With these caveats in mind, the broad trends discussed in the previous two

chapters are clearly evident.
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7.1 The Impact of Alkali-Hybrid Mixtures

Tab. (7.1) is a list of target cells & their performance using broadband lasers. This

table is not meant to be complete, but merely representative of the cells of that time

period. The value for D listed in this table was determined by measuring the total

absorption of the pressure broadened Rb & K absorptions lines, see Sec. (E.8.4), and

then extrapolating this value to operating temperatures using their vapor pressure

curves, see Sec. (A.3).

The first 6 cells listed in Tab. (7.1) are 2.5 in diameter pumping-chamber target-

style cells containing only Rb that were pumped with 60 W of broadband (2 nm)

laser power. These cells were considered “state of art” circa 2002 and, in fact, two

of them (Priapus and Penelope) were used in E97110 described in Sec. (3.5). At the

time, the expectation was that the highest 3He polarization that could be achieved

in target cells (in the fast diffusion limit & not including beam relaxation) was

given by:

Pnaive
He = PA

[
1− ΓHe

Γs

]
(7.1)

where Γ−1
s is the spin up time constant, Γ

−1
He is the cell lifetime measured at room

temperature, and we’ve assumed their difference is equal to the volume averaged

spin exchange rate given by:

Γs− ΓHe = fpckse[A] (7.2)

where fpc is the fraction of 3He nuclei that are in the pumping chamber, kse is the

A-3He spin exchange rate constant, and [A] is the alkali number density. Using the

measured values for these quantities and assuming PA = 1, we find Pnaive
He > 0.60. If
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one directly attributed the low 3He polarization solely to a low alkali polarization,

then the following equation can be used to estimate the average alkali polarization

in the pumping chamber:

Pcalc
A = PHe

[
1− ΓHe

Γs

]−1

(7.3)

Indeed, it was a common belief that the 3He polarizations measured in these cells

were an indication of alkali polarizations at the level of Pcalc
A ≈ 0.70, see for example

[1].

As described in Sec. (5.5.2), alkali-hybrid SEOP was expected to utilize the laser

power more efficiently in transferring the light polarization to 3He nuclear polar-

ization. As a pratical matter, this statement implies that one would achieve:

1. higher alkali polarization for the same laser power and

2. the same alkali polarization for a higher alkali density.

This was, in fact, borne out as evidenced by the last 9 cells listed in Tab. (7.1). These

cells had both 2.5 in & 3.5 in pumping chamber diameters and were specifically

designed (and used) for E02013 described in Sec. (3.6). Several comments could be

made about their performance, but we’ll highlight the most relevant.

While the worst cells performed no worse than pure Rb cells, the best cells,

when pumped with sufficient laser power, achieved 3He polarizations in excess of

0.50. Since the lifetime of these cells did not vary significantly, it was safe to assume

that the difference in performance was attributable to the alkali-hybrid ratio D. We

found that the best performing cells had D in the range 3 ≤ D ≤ 7 or equivalently

5± 2, which is in surprisingly good agreement with the results of the simulation

shown in Fig. (5.6). However, these hybrid cells also failed to achieve Pnaive
He ≈ 0.8.
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cell PHe lasers I0 Γ−1
s Γ

−1
He D (PB) Pnaive

He Pcalc
AW/cm2 hrs hrs

Proteus 0.46 3/6 60 W 3.8 27 74 0 0.63 0.73
Priapus 0.44 3/6 60 W 3.8 21 56 0 0.62 0.71

Penelope 0.44 3/6 60 W 3.8 17 54 0 0.69 0.64
Phubar 0.39 3/6 60 W 3.8 18 46 0 0.61 0.64
Powell 0.38 3/6 60 W 3.8 13 25 0 0.49 0.77
Prasch 0.33 3/6 60 W 3.8 13 33 0 0.62 0.53
Boris 0.39 3/1 40 W 1.8 2.4

Edna 0.54 3/2 55 W 1.8 4.9 28 3.5 0.83 0.65
Samantha 0.53 3/1 40 W 1.8 4.6 22 4.1 0.79 0.67

AL TTC
0.54 5/2 97 W 6.1 8.0

26 4.4
0.69 0.78

0.53 5/1 49 W 3.1
0.45 3/1 30 W 1.9

Barbara 0.53 5/2 97 W 3.1 6.0 4.80.43 3/1 30 W 1.0

Gloria 0.58 3/2 53 W 1.7 5.0 35 6.9 0.86 0.68

Anna
0.39 3/1 30 W 1.0 7.0

9.30.31 2/1 20 W 0.6
0.24 1/1 10 W 0.3

Simone 0.45 2/2 60 W 3.8 32 9.6

Dolly 0.42 5/2 90 W 2.9 21
0.42 3/1 30 W 1.0 5.6 21

Table 7.1: Cell Performance with Broadband Lasers. For the pure Rb (hybrid) cells,
the oven set temperature was 180 oC (235 oC). The entry n/m P0 in the “lasers”
column indicates that n lasers with a total power of P0 was incident on the pump-
ing chamber. The second number m refers to the number of beamlines. Finally, I0

refers to the laser intensity at the front of cell estimated by 2P0/(πw2), where w is
the radius of the pumping chamber.
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It was tempting to believe that a low alkali polarization (PA ≈ 0.7) was once again

the culprit. Before we had the diagnostic tools to verify this directly, all we could

do was significantly increase the laser power to indirectly test this hypothesis.

7.2 Limits to the Alkali and He-3 Polarizations, Part I

To illustrate the point made at the end of the previous section, we’ll discuss the

performance of two cells listed in Tab. (7.1), AL TTC and Dolly, as a function of

laser power. AL TTC had a 2.5 in diameter pumping chamber with a D within the

optimal range. Doubling the laser power resulted in very little improvement in the

3He polarization 0.53→ 0.54. Given that this cell had a 2.5 in diameter pumping

chamber and that the size of the laser beam was adjusted to match the size of the

pumping chamber, this cell was pumped with the highest laser intensity I0 (power

per unit area) available in our lab at time. Dolly was a 3.5 in diameter pumping-

chamber cell with a D that was well outside the optimal range. In this case, tripling

the laser power resulted in essentially no improvement in the 3He polarization

0.42 → 0.42, see [2] for more details regarding the conditions of the high laser

power measurement.

While one could argue that this laser power was not sufficient to saturate the

alkali polarization in a pure Rb cell, it was difficult to make this argument for the

case of a hybrid cell, since they did exihibit an increase in 3He polarization. The

most straightforward explanation for these observations was that the laser power

that was being supplied was sufficient to achieve the highest alkali polarization

possible under those experimental conditions. If the 3He relaxation rate did not

increase significantly with temperature, then this would necessarily imply that
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PA ≈ 0.7 was the highest attainable alkali polarization. This conclusion was dif-

ficult to defend, because, even at that time, several authors had reported alkali

polarizations from direct measurements with broadband laser light in excess of

0.90 [3, 4]. On the other hand, anecdotal evidence had existed for years that the

“hot” cell lifetime (i.e. the lifetime measured with the lasers off and the cell near

operating temperature), after the A-3He spin exchange rate had been subtracted

out, appeared to be shorter than the “cold” cell lifetime (i.e. the lifetime measured

with the lasers off and the cell at room temperature). This observation was difficult

to verify accurately because of the factor of two variation in the spin exchange rate

constants kse that were reported in the literature at that time.

The first reliable measurements (see Sec. (D.3.1) for a more detailed discus-

sion) of the A-3He spin exchange rate constant was made by the Princeton Group

[5]. These results were later confirmed by the Wisconsin Group [6], who fur-

ther demonstrated unambiguously that the hot lifetime was indeed shorter than

the cold lifetime. Subsequently, they demonstrated that the excess 3He relaxation

present while the cell is hot appeared to be linearly proportional to the alkali den-

sity [7]. This implies the following relationship among the hot & cold cell lifetimes

and the spin up time constant:

Γ
hot
He = ΓHe + fpckse[A]X → Γs− ΓHe = fpckse[A](1 + X) (7.4)

which implies that the equilibrium 3He polarization is given by:

PHe =
PA

1 + X

[
1− ΓHe

Γs

]
(7.5)

where X is due to some 3He relaxation mechanism that scales with the alkali den-
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sity or has the same temperature dependance of the alkali vapor pressure curve

(i.e. ≈ T20).

Accepting the X-factor hypothesis, the limiting 3He polarization is given by

PA/(1 + X), which, by comparing Eqns. (7.3) & (7.5), we find is equal to Pcalc
A . By

ignoring the fact that these cells were tested under different conditions, we simply

took an average of Pcalc
A and estimated PA/(1 + X) = 0.67± 0.09 for pure Rb cells

& 0.70± 0.06 for hybrid cells within the optimal range. By assuming that X was

independant of D, we concluded that the alkali polarization was nearly the same

for pure Rb cells and hybrid cell within the optimal range. Since both the typi-

cal spin up time constant was much shorter and the laser intensity was usually

lower for our tests of hybrid cells, we essentially verified our previous claim that

hybrid cells would polarize a higher alkali density to the same alkali polarization

for the same laser power. Measurements of Γs, ΓHe, and PHe alone did not allow us

to establish to what extent the 3He polarization was limited by nonunity PA and

nonzero X when pumping with broadband lasers.

7.3 The Impact of Narrowband Lasers

Tab. (7.2) is a list of target cells & their performance using narrowband lasers. With

the exception of Sosa, Simone, & Dolly, each of these cells had a 3.0 in diameter

pumping chamber and was designed & constructed for use in the “Transversity”

group of experiments listed in Tab. (3.1). Using the experience gained from the

E02013 target cell production run, we adjusted our alkali-hybrid mixture prepara-

tion prescription, see Sec. (3.3), to insure that we obtained cells with a D within

the optimal range, 5± 2. Of the cells listed in Tab. (7.2), only two fell significantly
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cell PHe Lasers I0 Γ−1
s Γ

−1
He D (PB/EPR) P∗He PA X

Sosa 0.58 2NB/1BB 1.9 17 78 0/0 0.95 0.29
Alex 0.59 2NB/1BB 2.6 4.8 33 1.2/1.5 0.59 0.96 0.39

Stephanie 0.64 3NB 2.7 4.5 48 1.5/1.7 0.99 0.40

Brady 0.72 3NB 2.6 5.2 36 2.2/2.9 0.43 0.99 0.18
Moss 0.63 1NB/1BB 1.8 5.4 33 -/2.9 0.56 0.97 0.29
Tigger 0.51 1NB/1BB 1.8 4.9 13 -/4.2 0.95 0.13

Samantha 0.70 3NB 2.6 4.6 22 4.1/5.4 0.56 0.99 0.12
Maureen 0.69 3NB 2.7 29 -/6.3 0.98

Astralweeks 0.70 2NB/1BB 2.6 6.6 49 6.2/8.5 0.31 0.97 0.20

Simone 0.62 2NB/1BB 3.8 32 9.6/16 0.90
Dolly 0.62 1NB/1BB 1.3 5.8 21/-

Table 7.2: Cell Performance with Narrowband Lasers. The labels “nNB” & “mBB”
refer to the number of narrowband (n) and (m) broadband lasers used for the mea-
surement. Each laser had a power incident on the pumping chamber of about 20
W.

outside that range, which indicated that we indeed achieved a sufficient level of

control over the ratio D. Of the cells that were pumped with three narrowband

lasers (and no broadband lasers), three out of four achvieved 3He polarizations

near or above 0.70. Regardless of D, so long as even one narrowband laser was

used, all but one cell listed in Tab. (7.2) achieved or significantly exceeded the best

performance, using only broadband lasers, listed in Tab. (7.1). The cell, Tigger,

with the poorest performance had an unusually short lifetime. Even so, this cell

still outperformed every pure Rb cell that we had ever pumped in our apparatus

using only broadband lasers.

For the best performance, as it related to D, we found that the optimal range

using narrowband lasers was 3≤ D≤ 9 or equivalently D = 6± 3. This result was

consistent with what we found for broadband lasers and was in complete agree-

ment with the finding from the previous simulations that the optimal value of D



7.4. “MASING” EFFECTS 523

was relatively insensitive to the laser linewidth. We’ll note that Sosa, a 3.5 in di-

ameter pumping-chamber pure Rb cell, achieved the highest 3He polarization that

we’ve ever obtained for a pure Rb target cell. This was due to both the fact that it

had an unusually long lifetime and that it was pumped using mostly narrowband

laser power.

7.4 “Masing” Effects

During these set of tests, we observed that the 3He polarization was much lower

when pumping to the high energy state, see Fig. (4.14), than when pumping to

the low energy state, see Fig. (4.13). These lower polarizations are listed as P∗He

in Tab. (7.2) and, for example, the cell Astralweeks was only able to obtain a

3He polarization of 0.31 when pumped to the high energy state. We were able

to suppress this effect by applying a sufficiently large longitudinal magnetic field

gradient (≈ 10 mG/cm) along the holding field direction. This gradient was small

enough not to significantly reduce the 3He polarization due to the relaxation, see

Sec. (6.2.2).

Because of the dependence on the sign of the 3He polarization and the response

to a magnetic field gradient, we called this effect the “masing” effect due to its sim-

ilarities to the masing effect described in [8,9]. However, unlike the effect decribed

in [8], we could find no obvious coupling between the 3He magnetization and our

NMR pickup coils. Furthermore, such an effect had been observed in several JLab

experiments and there was anecdotal evidence that this effect only occured in the

pumping chamber. We believe that we have verified this by our simultaneous

NMR measurements of the pumping & target chambers using two sets of NMR
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Figure 7.1: Masing Effect in the Target Cell Astralweeks. The red data points are the
NMR signal in either chamber. The solid blue lines are the current in the gradient
coil. The left (right) plot is for the pumping (target) chamber. .

pickup coils. Fig. (7.1) shows the NMR signal in the pumping & target chambers

as a function of time a the current in the gradient coils is varied. As the current

was lowered in a stepwise fashion, the NMR signal in the pumping chamber also

dropped in a stepwise fashion. Whereas the NMR signal dropped almost instanta-

neously in the pumping chamber, the NMR signal in the target chamber appeared

to exhibit a time lag of several minutes and then only slowly & smoothtly low-

ered in size. We took this as evidence that the masing effect occurred only in the

pumping chamber. Regardless of the physical origin of this effect, a magnetic field

gradient can suppress it and is absolutely required to achieve high polarization

when pumping to the high energy state.

7.5 Limits to the Alkali and He-3 Polarizations, Part II

We were able to measure the alkali polarization directly using EPR RF spectrocopy,

which is a standard diagnostic tool in spin exchange optical pumping, see for ex-

ample [3, 4, 6]. Fig. (7.2) shows a typical EPR RF spectra in a hybrid cell which a
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Figure 7.2: Alkali EPR RF Spectra at 18.3 MHz. .

D =? and represents an alkali polarization of PA =?. It is straightfoward to show

that the ratio of areas under consecutive peaks for the same alkali isotope can be

related to the alkali polarization, see Sec. (E.10.3). In addition, the alkali-bybrid

ratio D under operating conditions can also be determined using these spectra, see

Sec.(E.10.4).

Armed with this additional diagnostic tool, we retested three cells, Samantha,

Simone, & Dolly, from Tab. (7.1) using narrowband lasers. The improvement in

performance, 0.42→ 0.62, for Dolly was particularly striking. As noted before,

increasing the broadband (only) laser power for Dolly by a factor of three resulted

in no gains in 3He polarization. On the other hand, simply replacing one broad-

band laser with one narrowband laser resulted in a 3He polarization nearly 50%

relative higher with half the total laser power. Of the three, Samantha had a D
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that was closest to the optimal value and showed an increase from 0.53, using only

broadband lasers, to 0.70, using only narrowband lasers. While Samantha had a

near unity alkali polarization, Simone, with a D outside the optimal range, had the

lowest measured alkali polarization of the all the cells tested. Unfortunately, this

cell ruptured before we could perform any alkali polarization measurements.

Regardless, given the improvements in performance of these three cells with

narrowband lasers and by direct measurements of the alkali polarization in other

cells, it was safe to infer that pumping with broadband lasers resulted in alkali

polarizations that were nonunity. Furthermore, we have never measured an alkali

polarization in excess of 0.90 using only broadband lasers. On the other hand, for

the cells with a D within the optimal range, the alkali polarizations were never be-

low 0.95. Under ideal conditions (i.e. three narrowband lasers with no broadband

lasers), these cells obtained alkali polarization in excess of 0.97 in every case.

Because of the variations in laser conditions, it was difficult to draw firm con-

clusions about the relationship between D and the alkali polarization. With that

said, a decrease in alkali polarization for increasing values of D beyond the op-

timal value was the bevahiour that one would expect based on the results of the

simulation and the results of the Wisconsin Group [10]. A natural explanation for

this was due to the increased sensistiity to off resonant pumping of the K D2 tran-

sition, which scales with D. This would also explain the dramatic improvement

one obtains using narrowband lasers compared to broadband lasers.

As mentioned previously, the limiting 3He polarization is given by PA/(1 +

X). Since pumping with narrowband lasers, under ideal conditions, can result in

nearly unity alkali polarization, the value of X determines the limiting 3He polar-

ization obtainable for a given cell. A direct measurement of the alkali polarization,
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in combination with the other measurements that we already performed on the

target cells, allowed us to extract X for any cell of interest using the following

equation:

X =
PA

PHe

[
1− ΓHe

Γs

]
− 1 (7.6)

Before discussing the values of X listed in Tab. (7.2), it is important to note that

three points. First, we measured the alkali polarization using two different probes

that were sensitive to differnt regions of the pumping chamber. Faraday rotation,

see Sec. (E.9.2), utilizes a probe beam that was sensitive to the alkali polarization

along its path through the cell. On the other hand, the intensity of the D2 fluores-

ence measured by the photodiode, see Sec.(4.4.2), was sensitive to some region in

the pumping chamber that was closest to the photodiode. It was entirely possible

that neither of these methods was truly representative of the volume averaged al-

kali polarization. With that said, we have found satisfactory agreement between

these two methods.

Second, the cold lifetime Γ
−1
He is partly due to the dipolar interactions among

the 3He nuclei themselves. The relaxation rate associated with this interaction has

known dependences on the 3He temperature and density, see Sec.(D.5.1), that were

not accounted for in our preliminary determinations of X. The third and final point

concerns the proper interpretation of Γs. As discussed in Sec. (6.1.4), the spin up

curves measured in two chambered cells was always the sum of two exponentials,

one with a fast time constant and one with a slow time contant. However, the spin

up time constants used to detemine X were the results of single exponential fits to

the data, which was appropriate only in the fast diffusion limit. This necessitates

corrections of order Γs/dtc, which have not been made yet, where dtc (≈ 1/hr) was

the diffusion rate between the two chambers.
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The range of X that we’ve extracted for 3 in diameter pumping chamber cells

was 0.12 ≤ X ≤ 0.40. The lowest values for X that we’ve measured (≈ 0.12) were

among the lowest values observed by the Wisconsin & NIST Groups [7]. Both

of these observations were in completement aggreement with their measurements

that indicated≈ 0.1≤ X ≤ (0.4 cm) S/V, where S/V is the surface to volume ratio

of the cell. Using PA/(1 + X) and assuming PA = 1, we inverted our measured X

range to find 0.7 ≤ PHe ≤ 0.9. This has indicated that we may be, for the first time,

truly approaching the limits of 3He polarization attainable in target cells.

7.6 Summary & Outlook

Fig. (7.3) depicts the 3He polarization as a function of the alkali-hybrid ratio D and

the laser intensity I0. The most salient features of these two plots can be summa-

rized by the following statement: To insure the best performance, a target cell, with a D

within the range 5± 2, should be pumped by narrowband lasers (∆ν ≈ 0.2 nm) with an

intensity of at least 2.5 W/cm2.

Given the values of X that we’ve measured in our target cells, it was tempting

to think that, at suffiently high laser intensity and alkali density (i.e. tempera-

ture), we should obtain polarizations in excess of 0.80. If one were not concerned

with damaging the cells, this could be tested, with the cells and laser intensity

presently available, by simply increasing the cell temperature by an additional

25 oC. On the other hand, if we have truly identified all of the factors limiting

the 3He polarization, then a 4.5 in diameter pumping chamber cell with a 45 hr

lifetime and X = 0.15 should achieve a 3He polarization of 0.80 at present operat-

ing temperatures.
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Although, as a practical matter, it has been shown that the alkali polarization

can be made unity under the appropriate conditions, it is still interesting to de-

termine the mechanism that limits the alkli polarization at high D and/or when

pumping with broadband lasers. Whatever the mechanism, the relaxation rate as-

sociated with it must scale with the D1 optical pumping rate (i.e. laser power). One

potentially useful probe of some of these dynamics may be the relative population

of the excited state of the alkali atoms. They may be monitored by measuring the

spectrum of fluroecnes emitted by the deexciting atoms.

Finally, we’ll end with some speculative comments about the nature of X. Based

only the measurements listed in Tab. (7.2), one could argue that X appears to de-

crease with decreasing lifetimes or with increasing values for D. More measure-

ments along these lines may be profitable. In calculating X, we have assumed

that the relaxation mechanism that was associated with X was only present in

the pumping chamber and not in the target chamber. Our only justification for

this assumption was the observation [7] that this mechanism appeared to increase

with alkali density and/or temperature, both of which are higher in the pumping

chamber. It would be interesting to find a way to measure X separately for the two

chambers.
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Appendix A

Units, Physical Constants, and Alkali

Reference Data

A.1 Units & Physical Constants

All units are in SI unless otherwise noted. The following relationship sets a useful

scale for nuclear reactions:

~c = 197.32696 MeV · fm = 0.19732696 GeV · fm (A.1)

If we set ~ = c = 1, then nuclear energy & distance scales are related by:

GeV2 = 25.681900/fm2 (A.2)

1/GeV2 = 0.389379304 mb (A.3)

1 b = 10−24 cm2 (A.4)

1 amu = 931.494028 MeV (A.5)
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symbol value units description

c 299 792 458 m/s speed of light in vacuum
µ0 4π× 10−7 N/A2 magnetic constant
ε0 8.854 187 817× 10−12 C2/(N ·m2) electric constant

e 1.602 176 5× 10−19 C elementary charge
m 9.109 382× 10−31 kg electron mass
gS −2.002 319 304 36 unitless electron g-factor
re 2.817 940 29× 10−15 m classical electron radius

µB 9.274 009× 10−24 J/T Bohr magneton
µN 5.050 783× 10−27 J/T Nuclear magneton
h 6.626 069× 10−34 J · s Planck constant
α−1 137.035 999 7 unitless inverse fine structure constant

NA 6.022 142× 1023 #/mol Avogadro constant
k 1.380 65× 10−23 J/K Boltzmann constant
R 8.314 5 J/(mol ·K) molar gas constant

amu 1.660 538 8× 10−27 kg
(
mass 12C

)
/12

Table A.1: Physical Constants. These values are from CODATA 2006 [1].

The following relationships are useful for 3He polarimetry:

µ0µN =
1.70530 mG

amg
=

17.0530 nV
amg · cm2 · kHz

(A.6)

µB/k = 6.7171× 10−5 K/G (A.7)

µB/h = 1.3996246 MHz/G (A.8)

µN/k = 3.65826× 10−8 K/G (A.9)

µN/h = 0.7622594 kHz/G (A.10)
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The following relationships are useful for determining atomic cross sections & rate

constants:

R = kNA (A.11)

k/h = 20.8366 GHz/K (A.12)

1 amg =
101325 Pa

k · (273.15 K)
= 2.68678× 1019/cm3 (A.13)

1015/cm3 = 37.2193 µamg (A.14)

1 Å2 = 10−16 cm2 (A.15)

1 Hz/amg = 3.72193×10−20 cm3

s
= 3.72193×10−4 Å2 · cm

s
(A.16)

10−18 cm3/s = 0.01 Å2 · cm
s

= 106 b · cm
s

= 26.8678
Hz

amg
(A.17)

1 MHz/
(
1015/cm3) = 10−9 cm3/s = 107 Å2 · (cm/s) (A.18)

∆ν = −474.3 GHz
(

∆λ

+1 nm

)(
795 nm
λ

)2

(A.19)

v̄rel. = 1.00089× 105 cm
s

√(
T

473.15 K

)(
10 g/mol
µreduced

)
(A.20)

where one amagat (amg) is the density of a universal gas at a temperature & pres-

sure of 273.15 K & 1 atm. The following relationships are useful when calculating

the polarizability of alkali atoms:

ε0 = 1/(c2µ0) (A.21)

α =
e2

4πε0~c
=
(mc

~

)
re (A.22)

re =
e2

4πε0mc2 =
(

~
mc

)
α (A.23)

rec =
~α
m

= 0.84479725× 10−15 THz · cm3/mm (A.24)
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Element Ground S1/2 P1/2 P3/2 νso y = 1
State gJ/gS gJ gJ (GHz) (T)

Lithium 2 1.000 003 4 −0.667 −1.335 9.994 18 0.712
Sodium 3 1.000 000 9 −0.665 8 −1.334 2 515.730 36.7
Potassium 4 1.000 018 44 1 730.32 123
Rubidium 5 1.000 005 9 7 124.94 508
Cesium 6 1.000 104 474 −0.665 90 −1.334 0 16 614.2 1180

Theory 1.000 000 000 −0.665 894 −1.334 106
(if gS = −2) −2/3 −4/3

Reference [3] [2] (E.57) (E.59)

Table A.2: Alkali atom ground state and first excited states fine structure.

A.2 Alkali Atom Fine & Hyperfine Structure

An excellent source of alkali D line data has been complied by Daniel Steck at

http://steck.us/alkalidata/. The spin-orbit splitting is simply the difference

between the D2 and D1 transition frequencies: ν2 − ν1 = νso. The strength of the

Zeeman interaction relative to the spin-orbit (hyperfine [only for J = 1/2]) coupling

is quantified by the unitless parameter y (x) which is given by:

y =
[

gS

−2

]
2µBB0

hνso
x =

(
gIµN − gJµB

) B0

hνhfs
(A.25)

where B0 is the magnetic field. The relative energy of a particular manifold F is

given by [2]:

EF =
AK
2

+
B
2

[
3K(K + 1)− 2I(I + 1)2J(J + 1)

2I(2I − 1)2J(2J− 1)

]
(A.26)

where K = F(F + 1)− I(I + 1)− J(J + 1), I is the nuclear spin, and J is the total elec-

tronic angular momentum. This formula can be used to calculate the fine structure

energy levels with the substitutions B = 0, F→ J, I→ S, and J→ L.

http://steck.us/alkalidata/
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Element
D1 D2

λ1 τ1 f1 τ1 f1 λ2 τ2 f2 τ2 f2
(nm, air) (ns) (ns) (nm, air) (ns) (ns)

Lithium 670.791 26.9 0.251 27.3 0.247 670.776 26.9 0.502 27.9 0.494
Sodium 589.592 4 16.2 0.322 16.4 0.318 588.995 0 16.1 0.647 16.3 0.637
Potassium 769.896 26.2 0.340 27 0.35 766.490 25.8 0.682 27 0.70
Rubidium 794.760 3 27.7 0.342 28.5 0.32 780.026 8 26.2 0.695 26.5 0.67
Cesium 894.347 34.8 0.344 31 0.39 852.113 30.53 0.7131 31 0.81

Reference [3] [4] [3] [4]

Table A.3: Alkali atom D1 and D2 transition wavelengths (λ), lifetimes (τ ), and
oscillator strengths ( f ). Data from NIST Atomic Spectra Database [3] and Radzig
& Smirnov [4]. These oscialltor strengths are for low buffer gas density. At higher
buffer gas density, the oscialltor strengths decreases, for example, see [5, 6]. Al-
though the sum ( f1 + f2) varies from 0.75 to 1.06, the ratio f2/ f1 equals 2 to better
4% relative for the alkali atoms listed in the table.

Element D1 D2

λ1 ν1 λ2 ν2 νso
(air, nm) (vac, nm) (GHz) (air, nm) (vac, nm) (GHz) (GHz)

Lithium 670.791 670.976 446 800.6 670.776 670.961 446 810.6 10.0
Sodium 589.592 4 589.755 8 508 333.2 588.995 0 589.158 2 508 848.8 515.6
Potassium 769.896 770.108 389 286.3 766.490 766.701 391 016.1 1 729.9
Rubidium 794.760 3 794.978 9 377 107.4 780.026 8 780.241 4 384 230.4 7 123.0
Cesium 894.347 894.593 335 116.0 852.113 852.347 351 725.8 16 609.8

Table A.4: Alkali atom D1 & D2 air & vacuum transition wavelengths (λ), transi-
tion frequencies (ν), and spin-orbit splitting (νso). Data are from the NIST Atomic
Spectra Database [3]. The air wavelengths are calculated from the vacuum wave-
lengths assuming “standard air” using the 1972 formula of Peck & Reeder [7].
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A.3 Alkali Metal Vapor Pressure Curves

A.3.1 The Clausius-Clapeyron Equation

The saturated vapor pressure above a liquid (solid) is described by the Clausius-

Clapeyron equation. It is a consequence of the equality between the chemical po-

tentials of the vapor and liquid (solid). The derivation can be found in any under-

graduate text on thermodynamics (e.g. Kittel & Kroemer [11]):

∆v · ∂P = L · ∂T/T (A.27)

where P is the pressure, T is the temperature, L is the latent heat of vaporization

(sublimation) per particle, and ∆v is given by:

∆v = vv− vl(s) =
Vv

Nv

− Vl(s)

Nl(s)
(A.28)

where V is the volume occupied by the particles, N is the number of particles, and

the subscripts v & l(s) refer to the vapor & liquid (solid) respectively.

Following the derivation in Nesmeyanov [12], we’ll make the approximation

that the average volume per vapor atom is much greater than the average volume

per liquid (solid) atom:

vv � vl(s) ⇒ ∆v ≈ vv =
Vv

Nv

(A.29)

Since the vapor has a very low density, we can apply the ideal gas law:

PVv = NvkT (A.30)
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to get: (
kT/P

)
· ∂P = L · ∂T/T (A.31)

Expanding the latent heat as a function of temperature,

L(T) = L0 + L1T + L2T2 + · · · (A.32)

and a little rearrangement gives:

∂P
P

=
(

L0

kT2 +
L1

kT
+

L2

k
+ · · ·

)
∂T (A.33)

Integrating the above equation term by term and making substitutions for the co-

efficients gives the vapor pressure curve:

log Pvp = A− B
T

+ CT + D log T (A.34)

Note that the coefficients A, B, C, & D depend on whether a liquid or solid is

being considered, the choice of units for the vapor pressure Pvp, and the base for

the logarithm. The temperature T, however, is always in Kelvin.

A.3.2 Number Density Formulas

The number density is obtained from the vapor pressure curve by once again ap-

plying the ideal gas law:

[A] =
Nv

Vv

=
Pvp

kT
(A.35)
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For all alkali metals, the number density (in units of 1/cm3) from the 1995 CRC [13]

can be written in the following equivalent forms:

[A] =
[(

101325 Pa
1 atm

)(
10A−B/T atm

)]
·
[

1
kT

(
1 m

100 cm

)3
]

(A.36)

= [A]0

(
T0

T

)
exp

(
b
[

1− T0

T

])
(A.37)

where A & B are parameters from the CRC and [A]0, T0, & b are parameters derived

from them. These parameters are different for the vapor pressure above liquid

and solid. At the melting point, the liquid and solid CRC formulas give values

that are consistent within the quoted accuracy, see Tab. (A.8). Note that T0 is the

temperature corresponding to a density of [A]0.

The inversion formula used to obtain the temperature given the number den-

sity is of the form:

T =
T0

1−∑
N
n=1 an ·

(
log [A]/[A]0

)n (A.38)

The coefficients {an} are found from a fit to the Eqn. (A.38). The value of highest

order N is found by keeping the temperature residuals under 0.02 K (0.005K) for

liquids (solids) over the temperature range noted in the CRC. If only the lowest

order term is kept (N = 1), then we get the following formula that is good to ±2.5

K for Li and ±1.2 K for all others:

T =
T0

1− a1 · log [A]/[A]0
(A.39)

The values for parameters A, B, T0, [A]0, b, & {an} are listed in Tab. (A.7).
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Figure A.1: Number Density and Vapor Pressure Curves. The solid lines represent
the CRC formula [13]. The dashed lines represent the Nesmeyanov formula [12].
The dotted lines represent Killian [14].
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CRC

over solid Li Na K Rb Cs

Tmin (K) 298
Tmin (oC) 25
[A]min (1/cm3) 1.49×10−3 7.72×105 5.78×108 1.27×1010 4.82×1010

Tmp (K) 453.7 370.87 336.53 312.46 301.59
Tmp (oC) 180.5 97.72 63.38 39.31 28.44
[A]mp (1/cm3) 3.61×106 3.07×109 3.12×1010 5.47×1010 6.88×1010

A 5.667 5.298 4.961 4.857 4.711
B (K) 8310 5603 4646 4215 3999

T0 (K) 378.51 336.79 302.76 295.75 283.12
[A]0 (1/cm3) 103 108 109 1010 1010

b 50.552 38.306 35.334 32.816 32.523
a1 × 102 2.0181 2.6806 2.9125 3.1447 3.1752
a2 × 105 0.41582 0.94564 1.3149 0
a3 × 108 5.2686 0
a4 0

over liquid Li Na K Rb Cs

Tmp (K) 453.7 370.87 336.53 312.46 301.59
Tmp (oC) 180.5 97.72 63.38 39.31 28.44
[A]mp (1/cm3) 3.79×106 3.18×109 3.22×1010 5.66×1010 7.11×1010

Tmax (K) 1000 700 600 550
Tmax (oC) 727 427 327 277
[A]max (1/cm3) 7.90×1015 1.10×1016 1.17×1016 1.24×1016 2.12×1016

A 5.055 4.704 4.402 4.312 4.165
B (K) 8023 5377 4453 4040 3830

T0 (K) 800.94 546.90 463.79 422.98 406.51
[A]0 (1/cm3) 1014

b 23.065 22.638 22.108 21.993 21.694
a1 × 102 4.5321 4.6214 4.7377 4.7636 4.8324
a2 × 105 4.6950 4.9639 5.4499 5.5431 5.8187
a3 × 106 1.4241 1.6648 1.6322 1.7177 1.9172
a4 × 108 2.8057 4.5433 0

Table A.7: CRC Number Density Parameters. The parameters listed are used in
Eqns. (A.36), (A.37), (A.38), & (A.39). The CRC [13] vapor pressure formulas have
a quoted accuracy of 5%. The inversion formula for the temperature reproduces
the CRC values to within ±0.02 K (±0.005 K) given the vapor pressure above a
liquid (solid). If only the lowest order term is used (a1), then the inversion formula
reproduces the CRC values to ±2.5 K for Li and ±1.2 K for all others. The fit to Li
is worse because the data covers a much larger number density range.
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Melting CRC % diff. avg.oC K over solid over liquid

Li 180.5 453.65 3.61×106 3.79×106 4.8 3.70×106

Na 97.72 370.87 3.07×109 3.18×109 3.6 3.12×109

K 63.38 336.53 3.12×1010 3.22×1010 3.4 3.17×1010

Rb 39.31 312.46 5.47×1010 5.66×1010 3.5 5.57×1010

Cs 28.44 301.59 6.88×1010 7.11×1010 3.3 6.99×1010

Table A.8: CRC Number Density at the Melting Point. The CRC solid and liquid
vapor pressure curves give two different values at the melting point. However,
the difference is always less than 5%, which is the quoted accuracy for the CRC
formula.

A.3.3 Comparison with other standard formulas

The Nesmeyanov [12] formula for the alkali number density (in 1/cm3) is written

as:

[A] =
[(

101325 Pa
760 mmHg

)(
10A−B/T+CT+D log10 T mmHg

)]
·
[

1
kT

(
1 m

100 cm

)3
]

(A.40)

There are no uncertainties quoted. Nesmeyanov does not list values for the K

vapor pressure above a solid; therefore, we’ll extrapolate to lower temperatures

using the liquid values.

Killian [14] made measurements of K and Rb and fit them to:

[A] =
[(

1 Pa
10 barye

)(
10A−B/T barye

)]
·
[

1
kT

(
1 m

100 cm

)3
]

(A.41)

There were no uncertainties quoted. In addition, Killian quotes the pressure in

“bars.” His formula is incorrect by 6 orders of magnitude if one interprets his “bar”

as 105 Pascals. However, it has been noted [15] that there exists another pressure

unit “barye,” which is equivalent to 0.1 Pascals. We’ll assume that “barye” is the
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unit meant by Killian.

The parameters A, B, C, & D for Nesmeyanov & Killian are listed in Tab. (A.9).

Fig. (A.1) shows both the vapor pressures and number densities from all three

sources; whereas Fig. (A.2) depicts the percent difference between Nesmeyanov &

Killian relative to the CRC. Nesmeyanov appears to be systematically 10% to 30%

lower. The Killian values for Rb compare favorably to the CRC and are about 10%

lower over the temperature range covered by Killian’s measurements. Outside that

range, the Killian values are within −10% and +20% of the CRC values. Within

the measurement range, the Killian K values compare favorably to the CRC, but

outside that range, the Killian values diverge from the CRC significantly.

A.3.4 Alkali Dimers

Dimers are weakly bound molecules formed by two alkali atoms. Only Nesmeyanov

includes a formula for alkali dimers in vapor form [12]:

[A2] =
[(

101325 Pa
760 mmHg

)(
10A−B/T+CT+D log10 T mmHg

)]
·
[

1
kT

(
1 m

100 cm

)3
]

(A.42)

No uncertainties are quoted. The Cs liquid and solid dimer number densities have

a large discrepancy at the melting point. Therefore, we’ll use the liquid vapor

pressure to extrapolate down to lower temperatures for Cs.

The ratio of the Nesmeyanov dimer to monomer density (or vapor pressure) is
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Figure A.2: Relative Difference Between Formulas. The solid lines represent the %
difference between Nesmeyanov and the CRC. The dashed lines represent the %
difference between Killian and the CRC over the temperature range measured in
Killian. The dotted lines represent extrapolations outside the temperature ranges
quoted for the formulas. The discontinuities are mainly attributable to the CRC
formulas and occur only at the melting point.
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Nesmeyanov

over solid Li Na Rb Cs

Tmin (K) 298
Tmin (oC) 25
[A]min (1/cm3) 9.29×10−4 6.83×105 9.59×109 4.10×1010

Tmp (K) 453.7 370.87 312.46 301.59
Tmp (oC) 180.5 97.72 39.31 28.44
[A]mp (1/cm3) 2.68×106 2.83×109 3.95×1010 5.72×1010

−A 54.87864 −133.42927 94.04826 219.48200
B (K) 6450.944 9302.868 1961.258 −1088.676
−C (1/K)× 102 1.487480 −3.114431 3.771687 8.336185
D 24.82251 −49.37679 42.57526 94.88752

over liquid Li Na K Rb Cs

Tmp (K) 453.7 370.87 336.53 312.46 301.59
Tmp (oC) 180.5 97.72 63.38 39.31 28.44
[A]mp (1/cm3) 2.68×106 2.85×109 2.39×1010 3.95×1010 5.96×1010

Tbp (K) 1615 1156 1032 961 944
Tbp (oC) 1342 883 759 688 671
[A]bp (1/cm3) 4.23×1018 5.50×1018 6.08×1018 6.49×1018 6.85×1018

A 10.34540 10.86423 13.83624 15.88253 8.22127
B (K) 8345.574 5619.406 4857.902 4529.635 4006.048
C (1/K)× 104 −0.8840 0.0345 3.4940 5.8663 −6.0194
−D 0.68106 1.0411 2.21542 2.99138 0.19623

Killian

K Rb

Tmin (K) 328.8 312.5
Tmin (oC) 55.6 39.4
[A]mp (1/cm3) 1.19×1010 4.93×1010

Tmax (K) 369.2 376.8
Tmax (oC) 96.1 103.6
[A]max (1/cm3) 4.76×1011 7.38×1012

A 11.83 10.55
B (K) 4964 4132

Table A.9: Alternative Number Density Parameters. The Nesmeyanov [12] pa-
rameters are used in Eqn. (A.40) and the Killian [14] parameters are using in
Eqn. (A.41).
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fit to the following two forms:

[A2]
[A]

=
exp

(
−b
(T0

T − 1
)
+ c
(

T
T0
− 1
)

+ d · log
(

T
T0

))
(
[A]/[A2]

)
0

(A.43)

=
(
[A]/[A]0

)n(
[A]/[A2]

)
0

(A.44)

The first form is fit to values over a temperature range that covers 298 K to 600

K. Even though this range covers the discontinuity at the melting point, the fit still

reproduces the Nesmeyanov values to within±5%. The second form is fit to values

over a temperture range that runs from the melting point to a temperature that

corresponds to at least 1016. Because of the larger range covered, it only reproduces

the Nesmeyanov values to ±10%. Note that the ratio
(
[A]/[A2]

)
0 corresponds to a

temperature T0 for the first form and to the density [A]0 for the second form.

The values for the Nesmeyanov Dimer parameters A, B, C, & D for liquids and

solids, as well as the parameters derived from them for the first fit formula b, c,

d, T0, &
(
[A]/[A2]

)
0 are listed in Tab. (A.11). The parameters for the second fit

formula n, [A]0, &
(
[A]/[A2]

)
0 are listed in Tab. (A.10).
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Nesmeyanov Dimer to Monomer Ratio

Li Na K Rb Cs

Tmin (K) 453.65 370.87 336.53 312.46 301.59
Tmin (oC) 180.5 97.72 63.38 39.31 28.44
[A]min (1/cm3) 2.68×106 2.85×109 2.39×1010 3.95×1010 5.96×1010(
[A2]/[A]

)
min

5.93×10−5 3.48×10−4 2.49×10−5 3.48×10−5 2.09×10−5

Tmax (K) 1050 700 600 550
Tmax (oC) 777 427 327 277
[A]max (1/cm3) 1.62×1016 1.04×1016 1.00×1016 1.04×1016 2.06×1016(
[A2]/[A]

)
max

0.0357 0.0253 4.85×10−3 5.39×10−3 5.24×10−3

[A]0 (1/cm3) 1014(
[A]/[A2]

)
0 119 148 1350 1210 1920

n 0.284 0.284 0.407 0.404 0.433

Table A.10: Dimer to Monomer Ratio vs. Monomer Density. This parameters are
used in Eqn. (A.44). The temperature range of the fit covers the higher melting
point to a temperature that corresponds to monomer density of at least 1016 1/cm3.
These parameters reproduce the Nesmeyanov [12] values to within ±10%.
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Figure A.3: Dimer to Monomer Ratio vs. Temperature and Monomer Density.
(Nesmeyanov [12] formulas)
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Nesmeyanov Dimers

over solid Li Na K Rb Cs

Tmin (K) 298
Tmin (oC) 25
[A2]min (1/cm3) 5.14×10−11 14.9 1.85×103 1.67×105 1.31×106

Tmp (K) 453.7 370.87 336.53 312.46 301.59
Tmp (oC) 180.5 97.72 63.38 39.31 28.44
[A2]mp (1/cm3) 148 1.01×106 5.93×105 1.27×106 2.15×106

−A 74.04758 338.13794 75.58292 211.33010 211.02760
B (K) 8491.378 −1842.920 4578.883 966.918 727.545
−C (1/K)× 102 2.035840 9.791968 2.667904 7.829240 7.947950
D 33.06458 139.75985 34.61890 91.59149 91.64953

over liquid Li Na K Rb Cs

Tmp (K) 453.7 370.87 336.53 312.46 301.59
Tmp (oC) 180.5 97.72 63.38 39.31 28.44
[A2]mp (1/cm3) 148 1.01×106 5.92×105 1.27×106 1.21×106

Tbp (K) 1615 1156 1032 961 944
Tbp (oC) 1342 883 759 688 671
[A2]bp (1/cm3) 6.22×1017 7.14×1017 3.52×1017 3.98×1017 4.13×1017

A 18.37849 5.33624 17.05231 41.27530 18.22054
B (K) 11139.618 6866.162 6806.144 7226.316 6064.472
C (1/K)× 103 0.16342 −1.06668 0.12351 3.33213 0.09016
−D 3.03209 −1.23023 2.98966 11.85510 3.45395

Tmin (K) 298(
[A2]/[A]

)
min

5.44×10−8 2.17×10−5 4.12×10−6 1.72×10−5 1.74×10−5

Tmax (K) 600(
[A2]/[A]

)
max

9.67×10−4 1.20×10−2 4.91×10−3 8.32×10−3 8.57×10−3

T0 (K) 500(
[A2]/[A]

)
0 1.70×10−4 3.70×10−3 1.30×10−3 2.82×10−3 2.73×10−3

b 10.939 26.735 17.484 11.862 9.019
c −5.303 22.388 9.816 2.482 0.228
−d −5.361 42.561 19.449 7.623 2.224

Table A.11: Dimer Number Density Parameters. These values are from Nes-
meyanov [12] and are used in Eqn. (A.42). The ratio Dimer to Monomer density
ratio is fit to Eqn. (A.43) over a temperature range of 298 K to 600 K. The Cs dimer
density is discontinuous at the melting point, so we use the liquid parameters even
below the melting point. The K monomer number density below the melting point
is estimated using the liquid parameters. The fit reproduces the Nesmeyanov val-
ues to within 5%.
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Appendix B

Radiation Thicknesses for E97110

B.1 Introduction

Catalog of radiation lengths and materials for E97110. Also a catalog of collisional

thickness and most probable energy loss. Still needs a list of uncertainties and

a more complete list of references. Better equation references. More discussion

about the “1/18” term. Maybe explicitly write out bremmstrahlung spectrum?

better table placement. reference/verify for GE180 composition. make comment

about β ≈ 1 and about the energy independence of B for our beam energies and

momenta. references for densities of oxides. δ subscripts on stuff.

B.2 Formulas for Calculating Radiation Lengths

Bremsstrahlung is radiation emitted when an electron is accelerated in the Coulom-

bic fields of both the nucleus [1] and electrons [2, 3] of an atom. The amount of
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energy an electron loses to bremsstrahlung at a given frequency is given by:

d2E = −hν [N]
dσ(ν, E)

dν
dx dν (B.1)

where hν is the energy of the radiated photons, [N] is the number density of the

atoms, dσ(ν, E)/dν is differential cross section for the production of a photon, dx is

the thickness of the material, and dν is width of frequency range. To calculate the

amount of energy lost per unit depth over all frequencies, one must integrate over

the entire bremsstahlung frequency spectrum:

Z d2E
dx

=
dE
dx

= −[N]
Z E

0
hν

dσ(ν, E)
dν

dν (B.2)

It is convenient to change the integration variable to u≡ hν/E, which is the fraction

of the electron energy carried away by the radiated photons:

dE
dx

= −[N]E
Z 1

0
u

dσ(u, E)
du

du (B.3)

For electron energies over 50 MeV, the integrand is nearly independent of the elec-

tron energy E [4]:

Z 1

0
u

dσ(u, E)
du

du ≈
Z 1

0
u

dσ(u)
du

du ≡ σrad (B.4)
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Consequently σrad, to a very good approximation, depends only on the charge of

the nucleus Z and is given by [5–7]:

σrad (Z) = 4αr2
e

[
Z2 (Lrad(Z)− f (Zα)

)
+ ZL′rad(Z)

]
(B.5)

4αr2
e = 2.31787 millibarns (B.6)

where α is the fine structure constant and re is the classical electron radius. The

term proportional to Z2 is due to the field of the nucleus and the term proportional

to Z is due to the field of the atomic electrons. When evaluated in the complete

screening limit, the radiation integrals Lrad & L′rad are given by:

Lrad(Z) =



5.31 Z = 1

4.79 Z = 2

4.74 Z = 3

4.71 Z = 4

log
(
184.15Z−1/3

)
Z ≥ 5


(B.7)

L′rad(Z) =



6.144 Z = 1

5.621 Z = 2

5.805 Z = 3

5.924 Z = 4

log
(
1194Z−2/3

)
Z ≥ 5


(B.8)

where f (z) is known as the “Coulomb correction” [8]:

f (z) = z2
∞

∑
ν=1

1
ν (ν2 + z2)

≈ z2
[

1
1 + z2 + 0.20206− 0.0369z2 + 0.0083z4− 0.002z6

]
(B.9)
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and we have dropped the Z2 “1/18” term altogether [4]. When the Coulomb cor-

rection is neglected, Lrad is approximated by log
(

183/ 3
√

Z
)

. If only the lowest

terms in the Coulomb correction are kept, then Lrad is approximated by log
(

191/ 3
√

Z
)
.

Note that the original calculation of L′rad [2] contains an error [3] that results in this

commonly used but incorrect form of L′rad = log
(

1440/ 3
√

Z2
)

.

Returning to the approximation that σrad is independent of the electron energy,

the energy of the electron decays exponentially as it penetrates the material:

dE
E

= −[N]σraddx→ E(x) = E(0) exp (−[N]σrad(Z)x) (B.10)

If the material is a uniform mixture of different atoms and one makes the reason-

able assumption that the electron interacts with only one atom at a time, then the

cumulative energy loss is given by:

E(x) = E(0)Πk exp (−[N]kσrad(Zk)x) = E(0) exp

(
−∑

k
[N]kσrad(Zk)x

)
(B.11)

where k labels the atomic isotope. It is convenient to characterize a material by the

thickness required for an electron to lose 1− 1/e of its energy. This parameter is

called the radiation length and is given by:

X̄0 ≡
[
∑

k
[N]kσrad(Zk)

]−1

(B.12)

In practice, it’s more convenient to work with mass densities ρ then with number

densities [N]:

X̄0 =
1

[N]σrad(Z)
=

A
ρNAσrad(Z)

=
X0

ρ
(B.13)
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where A is the molecular weight of the isotope and NA is the Avogadro constant.

Note that even though X̄0 and X0 have different units, they are interchangeably

called the radiation length in the literature [7, 9]. We will distinguish the two by

a bar and their units. For a single isotope, the radiation length in mass per unit

“area” is given by:

X0 =
A

NAσrad(Z)
(B.14)

For a composite material, the radiation length in mass per unit “area” is given by

the sum:

X−1
0 = ∑

k

wkNAσrad(Zk)
Ak

= ∑
k

wk

Xk
0

(B.15)

where wk is the fraction by mass for the k-th isotope. Finally the unitless radiation

thickness is given by:

t = ∑
j

ρ j` j

X j
0

(B.16)

where the sum over j runs over each composite material with physical thickness

` j and mass density ρ j.

B.3 Formulas for Calculating Collisional Energy Loss

Electrons can undergo elastic collisions with atomic electrons within the materi-

als along the beam path. Very often these collisions result in the ionization of the

struck atom. Consequently the process is interchangeably called “ionization loss,”

“collisional loss,” and “loss to ionizing collisions.” We will also use these term in-

terchangealby. The mean energy loss is given by the celebrated Bethe-Bloch equa-

tion, while the most probable energy loss was first calculated by Landau [10]. Both

equations have the form of energy lost to collisions per unit mass density per unit
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length [9]:

[
∆

ρx

]
=

[
ξ

ρx

][
2 log

( pc
I

)
− δ(X) + g

]
(B.17)[

ξ

ρx

]
=

Za
Aβ2 (B.18)

a = 2πNAr2
e mec2 = 0.15353747 MeV · cm2

mol
(B.19)

where Z & A are the effective atomic number and weight (in g/mol) of the material,

p & E are the electron’s momentum and energy, ρ & x are the material’s mass

density and thickness, I is the mean excitation potential of the material, δ(X) is the

density correction [11], and we’ll call ξ the “collisional” thickness as used in Tsai’s

848 [12]. The specific form of g depends on which energy loss is desired:

ḡ = log (γ − 1)− F(γ) mean energy loss (Bethe− Bloch) (B.20)

gmp = log
[

2ξ
mec2

]
− β2 + 0.198 most probable (Landau) (B.21)

F(γ) =
[

1 +
2
γ
− 1
γ2

]
log(2)− 1

8

[
1− 1

γ

]2

− 1
γ2 (B.22)

≈ log(2)− 1
8

= 0.568 for γ � 1 (B.23)

β =
v
c

=
pc
E

(B.24)

γ =
1√

1− β2
=

E
mec2 (B.25)

Note that constant term in gmp was originally calculated by Landau to be 0.373

and subsequently recalculated more accurately [13] to be 0.198. The energy lost
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per unit length can be written alternatively as:

dE
dx

= −(mec2)[N]σcoll (B.26)

σcoll = 2πr2
e

(
Z
β2

)
B =

A
NAmec2

[
ξ

ρx

]
B (B.27)

B =
[
2 log

( pc
I

)
− δ(X) + g

]
(B.28)

where σcoll is the collisional cross section and B is called the stopping number when

g = ḡ.

The density correction δ is given by [14]:

δ(X) =


δ
(

Xδ
0

)
× 102(X−Xδ

0) X ≤ Xδ
0

2 log(10)
(

X− Xδ
a

)
+ aδ

(
Xδ

1 − X
)mδ Xδ

0 < X < Xδ
1

2 log(10)
(

X− Xδ
a

)
X ≥ Xδ

1

 (B.29)

X = log10

(
p

mec

)
(B.30)

Xδ
a =

−Cδ

2 log(10)
(B.31)

Cδ = 2 log
(

~ωp

I

)
− 1 (B.32)

aδ =
δ
(

Xδ
0

)
+ 2 log(10)

(
Xδ

a − Xδ
0

)(
Xδ

1 − Xδ
0

)mδ
(B.33)

δ(Xδ
0) =

 0.0 insulators

0.06,0.08,0.10,0.12, or 0.14 conductors

 (B.34)

where ωp,Xδ
0 , Xδ

1 , mδ , and δ(Xδ
0) depend on the material. The density correction

below Xδ
0 depends on whether the material is an insulator or conductor [15]. The

plasma frequency [16] is a function of the electron number density in the material,
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[Ne]:

ωp =
√

4π[Ne]rec2 (B.35)

[Ne] = 〈Z〉 [N] =
〈Z〉NAρ

〈A〉 = NAρ

〈
Z
A

〉
(B.36)

Note that above X ≥ Xδ
1 , the mean energy loss becomes depends only logrithami-

cally on energy and the most probable loss becomes independant of energy:

p
mec

≥ p1

mec
= 10Xδ

1 (B.37)

δ(p > p1) = 2 log(10)
(

X− Xδ
a

)
= 2 log

(
p
pa

)
(B.38)

pa

mec
= 10Xδ

a = exp
(
−Cδ

2

)
=
(

I
~ωp

)2√
e (B.39)[

∆

ρx

]
=

[
ξ

ρx

][
2 log

( pac
I

)
+ g
]

(B.40)

We use the density correction parameters from [14]. If the density of a material

is different than that listed in [14], then the following substitutions are made [16]:

Xδ
a
′

= Xδ
a −

1
2

log10

(
[N]
[N]0

)
(B.41)

Xδ
0
′

= Xδ
0 −

1
2

log10

(
[N]
[N]0

)
(B.42)

Xδ
1
′

= Xδ
1 −

1
2

log10

(
[N]
[N]0

)
(B.43)

where [N]0 is the number density listed in table and [N] is the desired number

density. This is particularly useful for gases because table blah uses the density for

20oC and 1 atm.

If the material is not listed, then one must calculate effective values for I & Z/A
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using Bragg’s additivity law. If the constituents are elements, the mean ionization

potential is underestimated because electrons are more tightly bound in molecules

than in the free atoms of the constituent elements. Therefore we’ll use the “13

percent rule” to compenstate [17]. If the constituents are molecules such as various

types of glass, we do not incease the ionziation potentials. This is because the

binding effect was accounted for when the molecular ionization potential were

calculated from their constitutent elements. Consequently the effective Z/A and I

values are given by [17]:

〈
Z
A

〉
= ∑i niZi

∑i ni Ai
= ∑

i
wi

〈
Z
A

〉
i

(B.44)

log 〈I〉 = ∑
i

niZi

Z
log
(

I ′
)

i =
〈

A
Z

〉
∑

i
wi

〈
Z
A

〉
i
log (I)i (B.45)

where ni are the number of atoms of the i-th type in the molecule, I ′ is the modified

elemental ionization potential, wi is the fraction of the i-th molecule by weight in

the mixture, and I is the molecular ionization potential. Once the effective plasma

frequency, ionization potential, and Z/A for the material have been calculated,

then one uses Tab. (B.1) to select appropriate value of Xδ
a,0,1. Finally the density

correction δ, collisional thickness ξ, and energy loss are calculated only after first

deriving effective density correction parameters for a given material.

B.4 Materials in the Path of the Beam

The electron beam exits the beam pipe and enters the target region through a 5 mil

beryllium window. The target region is enclosed in a helium “bag.” For now, we

will assume that the helium gas displaces all of the air and that its temperature &
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Phase of Material and Conditions Xδ
0 Xδ

1

Solids & Liquids

I < 100 eV
Cδ > −3.681 0.2 2.0
Cδ ≤ −3.681 −0.326Cδ − 1.0 2.0

I ≥ 100 eV
Cδ > −5.215 0.2 3.0
Cδ ≤ −5.215 −0.326Cδ − 1.5 3.0

Gases, 20oC at 1 atm

−10.000 < Cδ 1.6 4.0
−10.500 < Cδ ≤ −10.000 1.7 4.0
−11.000 < Cδ ≤ −10.500 1.8 4.0
−11.500 < Cδ ≤ −11.000 1.9 4.0
−12.250 < Cδ ≤ −11.500 2.0 4.0
−13.804 < Cδ ≤ −12.250 2.0 5.0
−13.804 ≤ Cδ −0.326Cδ − 2.5 5.0

Table B.1: General Parameterization of the Density Correction [16, 17]. Cδ is calcu-
lated from the plasma frequency. For all cases mδ = 3.0 and Xδ

a & aδ are calculated
using equations blah.

pressure are 20oC & and 1 atm. The electron beam then enters the target chamber

portion of the cell which is made of C1720 glass. The end “windows” are much

thinner than the side “walls.” About 10 amagats of polarized 3He and 0.1 amg of

unpolarized N2 fill the target chamber. For now, we’ll also make the traditional

approximation that the scattering occurs at the center of the target. This effects

the thickness of polarized 3He, unpolarized N2, and glass wall traversed by the

scattered electron.

After scattering, the electron passes through more polarized 3He, unpolarized

N2, and the side wall of the cell. The distance travelled through these two materials

after scattering is inversely proportional to the sine of the central scattering angle.

After exiting the cell, the electrons travel out of the helium “bag” and through the

sieve slit box. At this point the electrons enter the bore of the septum magnet.
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Both the entrance and exit apertures of the septum bore were covered by 2 inch

thick pieces of polystyrene “foam.” The density of this foam is discussed in detail

in the next section. The sieve slit box is filled with helium gas. Howver there

is some ambiguity regarding whether the septum bore and the small amount of

space between the septum and the HRS were filled with air or helium gas.

The spacing of the sieve slit box and septum magnet were almost certainly

changed during the six to nine degree switch. In addition, the path of the central

ray within the septum bore is different bewteen six and nine degrees. The only

consequence of these two differences is that the amount of helium gas traversed

by the scattered electron is different. Since this makes up only a tiny fraction of the

radiation thickness. we will assume the geometry for nine degrees is identical to

the geometry for six degrees. Finally, according to E. Folts, the electrons enter the

HRS through a 10 mil Kapton window.

B.5 Density of the Polystyrene Foam

Solid polystyrene, used in scintillators, has a density of 1.032 g/cm3 [7]. The den-

sity of the polystyrene foam that we used was measured independently by V.

Sulkosky and A. Deur:

ρ =
(

0.03151 + 0.03220
2

)
g/cm3 = 0.03186 g/cm3 (B.46)
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Clearly a large fraction of the polystyrene foam is occupied by some unknown gas.

In principle, this gas affects the radiation length of the foam:

1
X0

=
wp

Xp
+

wg

Xg
(B.47)

where w is the fraction by mass and the subscipts p & g refer to the polystyrene &

the gas. Taking advantage of wp + wg = 1 and wg = ρg/ρ, we find:

Xp

X0
− 1 =

ρg

ρ

[
Xp

Xg
− 1
]

(B.48)

If the gas is at room temperature and 1 atm, then the gas density is on order of

10−3 g/cm3 and consequently the true radiation length of the foam differs from

the radiation legnth of polystyrene at the level of a fraction of a percent. Since the

difference in the two measurements for the density of the foam is larger than the

estimated correction due to the trapped gas, we neglect it’s effect on the radiation

length: [
ρ

X0

]
foam
≈ ρfoam

Xpolystyrene
(B.49)

B.6 Reference Tables for E97110

Physical constants are listed in Tab. (A.1). Target cell parameters are listed in

Tab. (3.7).
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C1720 window

He at 1 atm and 20oC

Polarized He−3 (before)

Polarized He−3 (after)
C1720 wall

2 in Polystyrene

He at 1 atm and 20oC

He at 1 atm and 20oC (septum bore)

He at 1 atm and 20oC

2 in Polystyrene

5 mil Be window

Center

10 mil Kapton window

radius = 43.9 cm
He "Bag"

Right HRS Q1

He "Spacer"
length = 20.3 cm

Septum Magnet

Sieve Slit Box

bore length = 78.9 cm

length = 57.3 cm

Figure B.1: Scaled Geometry of Target Region.
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Z atom A σrad X0

- amu barns g/cm2

1 H 1.00794 0.02655 63.0435
2 3He 3.01603 0.07047 71.0736
2 He 4.00260 0.07047 94.3224
4 Be 9.01218 0.22956 65.1900

5 B 10.81100 0.34073 52.6868
6 C 12.01070 0.46711 42.6969
7 N 14.00670 0.61226 37.9879
8 O 15.99940 0.77597 34.2382

11 Na 22.98977 1.37637 27.7362
12 Mg 24.30500 1.61235 25.0315
13 Al 26.98154 1.86596 24.0112
14 Si 28.08550 2.13706 21.8231

19 K 39.09830 3.74958 17.3151
20 Ca 40.07800 4.12249 16.1434
33 As 74.92160 10.41949 11.9401
38 Sr 87.62000 13.51897 10.7624
56 Ba 137.32700 27.45233 8.3066

Table B.2: Radiation Length by Atomic Species.

material polystyrene polyimide film (Kapton)

formula C6H5CH=CH2 (C22H10N2O5)n

C by wt. 0.922582 0.691133
O by wt. - 0.209235
N by wt. - 0.073270
H by wt. 0.077418 0.026362

X0
(
g/cm2

)
43.7911 40.5761

Table B.3: Radiation Length of Polymers. [7, 18]
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material by wt. X0
(
g/cm2

)
by X0

SiO2 0.599 27.0460 0.594
Al2O3 0.182 27.9399 0.175
CaO 0.074 19.0098 0.104

MgO 0.088 28.0227 0.084
B2O3 0.047 38.4158 0.033
Na2O 0.010 29.1660 0.009

K2O 0.000 18.9019 negligible
As2O3 0.000 14.1807 negligible

X0 = 26.8379 g/cm2

ρ = 2.53 g/cm3

X̄0 = 10.608 cm

Table B.4: Radiation Length of Corning 1729 (C1720). [19]

material by wt. X0
(
g/cm2

)
by X0

SiO2 0.605 27.0460 0.435
BaO 0.183 9.0195 0.394

Al2O3 0.144 27.9399 0.100

CaO 0.065 19.0098 0.066
SrO 0.003 12.0367 0.005

X0 = 19.4246 g/cm2

ρ = 2.76 g/cm3

X̄0 = 7.038 cm

Table B.5: Radiation Length of GE180. [20]
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Z/A I ρ −C X0 X1 a m
eV g/cm3

Al2O3 0.4904 145.2 3.9700E+00 3.5682 0.0402 2.8665 0.08499 3.5458
As2O3 0.4549 276.6 3.8600E+00 4.9606 0.2000 3.0000 0.18402 3.0000
BaO 0.4174 451.1 5.7000E+00 5.6349 0.3370 3.0000 0.21620 3.0000
B2O3 0.4884 99.6 1.8120E+00 3.6027 0.1843 2.7379 0.11547 3.3832
CaO 0.4993 176.1 3.3000E+00 4.1209 -0.0172 3.0171 0.12127 3.1936

MgO 0.4962 143.8 3.5800E+00 3.6404 0.0575 2.8580 0.08313 3.5968
K2O 0.4883 189.9 2.3200E+00 4.6463 0.0480 3.0110 0.16789 3.0121
SiO2 0.4993 139.2 2.3200E+00 4.0029 0.1385 3.0025 0.08407 3.5064

Na2O 0.4840 148.8 2.2700E+00 4.1892 0.1652 2.9793 0.07501 3.6943
SrO 0.4439 326.4 5.7000E+00 4.9259 0.2000 3.0000 0.18244 3.0000

C1720 0.4967 141.0 2.5300E+00 3.9477 0.2000 3.0000 0.13788 3.0000
GE180 0.4829 171.8 2.7600E+00 4.2834 0.2000 3.0000 0.15317 3.0000

kapton 0.5126 79.6 1.4200E+00 3.3497 0.1509 2.5631 0.15971 3.1921
polystyrene 0.5377 68.7 1.0600E+00 3.2999 0.1647 2.5031 0.16454 3.2224

Table B.7: Density Correction Parameters for Composite Materials. For all these
materials δ(X0) = 0.
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Z/A I ρ −C X0 X1 a m
eV g/cm3

3He 0.6631 41.8
1.4330E−03

11.1393
1.6726 3.0831

0.13443 5.83471.4080E−03 1.6764 3.0869
1.4120E−03 1.6758 3.0863

N2 0.4998 82.0

1.3370E−04

10.5400

2.2080 4.6025

0.15350 3.2125

1.3870E−04 2.2000 4.5945
1.4000E−04 2.1980 4.5925
1.1850E−02 1.2342 3.6287
1.1870E−02 1.2338 3.6283
1.1720E−02 1.2366 3.6311

polystyrene 0.5377 68.7 3.1860E−02 3.2999 0.9257 3.2641 0.16454 3.2224

Table B.8: Density Correction Parameters for Materials at Different Mass Densities.
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material
ρ ` ξ mp dE

g/cm3 cm MeV MeV MeV

Polarized 3He 1.433E−03 1.983E+01 2.893E−03 0.064 0.102
C1720 Window 2.530E+00 1.320E−02 2.547E−03 0.038 0.072

Beryllium Window 1.848E+00 1.270E−02 1.599E−03 0.024 0.046
Helium Gas 1.664E−04 2.409E+01 3.076E−04 0.007 0.012

Unpolarized N2 1.337E−04 1.983E+01 2.035E−04 0.004 0.008

Total Before 7.550E-03 0.137 0.240

C1720 Wall 2.530E+00 5.951E−01 1.148E−01 2.151 3.208
Polystyrene Foam 3.186E−02 1.016E+01 2.672E−02 0.577 0.861

Helium Gas 1.664E−04 1.912E+02 2.441E−03 0.060 0.092
Kapton Window 1.420E+00 2.540E−02 2.839E−03 0.044 0.081

Polarized 3He 1.433E−03 8.612E+00 1.257E−03 0.027 0.044
Unpolarized N2 1.337E−04 8.612E+00 8.838E−05 0.002 0.003

Total After 1.481E-01 2.861 4.289

Table B.15: Before (p = 2134.3 MeV) & After (p = 1806.4 MeV) Scattering from
Penelope at 6 deg.
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material
ρ ` ξ mp dE

g/cm3 cm MeV MeV MeV

Unpolarized N2 1.185E−02 1.975E+01 1.796E−02 0.399 0.601
C1720 Window 2.530E+00 1.270E−02 2.450E−03 0.036 0.069

Beryllium Window 1.848E+00 1.270E−02 1.599E−03 0.024 0.046
Helium Gas 1.664E−04 2.417E+01 3.086E−04 0.007 0.012

Total Before 2.232E-02 0.466 0.728

C1720 Wall 2.530E+00 6.104E−01 1.178E−01 2.209 3.290
Polystyrene Foam 3.186E−02 1.016E+01 2.672E−02 0.577 0.861
Unpolarized N2 1.185E−02 8.574E+00 7.795E−03 0.167 0.260

Helium Gas 1.664E−04 1.912E+02 2.442E−03 0.060 0.092
Kapton Window 1.420E+00 2.540E−02 2.839E−03 0.044 0.081

Total After 1.576E-01 3.057 4.584

Table B.16: Before (p = 2134.3 MeV) & After (p = 1806.4 MeV) Scattering from Ref.
Cell 1 at 6 deg.
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material
ρ ` ξ mp dE

g/cm3 cm MeV MeV MeV

Polarized 3He 1.408E−03 1.967E+01 2.819E−03 0.063 0.101
C1720 Window 2.530E+00 1.280E−02 2.470E−03 0.037 0.070

Beryllium Window 1.848E+00 1.270E−02 1.599E−03 0.024 0.046
Helium Gas 1.664E−04 2.425E+01 3.096E−04 0.007 0.012

Unpolarized N2 1.387E−04 1.967E+01 2.094E−04 0.005 0.008

Total Before 7.407E-03 0.136 0.237

C1720 Wall 2.530E+00 5.740E−01 1.108E−01 2.071 3.102
Polystyrene Foam 3.186E−02 1.016E+01 2.672E−02 0.577 0.863

Helium Gas 1.664E−04 1.913E+02 2.442E−03 0.060 0.092
Kapton Window 1.420E+00 2.540E−02 2.839E−03 0.044 0.081

Polarized 3He 1.408E−03 8.591E+00 1.231E−03 0.026 0.043
Unpolarized N2 1.387E−04 8.591E+00 9.146E−05 0.002 0.003

Total After 1.441E-01 2.780 4.184

Table B.17: Before (p = 3145.3 MeV) & After (p = 1941.5 MeV) Scattering from
Priapus at 6 deg.
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material
ρ ` ξ mp dE

g/cm3 cm MeV MeV MeV

Unpolarized N2 1.187E−02 1.975E+01 1.800E−02 0.400 0.609
C1720 Window 2.530E+00 1.310E−02 2.528E−03 0.038 0.072

Beryllium Window 1.848E+00 1.270E−02 1.599E−03 0.024 0.046
Helium Gas 1.664E−04 2.417E+01 3.086E−04 0.007 0.012

Total Before 2.244E-02 0.469 0.739

C1720 Wall 2.530E+00 5.836E−01 1.126E−01 2.107 3.154
Polystyrene Foam 3.186E−02 1.016E+01 2.672E−02 0.577 0.863
Unpolarized N2 1.187E−02 8.601E+00 7.836E−03 0.168 0.261

Helium Gas 1.664E−04 1.912E+02 2.442E−03 0.060 0.092
Kapton Window 1.420E+00 2.540E−02 2.839E−03 0.044 0.081

Total After 1.524E-01 2.956 4.451

Table B.18: Before (p = 3145.3 MeV) & After (p = 1941.5 MeV) Scattering from Ref.
Cell 2 at 6 deg.
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material
ρ ` ξ mp dE

g/cm3 cm MeV MeV MeV

Polarized 3He 1.412E−03 1.967E+01 2.827E−03 0.063 0.101
C1720 Window 2.530E+00 1.280E−02 2.470E−03 0.037 0.070

Beryllium Window 1.848E+00 1.270E−02 1.599E−03 0.024 0.046
Helium Gas 1.664E−04 2.425E+01 3.096E−04 0.007 0.012

Unpolarized N2 1.400E−04 1.967E+01 2.113E−04 0.005 0.008

Total Before 7.417E-03 0.136 0.237

C1720 Wall 2.530E+00 3.835E−01 7.400E−02 1.354 2.075
Polystyrene Foam 3.186E−02 1.016E+01 2.672E−02 0.577 0.864

Helium Gas 1.664E−04 1.943E+02 2.481E−03 0.061 0.093
Kapton Window 1.420E+00 2.540E−02 2.839E−03 0.044 0.081

Polarized 3He 1.412E−03 5.740E+00 8.250E−04 0.017 0.029
Unpolarized N2 1.400E−04 5.740E+00 6.166E−05 0.001 0.002

Total After 1.069E-01 2.054 3.144

Table B.19: Before (p = 3219.9 MeV) & After (p = 2007.0 MeV) Scattering from
Priapus at 9 deg.
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material
ρ ` ξ mp dE

g/cm3 cm MeV MeV MeV

Unpolarized N2 1.172E−02 1.975E+01 1.777E−02 0.395 0.602
C1720 Window 2.530E+00 1.310E−02 2.528E−03 0.038 0.072

Beryllium Window 1.848E+00 1.270E−02 1.599E−03 0.024 0.046
Helium Gas 1.664E−04 2.417E+01 3.086E−04 0.007 0.012

Total Before 2.221E-02 0.464 0.732

C1720 Wall 2.530E+00 3.899E−01 7.524E−02 1.378 2.110
Polystyrene Foam 3.186E−02 1.016E+01 2.672E−02 0.577 0.864
Unpolarized N2 1.172E−02 5.747E+00 5.170E−03 0.109 0.173

Helium Gas 1.664E−04 1.943E+02 2.480E−03 0.061 0.093
Kapton Window 1.420E+00 2.540E−02 2.839E−03 0.044 0.081

Total After 1.124E-01 2.169 3.321

Table B.20: Before (p = 3219.9 MeV) & After (p = 2007.0 MeV) Scattering from Ref.
Cell 2 at 9 deg.
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cell angle p before after total
deg. MeV mp dE mp dE mp (MeV) dE (MeV)

penelope 6 400.0 0.137 0.226 2.860 4.065 2.998 4.291
penelope 6 2134.3 0.138 0.239 2.861 4.314 2.998 4.553

priapus 6 400.0 0.135 0.222 2.780 3.957 2.914 4.178
priapus 6 2134.9 0.135 0.234 2.780 4.199 2.915 4.433
priapus 6 2844.8 0.135 0.236 2.780 4.241 2.915 4.477
priapus 6 4208.9 0.135 0.239 2.780 4.297 2.915 4.536

priapus 9 400.0 0.135 0.222 2.054 2.972 2.189 3.194
priapus 9 1147.3 0.135 0.230 2.054 3.086 2.189 3.316
priapus 9 2233.9 0.135 0.235 2.054 3.157 2.189 3.392
priapus 9 3318.8 0.135 0.238 2.054 3.199 2.189 3.437
priapus 9 3775.5 0.135 0.239 2.054 3.213 2.189 3.452
priapus 9 4404.2 0.135 0.240 2.054 3.230 2.189 3.470

refcell 1 6 400.0 0.466 0.689 3.056 4.345 3.522 5.033
refcell 1 6 2134.3 0.467 0.727 3.057 4.610 3.524 5.337

refcell 2 6 400.0 0.468 0.692 2.955 4.209 3.423 4.901
refcell 2 6 2134.9 0.469 0.731 2.956 4.466 3.424 5.197
refcell 2 6 2844.8 0.469 0.737 2.956 4.510 3.424 5.247
refcell 2 6 4208.9 0.469 0.746 2.956 4.570 3.424 5.316

refcell 2 9 400.0 0.463 0.685 2.167 3.139 2.630 3.824
refcell 2 9 1147.3 0.464 0.709 2.168 3.259 2.632 3.968
refcell 2 9 2233.9 0.464 0.724 2.168 3.334 2.632 4.058
refcell 2 9 3318.8 0.464 0.733 2.168 3.378 2.632 4.111
refcell 2 9 3775.5 0.464 0.736 2.168 3.393 2.632 4.128
refcell 2 9 4404.2 0.464 0.739 2.168 3.410 2.632 4.149

Table B.21: Collisional Energy Loss for Penelope, Priapus, and the Ref. Cells for
Different Electron Momenta. Note that the energy loss is insensistive to the electon
momentum. Because of this insensitivity in our momentum range, we use average
momenta for each cell and angle in the calculation of the collisional thickness ξ,
the most probable energy loss mp, and the mean energy loss dE.
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Appendix C

Clebsch-Gordon Coefficients

C.1 General Formula

Adapted from equation (17.27) in Wigner’s Group Theory [1] into equation 143(5) in

Condon & Shortley [2]:

〈(J1, J2) m1,m2|J,m〉 =

√
(J + J1− J2)! (J− J1 + J2)! (J1 + J2− J)! (J + m)! (J−m)! (2J + 1)

(J + J1 + J2 + 1)! (J1−m1)! (J1 + m1)! (J2−m2)! (J2 + m2)!

×δ(m1+m2)
m

κ2

∑
κ=κ1

(−1)κ+J2+m2 (J + J2 + m1− κ)! (J1−m1 + κ)!
(J− J1 + J2− κ)! (J + m− κ)!κ! (κ+ J1− J2−m)!

(C.1)

κa = max [0, J2− J1 + m] (C.2)

κb = min [J + m, J2− J1 + J] (C.3)

κ1 = min [κa, κb] (C.4)

κ2 = max [κa, κb] (C.5)
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where κ is summed over all non-negative integers between κ1 and κ2. Note the

usual rules:

〈(J1, J2) m1,m2|J,m〉 = (−1)J−J1−J2 〈(J2, J1) m2,m1|J,m〉 (C.6)

J1, J2, J ≥ 0 J = |J1− J2| . . . (J1 + J2) (C.7)

m1 = −J1 · · ·+ J1 m2 = −J2 · · ·+ J2 m = m1 + m2 = −J · · ·+ J (C.8)

The formulas for ~J1 + (1/2,1,3/2,2) are catalogued in Condon & Shortley [2] in

tables 13, 23, 33, & 43. Tables of coefficients for (1/2 + 1/2) upto (2 + 2) are avaiable

in The Review of Particle Physics [3].

C.2 For the case ~J1 +~12

〈(
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1
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)
,m1,±

1
2
|J1 +

1
2
,m1±

1
2

〉
=

〈(
J− 1

2
,

1
2

)
,m∓ 1

2
,±1

2
|J,m

〉

=

√
J1±m + 1

2

[J1]
=

√
J1±m1 + 1

[J1]

=

√
J±m

2J
(C.9)〈(

J1,
1
2

)
,m1,±

1
2
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1
2
,m1±

1
2

〉
=

〈(
J +

1
2
,

1
2

)
,m∓ 1

2
,±1

2
|J,m

〉

= ∓

√
J1∓m + 1

2

[J1]
= ∓

√
J1∓m1

[J1]

= ∓

√
J∓m + 1
2(J + 1)

(C.10)
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C.3 Expansion of Zero Field Eigenbasis for I = 0
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Appendix D

Cross Sections & Rate Constants

Relevant to SEOP of He-3

D.1 Notation & Conventions

D.1.1 The Language of Multipole Relaxation

If we assume that there are no coherences, see Sec. (E.5.1), then the state of a spin-

1/2 system can be specified by the populations n± of the m =±1/2 Zeeman levels.

However, it is usually more useful to describe the state of the system using the

total population n = (n+ + n−) and the polarization Pn = (n+− n−)/n:

n√
2

 1

Pn

 =
1√
2

 +1 +1

+1 −1


 n+

n−

 (D.1)

where the peculiar normalization is standard in the literacture [1]. The time evolu-

tion of this system is then prescribed by two characteristic rates which determine
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the change in the total population and the polarization. The rate associated with

the total population is simply the inverse of the mean lifetime of the state, whereas

the rate associated with the polarization is the spin relaxation rate.

Repeating this analysis for a system with total angular momentum J = 1, we

could choose the individual populations of each m = −1,0,+1 Zeeman level to

describe the state of the system. Once again, it is more useful to form three special

linear combinations of these populations: the total population n = (n+ + n0 + n−),

the “orientation” Pn = (n+− n−)/n, and the “alignment” Qn = (n+− 2n0 + n−)/n:


n/
√

3

nPn/
√

2

nQn/
√

6

 =


+1/
√

3 +1/
√

3 +1/
√

3

+1/
√

2 0 −1/
√

2

+1/
√

6 −2/
√

6 +1/
√

6




n+

n0

n−

 (D.2)

The orientation for a system with total angular momentum J plays the same role

as polarization for a spin-S system. The alignment is essentially a relative mea-

sure of the net population of the “end” levels (m = ±J) and is proportional to the

magnetic quadrupole moment of the system. When optical pumping from a J = 1

ground state to a J = 0 excited state, linearly (circularly) polarized light propagat-

ing parallel to the holding field will produce nonzero alignment (orientation) in

the ground state [2]. In this system, there are three characteristic rates: the inverse

of the lifetime, the “disorientation” rate, and the “disalignment” rate.

To generalize these arguments, a system with total angular momentum J can be

represented by (2J +1) mutually othogonal linear combinations of the (2J +1) indi-

vidual m = −J..+ J populations. The first four combinations specify the system’s

population (n), magnetic dipole moment (orientation, Pn), magnetic quadrupole

moment (alignment, Qn), and magnetic octopole moment (Rn), which are defined
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in the following way:

nPn =
〈Jz〉

J
nQn =

〈3J2
z − J2〉

J(2J− 1)
nRn =

〈
Jz
(
5J2

z + 1− 3J2
)〉

J(2J− 1)(J− 1)
(D.3)

These quantities are normalized such that they equal 1 when all the atoms are in

the m = J state. The lowest J system that has all four of these moments is J = 3/2:



n/2

3nPn/
√

20

nQn/2

nRn/
√

20


=



+1/2 +1/2 +1/2 +1/2

+3/
√

20 +1/
√

20 −1/
√

20 −3/
√

20

+1/2 −1/2 −1/2 +1/2

+1/
√

20 −3/
√

20 +3/
√

20 −1/
√

20





n′+

n+

n−

n′−


(D.4)

These linear combinations are the diagonal matrix elements of the density ma-

trix in the spherical tensor representation, see for example [1, 3–5]. Each of these

(2J + 1) spherical components of the density matrix evolves at one of the (2J + 1)

characteristic rates which are referred to as the “multipole relaxation rates.” The

two rates that are most relevant to our calculations are the “monopole” relaxation

rate (i.e. the rate at which the total population of a state is changing) and the

“dipole” relaxation rate (i.e. the rate at which the orientation is changing).

D.1.2 The “Relaxation Rate”

It is straightforward, see for example [6], that the k-th multipole relaxation rate γ(k)
J

for a system with total angular momentum angular J can be written as:

γ(k)
J = γ(0)

J + Γ
(k)
J (D.5)
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where γ(0)
J is the monopole relaxation rate and Γ

(k)
J is the k-th multipole “destruc-

tion” rate. In other other words, the total rate of change of the k-th multipole is

given by sum of the rate at which the Zeeman levels of the J state are being depop-

ulated (γ(0)
J )and the rate at which population of the Zeeman levels within a J state

are being redistributed (Γ(k)
J ):

d(nPk
n)

dt
=
(

dn
dt

)
Pk

n + n
(

dPk
n

dt

)
= −γ(0)

J nPk
n − Γ

(k)
J nPk

n = −γ(k)
J nPk

n (D.6)

where Pk
n is the k-th multipole.

In the ground state of alkali atoms, the total angular momentum is due to the

electron spin and the lifetime is determined by the optical pumping rate. Histor-

ically, the mulitipole relaxation rate of the ground state of an alkali atom is de-

termined by “relaxation in the dark” [7]. In this case, the lifetime of the ground

state is infinite (i.e. γ(0)
J = 0) and the ground state multipole relaxation rate Γs is

called the spin relaxation rate, the spin depolarization rate, or the spin destruction

rate interchangeably. By convention, see for example [8], the rate of change of the

polarization Ps and the populations s± are given by −ΓsPs and +
(
s/2− s±

)
Γs =

− (s±− s∓) Γs/2 respectively.

In the PJ excited states of alkali atoms, the total angular momentum is due

to both the electron spin and orbital angular momentum. In this case, there are

three processes of interest: decay from the PJ state to the S1/2 ground state, mix-

ing (i.e. transfer) between the PJ and PJ′ states, and mixing (i.e. redistribution)

among the (2J + 1) Zeeman levels within a PJ state. Decays are due to spon-

taneous emission, stimulated emission, and quenching colliions with buffer gas

molecules. Fine structure mixing is due to collisions with the buffer gases or other
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alkali atoms. The sum of the decay and mixing rates give the monopole relaxation

rate. Unfortunately, in the literature, the convention for the definition of the mul-

tipole destruction rate in the excited state is different than for the ground state, see

for example [9]. Specifically, the rate of change of the orientation Pp and the pop-

ulations p± are usually written as −2Γ′pPp and +
(

p− 2p±
)

Γ′p = −
(

p±− p∓
)

Γ′p

respectively. In this document, we’ll use the ground state convention for the excited state

rates, rate constants, and cross sections (i.e. Γp = 2Γ′p). Futhermore, when we refer

to the “disorientation” rate of the excited state, we actually mean the multipole

destruction rate.

D.1.3 The “Cross Section”

What is usually measured in the lab, under “atomic” conditions, is Γ = [Na] 〈σv〉,

where the brackets indicate an average using the Maxwell distribution weighted

by the relative thermal velocity. Generally speaking, see for example [10, 11], the

cross section is isolated from the rate constant using the mean thermal velocity (as

opposed to the most probable or root mean square velocity) by:

σ =
Γ

[Na]v
=
〈σv〉
〈v〉 v = 〈v〉 = v̄rel. =

√
8RT
π

(
1

Ma
+

1
Mb

)
(D.7)

where [Na] is the number density of particle a, v̄rel. is the mean relative thermal

velocity between particle a & b with molar masses Ma & Mb, R is the molar gas

constant, and T is the absolute temperature. Therefore, when comparing to theory,

it is important to recall that σ is really 〈σv〉/ 〈v〉. Unless otherwise noted, all cross

sections and rate constants are calculated using the mean thermal velocity and are

derived from the multipole destruction rate.
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〈σse〉 err.
〈
σexp

〉
exp. err. 〈σA/σRb〉th std. dev. (5)

Na 100.7 0.5 100.7 0.5 (2) 0.568 0.104
K 158.3 6.3 171.2 21.8 (2) 0.906 0.019
Rb 173.5 6.6 173.5 6.6 (5) - -
Cs 186.2 8.0 183.3 9.7 (3) 1.108 0.062

Å2 Å2 Å2 Å2

Table D.1: Alkali-Alkali Spin Exchange Cross Section in Å2 at T = 200 oC =
473.15 K. All values are averaged and scaled from [10] with the addition of a new
measurement for Rb from [14]. The number in parenthesis refers to the numbers
of values used to calculate the each weighted average. The uncertainties on the
experimental values are those originally quoted by the authors. The final column
is the standard deviation of the ratios from theoretical calculations.

D.2 Ground State Alkali-Alkali Collisions

D.2.1 Spin Exchange

The alkali-alkali spin exchange rate constants are estimated by:

Aab
se = v̄

√
σa

seσ
b
se =

[
1 MHz

1015/cm3

]√[
σa

se

100Å2

][
σb

se

100Å2

][
10 g/mol

Ma
+

10 g/mol
Mb

]
(D.8)

where σse is the alkali-alkali spin exchange cross section. The A-A spin exchange

rate constant is assumed to be independent of temperature just as e−-A spin ex-

change [12]. Therefore the cross section is assumed to have a 1/
√

T temperature

dependence which cancels the
√

T temperature depenance of the thermal velocity.

Using the geometric mean of cross sections for dissimilar atoms appears justified

by theoretical calculations [13].
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D.2.2 Spin Destruction

The alkali-alkali spin destruction rate constants are estimated by:

Aab
sd = v̄

√
σa

sdσ
b
sd =

[
1 kHz

1015/cm3

]√[
σa

sd

0.1Å2

][
σb

sd

0.1Å2

][
10 g/mol

Ma
+

10 g/mol
Mb

]
(D.9)

where σsd is the alkali-alkali spin destruction cross section. The A-A spin destruc-

tion rate constant is assumed to be independent of temperature, because most mea-

surements have observed a (mostly) linear increase in relaxation rate with increas-

ing the alkali density. This implies that the cross section has a 1/
√

T temperature

dependence. The observed alkali-alkali spin destruction rate is written as [15]:

kobs = ksd/s = ka +
(

k0
b

1 + B/BD

)(
[A]

1015 cm−3

)n

(D.10)

where ka is the magnetic field independent part due to binary collisions, kb is the

field dependent part that is due to singlet and triplet alkali dimers, BD is the mag-

netic decoupling width, n is a small next to leading order alkali power dependence,

and [A] is the alkali number density.

For B� 230 Gauss, the spin destruction cross section is obtained by

σsd = ksd/v̄ = s(ka + kb)/v̄ (D.11)

where s is the nuclear slowing down factor. For kb values from [15], we average

over [A] and multiply by k0
B to get an effective kb:

〈kb〉 = k0
b

(
[A]max/1015 cm−3

)n

1 + n
(D.12)
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ka k0
b BD n [A]max 〈kb〉 s s

(
ka + 〈kb〉

)
ref.

K 7.5E-15 8.2E-15 230 1/4 2.0 7.80E-15 6 9.18E-14 [15]
Rb 1.5E-14 2.6E-14 1150 1/4 2.5 2.62E-14 10.8 4.45E-13 [15]
Rb 1.50E-14 2.88E-14 1150 0 2.5 2.88E-14 10.8 4.74E-13 [16]
Cs 1.9E-13 1.8E-13 2900 0 0.78 1.80E-13 22 8.14E-12 [15]

cm3/s cm3/s G 1015/cm3 cm3/s cm3/s

Table D.2: Kadlecek Measurements of Alkali-Alkali Spin Destruction Magnetic De-
coupling Parameters.

D.3 Ground State Alkali-Buffer Gas Collisions

D.3.1 Spin Exchange with He-3 Nuclei

The 3He polarization evolution is given as:

PHe(t) = PAkse[A]τ
(
1− exp(−t/τ )

)
(D.13)

where PA is the volume average alkali polarization, kse is the spin exchange rate

constant, [A] is the alkali number density, and τ−1 is the total 3He relaxation rate.

These are related to the isotropic spin exchange kiso and anisotropic spin exchange

kani rate constants as:

kse = kiso− kani/2 (D.14)

1/τ = 1/τ0 + kse[A](1 + X) (D.15)

where 1/τ0 is the 3He relaxation rate that is independent of the alkali density and

X accounts for an extra alkali density/temperature dependent relaxation mecha-
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nism. If X was completely due to anisotropic spin exchange, then it is given by:

Xani =
3kani/(2kiso)

1− kani/(2kiso)
(D.16)

When the laser is turned off, the alkali polarization reaches approaches a new equi-

librium due to spin exchange with 3He given by:

PA(t) = PHe(t)kse[3He]τA/s
(
1− exp(−t/τA)

)
(D.17)

where [3He] is the 3He number density, τ−1
A is the observed A relaxation rate, and

s is the nuclear slowing down factor. Assuming only a single-chambered cell, the

rate constants can be obtained by:

krate =
P∞He

PA[A]τ
=
(

dPHe/dt|t=0

)
PA[A]

= kse (D.18)

krepol =
sP∞A

PHe[3He]τA
=

√
s
(

dPA/dt|t=0

)
[3He][A]PAτA

= kse (D.19)

krelax =
1− τ/τ0

[A]τ
= kse(1 + X) (D.20)

The rate constant is been found to be temperature independent [17, 20, 24].
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Na K Rb Cs

kse 4.74 5.15 6.74 11.1 10−20 cm3/s
1/ 〈kse〉 5.86 5.39 4.12 2.51 hrs·1015/cm3

〈kse〉 1.27 1.38 1.81 2.97 Hz/amg
rel. err. 10 3.1 2.5 10 pct.〈

kexp
〉

6.10 5.04 6.74 13.6 10−20 cm3/s
rel. err. 10 3.3 2.5 10 pct.

〈kth〉 3.76 6.27 9.18 10−20 cm3/sstd. dev. 0.13 0.08 0.12

Table D.4: Alkali-3He Spin Exchange Rate Constant. The experimental values are
the weighted average from Tab. D.6. The theoretical values are obtained from the
theoretical ratio to Rb from Tab. (D.5) and the experimental value for Rb.

〈
kA

iso/kRb
iso

〉
σ̄iso×108 kiso×1020 kiso×1020 kani/kiso Xani kiso×1020

Na 0.56 1.2 21 2.3 0.100 0.158 6.7
K 0.93 2.1 35 4.9 0.037 0.057 9.0
Rb 2.1 35 5.6 0.030 0.046 10
Cs 1.36 2.7 44 8.1 0.017 0.026

Å2 cm3/s cm3/s cm3/s

[25] (100 oC) [26] (190 oC) [27] (200 oC)

Table D.5: Alkali-3He Spin Exchange Rate Constant Parameters from Theory. The
rate constants from [27] were scaled to 473.15 K by T1.275 using a parameterization
of the temperature dependence based on their calculations.
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kse err. ref. method

Na 6.1 0.6 [17] repolarization
K 5.5 0.2 [28] rate/repolarization
K 6.1 0.4 [29] superseded by [28]
K 4.0 0.3 [30] relaxation
Rb 6.5 0.4 [30] relaxation
Rb 6.8 0.2 [24] rate/repolarization
Rb 6.7 0.6 [20] repolarization
Rb 6.1 0.2 [22] relaxation
Rb 12.0 2.0 [31] relaxation
Cs 13.6 1.3 [30] relaxation

10−20 cm3/s

Table D.6: Measurements of Alkali-3He Spin Exchange Rate Constant. All values,
except those in italics, are used in the weighted mean. There are three general
methods for extraction the spin exchange rate: “Repolarization” refers to measur-
ing the alkali polarization due to spin exchange with 3He with no optical pumping;
“Rate” refers to measuring the equilibrium 3He polarization, A polarization, and
3He spin up time constant; “Relaxation” refers to measuring the 3He relaxation
when the cell is hot and with the lasers off. In all cases, the A density is needed to
extract the rate constant. The first two methods measure kse while the last method
measures kse(1 + X). For this reason, older relaxation method measurements are
not included in the final average.



D.3. GROUND STATE ALKALI-BUFFER GAS COLLISIONS 605

k473 err. quant. value temp. notes

Na 0.15 0.05
0.23 0.13 kse + ksd (8± 1)×10−20 cm3/s 600 [17]
0.11 0.01 kNa

se /kRb
se 0.0020± 0.0002 473.15 Tab. D.8

K 4.7 0.3
12 1 ksd/v̄ (8.0± 0.8)×10−25 cm2 325 for 4He, [32]
3.5 0.3 ksd (8.9± 0.9)×10−20 cm3/s 423 rescaled from 4He, [33]
4.9 0.5 kK

se/kRb
se 0.088± 0.009 473.15 Tab. D.8

Rb 55.9 0.9 fit to Tab. D.9

Cs 530 30
490 50 ksd/v̄ (2.43± 0.24)×10−23 cm2 288 for 4He, [34]
550 50 ksd/v̄ (2.8± 0.3)×10−23 cm2 290 for 4He, [35]
560 60 kCs

se /kRb
se 10± 1 473.15 Tab. D.8

Hz/amg

Table D.7: Alkali-3He Spin Destruction Rate Constant. For measurements made
on 4He, the rate constants are rescaled by the square root of the ratio of reduced
masses. All values are rescaled to 473.15 K using the Rb temperature scaling of
T3.31. Values from theoretical calculations are scaled relative to the experimental
value for Rb.

D.3.2 Spin Destruction Due to He Atoms

The spin destruction rate constant for A-3He collisions has a temperature depen-

dence given by:

ksd(T) = k473

(
T

473.15 K

)n

(D.21)

From a fit of world data (Tab. D.9) for Rb-3He collisions, we find k473 = (55.9±

0.9) Hz/amg and n = 3.31± 0.12. We’ll assume that the rate constants for all other

alkali have the same temperature dependence.
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T σ̄sd ksd (at 473.15) kA
sd/kRb

sd

Na 428.15 1.2 0.083 0.0020
K 459.15 65 3.6 0.088
Rb 459.15 750 41
Cs 423.15 6000 406 10

K 10−10 Å2 Hz/amg

Table D.8: Theoretical Estimate for Spin Destruction in A-3He Pairs Due to the
Spin-Rotation Interaction. Calculations are from [36]. Based on the experimental
data for K, Rb, and Cs, the uncertainty is estimated to be about 10%. The rate
constant is rescaled to 473.15 K using the Rb temperature scaling of T3.31.

T ksd quantity value notes

305 12.40 ksd/v̄ 3.1E-24 cm2 for 4He, [37]
363 22.80 Γsd + Γse 278 Hz [3He] = 11.3 amg, [38]
378 24.03 ksd + kse 0.96E-18 cm3/s [20]
383 28.02 Γsd + Γse 337 Hz [3He] = 11.3 amg, [38]
383 22.90 ksd + kse 0.92E-18 cm3/s [20]
393 28.81 ksd + kse 1.14E-18 cm3/s [20]
403 33.24 Γsd + Γse 396 Hz [3He] = 11.3 amg, [38]
403 33.06 ksd + kse 1.30E-18 cm3/s [20]
413 36.03 ksd + kse 1.41E-18 cm3/s [20]
418 36.53 ksd + kse 1.43E-18 cm3/s [20]
423 38.47 Γsd + Γse 455 Hz [3He] = 11.3 amg, [38]
423 41.58 ksd + kse 1.61E-18 cm3/s [20]
428 40.15 ksd + kse 1.56E-18 cm3/s [20]
433 43.61 ksd + kse 1.69E-18 cm3/s [20]
438 44.99 ksd + kse 1.74E-18 cm3/s [20]
443 48.81 ksd + kse 1.88E-18 cm3/s [20]
520 73.90 ksd/vrms 1.3E-13 cm2 for 4He, [15]

K Hz/amg

Table D.9: Rb-3He Spin Destruction Rate Constant vs. Temperature. Each mea-
surement has an uncertainty of about 10%.
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Figure D.1: Fit to Rb-3He Spin Destruction Rate Constant World Data.

D.3.3 Spin Destruction Due to Nitrogen Molecules

The spin destruction rate constant for A-N2 collisions has a temperature depen-

dence given by:

ksd(T) = k473

(
T

473.15 K

)n

(D.22)

From a weighted mean of the two fits of the world data (Tab. D.11) for Rb-N2

collisions, we find k473 = (290± 30) Hz/amg and n = 2.00± 0.25. We’ll assume

that the rate constants for all other alkali have the same temperature dependence.
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T ksd quantity value notes

300 118.06 ksd/v̄ 8.0E-23 cm2 [39]
305 123.41 ksd/v̄ 8.3E-23 cm2 [37]
363 173.08 Γsd 703 Hz [N2] = 4.07 amg, [38]
363 162.31 Γsd 1244 Hz [N2] = 7.68 amg, [38]
383 185.01 Γsd 1418 Hz [N2] = 7.68 amg, [38]
393 196.47 Γsd 798 Hz [N2] = 4.07 amg, [38]
403 203.02 Γsd 1556 Hz [N2] = 7.68 amg, [38]
423 220.60 Γsd 896 Hz [N2] = 4.07 amg, [38]
423 221.94 Γsd 1701 Hz [N2] = 7.68 amg, [38]
463 252.04 ksd (9.38± 0.22)E-18 cm3/s [21]
480 404.90 ksd/vvrms 2.0E-22 cm2 [15]
500 419.50 Γsd/s (21.2± 0.1) Hz 760 torr, [16], superseded by [15]
520 526.80 ksd/vvrms 2.5E-22 cm2 [15]

K Hz/amg

Table D.11: Alkali-N2 Spin Destruction Rate Constant. All values have a 10% un-
certainty unless otherwise noted.
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Figure D.2: Fit to Rb-N2 Spin Destruction Rate Constant World Data.



D.4. EXCITED STATE ALKALI COLLISIONS 610
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Figure D.3: Temperature Dependence of the Rb 5P1/2 Orientation Destruction
Cross Section by He. Data are from Doebler & Kamke [40] with an average value
of 33.1 Å2.

D.4 Excited State Alkali Collisions

D.4.1 Multipole Destruction

The cross section has no temperature dependence by experiment [40]. The cross

section has a soft temperature dependence by theory [41].

Because ∆E(mJ ↔ m′J)� kT

σ1/2(±1) = σ1/2(±1/2→∓1/2) (D.23)

Z0 = σ3/2(±1/2→∓1/2) (D.24)

Z1 = σ3/2(±3/2→±1/2) = σ3/2(±1/2→±3/2) (D.25)

Z2 = σ3/2(±3/2→∓1/2) = σ3/2(∓1/2→±3/2) (D.26)

Z3 = σ3/2(±3/2→∓3/2) (D.27)
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the collisions are assumed to be rotationally invariant (isotropic),

σ(1)
1/2 = 2σ1/2(±1) (D.28)

σ(1)
3/2 =

1
5

Z0 +
2
5

Z1 +
8
5

Z2 +
9
5

Z3 (D.29)

σ(2)
3/2 = 2Z1 + 2Z2 (D.30)

σ(3)
3/2 =

9
5

Z0 +
8
5

Z1 +
2
5

Z2 +
1
5

Z3 (D.31)

(0) = 3Z0− 4Z1 + 4Z2− 3Z3 (D.32)

We’ve labeled things such that σ(0)
J is the depopulation cross section, σ(1)

J is the

destruction cross section, and their sum σ(0)
J + σ(1)

J is the relaxation cross section.

Using the theory of [?] for s:

σ(1)
3/2 = 0.92s σ(2)

3/2 = 1.14s σ(3)
3/2 = 1.01s (D.33)
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Na He σ(1)
1/2 33.4 3.4 σ1/2(±1) 16.7 1.7 [?]

Na He σ(1)
3/2 99.0 23.1 σ(0)

3/2 + σ(1)
3/2 146.0 22.0 [?]

Na He σ(2)
3/2 81.0 14.7 σ(0)

3/2 + σ(2)
3/2 128.0 13.0 [?]

Na He σ(3)
3/2 120.0 18.4 σ(0)

3/2 + σ(3)
3/2 167.0 17.0 [?]

Na He σ(1)
1/2 28.1 4.0 σ1/2(±1) 14.1 2.0 [?]

Na He σ(1)
1/2 26.3 3.6 σ1/2(±1) 13.2 1.8 [?]

Na He σ(1)
3/2 61.2 7.1 Z0 14.0 5.0 [?]

Na He σ(2)
3/2 102.8 10.0 Z1 28.3 2.5 [?]

Na He σ(3)
3/2 80.8 14.1 Z2 23.1 2.5 [?]

Na He (0) -0.9 7.4 Z3 5.6 0.6 [?]

Na Na σ(1)
1/2 1.8E+04 1E+03

〈
vσ(1)

1/2

〉
1.8E-07 1.0E-08 [?], 550 K

Na Na σ(1)
3/2 2.4E+04 1E+03

〈
vσ(1)

3/2

〉
2.4E-07 1.0E-08 [?], 550 K

Na Na σ(2)
3/2 2.4E+04 4E+03

〈
vσ(2)

3/2

〉
2.4E-07 4.0E-08 [?], 530 K

Na Na σ(3)
3/2 2.3E+04 2E+03 - - - [?, ?], 540 K

Table D.12: Table.
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K He σ(1)
1/2 92.0 4.6 σ1/2(±1) 46.0 2.3 [?]

K He σ(1)
1/2 48.0 8.0 σ1/2(±1) 24.0 4.0 [?]

K He σ(1)
3/2 86.0 14.0 σ(1)

3/2 86.0 14.0 [?]
K He σ(2)

3/2 127.0 37.0 σ(2)
3/2 127.0 37.0 [?]

K He σ(3)
3/2 103.5 24.1 σ(3)

3/2 103.5 24.1 [?, ?]

K He σ(1)
1/2 44.6 5.2 σ1/2(±1) 22.3 2.6 [?]

K He σ(1)
3/2 96.8 13.4 Z0 17.3 7.8 [?]

K He σ(2)
3/2 129.6 17.3 Z1 32.5 4.3 [?]

K He σ(3)
3/2 99.2 23.0 Z2 32.3 4.3 [?]

K He (0) -0.6 12.6 Z3 16.0 1.8 [?]

K N2 σ(1)
1/2 58.7 9.0 σ(1)

1/2 58.7 9.0 [?]
K N2 σ(1)

3/2 155.0 23.0 σ(1)
3/2 155.0 23.0 [?]

K N2 σ(2)
3/2 228.0 34.0 σ(2)

3/2 228.0 34.0 [?]
K N2 σ(3)

3/2 174.0 26.0 σ(3)
3/2 174.0 26.0 [?]

K K σ(1)
1/2 5.7E+04 9E+03 σ1/2(±1) 2.9E+04 4.5E+03 [?]

K K σ(1)
3/2 8.1E+04 1.9E+04 Z0 2.0E+04 8.0E+03 [?]

K K σ(2)
3/2 1.1E+05 2.2E+04 Z1 3.1E+04 6.0E+03 [?]

K K σ(3)
3/2 9.9E+04 2.7E+04 Z2 2.6E+04 5.0E+03 [?]

K K (0) -2.0E+02 1.6E+04 Z3 1.3E+04 4.0E+03 [?]

Table D.13: Table.
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Rb He σ(1)
1/2 24.0 4.8 σ(1)

1/2 24.0 4.8 [?, ?]

Rb He σ(1)
3/2 97.5 19.5 s 105.9 21.2 [?, ?]

Rb He σ(2)
3/2 120.8 24.2 s 105.9 21.2 [?, ?]

Rb He σ(3)
3/2 107.0 21.4 s 105.9 21.2 [?, ?]

Rb He σ(1)
3/2 107.9 10.8 s 117.3 11.7 [?, ?]

Rb He σ(2)
3/2 133.8 13.4 s 117.3 11.7 [?, ?]

Rb He σ(3)
3/2 118.5 11.9 s 117.3 11.7 [?, ?]

Rb He σ(1)
1/2 33.1 1.7 σ(1)

1/2 33.1 1.7 [?]
Rb He σ(1)

3/2 126.0 6.3 σ(1)
3/2 126.0 6.3 [?]

Rb He σ(2)
3/2 157.0 7.9 σ(2)

3/2 157.0 7.9 [?]
Rb He σ(3)

3/2 138.7 6.9 σ(3)
3/2 138.7 6.9 [?, ?]

Rb He σ(1)
1/2 23.0 4.6 σ(1)

1/2 23.0 4.6 [?]
Rb He σ(1)

1/2 11.6 2.0 σ1/2(±1) 5.8 1.0 [?], 1–7 T

Rb He σ(1)
1/2 32.0 2.0 σ1/2(±1) 16.0 1.0 [?]

Rb He σ(1)
3/2 240.0 30.0 Z0 34.0 4.0 [?]

Rb He σ(2)
3/2 278.0 32.0 Z1 64.0 7.0 [?]

Rb He σ(3)
3/2 203.3 23.3 Z2 75.0 9.0 [?]

Rb He (0) -0.0 19.2 Z3 48.7 6.7 [?]

Rb N2 σ(1)
1/2 105.0 25.0 σ(1)

1/2 105.0 25.0 [?]
Rb N2 σ(1)

1/2 65.0 4.0 σ1/2(±1) 32.5 2.0 [?]
Rb N2 σ(1)

3/2 219.4 24.2 Z0 60.0 2.0 [?]
Rb N2 σ(2)

3/2 290.0 26.0 Z1 78.3 6.5 [?]
Rb N2 σ(3)

3/2 267.6 17.8 Z2 66.8 6.5 [?]
Rb N2 (0) -3.7 15.2 Z3 38.5 6.0 [?]

Rb Rb σ(1)
1/2 4.5E+04 4E+03 Γ

(1)
1/2/βn 1.23 0.10 [?], 440 K

Rb Rb σ(1)
3/2 6.4E+04 3E+03 Γ

(1)
3/2/βn 1.71 0.08 [?], 440 K

Rb Rb σ(2)
3/2 7.5E+04 4E+03 Γ

(2)
3/2/βn 1.99 0.10 [?], 440 K

Rb Rb σ(3)
3/2 6.6E+04 3E+03 - - - [?, ?], 440 K

Table D.14: Table. βn = β10−2 [N]λ3
n/τn
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Cs He σ(1)
1/2 6.1 1.2 σ(1)

1/2 6.1 1.2 [?, ?]
Cs He σ(1)

1/2 25.0 8.0 σ1/2(±1) 12.5 4.0 [?], 0 T
Cs He σ(1)

1/2 9.8 1.4 σ1/2(±1) 4.9 0.7 [?], 0 T
Cs He σ(1)

1/2 12.0 0.8 σ1/2(±1) 6.0 0.4 [?], 0 T
Cs He σ(1)

1/2 22.2 2.0 σ1/2(±1) 11.1 1.0 [?], 0.8 T
Cs He σ(1)

1/2 23.6 1.0 σ1/2(±1) 11.8 0.5 [?], 0.98 T
Cs He σ(1)

1/2 12.8 4.2 σ1/2(±1) 6.4 2.1 [?] 1–7 T

Cs He σ(1)
3/2 100.0 18.8 “σ2

M” 32.0 6.0 [?, 11]

Cs He σ(1)
3/2 80.0 12.0 σ(1)

3/2 80.0 12.0 [?], 0.53 T
Cs He σ(2)

3/2 86.0 21.0 σ(2)
3/2 86.0 21.0 [?], 0.53 T

Cs He σ(3)
3/2 82.0 15.9 σ(3)

3/2 82.0 15.9 [?, ?], 0.53 T

Cs He σ(1)
3/2 89.0 13.0 σ(1)

3/2 89.0 13.0 [?], 0.57 T
Cs He σ(2)

3/2 83.0 21.0 σ(2)
3/2 83.0 21.0 [?], 0.57 T

Cs He σ(3)
3/2 85.6 16.4 σ(3)

3/2 85.6 16.4 [?, ?], 0.57 T

Table D.15: Table.
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alkali transition σ473 (Å2) T (K) σq (Å2) refs.

Na D1 & D2 37.7 see Fig. (D.4) [44, 45]

K D1 & D2 26.9 353 34 [48]

Rb D1 44.4 340 58 [49]D2 33.0 43

Cs D1 55.5 315 77 [50]D2 49.7 69

Table D.16: Alkali-N2 Quenching Cross Sections. Data are rescaled from the 1975
Krause review article [44]. We estimate that the uncertainties are on the order of
10% relative.

D.4.2 Nonradiative Quenching

The quenching cross section due to collisions with atoms has been found to be neg-

ligibly small
(
< 10−2 Å2

)
[42, 43]. This is because a collision that conserves energy

through a change purely in translational kinetic energy is essentially impossible

at our temperatures. On the other hand, the rotational and vibrational degrees of

freedom of a molecule, such at N2, provides several pathways for the excitation

energy of the alkali atom to be absorbed in a quenching collision. We’ll assume

that the velocity averaged quenching cross section has the same power law tem-

perature dependance (� 1000 K) for all the alkali atoms, see Fig. (D.4), which gives

for the rate constant:

kq(T) = σqv̄ =
1.34 GHz
0.1 amg

(
σ473

50 Å2

)(
T

473.15 K

)0.5+n
√

10 g/mol
MA

+
1

2.8
(D.34)

where σ473 is the quenching cross section at T = 473.15 K listed in Tab. (D.16),

n = −0.81± 0.19, and MA is the molar mass of the alkali atom.
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Figure D.4: Temperature Dependence of the Velocity Averaged Na-N2 Quenching
Cross Section at Low Temperatures. Data points are from the 1975 Krause re-
view article [44] with the addition of [45]. At high temperatures (≥ 1500 K), the
velocity-averaged quenching cross section has been found to be independant of
temperature [46]. Note, however, that the “energy dependant” (i.e. unaveraged)
quenching cross section has been found to decrease linearly with the relative ki-
netic energy [45, 47].
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D.4.3 Excitation Energy Transfer

Gallagher says that Rb-He has a T2.59 and Cs-He is T3.84, we’ll assume this trend

contiures. so that K-He has a T1.15 and Cs-He is T0.20. [51] Assuming rotational

invariance during the collosional transfer process, the individual cross sections are

given by:

F3 = σm(1/2,±1/2→ 3/2,±3/2) (D.35)

F0 = σm(1/2,±1/2→ 3/2,±1/2) (D.36)

F1 = σm(1/2,±1/2→ 3/2,∓1/2) (D.37)

F2 = σm(1/2,±1/2→ 3/2,∓3/2) (D.38)

which are combined to give:

σ(0→0)
1/2→3/2 =

(F3 + F2) + (F0 + F1)√
2

(D.39)

σ(1→1)
1/2→3/2 =

3(F3− F2) + (F0− F1)√
10

(D.40)

σ(0→2)
1/2→3/2 =

(F3 + F2)− (F0 + F1)√
2

(D.41)

σ(1→3)
1/2→3/2 =

(F3− F2)− 3(F0− F1)√
10

(D.42)

In the other direction, we have the analgous equations where F→ G and these two

are related by detailed balancing:

F
G

=
(2J2 + 1)
(2J1 + 1)

exp
(
−(E2− E1)

kT

)
(D.43)
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D.5 Helium Collisions

D.5.1 Magnetic Dipolar Spin Relaxation

The theoretical minimum spin-relaxation rate is due to a direct coupling between

two nearby 3He nuclei. Newbury et al. [52] have calculated this 3He -3He nuclear

dipolar spin-relaxation rate per nucleus at 23 oC:

Γdip =
[

3He
](

744 amg · hrs
) (D.44)

Fig. (D.5) [52, adapted from Figs. 2 and 3] depicts the temperature dependence of

the relaxation rate from 0 K to 10 K and 1 K to 550 K calculated using one particular

choice for the He-He inter-atomic potential. Newbury et al. state that two alter-

native models for the inter-atomic potential give consistent results within a few

percent. An analytical form of the temperature dependence is not given; therefore

we have prepared a “homemade” parameterization of this curve:

Γdip(T) =
[

3He
](

744 amg · hrs
)
· fdip

(
T/Tref

) (D.45)

fdip(t) = c0tc1 + c2 + c3t +
c4

1 + c5t
(D.46)

where Tref = 296.15 K is the reference temperature and the values of the unitless

parameters are:

c0 = +1.2319E+0 c1 = +2.8591E−1 c2 = −2.1793E−1

c3 = −1.4426E−2 c4 = +5.3315E−1 c5 = +1.2376E+3 (D.47)
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Figure D.5: Temperature Dependence of Nuclear Dipolar Relaxation for a Density
of 10 amg. Note that both vertical axes are the spin-relaxation time constants Γ

−1
dip.

Red points were located “by eye” from Figs. (2) & (3) in [52]. Black curve is the
parametrization, Eqn. (D.46), that was fit to the red points. They agree to better
than half a percent from 2 K to 550 K.

Note that at T = Tref = 23 oC = 296.15 K, the temperature function fdip(1) equals 1

as expected:

fdip(Tref) = c0 + c2 + c3 +
c4

1 + c5
= 1 (D.48)

This parametrization reproduces the curve in Fig. (D.5) to better than 0.5% from 2 K

to 550 K. All things considered, a reasonable estimate for the uncertainty associated

with this calculation/parametrization is about 5%.

D.5.2 Charge Exchange & Transfer

See rates.
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Appendix E

Alkali Atoms and Polarized Light

The two basic quantities that must be known about a 3He target cell are its helium

density & polarization. To better understand & fully optimize the performance

of these cells, it is essential to know the alkali vapor density & polarization as

well. The atomic polarizability determines how light is modified after traversing

a sample of alkali atoms. The imaginary part of the polarizability is responsible

for absorption. The width of the absorption line is pressure broadened and con-

sequently linearly proportional to the helium density. The real part of the atomic

polarizability causes Faraday rotation of the the plane of polarization of a linearly

polarized probe beam. The amount of rotation is proportional to the alkali density.

We probe the Zeeman levels of the alkali atom via EPR RF spectroscopy. Slightly

exciting one of the transitions lowers the alkali polarization by a small amount.

By sweeping the holding field while keeping the RF frequency fixed, we map out

the EPR RF spectrum of the alkali atoms. Ratios of areas under the peaks in this

spectrum are related to the alkali polarization and alkali density ratio. Finally the

locations of these peaks are shifted due interactions with the polarized helium gas.
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The size of these frequency shifts are proportional to the He polarization. The goal

of this note is to present all of the theoretical derivations needed to understand

“where the formulas come from.”

First, we’ll derive the fine & hyperfine structure of the alkali atoms. Then we’ll

show how to describe polarized light using the Jones calculus. Using standard

semi-classical arguments, we’ll study how the matrix elements of the density op-

erator changes under a harmonic perturbation. As a consequence, we’ll calculate

the transition matrix elements due to electric & magnetic dipole interactions. The

coherences of the density matrix also depend on the populations of the density ma-

trix, which are at a spin temperature equilibrium. To interpret pressure broadening

& Faraday rotation, we’ll calculate the atomic polarizability. Finally we’ll provide

an overview of the experimental techniques and summarize how to extract infor-

mation from the experimental observables associated with the wavelength tunable

probe beam. This note is meant to be detailed, explicit, and self-contained.

E.1 Atomic Notations & Conventions

All quantities will be denoted in SI. Angular momentum operators will be unitless:

~̂ 2
J |J,mJ〉 = J(J + 1) |J,mJ〉 (E.1)

Ĵz |J,mJ〉 = mJ |J,mJ〉 ,mJ = −J..J (E.2)

Ĵ± = Ĵx± i Ĵy (E.3)

Ĵ± |J,mJ〉 =
√

J(J + 1)−mJ(mJ ± 1) |J,mJ ± 1〉 (E.4)
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The statistical weight is denoted by [J] and is defined by [J] = 2J + 1. The magnetic

moment arising from spin will be written:

~µS =
µS

S
~S (E.5)

µS

S
= gSµx (E.6)

The magnetic moment arising from the orbital angular momentum will be written:

~µL = µL~L (E.7)

µL = gLµx (E.8)

Note that the sign of the magnetic moment is carried implicitly in g or alterna-

tively µJ. For example, g ≈ −2 for the electron, g ≈ 2(2.79) for the proton, and

g ≈ 2(−1.91) for the neutron. In all cases, the g-factor will be left unevaluated in

the equations. However, equations will be written such that approximations can

be made without loss of accuracy, for example:

− 3
2

gS = 3
[

gS

−2

]
︸ ︷︷ ︸
≈1.00116

≈ 3 (E.9)

For the electron spin, gS does not equal −2 exactly due to radiative corrections.

There is no reason why gL must equal exactly −1. This point is discussed at great

length in section IX.5.1 of Molecular Beams [1]. Based on experimental results from

alkali atoms, |gL| differs from unity on order of parts per million. Therefore, for

L ≥ 1, we’ll take gL = −1.0.

The units are carried in µx, which is the Bohr magneton (µB) for the electron
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and the nuclear magneton (µN) for nuclei. The different angular momenta will be

identified as:

• ~S is the sum of the spins of each electron in the atom,

• ~L is the sum of the orbital angular momenta of each electron in the atom,

• ~J
(
= ~L + ~S

)
is the total electronic angular momentum of the atom,

• ~I is the spin of the nucleus,

• ~F
(
= ~I + ~J

)
is the total internal angular momentum of the atom.

Operators and matrices will usually be denoted by hats M̂. Hamiltonians will

be H , energies will be E, frequencies will be ν (with units of Hz), and angular

frequencies ω (with units of rad·Hz).

E.2 The Fine Structure of Alkali Atoms

E.2.1 Zero Field Eigenbasis

The basic structure of the atomic Hamiltonian is summarized below, more details

can be found in any good atomic physics book such as Woodgate [2] or Foot [3]:

1. The electrostatic interaction within an atom can be expressed as a central and

a non-central force.

2. The central force is a Coulomb interaction between the electrons and an ef-

fective nuclear charge.

3. The non-central force is the residual electrostatic repulsion among the elec-

trons.
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4. For most atoms, the non-central force dominates over the spin-orbit coupling.

5. Because the non-central forces are larger, the orbital angular momenta of the

electrons are correlated.

6. Because of Fermi-Dirac statistics, the total electronic spin and the total elec-

tronic orbital angular momentum is zero for closed shells.

7. Because of spherical symmetry, the non-central force is independent of or-

bital angular momentum for closed shells. Therefore, the non-central force is

relevant only between the valence electrons.

8. In this limit, the spin-orbit coupling occurs between the total valence elec-

tronic spin and the total valence electronic orbital angular momentum.

9. Finally, all higher order interactions, such as quadrupole interactions, will

usually be ignored.

Consider H0 with Hes, electrostatic interaction, and Hso, spin-orbit coupling:

H0 = Hes + Hso (E.10)

Under the conditions described before, the form of Hso is

~J 2 = (~L + ~S)2 = ~L 2 + 2~L · ~S + ~S 2 (E.11)

Hso = Aso~L · ~S =
Aso

2
(~J 2−~L 2− ~S 2) (E.12)

From the second form of Hso above, it should be clear that J, L, and S are good

quantum numbers, i.e., they commute with the Hamiltonian. A useful eigenbasis
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with those quantum number is the LS-coupling scheme {|J,mJ〉}. Each group of

degenerate eigenstates is labeled by a Russell-Saunders term [3, 4] of the form

n2S+1LJ (E.13)

where n is the principal quantum number which labels the valence configuration.

L labels the valence orbital in the following way:

• L = 0→ L = S

• L = 1→ L = P

• L = 2→ L = D , and so on

All closed shells have

~Lshell = ~Sshell = 0 (E.14)

For a neutral alkali metal atom, ~J, ~L, and ~S all refer to the single valence electron.

In the ground state, J = 1
2 and the RS term is n2S 1

2
. The first two excited states have

J = 1
2 and J = 3

2 and are labeled n2P1
2

and n2P3
2
. Appendix C.3 contains an expansion

of the LS-coupling basis {|J,mJ〉} in the uncoupled L, S basis {|L,mL〉 |S,mS〉}.

Spin-orbit coupling breaks the degeneracy of these n2P states and results in fine

structure. Fine structure also refers to other corrections, including relativistic ones,

that are of the same order of magnitude. However, except for Hydrogen, these

corrections are much smaller than the spin-orbit coupling. (where did i read that?)

Regardless, these corrections only shift the energies collectively, independent of

mJ and they do not mix the eigenstates. The transitions from the ground state to

the first two excited states n2S 1
2
→ n2P1

2
and n2S 1

2
→ n2P3

2
are called the D1 and D2

transitions respectively.
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E.2.2 Hamiltonian

The Hamiltonian describing the atom in a magnetic field ~B is

H = H0− ~µL · ~B− ~µS · ~B = Hes + Hso− ~µL · ~B− ~µS · ~B (E.15)

To recap:

• The first term Hes contains all the terms that do not involve the electron spin.

• The second term is the spin-orbit interaction.

• The third and fourth terms are the Zeeman terms for the orbital and spin

angular momentum respectively.

Using ~B = Bẑ & Jz = Lz + Sz:

H = Hes + Hso− ~µL · ~B− ~µS · ~B (E.16)

= Hes +
Aso

2

(
~J 2−~L 2− ~S 2

)
− gLµBLzB− gSµBSzB (E.17)

= Hes +
Aso

2

(
~J 2−~L 2− ~S 2

)
− gLµB (Jz− Sz) B− gSµBSzB (E.18)

= Hes +
(
−Aso

2

(
~L 2 + ~S 2

)
− gLµBBJz

)
+ H ′ (E.19)

H ′ =
Aso

2
~J 2−

(
gS− gL

)
µBBSz (E.20)

gS ' −2 (E.21)

gL =

 0 , L = 0

−1 , L > 0

 (E.22)

The Hamiltonian is separated into three terms intentionally. States within a n2S+1L

term with the same mJ but different J are mixed by the Zeeman interaction. This
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means that the first two terms are diagonal simultaneously in the {|J,mJ〉} basis

and the eigenbasis of H . Therefore, only H ′ has to be diagonalized.

E.2.3 Energies

Matrix Subblocks

Let’s specialize to the case S = 1
2 , since an alkali metal atom is being considered.

J can be L± 1
2 . Therefore in the {|J,mJ〉} basis, the Sz term is block diagonal with

subblocks no greater than 2 by 2 in size. The 2 by 2 subblocks are made of the

states with different J and same mJ. For the special case of mJ = ±
(
L + 1

2

)
, there

are no other states to mix with. Thus, they reside in subblocks of size 1 by 1. This

is true for the mJ =±1
2 states of the ground state term n2S 1

2
and the mJ =±3

2 states

of the excited state term n2P3
2
. On the other hand, the mJ = ±1

2 states of the terms

n2P1
2 ,

3
2

mix and therefore need to be diagonalized. To diagonalize H , we only have

to diagonalize each subblock of H ′,

H ′ =
Aso

2
~J 2−

(
gS− gL

)
µBBSz (E.23)

Ĥ ′ =
Aso

2

 (L + 1
2

) (
L + 3

2

)
0

0
(
L− 1

2

) (
L + 1

2

)
− (gS− gL

)
µBB

 α+ β−

β+ α−


(E.24)

α± =
〈

L± 1
2
,mJ

∣∣∣∣ Ŝz

∣∣∣∣L± 1
2
,mJ

〉
(E.25)

β± =
〈

L∓ 1
2
,mJ

∣∣∣∣ Ŝz

∣∣∣∣L± 1
2
,mJ

〉
(E.26)
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The first term can be simplified to give:

Aso

2
~̂ 2
J =

Aso

2

(
L +

1
2

)L +
1
2

+

 1 0

0 −1


 (E.27)

α± & β± in the second term are most easily calculated in the uncoupled {|L〉 |S〉}

basis:

|L,mL〉 |S,mS〉 = |mL,mS〉 = |mL〉L |mS〉S (E.28)

|J,mJ〉 = ∑ |mL,mS〉 〈mL,mS|J,mJ〉︸ ︷︷ ︸
Clebsch−Gordon

(E.29)

Using formulas for Clebsch-Gordon coefficients from the appendix (C.2):

〈
mJ ∓

1
2
,±1

2
| L +

1
2
,mJ

〉
=

1√
[L]

√
L +

1
2
±mJ

(E.30)〈
mJ ∓

1
2
,±1

2
| L− 1

2
,mJ

〉
=

∓1√
[L]

√
L +

1
2
∓mJ
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For α±:

α± =
〈

L± 1
2
,mJ

∣∣∣∣ Ŝz

∣∣∣∣L± 1
2
,mJ

〉
(E.31)

=
1
2

∑
mS,m′S=− 1

2

〈mJ −m′S,m′S| Ŝz |mJ −mS,mS〉

×〈J,mJ|mJ −m′S,m′S〉 〈mJ −mS,mS|J,mJ〉 (E.32)

=
1
2

∑
mS=− 1

2

mS |〈mJ −mS,mS|J,mJ〉|2 , J = L± 1
2

(E.33)

=
1
2

(
L + 1

2 ±mJ − L− 1
2 ±mJ

[L]

)
(E.34)

= ±
(

mJ

[L]

)
= ±(α) (E.35)

For β±:

β± =
〈

L∓ 1
2
,mJ

∣∣∣∣ Ŝz

∣∣∣∣L± 1
2
,mJ

〉
(E.36)

=
1
2

∑
mS,m′S=− 1

2

〈mJ −m′S,m′S| Ŝz |mJ −mS,mS〉

×
〈

L∓ 1
2
,mJ|mJ −m′S,m′S

〉〈
mJ −mS,mS|L±

1
2
,mJ

〉
(E.37)

=
1
2

∑
mS=− 1

2

mS

〈
L∓ 1

2
,mJ|mJ −mS,mS

〉〈
mJ −mS,mS|L±

1
2
,mJ

〉
(E.38)

= +
1
2

−
√(

L + 1
2 ∓mJ

) (
L + 1

2 ±mJ
)

[L]

− 1
2

+
√(

L + 1
2 ±mJ

) (
L + 1

2 ∓mJ
)

[L]


(E.39)

= −


√(

L + 1
2

)2−m2
J

[L]

 = − (β) (E.40)
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To solve for the energies, we only to diagonalize the last term in H ′:

H ′ =
Aso

2

(
L +

1
2

)L +
1
2

+

 1 0

0 −1


− (gS − gL

)
µBB

 α+ β−

β+ α−

 (E.41)

=
Aso

2

(
L +

1
2

)L +
1
2

+

 1 0

0 −1


+

(
gL − gS

)
µBB

 α −β

−β −α

 (E.42)

=
Aso

2

(
L +

1
2

)2

+
Aso

2

(
L +

1
2

)
 1 0

0 −1

+ 2

(
gL − gS

)
µBB

Aso
(
L + 1

2

)
 α −β

−β −α




(E.43)

=
Aso

2

(
L +

1
2

)2

+
Aso

2

(
L +

1
2

) 1 + 2αy −2βy

−2βy −
(
1 + 2αy

)


︸ ︷︷ ︸
M̂

(E.44)

y =
(
gL − gS

) µBB
Aso

(
L + 1

2

) (E.45)

Diagonalization

This is done by solving the secular equation:

0 = det
(

M̂− Îλ
)

(E.46)

0 =

∣∣∣∣∣∣∣
1 + 2αy− λ −2βy

−2βy −
(
1 + 2αy + λ

)
∣∣∣∣∣∣∣ (E.47)

0 = −
(
1 + 2αy− λ

) (
1 + 2αy + λ

)
−
(
2βy

)2 (E.48)

0 = λ2−
(
1 + 2αy

)2−
(
2βy

)2 (E.49)

λ = ±
√(

1 + 2αy
)2 +

(
2βy

)2 (E.50)

= ±
√

1 + 4αy + 4 (α2 + β2) y2 (E.51)
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Using the eqns. (E.35) and (E.40), the following useful relations are derived:

α2 + β2 =
m2

J +
(
L + 1

2

)2−m2
J

[L]2 =
(
L + 1

2

)2

22
(
L + 1

2

)2 =
1
4

(E.52)

4α2 + 4β2 = 1 (E.53)

We get the eigenvalues:

±
(
λ =

√
1 + 4αy + y2

)
(E.54)

The total energy is therefore:

E = E0−
Aso

2

(
L(L + 1) +

1
2

(
1
2

+ 1
))
− gLµBmJ B + E′ (E.55)

E′ =
Aso

2

(
L +

1
2

)2

± Aso

2

(
L +

1
2

)
λ (E.56)

The ±λ eigenvalue is used for states evolving from the J = L± 1
2 term. In the zero

field case, B = 0, we find the spin-orbit (fine structure) splitting between the two

terms is:

∆E =
Aso[L]

2
= hνso (E.57)

Relabeling the energies without spin-orbit coupling and without field as EL
0 and

relating Aso to the zero field spin-orbit splitting hνso, for L > 0, we get:

E = EL
0 −

hνso

2[L]
+ µBmJ B±

hνso

2

√
1 +

4mJ

[L]
y + y2 (E.58)

y =
(

2
[

gS

−2

]
− 1
)
µBB
hνso

(E.59)
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where± refers to the states with J = L± 1
2 . When L = 0, gL = 0 and the positive root

of the square root is taken, which gives the energies for the n2S 1
2

term:

L = 0→ J = S→ mJ = mS = ±1
2

(E.60)

y =
[

gS

−2

]
2µBB
hνso

(E.61)

E± 1
2

= ES
0 −

hνso

2
+

hνso

2

√
1± 4

2
y + y2 (E.62)

= ES
0 −

hνso

2
+

hνso

2
(
1± y

)
(E.63)

= ES
0 ±

hνso

2

([
gS

−2

]
2µBB
hνso

)
(E.64)

= ES
0 ±

[
gS

−2

]
µBB (E.65)

= ES
0 − gSµBBmS (E.66)

where ± refers to the sign of mS = ±1
2 . Note that y is a unitless quantity that

gives the relative measure of the size of the Zeeman interaction with respect to the

spin-orbit interaction. For example the Zeeman interaction is comparable to the

spin-orbit interaction (y ≈ 1) for potassium and rubidium when B ≈ 124 T & 510 T

respectively, see table (A.2). Because of the strength of the spin-orbit interaction, J

is almost always a very good quantum number for most alkali metals.
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The energies of the mJ = ±(L + 1
2 ) states in the J = L + 1

2 term are:

y =
(

2
[

gS

−2

]
− 1
)
µBB
hνso

(E.67)

E±(L+ 1
2 ) = EL

0 −
hνso

2[L]
± µB

(
L +

1
2

)
B +

hνso

2

√
1±

4
(
L + 1

2

)
[L]

y + y2 (E.68)

= EL
0 −

hνso

2[L]
± µB

(
L +

1
2

)
B +

hνso

2

√
1± 2y + y2 (E.69)

= EL
0 −

hνso

2[L]
± µB

(
L +

1
2

)
B +

hνso

2
(
1± y

)
(E.70)

= EL
0 +

L
[L]

hνso± µB

(
L +

1
2

)
B∓ hνso

2
(
1 + gS

) µBB
hνso

(E.71)

= EL
0 +

L
[L]

hνso± µBB
(

L +
1
2
− 1 + gS

2

)
(E.72)

= EL
0 +

L
[L]

hνso±
(

L +
[

gS

−2

])
µBB (E.73)

Low Field Energies

At low field, see table (A.2), to second order in B, the energies for the J = L± 1
2

terms with L > 0 are:

E = EL
0 −

hνso

2[L]
+ µBmJ B± hνso

2

(
1 +

2mJ

[L]
y +

1
2

(
1−

4m2
J

[L]2

)
y2 + O(y3)

)
(E.74)

±
(

E− EL
0

hνso

)
= ∓ 1

2[L]
+±mJ

µBB
hνso

+
1
2

+
mJ

[L]
y +

1
4

(
1−

4m2
J

[L]2

)
y2 + O(y3)

=
1
2

(
1∓ 1

[L]

)
±mJ

µBB
hνso

+
mJ

[L]

(
2
[

gS

−2

]
− 1
)
µBB
hνso

+
1
4

(
1−

4m2
J

[L]2

)
y2

=
L + 1

2 ∓
1
2

[L]
+

mJ

[L]

(
2
[

gS

−2

]
− 1± [L]

)
µBB
hνso

+
1
4

(
1−

4m2
J

[L]2

)
y2 (E.75)

The energies for the three lowest RS terms of alkali metals to second order in B
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are:

ES
1
2 ,−

1
2

= ES
0 −

[
gS

−2

]
µBB (E.76)

ES
1
2 ,+

1
2

= ES
0 +

[
gS

−2

]
µBB (E.77)

EP
1
2 ,−

1
2

= EP
0 −

(
2
3

)
hνso−

[
2 +

gS

2

](1
3

)
µBB−

(
2
9

y2
)

hνso (E.78)

EP
1
2 ,+

1
2

= EP
0 −

(
2
3

)
hνso +

[
2 +

gS

2

](1
3

)
µBB−

(
2
9

y2
)

hνso (E.79)

EP
3
2 ,−

3
2

= EP
0 +

(
1
3

)
hνso−

[
1
2
− gS

4

]
2µBB (E.80)

EP
3
2 ,−

1
2

= EP
0 +

(
1
3

)
hνso−

[
1
2
− gS

4

](
2
3

)
µBB +

(
2
9

y2
)

hνso (E.81)

EP
3
2 ,+

1
2

= EP
0 +

(
1
3

)
hνso +

[
1
2
− gS

4

](
2
3

)
µBB +

(
2
9

y2
)

hνso (E.82)

EP
3
2 ,+

3
2

= EP
0 +

(
1
3

)
hνso +

[
1
2
− gS

4

]
2µBB (E.83)

where the bracketed terms evaluate to 1 when the approximation gS ≈−2 is made.

E.2.4 Eigenstates: Fine Structure Mixing

Orthonormality of the Mixing Coefficients

At zero field, with S = 1
2 , and for a given L > 0, there are in general two states

with the same mJ, but with different J. Note however that when |mJ|= L + 1
2 , there

is only one state with the quantum numbers mJ, J, and L. As noted before, the

B-field mixes states with the same L, the same mJ, but different J. The result of

the mixing are two states with the same mJ but with different J. At low field, the

mixed states are, to a very good approximation, the zero field eigenstates with a

small admixture of the other eigenstate. The mixed states, labeled by ±, approach
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the the zero field states with J = L± 1
2 as the field approaches zero. Because J is still

a very good quantum number, we will represent {|L±,mJ〉} in the {|J,mJ〉} basis:

|L±,mJ〉 = a±1

∣∣∣∣L +
1
2
,mJ

〉
+ a±2

∣∣∣∣L− 1
2
,mJ

〉
(E.84)

where a±1 , a
±
2 are the fine structure mixing coefficients, which we choose to be real.

To repeat, a zero field, L± = PL± 1
2
. The mixed eigenstates must be orthonormal:

〈
m±J |m±J

〉
=

(
a±1
)2 +

(
a±2
)2 = 1 (E.85)〈

m−J |m+
J

〉
= a−1 a+

1 + a−2 a+
2 = 0 (E.86)

Some algebra gives:

(
a±2
)2 = 1−

(
a±1
)2 (E.87)(

a−1 a+
1

)2 =
(
a−2 a+

2

)2

(
a−1 a+

1

)2 = 1 +
(
a−1 a+

1

)2−
(
a−1
)2−

(
a+

1

)2

1 =
(
a−1
)2 +

(
a+

1

)2 (E.88)(
a−1
)2 =

(
a+

2

)2 (E.89)(
a−2
)2 =

(
a+

1

)2 (E.90)

a−1
a+

2
= −a−2

a−1
(E.91)

a±1 = ±a∓2 (E.92)

To recap, orthonormality implies equation (E.92).
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Solving for the Mixing Coefficients

The values for a±1,2 come from the diagonalization of eqn. (E.44) where λ± are the

eigenvalues given by eqn. (E.54) and α and β are defined by eqns. (E.35) and (E.40):

M̂ |a〉 = ±λ |a〉 (E.93) 1 + 2αy −2βy

−2βy −
(
1 + 2αy

)

 a±1

a±2

 = ±λ

 a±1

a±2

 (E.94)

(
1 + 2αy

)
a±1 − 2βya±2 = ±λa±1 (E.95)

−2βya±2 −
(
1 + 2αy

)
a±1 = ±λa±2 (E.96)

These last two equations are redundant. Taking the former, using the normaliza-

tion condition, and some algebra gives:

(
1 + 2αy∓ λ

)
a±1 = 2βya±2 (E.97)(

1 + 2αy∓ λ
)2 (a±1 )2 = 4β2y2

(
1−

(
a±1
)2
)

(E.98)

a±1 =
2βy√(

1 + 2αy∓ λ
)2 + 4β2y2

(E.99)

a±2 =
1 + 2αy∓ λ√(

1 + 2αy∓ λ
)2 + 4β2y2

(E.100)

The± sign is taken for states evolving from the J = L± 1
2 term. Again even though

J is not a rigorously good quantum number like mJ, at low fields it is still very

good. This can be more easily seen by expanding a±1,2 at low field to second order

in y(B).
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Low Field Expansion

The low field expansions are performed using the following useful relations (from

equations 20.10 and 20.11 of the Mathematical Handbook [5]):

√
1 + x ' 1 +

1
2

x− 1
8

x2 +
1
16

x3− 5
128

x4 + O(x5) (E.101)

1√
1 + x

' 1− 1
2

x +
3
8

x2− 5
16

x3 +
35
128

x4 + O(x5) (E.102)

√
1 + ax + bx2 ' 1 +

a
2

x +
(

b
2
− a2

8

)
x2 +

(
a3

16
− ab

4

)
x3

+
(

3a2b
16
− b2

8
− 5a4

128

)
x4 + O(x5)

(E.103)

1√
1 + ax + bx2

' 1− a
2

x +
(

3a2

8
− b

2

)
x2 +

(
3ab
4
− 5a3

16

)
x3

+
(

35a4

128
+

3b2

8
− 15a2b

16

)
x4 + O(x5) (E.104)

First we’ll expand the eigenvalue to fourth order in y (field):

λ =
√

1 + 4αy + y2 (E.105)

' 1 + 2αy +
(

1
2
− 2α2

)
y2 +

(
4α3− α

)
y3 +

(
3α2− 1

8
− 10α4

)
y4 + O(y5)

' 1 + 2αy + 2β2y2− 4β2αy3 +
(

3α2− 1
8
− 10α4

)
y4 + O(y5) (E.106)



E.2. THE FINE STRUCTURE OF ALKALI ATOMS 648

Now let’s consider the denominator of a1,2 = n1,2√
d

:

d =
(
1 + 2αy∓ λ

)2 + 4β2y2

= 1 + 4α2y2 + λ2 + 4αy∓ 2λ∓ 4αyλ+ 4β2y2

= 1 + 4α2y2 + 1 + 4αy + y2 + 4αy∓ 2λ∓ 4αyλ+ 4β2y2

= 2 + 8αy + 2y2∓ 2λ∓ 4αyλ

= 2 + 8αy + 2y2∓ 2
(
1 + 2αy

)
λ

' 2 + 8αy + 2y2∓ 2
(
1 + 2αy

)(
1 + 2αy + 2β2y2− 4β2αy3 +

(
3α2− 1

8
− 10α4

)
y4
)

' 2 + 8αy + 2y2∓ 2
(

2αy + 4α2y2 + 4αβ2y3− 8β2α2y4
)

∓2
(

1 + 2αy + 2β2y2− 4β2αy3 +
(

3α2− 1
8
− 10α4

)
y4
)

' 2 + 8αy + 2y2∓ 2
(

1 + 4αy +
(

4α2 + 2β2
)

y2
)
∓ 2

(
3α2− 1

8
− 10α4− 8β2α2

)
y4

' 2 + 8αy + 2y2∓
(

2 + 8αy +
(

2− 4β2
)

y2
)
∓ 2

(
3α2− 1

8
− 10α4− 8β2α2

)
y4

d+ ' 2 + 8αy + 2y2− 2− 8αy−
(

2− 4β2
)

y2− 2
(

3α2− 1
8
− 10α4− 8β2α2

)
y4

' 4β2y2− 2
(

3α2− 1
8
− 10α4− 8β2α2

)
y4

' 4β2y2− 2
(

3α2− 1
8
− 10

(
1

16
− β4− 2α2β2

)
− 8β2α2

)
y4

' 4β2y2− 2
(

3α2− 3
4

+ 10β4 + 12α2β2
)

y4

' 4β2y2−
(
−6β2 + 20β4 + 24α2β2

)
y4

' 4β2y2
(

1 +
6
4

y2− 5β2y2− 6α2y2
)

' 4β2y2
(

1 + 6α2y2 + 6β2y2− 5β2y2− 6α2y2
)

' 4β2y2
(

1 + β2y2
)

d− ' 2 + 8αy + 2y2 + 2 + 8αy +
(

2− 4β2
)

y2 + 2
(

3α2− 1
8
− 10α4− 8β2α2

)
y4

' 4 + 16αy + 4
(

1− β2
)

y2
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Note that a fourth order expansion of λ was needed for d+, but not for d−. Now

let’s expand the inverse square root 1√
d
:

d−
1
2

+ '
(√

4β2y2
(
1 + β2y2

))−1

' 1
2βy

(
1− β2

2
y2
)

(E.107)

d−
1
2
− '

(
4 + 16αy + 4

(
1− β2) y2)− 1

2 (E.108)

' 1
2
(
1 + 4αy +

(
1− β2) y2)− 1

2 (E.109)

' 1
2

(
1−

(
4α
2

)
y +

(
3 · 16α2

8
− 1− β2

2

)
y2
)

(E.110)

' 1
2

(
1− 2αy +

(
6α2− 1

2
+
β2

2

)
y2
)

(E.111)

' 1
2

(
1− 2αy +

(
6
4
− 6β2− 1

2
+
β2

2

)
y2
)

(E.112)

' 1
2

(
1− 2αy +

(
1− 11

2
β2
)

y2
)

(E.113)

Note that all of the square roots take the positive root. Now let’s consider the

numerators:

n±1 = 2βy (E.114)

n±2 = 1 + 2αy∓ λ (E.115)

' 1 + 2αy∓
(
1 + 2αy + 2β2y2− 4β2αy3) (E.116)

n+
2 ' 1 + 2αy− 1− 2αy− 2β2y2 + 4β2αy3 (E.117)

' −2β2y2 + 4β2αy3 (E.118)

n−2 ' 1 + 2αy + 1 + 2αy + 2β2y2 (E.119)

' 2 + 4αy + 2β2y2 (E.120)
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Finally let’s calculate the the mixing coefficients:

a+
1 =

n+
1√
d+

=
2βy√(

1 + 2αy− λ
)2 + 4β2y2

(E.121)

=
(
2βy

) 1
2βy

(
1− β2

2
y2
)

(E.122)

' 1− β2

2
y2 (E.123)

a+
2 =

n+
2√
d+

=
1 + 2αy− λ√(

1 + 2αy− λ
)2 + 4β2y2

(E.124)

=
(
−2β2y2 + 4β2αy3) 1

2βy

(
1− β2

2
y2
)

(E.125)

' −
(
βy− 2αβy2)(1− β2

2
y2
)

(E.126)

' −βy + 2αβy2 (E.127)

a−1 =
n−1√
d−

=
2βy√(

1 + 2αy + λ
)2 + 4β2y2

(E.128)

'
(
2βy

) 1
2

(
1− 2αy +

(
1− 11

2
β2
)

y2
)

(E.129)

' βy− 2αβy2 (E.130)

a−2 =
n−2√
d−

=
1 + 2αy + λ√(

1 + 2αy + λ
)2 + 4β2y2

(E.131)

'
(
2 + 4αy + 2β2y2) 1

2

(
1− 2αy +

(
1− 11

2
β2
)

y2
)

(E.132)

'
(
1 + 2αy + β2y2)(1− 2αy +

(
1− 11

2
β2
)

y2
)

(E.133)

' 1− 2αy +
(

1− 11
2
β2
)

y2 + 2αy− 4α2y2 + β2y2 (E.134)

' 1 +
(

1− 11
2
β2− 4α2 + β2

)
y2 (E.135)

' 1 +
(

1− 11
2
β2 + 4β2− 1 + β2

)
y2 (E.136)

' 1− β2

2
y2 (E.137)
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As expected a±1 =±a∓2 . For notational convenience, we’ll drop the± on the mixing

coefficients. This gives, for the
{∣∣∣m±J 〉} states to second order in y (field):

a1 =
2βy√(

1 + 2αy− λ
)2 + 4β2y2

=
1 + 2αy + λ√(

1 + 2αy + λ
)2 + 4β2y2

' 1− β2

2
y2 (E.138)

a2 =
1 + 2αy− λ√(

1 + 2αy− λ
)2 + 4β2y2

=
−2βy√(

1 + 2αy + λ
)2 + 4β2y2

' −βy + 2αβy2 (E.139)

β2

2
=

1
8

(
1−

4m2
J

[L]2

)
(E.140)

2αβ =
mJ

[L]

√
1−

4m2
J

[L]2 (E.141)

|L+,mJ〉 = a1

∣∣∣∣L± 1
2
,mJ

〉
+ a2

∣∣∣∣L∓ 1
2
,mJ

〉
(E.142)

|L−,mJ〉 = a1

∣∣∣∣L∓ 1
2
,mJ

〉
− a2

∣∣∣∣L± 1
2
,mJ

〉
(E.143)

where ± refers to the value of J = L ± 1
2 for the zero field eigenstate that

∣∣∣m±J 〉
approaches as the field approaches zero.

In the lowest three RS terms for alkali metals, only the mJ = ±1
2 of the P1

2
and
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P3
2

terms mix:

a1 ' 1− y2

9
(E.144)

a±2 ' −
√

2
3

y
(

1∓ y
3

)
(E.145)∣∣∣∣P−,−1

2

〉
= a1

∣∣∣∣P1
2
,−1

2

〉
− a−2

∣∣∣∣P3
2
,−1

2

〉
(E.146)∣∣∣∣P+,−

1
2

〉
= a1

∣∣∣∣P3
2
,−1

2

〉
+ a−2

∣∣∣∣P1
2
,−1

2

〉
(E.147)∣∣∣∣P−,+1

2

〉
= a1

∣∣∣∣P1
2
,+

1
2

〉
− a+

2

∣∣∣∣P3
2
,+

1
2

〉
(E.148)∣∣∣∣P+,+

1
2

〉
= a1

∣∣∣∣P3
2
,+

1
2

〉
+ a+

2

∣∣∣∣P1
2
,+

1
2

〉
(E.149)

where ± now refers to mJ = ±1
2 .

E.2.5 Transition Frequencies: Optical Spectrum

Transitions that occur between RS terms are electric dipole transitions. As will be

discussed in more detail in the next section, these transitions have to conserve an-

gular momentum and must result in a change of parity. All the possible transitions

will be listed in groups labeled by the polarization of the incident light. D1 transi-

tions refer to ones between the S 1
2

states and the P1
2

states; whereas, D2 transitions

refer to ones between the S 1
2

states and the P3
2

states. Most of the energy differ-

ence between these states is due to electrostatic interactions. It will be convenient

to express these frequencies with respect to the zero field D1 and D2 transition
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frequencies:

ω0
1
2

=
EP

0 − ES
0

~
−
(

2
3

)
ωso = 2πν0

1
2

(E.150)

ω0
3
2

=
EP

0 − ES
0

~
+
(

1
3

)
ωso = 2πν0

3
2

(E.151)

ωso = ω0
3
2
− ω0

1
2
=
(

1
3
−−2

3

)
ωso = 2πνso (E.152)

ω 1
2

= ω0
1
2
+ δω 1

2
(E.153)

ω 3
2

= ω0
3
2
+ δω 3

2
(E.154)

δω = δω 3
2
− δω 1

2
(E.155)

where the δω terms are “added by hand” to account for the shift in the lines due to

the presence of a buffer gas such as 3He & N2. Note that in the following, bracketed

[· · · ] terms evaluate to 1 when the approximation gS = −2 is made. For light left

circularly polarized perpendicular to the B-field (which has −1 unit of angular

momentum), the possible transitions are:

∣∣∣∣S 1
2
,−1

2

〉
↔
∣∣∣∣P3

2
,−3

2

〉
=⇒ ω = ω 3

2
− yωso[
−1− gS

] (E.156)∣∣∣∣S 1
2
,+

1
2

〉
↔ a1

∣∣∣∣P1
2
,−1

2

〉
− a−2

∣∣∣∣P3
2
,−1

2

〉
=⇒ ω = ω 1

2
− 4y

3

([
1
2 −

gS
4

−1− gS

]
+

y
6

)
ωso

(E.157)∣∣∣∣S 1
2
,+

1
2

〉
↔ a1

∣∣∣∣P3
2
,−1

2

〉
+ a−2

∣∣∣∣P1
2
,−1

2

〉
=⇒ ω = ω 3

2
− 5y

3

([
1
5 −

2gS
5

−1− gS

]
− 2y

15

)
ωso

(E.158)
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For light linearly polarized parallel to the B-field (which has 0 units of angular

momentum), the transition frequencies are:

∣∣∣∣S 1
2
,−1

2

〉
↔ a1

∣∣∣∣P1
2
,−1

2

〉
− a−2

∣∣∣∣P3
2
,−1

2

〉
=⇒ ω = ω 1

2
+

2y
3

(
1− y

3

)
ωso

(E.159)∣∣∣∣S 1
2
,−1

2

〉
↔ a1

∣∣∣∣P3
2
,−1

2

〉
+ a−2

∣∣∣∣P1
2
,−1

2

〉
=⇒ ω = ω 3

2
+

y
3

(
1 +

2y
3

)
ωso

(E.160)∣∣∣∣S 1
2
,+

1
2

〉
↔ a1

∣∣∣∣P1
2
,+

1
2

〉
− a+

2

∣∣∣∣P3
2
,+

1
2

〉
=⇒ ω = ω 1

2
− 2y

3

(
1 +

y
3

)
ωso

(E.161)∣∣∣∣S 1
2
,+

1
2

〉
↔ a1

∣∣∣∣P3
2
,+

1
2

〉
+ a+

2

∣∣∣∣P1
2
,+

1
2

〉
=⇒ ω = ω 3

2
− y

3

(
1− 2y

3

)
ωso

(E.162)

For light right circularly polarized perpendicular to the B-field (which has +1 unit

of angular momentum), the transition frequencies are:

∣∣∣∣S 1
2
,−1

2

〉
↔ a1

∣∣∣∣P1
2
,+

1
2

〉
− a+

2

∣∣∣∣P3
2
,+

1
2

〉
=⇒ ω = ω 1

2
+

4y
3

([
1
2 −

gS
4

−1− gS

]
− y

6

)
ωso

(E.163)∣∣∣∣S 1
2
,−1

2

〉
↔ a1

∣∣∣∣P3
2
,+

1
2

〉
+ a+

2

∣∣∣∣P1
2
,+

1
2

〉
=⇒ ω = ω 3

2
+

5y
3

([
1
5 −

2gS
5

−1− gS

]
+

2y
15

)
ωso

(E.164)∣∣∣∣S 1
2
,+

1
2

〉
↔
∣∣∣∣P3

2
,+

3
2

〉
=⇒ ω = ω 3

2
+

yωso[
−1− gS

] (E.165)
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E.3 The Hyperfine Structure of Alkali Atoms

E.3.1 Zero Field Eigenbasis

Adding nuclear spin ~I to the system introduces the hyperfine interaction:

Hh f s = Ah f s~I · ~J (E.166)

Ah f s hides all the factors that don’t depend on the spins. I J-coupling causes states

with different mJ to mix. Since mF
(
= mI + mJ

)
is conserved, the {|F,mF〉} states

form a natural eigenbasis. This is more easily seen with a little arithmetic:

~F 2 = (~I + ~J)2 = ~I 2 + 2~I · ~J + ~J 2 (E.167)

Hh f s =
Ah f s

2
(~F 2− ~I 2− ~J 2) (E.168)

The hyperfine interaction splits the 2S 1
2
, 2P1

2
, and 2P3

2
terms into 2, 2, and 4 mani-

folds which are labeled by F. This is called the hyperfine structure. Note that many

calculations to follow will be identical to those done for the fine structure mixing.

Table (E.1) depicts the analogy.

E.3.2 Hamiltonian

The Hamiltonian describing the atom in a magnetic field ~B is

H = H0 + Hh f s− ~µI · ~B− ~µJ · ~B (E.169)

To recap:
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Spin-Orbit Hyperfine
~L ~I
~S ~J
~J ~F

mixes states with different J mixes states with different F
mixes states with same mJ mixes states with same mF

Aso Ah f s

νso ≈ 107 MHz νh f s ≈ 103 MHz
y x

y ≈ 1→ B ≈ 107 gauss x ≈ 1→ B ≈ 103 gauss

Table E.1: Analogy between spin-orbit and hyperfine coupling.

• The first term H0 contains all the terms that do not involve the nuclear spin.

• The second term is the hyperfine interaction.

• The third and fourth terms are the Zeeman terms for the nuclear spin and the

total electronic angular momentum respectively.

Using ~B = Bẑ & Fz = Iz + Jz and some rearrangement results in,

H = H0 +
(
−

Ah f s

2

(
~I 2 + ~J 2

)
− gIµN BFz

)
+
(

Ah f s

2
~F 2 +

(
gIµN − gJµB

)
BJz

)
(E.170)

The Hamiltonian is separated into three terms intentionally. States within a n2S+1LJ

term with the same mF but on different manifolds F are mixed by the Zeeman

interaction. This means that the first two terms are diagonal simultaneously in

the {|F,mF〉} basis and the eigenbasis of H . Therefore, the last term has to be

diagonalized. (make some comment about how fine structure mixing effects this

stuff)



E.3. THE HYPERFINE STRUCTURE OF ALKALI ATOMS 657

E.3.3 Energies: Derivation of the Breit-Rabi Equation

Diagonalization

The Breit-Rabi equation, first derived in 1931 [6,7], gives the energies of the ground

state hyperfine levels of atoms and ions with a single valence electron in the pres-

ence of a magnetic field. Let’s specialize to this case L = 0, S = 1
2 , J = 1

2 . F can be

I± 1
2 . Therefore in the {|F,mF〉} basis, the Jz term is block diagonal with subblocks

no greater than 2 by 2 in size. The 2 by 2 subblocks are made of the states with

different F and same mF. For the special case of mF = ±Fmax = ±
(

I + 1
2

)
, there

are no other states to mix with. Thus, they reside in subblocks of size 1 by 1. To

diagonalize H , we only have to diagonalize each subblock of H ′,

H ′ =
Ah f s

2
~F 2 +

(
gIµN − gSµB

)
BJz (E.171)

Ĥ ′ =
Ah f s

2

 (I + 1
2

) (
I + 3

2

)
0

0
(

I − 1
2

) (
I + 1

2

)
+

(
gIµN − gSµS

)
B

 α+ β−

β+ α−


(E.172)

α± =
〈

I ± 1
2
,mF

∣∣∣∣ Ĵz

∣∣∣∣I ± 1
2
,mF

〉
(E.173)

β± =
〈

I ∓ 1
2
,mF

∣∣∣∣ Ĵz

∣∣∣∣I ± 1
2
,mF

〉
(E.174)

The first term can be simplified to give:

Ah f s

2
~̂ 2
F =

Ah f s

2

(
I +

1
2

)I +
1
2

+

 1 0

0 −1


 (E.175)
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α± & β± in the second term are most easily calculated in the {|I,mI〉 |J,mJ〉} basis:

|I,mI〉 |J,mJ〉 = |mI,mJ〉 (E.176)

|F,mF〉 = ∑ |mI,mJ〉 〈mI,mJ|F,mF〉︸ ︷︷ ︸
Clebsch−Gordon

(E.177)

Using the formulas for Clebsch-Gordon coefficients (E.31):

〈
mF∓

1
2
,±1

2
|I +

1
2
,mF

〉
=

1√
[I]

√
I +

1
2
±mF

(E.178)〈
mF∓

1
2
,±1

2
|I − 1

2
,mF

〉
=
∓1√

[I]

√
I +

1
2
∓mF

which gives:

α± = ± (α) = ±
(

mF

[I]

)
(E.179)

β± = − (β) = −


√(

I + 1
2

)2−m2
F

[I]

 (E.180)

To solve for the energies, we only need to diagonalize the last term in H ′:

H ′ =
Ah f s

2

(
I +

1
2

)2

+
Ah f s

2

(
I +

1
2

) 1 + 2αx −2βx

−2βx − (1 + 2αx)

 (E.181)

x =
(
gIµN − gSµB

) 2B
A[I]

(E.182)

This is easily done and, just like fine structure mixing, gives the eigenvalues:

±
(
λ =
√

1 + 4αx + x2
)

(E.183)
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The total energy is therefore:

E = E0−
Ah f s

2

(
I(I + 1) +

1
2

(
1
2

+ 1
))
− gIµNmFB + E′ (E.184)

E′ =
Ah f s

2

(
I +

1
2

)2

±
Ah f s

2

(
I +

1
2

)
λ (E.185)

In this case, E0 is the energy of the (possibly mixed) spin-orbit coupled states. The

±λ eigenvalue is used for states evolving from the F = I ± 1
2 manifold. In the zero

field case, B = 0, we find the hyperfine splitting between the two manifolds is:

∆E =
Ah f s[I]

2
= hνh f s (E.186)

Dropping E0 and relating Ah f s to the zero field hyperfine splitting hνh f s, we get the

celebrated Breit-Rabi equation:

E = −
hνh f s

2[I]
− gIµN BmF±

hνh f s

2

√
1 +

4mF

[I]
x + x2 (E.187)

x =
(
gIµN − gSµB

) B
hνh f s

(E.188)

where± refers to states in the F = I± 1
2 manifold. Note that x is a unitless quantity

that gives a relative measure of the size of the Zeeman interaction with respect

to the hyperfine interaction. For example, the Zeeman interaction is comparable

to the hyperfine interaction (x ≈ 1) for potassium-39 and rubidium-85 when B ≈

165 gauss & 1080 gauss respectively.

We’ll discuss two special cases now. The energies of the mF = ±(I + 1
2 ) states
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(aka “edge” states) in the F = I + 1
2 manifold (aka “upper” manifold) are:

E±(I+ 1
2 ) =

I
[I]

hνh f s±
([

gS

−2

]
µB− gIµN I

)
B (E.189)

where± now refers to mF. A low field (B < 165 gauss & 1080 gauss for potassium-

39 and rubidium-85 respectively) expansion of the energies for the the F = I ± 1
2

manifolds can be performed using:

√
1 + 2ax + x2 = 1 +

1
2

x (2a + x)− 1
2 · 4 x2 (2a + x)2 +

1 · 3
2 · 4 · 6 x3 (2a + x)3

− 1 · 3 · 5
2 · 4 · 6 · 8 x4 (2a + x)4

+
1 · 3 · 5 · 7

2 · 4 · 6 · 8 · 10
x5 (2a + x)5

− 1 · 3 · 5 · 7 · 9
2 · 4 · 6 · 8 · 10 · 12

x6 (2a + x)6 + · · · (E.190)

Expanding each factor of (2a + x)n and reducing the coefficients in front of each

term:

√
1 + 2ax + x2 = 1 +

1
2

x (2a + x)− 1
8

x2
(

4a2 + x2 + 4ax
)

+
1

16
x3
(

8a3 + 12a2x + 6ax2 + x3
)

− 5
128

x4
(

16a4 + 32a3x + 24a2x2 + 8ax3 + x4
)

+
7

256
x5
(

32a5 + 80a4x + 80a3x2 + 40a2x3 + 10ax4 + x5
)

− 21
1024

x6
(

64a6 + 192a5x + 240a4x2 + 160a3x3 + 60a2x4 + 12ax5 + x6
)

(E.191)
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Keeping only the terms up to sixth order in the dimensionless field parameter x:

√
1 + 2ax + x2 = 1 +

1
2

x (2a + x)− 1
8

x2 (4a2 + x2 + 4ax
)

+
1
16

x3 (8a3 + 12a2x + 6ax2 + x3)
− 5

16
x4 (2a4 + 4a3x + 3a2x2)+

7
16

x5 (2a5 + 5a4x
)

−21
16

x6a6 + O(x7) (E.192)

Collecting all the terms order by order:

√
1 + 2ax + x2 = 1 + (a) x +

(
1
2
− a2

2

)
x2 +

(
−a

2
+

a3

2

)
x3

+
(
−1

8
+

3a2

4
− 5a4

8

)
x4 +

(
3a
8
− 5a3

4
+

7a5

8

)
x5

+
(

1
16
− 15a2

16
+

35a4

16
− 21a6

16

)
x6 + O(x7) (E.193)

Pulling out common factors:

√
1 + 2ax + x2 = 1 + ax +

1
2
(
1− a2) x2− a

2
(
1− a2) x3− 1

8
(
1− 6a2 + 5a4) x4

+
3a
8

(
1− 10a2

3
+

7a4

3

)
x5

+
1
16
(
1− 15a2 + 35a4− 21a6) x6 + O(x7) (E.194)

Note that when a = ±1, the stuff under the square root is a perfect square:

√
1 + 2ax + x2 =

√
1± 2x + x2 =

√
(1± x)2 = 1± x (E.195)

In this case (a =±1), all terms second order or higher in x have to disappear order
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by order. Using this insight, a factor (1− a2) is pulled out of each higher order

term:

√
1 + 2ax + x2 = 1 + ax +

1
2
(
1− a2) x2− a

2
(
1− a2) x3− 1

8
(
1− 5a2) (1− a2) x4

+
3a
8

(
1− 7a2

3

)(
1− a2) x5

+
1
16
(
1− 14a2 + 21a4) (1− a2) x6 + O(x7) (E.196)

Making the substitution a = 2mF/[I], dividing both sides of the Breit-Rabi equa-

tion (E.187) by hνh f s, and using the sixth order expansion that was just calculated

gives:

± E±
hνh f s

= a0 + a1x +

[
1−

(
2mF

[I]

)2
][

6

∑
n=2

anxn

]
(E.197)

x =
(
gIµN − gSµB

) B
hνh f s

(E.198)

[I] = 2I + 1 (E.199)

a0 =

(
I + 1

2 ∓
1
2

[I]

)
(E.200)

a1 =
mF

[I]

(
1± gIµN

gSµB
([I]∓ 1)

1− gIµN
gSµB

)
≈ mF

[I]
+ O(10−3) (E.201)

a2 = +
1
4

(E.202)

a3 = − mF

2[I]
(E.203)

a4 = − 1
16

[
1− 5

(
2mF

[I]

)2
]

(E.204)

a5 = +
3mF

8[I]

[
1− 7

3

(
2mF

[I]

)2
]

(E.205)

a6 = +
1
32

[
1− 14

(
2mF

[I]

)2

+ 21
(

2mF

[I]

)4
]

(E.206)
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where ± refers to the F = I ± 1
2 manifold. Note that eqn. (E.189) shows that the

energy for the edge states in the upper manifold
(

F = I + 1
2 & |mF| = I + 1

2

)
is lin-

ear in field. Therefore, for the edge states,
(
2mF/[I]

)2 = 1 and all terms of or-

der two or higher in field in eqn. (E.197) must disappear order by order. Conse-

quently eqn. (E.197) is written such that the disappearance of higher order terms

is evident. Finally, we’ll note that the order of the states from highest energy

to lowest energy are F = I + 1/2,mF = I + 1/2 down to − (I + 1/2) and then

F = I − 1/2,mF = −(I + 1/2) up to + (I + 1/2).

E.3.4 Eigenstates: Hyperfine Mixing

At low field, it is useful to label states by F and mF because F is almost a good quan-

tum number. Therefore, at low field, we’ll refer to two groups of states as “man-

ifolds” which are labeled by F. Within each manifold, states are distinguished by

their mF. At high field, the nuclear spin and total electronic angular momentum

decouple. This is because the Zeeman interaction becomes much larger than the

hyperfine interaction. Because the electron magnetic moment is much larger than

the nuclear magnetic moment, it is useful to groups states by their mJ, which at

high field is almost a good quantum number. These groupings are called Zeeman

multiplets. Each state within a multiplet is distinguished by it’s mI , which at high

field is also almost a good quantum number. Note that regardless of the magni-

tude of the field, mF is always a good quantum number. For most of this document,

we’ll be working in the low field limit where the most appropriate quantum num-

bers are F and mF. Figure (E.1) depicts a qualitative energy level diagram for the

most abundant isotope of Rubidium.

(The following is analogous to fine structure mixing with y→ x) Since we are
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Weak Field
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considering the ground state term of an alkali metal atom, there is no fine structure

mixing. However the field B does result in hyperfine structure mixing (states with

the same mF but different F):

|m±F 〉 = a±1

∣∣∣∣I +
1
2
,mF

〉
+ a±2

∣∣∣∣I − 1
2
,mF

〉
(E.207)

|F,mF〉 =
+ 1

2

∑
mJ=− 1

2

|mF−mJ,mJ〉 〈mF−mJ,mJ | F,mF〉 (E.208)

b±1 (mF) =
〈

mF−
1
2
,+

1
2
|I ± 1

2
,mF

〉
(E.209)

b±2 (mF) =
〈

mF +
1
2
,−1

2
|I ± 1

2
,mF

〉
(E.210)∣∣∣∣I ± 1

2
,mF

〉
= b±1

∣∣∣∣mF−
1
2
,+

1
2

〉
+ b±2

∣∣∣∣mF +
1
2
,−1

2

〉
(E.211)

The values for a±1,2 come from the diagonalization of eqn. (E.181) where λ± are the

eigenvalues given by eqn. (E.183, α and β are defined by eqns. (E.179) and (E.180),

and b±1,2 are from eqns. (C.9) and (C.10):

a±1 =
2βx√

(1 + 2αx∓ λ)2 + 4β2x2
(E.212)

a±2 =
1 + 2αx∓ λ√

(1 + 2αx∓ λ)2 + 4β2x2
(E.213)

a±1 = ±a∓2 (E.214)

b±1 = ±

√
I ±mF + 1

2

[I]
(E.215)

b±2 = +

√
I ∓mF + 1

2

[I]
(E.216)

The ± sign is taken for transitions within the F = I ± 1
2 manifold. For simplicity
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(due to orthogonality):

a1 ≡ a+
1 = a−2 (E.217)

a2 ≡ a+
2 = −a−1 (E.218)

b1 ≡ b+
1 = b−2 (E.219)

b2 ≡ b+
2 = −b−1 (E.220)∣∣∣∣I ± 1

2
,mF

〉
= b1

∣∣∣∣mF∓
1
2
,±1

2

〉
± b2

∣∣∣∣mF±
1
2
,∓1

2

〉
(E.221)

|m±F 〉 = a1

∣∣∣∣I ± 1
2
,mF

〉
± a2

∣∣∣∣I ∓ 1
2
,mF

〉
(E.222)

Eqn. (E.222) represents the decomposition of the eigenstates {|m±F 〉} in the zero

field hyperfine coupled basis {|F,mF〉}, whereas eqn. (E.223) represents the de-

composition in the zero field uncoupled I J basis {|mI,mJ〉}:

|m±F 〉 = a1

∣∣∣∣I ± 1
2
,mF

〉
± a2

∣∣∣∣I ∓ 1
2
,mF

〉
= a1

(
b1

∣∣∣∣mF∓
1
2
,±1

2

〉
± b2

∣∣∣∣mF±
1
2
,∓1

2

〉)
±a2

(
b1

∣∣∣∣mF±
1
2
,∓1

2

〉
∓ b2

∣∣∣∣mF∓
1
2
,±1

2

〉)
= (a1b1− a2b2)

∣∣∣∣mF∓
1
2
,±1

2

〉
± (a1b2 + a2b1)

∣∣∣∣mF±
1
2
,∓1

2

〉
(E.223)

E.3.5 Transition Frequencies: EPR Spectrum

Introduction

EPR stands for Electron Paramagnetic Resonance. At low field, it refers to the

transitions between adjacent states within a particular manifold. Transitions be-

tween mF ↔ mF − 1 will be labeled by the higher state mF. For example, refer to
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Isotope F = I − 1
2 transition F = I + 1

2 transition mF

39K 2 +2 ↔ +1 +2
1 +1 ↔ 0 2 +1 ↔ 0 +1
1 0 ↔ −1 2 0 ↔ −1 0

2 −1 ↔ −2 −1

85Rb 3 +3 ↔ +2 +3
2 +2 ↔ +1 3 +2 ↔ +1 +2
2 +1 ↔ 0 3 +1 ↔ 0 +1
2 0 ↔ −1 3 0 ↔ −1 0
2 −1 ↔ −2 3 −1 ↔ −2 −1

3 −2 ↔ −3 −2

Table E.2: Transitions are labeled by the higher mF state.

table (E.2) for the applicable transitions within the ground state for potassium-39

and rubidium-85. Recall that:

gS = −2
[
1 + O(10−3)

]
(E.224)

x =
(
gIµN − gSµB

) B
hνh f s

(E.225)

The frequency corresponding to these transitions within the F = I ± 1
2 manifold

are:

ν+ = −gIµN B
h

+
νh f s

2

(√
1 +

4mF

[I]
x + x2−

√
1 +

4 (mF − 1)
[I]

x + x2

)
(E.226)

−ν− = −gIµN B
h
−
νh f s

2

(√
1 +

4mF

[I]
x + x2−

√
1 +

4 (mF − 1)
[I]

x + x2

)
(E.227)

ν− = +
gIµN B

h
+
νh f s

2

(√
1 +

4mF

[I]
x + x2−

√
1 +

4 (mF − 1)
[I]

x + x2

)
(E.228)

ν± = ∓gIµN B
h

+
νh f s

2

(√
1 +

4mF

[I]
x + x2−

√
1 +

4 (mF − 1)
[I]

x + x2

)
(E.229)
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where the overall sign was chosen to give a positive frequency for ν±.

End Transition Frequencies

Transitions involving the edge states are called “end” transitions. The frequencies

for these transitions can be written in a simpler form by taking advantage of this

formula:

mF = ±
(

I +
1
2

)
→ 4mF = ±2[I]→

√
1 +

4mF

[I]
x + x2 = 1± x (E.230)

The frequency of the mF = I + 1/2↔ I − 1/2 end transition is:

ν+I+1/2 = −gIµN B
h

+
νh f s

2

1 + x−

√
1 +

4
(

I − 1/2
)

[I]
x + x2

 (E.231)

while the frequency of the mF = −(I + 1/2) + 1↔−(I + 1/2) end transition is:

ν−I−1/2 = −gIµN B
h

+
νh f s

2

√1−
4
(

I − 1/2
)

[I]
x + x2− 1 + x

 (E.232)

We can collapse both of equations into one equation to give:

ν± =
νh f s

2

[
x

(
1 + gIµN

gSµB

1− gIµN
gSµB

)
± 1∓

√
1± 2

(
2I − 1
2I + 1

)
x + x2

]
(E.233)

where the± now refers to edge state mF =±
(

I + 1
2

)
involved in the end transition.
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End Transition Frequency Inversion Formula

Because the equation for the frequency of an end transition involves only one

square root term, the equation can be inverted to give the field as a function of

frequency. Expressing eqn. (E.233) in terms of x and isolating the square root term:

ν± =
νh f s

2

x

(
1 + gIµN

gSµB

1− gIµN
gSµB

)
︸ ︷︷ ︸

a

±1∓
√√√√√1± 2

(
2I − 1
2I + 1

)
︸ ︷︷ ︸

b

x + x2

 (E.234)

ν =
νh f s

2

(
ax + s− s

√
1 + 2sbx + x2

)
(E.235)

s = ±1→ s2 = 1 (E.236)

n = 2
ν

νh f s
= ax + s− s

√
1 + 2sbx + x2 (E.237)

n− ax− s = −s
√

1 + 2sbx + x2 (E.238)

Now both sides of the equation can be squared, leaving an equation that is second

order in x:

(n− ax− s)2 =
(
−s
√

1 + 2sbx + x2
)2

n2 + a2x2 + 1− 2nax− 2sn + 2sax = 1 + 2sbx + x2

0 = 2sbx + x2− n2− a2x2 + 2nax + 2sn− 2sax

0 =
(
1− a2) x2 + 2 (sb− sa + na) x + 2sn− n2

0 =
(
1− a2) x2− 2s (a− b− san) x + sn(2− sn)
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This is solved by using the quadratic formula from section 5.5 of Numerical Recipes

[8]:

A x2 + Bx + C = 0 (E.239)

q ≡ −1
2

[
B + sgn(B)

√
B2− 4AC

]
(E.240)

x1 =
q
A & x2 =

C
q

(E.241)

In principle, the “traditional” quadratic formula is formally equivalent to the solutions

(E.241). However, in practice, solutions to the quadratic formula are typically computed

on devices that are susceptible to round off errors caused the subtraction of two very nearly

identical numbers. The solutions of the form given above are robust against round off

errors.

Only one of the two solutions is correct. Since the B field defined the axis of

quantization used to derive the Breit-Rabi equation, it is positive by definition.

Therefore the correct solution is the one for which B > 0. Since µB � µN, the sign

of x is given by the sign of −gSB. Since gS ≈ −2, x and B have the same sign. The

sign of x1 is given by the sign of −B/A while the sign of x2 is given by the sign of

−C /B .

The value of the parameter a is 1 with a small correction of order 10−3 whose

sign depends on gI . Consequently, A is nearly 0 and the sign of A is equal to the

sign of gI . The value of the parameter b is always less than 1. If 2I � 103, then

b < a. If we also stipulate that 0 < ν < νh f s/2, then n < 1. All this put together

insures (a− b− san) > 0 which implies B has the same sign as−s. Finally, the sign

of C is s because (2− sn) > 0. Therefore, under these conditions, the sign of x1 is

s/gI , whereas the sign of x2 is positive. Since the correct solution must be positive
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regardless of s, it is x2 = C /q.

The discriminant B2− 4AC is given by:

[−2s (a− b− san)]2− 4
[
1− a2

]
[sn(2− sn)] = 4

[
b2 + a2− 2ab + 2absn− 2sn + n2

]
= 4

[
(a− b)2− 2sn(1− ab− sn/2)

]
(E.242)

Plugging this into q, canceling factors of 2 inside q, and canceling a factor of s in C

& q gives:

x =
(
gIµN − gSµB

) B
hνh f s

=
C
q

=
n(2− sn)

a(1− sn)− b +
√

(a− b)2− 2sn(1− ab− sn/2)
(E.243)

where s = ±1 and as a reminder:

n = 2ν/νh f s a =
1 + gIµN

gSµB

1− gIµN
gSµB

b =
2I − 1
2I + 1

=
[I]− 2

[I]
(E.244)

Multiplying the top and bottom by [I], writing a as 1− ε, and solving for B gives:

B =
(

[I]hν
gIµN

)
ε(1− f )

1− [I]
{

f (1− ε) + ε
2

}
+
√(

1− [I] ε2
)2− 2 f [I]

(
1− ε+ [I] (ε− f )

2

)
(E.245)

where s = ±1 is the sign of the edge state involved in the transition and:

[I] = 2I +1 f = sν/νh f s ε= 1− a =
2gIµN

gIµN − gSµB
= gI

µN

µB

[
−2
gS

](
1− gIµN

gSµB

)−1

(E.246)
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Isotope I upper F End gI νh f s

Transition MHz

6Li 1 3/2 s3/2↔ s1/2 +0.822 056 228.205 26
7Li 3/2 2 s2↔ s1 +2.170 960 803.504 09

23Na 3/2 2 s2↔ s1 +1.478 347 1 771.626 13

39K 3/2 2 s2↔ s1 +0.260 973 461.719 72
40K 4 9/2 s9/2↔ s7/2 −0.324 5 -1 142.92
41K 3/2 2 s2↔ s1 +0.143 247 254.013 87

85Rb 5/2 3 s3↔ s2 +0.541 208 3 035.732 00
87Rb 3/2 2 s2↔ s1 +1.834 133 6 834.682 60

133Cs 7/2 4 s4↔ s3 +0.736 857 9 192.631 77

Table E.3: Upper Manifold End Transitions for which Equation (E.245) is valid with
s = ±

Twin Transition Frequency Difference

The upper manifold has two more ∆mF = ±1 transitions than the lower manifold.

These extra transitions are the end transitions. All other upper manifold transitions

have a “twin” transition in the lower manifold. The twins transitions sit side by

side on the same row in table (E.2). The difference in frequencies between twin

transitions depends only on the magnitude of the field:

∆νtwin = νlower− νupper = +2gI
µN

h
B (E.247)

Note that for any pair of twin transitions, the lower manifold transition has the

larger frequency. For example, the twin frequency differences for 39K and 85Rb at
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10 Gauss are:

39K : ν (F = 1,mF = ±1↔ 0)− ν (F = 2,mF = ±1↔ 0) = 3.98 kHz

(E.248)

85Rb : ν (F = 2,mF = ±2↔±1↔ 0)− ν (F = 3,mF = ±2↔±1↔ 0) = 8.25 kHz

(E.249)

Low Field Frequency Expansion

To expand the frequency at low field up to sixth order in x:

ν± =
νh f s

2
∆∓ gIµN B

h

∆ =
√

1 + 2ax + x2−
√

1 + 2a′x + x2

=
(
a− a′

)
x +

(
−a2− a′2

2

)
x2

+
(
−a− a′

2
+

a3− a′3

2

)
x3

+
(

3
a2− a′2

4
− 5

a4− a′4

8

)
x4

+
(

3
a− a′

8
− 5

a3− a′3

4
+ 7

a5− a′5

8

)
x5

+
(
−15

a2− a′2

16
+ 35

a4− a′4

16
− 21

a6− a′6

16

)
x6 (E.250)

The difference in each term is with b = [I]:

an− a′n =
(

2mF

[I]

)n

−
(

2 (mF− 1)
[I]

)n

=
[

2
b

]n

[mn
F− (mF− 1)n] (E.251)
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Factoring out bn from each term:

∆

2
=

x
b

+ [1− 2mF]
x2

b2 + 2
[

1− 3mF + 3m2
F−

b2

4

]
x3

b3

+
[

5
(
1− 4mF + 6m2

F− 4m3
F

)
− 3b2

2
(1− 2mF)

]
x4

b4

+
[

14
(
1− 5mF + 10m2

F− 10m3
F + 5m4

F

)
− 5b2 (1− 3mF + 3m2

F

)
+

3b4

8

]
x5

b5

+
[
42
(
1− 6mF + 15m2

F− 20m3
F + 15m4

F− 6m5
F

)] x6

b6

+
[
−35b2

2
(
1− 4mF + 6m2

F− 4m3
F

)
+

15b4

8
(1− 2mF)

]
x6

b6 (E.252)

Putting this altogether gives (to sixth order in x), the frequency of transition for the

F = I ± 1/2 manifold at a given (low) field B:

ν±
νh f s

=
6

∑
n=1

cn
xn

[I]n (E.253)

x =
(
gIµN − gSµB

) B
hνh f s

(E.254)

[I] = 2I + 1 (E.255)

c1 =
1± gIµN

gSµB
([I]∓ 1)

1− gIµN
gSµB

= 1∓O(10−3) (E.256)

c2 = 1− 2mF (E.257)

c3 = 2
(

1− 3mF + 3m2
F−

[I]2

4

)
(E.258)

c4 = 5
(
1− 4mF + 6m2

F− 4m3
F

)
− 3[I]2

2
(1− 2mF) (E.259)

c5 = 14
(
1− 5mF + 10m2

F− 10m3
F + 5m4

F

)
− 5[I]2 (1− 3mF + 3m2

F

)
+

3[I]4

8

(E.260)

c6 = 42
(
1− 6mF + 15m2

F− 20m3
F + 15m4

F− 6m5
F

)
−35[I]2

2
(
1− 4mF + 6m2

F− 4m3
F

)
+

15[I]4

8
(1− 2mF) (E.261)
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where ± refers to the manifold.

Low Field Frequency Inversion Formula

If we drop all terms higher than second order, then we can get an inversion formula

for equation (E.253) for any transition at low field. Thus applying the quadratic

formula (E.241) and noting that µN/µB� 1→ c1 ≈ 1 and gS ≈−2, we get the field

corresponding to a particular transition frequency at low fields:

B ≈
(

hν
µB

)
[I]

1 +
√

1 + 4(1− 2mF)ν/νh f s

(E.262)

Table (E.4) illustrates how accurate this approximate equation is. For 85Rb, its bet-

ter than 0.25% up to ν = 16 MHz. For 39K, its better than 0.50% up to ν = 10 MHz.

Low Field Adjacent Transition Frequency Difference

At low fields to lowest order, the frequency difference between two adjacent tran-

sitions depends on B2:

∣∣∣∣ν (mF + 1↔ mF)− ν (mF↔ mF− 1)
νh f s

∣∣∣∣ = 2
x2

[I]2 = 2
[(

gIµN − gSµB
) B

[I]hνh f s

]2

(E.263)

At B = 10 G, ∆ν = 14.4 kHz for 85Rb and ∆ν = 212 kHz for 39K.
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39K ν = 10 MHz ν = 25 MHz
F mF B (full) B (E.262) % diff. B (full) B (E.262) % diff.

2 −1 13.422 13.465 +0.32 30.923 31.276 +1.14
1 0 14.011 13.993 −0.13 34.514 33.974 −1.56
2 0 14.018 13.993 −0.18 34.532 33.974 −1.62
1 +1 14.633 14.613 −0.13 38.564 37.901 −1.72
2 +1 14.642 14.613 −0.19 38.590 37.901 −1.79
2 +2 15.292 15.363 +0.46 43.095 44.883 +4.15

85Rb ν = 6.5 MHz ν = 16 MHz
F mF B (full) B (E.262) % diff. B (full) B (E.262) % diff.

3 −2 13.779 13.786 +0.05 33.403 33.436 +0.10
2 −1 13.814 13.844 +0.22 33.700 33.769 +0.21
3 −1 13.838 13.844 +0.04 33.758 33.769 +0.03
2 0 13.873 13.903 +0.21 34.057 34.116 +0.17
3 0 13.898 13.903 +0.04 34.116 34.116 −0.00
2 +1 13.933 13.962 +0.21 34.417 34.478 +0.18
3 +1 13.957 13.962 +0.03 34.479 34.478 −0.00
2 +2 13.992 14.023 +0.22 34.781 34.855 +0.21
3 +2 14.017 14.023 +0.04 34.845 34.855 +0.03
3 +3 14.078 14.085 +0.05 35.215 35.250 +0.10

Table E.4: Comparison of calculation of B given ν. All the fields are in gauss. The
“full” calculation is solving Eqn. (blah) numerically. The approximate calculation
is Eqn. (E.262). Comparisons are made at B≈ 15 G & 35 G. For 39K this corresponds
to ν = 10 MHz & 25 MHz. For 85Rb this corresponds to ν = 6.5 MHz & 16 MHz.



E.3. THE HYPERFINE STRUCTURE OF ALKALI ATOMS 677

Low Field Frequency Derivative with respect to Field

The derivative of the frequency with respect to the field is:

dν
dB

= ∓gIµN

h
+
(
gIµN − gSµB

)
2h[I]

 2mF + [I]x√
1 + 4mF

[I] x + x2
− 2mF− 2 + [I]x√

1 + 4(mF−1)
[I] x + x2

 (E.264)

The derivative can be “expanded” in x at low field by taking the derivative of equa-

tion (E.253) term by term. To fifth order in field, the derivative of the frequency

with respect to the field is:

dν±
dB

=
(
gIµN − gSµB

)
h[I]

5

∑
n=0

bn
xn

[I]n (E.265)

x =
(
gIµN − gSµB

) B
hνh f s

(E.266)

[I] = 2I + 1 (E.267)

b0 =
1± gIµN

gSµB
([I]∓ 1)

1− gIµN
gSµB

= 1∓O(10−3) (E.268)

b1 = 2 (1− 2mF) (E.269)

b2 = 6
(

1− 3mF + 3m2
F−

[I]2

4

)
(E.270)

b3 = 20
(
1− 4mF + 6m2

F− 4m3
F

)
− 6[I]2 (1− 2mF) (E.271)

b4 = 70
(
1− 5mF + 10m2

F− 10m3
F + 5m4

F

)
− 25[I]2 (1− 3mF + 3m2

F

)
+

15[I]4

8

(E.272)

b5 = 252
(
1− 6mF + 15m2

F− 20m3
F + 15m4

F− 6m5
F

)
−105[I]2 (1− 4mF + 6m2

F− 4m3
F

)
+

45[I]4

4
(1− 2mF) (E.273)

These coefficients have simple forms for the end transitions. Plugging in mF =

I + 1/2 for I + 1/2↔ I − 1/2 and mF = −I + 1/2 for −I + 1/2↔ −I − 1/2, the
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coefficients for the expansion of the derivative of the EPR frequency are:

b0 =
1 + gIµN

gSµB
(2I)

1− gIµN
gSµB

= 1−O(10−3) (E.274)

b1 = ∓4I (E.275)

b2 = 6I (2I − 1) (E.276)

b3 = ∓8I
(
4I2− 6I + 1

)
(E.277)

b4 = 10I (2I − 1)
(
4I2− 10I + 1

)
(E.278)

b5 = ∓12I
(
16I4− 80I3 + 80I2− 20I + 1

)
(E.279)

where ± refers to the edge state mF = ±
(

I + 1
2

)
involved in the transition.

E.4 The Structure of Polarized Light

E.4.1 Representing Electromagnetic Plane Waves

Real Representation

The electric and magnetic field components of an electromagnetic plane wave

traveling in the z-direction with arbitrary polarization in a uniform and isotropic

medium can be written as:

~E (~r, t) = Ex(z, t)x̂ + Ey(z, t)ŷ = E0x x̂ cos (kz− ωt) + E0y ŷ cos (kz− ωt + φ)

(E.280)

~B (~r, t) =
√
µε
[
ẑ× ~E (~r, t)

]
= µ~H (~r, t) (E.281)

=
√
µε
[
E0x ŷ cos (kz− ωt)− E0y x̂ cos (kz− ωt + φ)

]
(E.282)
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In SI, the energy flux (energy per unit time per unit area or instantaneous power

density) associated with the EM wave is given by the Poynting vector:

~S (~r, t) = ~E (~r, t)× ~H (~r, t) =
1
µ
~E (~r, t)× ~B (~r, t) =

√
ε

µ
~E (~r, t)×

[
ẑ× ~E (~r, t)

]
(E.283)

=
√
ε

µ

(
ẑ
[
~E (~r, t) · ~E (~r, t)

]
− ~E (~r, t)

[
ẑ · ~E (~r, t)

])
(E.284)

= ẑ
√
ε

µ

[
~E (~r, t) · ~E (~r, t)

]
(E.285)

= ẑ
√
ε

µ
E2

0x

[
cos2(kz) cos2(ωt) + sin2(kz) sin2(ωt) +

1
2

sin(2kz) sin(2ωt)
]

+ẑ
√
ε

µ
E2

0y

[
cos2(kz + φ) cos2(ωt) + sin2(kz + φ) sin2(ωt)

+
1
2

sin(2kz + 2φ) sin(2ωt)
]

(E.286)

We’ll define the intensity as the magnitude of the time averaged energy flux (or

time averaged power density):

I ≡ ω

2π

Z 2π
ω

0
ẑ · ~S (~r, t) dt (E.287)

1
2

=
ω

2π

Z 2π
ω

0
cos2(ωt)dt =

ω

2π

Z 2π
ω

0
sin2(ωt)dt (E.288)

I =
√
ε

µ

(
E2

0x

2
[
cos2(kz) + sin2(kz)

]
+

E2
0y

2
[
cos2(kz + φ) + sin2(kz + φ)

])

=
1
2

√
ε

µ

[
E2

0x + E2
0y

]
=
√
ε

µ

〈∣∣∣~E∣∣∣2〉
time

(E.289)

where the time averaged magnitude of the electric field vector is given as:

√〈∣∣∣~E∣∣∣2〉
time

=

√
E2

0x + E2
0y

2
(E.290)
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Complex Representation: The Jones Calculus

We will use the Jones calculus [9–11] for defining the polarization state of the light

(vectors) and the action of the various optical elements (matrices). This convention

uses complex number representation and a linear polarization basis. The electric

field component of a monochromatic electromagnetic plane wave with propaga-

tion vector~k = kẑ at time t is:

~E(z, t) = Ex(z, t)x̂ + Ey(z, t)ŷ = |E〉 eikz−iωt (E.291)

Ex(z, t) = E0x exp (ikz− iωt + iαx) (E.292)

Ey(z, t) = E0y exp
(
ikz− iωt + iαy

)
(E.293)

|E〉 ≡

 E0xeiαx

E0yeiαy

 (E.294)

where the relative phase shift is α = αx − αy. Note that it is assumed that the real

part of ~E is taken when the physical field is needed. At a fixed point is space and over

one period (= 2π
ω ) in time, ~E sweeps out an ellipse in the xy-plane given by (Born,

Max and Emil Wolf. Principles of Optics, 7th (Expanded) Edition. Cambridge:

Cambridge University Press, 1999. page 26, equation 15):

(
Ex

E0x

)2

+
(

Ey

E0y

)2

− 2
(

Ex

E0x

)(
Ey

E0y

)
cos(α) = sin2(α) (E.295)

In this representation, computing the modulus square of the electric field vector

gives:

~E∗ · ~E = 〈E|E〉 = E2
0x + E2

0y (E.296)
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The time averaged modulus squared of electric field vector is therefore:

∣∣∣~E∣∣∣2
time
≡
~E∗ · ~E

2
=

E2
0x + E2

0y

2
(E.297)

and finally the intensity is:

I =
√
ε

µ

〈
~E∗ · ~E

〉
time

=
√
ε

µ

〈E | E〉
2

=
〈B | B〉
2µ
√
εµ

(E.298)

E.4.2 Linear Polarization

For linear polarization, the relative phase shift is an integer multiple of half a wave,

α = ±nπ (E.299)

or in other words the two components are in phase. Eqn. (E.295) becomes degen-

erate, (
Ex

E0x

)2

+
(

Ey

E0y

)2

∓ 2
(

Ex

E0x

)(
Ey

E0y

)
= 0 (E.300)

with solutions
Ey

E0y
= ∓ Ex

E0x
(E.301)

Two specific solutions are the orthogonal axes of the xy-plane which correspond to

horizontal and vertical linearly polarized light. Horizontal linearly polarized light

is denoted by

|P 〉 = |x〉 =

 1

0

 (E.302)
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Vertical linearly polarized light is denoted by

|S〉 = |y〉 =

 0

1

 (E.303)

Linear polarization at an angle θ counterclockwise from the x-axis is

|θ〉 =

 cos(θ)

sin(θ)

 (E.304)

E.4.3 Circular Polarization

When the relative phase shift is a quarter wave,

α = ±(2n + 1)
π

2
(E.305)

and the magnitudes of the two components are identical,

E0x = E0y (E.306)

then eqn. (E.295) reduces to an equation for a circle:

Ex
2 + Ey

2 = 1 (E.307)
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The two orthogonal states are labeled by their helicity, namely the sign of the pro-

jection of the spin to the propagation vector. Right circularly polarized light,

|R 〉 = |+〉 =
√

2
2

 1

+i

 (E.308)

following the right hand rule such that the spin is parallel to the direction of prop-

agation. Left circularly polarized light,

|L〉 = |−〉 =
√

2
2

 1

−i

 (E.309)

is anti-parallel. Note that the standard optics convention is opposite to the helic-

ity convention. In the helicity convention, for right circularly polarized light, ~E

rotates counterclockwise in the xy-plane at a fixed point in space. In the standard

optics convention, for right circularly polarized light, ~E rotates counterclockwise

in the xy-plane at a fixed moment in time as you move forward in the direction

of propagation. See fig. (4.15). Unless otherwise noted, the helicity convention will

be used. See page 400 of Waves [12] for further discussion regarding handedness

convention and also 4.5.3.

E.4.4 Stokes Parameters

Since the polarization vector of light has two components with complex coeffi-

cients, four real numbers are required to describe it completely. These real num-

bers are called Stokes parameters. Unfortunately many different conventions exist

in the literature. For our purposes, the most useful convention in the circular po-
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larization basis for arbitrarily polarized light is:

|E〉 = E0eiφp

[√
1 + P

2
e−iθ |R 〉+

√
1− P

2
e+iθ |L〉

]
(E.310)

where φp is just an overall phase factor that rarely contains any useful information

about the light. Equivalently in the linear polarization basis, it is written as:

|E〉 = E0eiφp

[(√
1− P

e+iθ

2
+
√

1 + P
e−iθ

2

)
|P 〉+

(√
1− P

e+iθ

2i
−
√

1 + P
e−iθ

2i

)
|S〉
]

(E.311)

The magnitude of ~E is:

√
〈E|E〉 =

√
〈ER |ER 〉+ 〈EL |EL〉 =

√(
1 + P

2

)
E2

0 +
(

1− P
2

)
E2

0 = E0 (E.312)

The degree of circular polarization of the light is:

〈ER |ER 〉 − 〈EL |EL〉
〈E|E〉 =

(
1+P

2

)
E2

0−
(

1−P
2

)
E2

0

E2
0

= P (E.313)

where P = +(−)1 for pure right (left) circular polarization and P = 0 for pure linear

polarization. In the linear basis for pure linear polarization:

|E〉 = E0eiφp

[(
e+iθ

2
+

e−iθ

2

)
|P 〉+

(
e+iθ

2i
− e−iθ

2i

)
|S〉
]

= E0eiφp
[
cos(θ) |P 〉+ sin(θ) |S〉

]
(E.314)

where θ is the angle of the linear polarization vector with respect to the |P 〉-axis.

In general for elliptically polarized light, θ is the angle that the major axis of the

polarization ellipse makes with the |P 〉-axis.
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E.4.5 Mirrors

Mirrors are produced by applying one or more layers of a thin film coating onto a

substrate. The index of refraction and thickness of the thin film is chosen to max-

imize reflection. The reflectivity of the mirror and the phase shift induced in the

light depends on the polarization of the light and its angle of incidence. The mir-

rors we commonly use (Newport Corporation, 1791 Deere Ave, Irvine, CA 92606,

1-800-222-6440) have a minimum reflectivity of 99% for P polarized light and 98%

for S polarized light in the 700–950 nm range for angles from 0–45 degrees (broad-

band dielectric coating BD.2). Specifically, at 45 degrees and at a wavelength of

around 800 nm, the relflectivities for P & S polarized light are 99.5% and 99.9%.

Since the reflectivity is defined as the ratio of output to input intensities, the reflec-

tion coefficient is the square root of the reflectivity:

rP =
√

RP ≈ 0.9975 (E.315)

rS =
√

RS ≈ 0.9995 (E.316)

If the light is circularly polarized or a mix of S and P linear polarizations, then it is

necessary to include a small relative phase shift factor, δm. Unfortunately, this value

is not given in the optics catalogs and must be obtained empirically if needed. A

simplified form for the mirror matrix is then:

M̂ =

 rP 0

0 rSeiδm

 (E.317)

A fully general mirror matrix would be, in principle, complex and may even con-

tain small non-zero off diagonal elements.
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S

P

Figure E.2: Top view of BSPC

E.4.6 Beam Splitting Polarizing Cubes

Matrix Representation

An ideal beam splitting polarizing cube (BSPC) simply splits an incoming beam

into it’s two linearly polarized components. Once separated, the two beam paths

are orthogonal, see fig. (E.2). The transmitted beam is selected by

Ĉt =

 1 0

0 0

 (E.318)
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and the reflected beam is selected by

Ĉr =

 0 0

0 1

 (E.319)

For the ideal case, the transmitted and reflected beams are pure P & S linear po-

larizations respectively. In practice the splitting and polarizing are imperfect. Ac-

cording to RMI (Dr. Zhiming Lu, zlu@rmico.com, Rocky Mountain Instruments,

106 Laser Drive, Lafayette, CO, 80026, 303-664-5000), our 2” BSPC has an extinc-

tion ratio for the transmitted beam of ≥ 1000 : 1 whereas for the reflected beam

it is ≤ 20 : 1. The transmittance is about ≥ 95%, whereas the reflectance is about

≥ 99.9%. Therefore a more realistic form of Ĉ can be written. For example, for the

transmitted beam:

Ĉt =

 t1 0

0 t2

 (E.320)

Tt =
Itransmitted

IinputP
= t2

1 + t2
2 (E.321)

et =
ItransmittedP

ItransmittedS
=

t2
1

t2
2

(E.322)

where t is the transmittance and et is the extinction ratio for the transmitted beam.

Solving for t1 & t2 in terms of t & et and doing the same for the reflected beam, the
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more general cube matrices become:

Ĉt =


√

Tt
1+e−1

t
0

0
√

Tt
1+et

 (E.323)

Ĉr =


√

Tr
1+er

0

0
√

Tr
1+e−1

r

 (E.324)

Given the specifications for our cube, the matrices are:

Ĉt ≈

 0.974 0

0 0.031

 (E.325)

Ĉr ≈

 0.213 0

0 0.951

 (E.326)

The fully general cube matrices could be, in principle, complex and have non-zero

off diagonal elements.

Measuring the degree of circular polarization

One can measure the degree of circular polarization of a beam of light by using

a rotatable beam splitting polarizing cube. Note that an input light polarization

angle of θ with respect to the cube axis is equivalent to having the cube axis be

−θ from the light polarization P axis. Therefore varying θ is equivalent to rotating

the cube. If the incident light is normal to the cube, then the intensity of the light
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transmitted through the cube is given by:

It =
∣∣Ĉt |E〉

∣∣2 = t2
1 〈EP |EP 〉+ t2

2 〈ES|ES〉

=
E2

0Ttet

1 + et

(
1− P + 1 + P + 2

√
1− P2 cos(2θ)

4

)

+
E2

0Tt

1 + et

(
1− P + 1 + P− 2

√
1− P2 cos(2θ)

4

)

=
E2

0Tt

2

[
1 +

(
et− 1
et + 1

)√
1− P2 cos(2θ)

]
(E.327)

The maximum and minimum transmitted intensities are:

Imax =
E2

0Tt

2

[
1 +

(
et− 1
et + 1

)√
1− P2

]
(E.328)

Imin =
E2

0Tt

2

[
1−

(
et− 1
et + 1

)√
1− P2

]
(E.329)

Defining the cube efficiency fc and forming the cube asymmetry Ac yields a polar-

ization “Pythagorean” expression:

fc ≡
et− 1
et + 1

(E.330)

Ac ≡
Imax− Imin

Imax + Imin
= fc

√
1− P2 (E.331)

1 = P2 +
(

Ac

fc

)2

(E.332)

where P is the degree if circular polarization.
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E.4.7 Waveplates

Matrix Representation

A waveplate is an optical element that has different indices of refraction along

two orthogonal axes, see fig. (E.3). This results in a net phase shift between the

linear components of the polarization vector. First, the polarization vector has

to be expressed in the basis of the waveplate. Therefore, a passive or coordinate

system rotation of angle φ radians is performed,

R̂(φ) =

 cos(φ) sin(φ)

− sin(φ) cos(φ)

 (E.333)

followed by a relative phase retardation of β radians,

Ŵ(β) =

 exp
(
+i β2

)
0

0 exp
(
−i β2

)
 (E.334)

and finally a rotation back to the original basis, R̂(−φ). The complete waveplate

operator is thus:

Ŵ(φ, β) = R̂(−φ)Ŵ(β)R̂(φ) = exp
(
−i
β

2

)
× 1 + 2i exp

(
i β2
)

sin
(
β
2

)
cos2(φ) i exp

(
i β2
)

sin
(
β
2

)
sin(2φ)

i exp
(

i β2
)

sin
(
β
2

)
sin(2φ) 1 + 2i exp

(
i β2
)

sin
(
β
2

)
sin2(φ)


(E.335)

Note that for one complete wave, β = 2π. Typically the fast axis is taken to be

vertical.
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Figure E.3: Coordinate System of a Waveplate space convention fast axis
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Half Waveplate

A half-waveplate has a retardance β = 2π
2 = π. When it is orientated at an angle of

φ from a set of reference axes, the waveplate matrix becomes:

Ŵ1
2
(φ) = i

 cos(2φ) sin(2φ)

sin(2φ) − cos(2φ)

 (E.336)

This operation implies that each linear polarization component of some arbitrarily

polarized light is rotated by twice the angle between the linear polarization axis

and the waveplate fast axis. If the the linear polarization is either S or P , then a

half-waveplate at an angle φ with respect to the polarization axis rotates the linear

polarization by an angle of 2φ. A half-waveplate at ±45o simplify flips P ↔ S.

For pure circularly polarized light, a half-waveplate orientated at any angle simply

flips L ↔ R .

Quarter Waveplate

For a quarter-waveplate with retardance β = 2π
4 = π

2 , orientated at an angle of 45o,

the matrix becomes:

Ŵ1
4

(π
4

)
=
√

2
2

 1 i

i 1

 (E.337)
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To be explicit, a quarter-waveplate with its fast axis rotated counterclockwise by

45o turns horizontal linearly polarized light into right circularly polarized light,

Ŵ1
4

(π
4

)
|P 〉 = |R 〉 (E.338)

Ŵ1
4

(π
4

)
|R 〉 = i |S〉 (E.339)

Ŵ1
4

(π
4

)
|S〉 = i |L〉 (E.340)

Ŵ1
4

(π
4

)
|L〉 = |P 〉 (E.341)

and so forth following the simple pattern P → R → S → L → P . An angle of

−45o simply reverses the direction of the arrows. Note that in the RHS of the two

middle equations, there is an overall phase factor (i) which for our purposes is

unimportant.

Photoelastic Modulator

A photoelastic modulator is a variable retardance waveplate. The retardance can

be fixed at a constant value or (more importantly) modulated at a frequency νmod(
= Ωmod/2π

)
:

β(t) = β0 sin (Ωmodt + φmod) (E.342)

The PEM that we have (Hinds Instruments, 3175 NW Aloclek, Hillsboro, OR 97124,

503-690-2000) oscillates at 50 kHz. The ability to modulate the phase retardance

and therefore modulate the polarization of the incident light makes a PEM (in con-

junction with a lock-in amplifier) useful as a high precision polarimeter. Note the
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following useful relationships from p. 361 of Abramowitz & Stegun [13]:

sin (β0 sin (Ωmodt)) = 2
∞

∑
n=0

J2n+1 (β0) sin ((2n + 1)Ωmodt)

= 2J1 (β0) sin (Ωmodt) + · · · (E.343)

sin (β0 cos (Ωmodt)) = 2
∞

∑
n=0

(−)n J2n+1 (β0) cos ((2n + 1)Ωmodt)

= 2J1 (β0) cos (Ωmodt)− · · · (E.344)

cos (β0 sin (Ωmodt)) = J0 (β0) + 2
∞

∑
n=1

J2n (β0) cos (2nΩmodt)

= J0 (β0) + 2J2 (β0) cos (2Ωmodt) + · · · (E.345)

cos (β0 cos (Ωmodt)) = J0 (β0) + 2
∞

∑
n=1

(−)n J2n (β0) cos (2nΩmodt)

= J0 (β0)− 2J2 (β0) cos (2Ωmodt) + · · · (E.346)

E.5 The Effect on Alkali Atoms Due to Polarized Light

E.5.1 Density Matrix

Definition & Basic Properties

To discuss the change in the relative populations of different states due to transi-

tions, it is useful to first introduce the density matrix [14–18]. The density matrix

is often used to represent a large ensemble of systems in a statistical mixture of

pure quantum states, for example, a vapor of polarized alkali atoms. To be ex-

plicit, given a statistical probability pk of being in the pure quantum state |ψk〉, the

density matrix is defined as

ρ ≡∑
k

pk |Ψk〉 〈Ψk| (E.347)
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where |Ψk〉 is, in general, a superposition of eigenstates:

|Ψk〉 = ∑
n

ckn(t) |n〉 & 〈Ψk| = ∑
m

c∗km(t) 〈m| (E.348)

The complex coefficients ckn(t) contain all of the time dependence. For notational

convenience we’ll drop the (t) and expanding the density matrix in this eigenbasis

gives

ρ = ∑
k,m,n

pkc∗kmckn |n〉 〈m| (E.349)

where the matrix elements are

ρba = 〈b|ρ |a〉 = ∑
k,m,n

pkc∗kmckn 〈b | n〉 〈m | a〉 = ∑
k

pkc∗kackb (E.350)

The diagonal elements (b = a) have a simple and straightforward physical inter-

pretation: they are the combined statistical and quantum mechanical probabilities

of being in the eigenstate |a〉. We’ve assumed that everything has been normalized

properly:

∑
n

c∗knckn = ∑
n
|ckn|2 = 1 & ∑

k
pk = 1 (E.351)

Off-diagonal elements (b 6= a) are called coherences and are complex conjugates of

each other

ρba = ρ∗ab → ρ = ρ† (E.352)

which implies that the density matrix is Hermitian, by construction.
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Time Evolution: Liouville Equation

The time evolution of the density matrix is easily derived by first differentiating

with respect to time t

dρ
dt

= ρ̇ = ∑
k

pk

(
∂ |Ψk〉
∂t
〈Ψk|+ |Ψk〉

∂ 〈Ψk|
∂t

)
(E.353)

and then applying Schrodinger equation

∂ |Ψk〉
∂t

= − i
~

H |Ψk〉 &
∂ 〈Ψk|
∂t

= +
i
~
〈Ψk|H (E.354)

where H is the full Hamiltonian of the system. The end result is known as the

Liouville equation:

ρ̇ = − i
~
(
H ρ− ρH

)
= − i

~
[
H , ρ

]
(E.355)

We’ll write H as the sum of the free Hamiltonian H0 and the interaction term W :

H = H0 + W & H0 |n〉 = ~ωn |n〉 (E.356)

where the energy associated with the eigenstate n in the free Hamiltonian is ~ωn.

Expanding ρ in the eigenbasis of H0 and collecting terms gives:

ρ̇ = − i
~ ∑

k,n,m
pkc∗kmckn

{(
~ωnm + W

)
|n〉 〈m| − |n〉 〈m|W

}
(E.357)
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where we’ve set ωnm = ωn − ωm. Placing this result inside 〈b| · · · |a〉 gives the pro-

jection:

ρ̇ba = − i
~ ∑

k,n,m
pkc∗kmckn

{(
~ωnm 〈b | n〉+ 〈b|W |n〉

)
〈m | a〉 − 〈b | n〉 〈m|W |n〉

}
(E.358)

Reducing the sums over n and m by noting 〈 j | k〉 = δ jk gives a set of coupled

differential equations:

ρ̇ba = −iωbaρba−
i
~ ∑

n

(
ρna 〈b|W |n〉 − ρbn 〈n|W |a〉

)
(E.359)

where we’ve relabeled the dummy variable of the last term m→ n. When there is

no interaction (W = 0), the equations become uncoupled:

ρ̇ba = −iωbaρba (E.360)

and are easily solved:

ρba(t) = ρba(0) exp (−iωbat) for coherences (b 6= a) (E.361)

ρaa(t) = ρa(t) = ρa(0) = constant for populations (b = a) (E.362)

Expectation Values: Trace

The expectation value of some operator U for a state |Ψk〉 is given by 〈U〉k =

〈Ψk|U |Ψk〉. For a system in a statistical mixture of pure quantum states, we have
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to average 〈U〉k over all k:

〈U〉= ∑
k

pk 〈U〉k = ∑
k

pk 〈Ψk|U |Ψk〉= ∑
k,n,m

pkc∗kmckn 〈m|U |n〉= ∑
n,m
〈n|ρ |m〉 〈m|U |n〉

(E.363)

We can write this sum in a more illuminating way by inserting three copies of the

complete projection operator 1 = ∑a |a〉 〈a|:

∑
n,m
〈n|ρ |m〉 〈m|U |n〉 = ∑

n,m
〈n|
(

∑
a
|a〉 〈a|

)
ρ

(
∑

b
|b〉 〈b|

)
|m〉 〈m|U

(
∑
`

|`〉 〈`|
)
|n〉

(E.364)

When we group the sums appropriately, we find:

∑
n
〈n|
(

∑
a,b
|a〉 〈a|ρ |b〉 〈b|

)(
∑
m,`
|m〉 〈m|U |`〉 〈`|

)
|n〉 = ∑

n
〈n|ρU |n〉 (E.365)

The action defined by ∑n 〈n| (· · · ) |n〉 is simply the sum of the diagonal elements of

the enclosed matrix, in other words: the trace Tr(· · · ). To summarize, in the density

matrix formulation, the expectation value of some operator U is given by the trace

of the product ρU:

〈U〉 = Tr(Uρ) = Tr(ρU) = ∑
n,m
〈n|ρ |m〉 〈m|U |n〉 (E.366)

E.5.2 General Electromagnetic Dipole Interaction

Dipole Moment Operator

The interaction of light with an alkali atom can be written semiclassically as:

W = −~m · <~F(~r, t) (E.367)
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where ~F is the field component of the incident light in the complex representation and

~m is a dipole moment operator of the form:

~m = ∑
q

m0Uqε̂
∗
q (E.368)

where m0 is magnitude of the moment and {ε̂∗q} are unit basis vectors. The op-

erator associated with the dipole moment, Uq, connects the eigenstate m with the

eigenstate m + q:

Uq = ∑
m,n
δm+q,n |n〉 〈n|Uq |m〉 〈m| = ∑

m
|m + q〉 〈m + q|Uq |m〉 〈m| (E.369)

A subtle point to note is that the interaction depends only on the real part of the field.

To be explicit, the real part of the field in the complex representation is:

<~F(~r, t) = <~F0 exp(i~k ·~r− ωt) = F0

[
F̂0 exp(i~k ·~r− iωt) + F̂∗0 exp(−i~k ·~r + iωt)

]
(E.370)

where F0 is the real magnitude of the field, F̂0 is the complex unit polarization

vector, ~k is the wave vector of the light, ~r is its direction of propagation, and ω is

the angular frequency.

Dipole Approximation

We’ll make the dipole approximation by noting:

|~k ·~r| = kr =
2πr
λ
≈ 2π5a0

λ
≈ 2π5(0.053 nm)

780 nm
≈ 0.002� 1 (E.371)
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where a0 is the Bohr radius (5a0 is the characteristic scale of an K or Rb atom) and

λ is the wavelength of the light. Shorter wavelengths correspond to the transitions

with the larger energy differences. The transitions with the largest energy differ-

ences that we’ll be discussing are the D1 and D2 transitions of alkali atoms. For

K and Rb, this is around 780 nm, therefore, the dipole approximation is a very

good one under our conditions. Physically, this means that the amplitude of the

electromagnetic wave hitting the atom does not vary much in amplitude over the

size scale of the atom. As a consequence, we’ll drop the ~k ·~r term and write the

interaction as:

W = −m0F0 ∑
q

Uq

[
ε̂∗q · F̂0 exp(−iωt) + ε̂∗q · F̂∗0 exp(+iωt)

]
= −~Ω∑

q,s

{
us

q exp(+isωt)Uq

}
(E.372)

where s = ±1 and we’ve made the following substitutions:

~Ω = m0F0 u−q = ε̂∗q · F̂0 u+
q = ε̂∗q · F̂∗0 (E.373)

Since W is Hermitian, (Uq)† = U−q and consequently
(

us
q

)∗
= u−s

−q.

Coherences

Plugging the general dipole interaction, Eqn. (E.372), into the Liouville equation,

Eqn. (E.359), gives:

ρ̇ba = −iωbaρba + iΩ ∑
q,s,n,m

us
q exp(+isωt){· · · } (E.374)

· · · = ρna 〈b | m + q〉 〈m + q|Uq |m〉 〈m | n〉 − ρbn 〈n | m + q〉 〈m + q|Uq |m〉 〈m | a〉
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Reducing the sum over n and m gives:

ρ̇ba = −iωbaρba + iΩ∑
q,s

us
q exp(+isωt)

{
ρb−q,a 〈b|Uq |b− q〉 − ρb,a+q 〈a + q|Uq |a〉

}
(E.375)

For the q = b− a term in the sum, the matrix elements of ρ in that term are popu-

lations. For the remaining terms in the sum, q 6= b− a and the matrix elements of

ρ in those terms are coherences. As we’ll see shortly, this is a vital difference, so

we’ll explicitly separate the q = b− a term from the sum:

ρ̇ba = −iωbaρba + iΩ∑
s

exp(+isωt)

(
Us,q=b−a

pop + ∑
q

Us,q 6=b−a
coh

)
(E.376)

Us,q=b−a
pop = us

b−a (ρa− ρb) 〈b|Ub−a |a〉 (E.377)

Us,q 6=b−a
coh = us

q

{
ρb−q,a 〈b|Uq |b− q〉 − ρb,a+q 〈a + q|Uq |a〉

}
(E.378)

Relaxation

Up to now, we’ve only considered transitions due to our interaction term W . In

reality, there are other processes that cause transitions that drive the system to-

ward thermodynamic equilibrium. We’ll account for these “relaxation” processes

by adding a relaxation term “by-hand:”

ρ̇ba = −iωbaρba− γbaρba + iΩ∑
s

exp(+isωt)

(
Us,q=b−a

pop + ∑
q

Us,q 6=b−a
coh

)
(E.379)

where γba is the relaxation rate and, by construction, γba = γab.

Solving this set of differential equations would be much easier if they weren’t

coupled (contained different coherences). To a very good approximation, we can

decouple these equations by making the following arguments. First, we’ll make an
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educated guess for the form of the coherences ρba(t). When there is no interaction,

the entire time dependence of the coherences is given by exp(−iωbat). Since we’re

now driving the system with a frequency of ω, it is not unreasonable to think that

the time dependence of the coherences is now exp(∓iωt), where the negative (pos-

itive) sign is chosen when ωba is positive (negative). Plugging in Cba(t) exp(∓iωt)

for the coherences b 6= a on both sides of the equation give:

(∓iωCba + Ċba) exp(∓iωt) = −i (ωba − iγba) Cba exp(∓iωt)

+iΩ∑
s

exp(+isωt)

(
Us,q=b−a

pop + exp(∓iωt)∑
q

Ūs,q 6=b−a
coh

)
(E.380)

where the terms in the sum over q proportional to coherences is given by:

Ūs,q 6=b−a
coh = us

q

{
Cb−q,a 〈b|Uq |b− q〉 −Cb,a+q 〈a + q|Uq |a〉

}
(E.381)

Multiplying both sides by exp(±iωt), dividing by i, and moving a few things

around gives:

− iĊba = (±ω− ωba + iγba)Cba + Ω∑
s

exp(+i(s± 1)ωt)× (E.382)(
Us,q=b−a

pop + exp(∓iωt)∑
q

Ūs,q 6=b−a
coh

)
(E.383)

Rotating Wave Approximation

We’re now in a position to take the second step, which is called the rotating wave

approximation [19]: we simply drop any of the remaining oscillatory terms, namely
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ones with a factor of exp(±niωt) with n 6= 0:

− iĊba = (±ω− ωba + iγba)Cba + ΩUs=∓,q=b−a
pop (E.384)

This is a completely uncoupled set of equations! The only term left that could

possibly have any time dependence is Cba. The last step in solving these equations

is to choose Cba to be a constant:

− iĊba = 0 = (±ω− ωba + iγba)Cba + ΩUs=∓,q=b−a
pop (E.385)

= (±ω− ωba + iγba)Cba + Ωu∓b−a (ρa− ρb) 〈b|Ub−a |a〉 (E.386)

This is just an algebraic equation which is solved very simply by:

Cba =
u∓b−aΩ (ρb− ρa) 〈b|Ub−a |a〉

±ω− ωba + iγba
(E.387)

which immediately gives:

ρba =
u∓b−aΩ (ρb− ρa) 〈b|Ub−a |a〉

±ω− ωba + iγba
exp(∓iωt) (E.388)

Changes in Population

Since we have a solution for the coherences (b 6= a), we now consider the coupled

differential equations for the populations (b = a):

ρ̇a = −iωaaρa + iΩ∑
s

exp(+isωt)

(
Us,q=a−a

pop + ∑
q

Us,q 6=a−a
coh

)
(E.389)

Us,q=a−a
pop = us

a−a (ρa− ρa) 〈a|Ua−a |a〉 = 0 (E.390)

Us,q 6=a−a
coh = us

q {ρa−q,a 〈a|Uq |a− q〉 − ρa,a+q 〈a + q|Uq |a〉} (E.391)
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Up to now, we’ve been a little sloppy with the notation q = b− a, etc. What we have

meant is that the operator associated with q is the “difference” between eigenstates

b and a. In practice, q, b, and a can be made into numbers if b and a happen

to be observables and not just labels for the eigenstates. This can be done if we

label eigenstates as J,m where J & m represent eigenvalues associated with that

eigenstate. Before going on, we should rewrite the coherences in this new notation:

ρKa+qJa =
u∓q Ω

(
ρKa+q− ρJa

)
〈K, a + q|Uq |J, a〉

±ω− ωKa+qJa + iγKa+qJa
exp(∓iωt) (E.392)

where we’ve made the substitution b = a + q. The complex conjugate of this coher-

ence is:

ρ∗Ka+qJa = ρJaKa+q =

(
u∓q
)∗

Ω
(
ρKa+q− ρJa

)
〈J, a|U−q |K, a + q〉

±ω− ωKa+qJa− iγJaKa+q
exp(±iωt) (E.393)

Dropping terms that contain ωaa = 0 & (ρa− ρa), the differential equations for

the populations is rewritten as:

ρ̇Ja = iΩ ∑
K,s,q

us
q exp(+isωt){ρKa−q,Ja 〈J, a|Uq |K, a− q〉 − ρJa,Ka+q 〈K, a + q|Uq |J, a〉}

(E.394)

These equations are coupled only to coherences, which we already have expres-

sions for. Before plugging in the coherences, we’ll derive an alternate form of the

first sum by reversing the sum by s, q→−s,−q using the Hermiticity of W & ρ in
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the form of u−s
−q =

(
us

q

)∗
, ρKa+q,Ja = ρ∗Ja,Ka+q, & U−q = U†

q :

∑
s,q

us
q exp(+isωt)ρKa−q,Ja 〈J, a|Uq |K, a− q〉

= ∑
s,q

u−s
−q exp(−isωt)ρKa+q,Ja 〈J, a|U−q |K, a + q〉

= ∑
s,q

[
us

q exp(+isωt)ρJa,Ka+q 〈K, a + q|Uq |J, a〉
]∗

This shows that the first sum is just the complex conjugate of the second sum.

Using the identity z∗ − z = −2i={z}, we can now write ρ̇Ja as just the imaginary

part of the second sum:

ρ̇Ja = 2Ω ∑
K,s,q
=
{

us
q exp(+isωt)ρJa,Ka+q 〈K, a + q|Uq |J, a〉

}
(E.395)

Plugging in the form of the coherence ρJa,Ka+q = ρ∗Ka+q,Ja, gives:

ρ̇Ja = 2Ω
2

∑
K,s,q
=
{

us
q(u∓q )∗ exp(+i(s± 1)ωt)

×
(
ρKa+q− ρJa

)
〈K, a + q|Uq |J, a〉∗

±ω− ωKa+qJa− iγKa+qJa
〈K, a + q|Uq |J, a〉

}
(E.396)

Applying the rotating wave approximation once again, namely keeping only the

s = ∓1 terms, gives:

ρ̇Ja = 2Ω
2
∑
K,q

∣∣∣u∓q ∣∣∣2 (ρKa+q− ρJa
)
|〈K, a + q|Uq |J, a〉|2=

{(
±ω− ωKa+qJa− iγKa+qJa

)−1
}

(E.397)

After collecting all common factors, we find that the denominator is the only com-

plex quantity. We can find the imaginary part of it by multiplying the top & bottom
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by the complex conjugate of the bottom. This finally gives:

ρ̇Ja = 2Ω
2
∑
K,q

γKa+qJa
(
ρKa+q− ρJa

) ∣∣∣u∓q ∣∣∣2 |〈K, a + q|Uq |J, a〉|2(
±ω− ωKa+qJa

)2 + γ2
Ka+qJa

(E.398)

Expectation Value of the Dipole Moment Operator

It is often useful to calculate the expectation value of the very operators causing the

transitions. For the case of a general harmonic interaction, this means calculating

the expectation value of Uq:

〈Uq〉 = ∑
K,n,J,m

〈K,n|ρ |J,m〉 〈J,m|Uq |K,n〉 = ∑
K,n,J
〈K,n|ρ |J,n + q〉 〈J,n + q|Uq |K,n〉

(E.399)

There are two different cases which result in either a sum over populations or a

sum over coherences. For the case (K = J & q = 0), we get a sum over populations:

〈U0〉 = ∑
n,J
ρJn 〈J,n|U0 |J,n〉 (E.400)

For all cases other than (K = J & q = 0), we get a sum over coherences due to ∑q Uq,

which we’ve already calculated, and plugging them in gives:

〈Uq〉 = ∑
K,n,J


Ω
(
ρJn+q− ρKn

)(
u∓q
)∗
|〈J,n + q|Uq |K,n〉|2

±ω− ωJn+qKn− iγJn+qKn
× exp(±iωt)

 (E.401)
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Electric Dipole Interaction for the 2S+1LJ Orbital States

The interaction between the atom and the electric field component of the light is:

W = −~d · <~E(~r, t) (E.402)

The electric dipole operator ~d is given by the sum ∑k qk~rk, where qk & ~rk are the

charge & relative position of the k-th particle in the atom. If we take the nucleus to

be infinitely heavy and measure the position of the electrons relative to it, then the

dipole operator is reduced to the sum over all electrons. Since we’re only going to

be considering transitions of the single valence electron of an alkali atom, the sum

further reduces to a single term which results in ~d = −e~r. The position vector of

the valence electron, ~r, can be expanded in the irreducible spherical vector basis

∑
+1
q=−1 rqε̂∗q. We can now identify the parameters from the general dipole interaction

Eqn. (E.372) as:

Uq = rq ~Ω = −eE0 u−q = ε̂∗q · Ê0 u+
q = ε̂∗q · Ê∗0 (E.403)

The relevant atomic states are the S1/2 ground state and the mixed P1/2 & P3/2 ex-

cited states, see Sec. (E.2.4). Therefore the electric dipole transition matrix elements

are 〈P±,m + q| rq |S,m〉 and their complex conjugates for all m & q.

Magnetic Dipole Interaction for the |F,m〉Hyperfine States

The interaction between the atom and the magnetic field component of the light is:

W = −~µ · <~B(~r, t) (E.404)
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In this case, the light is in the form of radio-frequency (RF) waves. The magnetic

moment operator is the sum of nuclear magnetic moment ~µI and the total elec-

tronic magnetic moment ~µJ. Since |~µI| � |~µJ|, we’ll ignore the coupling to the

nuclear spin. In the S1/2 ground state of an alkali atom, J = S = 1/2(L = 0) and

therefore the magnetic moment can written in terms of the spin-1/2 angular mo-

mentum operators:

~µ = gSµB~S = −gSµB
(
Sx x̂ + Sy ŷ + Sz ẑ

)
= gSµB

(
S+ε̂

∗
+ + S−ε̂∗−+ Szε̂

∗
0

)
(E.405)

where S± = Sx ± iSy and the unit vectors ε̂q are not the same unit vectors used for

the electric dipole operator from the previous section:

ε̂∗± =
x̂∓ iŷ

2
ε̂0 = ẑ (E.406)

We can now identify the parameters from the general dipole interaction Eqn. (E.372)

as:

Uq = Sq ~Ω = gSµBBrf u−q = ε̂∗q · B̂rf u+
q = ε̂∗q · B̂∗rf (E.407)

The relevant atomic states are the mixed hyperfine states in the F = I ± 1/2 mani-

folds, see Sec. (E.3.4). We will only consider RF frequencies small enough to induce

transitions within a manifold and not between manifolds. Therefore the magnetic

dipole transition matrix elements are 〈F,m + q| Sq |F,m〉 and their complex conju-

gates for all m & q.
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E.5.3 Electric Dipole Matrix Elements: Oscillator Strength

Wigner-Eckart Theorem

The probability that an electric dipole transition occurs from an initial state a to a

final state b is proportional to the modulus squared matrix element of the compo-

nent of the dipole operator that is parallel to the polarization vector of the light:

∣∣∣〈b|~ε · ~̂d |a〉∣∣∣2 =
∣∣∣〈b|~ε · (−e~̂r

)
|a〉
∣∣∣2 = e2

∣∣∣〈b|~ε · ~̂r |a〉∣∣∣2 (E.408)

When the dipole operator, or analogously the radius vector operator, is written as

a tensor of rank one using the Wigner-Eckart theorem. The theorem was origi-

nally derived from group theory considerations and factorizes the matrix element

of a tensor operator Tk
q between states labeled with quantum numbers ni,n f and

angular momentum (Ji,mi) and
(

J f ,m f
)

into two parts:

〈
J f ,m f

∣∣ T̂k
q |Ji,mi〉 = CG

(
~Ji +~k = ~J f ; mi, q,m f

)
× R.M.E.

(
n f , J f ; ni, Ji

)
(E.409)

The first part is simply a Clebsch-Gordon coefficient for the addition of angular

momenta such that ~Ji +~k = ~J f with mi,m f , q. The second part, called the reduced

matrix element, is a term with the essential property that it is independent of mi, q,m f .

The exact form of the reduced matrix element is somewhat arbitrary so long as it

is independent of mi, q,m f and behaves mathematically appropriately. By this, we

mean that the matrix element is a complex number or equivalently the modulus

square matrix element is non-negative. One form of the reduced matrix element
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that is often chosen in textbooks (for example equation XIII.125 of Messiah [20]) is:

R.M.E. =
1√
[J f ]
×
〈
n f , J f

∥∥Tk ‖ni, Ji〉 (E.410)

For the present discussion, we will drop the ni and n f labels because the D1 and D2

transitions of alkali metals occur within the same n. To insure positive definiteness

of the modulus square matrix element, we’ll explicitly give ourselves flexibility

with the phase:

R.M.E. =
(±) f i√

[J f ]
× i×

〈
J f
∥∥Tk ‖Ji〉 (E.411)

The phase ambiguity of the reduced matrix element is related to the choice made

in defining the phase convention of the Clebsch-Gordon coefficients. Using the

notation of Messiah, the Wigner-Eckart Theorem [21, 22] can be expressed as:

〈
J f ,m f

∣∣ T̂k
q |Ji,mi〉 = i

(±) f i√
[J f ]

〈
(Ji, k) mi, q|J f ,m f

〉〈
J f
∥∥Tk ‖Ji〉 (E.412)

Phase Convention and Positive Definiteness

Care must be taken in choosing the phase convention when evaluating these matrix

elements using the Wigner-Eckart theorem. Let’s consider the modulus square

matrix element of a component q of the radius vector operator ~̂r in the spherical

tensor basis (k = 1):

∣∣〈J f ,m f
∣∣ rq |Ji,mi〉

∣∣2 =
〈

J f ,m f
∣∣ rq |Ji,mi〉∗

〈
J f ,m f

∣∣ rq |Ji,mi〉 (E.413)

= 〈Ji,mi| r∗q
∣∣J f ,m f

〉〈
J f ,m f

∣∣ rq |Ji,mi〉 (E.414)

= (−1)q 〈Ji,mi| r−q
∣∣J f ,m f

〉〈
J f ,m f

∣∣ rq |Ji,mi〉 (E.415)
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Before expanding these matrix elements using the WET, we’ll introduce the Wigner

3 j symbol [22] which is related to the Clebsch-Gordon coefficients by:

 Ji k J f

mi q −m f

 =
(−1)Ji−k+m f√

[J f ]

〈
(Ji, k) mi, q|J f ,m f

〉
δmi+q=m f (E.416)

where the Kronecker Delta insures that angular momentum is conserved (mi +

q = m f ). Their utility lies in the fact that they make the symmetry properties of

Clebsch-Gordon coefficients more apparent under the cyclic permutation of all

three columns, the interchange of two columns, and the replacement of the sec-

ond row with its negative:

 Ji k J f

mi q −m f

 =

 J f Ji k

−m f mi q

 =

 k J f Ji

q −m f mi

 (E.417)

= (−1)Ji+k+J f

 k Ji J f

q mi −m f

 (E.418)

= (−1)Ji+k+J f

 Ji k J f

−mi −q m f

 (E.419)

Expanding the modulus squared matrix element using Wigner 3 j symbol, en-
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forcing m f = mi + q, and moving things around:

∣∣〈rq
〉∣∣2 = (−1)q 〈Ji,mi| r−q

∣∣J f ,mi + q
〉〈

J f ,mi + q
∣∣ rq |Ji,mi〉 (E.420)

= (−1)qi(±)i f (−1)J f−1+mi

 J f 1 Ji

mi + q −q −mi

 〈Ji‖ r
∥∥J f
〉

×(i)(±) f i(−1)Ji−1+mi+q

 Ji 1 J f

mi q −(mi + q)

〈J f
∥∥ r‖Ji〉 (E.421)

= (±) f i(±)i f (−1)J f +Ji+2mi+1

 J f 1 Ji

mi + q −q −mi


×

 Ji 1 J f

mi q −(mi + q)

∣∣〈J f
∥∥ r‖Ji〉

∣∣2
(E.422)

= (±) f i(±)i f (−1)2J f +2Ji+2mi+2

 Ji 1 J f

−mi −q mi + q


×

 Ji 1 J f

mi q −(mi + q)

∣∣〈J f
∥∥ r‖Ji〉

∣∣2
(E.423)

= (±) f i(±)i f (−1)3J f +3Ji+2mi+1

 Ji 1 J f

mi q −(mi + q)


×

 Ji 1 J f

mi q −(mi + q)

∣∣〈J f
∥∥ r‖Ji〉

∣∣2
(E.424)

= (±) f i(±)i f (−1)3J f +3Ji+2mi+1

 Ji 1 J f

mi q −(mi + q)


2 ∣∣〈J f

∥∥ r‖Ji〉
∣∣2 (E.425)

The last two terms are positive. For the left hand side of the equation to be positive
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(as it should be), the following must be true for D1 transitions (Ji, |mi|, J f = 1
2 ):

+ 1 = [(±) f i(±)i f ] 1
2
(−1)

3
2 + 3

2±1+1 (E.426)

= [(±) f i(±)i f ] 1
2
(−1)4±1 (E.427)

= −[(±) f i(±)i f ] 1
2

(E.428)

s1 =
[
(±) f i

]
1
2
= −[(±)i f ] 1

2
(E.429)

For D2 transitions, the corresponding relations are (Ji, |mi| = 1
2 ; J f = 3

2 ):

+ 1 = [(±) f i(±)i f ] 3
2
(−1)

9
2 + 3

2±1+1 (E.430)

= [(±) f i(±)i f ] 3
2
(−1)7±1 (E.431)

= [(±) f i(±)i f ] 3
2

(E.432)

s2 =
[
(±) f i

]
3
2
= [(±)i f ] 3

2
(E.433)

In both cases, we have hidden the sign in an s factor. The positive definiteness

of the modulus square matrix element defines for the phase convention of the re-

duced matrix element. For a D1 transition, the reduced matrix elements for a ma-

trix element and its complex conjugate must have opposite signs. However, the

reduced matrix elements for a D2 matrix element and its complex conjugate must

have the same sign.

Connecting the Radial Integral to Physical Observables

The double barred term
〈
b‖Tk‖a

〉
of the reduced matrix element (also sometimes

called the reduced matrix element itself) is a radial integral. In practice, rather than

being calculated from first principles, the value of the radial integral for the radius
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vector between atomic states is inferred from measurements of the natural atomic

lifetimes. The spontaneous decays of the P1
2

and P3
2

excited states for neutral alkali

atoms are dominated by the D1 and D2 transitions. Therefore the lifetime τ of

these states are nearly equal to the inverse of the spontaneous decay probability

rate (as known as the Einstein A coefficient), see equation 4.23 of Corney [23]:

τ−1
b = Ab =

e2ω3
ab

3πε0~c3

∑mb

[Jb] ∑
ma

∣∣∣〈Ja,ma|~̂r |Jb,mb〉
∣∣∣2 (E.434)

=
4αω3

ab

3c2

∑mb

[Jb]︸︷︷︸
mean

∑
ma︸︷︷︸

sum

∣∣∣〈Ja,ma|~̂r |Jb,mb〉
∣∣∣2 (E.435)

where Ab is averaged over all the initial (upper mb) states and summed over all the

final (lower ma) states. Typical lifetimes for alkali metals are tens of nanoseconds,

see table blah. Another form of the averaged, summed modulus square matrix

element is the oscillator strength. In the classical picture, an atom is modeled as a

collection of many damped oscillators with frequencies that correspond to all pos-

sible atomic transitions. An atom in a state a can make transitions to other states

through a subset of oscillators that connect that state with all other states. The

fraction of oscillators that connect state a to another state b is called the oscillator

strength. For absorption (emission), the oscillator strength is chosen to be posi-

tive (negative) by convention. Just as for the probability rate, the modulus square

matrix element is averaged over initial (lower ma) states and summed over final

(upper mb) states. For transitions from initial state a to final state b, where the sign

is chosen based on the physical process under consideration, the oscillator strength

is:

fa→b = ±2mωab

3~
∑ma

2Ja + 1 ∑
mb

|〈Ja,mb|~r |Ja,mb〉|2 (E.436)
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By convention, we will always refer to the absorption oscillator strength unless

otherwise noted. In addition, since we will always be discussing transitions from

the S 1
2

ground states to one of either the P1
2

or P3
2

excited states, the oscillator

strength will simply be labeled by the J of the final excited state.

Both the oscillator strength and the spontaneous decay rate involve sums over

the initial and final m states. This sum, which depends only on Ja, Jb, and the

reduced matrix element, is called the line strength (first introduced on page 98 of

Condon & Shortley [24]) and for transitions between the lower state a and the higher

state b, it is given by:

Sab = Sba = ∑
ma

∑
mb

∣∣∣〈Ja,ma| e~̂r |Jb,mb〉
∣∣∣2 (E.437)

= ∑
ma

∑
mb

∣∣∣〈Jb,mb| e~̂r |Ja,ma〉
∣∣∣2 (E.438)

=
3~e2

2mωab
· [Ja] fb (E.439)

=
3c2[Jb]e2

4αω3
ab
· 1
τb

(E.440)

=
3πε0~c3[Jb]

ω3
ab

· Ab (E.441)

Note that the line strength is explicitly defined as a positive quantity. This insures

that the absorption oscillator strength fb, spontaneous lifetime τb, and the sponta-
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neous probability rate are all positive. Evaluating the line strength using WET:

Sab = ∑
ma

∑
mb

∣∣∣〈Jb,mb| e~̂r |Ja,ma〉
∣∣∣2 (E.442)

= ∑
ma

∑
mb

∣∣∣∣∣〈Jb,mb| e∑
q

(−1)qr̂qε̂−q |Ja,ma〉
∣∣∣∣∣
2

(E.443)

= ∑
ma

∑
mb

〈Ja,ma| e∑
q′

(−1)q′ r̂q′ ε̂−q′ |Jb,mb〉 · 〈Jb,mb| e∑
q

(−1)qr̂qε̂−q |Ja,ma〉 (E.444)

= ∑
ma

∑
mb

∑
q

(−1)q 〈Ja,ma| er̂−q |Jb,mb〉 〈Jb,mb| er̂q |Ja,ma〉 (E.445)

= ±s2
a,bi2

∑
ma,mb,q

(−1)q 〈(Jb,1) mb,−q|Ja,ma〉√
[Ja]

〈Ja||er||Jb〉
〈(Ja,1) ma, q|Jb,mb〉√

[Jb]
〈Jb||er||Ja〉

(E.446)

= |〈Jb||er||Ja〉|2 · ςb (E.447)

ςb = ∓ ∑
ma,q

(−1)q
√

[Ja][Jb]
〈(Jb,1) ma + q,−q|Ja,ma〉 〈(Ja,1) ma, q|Jb,ma + q〉 (E.448)

where the lower (upper) sign is taken for D1 (D2) transitions to insure positive

definiteness. Again since we will always be discussing transitions from the S 1
2

ground states to one of either the P1
2

or P3
2

excited states, the Clebsch-Gordon sum

ς will simply be labeled by the J of the final excited state. This gives us the fol-

lowing equivalent relationships between the modulus squared reduced matrix el-

ement (which is difficult to calculate accurately from theory) with physical observ-

ables (which we determine empirically) for transitions from the lower level a to the
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higher level b:

|〈Jb||r||Ja〉|2 =
Sab

ςabe2 (E.449)

=
3~

2mωab
· [Ja] fb

ςb
(E.450)

=
3c2

4αω3
ab
· [Jb]
ςbτb

(E.451)

=
3πε0~c3

e2ω3
ab
· [Jb]Ab

ςb
(E.452)

Evaluation of the Clebsch-Gordon Coefficients and Sums

The general forms of the D1 matrix elements are:
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The general forms of the D2 matrix elements are:
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The D1 matrix elements are:
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The D2 matrix elements are:
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Note that the radial integral is real. Putting these results together allows us to

evaluate the Clebsch-Gordon sums:

ς 1
2

= s2
1

[
− i√

3
i√
3

+
−i√

6
i√
6

+
i√
6
−i√

6
− −i√

3
−i√

3

]
= +1 (E.459)

ς 3
2

= s2
2

[
− i√
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i√
12
− i

2
i
2
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−i√

6
i√
6
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−i√

6
i√
6
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12
i√
12
− i

2
i
2

]
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(E.460)

Therefore the radial integrals for the D1 and D2 transitions are:

∣∣∣〈PJ‖ r
∥∥∥S 1

2

〉∣∣∣2 =
3~

mωJ
f J (E.461)
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The Radial Integral in the coupled LS basis

In the uncoupled basis, there is only one radial integral between the S and P states.

First we must fix the phase convention of the uncoupled matrix elements:

|〈rq〉|2 = (−1)q
〈
±1

2

∣∣∣∣
S
〈0|L r−q |q〉L

∣∣∣∣±1
2

〉
S

〈
±1

2

∣∣∣∣
S
〈q|L rq |0〉L

∣∣∣∣±1
2

〉
S

(E.462)

= (−1)q 〈0|L r−q |q〉L 〈q|L rq |0〉L (E.463)

= (±)PS(±)SP(−1)3+1

 0 1 1

0 q −q


2

|〈P‖ r‖S〉|2 (E.464)

+1 = (±)PS(±)SP(−1)4 (E.465)

= (±)PS(±)SP (E.466)

s = (±)PS = (±)SP (E.467)

When the radial integral is evaluated in the coupled LS basis J, there is radial

integral for each J. The relationship between the radial integrals evaluated in the

two different basis sets can be shown by an expansion in the uncoupled basis and
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by application of the WET:
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We can do the same calculation for the complex conjugates of the same matrix

elements:
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Note that the reduced matrix element in the uncoupled LS basis does not have any

sign ambiguity due to positive definiteness, because for the transitions under con-

sideration, the Clebsch-Gordon coefficient is always +1. Note also that the radial

integral in the uncoupled basis is real. Since the radial integral is independent of

mL and mJ, we only had to evaluate one matrix element for each J. Summarizing

these results:
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where s2
1 = s2

2 = s2 = +1. This implies the following relationships between the

quantities relating to D1 and D2 transitions:

s1s2 = −1 (E.488)〈
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(E.494)

Explicit Forms of the Matrix Elements

First we’ll calculate the modulus square matrix elements neglecting fine structure

mixing. This is easily done given the following matrix elements in terms of the
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oscillator strength. The D1 matrix elements are:

〈
S 1

2
,+

1
2

∣∣∣∣ r+

∣∣∣∣P1
2
,−1

2

〉
=

〈
P1

2
,−1

2

∣∣∣ r− ∣∣∣S 1
2
,+1

2

〉
= +is1

√√√√ ~
m

f 1
2

ω 1
2

(E.495)

−
〈

S 1
2
,+

1
2

∣∣∣∣ r0

∣∣∣∣P1
2
,+

1
2

〉
=

〈
P1

2
,+1

2

∣∣∣ r0

∣∣∣S 1
2
,+1

2

〉
= +is1

√√√√ ~
2m

f 1
2

ω 1
2

(E.496)

−
〈

S 1
2
,−1

2

∣∣∣∣ r0

∣∣∣∣P1
2
,−1

2

〉
=

〈
P1

2
,−1

2

∣∣∣ r0

∣∣∣S 1
2
,−1

2

〉
= −is1

√√√√ ~
2m

f 1
2

ω 1
2

(E.497)

〈
S 1

2
,−1

2

∣∣∣∣ r− ∣∣∣∣P1
2
,+

1
2

〉
=

〈
P1

2
,+1

2

∣∣∣ r+

∣∣∣S 1
2
,−1

2

〉
= −is1

√√√√ ~
m

f 1
2

ω 1
2

(E.498)

The D2 matrix elements are:
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1
2

〉
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〈
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2
,+1
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∣∣∣S 1
2
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2

〉
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√√√√ ~
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f 3
2

ω 3
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〈
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2
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1
2

∣∣∣∣ r− ∣∣∣∣P3
2
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3
2

〉
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〈
P3

2
,+3

2

∣∣∣ r+

∣∣∣S 1
2
,+1
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√√√√ 3~
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f 3
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ω 3
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The modulus squared matrix elements for transitions involving the absorption of

photon with helicity +1 are calculated below:

∣∣∣∣〈P1
2
,+

1
2

∣∣∣∣ r+

∣∣∣∣S 1
2
,−1

2

〉∣∣∣∣2 =
~
m

f 1
2

ω 1
2

(E.505)∣∣∣∣〈P3
2
,+

1
2

∣∣∣∣ r+

∣∣∣∣S 1
2
,−1

2

〉∣∣∣∣2 =
~

4m

f 3
2

ω 3
2

(E.506)∣∣∣∣〈P3
2
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3
2
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2
,+

1
2
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f 3
2

ω 3
2

(E.507)

The modulus squared matrix elements for transitions involving the absorption of

photon with helicity 0 are calculated below:

∣∣∣∣〈P1
2
,−1

2

∣∣∣∣ r0

∣∣∣∣S 1
2
,−1
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2

ω 1
2
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2

ω 1
2
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2
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2

ω 3
2
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2
,+

1
2
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2
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1
2

〉∣∣∣∣2 =
~
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f 3
2

ω 3
2
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The modulus squared matrix elements for transitions involving the absorption of

photon with helicity −1:

∣∣∣∣〈P1
2
,−1

2

∣∣∣∣ r− ∣∣∣∣S 1
2
,+

1
2

〉∣∣∣∣2 =
~
m

f 1
2

ω 1
2

(E.512)∣∣∣∣〈P3
2
,−1

2
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1
2

〉∣∣∣∣2 =
~

4m

f 3
2

ω 3
2

(E.513)∣∣∣∣〈P3
2
,−3

2

∣∣∣∣ r− ∣∣∣∣S 1
2
,−1

2

〉∣∣∣∣2 =
3~
4m

f 3
2

ω 3
2

(E.514)
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Because some of the excited eigenstates are mixed, now we’ll evaluate the modulus

squared matrix element in a general form.

|〈rq〉|2 =
∣∣∣(c∗1

〈
P3

2
,m + q

∣∣∣+ c∗2
〈

P1
2
,m + q

∣∣∣) rq

∣∣∣S 1
2
,m
〉∣∣∣2 (E.515)

=
∣∣∣c∗1 〈P3

2
,m + q

∣∣∣ rq

∣∣∣S 1
2
,m
〉

+ c∗2
〈

P1
2
,m + q

∣∣∣ rq

∣∣∣S 1
2
,m
〉∣∣∣2 (E.516)

= |c1|2
∣∣∣〈P3

2
,m + q

∣∣∣ rq

∣∣∣S 1
2
,m
〉∣∣∣2 + |c2|2

∣∣∣〈P1
2
,m + q

∣∣∣ rq

∣∣∣S 1
2
,m
〉∣∣∣2

+c∗1
〈

P3
2
,m + q

∣∣∣ rq

∣∣∣S 1
2
,m
〉
· c2

〈
S 1

2
,m
∣∣∣ r∗q ∣∣∣P1

2
,m + q

〉
+c1

〈
S 1

2
,m
∣∣∣ r∗q ∣∣∣P3

2
,m + q

〉
· c∗2
〈

P1
2
,m + q

∣∣∣ rq

∣∣∣S 1
2
,m
〉

(E.517)

The c1 and c2 are the fine mixing coefficients which are real:

|〈rq〉|2 = c2
1

∣∣∣〈P3
2
,m + q

∣∣∣ rq

∣∣∣S 1
2
,m
〉∣∣∣2 + c2

2

∣∣∣〈P1
2
,m + q

∣∣∣ rq

∣∣∣S 1
2
,m
〉∣∣∣2

+(−1)qc1c2

〈
P3

2
,m + q

∣∣∣ rq

∣∣∣S 1
2
,m
〉〈

S 1
2
,m
∣∣∣ r−q

∣∣∣P1
2
,m + q

〉
+(−1)qc1c2

〈
S 1

2
,m
∣∣∣ r−q

∣∣∣P3
2
,m + q

〉〈
P1

2
,m + q

∣∣∣ rq

∣∣∣S 1
2
,m
〉

(E.518)

Noting the following relationship:

〈PJ,m + q| rq

∣∣∣S 1
2
,m
〉

= (−1)(−1)q
〈

S 1
2
,m
∣∣∣ r−q |PJ,m + q〉 (E.519)
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the cross terms can be written:

cross terms = (−1)qc1c2

〈
P3

2
,m + q

∣∣∣ rq

∣∣∣S 1
2
,m
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S 1
2
,m
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∣∣∣P1
2
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〉
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〈
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2
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∣∣∣P3
2
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〉〈
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2
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∣∣∣S 1
2
,m
〉
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= (−1)qc1c2
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= (−1)1+q+q2c1c2
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,m + q

∣∣∣ rq

∣∣∣S 1
2
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= −2c1c2
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2
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(E.523)

Therefore the general form of the modulus square matrix element accounting for

fine structure mixing is:

|〈rq〉|2 = c2
1

∣∣∣〈P3
2
,m + q

∣∣∣ rq

∣∣∣S 1
2
,m
〉∣∣∣2 + c2

2
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∣∣∣ rq
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2
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〉〈

P1
2
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∣∣∣ rq
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2
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(E.524)

For the following, we’ve used equations (E.87) and (E.492). For the transitions

involving light with −1 helicity:

∣∣∣∣〈P+,−
3
2

∣∣∣∣ r− ∣∣∣∣S 1
2
,−1

2

〉∣∣∣∣2 =
3~
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2
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]

(E.527)
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For the transitions involving light with 0 helicity:
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For the transitions involving light with +1 helicity:
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E.5.4 Magnetic Dipole Matrix Elements

The main field B defines the z-axis. In order to probe ∆mF ± 1 transitions, a small

set of coils creates an RF field in a direction transverse to the main B-field. In our

lab, the RF field produced at the center of our cell by a 1.3 cm radius, 20 turn coil

with a resistance of 3.9 Ω & an inductance of 0.5 µH driven at 16 VPP at a fre-

quency of about 7 MHz is on order of hundreds of microgauss to a few milligauss.

Therefore, we can treat the RF field ~Br f as a time dependent perturbation to our
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original Hamiltonian:

HEPR = H + W (E.535)

W = −~µI · ~Br f − ~µJ · ~Br f (E.536)

We’ll choose the rf-field to be in the x̂ direction. After expressing the angular mo-

mentum operators as ladder operators
(

Ĵx = 1
2

(
Ĵ+ + Ĵ−

))
and treating only the case

of stimulated emission (mF→ mF− 1), the matrix element of interest becomes:

Wf i =
~
2
〈mF− 1|ωI Î−+ ωJ Ĵ− |mF〉 (E.537)

=
~
2
〈mF− 1|ωI F̂−+

(
ωJ − ωI

)
Ĵ− |mF〉 (E.538)

=
~
2
〈 f |ωI F̂−+

(
ωJ − ωI

)
Ĵ− |i〉 (E.539)

ωI = −gIµN BRF

~
(E.540)

ωJ = −gSµBBRF

~
(E.541)
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To start with, let’s calculate the matrix element of F̂−:

〈
F̂−
〉

= 〈m±F − 1| F̂− |m±F 〉 (E.542)

=
[

a1 (mF− 1)
〈

I ± 1
2
,mF− 1

∣∣∣∣± a2 (mF− 1)
〈

I ∓ 1
2
,mF− 1

∣∣∣∣]
F̂−

[
a1 (mF)

∣∣∣∣I ± 1
2
,mF

〉
± a2 (mF)

∣∣∣∣I ∓ 1
2
,mF

〉]
(E.543)

=
[

a1 (mF− 1)
〈

I ± 1
2
,mF− 1

∣∣∣∣± a2 (mF− 1)
〈

I ∓ 1
2
,mF− 1

∣∣∣∣][
f±a1 (mF)

∣∣∣∣I ± 1
2
,mF− 1

〉
± f∓a2 (mF)

∣∣∣∣I ∓ 1
2
,mF− 1

〉]
(E.544)

= f±a1 (mF) a1 (mF− 1) + f∓a2 (mF) a2 (mF− 1) (E.545)

= f±a1 f a1i + f∓a2 f a2i (E.546)

f± =

√(
I +

1
2

)(
I +

1
2
± 1
)
−mF (mF− 1) (E.547)
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Now let’s calculate the matrix element of Ĵ−:

〈
Ĵ−
〉±

= 〈m±F − 1| Ĵ− |m±F 〉 (E.548)

=
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=
[
a1 f b2 f + a2 f b1 f

]
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]
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Note the following relations:

b2 f b1i =

√(
I + 1

2

) (
I + 3

2

)
−mF (mF− 1)

2I + 1
=

f+
2I + 1

(E.553)

b1 f b2i =

√(
I + 1

2

) (
I − 1

2

)
−mF (mF− 1)

2I + 1
=
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(E.554)

b1 f b1i =

√(
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2
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+ mF (mF− 1) + 2mF
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I + 1

2
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(E.555)

b2 f b2i =

√(
I + 1

2

) (
I + 3

2
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+ mF (mF− 1)− 2mF

(
I + 1
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)
2I + 1

=
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(E.556)

g± =

√(
I +

1
2

)(
I +

1
2
± 1
)

+ mF (mF− 1)∓ 2mF

(
I +

1
2

)
(E.557)
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Going back to
〈

Ĵ−
〉±

:

〈
Ĵ−
〉+

=
[
a1 f b2 f + a2 f b1 f

]
× [a1ib1i − a2ib2i] (E.558)

= a1 f a1i
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=
[
a2 f b2 f − a1 f b1 f

]
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− a1 f a2i
g±
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∓ a2 f a2i

f∓
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(E.562)

Putting this altogether,

Wf i =
~
2
ωI
(

f±a1 f a1i + f∓a2 f a2i
)
+

~
2
(
ωJ − ωI

)
×
(
±a1 f a1i
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2I + 1

+ a2 f a1i
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=
~
2

(
2IωI + (1∓ 1)ωI ± ωJ

2I + 1

)
f±a1 f a1i +

~
2

(
2IωI + (1± 1)ωI ∓ ωJ

2I + 1

)
× f∓a2 f a2i +

~
2

(
ωJ − ωI

2I + 1

)(
g∓a2 f a1i − g±a1 f a2i

)
(E.564)

Using the small field approximations from before:

a1 = 1− β2

2
x2 (E.565)

a2 = −βx + 2αβx2 (E.566)

We’re interested in the mod square of the matrix element to first order in x:

∣∣Wf i
∣∣2 ' ~2

4

(
2IωI + (1∓ 1)ωI ± ωJ

2I + 1

)2

f 2
±−

~2

4

(
2IωI + (1∓ 1)ωI ± ωJ

2I + 1

)
×
(
ωJ − ωI

2I + 1

)
f±
(
g∓β f − g±βi

)
x + O(x2) (E.567)
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E.5.5 Population Differences & Atomic Polarization

Two State Systems: Polarization

For a system with only two states, for example the two Zeeman levels mJ = ±1 of

the S1/2 ground state, we can label the populations as ρ±. Their sum and difference

are given by:

ρ+ + ρ− = Tr(ρ) = 1 ρ+− ρ− = P (E.568)

where P is called the polarization. Using these two equations, it is straightforward

to find the populations of the two states:

ρ± =
1± P

2
(E.569)

The polarization P and the expectation value of Sz are related by:

〈Sz〉 = Tr (ρSz) = Tr


 ρ+ 0

0 ρ−


 +1

2 0

0 −1
2


 (E.570)

= Tr


 +ρ+

2 0

0 −ρ−
2


 (E.571)

=
ρ+− ρ−

2
=

P
2

(E.572)

Thermal Equilibrium

At thermal equilibrium, for a canonical ensemble (fixed number of particles in

equilibrium with a heat reservoir at a common temperature T), the population of
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each state is given by:

ρn =
exp

(
− En

kT

)
Z

Z = ∑
n

exp
(
−En

kT

)
(E.573)

where Z is the partition function. Specifying to our two level case, the energies for

S1/2 states are:

E± = E
(∣∣∣∣S 1

2
,±1

2

〉)
= ES

0 ±
[

gS

−2

]
µBB (E.574)

This gives for the relative population of each state at thermodynamic equilibrium:

Z = exp
(
−E+

kT

)
+ exp

(
−E−

kT

)
(E.575)

= exp

(
−

ES
0 +

[ gS
−2

]
µBB

kT

)
+ exp

(
−

ES
0 −

[ gS
−2

]
µBB

kT

)
(E.576)

= exp
(
−ES

0

kT

)[
exp

(
−
[

gS

−2

]
µBB
kT

)
+ exp

(
+
[

gS

−2

]
µBB
kT

)]
(E.577)

ρ± =
exp

(
− ES

0
kT

)
exp

(
∓
[ gS
−2

]
µB B
kT

)
exp

(
− ES

0
kT

)[
exp

(
+
[ gS
−2

]
µB B
kT

)
+ exp

(
−
[ gS
−2

]
µB B
kT

)] (E.578)

=
exp

(
∓
[ gS
−2

]
µB B
kT

)
exp

(
+
[ gS
−2

]
µB B
kT

)
+ exp

(
−
[ gS
−2

]
µB B
kT

) (E.579)

=
exp

(
mJβ

)
exp

(
+β

2

)
+ exp

(
−β

2

) (E.580)

We have introduced the β parameter which we’ll call the “spin temperature,” even

though it is a unitless quantity, is inversely proportional to temperature at thermal

equilibrium, and is, in this case, negative. It’s usefulness far outweighs those pec-

cadilloes and will be more apparent when we discuss the role of nuclear spin in

spin-exchange collisions in section (E.5.5). For the S 1
2

ground states at thermal
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equilibrium, the spin temperature is:

β =
gSµBB

kT
=
[

gS

−2

](
−2µBB

kT

)
(E.581)

We can express the polarization as a function of the spin temperature:

P =
exp

(
+β

2

)
exp

(
+β

2

)
+ exp

(
−β

2

) − exp
(
−β

2

)
exp

(
+β

2

)
+ exp

(
−β

2

) (E.582)

=
exp

(
+β

2

)
− exp

(
−β

2

)
exp

(
+β

2

)
+ exp

(
−β

2

) (E.583)

P = tanh
(
β

2

)
(E.584)

We’ll see later on that this result is true regardless of the mechanism that producing

the polarization. Inverting to get the spin temperature as a function of polarization:

P =
exp

(
+β

2

)
− exp

(
−β

2

)
exp

(
+β

2

)
+ exp

(
−β

2

) =
x− 1

x

x + 1
x

=
x2− 1
x2 + 1

(E.585)

Px2 + P = x2− 1 (E.586)

(P− 1)x2 = −P− 1 (E.587)

x2 =
[

exp
(

+
β

2

)]2

=
1 + P
1− P

(E.588)

β = log
(

1 + P
1− P

)
(E.589)



E.5. THE EFFECT ON ALKALI ATOMS DUE TO POLARIZED LIGHT 736

Multiple State Systems: Spin Temperature

It has been shown [25] that under the optical pumping, spin exchange, high pres-

sure conditions that exist within a cell, the populations are given by:

ρmF =
eβmF

ZF
=

eβmJ

ZJ

eβmI

ZI
(E.590)

where mF = mJ + mI and the partition function, in general, is given by [26]:

ZJ =
+J

∑
m=−J

eβm =
sinh(β[J]/2)

sinh(β/2)
=

(1 + P)[J]− (1− P)[J]

2P(1− P2)J (E.591)

where P is the polarization and [J] = 2J + 1.

The motivation of using β, spin temperature, is best described by the original

1959 reference by Anderson, Pipkin, & Baird [27]:

Direct substitution into these equations shows that in the steady state

the solution is given by

a 3
2

: a 1
2

: a− 1
2

: a− 3
2

= α3 : α2 : α : 1

b 1
2

: b− 1
2

= α : 1

This solution suggests the general form of the steady-state solution for

all spin-exchange problems. It is the most probable way in which two

sets of particles can be arranged so that the number of particles in each

set is a constant and so that the total z component of angular momen-

tum is a constant. This implies that the density matrix for a system of
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Na and N in spin-exchange equilibrium is given by

ρ =
exp [− (I1z + S1z)β] exp [− (I2z + S2z)β]

Tr{exp [− (I1z + S1z)β] exp [− (I2z + S2z)β]} ,

where β is such that the total z component of the angular momentum

of the system is given by Tr[(I1s + S1z + I2z + S2z)ρ]. The parameter β

might be called an angular momentum spin temperature.

They were discussing spin-exchange between sodium and nitrogen, but it is per-

fectly applicable to other spin-exchange systems including “pure” and “hybrid”

cells.

To calculate the population difference between states m and m−1, we first must

calculate the population of states with m. In our case, J = S = 1/2 & [J] = 2, and

consequently Z1/2 is

Z1/2 =
(1 + P)2− (1− P)2

2P
√

1− P2
=

2√
(1− P)(1 + P)

=
2

1 + P

√
1 + P
1− P

=
2 exp(β/2)

1 + P
(E.592)

Plugging this in for the population of the m state gives [28]:

ρm =
exp(βm)

ZI ZS
=

exp(β(m− 1/2))
ZI

1 + P
2

= QIm̄
1 + P

2
QIm̄ =

exp(βm̄)
ZI

(E.593)

where P is the polarization, I is the nuclear spin, and m̄ = (m + m− 1)/2 = m− 1/2

is the mean m of the transition. For the adjacent state m− 1, the population is:

ρm−1 =
exp(β(m− 1− 1/2))

ZI

1 + P
2

= QIm̄
1 + P

2
exp(−β)

= QIm̄
1 + P

2

(
1− P
1 + P

)
= QIm̄

1− P
2

(E.594)
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Putting this altogether gives the population difference between the states m and

m− 1 as:

ρm− ρm−1 = QIm̄

(
1 + P

2
− 1− P

2

)
= QIm̄P (E.595)

E.6 The Effect on Polarized Light Due to Spin Polar-

ized Alkali Atoms

E.6.1 General Formula for Atomic Polarizability

As we’ve seen before, we can write the electric field component of an electromag-

netic wave in the complex representation as:

~E = E0Ê0 exp(i~k ·~r− iωt) (E.596)

The speed of wave is given the ratio ω/|~k|. The effect of a uniform, isotropic, and

linear medium on a beam of light is given by the (possibly complex) index of re-

fraction of the medium, n: ∣∣∣~k∣∣∣ = ω

c
n =

2πn
λvac

(E.597)

where~k is the wave vector of the light and λvac is the wavelength of the light in vac-

uum. However, in general, different components of the light polarization vector

have different values of~k depending on the symmetry properties of an anisotropic

medium. The symmetry of a vapor of alkali metal in a magnetic field is described

by the spherical vector basis; therefore there are in general three different wave
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vectors of the light in an alkali vapor:

∣∣∣~kq

∣∣∣ = ω

c
nq (E.598)

where q = 0,±1 labels the components relative to the atomic coordinate system. If

~k is imaginary, then its useful to split it into its real and imaginary parts:

~E = E0Ê0 exp(−={~k ·~r}) exp(i<{~k ·~r}− iωt) (E.599)

The real part of the index of refraction yields the dispersion relation which affects

the phase of the wave. A difference in the real part for q =±1 gives rise to circular

birefringence; whereas, a difference in the real part between the q = 0 and q = ±

gives rise to linear birefringence. The imaginary part of the index of refraction

yields the attenuation constant which affects the amplitude of the wave. A differ-

ence in the imaginary part for q = ±1 gives rise to circular dichroism; whereas,

a difference in the imaginary part between q = 0 and q = ±1 gives rise to linear

dichroism. The details of the atomic system, beyond its symmetry, are hidden in

the index of refraction:

nq =
√
εqµq

ε0µ0
(E.600)

where εq & µq are the dielectric constant & permeability of the medium and ε0 & µ0

are the dielectric constant & permeability of free space.

Applying Maxwell’s equations, in the complex representation:

~D =
↔
ε ~E = ε0~E + ~P = ε0~E + [A ]

〈
~d
〉

(E.601)

where ~P is the electric polarization of the medium and [A ] is the atomic number
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density of the medium. The dipole moment, ~d, is evaluated as the expectation

value of the quantum mechanical dipole operator averaged over every atom or

molecule in the medium [29]. The expectation value for the electric dipole operator

is given by:

<
〈
~d
〉

= −e 〈~r〉 = −e∑
q
〈rq〉 ε∗q (E.602)

Plugging in the result from Eqn. (E.401), where Uq = rq:

<
〈
~d
〉

= −e ∑
K,n,J,q


Ω
(
ρJn+q− ρKn

)(
u∓q
)∗
|〈J,n + q| rq |K,n〉|2

±ω− ωJn+qKn− iγJn+qKn
× exp(±iωt)

 ε∗q
(E.603)

Using Eqn. (E.403) to identify the rest of the parameters:

<
〈
~d
〉

=
e2

~ ∑
K,n,J,q

ε̂∗q

{(
ρJn+q− ρKn

)
|〈J,n + q| rq |K,n〉|2

±ω− ωJn+qKn− iγJn+qKn

}
εq · E0Ê±0 exp(±iωt)

=
e2

~
(Σ1 + Σ2) (E.604)

where
(

u∓q
)∗

= ε̂q Ê±0 and Ê0 = Ê−0 & Ê∗0 = Ê+
0 . When |K,n〉 are the |S,±1/2〉 ground

states, then the sum becomes:

Σ1 = ∑
n,s,q

ε̂∗q

{(
ρPsn+q− ρSn

)
|〈Ps,n + q| rq |S,n〉|2

+ω− ωPsn+qSn + iγPsn+qJn

}
εq · E0Ê∗0 exp(+iωt) (E.605)

where s =± labels the mixed fine structure state. When |J,n + q〉 are the |S,±1/2〉

ground states, then the sum becomes:

Σ2 = ∑
s,n,q

ε̂∗q

{(
ρSn+q− ρPsn

)
|〈S,n + q| rq |Ps,n〉|2

−ω− ωSn+qPsn− iγSn+qPsn

}
εq · E0Ê0 exp(−iωt) (E.606)
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Reversing the sum, relabeling the sum variables, and multiplying the top & bottom

by −1, the sum becomes:

Σ2 = ∑
s,n,q

ε̂∗q

{(
ρPsn+q− ρSn

)
|〈Ps,n + q| rq |S,n〉|2

+ω− ωPsn+qSn + iγPsn+qSn

}
εq · E0Ê0 exp(−iωt) (E.607)

Finally, putting the two sums together again, we get:

<
〈
~d
〉

=
e2

~ ∑
s,n,q

ε̂∗q

{(
ρSn− ρPsn+q

)
|〈Ps,n + q| rq |S,n〉|2

ωPsn+qSn− ω− iγPsn+qSn

}
εq

·
[

E0Ê0 exp(−iωt) +
(

E0Ê0 exp(−iωt)
)∗]

(E.608)

The relationship between the induced dipole moment and the applied electric field

defines the atomic polarizability tensor:

<~d =
↔
α ·<~E = ∑

q
ε̂∗qαqε̂q

[
~E + C .C .

2

]
(E.609)

which immediately yields the components of the atomic polarizability tensor:

αq =
e2

~ ∑
s,n

{(
ρSn− ρPsn+q

)
|〈Ps,n + q| rq |S,n〉|2

ωPsn+qSn− ω− iγPsn+qSn

}
(E.610)

E.6.2 Explicit Calculation of Atomic Polarizability

Description of Terms

To calculate the polarizability, we need to use many of the results from the previous

sections:

1. the populations of the states, Sec. (E.5.5)
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2. the transition matrix elements, Sec. (E.5.3)

3. the frequencies of the transitions, Sec. (E.2.5)

Putting these together, we see that every term in the sum looks like this:

(
e2

~

) [(∆ρ)]

matrix element squared︷ ︸︸ ︷[(
T~ fn

mωn

)(
1 + c1a1a2 + c2a2

2

)]
ωn − δ2− ω− iγn

=
(

4πε0rec2
)( (∆ρ)T fn

ωn

)(
1 + c1a1a2 + c2a2

2
ωn − δ2− ω− iγn

)
︸ ︷︷ ︸

field dependent

(E.611)

where ε0 is the electric permittivity of free space, re is the classical electron radius, c

is the speed of light in a vacuum, e is the elementary charge, ~ is Planck’s constant

divided b y 2π, (∆ρ) is the difference in population between the ground & excited

states, T = {1/4,1/2,3/4,1}, c1 =±{2,2
√

2},& c2 = {−1/2,+1} are numerical con-

stants that depends on the specific transition, fn is the oscillator strength for the Dn

transition, m is the mass of the electron, ωn is the zero-field transition frequency for

the Dn transition, δ2 is the frequency shift due to the magnetic field & depends on

the specific transition, ω is the incident light frequency, γ is the full width half max-

imum for the Dn transition, and a1 & a2 are the fine structure mixing coefficients

and depend on the specific transition. When we say “specific” transition, we mean

that it depends on the specific mJs involved; on the other hand, when we say “Dn”

transition, it only depends on the LJs involved, where n = 1 or 2. The last term is

magnetic field dependent.

We’ll specify the populations of the |S,±〉, |P−,±〉, & |P+, (±1/2,±3/2)〉 states.

Under our spin-exchange optical pumping conditions inside the cells, the optical

pumping rate is 1 MHz or less and the non-radiative quenching rate due to N2

molecules is 1 GHz. This limits the populations of the |P±, (±1/2,±3/2)〉 excited
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states to≈ 1/1000. We can safely treat this as zero and set ρPsn+q = 0. Therefore, we

only need to calculate the population of the |S,±〉 ground states. These are given

by the electron spin polarization P as:

ρS,± =
1± P

2
(E.612)

Note that we can write everything in terms of the D1 oscillator strength f1 by using:

fn/ωn = n f1/ω1 C−1 = 4πε0rec2 f1/ω1 (E.613)

Expansion to Second Order in Magnetic Field

Before we can expand the last term to second order in field, we’ll first need to

specify the field dependence of each parameter. For convenience, the field will be

represented by the fine structure scaling parameter y. We are considering the fine

structure mixing for the P states, so L = 1 and taking gS =−2 gives y = µBB/(~ωso),

where the fine structure splitting is given by Aso[L]/2 = ~ωso. The field depen-

dence of the fine structure mixing coefficients a1 & a2 and frequency shift δ2 to

second order in y (field) is:

a1 = 1− β0y2 (E.614)

a2 = −β1y + β2y2 (E.615)

δ2 = ωso(ay + by2) (E.616)

where β0 = 1/9, β1 =
√

2/3, β2 = ±
√

2/9, a = ±{1/3,2/3,1,4/3,5/3}, and b =

±2/9 depending on the transition involved. First we’ll multiply the top and bot-
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tom by the complex conjugate of the bottom:

G = G(y) =
1 + c1a1a2 + c2a2

2

ωn− δ2− ω− iγn
=
(

1 + c1a1a2 + c2a2
2

ωn− δ2− ω− iγn

)(
ωn− δ2− ω+ iγn

ωn− δ2− ω+ iγn

)
(E.617)

which allows us to write G as a sum of its real and imaginary parts:

G =
(
1 + c1a1a2 + c2a2

2

)
(ωn− ω− δ2 + iγn)

(ωn− ω− δ2)2 + γ2
n

=
(
1 + c1a1a2 + c2a2

2

)
(−∆n− δ2 + iγn)

(−∆n− δ2)2 + γ2
n

(E.618)

where ∆n = ω − ωn is the detuning. We now need to remove the field dependence

from the bottom. To separate the bottom into a sum of field dependent and inde-

pendent terms, we expand the square:

(−∆n− δ2)2 + γ2
n = ∆

2
n + 2∆nδ2 + δ2

2 + γ2
n = D2

n + δ1 (E.619)

where D2
n = ∆2

n + γ2
n and δ1 = 2∆nδ2 + δ2

2 . Expanding the bottom to second order in

y:
1

D2
n + δ1

= D−2
n

(
1 +

δ1

D2
n

)−1

= D−2
n

(
1− δ1

D2
n

+
δ2

1

D4
n

)
(E.620)

where D2
n = ∆2

n + γ2
n is the field independent denominator of G. Altogether, this

gives:

G =
(
1 + c1a1a2 + c2a2

2

)
(−∆n− δ2 + iγn)

(−∆n− δ2)2 + γ2
n

= D−2
n (−∆n + iγn− δ2)

(
1 + c1a1a2 + c2a2

2

)(
1− δ1

D2
n

+
δ2

1

D4
n

)
(E.621)
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The part of the field dependence of the numerator that is common to both the real

and imaginary parts of G comes from this product:

(1 + c1a1a2 + c2a2
2)
(

1− δ1

D2
n

+
δ2

1
D4

n

)
= 1 +

[
c1a1a2−

δ1

D2
n

]
+
[
δ2

1
D4

n
− δ1

D2
n

c1a1a2 + c2a2
2

]
= 1 + A1y + A2y2 (E.622)

where we’ve kept on term second order in y. For only the real part, there is an

additional term:

− δ2(1 + c1a1a2 + c2a2
2)
(

1− δ1

D2
n

+
δ2

1

D4
n

)
= −δ2 +

[
δ1δ2

D2
n
− c1δ2a1a2

]
= ωso

(
B1y + B2y2) (E.623)

Now we have:

G(y) =
(−∆n + iγn)

(
1 + A1y + A2y2

)
+ ωso(B1y + B2y2)

∆2
n + γ2

n
(E.624)
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The second order expansion of the product of parameters are:

a1a2 = −β1y + β2y2 (E.625)

a2
2 = β2

1 y2 (E.626)

δ2
2 = a2ω2

soy2 (E.627)

δ1 = 2∆nδ2 + δ2
2 = 2∆nωso(ay + by2) + a2ω2

soy2 (E.628)

δ2
1 = = 4a2

∆
2
nω

2
soy2 (E.629)

δ1δ2 = 2a2
∆nω

2
soy2 (E.630)

δ2a1a2 = −aβ1ωsoy2 (E.631)

δ1a1a2 = −2aβ1∆nωsoy2 (E.632)

Plugging these in and collecting them by powers of y allows us to identify A1, A2,

B1, & B2:

A1 = −c1β1−
2a∆nωso

D2
n

(E.633)

A2 = +c1β2 + c2β
2
1 +

2(ac1β1− b)∆nωso− a2ω2
so

D2
n

+
4a2∆2

nω
2
so

D4
n

(E.634)

B1 = −a (E.635)

B2 = ac1β1− b +
2a2∆nωso

D2
n

(E.636)

where the values for the parameters for all the transitions are listed in Tab. (E.5).

We’ll define a lorentzian and dispersive line shape in the following way:

Ln =
γn

D2
n

=
γn

∆2
n + γ2

n
Dn =

−∆n

D2
n

=
−∆n

∆2
n + γ2

n
(E.637)
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m q s m + q n T c1 c2 β2 a b −c1β1 a2 (ac1β1 − b) (c1β2 + c2β
2
1 )

− − + −3/2 2 3/4 0 0 0 +1 0 0 1 0 0
+ − − −1/2 1 1 +

√
2 −1/2 −

√
2/9 +4/3 +2/9 −2/3 16/9 +2/3 −1/3

+ − + −1/2 2 1/4 −2
√

2 +1 −
√

2/9 +5/3 −2/9 +4/3 25/9 −2 +2/3

− 0 − −1/2 1 1/2 −2
√

2 +1 −
√

2/9 −2/3 +2/9 +4/3 4/9 +2/3 +2/3
− 0 + −1/2 2 1/2 +

√
2 −1/2 −

√
2/9 −1/3 −2/9 −2/3 1/9 0 −1/3

+ 0 − +1/2 1 1/2 +2
√

2 +1 +
√

2/9 +2/3 +2/9 −4/3 4/9 +2/3 +2/3
+ 0 + +1/2 2 1/2 −

√
2 −1/2 +

√
2/9 +1/3 −2/9 +2/3 1/9 0 −1/3

− + − +1/2 1 1 −
√

2 −1/2 +
√

2/9 −4/3 +2/9 +2/3 16/9 +2/3 −1/3
− + + +1/2 2 1/4 +2

√
2 +1 +

√
2/9 −5/3 −2/9 −4/3 25/9 −2 +2/3

+ + + +3/2 2 3/4 0 0 0 −1 0 0 1 0 0

Table E.5: Low Field Expansion Parameters. Dn transition due to rq from |S,m〉 to
|Ps,m + q〉. For all transitions, β0 = 1/9 and β1 =

√
2/3.

Using this notation, we rewrite G(y) and the parameters within it:

G(y) = (Dn + iLn)
(
1 + A1y + A2y2)+

ωso

γn
Ln(B1y + B2y2) (E.638)

A1 = −c1β1 + 2aωsoDn (E.639)

A2 = +(c1β2 + c2β
2
1)− 2(ac1β1− b)ωsoDn + a2ω2

so

(
4D2

n −
Ln

γn

)
(E.640)

B1 = −a (E.641)

B2 = (ac1β1− b)− 2a2ωsoDn (E.642)

The real part is written as:

<G = Dn {1 + [−c1β1 + 2aωsoDn] y

+
[

(c1β2 + c2β
2
1)− 2(ac1β1− b)ωsoDn + a2ω2

so

(
4D2

n − 3
Ln

γn

)]
y2
}

+Ln
ωso

γn

{
−ay + (ac1β1− b)y2} (E.643)
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The imaginary part is written as:

=G = Ln {1 + [−c1β1 + 2aωsoDn] y

+
[

(c1β2 + c2β
2
1)− 2(ac1β1− b)ωsoDn + a2ω2

so

(
4D2

n −
Ln

γn

)]
y2
}
(E.644)

Imaginary Part of the Polarizability: Absorption

The imaginary part of each term in the sum is written as:

nT(1±P)
2C Ln {1 + y× (· · · )}

· · · = −c1β1 + 2aωsoDn +
[
(c1β2 + c2β

2
1)− 2(ac1β1− b)ωsoDn + a2ω2

so

(
4D2

n − Ln
γn

)]
y

(E.645)

where as a reminder 1/C = 4πε0rec2 f1/ω1, n refers to the Dn transition, P is the po-

larization of the ground state, and the other parameters are obtained from Tab. (E.5).

Plugging in the parameters for the q = −1 component gives:

C=α− =
3
4

(1− P)L2

{
1 + [2ωsoD2] y +

[
ω2
so

(
4D2

2 −
L2

γ2

)]
y2
}

+
1
6

(1 + P)L1

{
3 + [−2 + 8ωsoD1] y +

[
−1− 4ωsoD1 +

16
3
ω2
so

(
4D2

1 −
L1

γ1

)]
y2
}

+
1

12
(1 + P)L2

{
3 + [4 + 10ωsoD2] y +

[
2 + 12ωsoD2 +

25
3
ω2
so

(
4D2

2 −
L2

γ2

)]
y2
}

(E.646)

Combining the D2 terms while separating the polarization dependent terms

gives:
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C=α− = L2

{
1 +

[
1
3

+
7
3
ωsoD2

]
y +

[
1
6

+ ωsoD2 +
13
9
ω2
so

(
4D2

2 −
L2

γ2

)]
y2
}

−P
2

L2

{
1 +

[
−2

3
+

4
3
ωsoD2

]
y +

[
−1

3
− 2ωsoD2 +

1
9
ω2
so

(
4D2

2 −
L2

γ2

)]
y2
}

+
(1 + P)

2
L1

{
1 +

[
−2

3
+

8
3
ωsoD1

]
y +

[
−1

3
− 4

3
ωsoD1 +

16
9
ω2
so

(
4D2

1 −
L1

γ1

)]
y2
}

(E.647)

Plugging in the parameters for the q = 0 component gives:

C=α0 = +
1
4

(1− P)L1

{
1 +

[
4
3
− 4

3
ωsoD1

]
y +

[
2
3
− 4

3
ωsoD1 +

4
9
ω2
so

(
4D2

1 −
L1

γ1

)]
y2
}

+
1
2

(1− P)L2

{
1 +

[
−2

3
− 2

3
ωsoD2

]
y +

[
−1

3
+

1
9
ω2
so

(
4D2

2 −
L2

γ2

)]
y2
}

+
1
4

(1 + P)L1

{
1 +

[
−4

3
+

4
3
ωsoD1

]
y +

[
2
3
− 4

3
ωsoD1 +

4
9
ω2
so

(
4D2

1 −
L1

γ1

)]
y2
}

+
1
2

(1 + P)L2

{
1 +

[
2
3

+
2
3
ωsoD2

]
y +

[
−1

3
+

1
9
ω2
so

(
4D2

2 −
L2

γ2

)]
y2
}

(E.648)

Combining the D1 & D2 terms while separating the polarization dependent

terms gives:

C=α0 = +
1
2

L1

{
1 +

[
2
3
− 4

3
ωsoD1 +

4
9
ω2
so

(
4D2

1 −
L1

γ1

)]
y2
}

+L2

{
1 +

[
−1

3
+

1
9
ω2
so

(
4D2

2 −
L2

γ2

)]
y2
}

+P{L1 [−1 + ωsoD1] + L2 [+1 + ωsoD2]} 2y
3

(E.649)

Plugging in the parameters for the q = +1 component gives:
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C=α+ =
(1− P)

2
L1

{
1 +

[
2
3
− 8

3
ωsoD1

]
y +

[
−1

3
− 4

3
ωsoD1 +

16
9
ω2
so

(
4D2

1 −
L1

γ1

)]
y2
}

+
1
4

(1− P)L2

{
1 +

[
−4

3
− 10

3
ωsoD2

]
y +

[
2
3

+ 4ωsoD2 +
25
9
ω2
so

(
4D2

2 −
L2

γ2

)]
y2
}

+
3
4

(1 + P)L2

{
1 + [−2ωsoD2] y +

[
ω2
so

(
4D2

2 −
L2

γ2

)]
y2
}

(E.650)

Combining the D2 terms while separating the polarization dependent terms

gives:

C=α+ =
(1− P)

2
L1

{
1 +

[
2
3
− 8

3
ωsoD1

]
y +

[
−1

3
− 4

3
ωsoD1 +

16
9
ω2
so

(
4D2

1 −
L1

γ1

)]
y2
}

+L2

{
1 +

[
−1

3
− 7

3
ωsoD2

]
y +

[
1
6

+ ωsoD2 +
13
9
ω2
so

(
4D2

2 −
L2

γ2

)]
y2
}

+
P
2

L2

{
1 +

[
2
3
− 4

3
ωsoD2

]
y +

[
−1

3
− 2ωsoD2 +

1
9
ω2
so

(
4D2

2 −
L2

γ2

)]
y2
}

(E.651)

Putting all three results together gives for q = 0,±1:

C=αq =
(1− qP)

2
L1

{
1 + q

[
2
3
− 8

3
ωsoD1

]
y +

[
2
3
− q2 − 4

3
ωsoD1 +

4 + 12q2

9
ω2
so

(
4D2

1 −
L1

γ1

)]
y2
}

+L2

{
1− q

[
1
3

+
7
3
ωsoD2

]
y +

[
−1

3
+

q2

2
+ q2ωsoD2 +

1 + 12q2

9
ω2
so

(
4D2

2 −
L2

γ2

)]
y2
}

+
qP
2

L2

{
1 + q

[
2
3
− 4

3
ωsoD2

]
y +

[
−1

3
− 2ωsoD2 +

1
9
ω2
so

(
4D2

2 −
L2

γ2

)]
y2
}

+(1− q2)P{L1 [−1 + ωsoD1] + L2 [+1 + ωsoD2]} 2y
3

(E.652)

Real Part of the Polarizability: Phase Shift

The real part of each term in the sum is written as the sum between one part that

has an imaginary analogue:
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nT(1± P)
2

Dn

[
1 + [−c1β1 + 2aωsoDn] y +

[
(c1β2 + c2β

2
1 )− 2(ac1β1 − b)ωsoDn + a2ω2

so

(
4D2

n − 3
Ln

γn

)]
y2
]

(E.653)

and an additional term that does not have an imaginary analogue:

nT(1± P)
2

Ln
ωso

γn

{
−ay + (ac1β1− b)y2} (E.654)

where again 1/C = 4πε0rec2 f1/ω1, n refers to the Dn transition, P is the polarization

of the ground state, and the other parameters are obtained from Tab. (E.5) To be

explicit, the three main differences between the calculation for the imaginary part

(that we’ve already done) and this one for the real part are:

1. the overall Ln outside the brackets becomes Dn

2. the last term in the y2 bracket goes from −Lnγn to −3Ln/γn

3. there is an additional term proportional to Ln
ωso
γn

that we must work out as

well

Using the results for the imaginary part, the first term (α1
q) for the real part for the

q = 0,±1 component is:

C<α1
q =

(1− qP)
2

D1

{
1 + q

[
2
3
− 8

3
ωsoD1

]
y +

[
2
3
− q2 − 4

3
ωsoD1 +

4 + 12q2

9
ω2
so

(
4D2

1 − 3
L1

γ1

)]
y2
}

+D2

{
1− q

[
1
3

+
7
3
ωsoD2

]
y +

[
−1

3
+

q2

2
+ q2ωsoD2 +

1 + 12q2

9
ω2
so

(
4D2

2 − 3
L2

γ2

)]
y2
}

+
qP
2

D2

{
1 + q

[
2
3
− 4

3
ωsoD2

]
y +

[
−1

3
− 2ωsoD2 +

1
9
ω2
so

(
4D2

2 − 3
L2

γ2

)]
y2
}

+(1− q2)P{D1 [−1 + ωsoD1] + D2 [+1 + ωsoD2]} 2y
3

(E.655)

Now calculating the second term (α2
q) for the real part for the q = −1 compo-
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nent:

C<α2
− =

3(1− P)
4

L2
ωso

γ2
{−y}+

(1 + P)
2

L1
ωso

γ1

{
−4

3
y +

2
3

y2
}

+
(1 + P)

4
L2
ωso

γ2

{
−5

3
y− 2y2

}
(E.656)

Combining the D2 terms while separating the polarization dependent terms

gives:

C<α2
− = (1 + P)L1

ωso

γ1

{
−2

3
y +

1
3

y2
}

+ L2
ωso

γ2

{
−7

6
y− 1

2
y2
}

+ PL2
ωso

γ2

{
1
3

y− 1
2

y2
}

(E.657)

Now calculating the second term (α2
q) for the real part for the q = 0 component:

C<α2
0 =

(1− P)
4

L1
ωso

γ1

{
2
3

y +
2
3

y2
}

+
(1− P)

2
L2
ωso

γ2

{
1
3

y
}

+
(1 + P)

4
L1
ωso

γ1

{
−2

3
y +

2
3

y2
}

+
(1 + P)

2
L2
ωso

γ2

{
−1

3
y
}

(E.658)

Combining the D2 terms while separating the polarization dependent terms

gives:

C<α2
0 = L1

ωso

γ1

{
1
3

y2
}
− PL1

ωso

γ1

{
1
3

y
}
− PL2

ωso

γ2

{
1
3

y
}

(E.659)

Now calculating the second term (α2
q) for the real part for the q = +1 compo-

nent:

C<α2
+ = +

(1− P)
2

L1
ωso

γ1

{
4
3

y +
2
3

y2
}

+
(1− P)

4
L2
ωso

γ2

{
5
3

y− 2y2
}

+
3(1 + P)

4
L2
ωso

γ2
{y} (E.660)

Combining the D2 terms while separating the polarization dependent terms
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gives:

C<α2
+ = (1− P)L1

ωso

γ1

{
2
3

y +
1
3

y2
}

+ L2
ωso

γ2

{
7
6

y− 1
2

y2
}

+ PL2
ωso

γ2

{
1
3

y +
1
2

y2
}

(E.661)

Putting this altogether gives:

C<α2
q = (1− qP)L1

ωso

γ1

{
q

2
3

y +
1
3

y2
}

+ L2
ωso

γ2

{
q

7
6

y− q2 1
2

y2
}

−(1− q2)PL1
ωso

γ1

{
1
3

y
}

+ PL2
ωso

γ2

{
2q2 − 1

3
y + q

1
2

y2
}

(E.662)

Finally, combining both terms gives for the real part αq where q = 0,±1:

C<αq =
(1− qP)

2
D1

{
1 + q

[
2
3
− 8

3
ωsoD1

]
y +

[
2
3
− q2 − 4

3
ωsoD1 +

4 + 12q2

9
ω2
so

(
4D2

1 − 3
L1

γ1

)]
y2
}

+D2

{
1− q

[
1
3

+
7
3
ωsoD2

]
y +

[
−1

3
+

q2

2
+ q2ωsoD2 +

1 + 12q2

9
ω2
so

(
4D2

2 − 3
L2

γ2

)]
y2
}

+
qP
2

D2

{
1 + q

[
2
3
− 4

3
ωsoD2

]
y +

[
−1

3
− 2ωsoD2 +

1
9
ω2
so

(
4D2

2 − 3
L2

γ2

)]
y2
}

+(1− q2)P
{

D1 [−1 + ωsoD1] + D2 [+1 + ωsoD2]− 1
2

L1
ωso
γ1

}
2y
3

+(1− qP)L1
ωso
γ1

{
2q
3

y +
1
3

y2
}

+ L2
ωso
γ2

{
7q
6

y− q2

2
y2
}

+ PL2
ωso
γ2

{
2q2 − 1

3
y +

q
2

y2
}

(E.663)

E.6.3 Atomic Polarization Vector

Light Propagation At a Skew Angle

It is useful to know how light is effected by the presence of a polarized alkali vapor

when (1) optical pumping or (2) measuring alkali polarization and densities using

Faraday Rotation. We’ll assume that the polarized alkali vapor is located within

a magnetic field that orients the alkali angular momentum. In other words, the

magnetic field provides one axis of a coordinate system that naturally describes
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the alkali atoms. The light and the alkali atoms are connected through the atomic

polarizability, which itself is related to the dielectric permittivity. We’ll start with

Maxwell’s equations and end with a matrix eigenvalue equation. The solution

to this equation will give the wave numbers and polarization vectors for the two

eigenmodes of propagation through the vapor. An eigenmode of propagation has

the property that its polarization vector does not change as it propagates through

the alkali vapor.

In SI, Maxwell’s equations are:

~∇ · ~D = ρ ~∇× ~E = −∂ ~B/∂t

~∇ · ~B = 0 ~∇× ~H = ~J + ∂ ~D/∂t
(E.664)

and the constitutive relations for a linear medium between the electric vector ~E &

the electric displacement ~D and between the magnetic induction ~B & the magnetic

vector ~H are:

~D =
↔
ε ·~E ~B =

↔
µ ·~H (E.665)

where
↔
ε &

↔
µ are the dielectric permittivity & the magnetic permeability tensors,

respectively. In our case, there are no free charges ρ and currents ~J. Since the light

has optical frequencies, the magnetic permeability tensor
↔
µ is very nearly equal to

the scalar free space value µ0:

~∇ · ~D = 0 ~∇× ~E = −µ0∂ ~H/∂t

~∇ · ~H = 0 ~∇× ~H = ∂ ~D/∂t
(E.666)

Representing the spatial and time dependence of ~E, ~D, ~B, & ~H in plane wave form,
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such as ~E→ ~E exp
[
i~k ·~r− iωt

]
, results in:

~k · ~D = 0 ~k× ~E = ωµ0 ~H

~k · ~H = 0 ~k× ~H = −ω~D
(E.667)

where ~k is the wave number and ω = 2πν is the frequency. Combining the two

cross product equations results in:

~k×
(
~k× ~E

)
=~k

(
~k · ~E

)
− k2~E = −ω2µ0 ~D (E.668)

where we’ve used the identity ~a×
(
~b×~c

)
= ~b (~a ·~c)− ~c

(
~a ·~b

)
. Finally, using the

constitutive relation for ~D, factoring out ~E, and moving things around gives:




k2 0 0

0 k2 0

0 0 k2

 −


k2
1 k1k2 k1k3

k2k1 k2
2 k2k3

k3k1 k3k2 k2
3

 − ω2µ0
↔
ε

 · ~E = 0 (E.669)

The derivation of this equation can also be found in chapter 15 of Born & Wolf [30]

and also Yariv & Yeh [31].

Wave Number Eigenvalues

The following calculation is a detailed extension to the one found in [32]. There

are in general three coordinate systems that one could use to solve for the possible

eigenvalues for k:

1. the atomic basis, namely one that reflects the symmetry of the alkali vapor(
r̂∗+; r̂∗−; r̂∗0 = B̂0

)
which is determined by the magnetic field ~B0
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2. the linear
(

P ; S;Z = k̂
)

or circular (R ; L ;Z) polarization basis of the light

3. the polarization eigenvector basis, namely the one for which the matrix mul-

tiplying ~E is diagonal

Unfortunately, we usually do not know beforehand what the polarization eigen-

vector basis is. However, when the magnetic field and light propagation direc-

tion point in the same direction, all three coordinates systems happen to coincide.

Therefore we’ll take advantage of this fact and choose to work in the circular po-

larization basis of the light. Consequently, the wave number dyad is represented

as:

~k~k =


0 0 0

0 0 0

0 0 k2

 (E.670)

where k1 = k2 = 0 and
√

k2
1 + k2

2 + k2
3 = k2 due to the orthonormality of the circular

polarization basis.

In the atomic basis
(
r̂∗+; r̂∗−; r̂∗0

)
, the dielectric tensor is, by construction, diagonal

and given as:

↔
ε= ε0

1 +
[A]
ε0


α+ 0 0

0 α− 0

0 0 α0


 (E.671)

where ε0 is the dielectric permittivity of free space and [A] is the alkali number

density. When the magnetic field is zero, the polarizabilities are given by:

αq =
ε0rec2

2π

 f1/ν1

ν1− ν − iΓ1/2
(
1− qPA

)
︸ ︷︷ ︸

D1 transition

+
f2/ν2

ν2− ν − iΓ2/2

(
1 +

qPA

2

)
︸ ︷︷ ︸

D2 transition

 (E.672)
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where re is the classical electron radius, c is the speed of light in a vacuum, PA is the

alkali polarization, q(= 0,±1) is the amount of angular momentum transferred to

an alkali atom, fn is the oscillator strength, νn is the transition frequency, and Γn is

the full width half maximum of the transition. The subscripts n(= 1,2) refer to the

D1 and D2 transitions of the alkali atom.

We’ll have to transform the polarizability tensor from the
(
r̂∗+; r̂∗−; r̂∗0

)
basis to the

(R ; L ;Z) basis in the following way:

1. switch from the
(
r̂∗+; r̂∗−; r̂∗0

)
basis to the

(
x̂; ŷ; ẑ

)
basis relative to the atomic

system

2. rotate by an angle θ from the
(
x̂; ŷ; ẑ

)
basis relative to the atomic system to the

(P ; S;Z) basis relative to the light polarization, where θ is the angle between

the magnetic field and the light propagation direction as in B̂0 · k̂ = cos(θ)

3. switch from the (P ; S;Z) basis to the (R ; L ;Z) basis relative to the light po-

larization

We’ll note the following relationships between the different bases relative to the

light system:

R =
P + iS√

2
L =

P − iS√
2

(E.673)

between the different bases relative to the atomic system:

~r = r+r̂∗+ + r−r̂∗−+ r0r̂∗0 = xx̂ + yŷ + zẑ (E.674)

r+ = −
(

x + iy√
2

)
r− =

x− iy√
2

r0 = z (E.675)
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and finally between the atomic and light systems:

x̂ = P cos(θ)−Z sin(θ) ẑ = P sin(θ) + Z cos(θ) (E.676)

Switching the basis of the polarizability tensor from the circular basis to linear

basis relative to the atomic system gives:

↔
α=

1√
2


−1 +1 0

−i −i 0

0 0 +1



α+ 0 0

0 α− 0

0 0 α0

 1√
2


−1 +i 0

+1 +i 0

0 0 +1

=
1
2


σ −iδ 0

iδ σ 0

0 0 2α0


(E.677)

where σ & δ are the sum & difference of α+ & α−:

σ = α+ + α− = 2α0 δ = α+− α− (E.678)

To simplify things, we’ll break the the resulting matrix up into the following:

↔
α=

1
2


σ −iδ 0

iδ σ 0

0 0 2α0

 =
σ

2
+ i

δ

2


0 −1 0

1 0 0

0 0 0

 (E.679)

Now we rotate by θ from the linear basis of atomic system to linear polarization

basis of the light:


cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)




0 −1 0

1 0 0

0 0 0




cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)

 =


0 − cos(θ) 0

cos(θ) 0 − sin(θ)

0 sin(θ) 0

 (E.680)
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Finally we’ll switch from the linear polarization basis of the light to the circular

one:

1√
2


+1 −i 0

+1 +i 0

0 0 +1




0 − cos(θ) 0

cos(θ) 0 − sin(θ)

0 sin(θ) 0

 1√
2


+1 +1 0

+i −i 0

0 0 +1


(E.681)

which gives: 
−i cos(θ) 0 − i

2 sin(θ)

0 +i cos(θ) + i
2 sin(θ)

+ i
2 sin(θ) − i

2 sin(θ) 0

 (E.682)

Therefore, the polarizability in the circular polarization basis is:

↔
α =

1
2


σ+ δ cos(θ) 0 + δ

2 sin(θ)

0 σ− δ cos(θ) − δ
2 sin(θ)

− δ
2 sin(θ) + δ

2 sin(θ) σ



=


αR 0 + δ

4 sin(θ)

0 αL − δ
4 sin(θ)

− δ
4 sin(θ) + δ

4δ sin(θ) α0

 (E.683)

and consequently the matrix equation is written as


k2− k2

R 0 −∆2
k

0 k2− k2
L +∆2

k

+∆2
k −∆2

k −k2
0

 · ~E = 0 (E.684)
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where we have defined the following quantities:

k2
Q = ω2

c2

(
1 + [A]

ε0
αQ

)
∆2

k = ω2

c2
[A]
ε0

(
α+−α−

4

)
sin(θ) (E.685)

αQ = ε0rec2

2π

[
f1/ν1

ν1−ν−iΓ1/2

(
1− qPA cos(θ)

)
+ f2/ν2

ν2−ν−iΓ2/2

(
1 + qPA cos(θ)

2

)]
(E.686)

where q = +1,0,−1 for Q = R ,0,L respectively. This equation is solved by setting

the determinant of the matrix to zero:∣∣∣∣∣∣∣∣∣∣
k2− k2

R 0 −∆2
k

0 k2− k2
L +∆2

k

+∆2
k −∆2

k −k2
0

∣∣∣∣∣∣∣∣∣∣
=
(
k2− k2

R
) [
−
(
k2− k2

L
)

k2
0 + ∆

4
k

]
+ ∆

4
k

(
k2− k2

L
)

= 0

(E.687)

This can be rearranged to:

k4 + k2 [−k2
L − k2

R − 2∆
4
k/k2

0

]
+
[
k2

R k2
L +

(
k2

R + k2
L
)

∆
4
k/k2

0

]
= 0 (E.688)

and is then solved using the quadratic equation:

k2 =
1
2

[
k2

R + k2
L + 2∆

4
k/k2

0±
√(

k2
R − k2

L

)2
+ 4∆8

k/k4
0

]
(E.689)

The two eigenvalues for k2 are given by the two solutions above. However, a more

illuminating form for k2 can be obtained if we compare the size of ∆2
k against two

different scales:

∆2
k

k2
0

=
[A] (α+− α−) sin(θ)

4ε0

(
1 + [A]

ε0
α0

) ≈ 10−3
(

sin(θ)
4

)
∆2

k

k2
R − k2

L
=

tan(θ)
4

(E.690)
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where we have used the fact that the maximum absolute value of the polarizability

occurs at resonance for the D2 transition ν = ν2 which corresponds to:

[
[A]
ε0
α0

]
max

=
[

[A]
ε0

(
α+− α−

PA

)]
max

=
[A]recλ2 f2

πΓ2

= 10−3×
(

[A]
1015 cm−3

)(
λ2

780 nm

)(
140 GHz

Γ2

)
(E.691)

and we have put in typical values for the alkali density and absorption line width.

Therefore, the angle for which the two terms under the square root are equal, for

PA = 1, is about θ = 89.993. In almost all cases, the first term dominates over the

second term under the square root and we can write the two solutions as:

k2 =
(
k2

R or k2
L
)
+ ∆

4
k/k2

0 (E.692)

Light Polarization Eigenvectors

The polarization eigenvectors that correspond to these wave number eigenvalues

are found by solving the following system of equations:

(
k2− k2

R
)

E1− ∆
2
k E3 = 0(

k2− k2
L
)

E2 + ∆
2
k E3 = 0 (E.693)

∆
2
k E1− ∆

2
k E2− k2

0E3 = 0

which can be rearranged to give the following useful ratios among the components

of the eigenvectors:

(
k2− k2

R
)

E1 = −
(
k2− k2

L
)

E2 E3 =
∆2

k

k2
0

(E1− E2) (E.694)
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Finally, the two eigenvectors in the circular polarization basis of the light (R ; L ;

Z) to lowest order in ∆2
k are:

kR : ( 1 ; 0 ; 0 ) +
∆2

k

k2
0

(
0 ; − tan(θ)

4
; +1

)
(E.695)

kL : ( 0 ; 1 ; 0 ) +
∆2

k

k2
0

(
+

tan(θ)
4

; 0 ; −1
)

(E.696)

This means that polarization eigenvector basis:

1. is very well approximated by the circular polarization basis of the light

2. has a small admixture of linear polarization

3. is slightly parallel to the propagation direction

Generalization to Atomic Polarization Vector

We’ve found that when we have a skew angle θ, the polarization P in the atomic

polarizability is replaced by P cos(θ). This is very suggestive, and following the

argument of Dehmelt [33], we’ll replace P cos(θ) with k̂ · ~P where k̂ is the beam

propagation direction and ~P is the polarization vector. The quantum mechanical

form of this polarization vector is given by ~P = 2
〈
~S
〉

where ~S is the vector spin-

1/2 operator. Therefore, all instances of P should be replaced by k̂ · ~P:

P→ 2
(
kx 〈Sx〉+ ky 〈Sy〉+ kz 〈Sz〉

)
k2

x + k2
y + k2

z = 1 (E.697)

When the beam is parallel to the magnetic field, then kz = 1 and P→ 2 〈Sz〉. Since

Sz is parallel to the magnetic field by definition, its expectation value is since the

difference in populations or P, as expected. On the other hand, when the beam is
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perpendicular to the magnetic field, say kx = 1, then P→ 2 〈Sx〉. The expectation

value of Sx involves coherences. If there is no external RF field, then the coher-

ences are oscillating at the Larmor frequency. If there is an external RF field, then

the coherences will be oscillating at the frequency of the RF field. In either case,

the expectation value of Sx will be oscillatory and as a consequence so will the

polarizability.

A more rigorous derivation of this generalization involving group theoretical

methods can be found in Happer & Mathur [34]. They derive an irreducible tensor

decomposition of the atomic polarizability (in the linear polarization basis):

↔
α= αS

↔
1 +αV

(
〈~µ〉×

)
+ αT

〈
↔
Q
〉

(E.698)

where αS,V,T are the scalar, vector, & tensor polarizabilities, ~µ is the magnetic

dipole operator, and
↔
Q is the electric quadrupole operator. Dropping the electric

quadrupole part, we can write atomic polarizability in matrix form:

↔
α=


αS 0 0

0 αS 0

0 0 αS

+
αVgSµB

2


0 −Pz Py

Pz 0 −Px

−Py Px 0

 (E.699)

where ~µ = gSµB~S, Pn = 2 〈Sn〉, and we used the matrix form of the cross product.

This looks suspiciously like Eqn. (E.679):

↔
α=

1
2


σ −iδ 0

iδ σ 0

0 0 2α0

 =
σ

2
+ i

δ

2


0 −1 0

1 0 0

0 0 0

 (E.700)
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where we can equate σ/2 = α0 = αS, iδ/2 = αVgsµBPz/2 , Px = Py = 0. We’ll now

proceed with the rest of the analysis from Sec.(E.6.3), but now with Px 6= 0 and

Py 6= 0. As a reminder, we’re starting in the linear atomic basis. We rotate by θ

from the linear basis of atomic system to linear polarization basis of the light:


cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)




0 −Pz Py

Pz 0 −Px

−Py Px 0




cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)

 (E.701)

where we get:

PzMz + PxMx + PyMy =
0 −Pz cos(θ) + Px sin(θ) Py

+Pz cos(θ)− Px sin(θ) 0 −Pz sin(θ)− Px cos(θ)

−Py Pz sin(θ) + Px cos(θ) 0


(E.702)

Finally we’ll switch from the linear polarization basis of the light to the circular

one. We already know how to transform PzMz:

PzM′
z =

1√
2


+1 −i 0

+1 +i 0

0 0 +1

 Pz


0 − cos(θ) 0

cos(θ) 0 − sin(θ)

0 sin(θ) 0



× 1√
2


+1 +1 0

+i −i 0

0 0 +1

 (E.703)
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which gives:

PzM′
z =


−iPz cos(θ) 0 − i

2 Pz sin(θ)

0 +iPz cos(θ) + i
2 Pz sin(θ)

+ i
2 Pz sin(θ) − i

2 Pz sin(θ) 0

 (E.704)

If we make the substitutions Pz cos(θ)→−Px sin(θ) and Pz sin(θ)→ Px cos(θ), then

if can immediately transform Mx to M′
x to give:

PxM′
x =


+iPx sin(θ) 0 − i

2 Px cos(θ)

0 −iPx sin(θ) + i
2 Px cos(θ)

+ i
2 Px cos(θ) − i

2 Px cos(θ) 0

 (E.705)

Finally, we need to transforms PyMy in the following way:

PyM′
y =

1√
2


+1 −i 0

+1 +i 0

0 0 +1

 Py


0 0 1

0 0 0

−1 0 0

 1√
2


+1 +1 0

+i −i 0

0 0 +1

 (E.706)

which gives:

PyM′
y =


0 0 Py/2

0 0 Py/2

−Py/2 −Py/2 0

 (E.707)
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Putting this altogether gives:

PzM′
z + PxM′

x + PyM′
y = −i


+k̂ · ~P 0 +pxz/2 + iPy/2

0 −k̂ · ~P −pxz/2 + iPy/2

−pxz/2− iPy/2 +pxz/2− iPy/2 0


(E.708)

where Pz cos(θ)− Px sin(θ) = k̂ · ~P and pxz = Pz sin(θ) + Px cos(θ). Therefore, the

polarizability in the circular polarization basis is:

↔
α=

1
2


σ+ δ ′k̂ · ~P 0 +δ ′(pxz + iPy)/2

0 σ− δ ′k̂ · ~P −δ ′(pxz− iPy)/2

−δ ′(pxz + iPy)/2 +δ ′(pxz− iPy)/2 σ

 (E.709)

where δ ′ = δ/P and compared to Eqn. (E.683):

↔
α=

1
2


σ+ δ cos(θ) 0 + δ

2 sin(θ)

0 σ− δ cos(θ) − δ
2 sin(θ)

− δ
2 sin(θ) + δ

2 sin(θ) σ

 (E.710)

we see that (1) δ cos(θ) has been replaced by δ ′k̂ · ~P and (2) the off diagonal elements

δ sin(θ)/2 have been replaced by δ ′(pxz± iPy). Analogous to before, we’ll define the

following quantities:

k2
Q =

ω2

c2

(
1 +

[A]
ε0
αQ

)
(E.711)

αQ =
ε0rec2

2π

[
f1/ν1

ν1− ν − iΓ1/2

(
1− qk̂ · ~PA

)
+

f2/ν2

ν2− ν − iΓ2/2

(
1 +

qk̂ · ~PA

2

)]
(E.712)
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where q = +1,0,−1 for Q = R ,0,L respectively. Just as before, the eigenval-

ues are essentially kR and kL with very small corrections at the level of δ ′2(pxz ±

iPy)2/(16k2
0). Corrections due to a non-zero field slightly modify these very small

corrections and therefore can safely be ignored as well.

Components Without An RF Field (Calculation of 〈Sz〉)

The components of the atomic polarization vector ~P are just the expectation values

of the spin-1/2 operators Sx,Sy,&Sz. We’ll work in the |F,m〉 basis To calculate

the expectation values of Sz, Sx & Sy, we’ll first calculate it for Sq (S0 = Sz ; S± =

Sx± iSy) using:

〈Sq〉 = ∑
F,F′,m
〈F′,m|ρ |F,m± 1〉 〈F,m + q| Sq |F′,m〉 (E.713)

The coherences are simply:

〈F′,m|ρ |F,m + q〉 = ρF′mFm+q(0) exp
[
−iωF′mFm+qt

]
(E.714)

For a large collection of atoms at equilibrium, the spins have all dephased and

ρF′mFm+q(0) is equal to zero. Therefore, all the coherences are zero. Consequently,

the only nonzero terms are ones that involve populations:

〈Sz〉 = ∑
F,m
ρm 〈F,m| Sz |F,m〉 (E.715)
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Since we originally defined P = 2 〈Sz〉, we should obtain 〈Sz〉 = Pz/2. To evaluate

the Sz matrix element, we’ll have to expand |F,m〉 in the |(I,1/2),mI,±1/2〉 basis:

〈Sz〉 = ∑
F,m,mS,m′S

exp(βm)
ZI Z1/2

×〈
F,m |

(
I,

1
2

)
,m−m′S,m

′
S

〉
〈m−m′S,m

′
S| Sz |m−mS,mS〉

×
〈(

I,
1
2

)
,m−mS,mS | F,m

〉
(E.716)

= ∑
F,m,mS

exp(βm)
ZI Z1/2

mS

[〈
F,m |

(
I,

1
2

)
,m−mS,mS

〉]2

(E.717)

Since there are two manifolds F = I ± 1/2, we’ll split the sum into two pieces:

〈Sz〉 =
m=+I+1/2

∑
m=−I−1/2

+1/2

∑
mS=−1/2

exp(βm)
ZI Z1/2

mS

[〈
I + 1/2,m |

(
I,

1
2

)
,m−mS,mS

〉]2

+
m=+I−1/2

∑
m=−I+1/2

+1/2

∑
mS=−1/2

exp(βm)
ZI Z1/2

mS

[〈
I − 1/2,m |

(
I,

1
2

)
,m−mS,mS

〉]2

(E.718)
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Using the Clebsch-Gordon formulas from Sec. (C.2):

〈Sz〉 =
m=+I+1/2

∑
m=−I−1/2

+1/2

∑
mS=−1/2

exp(βm)
ZI Z1/2

mS

[
I + 1/2 + 2mSm

[I]

]

+
m=+I−1/2

∑
m=−I+1/2

+1/2

∑
mS=−1/2

exp(βm)
ZI Z1/2

mS

[
I + 1/2− 2mSm

[I]

]

=
m=+I+1/2

∑
m=−I−1/2

+1/2

∑
mS=−1/2

exp(βm)
ZI Z1/2

[
+2m2

Sm
[I]

]

+
m=+I−1/2

∑
m=−I+1/2

+1/2

∑
mS=−1/2

exp(βm)
ZI Z1/2

[
−2m2

Sm
[I]

]

=
+1/2

∑
mS=−1/2

(
exp(+β[I]/2)

ZI Z1/2

[
+2m2

S[I]/2
[I]

]
+

exp(−β[I]/2)
ZI Z1/2

[
−2m2

S[I]/2
[I]

])
(E.719)

where the symmetric sum over mS = ±1/2 cancels the mS(I + 1/2)/[I] terms and

the 2m2
Sm/[I] term from one manifold cancels the one from the other manifold,

except for the edge states m = I ± 1/2:

〈Sz〉 =
2 exp(+β[I]/2)

4ZI Z1/2
− 2 exp(−β[I]/2)

4ZI Z1/2
=

sinh(β[I]/2)
ZI Z1/2

=
sinh(β/2)

√
1− P2

z

2

=

(√
1 + Pz

1− Pz
−
√

1− Pz

1 + Pz

)√
1− P2

z

4
=

(
(1 + Pz)− (1− Pz)√

1− P2
z

)√
1− P2

z

4
=

Pz

2

(E.720)

where we’ve used Eqns. (E.591) & (E.592) (with P→ Pz) and as expected Pz = 2 〈Sz〉.

Components With An RF Field (Calculation of 〈Sx〉& 〈Sy〉)

In this section, we’ll assume that there is an RF Field with frequency ω creating

coherences only within a manifold. In other words, there are no RF fields that
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induce F = I + 1/2↔ F′ = I− 1/2 transitions. Therefore, the expectation value for

Sz is the same as the last section. To calculate the expectation values of Sx and Sy,

we’ll first calculate S± = Sx± iSy using Eqn. (E.401) in the form of:

〈S±〉 = ∑
m

{
Ω (ρm− ρm∓1)

(
u∓±
)∗ |〈F,m|U± |F,m∓ 1〉|2

±ω− ωFmFm∓1− iγFmFm∓1
× exp(±iωt)

+
Ω (ρm− ρm∓1)

(
u±±
)∗ |〈F′,m|U± |F′,m∓ 1〉|2

∓ω− ωF′mF′m∓1− iγF′mF′m∓1
× exp(∓iωt)

}
(E.721)

where we’ve split the sum over the two manifolds (F = I + 1/2 & F′ = I − 1/2)

and the population of each state depends only on m. As a reminder, ± is the sign

of ωFm+qFm = ωFm+q − ωFm. Finally, for the F = I + 1/2 manifold, the energy of the

m state is higher than the energy of the m− 1 state, whereas for the F′ = I − 1/2

manifold, the opposite is true. Therefore the frequency of the transition m↔ m− 1

is positive for the F = I + 1/2 manifold, whereas its negative for the F′ manifold.

Since Sx = (S+ + S−)/2, we can write its expectation value as:

〈Sx〉 = ∑
m

{
Ω (ρm− ρm−1)

(
u−+
)∗ |〈F,m| S+ |F,m− 1〉|2

+ω− ωFmFm−1− iγFmFm−1
× exp(+iωt)

2

+
Ω (ρm− ρm+1)

(
u+
−
)∗ |〈F,m| S− |F,m + 1〉|2

−ω− ωFmFm+1− iγFmFm+1
× exp(−iωt)

2

+
Ω (ρm− ρm−1)

(
u+

+
)∗ |〈F′,m| S+ |F′,m− 1〉|2

−ω− ωF′mF′m−1− iγF′mF′m−1
× exp(−iωt)

2

+
Ω (ρm− ρm+1)

(
u−−
)∗ |〈F′,m| S− |F′,m + 1〉|2

+ω− ωF′mF′m+1− iγF′mF′m+1
× exp(+iωt)

2

}
(E.722)
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where Ω = gSµBBrf/~, u−q = ε∗q · B̂rf, and u+
q = ε∗q · B̂∗rf. As mentioned before, we’ll

label the transition by the higher m involved. Relabeling the terms in the sum and

moving a few minus signs around gives:

〈Sx〉 = ∑
m

{
Ω (ρm− ρm−1)

(
u−+
)∗ |〈F,m| S+ |F,m− 1〉|2

+ω− ωFmFm−1− iγFmFm−1
× exp(+iωt)

2

+
Ω (ρm− ρm−1)

(
u+
−
)∗ |〈F,m− 1| S− |F,m〉|2

+ω− ωFmFm−1 + iγFm−1Fm
× exp(−iωt)

2

−
Ω (ρm− ρm−1)

(
u+

+
)∗ |〈F′,m| S+ |F′,m− 1〉|2

+ω− ωF′m−1F′m + iγF′mF′m−1
× exp(−iωt)

2

−
Ω (ρm− ρm−1)

(
u−−
)∗ |〈F′,m− 1| S− |F′,m〉|2

+ω− ωF′m−1F′m− iγF′m−1F′m
× exp(+iωt)

2

}
(E.723)

We’ve already calculated that:

ρm− ρm−1 = QIm̄Pz (E.724)

|〈F,m| S± |F,m∓ 1〉|2 =
F(F + 1)−m(m∓ 1)

[I]
(E.725)

So we just need to work out what this term looks like:

u∗ exp(+iωt)/2
ω− ω0 − iγ

+
u exp(−iωt)/2
ω− ω0 + iγ

= <
{

u exp(−iωt)
ω− ω0 + iγ

}
= <{u [cos(ωt)− i sin(ωt)] [D − iL]}

(E.726)

where the two terms are just complex conjugates of each other, which makes

their sum just the real part of either term and we’ve made the substitutions:

D =
ω− ω0

(ω− ω0)2 + γ2 L =
γ

(ω− ω0)2 + γ2 (E.727)
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Expanding this out and grouping terms by phase:

<{u [cos(ωt)− i sin(ωt)] [D − iL]} =
[
D<{u}+ L={u}

]
cos(ωt) +

[
D={u}−L<{u}

]
sin(ωt)

(E.728)

Using this, we can anticipate the final form of the expectation value of Sx:

〈Sx〉 = Pz
[
〈Sx〉c cos(ωt) + 〈Sx〉s sin(ωt)

]
(E.729)

where c(s) refers to the cosine (sine) component, ± refers to the manifold, and we

get:

〈Sx〉c =
Ω

[I] ∑
(±),m

(±)QIm̄
[
(I + 1/2)(I + 1/2± 1)−m(m− 1)

] [
D±m<{u−±}+ L±m={u−±}

]
(E.730)

〈Sx〉s =
Ω

[I] ∑
(±),m

(±)QIm̄
[
(I + 1/2)(I + 1/2± 1)−m(m− 1)

] [
D±m={u−±}−L±m<{u−±}

]
(E.731)

where I is the nuclear spin, ± refers to the manifold, we sum over both m and ±

and:

D+
m =

ω− ωFmFm−1

(ω− ωFmFm−1)2 + γ2
FmFm−1

(E.732)

L+
m =

γFmFm−1

(ω− ωFmFm−1)2 + γ2
FmFm−1

(E.733)

D−m =
ω− ωF′m−1F′m

(ω− ωF′m−1F′m)2 + γ2
F′m−1F′m

(E.734)

L−m =
γF′m−1F′m

(ω− ωF′m−1F′m)2 + γ2
F′m−1F′m

(E.735)

where F = I + 1/2 and F′ = I − 1/2.
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For Sy = (S+− S−)/(2i), we get terms that look like:

u∗ exp(+iωt)/(2i)
ω− ω0− iγ

− u exp(−iωt)/(2i)
ω− ω0 + iγ

= −=
{

u exp(−iωt)
ω− ω0 + iγ

}
= −={u [cos(ωt)− i sin(ωt)] [D − iL]}

(E.736)

Expanding this out and grouping terms by phase:

−={u [cos(ωt)− i sin(ωt)] [D − iL]} =
[
D<{u}+ L={u}

]
sin(ωt)−

[
D={u}−L<{u}

]
cos(ωt)

(E.737)

This is the same as for Sx except we make the substitutions cos→ sin and sin→

− cos:

〈
Sy
〉

= Pz
[〈

Sy
〉

c cos(ωt) +
〈

Sy
〉

s sin(ωt)
]

(E.738)〈
Sy
〉

c =
Ω

[I] ∑
(±),m

(∓)QIm̄
[
(I + 1/2)(I + 1/2± 1)−m(m− 1)

] [
D±m={u−±}−L±m<{u−±}

]
(E.739)〈

Sy
〉

s =
Ω

[I] ∑
(±),m

(±)QIm̄
[
(I + 1/2)(I + 1/2± 1)−m(m− 1)

] [
D±m<{u−±}+ L±m={u−±}

]
(E.740)

The expectation values contain both lorentzian L) and dispersive (D) line shapes.

They both contain in-phase and out-of-phase terms. Finally, the two manifolds ap-

pear with opposite signs.
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E.6.4 Synthesis

We’re now in a position to write the wave vector kq in terms of the polarizability:

kq =
ω

c
nq =

ω

c

√
εqµq

ε0µ0
=
ω

c

√
1 +

[A]αq

ε0
=
ω

c

(
1 +

[A]αq

2ε0
−

[A]2α2
q

8ε2
0

+ · · ·
)

(E.741)

Expanding kq in terms of its real and imaginary parts gives, up to second order:

kq =
ω

c

(
1 +

[A]
2ε0

(
<αq + i=αq

)
− [A]2

8ε2
0

{
(<αq)2− (=αq)2 + 2i(<αq)(=αq)

})
(E.742)

Under our typical densities, the second order term is quite small and keep only up

to first order:

kq =
ω

c
+ [A]2πrec f1

ω

ω1

( <αq + i=αq

4πε0rec2 f1/ω1

)
=
ω

c
+ [A]rec f1

(
ω

ω1

)(
2πC<αq + i2πC=αq

)
(E.743)

where 1/C = 4πε0rec2 f1/ω1. Making the substitution P→ k̂·~PA, the imaginary part

of the polarizability is for q = 0,±1:

C=αq =
(1− qk̂·~PA)

2
L1

{
1 + q

[
2
3
− 8

3
ωsoD1

]
y +

[
2
3
− q2 − 4

3
ωsoD1 +

4 + 12q2

9
ω2
so

(
4D2

1 −
L1

γ1

)]
y2
}

+L2

{
1− q

[
1
3

+
7
3
ωsoD2

]
y +

[
−1

3
+

q2

2
+ q2ωsoD2 +

1 + 12q2

9
ω2
so

(
4D2

2 −
L2

γ2

)]
y2
}

+
qk̂·~PA

2
L2

{
1 + q

[
2
3
− 4

3
ωsoD2

]
y +

[
−1

3
− 2ωsoD2 +

1
9
ω2
so

(
4D2

2 −
L2

γ2

)]
y2
}

+(1− q2)k̂·~PA {L1 [−1 + ωsoD1] + L2 [+1 + ωsoD2]} 2y
3

(E.744)

and similarly for the real part:
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C<αq =
(1−qk̂·~PA)

2
D1

{
1+q

[
2
3
− 8

3
ωsoD1

]
y+
[

2
3
−q2− 4

3
ωsoD1 +

4 + 12q2

9
ω2
so

(
4D2

1 − 3
L1

γ1

)]
y2
}

+D2

{
1− q

[
1
3

+
7
3
ωsoD2

]
y +

[
−1

3
+

q2

2
+ q2ωsoD2 +

1 + 12q2

9
ω2
so

(
4D2

2 − 3
L2

γ2

)]
y2
}

+
qk̂·~PA

2
D2

{
1 + q

[
2
3
− 4

3
ωsoD2

]
y +

[
−1

3
− 2ωsoD2 +

1
9
ω2
so

(
4D2

2 − 3
L2

γ2

)]
y2
}

+(1− q2)k̂·~PA
{

D1 [−1 + ωsoD1] + D2 [+1 + ωsoD2]− 1
2

L1
ωso
γ1

}
2y
3

+(1− qk̂·~PA)L1
ωso
γ1

{
2q
3

y +
1
3

y2
}

+ L2
ωso
γ2

{
7q
6

y− q2

2
y2
}

+ k̂·~PAL2
ωso
γ2

{
2q2 − 1

3
y +

q
2

y2
}

(E.745)

and finally :

k̂ · ~PA = PA

[
kz +

(
kx 〈Sx〉c + ky 〈Sy〉c

)
cos(ωrft) +

(
kx 〈Sx〉s + ky 〈Sy〉s

)
sin(ωrft)

]
(E.746)

where Pz = PA and ωrf is the frequency of the RF field.

E.7 Accessing Observables Using Polarized Light

E.7.1 Modulating Polarized Light Using a PEM

The effect of the atomic interaction on the light is expressed by the complex index

of refraction through the wave vector~k. The direction of~k is always in the direction

that the light is propagating. On the other hand, the magnitude of ~k depends on

the details of the atomic system and the polarization vector of the light. Our gen-

eral experiment will consist of polarized traveling through a PEM, then the alkali

vapor, and finally a beam splitting polarizing cube for detection. We’ll start with a
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arbitrarily polarized plane wave:

~E = |E〉 ei~k·~r−iωt (E.747)

|E〉 = E0eiφp

[(√
1− P

e+iθ

2
+
√

1 + P
e−iθ

2

)
|P 〉+

(√
1− P

e+iθ

2i
−
√

1 + P
e−iθ

2i

)
|S〉
]

(E.748)

Going through a photoelastic modulator:

|E〉 = E0eiφp

[(√
1− P

e+iθ+

2
+
√

1 + P
e−iθ−

2

)
|P 〉+

(√
1− P

e+iθ−

2i
−
√

1 + P
e−iθ+

2i

)
|S〉
]

(E.749)

θ± = θ± β(t)
2

(E.750)

Going back into the circular polarization basis, the right (+) and left (−) compo-

nents are:

|E〉± = +
E0

2
√

2
ei(φp)

[{
e+iθ− ∓ e+iθ+

}√
1− P−

{
e−iθ+ ± e−iθ−

}√
1 + P

]
(E.751)

Going through the atomic vapor, each polarization component q of the light prop-

agates with wave vector~kq:

~E = ∑
q
|E〉q ε̂qei(~kq·~r−ωt) (E.752)
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After traversing a distance of l in the atomic vapor and reentering a uniform and

isotropic medium with wave vector~k, we get:

~E = ei(~k·~r−ωt)
∑

q
|E〉q ε̂qeikql (E.753)

The time averaged intensity of the light is:

I =
√
ε

µ

~E∗ · ~E
2

=
√
ε

µ∑
q

〈E | E〉q
2

ei(kq−k∗q )l =
√
ε

µ∑
q

〈E | E〉q
2

e−2l=kq (E.754)

The effect of the atomic vapor can be written in (a very suggestive) matrix form in

the linear polarization basis in the light coordinate system:

|E〉aft = M̂ |E〉bef (E.755)

M̂ = ei(k++k−) l
2

 cos
(

k+−k−
2 l

)
sin
(

k+−k−
2 l

)
− sin

(
k+−k−

2 l
)

cos
(

k+−k−
2 l

)
 (E.756)

|E〉bef =
E0eiφp

2

 √
1− Pe+iθ+ +

√
1 + Pe−iθ−

−i
(√

1− Pe+iθ− −
√

1 + Pe−iθ+
)
 (E.757)

The atomic vapor has the effect of creating an overall complex phase of i(k+ +

k−)l/2 and a complex rotation through and angle (k+− k−)l/2. Now we’ll send the

light through a half waveplate whose axis is at an angle φh:

Ŵ1
2
M̂0 = i

 + cos
(

k+−k−
2 l + 2φh

)
+ sin

(
k+−k−

2 l + 2φh

)
+ sin

(
k+−k−

2 l + 2φh

)
− cos

(
k+−k−

2 l + 2φh

)
 (E.758)

The final polarization vector can be written as:
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|E〉f = i
E0eiφ′p

2

 √
1−Pe+iθ

(
cos(ψ)e+i β2 −i sin(ψ)e−i β2

)
+
√

1+Pe−iθ
(

cos(ψ)e+i β2 +i sin(ψ)e−i β2
)

i
√

1−Pe+iθ
(

cos(ψ)e−i β2 −i sin(ψ)e+i β2
)
−i
√

1+Pe−iθ
(

cos(ψ)e−i β2 +i sin(ψ)e+i β2
)


(E.759)

φ′p = φp + (k+ + k−)
l
2

(E.760)

ψ = (k+ − k−)
l
2

+ 2φh (E.761)

Noting that ψ is complex, the intensities of the two components are:

ζ =
√
ε

µ

E2
0

4
e−l={k++k−} (E.762)

IP
ζ

= | cos(ψ)|2 + | sin(ψ)|2 + iP
(

cos(ψ∗) sin(ψ)e−iβ − cos(ψ) sin(ψ∗)e+iβ
)

+
√

1− P2 ×

<
{

e+2iθ
[
| cos(ψ)|2 − | sin(ψ)|2 − i cos(ψ∗) sin(ψ)e−iβ − i cos(ψ) sin(ψ∗)e+iβ

]}
(E.763)

IS
ζ

= | cos(ψ)|2 + | sin(ψ)|2 + iP
(

cos(ψ∗) sin(ψ)e+iβ − cos(ψ) sin(ψ∗)e−iβ
)
−
√

1− P2 ×

<
{

e+2iθ
[
| cos(ψ)|2 − | sin(ψ)|2 − i cos(ψ∗) sin(ψ)e+iβ − i cos(ψ) sin(ψ∗)e−iβ

]}
(E.764)

Using the following relations:

| cos(ψ)|2 = cos(ψ) cos(ψ∗) =
1
2

[cosh(2=ψ) + cos(2<ψ)] (E.765)

| sin(ψ)|2 = sin(ψ) sin(ψ∗) =
1
2

[cosh(2=ψ)− cos(2<ψ)] (E.766)

sin(ψ) cos(ψ∗) =
1
2

[+i sinh(2=ψ) + sin(2<ψ)] (E.767)

sin(ψ∗) cos(ψ) =
1
2

[−i sinh(2=ψ) + sin(2<ψ)] (E.768)
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finally gives:

IP ,S =
Iσ ± Iδ

2
(E.769)

Iσ = 2ζ
[
cosh(2=ψ) + sinh(2=ψ)

(√
1− P2 sin(2θ) sin(β)− cos(β)

)]
(E.770)

Iδ = 2ζ
[

P sin(β) sin(2<ψ) +
√

1− P2 (cos(2θ) cos(2<ψ) + sin(2θ) sin(2<ψ) cos(β))
]

(E.771)

Using the following expansions for the β terms:

β(t) = β0 cos (Ωmodt) (E.772)

sin (β0 cos (Ωmodt)) = 2J1 (β0) cos (Ωmodt)− · · · (E.773)

cos (β0 cos (Ωmodt)) = J0 (β0)− 2J2 (β0) cos (2Ωmodt) + · · · (E.774)
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we can extract the DC, the RMS AC1, and the RMS AC2 components of the sum

(σ) and difference (δ) signals:

Iσ(DC) = 2ζ [cosh(2=ψ)− J0(β0) sinh(2=ψ)] (E.775)

Iσ(AC1) = 2ζ
√

2J1 (β0) sinh(2=ψ)
√

1− P2 sin(2θ) (E.776)

Iσ(AC2) = 2ζ
√

2J2 (β0) sinh(2=ψ) (E.777)

Iδ(DC) = 2ζ
√

1− P2 [cos(2θ) cos(2<ψ) + J0(β0) sin(2θ) sin(2<ψ)] (E.778)

Iδ(AC1) = 2ζ
√

2J1(β0)P sin(2<ψ) (E.779)

Iδ(AC2) = 2ζ
√

2J2(β0)
√

1− P2 sin(2θ) sin(2<ψ) (E.780)

2ζ =
√
ε

µ

E2
0

2
e−l={k++k−} (E.781)

ψ = (k+− k−)
l
2

+ 2φh (E.782)

where:

1. Jn is a Bessel function of the first kind or order n

2. β0 = 2πβset

(
λset
λlight

)
is the PEM retardation. If there is no PEM, then we can

simply set β0 = 0.

3. φh is the angle of the half waveplate axis with respect to the PEM axis

4. P is the degree of circular polarization of the light before the PEM

5. θ is the angle of linear polarization component of the light with respect to the

PEM axis before the PEM

6. < and = refer to the real and imaginary parts of a complex number
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The AC components can be picked out using a Lock-In Amplifier referenced to the

PEM frequency (Ωmod). The DC components can be picked out using a low pass

filter with a time constant that is several times longer than the PEM period 1/Ωmod.

For the case where there is no atomic vapor (l = 0):

Iσ(DC) =
√
ε

µ

E2
0

2
(E.783)

Iσ(AC1) = 0 (E.784)

Iσ(AC2) = 0 (E.785)

Iδ(DC) = Iσ(DC)
√

1− P2 [cos(2θ) cos(4φh) + J0(β0) sin(2θ) sin(4φh)]

(E.786)

Iδ(AC1) = Iσ(DC)
√

2J1(β0)P sin(4φh) (E.787)

Iδ(AC2) = Iσ(DC)
√

2J2(β0)
√

1− P2 sin(2θ) sin(4φh) (E.788)

This gives a simple method for measuring the degree of circular polarization (Sec.

(E.4.6)) using a rotatable half-waveplate (RHWP). As the RHWP is rotated, the

signal Iδ(AC1)/Iσ will oscillate between a maximum and minimum four times

through one complete rotation. The normalized amplitude of this sinusoidal oscil-

lation is
√

2J1(β0)P. If there is no PEM, then J0(0) = 1 and Iδ(DC)/Iσ will oscillate

in the same way, this time with an amplitude of
√

1− P2.



E.7. ACCESSING OBSERVABLES USING POLARIZED LIGHT 782

E.7.2 The Imaginary Part of the Polarizability Sum

The imaginary sum is given by:

= (k+ + k−) =
[A]2πrec f1ω

ω1
C=(α+ + α−) (E.789)

The sum of the imaginary parts of the polarizability is given by:

C=(α++α−) =
(1− k̂·~PA)

2
L1

{
1+
[

2
3
− 8

3
ωsoD1

]
y+
[
−1

3
− 4

3
ωsoD1 +

4 + 12
9

ω2
so

(
4D2

1 −
L1

γ1

)]
y2
}

+L2

{
1−

[
1
3

+
7
3
ωsoD2

]
y +

[
−1

3
+

1
2

+ ωsoD2 +
1 + 12

9
ω2
so

(
4D2

2 −
L2

γ2

)]
y2
}

+
k̂·~PA

2
L2

{
1 +

[
2
3
− 4

3
ωsoD2

]
y +

[
−1

3
− 2ωsoD2 +

1
9
ω2
so

(
4D2

2 −
L2

γ2

)]
y2
}

+(1− 1)k̂·~PA {L1 [−1 + ωsoD1] + L2 [+1 + ωsoD2]} 2y
3

+
(1 + k̂·~PA)

2
L1

{
1−
[

2
3
− 8

3
ωsoD1

]
y+
[
−1

3
− 4

3
ωsoD1 +

4 + 12
9

ω2
so

(
4D2

1 −
L1

γ1

)]
y2
}

+L2

{
1 +

[
1
3

+
7
3
ωsoD2

]
y +

[
−1

3
+

1
2

+ ωsoD2 +
1 + 12

9
ω2
so

(
4D2

2 −
L2

γ2

)]
y2
}

+
−k̂·~PA

2
L2

{
1−

[
2
3
− 4

3
ωsoD2

]
y +

[
−1

3
− 2ωsoD2 +

1
9
ω2
so

(
4D2

2 −
L2

γ2

)]
y2
}

+(1− 1)k̂·~PA {L1 [−1 + ωsoD1] + L2 [+1 + ωsoD2]} 2y
3

= +L1

{
1 +

[
−1

3
− 4

3
ωsoD1 +

16
9
ω2
so

(
4D2

1 −
L1

γ1

)]
y2
}

+2L2

{
1 +

[
1
6

+ ωsoD2 +
13
9
ω2
so

(
4D2

2 −
L2

γ2

)]
y2
}

−k̂·~PAL1

[
2
3
− 8

3
ωsoD1

]
y + k̂·~PAL2

[
2
3
− 4

3
ωsoD2

]
y (E.790)



E.7. ACCESSING OBSERVABLES USING POLARIZED LIGHT 783

E.7.3 The Imaginary Part of the Polarizability Difference

The imaginary difference is given by:

2=ψ = 2= (k+− k−)
l
2

=
l[A]2πrec f1ω

ω1
C=(α+− α−) (E.791)

The difference of the imaginary parts of the polarizability is given by:

C=(α+−α−) =
(1− k̂·~PA)

2
L1

{
1+
[

2
3
− 8

3
ωsoD1

]
y+
[
−1

3
− 4

3
ωsoD1 +

4 + 12
9

ω2
so

(
4D2

1 −
L1

γ1

)]
y2
}

+L2

{
1−

[
1
3

+
7
3
ωsoD2

]
y +

[
−1

3
+

1
2

+ ωsoD2 +
1 + 12

9
ω2
so

(
4D2

2 −
L2

γ2

)]
y2
}

+
k̂·~PA

2
L2

{
1 +

[
2
3
− 4

3
ωsoD2

]
y +

[
−1

3
− 2ωsoD2 +

1
9
ω2
so

(
4D2

2 −
L2

γ2

)]
y2
}

+(1− 1)k̂·~PA {L1 [−1 + ωsoD1] + L2 [+1 + ωsoD2]} 2y
3

− (1 + k̂·~PA)
2

L1

{
1−
[

2
3
− 8

3
ωsoD1

]
y+
[
−1

3
− 4

3
ωsoD1 +

4 + 12
9

ω2
so

(
4D2

1 −
L1

γ1

)]
y2
}

−L2

{
1 +

[
1
3

+
7
3
ωsoD2

]
y +

[
−1

3
+

1
2

+ ωsoD2 +
1 + 12

9
ω2
so

(
4D2

2 −
L2

γ2

)]
y2
}

+
k̂·~PA

2
L2

{
1−

[
2
3
− 4

3
ωsoD2

]
y +

[
−1

3
− 2ωsoD2 +

1
9
ω2
so

(
4D2

2 −
L2

γ2

)]
y2
}

−(1− 1)k̂·~PA {L1 [−1 + ωsoD1] + L2 [+1 + ωsoD2]} 2y
3

= +L1

[
2
3
− 8

3
ωsoD1

]
y− k̂·~PAL1

{
1 +

[
−1

3
− 4

3
ωsoD1 +

16
9
ω2
so

(
4D2

1 −
L1

γ1

)]
y2
}

−2L2

[
1
3

+
7
3
ωsoD2

]
y + k̂·~PAL2

{
1 +

[
−1

3
− 2ωsoD2 +

1
9
ω2
so

(
4D2

2 −
L2

γ2

)]
y2
}

(E.792)
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E.7.4 The Real Part of the Polarizability Sum

The real sum is given by:

< (k+ + k−) =
[A]2πrec f1ω

ω1
C<(α+ + α−) (E.793)

The sum of the real parts of the polarizability is given by:

C<(α++α−) =
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E.7.5 The Real Part of the Polarizability Difference

The real difference is given by:

2<ψ = 2< (k+− k−)
l
2

+ 4φh =
l[A]2πrec f1ω

ω1
C<(α+− α−) + 4φh (E.795)

The difference of the real parts of the polarizability is given by:
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E.8 D1 & D2 Absorption Spectroscopy

E.8.1 Experimental Signal: The Absorption Cross Section

For absorption measurements:

1. The intensity of the probe beam is kept very small so that there is essentially

no optical pumping. Therefore the alkali polarization is thermal and essen-

tially zero, PA = 0.

2. The alkali vapor is subject only to the earth’s magnetic field. This is less than

a gauss, so we take the field to be zero, B = y = 0.

3. A PEM will not be used, therefore, β0 = 0 and Jn(0) = δn0.

4. There is no analyzer half-wave plate, φh = 0.

5. Only the total (sum) intensity before and after the alkali vapor is measured.

The transmitted intensity is therefore given by:

It = 2ζ [cosh(2=ψ)− sinh(2=ψ)] 2ζ = I0e−l={k++k−} ψ = = (k+− k−)
l
2

(E.797)

where I0 is the intensity of the probe beam before the alkali vapor and the imagi-

nary sum & difference of the polarizabilities are given by:

=(α+− α−) = 0 =(α+ + α−) = L1 + 2L2 (E.798)
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We’ll now introduce the absorption cross section:

σ(ν) =
=(k+ + k−)

[A]`
= 2πrec

[(
ω

ω1

)
f1L1 +

(
ω

ω2

)
f2L2

]
(E.799)

We’ll make the approximations ω ≈ ω1 & ω ≈ ω2 and the substitutions ν = ω/(2/π)

& Γ/2 = γ/(2π) to get:

σ(ν) = rec
[

f1Γ1/2
(ν − ν1)2 + Γ2

1/4
+

f2Γ2/2
(ν − ν2)2 + Γ2

2/4

]
(E.800)

where ν is the laser frequency, re is the classical electron radius, c is the speed of

light in a vacuum, f1(2) is the D1(2) oscillator strength, ν1(2) is the D1(2) transition

frequency, and Γ1(2) is the full width at half maximum pressure broadening D1(2)

line width.

The probe beam from the Ti:Sapphire (aka Single Frequency aka Ring) laser

has a frequency dependent intensity which is modulated by an optical chopper at

a frequency ωmod:

I0(ν, t) = I0(ν)

[
1
2

+
2
π

∞

∑
k=1

sin((2k− 1)ωmodt)
2k− 1

]
(E.801)

where we’ve explicitly written the Fourier decomposition of the square wave pro-

duced by the chopper. The reference and transmitted intensities are converted into

AC voltages (due to the chopper) by the photodiodes, amplified by the “photodi-

ode box,” converted into DC signals by the Lock-In amplifiers (referenced to ωmod),
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and finally digitized by the “autoscan interface box:”

Nref(ν) = GPD1GPD1−boxGlockin−1GADC I0(ν) (E.802)

Ntrans(ν) = GPD2GPD2−boxGlockin−2GADC It(ν) (E.803)

where N is the number of bits from 0 to 4095 that the data channel reads. The

raw data recorded in the “.SCN” file are the frequencies and the values of Nref

and Ntrans in binary format. Before analysis, they have to be converted into ASCII

format using a LabVIEW vi called “readscn.vi.” We ultimately want to fit to σ(ν).

Therefore the analysis program first makes the following transformation:

x = ν y = log
(

Ntrans

Nref

)
= −[A]σ(x)l + log

(
GPD2GPD2−boxGlockin−2

GPD1GPD1−boxGlockin−1

)
(E.804)

E.8.2 Corrections to the Line Shape

Introduction

Eqn. (E.800) implies that the line shape is a sum of pure lorentzian curves. How-

ever, it neglects:

1. An oscillatory background due to imperfect cancellation of the interference

pattern produced by the cover of the photodiodes.

2. Natural line width

3. Doppler broadening

4. Finite hyperfine splittings of the ground and excited states.

5. Natural isotopic composition of the alkali vapor
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6. Possible “leakage” of the wings of nearby absorption lines

Since we claim that the PB method is accurate at the 1 percent level (or even less),

we’ll discuss the above points more carefully.

When trying to determine how small of an effect is small enough to ignore, it’s

important to keep in mind the relative scales of the line shape. The FWHM of the

absorption curve is about 20 GHz/amagat; so, an 8 amagat cell has about a 160

GHz FWHM. The frequency resolution (frequency jitter/noise and line width) of

the Ti:Sapphire is about 1 MHz. Data is acquired in about 1 GHz intervals. The

accuracy of the Autoscan Wavemeter is in principle easily sub-GHz. However, in

practice, the frequency can be shifted by as much as 20 GHz with the shift being

independent of frequency. The quantities of interest are insensitive to the absolute

frequency. This is because we only use the width of the line (and not the shift

of the line) to determine the noble gas density. In addition, the alkali density is

derived from the “size” of the dip and not from the “location.” As a final note,

it’s important to mention that the data acquisition time interval and lock-in time

constant are chosen carefully to minimize lock-in time averaging signal shaping

effects (minimum time between points > five lock-in time constants).

Natural Line width

The natural line width is given by the spontaneous emission rate. For both lines

of potassium and rubidium, the excited state lifetimes are all about τ ≈ 30 ns.

Therefore the natural line width is about γnat = τ−1 ≈ 0.03 GHz. This is negligible.
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Doppler Broadening

Doppler broadening of a spectral line is due to the Doppler shift. The Doppler

width is obtained from the width of the velocity distribution of the gas molecules

or atoms. In our case, this is the Maxwell velocity distribution, which is Gaus-

sian. The FWHM as a fraction of the transition frequency is given by the formula

(Demtroder, page 68, eq 3.43c):

δνD

ν0
= 7.16× 10−7

√
T (in Kelvin)

M (in grams per mole)
(E.805)

For the D2 lines of Potassium and Rubidium at 150 C, the doppler widths are 0.91

GHz and 0.60 GHz respectively. These widths are less than one percent of the pres-

sure broadened widths and are therefore negligible(?). For much lower pressure

broadened widths, this is not negligible and the data must be fit to a Voigt pro-

file, which is a convolution of a lorentzian line shape (pressure broadening) with a

Gaussian line shape (Doppler broadening). An alternative is to simulate the effect

and determine a Doppler correction factor.

Effect of Buffer Gas Collisions

When the collision between the alkali metal atom and perturbing atom occurs in-

stantaneously (Td = 0), then the absorption line shape is written as:

L(∆) =
1

2π
γ

∆2 + γ2/4
(E.806)

∆ ≡ ω− ω0− δω(T) (E.807)

γ = γnat + 〈σv〉pb (T)[N] (E.808)
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where γ is the FWHM broadening rate, ∆ is the detuning from resonance (ω0 + δω),

δω is the temperature dependent resonance detuning shift due to collisions, γnat is

the natural line width, 〈σv〉pb (T) is the temperature dependent velocity averaged

collisional cross section, and [N] is the perturber density. This is called the impact

approximation. Generalizing to finite collision times (Td 6= 0) results in a detuning

dependent broadening rate:

L(∆) =
1

2π
γ(x(T))

∆2 + γ(0)2/4
(E.809)

x(T) ≡ ∆(T)Td(T) (E.810)

The exact form of γ(x) depends on the interatomic potentials between the alkali

atom and the perturber atom. If a van der Waals potential of the form:

~
(
Vexcited−Vground

)
= ~∆V(R) = −C6

R6 (E.811)

is assumed to be the interatomic potential (where R is the interatomic separation)

and working the low perturber density regime (Tdγ � 1), then Walkup et al [35]

showed that the broadening rate could be written as:

γ(x) = γnat + 〈σv〉pb (x(T))[N] (E.812)

〈σv〉pb (x(T)) = 8πR2
th(T)vth(T) f (x(T)) (E.813)

vth(T) =

√
2kT
µ

(E.814)

Rth(T) = 5

√
|C6|v−1

th (E.815)

Td(T) ≡ Rth

vth
= 5

√
|C6|v−6

th (E.816)



E.8. D1 & D2 ABSORPTION SPECTROSCOPY 792

where vth is the most probable thermal velocity in the center of mass system, µ is

the reduced mass, Rth is the effective collision radius, Td is the temperature depen-

dent effective collision duration time, and f (x,T) is a dimensionless function that

contains the detuning dependence.

Walkup et al calculated f (x,T) in three regimes:

f (x,T) ≈


π
6

√
x x < −2.4

0.3380− 0.2245x −1.5 < x < 0.5

0.8464
√

x exp
[
−2.1341x

5
9

]
x > 2.4

 (E.817)

Near resonance, x ≈ 0, the FWHM in the numerator should be replaced with:

Γn→ Γn

[
1−

(
0.2245
0.3380

)
Tn

d 2π (ν − νn)
]

(E.818)

where n refers to the Dn transition & Tn
d is the effective collision time.

Finite Hyperfine Splitting, Isotopic Composition, and Wing Leakage

Table A.6 lists the hyperfine splittings of all the alkali metal isotopes (AIV77 = Ari-

mondo et al, RMP, 49, p31-75 (1977)). The natural abundance of each of these

isotopes is listed in table A.5 (NISTx = NIST websites). The hyperfine interaction

between the nuclear spin and electron angular momentum causes an additional

small splitting of the spectral line. This splitting, if not accounted for, would ap-

pear as a slight additional broadening. All the excited state hyperfine splittings

are less that 0.5 GHz and therefore will be neglected. The ground state hyperfine

splitting for both isotopes of Rb are larger than 3 GHz, see table A.6. The energy
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shifts due to the hyperfine splitting of ground state are given by:

∆EF

h
= ∆νF = ∆xF =

A
2

[
F(F + 1)− I(I + 1)− 3

4

]
(E.819)

where I is the nuclear spin of the isotope and F = I ± 1
2 .

This is large enough to worry about for Rb and therefore each line of Rb should

be fit to a set of four Lorenztians, two for the hyperfine splitting and one for each

isotope:

y = 0.7217c0

([
7

12

]
[1 + 0.664× 2πc1 (x− c2 + 1.264887)]

(x− c2 + 1.264887)2 + c2
3
4

+
[

5
12

]
[1 + 0.664× 2πc1 (x− c2− 1.770844)]

(x− c2− 1.770844)2 + c2
3
4

)

+0.2783c0

([
5
8

]
[1 + 0.664× 2πc1 (x− c2 + 2.563005)]

(x− c2 + 2.563005)2 + c2
3
4

+
[

3
8

]
[1 + 0.664× 2πc1 (x− c2− 4.271676)]

(x− c2− 4.271676)2 + c2
3
4

)
+ c4 (E.820)

where x, the laser frequency, is in units of GHz and the parameters c0,c1,c2,c3 & c4

are:

Z ∞
0
σ(ν)dν = σ0 = πrec f (E.821)

c0 = −[A]lσ0Γ

2π
(
GHz2) (E.822)

c1 = Td
(
GHz−1) (E.823)

c2 = ν0 (GHz) (E.824)

c3 = Γ (GHz) (E.825)

c4 = log
(

GPD2GPD2−boxGlockin−2

GPD1GPD1−boxGlockin−1

)
(unitless) (E.826)
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Only one isotope of K has a hyperfine splitting of greater than 1 GHz. However,

that isotope (40K) is naturally abundant only at the ppm level, which is negligible.

The more abundant isotopes of K have negligible (< 1 GHz) hyperfine splittings.

The potassium D1 and D2 lines are very close (≈ 1700 GHz) compared to the ex-

pected widths (≈ 160 GHz). Note that this is not a problem for Rb, because the

D1 and D2 lines are well separated (≈ 7100 GHz) compared to their widths (≈ 160

GHz). Although the D1 line for K and the D2 line for Rb are well separated (≈ 5000

GHz) compared to their widths (≈ 160 GHz), the relative size of the “peaks” is ex-

pected to be about 10 to 1 favoring K. This may mean that the K D1 line leaks into

the Rb D2 line. We’ll have to see what the data looks like, but if this is the case,

then we’ll need to fit the K D1, K D2, and Rb D2 lines altogether. If that is not the

case, then the Rb D2 can be fit separately but the K D1 and D2 lines still should be

fit together (neglecting the small hyperfine splitting for K):

y =
c0 [1 + 0.664× 2πc1 (x− c2)]

(x− c2)2 + c2
3
4︸ ︷︷ ︸

D1

+
c5 [1 + 0.664× 2πc6 (x− c7− 1730.32)]

(x− c7− 1730.32)2 + c2
8
4︸ ︷︷ ︸

D2

+c4

(E.827)

where, for K, (c0,c1,c2,c3) refer to the D1 transition and analogously (c5,c6,c7,c8) refer

to the D2 transition.
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E.8.3 3He Density: Pressure Broadening

The density of the buffer gas is proportional to the FWHM (full-width half maxi-

mum) of the line shape and for Rubidium [36]:

c3 = Γ = 〈σv〉Rb−3He [3He] + 〈σv〉Rb−N2
[N2] (E.828)

〈σv〉Rb−D1−3He = 18.7
(

T
353 K

)0.05,0.11 GHz
amagat

(E.829)

〈σv〉Rb−D1−N2
= 17.8

(
T

353 K

)0.30 GHz
amagat

(E.830)

〈σv〉Rb−D2−3He = 20.8
(

T
353 K

)0.53,0.34 GHz
amagat

(E.831)

〈σv〉Rb−D2−N2
= 18.1

(
T

353 K

)0.30 GHz
amagat

(E.832)

To get the correct helium density, one has to know the temperature of the cell and

the nitrogen density (gotten from filling data). (Reference: Romalis, Miron, and

Cates, PRA Vol 56 Num 6 p4569 (1997)) For Potassium, we’ve cross calibrated the

number for Helium-3, but assumed the same for Nitrogen:

〈σv〉K−D1−3He = 14.4
(

T
353 K

)0.41 GHz
amagat

(E.833)

〈σv〉Rb−D1−N2
= 17.8

(
T

353 K

)0.30 GHz
amagat

(E.834)

〈σv〉K−D2−3He = 20.15
(

T
353 K

)0.23 GHz
amagat

(E.835)

〈σv〉Rb−D2−N2
= 18.1

(
T

353 K

)0.30 GHz
amagat

(E.836)
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E.8.4 Alkali Density: Total Absorption

The alkali density is proportional to the size of the the “absorption dip” of the line

shape:

[A] = −c0
2π

lσ0Γ
= −c0

2π
lπrec f c3

= −c0

c3

2
lrec f

(E.837)

where l is the path length through the cell, re = 2.817940325× 10−15 m (classical

electron radius), c is the speed of light, and f is the oscillator strength of the transi-

tion. For both rubidium and potassium, f = 1/3 for the D1 transition and f = 2/3

for the D2 transition.

In principle, one can also get the alkali density by integrating over the line

shape:

Z c2+∆x

c2−∆x
y(x) dx =

Z c2+∆x

c2−∆x

c0

(x− c2)2 + c2
3
4

+
c00.664× 2πc1 (x− c2)

(x− c2)2 + c2
3
4

+ c4 dx

(E.838)

lim
∆x→∞

Z c2+∆x

c2−∆x

c0

(x− c2)2 + c2
3
4

dx = 2π
c0

c3
(E.839)

Z c2+∆x

c2−∆x

x− c2

(x− c2)2 + c2
3
4

dx = 0 (by symmetry) (E.840)

Z c2+∆x

c2−∆x
c4 dx = 2c4∆x (E.841)

where the alkali density is gotten from:

p ≡
Z c2+∆x

c2−∆x
y(x) dx ≈ 2π

c0

c3
+ 2c4∆x (E.842)

[A] ≈ −
(

p− 2c4∆x
)

lπrec f
(E.843)

To do this, one must be very certain that the background integrates to zero (c4 ≈ 0)

or to some well known value.
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E.9 Paramagnetic Faraday Rotation

E.9.1 Experimental Signal: The Rotation Angle

To measure the Faraday rotation induced by the alkali vapor:

1. The detector is a rotatable half-wave plate mounted in front a beam splitting

polarizing cube. The intensity of each beam from the cube is measured by a

photodiode.

2. The rotation angle is encoded in the difference of the intensities.

3. The intensity of the beam must be normalized because there the intensity has

a strong wavelength dependence. This is due to both the probe laser itself

and the absorption by the alkali vapor itself. This can be obtained from the

sum of the intensities.

4. Any remaining normalization factors can be obtained by rotating the HWP.

The sum and difference intensities are given by:

Iσ(DC) = 2ζ [cosh(2=ψ)− J0(β0) sinh(2=ψ)] (E.844)

Iδ(DC) = 2ζ
√

1− P2 [cos(2θ) cos(2<ψ) + J0(β0) sin(2θ) sin(2<ψ)] (E.845)

Iδ(AC1) = 2ζ
√

2J1(β0)P sin(2<ψ) (E.846)

2ζ =
√
ε

µ

E2
0

2
e−l={k++k−} (E.847)

ψ = (k+− k−)
l
2

+ 2φh (E.848)
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From these equations, we see for the case where a PEM isn’t used (β0 = 0):

Iδ(DC)
Iσ(DC)

=

[ √
1− P2

cosh(2=ψ)− sinh(2=ψ)

]
︸ ︷︷ ︸

normalization

cos(2θ− 2<ψ) (E.849)

With no PEM, we’re interested in the DC difference over the DC sum and the probe

beam must be linearly polarized, P = 0. When we do use a PEM and a Lock-In

Amplifier for the difference signal (referenced to the PEM frequency):

Iδ(AC1)
Iσ(DC)

=

[ √
2J1(β0)P

cosh(2=ψ)− J0(β0) sinh(2=ψ)

]
︸ ︷︷ ︸

normalization

sin(2<ψ) (E.850)

With a PEM, we’re interested in the AC difference over the DC sum and the probe

beam must be circularly polarized, P = ±1. Both rotation formulas contain the

term <ψ. The Faraday rotation angle is defined by φ = <ψ − 2φh = < (k+− k−) l
2 .

This implies that:

1. the electric field polarization vector rotates by an angle of φ due to the atomic

vapor

2. the observable quantity is 2φ from the reference axis

3. Faraday rotation (φ) can be canceled by a half waveplate with an angle of

−φ/2 between the its axis and the reference axis

We’ll now calculate the Faraday rotation angle φ starting with:

φ = <ψ− 2φh = < (k+− k−)
l
2

=
l[A]πrec f1ω

ω1
C<(α+− α−) (E.851)
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Since we’re making these measurements at very low field ≤ 40 gauss, we’ll only

keep terms up to first order in field, y, which gives for the difference of the real

parts of the polarizability:

C<(α+− α−) = − yωso

3

[
7
(

2D2
2 −

L2

γ2

)
+ 4

(
2D2

1 −
L1

γ1

)
− 2

(
D1−D2

ωso

)]
+k̂·~PA [D2−D1] (E.852)

There is a natural separation between the rotation due to the magnetic field (y) and

the alkali polarization (PA). Traditionally, Faraday rotation refers to the part due to

the field only and the constant of proportionality is called the Verdet constant.

The rotation due to the alkali polarization is called paramagnetic Faraday rotation

and under our conditions will be the dominant term. Making the approximation

ω ≈ ω1, making the substitution yωso = µBB/~, using ∆n = 2π(ν − νn) where ν is

the probe laser frequency, using γn = 2πΓn/2 where Γn is the pressure broadened

FWHM, and noting the following:

2πLn =
Γn/2

(ν − νn)2 + Γ2
n/4

2πDn =
(νn− ν)

(ν − νn)2 + Γ2
n/4

(E.853)

we can write down the rotation formulas:

φB = −l[A]B
(

rec f1µB

6h

)[
7

{
(ν − ν2)2− Γ2

2/4[
(ν − ν2)2 + Γ2

2/4
]2

}
+ 4

{
(ν − ν1)2− Γ2

1/4[
(ν − ν1)2 + Γ2

1/4
]2

}

−
(

2
ν1− ν2

){
(ν − ν1)

(ν − ν1)2 + Γ2
1/4
− (ν − ν2)

(ν − ν2)2 + Γ2
2/4

}]
(E.854)

φP = l[A]PA cos(θ)
(

rec f1

2

)[
(ν − ν1)

(ν − ν1)2 + Γ2
1/4
− (ν − ν2)

(ν − ν2)2 + Γ2
2/4

]
(E.855)
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When the probe laser frequency is far from resonance (ν − νn)� Γn/2 for both Dn

transitions, then these formulas can be simplified even further to [37]:

φB = −l[A]B
(

rec f1µB

6h

)[
7

(ν − ν2)2 +
4

(ν − ν1)2 −
2

(ν − ν1)(ν − ν2)

]
(E.856)

φP = −
(

rec f1νso
2

)[
l[A]PA cos(θ)

(ν − ν1)(ν − ν2)

]
(E.857)

where νso is the spin-orbit splitting in frequency. The scales for these two rotations

are given by:

(
180 deg

π

)(
rec f1µB

6h

)
=

(
3.76 millidegrees

)
(1000 GHz)2

(1 cm) (1014 cm−3) (1 gauss)
(E.858)(

180 deg
π

)[
rec f1νso

2

]
Rb

=
(
57.5 degrees

)
(1000 GHz)2

(1 cm) (1014 cm−3)
(E.859)(

180 deg
π

)[
rec f1νso

2

]
K

=
(
14.0 degrees

)
(1000 GHz)2

(1 cm) (1014 cm−3)
(E.860)

(E.861)

E.9.2 Alkali Number Density

The alkali number densities are obtained by simply fitting the paramagnetic Fara-

day rotation angle vs frequency:

y = lPA cos(θ)
(

rec f1

2

)
{[K]FK + [Rb]FRb} (E.862)

where the function FX is given by:

FX =
(

(x− ν1)
(x− ν1)2 + Γ2

1/4
− (x− ν2)

(x− ν2)2 + Γ2
2/4

)
(E.863)
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To extract the alkali densities, you must know:

1. the alkali polarization, which is assumed to be the same for K and Rb

2. the laser beam path length through the cell

3. the skew angle which is usually a small correction

4. the absolute calibration of the angle obtained from the normalization with

the RHWP

E.10 Probing EPR RF Transitions

E.10.1 Experimental Signal: Change in the Alkali Polarization

The EPR transitions are driven using a small RF coil producing an RF field perpen-

dicular to the main holding field. When the RF coil frequency is held constant, the

holding field is swept changing the transition frequencies. To obtain an alkali EPR

RF spectrum, we need some observable that indicates that an RF transition is being

driven. When the alkali atoms are polarized due to optical pumping, then driving

an RF transition is depolarizing. As the magnetic field is swept, the alkali polariza-

tion is lowered when the transition frequency matches the RF coil frequency. These

dips or peaks in the alkali polarization correspond to a particular EPR RF transition

that can be identified provided we know magnitude of the magnetic field.

The alkali polarization is given by:

PA(z) =
R(z)

R(z) + γ + γrf(z)
(E.864)
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where R(z) is the position dependent optical pumping rate, γ is the spin relaxation

rate, and γrf(z) is the position dependent effective relaxation rate due to the RF

coil.

There are two different ways that we can measure the relative alkali polariza-

tion:

1. the paramagnetic Faraday rotation angle

2. the intensity of the D2 fluorescence emitted by the alkali vapor during optical

pumping

When the Faraday rotation angle is canceled out by the RHWP, the difference

signal will be zero. Therefore, small changes in the alkali polarization will re-

sult in a small changes in the rotation angle. Under the “small” condition, the

change in the difference signal will be proportional to the change in rotation angle

Iδ ∝ sin(∆φ) ≈ ∆φ. Therefore the zeroed difference signal is directly a probe of the

relative change in the alkali polarization:

∆φ ∝ ∆PA = PA− P0
A =

R
R + γ + γrf

− R
R + γ

≈ R
R + γ

[
1− γrf

R + γ

]
− R

R + γ
= −P0

A

[
γrf

R + γ

]
(E.865)

where P0
A is the alkali polarization when the RF coil is off or the RF coil frequency

is off resonance.

Although the presence of N2 molecules greatly suppresses the number of ra-

diative decays, a few percent of the transitions back to the ground state still occur

radiatively. The amount of D1 and D2 fluorescence is essentially the same because

of collisional mixing of the excited states. However, a filter is placed in front of
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a photodiode to allow transmission of only the D2 fluorescence. This is because

the large D1 background from the pump laser light could potentially saturate the

photodiode.

Therefore, the signal detected in the photodiode consists mainly of D2 fluores-

cence. A strong DC component is present due to the D2 light reaching the photo-

diode from parts of the cell that are minimally effected by the EPR excitation coil

and due to the fact that the EPR excitation is very small and therefore the alkali

polarization is not changing much. More important is the AC component that is

at the modulation frequency of the EPR excitation coil. For the alkali polarization

measurement, the amplitude of the RF coil is modulated; wheres, for the He-3 po-

larization measurement, the frequency of the RF coil is modulated. Either way, a

lock-in amplifier is used to detect this small AC signal. The intensity of the D2

fluorescence detected by a photodiode observing the cell an be estimated by:

ID2 ≈ hν2

(
∆Ω

Apd

)(
1

1 + Γnonτspon

)
V[A] 〈R〉 (1− 〈PA〉) (E.866)

where Γnon is the non-radiative quenching rate, τ−1
spon is the spontaneous emission

rate, V is the volume of the pumping chamber, ∆Ω is the solid angle subtended by

the photodiode, Apd is the area of the photodiode, and the brackets <> refer to

a volume average over the whole pumping chamber. Rewriting 〈R〉 (1− 〈PA〉) as

〈PA〉 (γ+ γrf) can be used to give the change in the D2 intensity due to the RF coils:

∆ID2 ≈ hν2

(
∆Ω

Apd

)(
1

1 + Γnonτspon

)
V[A]

〈
P0

A

〉
γrf (E.867)

where the D2 fluorescence intensity depends on 〈γrf〉 the volume averaged effec-

tive relaxation rate due to the RF coil. In both cases, the observable is proportional
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to the effective relaxation rate due to the RF coil.

E.10.2 Effective Relaxation Rate Due to EPR RF Transitions

We’ve already calculated the change in populations due to a dipole interaction, see

Sec. (E.5.2). For an RF field in the x direction, where the holding field is in the z

direction, the change is population is given by:

ρ̇Fm = 2Ω
2
rf

{
γm (ρFm+1− ρFm) |u−+|

2 |〈F,m + 1| S+ |F,m〉|2

(ω− ωFm+1Fm)2 + γ2
m

+
γm (ρFm−1− ρFm) |u+

−|
2 |〈F,m− 1| S− |F,m〉|2

(−ω− ωFm−1Fm)2 + γ2
m

}
(E.868)

The effective relaxation rate is given by the amount of change in 〈Sz〉 times the

transition rate. The change in 〈Sz〉 for every m↔ m− 1 transition is 1/[I]. There

the effective relaxation rate is given as:

dPA

dt
=

d2 〈Sz〉
dt

=
4Ω2

rf

[I] ∑
F,m

γm (ρFm−1− ρFm) |u+
−|

2 |〈F,m− 1| S− |F,m〉|2

(−ω− ωFm−1Fm)2 + γ2
m

(E.869)

where we’ve labeled the transitions with the higher m value, ω is the RF coil fre-

quency, and we’ve summed over all m ↔ m − 1 transitions in both manifolds

F = I ± 1/2. Since Sx = (S+ + S−)/2, |u+
−|

2 = 1/4 and plugging in values for the

matrix element & population difference, we find:

dPA

dt
= −PA

Ω2
rf

[I]2 ∑
±,m

QIm̄
(
(I + 1/2)(I + 1/2± 1)−m(m− 1)

)
L±m = −γrfPA (E.870)
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where L±m is the lorentzian line shape associated with the m↔ m− 1 transition in

the F = I ± 1/2 manifold:

L±m =
γm

(ω− ωFmFm−1)2 + γ2
m

(E.871)

where ωFmFm−1 is the transitions frequency. The effective spin relaxation rate is

given by the sum:

γrf =
Ω2

rf

[I]2 ∑
±,m

QIm̄
(
(I + 1/2)(I + 1/2± 1)−m(m− 1)

)
L±m (E.872)

E.10.3 Alkali Polarization: Ratio of Areas

The observable (rotation angle or D2 light intensity) is proportional to the effective

spin relaxation rate which is given by the sum:

Ω2
rf

[I]2 ∑
±,m

QIm̄
(
(I + 1/2)(I + 1/2± 1)−m(m− 1)

)
L±m (E.873)

When the field is high enough, the transitions frequency are spaced far enough

apart, relative to the width γm, that only one term dominated the effective relax-

ation rate. In other words, the peaks corresponding to the different transitions

are well resolved. In practice, we can make adjacent transitions (m↔ m− 1 and

m− 1↔m− 2) well resolved, but the twin transitions (F = I + 1/2,m↔m− 1 and

F = I − 1/2,m↔ m− 1) are unresolved.

The area under each peak is given by [28, 37]:

AFm = A0 f I[A]
[

Brf

2I + 1

]2

[F(F + 1)−m(m− 1)]
exp(βm̄)

ZI
(E.874)
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where F labels the manifold, m is refers to the m ↔ m − 1 transition, A0 is area

factor common to all transitions, f I is the isotopic fraction of the alkali species, I is

the nuclear spin of that species, β is the spin temperature, and m̄ = m− 1/2 is the

mean m of the transition.

The ratio of the area of two peaks for the same alkali species is given by:

r =
AFm + AF′m

AFm′ + AF′m′
=
[

F(F + 1)−m(m− 1) + F(F− 1)−m(m− 1)
F(F + 1)−m′(m′− 1) + F(F− 1)−m′(m′− 1)

]
exp

(
β[m−m′]

)
(E.875)

where F = I + 1/2, F′ = I− 1/2, and exp(β) = (1 + PA)/(1− PA). We add the areas

of the twin transitions together because we are assuming that they are unresolved.

In addition, there is no m = F↔ F− 1 transition for the F′ manifold. Note however

that F(F− 1)− F(F− 1) = 0 so the formula still holds. For the case m−m′ = 1, we

find:

r =
[

F(F + 1)−m(m− 1) + F(F− 1)−m(m− 1)
F(F + 1)− (m− 1)(m− 2) + F(F− 1)− (m− 1)(m− 2)

](
1 + PA

1− PA

)
(E.876)

which can be solved for PA to give:

PA =
[
F2− (m− 1)(m− 2)

]
r−

[
F2−m(m− 1)

]
[F2− (m− 1)(m− 2)] r + [F2−m(m− 1)]

(E.877)

When the twin transitions are unresolved and we take ratios involving the end

transitions, then for a nuclear spin I = 3/2 isotope like K-39 or Rb-87:

PA =
2r− 1
2r + 1

r =
A22

A21 + A11
(E.878)

PA =
r− 2
r + 2

r =
A20 + A10

A2−1
(E.879)
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whereas for a nuclear spin I = 5/2 isotope like Rb-85:

PA =
7r− 3
7r + 3

r =
A33

A32 + A22
(E.880)

PA =
3r− 7
3r + 7

r =
A3−1 + A2−1

A3−2
(E.881)

E.10.4 Alkali Density Ratio: Ratio of Areas

If we look at the same transition for two different alkali species with the same

nuclear spin, then the ratio of areas gives the ratio of densities:

r =
Ai

Fm + Ai
F′m

Ak
Fm + Ak

F′m
=

fi[Ai]
fk[A]k

(E.882)

where fi,(k) is the natural isotopic fraction of alkali species i (k). For example, K-39,

Rb-87, K-41, and Na-23 all have I = 3/2. Therefore the ratio of K-39 to Rb-87 for

the same transition would give:

r =
(0.93258)[K]
(0.2783)[Rb]

= 3.35 · D (E.883)

where D is the ratio of K to Rb. On the other hand, we can take the ratio of K-39 to

K-41 for the same transition:

r =
(0.93258)[K]
(0.06730)[K]

= 13.9 (E.884)

If natural abundance K is being used, then the ratio should be equal to 13.9. This

is a powerful cross check of the method.
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