
Collaborative Software Engineering: A Survey

Agam Brahma

November 21, 2006

Abstract
This paper surveys recent work in the field of collaborative
software engineering and relates it to concepts discussed in
the course ’Collaborative Systems’, with a focus on the role
and nature of ’awareness’ in collaborative work.

1. Introduction
Computer Supported Collaborative Work (CSCW) has
been defined [6] as follows:

CSCW [is] a generic term, which combines the
understanding of the way people work in groups with
the enabling technologies of computer networking, and
associated hardware, software, services and techniques.

While there is much research going on on a broad
range of issues related to CSCW, we will focus on a partic-
ular sub-area, namely Collaborative Software Engineering
(CSE).

Software development in the industry today is a very
complex task, requiring many developers to work together
on different aspects of the product. Still, direct support for
the collaboration required in these projects is absent from
most tools used. Version control tools are the only ones that
have some measure of collaboration built in, and frequently
the only synchronization performed is the nightly build.
Clearly, there is much scope for the development of new
tools and methodologies, in order to introduce better
support for collaboration amongst developers.

There is a wide range of applications that fall under
the purview of CSCW. As illustrated in this figure (Fig.1),
we can define a whole spectrum between two extremes,
where on one extreme we have ’pessimistic’ applications
that have coarse-grained locking to prevent access to shared
artifacts (such as CVS) and on the other extreme we have
’optimistic’ applications that allow users independent
access, and rely on merging for conflict resolution (such as
interactive chat, or ’instant messengers’). As shown in the
figure, ideal CSE applications should lie between these two
extremes, with some combination of fine-grained locking

Figure 2: UML Editor

and merging. For example, this figure (Fig.2) shows an
example of a collaborative UML editing tool.

This survey looks at the theme of awareness in collabora-
tive software engineering, and for this purpose it considers
three different research areas. First, we consider augment-
ing CVS with a broadcast tool, and see how that affects
developers using it. We take an in-depth look at a major
collaboration tool, followed by a user study about its ef-
fectiveness. We then examine the role of interruption in a
collaborative development environment, and how it affects
productivity. Finally, we attempt to unify the results from
these different areas of study with our central theme.

2. Augmenting CVS with notification
As mentioned previously, version control systems (e.g.
CVS, Subversion) are the most widely prevalent form of
collaboration in software engineering. These systems are
very useful for co-ordination amongst developers working
on a common project.

However, it has been observed that most of the actual
communication is informal, and takes place via some other
mechanism (e-mail or chat). Thus, it should be possible to

1



Figure 1: CSCW Tools Spectrum

combine both these spheres of interaction to some degree,
improving the overall experience for the developer.

A recent user study [5] looks at the result of doing some-
thing similar – augmenting CVS with a chat/notification
facility, thus allowing mediated communication, where the
developer is more aware of what is going on.

2.1 Implementation
The authors noticed that CVS logs were used as an auxil-
iary form of communication, as developers referred to them
in external (e-mail/chat) communication. They added an
event notification system, Elvin, to broadcast log messages
to a common tickertape. The client interface that displayed
these messages also supported a chat mechanism.

Elvin is a publish/subscribe system which broadcasts
events to the user’s terminal, displaying, for each recent
CVS log entry, the relevant group, the developer with
whom the change is associated, and the contents of the
entry. The authors studied whether there was any changes
both in the nature of CVS messages, and the nature of
communication among developers.

2.2 Observations
The biggest change the authors saw was in the nature of
interaction amongst the developers. Knowing that other de-
velopers could ’track’ their work, people paid more atten-
tion to entering information along with their CVS commits,
and in fact supplemented their entries with more contextual
information.

2.2.1 Communication

This information not only works to supplement com-
ments with extra details about each change, but also
helps document the ’flow’ of the work, providing a
form of commentary to the project, which allows a devel-
oper to get an overview of an area of the project, at a glance.

Also, this awareness of others’ work stimulated dis-
cussion, as the messages on the tickertape became objects
of conversation. CVS events could thus trigger a chat
session among developers, thus leading to a merging of
synchronous (chat) and asynchronous (CVS commits)
forms of communication. This in turn allows developers to
better co-ordinate their actions amongst themselves.

2.2.2 Awareness

The ’commit’ operation transfers code from what is essen-
tially a private workspace of a developer, into the public
codebase. This augmentation of the version control sys-
tem however, extended that to be an indicator of ’presence’.
This also allows developers to be aware of each other’s
availability, which, as we will see later, allows for more ef-
ficient management of interruptibility.

3. CAISE
We have seen how version control systems are widely used
for coarse-grained archival of code. In this section we will
look at a fine-grained CSE tool that allows fine-grained
software development. There has been much recent
work on similar tools, and perhaps the best known recent
commercial product with these features is the Jazz toolkit
for Eclipse, developed by IBM.

CAISE [4], discussed here, is however, more of an
academic product, developed by a group of researchers
at the University of Canterbury, New Zealand, and shares
many features with Jazz, although its underlying structure
is different.

3.1 Motivation
In a typical software development environment, the only
way a developer can be aware of code history is through
CVS. There is no explicit way to determine whether another
developer is working concurrently on the same piece of
code, or on a higly dependent piece of code.

2



Thus, we need a CSE tool that will provide this awareness
to the developer, for which it will be essential for the
tool to have a semantic understanding of the codebase. A
typical way to avoid the aforementioned situation is to lock
common files so as to avoid potential conflict - this is often
not required, and causes unnecessary delays. A good CSE
tool should thus also support varying levels of granularity
in locking.

3.2 Implementation

CAISE has a centralized client-server architecture [1]. This
allows it to use more resources than a per-desktop model,
and sustain higher throughput to co-ordinate a large team
of developers. At the same time, it is highly extensible, and
has a ’plugin’ model to support a variety of client tools and
widgets.

As seen in the adjoining figure (Fig.3), the server is
responsible for maintaining a semantic model of the soft-
ware - it stores information such as the symbol table and
references between symbols. It interacts with language-
specific parsers and analyzers to maintain and update the
semantic model, and generate ’change events’. It also
supports custom feedback modules which can generate
client-specific events based on the state of the semantic
model (such as tracking changes by a particular developer).
The server also keeps track of user communication events
which are generated by chat applications interacting with
CAISE.

Having a centralized server architecture means that
client-side IDE’s can be lightwieght, and can maintain
a local model of the code, perhaps containing only the
current set of modules being worked on. The client tool can
receive events from the server, and update its local model
accordingly.

3.3 Awareness

CAISE provides many features to extend the traditional
software development environment. Since the server main-
tains a complete semantic model of the software project, it
is aware of code dependencies and developer relationships.

This allows the developer to be aware of the extent of
his/her changes, both in terms of the modules/functions in
the code that will be affected, as well as other developers
who might face merge conflicts.

3.3.1 Client tools and Visualization

An example of a client tool interoperating with CAISE
is shown in this figure (Fig. 3.3)- this shows the Borland
Together IDE. Region ’A’ shows a change graph, which
lets the developr keep a visual tab to real-time changes in
the codebase. Region B shows a user tree, which allows
the developer to know the ’location’ of other developers
in the code, and helps him/her to avoid potential conflicts.
Region C shows a message panel, where the develops
receives feedback events. As mentioned earlier, these are
user-defined events generated by the server, based on the
state of the semantic model, according to criteria chosen
by the developer. Thus, the developer is presented with a
dashboard of sorts along with the traditional IDE, which
can be customized as per his/her wishes.

In addition to these examples, another useful category
of client tools are visualizations of the event logs generated
by the server. As CAISE supports XML logging, the team
lead or project manager can access an enormous variety
of information, such as events generated by a particular
developer, or changes to the code base over time. This
allows him to instantly get a snapshot of the project,
and be aware of macro-level trends (such as growth of
codebase/bug database by project team).

3.4 CAISE and CSE
CAISE provides all the taskwork-oriented features that
traditional tools provide, and extends them to also support
teamwork-oriented features, to indicate awareness. There
are many modes that a developer might work in while using
CAISE. Each mode reflects a different approach to conflict
resolution, and a different level of awareness.

The traditional mode of working corresponds to the
private mode, where a developer works on a chunk of
code separately, and then re-integrates it into the common
codebase.ls are visualizations of the event logs generated
by the server. As CAISE supports XML logging, the team
lead or project manager can access an enormous variety
of information, such as events generated by a particular
developer, or changes to the code base over time. This
allows him to instantly get a snapshot of the project, and
be aware of macro-level trends . However, now it is also
possible to work in a real-time independent mode, where
developers can work simultaneously on the code, while
CAISE monitors the semantic relationship between the
pieces of code they are working on, and alerts them to any
potential conflicts. They can of course, choose to ignore
these alerts and work in melee mode instead, which might
be suitable for rapid changes to a confined region of code,
where the developers communicate using some out-of-band

3



Figure 3: CAISE Architecture

Figure 4: CAISE Client

4



channel, such as audio, to synchronize their work and avoid
conflict.

Additionally, due to the customized locking capabili-
ties of CAISE, the team lead could opt to give the other
developers a read-only view of a part of the code, following
a WYSIWIS (what you see is what I see) model, where the
other developers are essentially ’following the leader’. Fi-
nally, the customized user events supported by CAISE can
allow developers to react to a predefined conflict situation,
allowing the development team to have a comprehensive
’conflict policy’.

3.5 User Study

As mentioned previously, there are now many other tools
that perform the same function as CAISE, so studying the
benefits of CAISE is really representative of the benefits of
CSE tools overall. A user study [2] was performed to test
the benefits of CAISE to a team of developers.

3.5.1 Methodology

For the purposes of the study, the authors studied the
behaviour of the users in two modes, the conventional
single-user mode with version control, and the collabora-
tive mode, with real-time sharing (in either WYSIWIS or
independent mode).

They also made the users perform two kinds of tasks,
each intended to test a different kind of collaboration bene-
fits. Intra-file tasks, such as editing two pieces of code near
each other in the same file, test merge conflicts. Inter-file
tasks, such as editing two pieces of code in separate files,
which share some relationship, test dependency conflicts.

The mean task completion times were compared, for
each mode and task.

3.5.2 Results

Not surprisingly, the authors found that in collaborative
mode, the users performed better in collaborative mode.
As seen in the adjoining figure (Fig. 3.5.2), the mean time
for completion was nearly half, in collaborative mode, for
both task categories, although intra-file tasks seem to have
benefited more. This can probably be explained by the fact
that knowing which developers are editing code in close
proximity to your code avoids costly merge errors.

In addition to this study, they also asked the users to
take a survey requiring them to answer questions about
how CAISE was useful, requiring them to rate on a scale of

Figure 5: CAISE User Study Results

1 to 20. The users rated all points consistently between 14
and 16.

4. Interruptibility
Finally, we take a look at a (somewhat unrelated) study
which focusses almost entirely, on the nature of interrup-
tions in software teams. Developers working on a common
project frequently interact in an informal setting. They take
breaks from work, which may be social in nature, or with
a functional purpose. They frequently interrupt each other
either as part of the break or for communication purposes.

Interruptions thus affect teamwork to a large degree,
and the authors of this [3] paper wanted to examine this
aspect of collaborative software development in greater
detail.

4.1 Methodology
To be able to better analyze the role of interruptions, the
authors decided to observe two different teams of peo-
ple. One team, referred to as ”‘Team Pair”’, worked in an
open area, in physical proximity to each other. The other,
”‘Team Solo”’, worked alone, with e-mail, telephone, and
a computer-mediated communication tool provided for col-
laboration. Over a period of seven months, the behaviour
of developers on both teams was tracked, with emphasis on
periods of work.

4.2 Observations
There were several interesting observations gleaned over
the period of study. Fundamentally, Team Pair’s interrup-
tions and breaks were largely functional in nature, and
short, while Team Solo’s interruptions and breaks were
social, and longer. This might be tied to a differentiating

5



factor between both teams - the nature of distraction.
Team Solo members, working remotely, were more easily
distracted by people around them - and also, in some in-
stances, by information overload from their communication
tools.

Another aspect of communication the authors studied
was the nature of interruptions. They concluded that it was
easier for someone to interrupt a member of Team Solo
because their ’interruptibility’ was was harder to judge, as
compared to Team Pair. Somone wanting to interrupt a
developer on Team Pair is more aware of their state.

Additionally, interruptions (especially self-initiated
ones) tended to happen when the developers were switch-
ing between multiple tasks, and Team Solo developers
found it harder to keep track of multiple tasks. Developers
on Team Pair ’preserved state’ for each other, making it
easier for one member of the team to pick up where he/she
had left off, since the other member remembered where
that was. This awareness of context allowed developers to
handle interruptions better, and with more efficiency.

It seems that, to be productive, it is essential for CSE
tools to help keep the developers aware, not only about
their code, but also about multiple tasks, and to ac-
tively maintain context to allow the developer to manage
interruptions better.

5 Awareness and Concurrency
We saw three seemingly disparate papers, on very different
topics. However, all of them dealt with the issue of collab-
oration in the software engineering process, and going back
to each of them, we can pick out several common factors.

We saw how augmenting a commonly used version
control system (CVS) with a simple tool (notification)
transformed developer relationships and productivity. In
this case therefore, increased awareness lead to greater
accountability and to a greater amount of contextual
information being shared amongst developers.

CAISE was an example of a system that allowed de-
velopers to be aware of code dependencies and developer
relationships in the code, thus allowing for increased
concurrency in software development by avoiding potential
conflicts. Awareness is thus related to conflict-resolution,
although they are not necessarily orthogonal – we saw
that for some situations (for example, the melee mode
in CAISE) it might be optimal for developers to resolve
conflicts through an out-of-band channel.

Finally, we saw how awareness is related to interrupt-
ibility in software teams, and how it affects teams of
developers in different situations.

There are many ways that awareness impacts software
development - it is certainly a key factor in collaboration,
and tools built around the concept of providing the user
with more awareness seem to have a positive impact on
productivity. It is necessary to have a complete understand-
ing of how to incorporate greater awareness in every part
of the software development process, so that CSCW tools
may be extended to allow for increased collaboration.

References
[1] Cook, C., Churcher, N., ”Modelling and Measuring Collab-

orative Software Engineering”, 28th Australasian Computer
Science Conference, 2005

[2] Cook, C., Irvin, W., Churcher, N., ”A User Evaluation of Syn-
chronous Collaborative Software Engineering Tools”, 12th
Asia-Pacific Software Engineering Conference (APSEC ’05)

[3] Chong, J., Siino, R., ”Interruptions on Software Teams: A
Comparison of Paired and Solo Programmers”, CSCW 2006

[4] Cook, C., Churcher, N., Irwin, W., ”Towards Synchronous
Collaborative Software Engineering”, 11th Asia-Pacific Soft-
ware Engineering Conference (APSEC ’04)

[5] FitzPatrick, G., Marshall, P., Phillips, A., ”CVS Integration
with Notification and Chat: Lightweight Software Team Col-
laboration”, CSCW 2006

[6] Wilson, P., ”Computer supported cooperative work : an intro-
duction.”, 1991

6


