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Abstract

In this paper, we use the modern setting of functional empirical processes and recent techniques on uniform estimation
for non parametric objects to derive consistency bands for the mean excess function in the i.i.d. case. We apply our results
for modelling Dow Jones data to see how good the Generalized hyperbolic distribution fits monthly data.
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1. Introduction

Because of its growing importance, the mean excess function, also known as the mean residual life function, has been
extensively studied in the literature. It is one of the most useful tools in survival analysis, actuarial science, economics,
engineering, and environnemental science. For example, the mean excess function plot can serve for fitting Generalized
Pareto distributions if it is linear. It is defined as follows.

Let X be a random variable defined on a probability space (Ω,A,P), and let F be its distribution function with right-
endpoint

xF = sup{x ∈ R, F(x) < 1}.

We shall suppose that the expectation of X is finite ; i.e., E|X| < ∞. Then, for any threshold u, the mean excess function
e(u) associated with X is defined (see, e.g., Kotz and Shanbhag, 1980, Hall and Wellner, 1981, Guess and Proschan, 1988)
by

e(u) = E(X − u/X > u) =


1

F̄(u)

∫ ∞

u
F̄(t)dt if F̄(u) > 0

0 whenever F̄(u) = 0,

(1)

where F̄ = 1 − F represents the survival function of X. A natural way of estimating the mean excess function e(u) is
achieved by using the plug-in method ; that is, replacing the survival function in (1) by its empirical counterpart, as did
Yang (1978).

Let X1, ..., Xn be a sequence of n independent copies of X. Then, the plug-in estimator of e(u) is defined as

en(u) =
∑n

i=1(Xi − u)I[Xi>u]∑n
i=1 I[Xi>u]

=

∑n
i=1 XiI[Xi>u]∑n

i=1 I[Xi>u]
− u, (2)

where I[X>u] = 1 if X > u and 0 otherwise.

The asymptotic behavior of the estimator en(u) has been investigated by some authors. Yang (1978) established the
uniform strong consistency of en(u) and the weak convergence of the process Zn(u) =

√
n[en(u) − e(u)] to a Gaussian

process over fixed intervals of the form [0, x0], x0 < xF . Under some regularity conditions, Hall and Wellner (1981)
extended these results to [0,∞). They also provided simultaneous confidence bands for the mean excess function e(u)
by transforming the limiting process to Brownian motion. Later on, Csörgő and Zitikis (1996) showed that these results
does not hold, in general, on the half line [0,∞), and proposed to use weight functions to overcome the difficulties. Their
approach also allows to obtain confidence bands for the mean excess function e(u).
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In this paper, we propose another approach based on the modern theory of empirical processes indexed by functions which
enables us to study, with very mild conditions on the distribution function F, the asymptotic behavior of the estimator
en(u), uniformly in u ∈ I = [u0, u1], with u0 < u1 < xF .

The paper makes three contributions. First, by using the Vapnik-Chervonenkis (VC) classes and the entropy number
techniques, we establish the uniform strong consistency of the empirical mean excess function en(u) over any fixed interval
I. Precisely, we show that for any u1 less than xF (the righ-endpoint of the distribution F),

sup
u≤u1

|en(u) − e(u)| → 0 a.s as n→ ∞.

Second, making use of the modern theory of weak convergence of empirical processes indexed by functions mainly
exposed in (Van Der Vaart, 1996), we prove that, for any fixed interval I of the above type, the empirical mean excess
process
√

n[en(u) − e(u)] indexed by a class F3, weakly converges to a Gaussian process ; that is,{√
n[en(u) − e(u)], u ∈ I

} w→ {G(hu), u ∈ I} ,

where G is a Gaussian centered functional process with a well defined covariance function and F3 = {hu, u ∈ I} is a class
of functions to be precised later.

Third, combining Talagrand’s inequality (see Talagrand, 1994) and the Einmahl and Mason moment bound (see Einmahl,
2000), we arrive at our best achievement which consists of finding almost sure consistency bands for the mean excess
function e(u). Precisely, we establish that for any ε > 0, for all large n,

P
(
en(u) − En√

n
< e(u) < en(u) +

En√
n
, u ∈ I

)
> 1 − ε,

where (En)(n≥1) is a non-random sequence of real numbers precised in Theorem 3.

To develop our methodology, we need some notations.

For all u ≤ xF , consider the real functions fu(x) = xI[x>u], gu(x) = I[x>u], x ∈ R and, define

PX( fu) =
∫
R

fu(x)dF(x) =
∫

x>u
xdF(x)

and
PX(gu) =

∫
R

gu(x)dF(x) =
∫

x>u
dF(x) = F̄(u),

where PX denotes the probability law of X.

Let Pn be the empirical measure associated with the sample X1, · · · , Xn. Then, for all u, we have

Pn( fu) =
1
n

n∑
i=1

XiI[Xi>u] and Pn(gu) =
1
n

n∑
i=1

I[Xi>u],

and formulae (1) and (2) become

e(u) =


PX( fu)
PX(gu)

− u if u ≤ xF

0 if u > xF .

and

en(u) =


Pn( fu)
Pn(gu)

− u if u ≤ Xn,n

0 if u > Xn,n,

where Xn,n = max
1≤i≤n

Xi.

Note that our consistency bands are asymptotically optimal in the sense that the coverage probability tends to 1, as n→ ∞
(see, Theorem 3). These results allow us to set graphical goodness-of-fitting test based on the empirical mean excess
function, and to apply this test to Dow Jones data. We find that the Generalized hyperbolic family distribution reveals,
itself, to be very adequate to generally fit financial data.
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The remainder of the paper is organized as follows. We state uniform almost sure (a.s) convergence results in Section
2 and finite-distribution and functional normality theorems in Section 3. Section 4 is devoted to setting a.s consistency
bands for the mean excess function e(u). In Section 5, simulation studies and data driven applications using Dow Jones
databases are provided. We finish the paper by a concluding section.

Before we go any further, it is worth mentioning that, in the sequel, all the suprema, taken over u < u1, are measurable
since the functions of u that we consider below, are left or right continuous. This means that we are in the pointwise-
measurability scheme. Thus, even when we use the results and concepts in (Van Der Vaart, 1996), we do not need neither
exterior and interior integrals, nor convergence in outer probability.

2. Almost Sure Convergence

In this section we are going to prove the uniform almost sure convergence of the empirical mean excess function by using
Vapnik-Chervonenkis (VC) classes and bracketing numbers.

Theorem 1. Suppose that E|gu(X1)| < ∞ and E| fu(X1)| < ∞, then

sup
u<xF

|Pn(gu) − PX(gu)| → 0 a.s as n→ ∞

and
sup
u<xF

|Pn( fu) − PX( fu)| → 0 a.s as n→ ∞.

Moreover, if EX2
1 < +∞, we have for any fixed u1 < xF ,

sup
u≤u1

|en(u) − e(u)| → 0 a.s as n→ ∞.

Proof. We notice that F1 = {gu, u < xF} is a class of monotone real functions with values in [0, 1]. By Theorem 2.7.5
in (Van Der Vaart, 1996), the bracketing number N[ ](ε,F1, Lr(Q)) is finite (bounded by exp(K/ε), for every probability
measure Q, any real r ≥ 1, and a constant K that only depends on r). Since E|gu(X1)| < ∞ for u < xF , F1 is functional
Glivenko-Cantelli class in the sense of Theorem 2.4.1 in (Van Der Vaart, 1996), meaning that

sup
u<xF

|Pn(gu) − PX(gu)| → 0 a.s as n→ ∞. (3)

The class F2 = { fu, u ∈ [u0, u1]}, with u1 < xF , is a Vapnik-Chervonenkis class with index V(F2) = 3 and its envelop is
G = max(| fu0 (x)|, | fu1 (x)|). Then it satisfies the uniform entropy condition 2.4.1 in (Van Der Vaart, 1996). Then F2 is a
Donsker class and hence it is a Glivenko Cantelli class, that is

sup
u<xF

|Pn( fu) − PX( fu)| → 0 a.s as n→ ∞. (4)

To finish, fix u1 < xF . Then for u ≤ u1 and n large enough, we have

en(u) − e(u) =
Pn( fu)
Pn(gu)

− PX( fu)
PX(gu)

= (Pn(gu))−1(Pn( fu) − PX( fu)) − PX( fu) × Pn(gu) − PX(gu)
Pn(gu)PX(gu)

.

Then
|en(u) − e(u)| ≤ |Pn(gu)|−1 × |Pn( fu) − PX( fu)| + |PX( fu)| × |Pn(gu) − PX(gu)|

|Pn(gu)PX(gu)| . (5)

Let

ϵn = sup
u<xF

|Pn( fu) − PX( fu)| and δn = sup
u<xF

|Pn(gu) − PX(gu)|. (6)

From (3) and (4) above, we have
ϵn → 0 a.s and δn → 0 a.s , as n→ ∞.

Now for u ≤ u1 , we have PX(gu) ≥ PX(gu1 ) and from (6) ,

−δn ≤ Pn(gu) − PX(gu) ≤ δn
−δn + PX(gu) ≤ Pn(gu) ≤ δn + PX(gu),
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since Pn(gu) ≥ PX(gu) − δn > 0 for n large enough, then (Pn(gu))−1 ≤ (PX(gu1 ) − δn)−1.

We also have
|PX( fu)| =

∣∣∣∣∣∫
u

x dF(x)
∣∣∣∣∣ ≤ ∣∣∣∣∣∫

R
x dF(x)

∣∣∣∣∣ ≤ ∫
R
|x|dF(x) = E|X| = α < ∞. (7)

Thus
sup
u≤u1

|en(u) − e(u)| ≤ ϵn
[
PX(gu1 ) − δn

]−1
+ α

[
PX(gu1 )(PX(gu1 ) − δn)

]−1
δn

and then
sup
u≤u1

|en(u) − e(u)| → 0 a.s as n→ ∞. �

3. Asymptotic normality of en(u)

In this section, we are concerned with weak laws of the empirical mean excess process
{√

n[en(u) − e(u)], u ∈ I
}
, where

I is a given interval. Hereafter {G(g), g ∈ G} denotes a Gaussian centered functional stochastic process with variance-
covariance function

Γ(g1, g2) =
∫

(g1(x) − Eg1(X1))(g2(x) − Eg2(X1))dF(x).

Theorem 2. Let X1, X2, · · · be iid rv’s with common finite second moments. Put I = [u0, u1], with u0 < u1 < xF and define
the functions of t ∈ R,

hu(t) = PX(gu)−1 fu(t) − PX( fu)P−2
X (gu)gu(t), for u ∈ I.

Suppose that F is continuous and satisfies

lim sup
δ→0

sup
(v,v−δ)∈I2

(
F(v) − F(v − δ)

√
δ

)2

= 0.

Then, the functional empirical processes {Gn(gu), u ∈ I} and {Gn( fu), u ∈ I} weakly converge respectively to {G(gu), u ∈ I}
and {G( fu), u ∈ I} in ℓ∞(I). And consequently, the empirical mean excess process

{√
n[en(u) − e(u)], u ∈ I

}
weakly con-

verges to {G(hu), u ∈ I} , where hu =
fu

PX(gu)
− PX( fu)
P2

X(gu)
gu , u ∈ I.

Before we give the proof of this theorem, we need the following lemma.

Lemma 1. Let g be a finite measurable function defined on R such that Eg(X1)2 < ∞ . Let u0 < u1 < xF . Define for any
fixed v ∈ R and δ > 0

σ2(v, δ) =
∫ v

v−δ
(g(x) − E(g(x))2 dF(x).

Let for a fixed n ≥ 1, u ∈ R

S n(u) =
1
√

n

n∑
j=1

[
g(X j)I(X j>u) − Eg(X j)I(X j>u)

]
.

If sup
u0≤v≤u1

σ4(v, δ)
δ

→ 0 as δ→ 0 and sup
u0≤x≤u1

|g(x) − Eg(X)| < ∞,

then
lim
δ→0

sup
u0≤v≤u1

sup
n≥1

1

δ
P( sup

v−δ≤u≤v
|S n(u) − S n(v)| ≥ η) = 0.

Proof of Lemma 1. We fix v ∈ R and consider α = sup
v−δ<u<v

|S n(u) − S n(v)| . Observe that for u < v,

S n(u) − S n(v) =
1
√

n

n∑
j=1

{
g(X j)I]u,v](X j) − Eg(X j)I]u,v](X j)

}
.

Given that for all (u, v) ∈ R2, we have

|S n(v) − S n(u)| ≤ 1
√

n

n∑
j=1

[∣∣∣g(X j)
∣∣∣ + ∣∣∣Eg(X j)

∣∣∣] < ∞,
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it comes that α is finite. So for any ε > 0, we can find u ∈ [v − δ, v[ such that,

|S n(u) − S n(v)| ≥ α − ε. (8)

Now, let δ > 0. Define for any p ≥ 1, and consider u j(p) = u j = v − δ + jδ/p, j = 0, ..., p.

Let us prove that for ε > 0,
lim
p→∞

max
0≤ j≤p

∣∣∣S n(u j) − S n(v)
∣∣∣ ≥ α − ε.

For each p ≥ 1, let j such that
u j−1(p) ≤ u ≤ u j(p).

We have,

∣∣∣S n(u j) − S n(v)
∣∣∣ ≥ ∣∣∣S n(u) − S n(v)

∣∣∣ − ∣∣∣∣∣∣∣ 1
√

n

n∑
i=1

(g(Xi)I]ū,u j(p)](Xi) − Eg(Xi)I]ū,u j(p)](Xi)

∣∣∣∣∣∣∣
≥

∣∣∣S n(u) − S n(v)
∣∣∣ − R j(p),

by denoting

R j(p) =

∣∣∣∣∣∣∣ 1
√

n

n∑
i=1

(g(Xi)I]ū,u j(p)](Xi) − Eg(Xi)I]ū,u j(p)](Xi)

∣∣∣∣∣∣∣ .
We get from (8)

max
0≤ j≤p

∣∣∣S n(u j) − S n(v)
∣∣∣ ≥ α − ε − R j(p).

For a fixed n ≥ 1, R j(p) → 0 as p → ∞, since the sequence of intervals (]ū, u j(p)])p≥1 decreases to the empty set as
p→ ∞.

Next, consider the collection of the points
{
u j(ℓ), 0 ≤ j ≤ p, 1 ≤ ℓ ≤ p

}
and denote the set of its distinct values between

them as
{
u j, 1 ≤ j ≤ m(p)

}
.We still have

∣∣∣u j − u j−1
∣∣∣ ≤ δ/p, and we surely have for any ε > 0

lim
p→∞

max
0≤ j≤m(p)

∣∣∣S n(u j) − S n(v)
∣∣∣ ≥ α − ε

and then
lim
p→∞

max
0≤ j≤m(p)

∣∣∣S n(u j) − S n(v)
∣∣∣ ≥ α

and finally
sup
p≥1

max
0≤ j≤m(p)

∣∣∣S n(u j) − S n(v)
∣∣∣ = α.

By construction, max
0≤ j≤m(p)

∣∣∣S n(u j) − S n(v)
∣∣∣ is non decreasing in p. So, by the Monotone Convergence Theorem, for any

fixed v > 0 and for any η > 0,

P
(

sup
v−δ≤u≤v

|S n(u) − S n(v)| ≥ η
)
= lim

p↑∞
P

(
max

1≤ j≤m(p)

∣∣∣S n(u j) − S n(v)
∣∣∣ ≥ η) . (9)

Put Zh =

n∑
i=1

(
g(Xi)I]uh−1 ,uh](Xi) − Eg(Xi)I]uh−1 ,uh](Xi)

)
, h ≥ 1.

We have
√

n(S n(u j) − S n(v)) =
m(p)∑
h= j

Zh = Tm(p)− j

with
√

n(S n(v − δ) − S n(v)) =
m(p)∑
i=1

Zi = Tm(p) = T (n, u, δ).
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We observe that
{
T1, T2, ..., Tm(p)

}
are partial sums of i.i.d. centered random variables so that the T 4

j form a submartingale.
By the maximal inequality form submartingales, for any fixed p

P
(

max
1≤ j≤m(p)

∣∣∣S n(u j) − S n(v)
∣∣∣ ≥ η) = P

(
max

1≤ j≤m(p)

∣∣∣T j

∣∣∣ ≥ η√n
)
≤ 1
η4n2 ET 4

m(p)

≤ 1
η4n2 ET (n, u, δ)4.

Since the right hand side does not depend on p, we get by (9)

1

δ
P

(
sup

v−δ≤u≤v
|S n(u) − S n(v)| ≥ η

)
≤ 1
δη4n2 ET (n, u, δ)4.

Notice that T (n, u, δ) is a sum of n i.i.d centered random variables with variance

κ1(v, δ) = σ2(v, δ) =
∫ v

v−δ
(g(x) − E(g(x))2 dF(x)

and fourth moment

κ2(v, δ) =
∫ v

v−δ
(g(x) − E(g(x))4 dF(x).

Simple computations give (see the appendix 7.1 for a simple proof of that)

E (T (n, u, δ))4 = nκ2(v, δ) + 3n(n − 1)κ21(v, δ).

By putting these facts together, we arrive at

1
δ
P

(
sup

v−δ≤u≤v
|S n(u) − S n(v)| ≥ η

)
≤ η−4

(
nκ2(v, δ) + 3n(n − 1)σ4(v, δ)

δn2

)
≤ η−4

(
κ2(v, δ)
δ
× 1

n
+ 3
σ4(v, δ)
δ

×
[
1 − 1

n

])
.

Remark that

sup
u0≤v≤u1

κ2(v, δ)
δ

≤
(

sup
u0≤x≤u1

|g(x) − Eg(X)|
)4

× δ−1 × sup
u0≤v≤u1

∫ v

v−δ
dF(x)

≤
(

sup
u0≤x≤u1

|g(x) − Eg(X)|
)4

× sup
u0≤v≤u1

F(v) − F(v − δ)
δ

.

We finally get

lim
δ→0

sup
u0≤v≤u1

sup
n≥1

1

δ
P

(
sup

v−δ≤u≤v
|S n(u) − S n(v)| ≥ η

)
= 0

whenever lim
δ→0

sup
u0≤v≤u1

σ4(v, δ)
δ

= 0 and sup
u0≤x≤u1

|g(x) − Eg(X)| < +∞.

This achieves the proof of the lemma. �
Proof of Theorem 2.

By Theorem 2.7.5 in (Van Der Vaart, 1996) applied to F1 and by the fact that F2 is a Vapnik-Chervonenkis class, condition
(2.5.1) is satisfied for both F1 and F2 thus F1 and F2 are Donsker classes. This may be used in a simple manner to get

An = max(sup
u∈I
|Gn(gu)| , sup

u∈I
|Gn( fu)|) = OP(1, I) as n→ ∞. (10)

Denote the functional empirical process for any real function g by

Gn(g) =
1
√

n

n∑
i=1

{g(Xi) − Eg(Xi)} .
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Remind that for any Donsker class G, the functional stochastic process {Gn(g), g ∈ G} converges in law to a Gaussian and
centered stochastic process {G(g), g ∈ G} whose variance-covariance function is

Γ(g1, g2) =
∫

(g1(x) − Eg(X1)(g2(x) − Eg2(X1))dF(x).

We have, as n→ ∞
Pn(gu) = PX(gu) +

Gn(gu)
√

n

Pn( fu) = PX( fu) +
Gn( fu)
√

n
.

Thus

√
n(en(u) − e(u)) =

√
n
(Pn( fu)
Pn(gu)

− PX( fu)
PX(gu)

)
=

1
Pn(gu)

√
n
(
Pn( fu) − PX( fu)

)
− PX( fu)

√
n
(
Pn(gu) − PX(g(u)

)
Pn(gu)PX(gu)

=
1

Pn(gu)

[
Gn( fu) − PX( fu)

PX(gu)
Gn(gu))

]
=

1
Pn(gu)

[
Gn

(
fu −

PX( fu)
PX(gu)

gu

)]
.

We find

(Pn(gu))−1 =
[
PX(gu) +

Gn(gu)
√

n

]−1

= P−1
X (gu)

[
1 + P−1

X (gu) × n−1/2 ×Gn(gu)
]−1

= P−1
X (gu)

[
1 − P−1

X (gu) × n−1/2 ×Gn(gu) + P−1
X (gu) × θ

(
n−1/2 ×Gn(gu)

)]
Since F1 is a Donsker class, then sup

u∈I
|Gn(gu)| = ∥Gn∥F1 = OP(1, I). So

(Pn(gu))−1 = P−1
X (gu)

[
1 − P−1

X (gu) × n−1/2 × OP(1, I)
]

Let us remind that hu = PX(gu)−1 fu − PX( fu)P−2
X (gu)gu. Then, for u ∈ I, we get

√
n(en(u) − e(u)) =

[
Gn

(
fu −

PX( fu)
PX(gu)

gu

)]
×

[
P−1

X (gu) − P−2
X (gu) × n−1/2 × OP(1, I)

]

= Gn(hu) +Gn(hu) × P−1
X (gu) × n−1/2 × OP(1, I).

We finally have √
n(en(u) − e(u)) = Gn(hu) +Gn(hu) × oP(1, I). � (11)

Lemma 2. The class F3 =
{
hu =

fu
PX(gu)

− PX( fu)
P2

X(gu)
gu, u ∈ I

}
is a Donsker Class.

Proof. At this step, we want to prove that F3= {hu, u0 ≤ u ≤ u1} is a Donsker Class. Since we obviously have, by the
Central Limit Theorem, finite distribution convergence of {Gn(hu), u ∈ I} to the stochastic process {G(hu), u ∈ I} in ℓ∞(F3),
we only need to prove the asymptotic tightness of {Gn(hu), u ∈ I}.
In view of Theorem in 1.5.7 in (Van Der Vaart, 1996), it is enough to prove that

lim
δ→0

sup
u∈I

lim sup
n→∞

1

δ
P( sup

v−δ≤u≤v
|Gn(hu) −Gn(hv)| ≥ η) = 0.
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Here, we apply Lemma 1 for the nondecreasing mesurable function g(x) = x and g(x) = 1. In both cases, we inspect the
assumptions of this lemma and see that if g(x) = x, we get g(x) ≤ g(u1) = u1 for any u0 ≤ x ≤ u1 and thus

sup
u0≤v≤u1

σ4(v, δ)
δ

= sup
u0≤v≤u1

1
δ

( ∫ v

v−δ
(g(x) − Eg(x))2dF(x)

)2

≤ |u1 − E(X)|4 × sup
u0≤v≤u1

(F(v) − F(v − δ)
√
δ

)2
→ 0 as δ→ 0,

and
sup
x∈I
|g(x) − Eg(X)| ≤ |u1| + |E(X)| < ∞.

If g(x) = 1, the result is obvious.

We can apply Lemma 1 and we will get,

lim
δ→0

sup
u∈I

lim sup
n→∞

1

δ
P( sup

v−δ≤u≤v
|Gn( fu) −Gn( fv)| ≥ η) = 0

and
lim
δ→0

sup
u∈I

lim sup
n→∞

1

δ
P( sup

v−δ≤u≤v
|Gn(gu) −Gn(gv)| ≥ η) = 0.

But by Theorem 8.3 of Billingsley (1968), p.56, and by Theorem 2.2 in Lo (2014), these two previous equalities entail,
that

lim
δ→0

sup
u∈I

lim sup
n→∞

P( sup
|u−v|≤δ,(u,v)∈I2

|Gn( fu) −Gn( fv)| ≥ η) = 0

and
lim
δ→0

sup
u∈I

lim sup
n→∞

P( sup
|u−v|≤δ,(u,v)∈I2

|Gn(gu) −Gn(gv)| ≥ η) = 0.

Next, we use the following development for (u, v) ∈ I2

hu − hv = P−1
X (gu)

(
fu −

PX( fu)
PX(gu)

gu

)
− P−1

X (gv)
(

fv −
PX( fv)
PX(gv)

gv

)
= P−1

X (gu) fu − P−1
X (gv) fv︸                      ︷︷                      ︸−( PX( fu)

P2
X(gu)

gu −
PX( fv)
P2

X(gv)
gv︸                      ︷︷                      ︸

)
= a(u, v) − b(u, v).

We get

a(u, v) = P−1
X (gu) fu − P−1

X (gu) fv + P−1
X (gu) fv − P−1

X (gv) fv

=
fu − fv
PX(gu)

− PX(gu) − PX(gv)
PX(gu) × PX(gv)

× fv.

Then
|Gn(a(u, v))| ≤ 1

PX(gu)
× |Gn( fu − fv)| + |PX(gu) − PX(gv)|

PX(gu) × PX(gv)
×Gn( fv).

Next

b(u, v) =
PX( fu)
P2

X(gu)
× gu −

PX( fu)
P2

X(gu)
× gv +

PX( fu)
P2

X(gu)
× gv −

PX( fv)
P2

X(gv)
× gv

= (gu − gv) × PX( fu)
P2

X(gu)
+

[PX( fu)
P2

X(gu)
− PX( fv)
P2

X(gv)

]
× gv.

Next,

PX( fu)
P2

X(gu)
− PX( fv)
P2

X(gv)
=

PX( fu)
P2

X(gu)
− PX( fu)
P2

X(gv)
+
PX( fu)
P2

X(gv)
− PX( fv)
P2

X(gv)

=
( (PX(gv) + PX(gu)) × (PX(gv) − PX(gu))

P2
X(gu) × P2

X(gv)

)
× PX( fu)

+
(
PX( fu) − PX( fv)

)
× 1
P2

X(gv)
.
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Also,

|Gn(b(u, v))| ≤ |PX( fu)|
P2

X(gu)
× |Gn(gu − gv)|

+
|PX(gv) + PX(gu)| × |PX(gv) − PX(gu))|

|P2
X(gu) × P2

X(gv)|
× |PX( fu)| × |Gn(gv)|

+ |PX( fu) − PX( fv)| × |Gn(gv)| × 1
P2

X(gv)
.

For (u, v) ∈ I2, let us use the bounds for P−1
X (gu), P−1

X (gv), and for PX( fu).

Precisely, we have P−1
X (gu) ≤ (F̄(u1))−1, P−1

X (gv) ≤ (F̄(u1))−1, and finally, from (7), we get |PX( fu)| ≤ E|X|.
Thus, by using these bounds and (10), it comes that

sup
|u−v|≤δ,(u,v)∈I2

|Gn(hu − hv)| ≤ B1 × sup
|u−v|≤δ,(u,v)∈I2

|Gn( fu − fv)| + B2 × sup
|u−v|≤δ,(u,v)∈I2

|Gn(gu − gv)|

+

B3 × sup
|u−v|≤δ,(u,v)∈I2

|PX(gu) − PX(gv)| + B4 × sup
|u−v|≤δ,(u,v)∈I2

|PX( fu) − PX( fv)|
 An,

where 

B1 = (F̄(u1))−1;
B2 = E|X| × (F̄(u1))−2;
B3 = F̄(u1))−2

(
(F̄(u1))−2 + 2F̄(u0)

)
;

B4 = (F̄(u1))−2;
An = max(sup

u∈I
|Gn(gu)| , sup

u∈I
|Gn( fu)|).

Now we observe that
sup

|u−v|≤δ,(u,v)∈I2
|PX(gu) − PX(gv)| = sup

|u−v|≤δ,(u,v)∈I2
|F(u) − F(v)|

and

sup
|u−v|≤δ,(u,v)∈I2

|PX( fu) − PX( fv)| ≤ sup
|u−v|≤δ,(u,v)∈I2

∣∣∣∣∣∫ ∞

u
tdF(t) −

∫ ∞

v
tdF(t)

∣∣∣∣∣
≤ max(|u0|, |u1|) sup

|u−v|≤δ,(u,v)∈I2
|F(u) − F(v)| .

These quantities go to zero whenever F is continuous and hence uniformly continuous in I. Putting all these facts together
and using (10) yield

sup
n≥1

sup
|u−v|≤δ,(u,v)∈I2

|Gn(hu − hv)| → 0 as δ→ 0.

Finally F3 is a Donsker class, thus sup
u∈I
|Gn(hu)| = OP(1, I) and we get from (11) that

√
n(en(u) − e(u)) = Gn(hu) + oP(1, I).

This completes the proof. �
Now we are going to concentrate on consistency bands for the mean excess function.

4. Consistency Bands

In this section we use uniform bounds of functional empirical processes based on Talagrand’s inequality (see Talagrand,
1994) and the Einmahl and Mason (2000) moment bound to construct almost surely consistency bands for the mean excess
function e(u) as follows.

Theorem 3. Let X1, X2, · · · , be i.i.d random variables with finite second moments. Put I = [u0, u1], with −∞ < u0 < u1 <
xF and suppose that F is continuous and satisfies

lim sup
δ→0

sup
(v,v−δ)∈I2

(
F(v) − F(v − δ)

√
δ

)2

= 0. (12)
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Then for any ε > 0, there exists n0 such that for n ≥ n0,

P
(
en(u) − En√

n
< e(u) < en(u) +

En√
n
, u ∈ I

)
≥ 1 − ε,

with
En =

1

F(u1) − D1/
√

n

(
D2 +

D1 × E|X|
F(u1)

)
, (13)

and where 
D1 = 2AA1

√
log 2 + A1

D2 = A A1 M1
√

log M1 + A1,
M1 = max(2,max(|u0|, |u1|))

A and A1 are universal constants.

The proof of this theorem is rather technical, so we postpone it to the appendix subsection 7.2, where we also state the
fundamental Talagrand’s inequality.

Remark : Condition (12) is quite very mild and is satisfied by most of the continuous usual distribution functions. Indeed,
if F is absolutely continuous with respect to the Lebesgue measure, then F admits a density, say, f . By applying the mean
value theorem, we get (

F(v) − F(v − δ)
√
δ

)2

≤ δ × sup
x∈[v−δ,v]

f 2(x).

But sup
x∈[v−δ,v]

f 2(x) < ∞ because of the local continuity of the density f ; that is condition (12) holds. Thus, our proposed

consistency bands can be constructed for a large number of continuous distribution functions. All the examples in Section
5, that are devoted to simulation studies, satisfy (12) through this argument.

Now, we are going to focus on the applications of our results.

5. Simulations and Applications

In this section, we are coming back on the empirical mean excess function (emef for short) to construct graphical tools
for goodness-of-fit test.

In Subsection 5.1, we present a simulation study. For this we consider some parametric distributions, for which we plot
the emef and the consistency bands. For each distribution model, we generate B = 6000 samples of size n = 4000, and
we compute the average mean excess function of these B samples. The graphs of these averages of these empirical mean
excess functions would serve as stallions in the following sense : each other sample having an alike emef will suggest such
an underlying distribution. We will also simulate our results with a special guest distribution : the generalized hyperbolic
(Gh for short) family of distributions. Nowadays, this family is very important in financial modeling.
In Subsection 5.2, we will use the emef graphs as stallions for real data. We shall focus on monthly returns and log-returns
of Dow Jones data (03/01/2000 to 02/12/2011), and will find that these data strongly suggest Gh model.

This section, beyong financial data, shows how to use the emef for goodness-of-fit testing purposes. It opens a great
variety of applications for differents types of data.

5.1 Simulations

To assess the performance of our consistency bands, we present a simulation study. We draw simulated emefs for standard
distributions and next for Gh family of distribution functions

5.1.1 Emef for Standard Distributions

We consider some simple distribution models listed in the Table 1 below, where the parameters are specified and the emef
figures corresponding to each model are displayed.
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Table 1. The emef for standard distributions with their specified parameters

Distributions Parameters Figures

GPD
ξ = 0.25, β = 1
ξ = −0.75, β = 1 Figure 1

Pareto α = 7, λ = 3
Exponential λ = 2 Figure 2

Gamma α = 2, β = 0.001
Beta λ = 7, β = 2 Figure 3

Figure 1. The emef for a generalized Pareto distributions ξ = 0.25, β = 1 and the right panel concerns the one with the
parameters ξ = −0.75, β = 1.

5.1.2 Generalized Hyperbolic Models

Here, we consider the emefs of the Gh models. We need some definitions. The Lebesgue density function of the one
dimensional Gh is given by

fλ,α,β,δ,µ(x) = a(λ,α,β,δ,µ) ×
(
δ2 + (x − µ)2

)(λ− 1
2 )/2
× eβ(x−µ) × Kλ− 1

2
(α

√
δ2 + (x − µ)2)

where a(λ,α,β,δ,µ) =
(α2 − β2)

λ
2

√
2πα(λ− 1

2 )δλKλ(δ
√
α2 − β2)

K(λ,α,β,δ,µ) is a norming constant to make the curve area equal to 1 and

Kλ(x) =
1
2

∫ ∞

0
yλ−1 exp

(
− 1

2
x(y + y−1)

)
dy, (x > 0) is the modified Bessel function of the third kind with index λ.

The dependence of the parameters λ, α, β, δ, and µ is as follows : α > 0 determines the shape, 0 ≤ |β| < α the skewness,
µ ∈ R is a location parameter and δ > 0 serves for scaling. The parameter λ ∈ R specifies the order Kλ function Bessel
that appears in the Gh density function and may be used to obtain different subclasses of Gh distribution. We summarize
the different possible domains for the parameters :

If λ < 0 then
(
δ > 0, |β| ≤ α

)
,

If λ = 0 then
(
δ > 0, |β| < α

)
If λ > 0, then

(
δ ≥ 0, |β| < α

)
.

An important characteristic of the Gh family is that, it embraces many special cases such as : Hyperbolic (λ = 1),
Student-t (λ < 0), Variance Gamma (λ > 0), and the Normal Inverse Gaussian (NIG) (λ = −0.5) distributions. It nests
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Figure 2. The left panel is the emef for a Pareto distribution with the parameters α = 7 and λ = 3 and The emef for an
Exponential distribution with the parameter λ = 2.

the Generalized Inverse Gamma (GIG) distribution defined only by the three parameters λ, α, and β. An Inverse Gaussian
(IG) distribution is a GIG distribution with λ = −0.5 and a Gamma (Γ) distribution is also a GIG distribution with β = 0.

The Gh family contains also some limiting distributions such as Cauchy distributions with parameters µ and δ (obtained
for λ = −0.5 and α = β = 0). The Gaussian distribution with mean µ and variance σ2 is obtained for λ = −0.5, for
α, δ → ∞ and δ

α
→ σ2. The Skew-Student t with ν degrees of freedom is obtained if α = |β|, then ν = −2λ > 0. The

Student t distribution is obtained for α = β = 0, µ = 0 and δ =
√
ν. In the special case of hyperbolic distributions (λ = 1),

we obtain the skewed Laplace distribution for δ = 0.

All of these distributions have been used to model financial returns and log-returns data. In Table 2, we consider two
specific Gh distributions with specified parameters. The corresponding emef plots are displayed in the colum Figures.

Table 2. Specific and limiting Gh distributions with their specified parameters.

Distributions Specified parameters
λ α β δ µ

Figures

t-stud.spe −1.278 0.01186 0.01186 0.0766 1.005
−1.247 0.0148 −0.0147 0.076 1.005 Figure 4

NIG -0.5 8.03 -1.37 0.051 0.0105
-0.5 7.6 -1.24 0.052 0.0103 Figure 5

5.2 Applications

We are now in a position to use the emef graphs already drawn to fit graphically the Dow Jones data. Emefs for Normal
Inverse Gaussian (NIG) and t-student distributions are not monotonic functions. They decrease and increase like for the
emef of returns and log-returns data. For this reason, we fit them to both monthly returns and log-returns from Dow Jones
data base (see figure 7, figure 9, figure 11, and figure 13).

Dow Jones data base consists of several companies like AXP(American Express company), CSCO(Cisco Systems), DAX,
CAT, IBM and so one. Each one having 5 values : from opening (op) values to closing (cl) values , also minimum (min),
maximum (max), and volume (vol) values.

We select AXP and CSCO companies and we consider returns and log-returns for their values as shown in the Table 3.
Then we construct their emef plots and their fitted counterparts. Estimated parameters and the emef plots are given in
Table 4.
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Figure 3. The emef for the Gamma distribution with the parameters α = 2, β = 0.001 and the right one is the emef for the
Beta distribution with the parameters λ = 7, β = 2.

Table 3. Real and Fitted Emef for AXP and CSCO companies.

Companies Nature Values Emef plots
Real emef Fitted emef

AXP Returns op
min Figure 6 Figure 7

Log-ret. max
cl Figure 8 Figure 9

CSCO Returns min
vol Figure 10 Figure 11

Log-ret op
max Figure 12 Figure 13

Table 4. Emef for fitted Gh distributions to AXP and CSCO companies.

Comp Nature Values Gh estimated parameters
λ̂ α̂ β̂ δ̂ µ̂

Fit.Dist Figures

AXP Returns op. −1.278 0.01186 0.0118 0.0766 1.005 t-stud
min. -1.247 0.0148 -0.0148 0.0768 1.005 t-stud Fig. 7

Log-ret. max. -0.5 8.03 -1.37 0.051 0.0105 NIG
cl. -0.5 7.6 -1.24 0.052 0.0103 NIG Fig. 9

CSCO Returns min. -1.24 0.0148 -0.0148 0.0768 1 t-stud.
vol. -3.82 4.22 4.22 0.613 0.753 t-stud. Fig. 11

Log-ret. op. -1.26 0.83 - 0.83 0.07 0 t-stud.
max. -1.32 0.85 -0.85 0.076 0 t-stud. Fig. 13

Commentaries.

In view of figure 4 and figure 7 we can say that t-student distribution fits well opening and minimum values return for
the American Express company AXP, whereas NIG distribution fits well maximum and closing log-returns values for the
Cysco System company CSCO in view of figure 5 and figure 9.
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Figure 4. The emef for two t-Student distribution. The left panel concerns the one with the parameters
λ = −1.278, α = 0.01186, β = 0.01186, δ = 0.0766, µ = 1.005 and the right panel concerns the one with the parameters
λ = −1.247, α = 0.0148, β = −0.0148, δ = 0.07683, µ = 1.005.

6. Conclusion

In this paper we have established almost sure consistency bands for the mean residual life function by using a functional
empirical processes approach. Then, we applied these bands for fitting Gh distributions to Dow Jones financial data. It
is a known fact that these kinds of distributions fit well financial data since they generalize a major part of the classical
distribution functions.

We found that Student and NIG distributions are good candidates for fitting returns and log-returns data showing their
semi-heavy tails.
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7. Appendix

7.1 Moment computations

Let Z1, ..., Zn, n i.i.d centered random variables defined on the same probability space with common variance E(Z2
i ) = κ1

and common fourth moment E(Z4
i ) = κ2 > 0. We have

E
[
T (n, u, δ)

]4
= E

(
Z1 + Z2 + . . .Zn

)4
= E

( n∑
k=1

Z4
k + 6

∑
1≤i< j≤n

Z2
i Z2

j

)
=

n∑
k=1

E(Z4
k ) + 6

∑
1≤i< j≤n

E(Z2
i Z2

j ) (14)

since, for distinct i, j, k and l,
E(ZiZ3

j ) = E(ZiZ2
j Zk) = E(ZiZ jZkZl) = 0,

by using independence plus the fact that E(Zi) = 0. Using independence again,

E(Z2
i Z2

j ) = E(Z2
i )E(Z2

j ) = κ
2
1 for i , j.

We obtain
∑

1≤i< j≤n

E(Z2
i Z2

j ) =
n(n − 1)

2
κ21 since the number of possible couples (i, j) of integers such that 1 ≤ i < j ≤ n, is(

n
2

)
=

n(n − 1)
2

. Hence from (14), we deduce that E
[
T (n, u, δ)

]4
= nκ2+3n(n−1)κ21. �

7.2 Proofs of the uniform asymptotic consistency bounds .

We begin to recall the Talagrand bounds and a device of Einmahl and Mason and in Subsection 7.2.2, we give an applica-
tion of these results.

7.2.1 Talagrand bounds

Before going any further, we recall that a class of measurable real valued functions F is said to be a pointwise measurable
class if there exists a countable subclass F0 of F such as, for any function f in F , we can find a sequence of functions
{ fm}m≥0 in F0 for which fm(x)→ f (x) as m→ ∞ , x ∈ R. (See Example 2.3.4 in Van Der Vaart, 1996).

Further, let ξ1, ξ2, . . . be a sequence of independent Rademacher random variables independent of X1, X2, . . . , and Gm

be the functional empirical process indexed by the class of functions F . The following inequality is essentially due to
Talagrand (1994)(see Deheuvels and Mason, 2004 page 269)

Inequality. Let F be a pointwise measurable class of functions satisfying for some
0 < M < ∞, ∥ f ∥∞ ≤ M, f ∈ F , .
Then for all t > 0 we have,

P
{

max
1≤m≤n

∥
√

mGm∥F ≥ A1

(
E
∥∥∥∥ n∑

i=1

ξi f (Xi)
∥∥∥∥F + t

)}
≤ 2

(
exp(−A2 t2/nσ2

F ) + exp(−A2 t/M)
)
, (15)

where σ2
F = sup f∈F Var( f (X)) and A1, A2 are universal constants.

And the lemma below of Einmahl and Mason (2000) is very helpful for obtaining bounds on this quantity, when the class
F has a polynomial covering number.

Assume that there exists a finite valued measurable function G, called an envelope function, which satisfies for all x ∈
R, G(x) ≥ sup

f∈F
| f (x)|. We define for 0 < ϵ < 1

N(ε,F ) := sup
Q

N
(
ϵ
√

Q(G2),F , dQ

)
where the supremum is taken over all probability measures Q on R for which 0 < Q(G2) :=

∫
G2(y)Q(dy) < ∞ and dQ is

the L2(Q)−metric. As usual, N(ϵ,F , dQ) is the minimal number of balls {g : dQ(g, f ) < ϵ} of dQ−radius ϵ needed to cover
F . Here is the device of Einmahl and Mason (2000).
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Lemma 3. (Einmahl - Mason 2000) Let F be a pointwise measurable class of bounded functions such that for some
constants β > 0, ν > 0, C > 1, σ ≤ 1/(8C) and function G as above, the following four conditions hold:

(A.1) E
[
G2(X)

]
≤ β2;

(A.2) N(ϵ,F ) ≤ Cε−ν, 0 < ϵ < 1;

(A.3) σ2
0 := sup

f∈F
E
[
f 2(X)

]
≤ σ2;

(A.4) sup
f∈F
∥ f ∥∞ ≤

1

2
√
ν + 1

√
nσ2/ log(β ∨ 1/σ).

Then we have for some absolute constant A,

E
∥∥∥∥ n∑

i=1

ξi f (Xi)
∥∥∥∥F ≤ A

√
νnσ2 log(β ∨ 1/σ). (16)

7.2.2 APPLICATION

Put ℓu(x) = ℓ(x)I(x>u), with ℓ(x) = 1 or ℓ(x) = x, and let F = {ℓu, u ∈ I}. F is pointwise measurable since it suffices to
take F0 = {ℓu, u ∈ I ∩Q}, where Q is the set of irrationnal numbers.
Next G = max(|ℓ(u0)| , |ℓ(u1)|) = M > 0 is an envelope of F since we have

sup
u∈I
|ℓu(x)| ≤ |ℓ(x)| ≤ max(|ℓ(u0)| , |ℓ(u1)|), ∀ u0 ≤ x ≤ u1.

Remark that if ℓ(x) = 1 then M = 1 and if ℓ(x) = x then M = max(|u0|, |u1|). We have σ2
F = sup

f∈F
Var( f (X)) ≤ M2. So

we may use Talagrand’s inequality. It remains to check points of Lemma 3. Points (A.1) and (A.3) are obvious with
β = M = σ. To check (A.2), consider any probability Q on R.We get for (u, v) ∈ I2, u ≤ v,

d2
Q(ℓu, ℓv) =

∫
(ℓu − ℓv)2(x)dQ(x) ≤ M2Q([u, v]). (17)

By a classical result in probability in R, for any given 0 < ε < 1, we may cover [u0, u1] by at most m = ⌈u1 − u0

ε
⌉

sub-intervals [si−1, si] such that Q([si−1, si]) < ε2, i = 1, . . . ,m. (⌈x⌉ stands for the smallest positive integer greater than
or equal to x). Let C = (m + 1)ε, we have m < Cε−1. For any u ∈ [u0, u1], there exists i ∈ {1, . . . ,m} such as si−1 ≤ u ≤ si

with Q([u, si]) < ε2, so the corresponding ℓu ∈ F is such that

dQ(ℓu, ℓsi ) < εM = ε
√

Q(G2) from (17).

To finish m = N
(
ϵ
√

Q(G2),F , dQ

)
< Cε−1 and

N(ϵ,F ) = sup
Q

N
(
ϵ
√

Q(G2),F , dQ

)
≤ Cε−1.

Now we take β2 = σ2 = max(2,max(|ℓ(u0)| , |ℓ(u1)|) = M1. Finally for

n ≥ 8M2 log M1

M2
1

,

we have

E
∥∥∥∥ n∑

i=1

ξig(Xi)
∥∥∥∥F ≤ CF

√
n, (18)

where CF = A M1
√

log M1, since all the points of the Lemma 3 are checked.
Now we are going to apply the inequality (15) first for the class of functions

F1 = {ℓu(x) = gu(x), u ∈ I}.
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In this case, M1 = 2 since ℓ(x) = 1, for any u0 ≤ x ≤ u1, and

E
∥∥∥∥ n∑

i=1

ξigu(Xi)
∥∥∥∥F1
= Dn,1 ≤ CF1

√
n, where CF1 = 2A

√
log 2.

Let ε > 0, n1 ≥ 2 log 2 and t0 such that

exp
(−A2t2

0

n1

)
≤ ε

8
, and exp

(
− A2t0

)
≤ ε

8
and t0 <

√
n1.

(Remind that σ2
F = 1.)

Then

P
{

max
1≤m≤n

∥
√

mGm∥F1 ≥ A1

(
E
∥∥∥∥ n∑

i=1

ξigu(Xi)
∥∥∥∥F1
+ t0

)}
≤ ε/2.

So for n ≥ n1, we arrive at

P
(
|Pn(gu) − PX(gu)| < A1(Dn,1 + t0)

n
, u ∈ I

)
> 1 − ε/2.

As t0/
√

n <
√

n1/
√

n ≤ 1, we obtain

A1(Dn,1 + t0)
n

≤ A1CF1

√
n + A1

√
n

n
=

A1CF1 + A1√
n

=
D1√

n
,

thus
P
(
|Pn(gu) − PX(gu)| < D1√

n
, u ∈ I

)
> 1 − ε/2 (19)

where D1 = 2A A1
√

log 2 + A1.

Let us use the same method, for the class of functions

F2 = {ℓu(x) = fu(x), u ∈ I}.

In this case, M1 = max(2,max(|u0|, |u1|)) since ℓ(x) = x, for any u0 ≤ x ≤ u1, and

E
∥∥∥∥ n∑

i=1

ξi fu(Xi)
∥∥∥∥F2
= Dn,2 ≤ CF2

√
n,where CF2 = AM1

√
log M1.

Let n2 ≥
8M2 log M1

M2
1

and t0 such that

exp
(−A2t2

0

n2

)
≤ ε

8
and exp

(
− A2t0

)
≤ ε

8
and t0 <

√
n2.

Then

P
{

max
1≤m≤n

∥
√

mGm∥F2 ≥ A1

(
E
∥∥∥∥ n∑

i=1

ξi fu(Xi)
∥∥∥∥F2
+ t0

)}
≤ ε/2.

So for n ≥ n2, we deduce that

P
(
|Pn( fu) − PX( fu)| < A1(Dn,2 + t0)

n
, u ∈ I

)
> 1 − ε/2.

As t0/
√

n <
√

n1/
√

n ≤ 1, we obtain

A1(Dn,2 + t0)
n

≤ A1CF2

√
n + A1

√
n

n
=

A1CF2 + A1√
n

=
D2√

n
,
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thus

P
(
|Pn( fu) − PX( fu)| < D2√

n
, u ∈ I

)
> 1 − ε/2, (20)

where D2 = A A1 M1
√

log M1 + A1.
Now we use again (5) :

|en(u) − e(u)| ≤ |Pn( fu) − PX( fu)| × |Pn(gu)|−1 + |PX( fu)| × |Pn(gu) − PX(gu)|
|Pn(gu)PX(gu)| .

For u0 ≤ u ≤ u1, we get

0 < F(u1) − D1√
n
≤ PX(gu) − D1√

n
< Pn(gu) < PX(gu) +

D1√
n

with a probability greater than (w.p.g.t) 1 − ε/2 and thus

|Pn(gu)|−1 <
(
F(u1) − D1√

n

)−1
w.p.g.t 1 − ε/2

so we obtain

P
(
|Pn( fu) − PX( fu)| × |Pn(gu)|−1 <

D2√
n
×

(
F(u1) − D1√

n

)−1
, u ∈ I

)
≥ P

(
|Pn( fu) − PX( fu)| < D2√

n
, u ∈ I

)
> 1 − ε/2,

thus

P
(
|Pn( fu) − PX( fu)| × |Pn(gu)|−1 <

D2√
n
×

(
F(u1) − D1√

n

)−1
, u ∈ I

)
> 1 − ε/2. (21)

From the following inequalities : 
|Pn(gu)|−1 ≤

(
F(u1) − D1√

n

)−1
, w.p.g.t 1 − ε/2,

|PX(gu)|−1 ≤ F(u1)−1,

|PX( fu)| ≤ E|X|,

and by the same manner, we obtain

P
(
|PX( fu)| × |Pn(gu) − PX(gu)|

|Pn(gu)PX(gu)| <
D1√

n
× E|X| ×

(
F(u1)(F(u1) − D1√

n
)
)−1
, u ∈ I

)
≥ P

(
|Pn(gu) − PX(gu)| < D1√

n
, u ∈ I

)
> 1 − ε/2 ,

thus

P
(
|PX( fu)| × |Pn(gu) − PX(gu)|

|Pn(gu)PX(gu)| <
D1√

n
× E|X| ×

(
F(u1)(F(u1) − D1√

n
)
)−1

)
> 1 − ε/2 (22)

By combining (21) and (22), we obtain

P
(
|Pn(gu)|−1 × |Pn( fu) − PX( fu)| ≥ D2√

n
×

(
F(u1) − D1√

n

)−1
, u ∈ I

)
+ P

(
|PX( fu)| × |Pn(gu) − PX(gu)|

|Pn(gu)PX(gu)| ≥
D1√

n
× E|X| ×

(
F(u1)(F(u1) − D1√

n
)
)−1

)
≤ ε

2
+
ε

2
≤ ε .

This gives

P
(
|en(u) − e(u)| ≥ En√

n

)
≤ ε where En =

1

F(u1) − D1/
√

n

(
D2 +

D1 × E|X|
F(u1)

)
.
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Finally we conclude by :

P
(
en(u) − En√

n
< e(u) < en(u) +

En√
n
, u ∈ I

)
> 1 − ε

for any ε > 0, any n ≥ n0 with

En =
1

F(u1) − D1/
√

n

(
D2 +

D1 × E|X|
F(u1)

)
and


D1 = 2AA1

√
log 2 + A1

D2 = A A1 M1
√

log M1 + A1,
M1 = max(2,max(|u0|, |u1|))

�

7.3 Figures

Figure 6. Emef for AXP company (monthly data returns). The left panel concerns the opening values and the right one
concerns the minimum values.

Figure 7. A t-Student distribution is fitted to monthly data returns for AXP company (see figure 6). The left panel concerns
a t distribution with the parameters λ = −1.278, α = 0.01186, β = 0.01186, δ = 0.0766, and µ = 1.005 fitted to opening
values. The right one concerns a t distribution with the parameters λ = −1.247, α = 0.0148,
β = −0.0148, δ = 0.07683, µ = 1.005 fitted to minimum values.
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Figure 8. Emef for AXP company (monthly data log-returns). The left panel concerns the maximum values and the right
panel concerns the closing values.

Figure 9. A NIG distribution is fitted to monthly data log-returns for AXP company (see Figure 8).
The left panel concerns the one with the parameters λ = −0.5, α = 8.03, β = −1.37, δ = 0.051, µ = 0.0105 fitted to
maximum values. The right panel concerns the one with the parameters λ = −0.5, α = 7.6, β = −1.24,
δ = 0.052, µ = 0.0103 fitted to closing values.

Figure 10. Emef for CSCO company (data returns). The left panel concerns monthly minimum values and the right panel
concerns monthly volume values.
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Figure 11. A t-student distribution is fitted to monthly data returns for CSCO company (see Figure 10).
The left panel concerns the one with the parameters λ = −1.24, α = 0.014, β = −0.014, δ = 0.076, µ = 1 fitted to
minimum values. The right panel concerns the one with the parameters λ = −3.82, α = 4.22, β = 4.22,
δ = 0.613, µ = 0.753 fitted to volume values.

Figure 12. Emef for CSCO company (data log-returns). The left panel concerns monthly opening values and the right
panel concerns monthly maximum values.
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Figure 13. A t-student distribution is fitted to monthly data log-returns for CSCO company (see Figure 12).
The left panel concerns the one with the parameters λ = −1.26, α = 0.83, β = −0.83, δ = 0.07, µ = 0 fitted to opening
values. The right panel concerns the one with the parameters λ = −1.32, α = 0.85, β = −0.85,
δ = 0.076, µ = 0 fitted to maximum values.
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