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The photometric properties of asteroids and cometary nuclei, bodies important for
understanding the origin of the Solar System, are controlled by the physical properties
of their surfaces. Hapke’s theory is the most widely used theoretical model to describe
the reflectance of particulate surfaces, and has been applied to the disk-resolved photo-
metric analyses of asteroid 433 Eros, comet 19P/Borrelly, and asteroid 1 Ceres, in this
dissertation.

Near Earth Asteroid Rendezvous returned disk-resolved images of Eros at seven
wavelengths from 450nm to 1050nm. The bidirectional reflectance of Eros’s surface
was measured from those images with its shape model and geometric data. Its single-
scattering albedow, was found to mimic its spectrum, with a value of (3B03 at
550nm. The asymmetry factor of the single-particle phase fungjios-0.25-0.02, and
the roughness parametéyjs 28+3°, both of which are independent of wavelength. The
V-band geometric albedo of Eros is 0.23, typical for an S-type asteroid.

From the disk-resolved images of Borrelly obtained by Deep Space 1 (DS1), the



maps of itsw, g, andd were constructed by modeling the reflectance of Borrelly terrain

by terrain.w varies by a factor of 2.5, with an average of 0.887009. ¢ changes from

-0.1 to -0.7, averaging -0.43.07. 0 is <35° for most of the surface, but up to 5for

some areas, with an average of2%°. The 1-D temperature measurement from DS1

can be well described by the standard thermal model assuming a dry surface, except for
one area, where the discrepancy can be explained by a sublimation rate that is consistent
with the observed water production rate.

HST images through three filters, covering more than one rotation of Ceres, were
acquired. Its V-band lightcurve agrees with earlier observations very well. A strong
absorption band centered at about 280nm is noticed, but cannot be identiféeres
was modeled to be 0.0£3.002, 0.046-:0.002, and 0.0320.003 at 555nm, 330nm, and
220nm, respectively. The maps offor Ceres at three wavelengths were constructed,

with eleven albedo features identified. Ceres’ surface was found to be very uniform.
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Chapter 1
Introduction

1.1 History of Solar System Small Bodies

In addition to the Sun, the nine planets, and their moons in our solar system, there are
many small bodies, such as asteroids, comets, and meteors, too small and too faint to
be discovered and tracked easily. It is believed that these small bodies are the leftovers
of the original building blocks that formed the nine planets and other large bodies in
the early solar system. A huge amount of energy was released during the accretion of
large bodies, speeding up the chemical reactions to change their compositions, produce
differentiations to have segregation at different places within their bodies, and change the
original physical states.g., the crystalline or amorphous. Therefore large bodies were
modified dramatically from the original planetesimals. However, small bodies did not
release much energy from accretion, nor were they able to trap much eagrgiypm
radioactive decay, in their interiors, to change their properties physically or chemically.
Therefore they are better tracers of the original environment and processes in the proto-
planetary disk.

Asteroids are small interplanetary rocky bodies that formed and concentrated mainly
in the reservoir between Jupiter and Magg)( McFadden, 1993). Many of them are in
dynamical groups, or asteroid families, identified by their orbital proper elements, spread-

ing from Earth-crossing asteroids to the Trojans (for current asteroid family identification,



see Bendjoya and Zap@al2002; Zappal et al., 2002, and references therein). While not

as visually spectacular as comets because they have no surface activity, it is relatively
much easier to measure their physical parameters such as size, rotational state, albedo,
etc. Therefore, many more studies have been carried out about the surface properties and
the evolution of asteroids than of comets. The term comet usually refers to small bodies
containing a large fraction of frozen volatile materials (Weissman et al., 2002), mainly
water but with moderate amounts of methanol and carbon dioxide. They orbit the Sun
on very eccentric orbits, and develop an unstable atmosphere when very close to the Sun,
forming comae and long tails composed of volatile gases and a large amount of dust. Be-
cause of their sudden appearance and short but spectacular stay in the inner solar system,
comets were a long-time mystery, until several decades ago people started to know more
about their nature.

Although visually very different, asteroids and comets are considered to have formed
through very similar processes during the formation of the Solar System. Because of the
differentiation of materials within the planet formation disk, different materials are con-
centrated at different heliocentric distances. Heavy materials, usually with higher melting
temperatures such as silicate-bearing minerals, have relatively higher fraction inside, and
light materials, such as carbonaceous and volatile materials mainly concentrate outside,
with their compositions changing gradually. The so-called planetesimals and cometesi-
mals, mainly distinguished by their compositions, formed by collisional sticking from tiny
particles that condensed from the gaseous disk in solar nebular. And due to their different
compositions, different physical environments and perturbations from large proto-planets,
the leftover planetesimals and cometesimals evolved following different paths thereafter
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to form asteroids and comets.

Proto-asteroids mainly formed within Jupiter’s orbit. Within the ice line of about
3 AU from the Sun, where water or water ice is unstable to evaporation, asteroids either
contain little or have lost much of their volatile materials, and do not have a comet-like
atmosphere or outgassing. The origin of asteroids was summarized by Bell et al. (1989,
and references therein). The initial formation of asteroids, prior to the importance of
collisional evolution, was probably very similar to that of comets, although their compo-
sitional materials were very different. The planetesimals in the central plane of the solar
nebula, mainly at smaller heliocentric distances than the formation region of comets, and
between Mars and Jupiter, formed asteroids through gravitational and collisional accre-
tion. Because of the rapid formation of Jupiter, the formation of a single large body
at the position of the current asteroid belt was curtailed due to the strong gravitational
purterbations from the massive proto-Jupiter. We see many small bodies at this region
rather than one large planet. Intense metamorphic heating due to gravitational accretion
and radioactive decaye.., Urey, 1955; Grimm and McSween, 1993; MacPherson et
al., 1995; Huss et al., 200#&c.) then produced differentiation in large asteroids of a
few hundred kilometers in radius, which might then break up into many small asteroids
during their complicated collisional evolutioe.§. Keil, 2002, and references therein).
The gravitational heating mainly depends on their sizes. The radioactive heating depends
on heliocentric distance in the sense that radioactive elements are more diluted by the
presence of water and organics at larger heliocentric distances so the energy density is
less. At the same time and thereafter, complex collisional evolution, controlled by the
orbital dynamics, internal strength gradients, and the distribution of metal, as well as the

3



(sometimes chaotic) dynamical evolution, led to their current state.

Because they were mainly inside Jupiter’s orbit, asteroids were not scattered away
from their formation regions very strongly by Jupiter, and thus remained in relatively
circular orbits compared to comets, except at some resonant positions where substantial
mass loss occurred due to strong secular gravitational perturbations from Jupiter. Because
asteroids have remained within a relatively small region since they formed, dynamical and
collisional evolution keep playing a relatively important role among asteroids. Asteroidal
dynamical families are considered to be fragments from collisional destruction of pre-
cursor bodies (seeg., Richardson et al., 2002; Davis et al., 2002, for reviews). Their
number, size distribution, and shapes are determined by collisional and dynamical evolu-
tion. According to the differences and similarities of their spectra, asteroidal taxonomic
classes are defined (Gaffey and McCord, 1978; Tholen, 1984; Tholen and Barucci, 1989),
believed to indicate the internal correlation within each family, and the different compo-
sitions and surface physical properties, therefore different formation environments and
processes between families. The phase functions, defined as the brightness variation of
an object with respect to phase angle, the angle between the Sun and the observer
as seen from the object, of many asteroids have been obtained from ground-based obser-
vations, although the range of phase angle was limited by geometrye(ge®owell et
al., 1989; Helfenstein and Veverka, 1989, and references therein). The phase functions
of many asteroids can be modeled fairly well with both Hapke’s model and Lumme and
Bowell's model. Phase functions also show similarities within each dynamical group. The
opposition effect is more prominent among bright asteroids like 44 Nysa (E), 133 Cyrene
(SR), and 1862 Apollo (Q). While dark asteroids like 24 Themis (C), 419 Aurelia (F), and

4



253 Mathilde (C) usually do not show an obvious opposition surge, they have relatively
steep phase functions, and less surface albedo variation (Clark et al., 1999). The spatial
distribution of taxonomic classes shows that darker, redder, and more primitive objects
such as C- and D-type asteroids, become more frequent at larger heliocentric distances,
while brighter asteroids such as S-, E-, and M-types are found more frequently among
the planet-crossing population at smaller heliocentric distaregs ¢ellner and Bow-

ell, 1977; Tholen, 1984; Tholen and Barucci, 198@). As shown in Table 1 of Bell et

al. (1989), different asteroidal types represent various compositions and degrees of total
metamorphic heating. Thus the spatial distribution of asteroidal taxonomic types implies
the spatial distribution of physical environments and accretion processes in the early solar
system.

Oort (1950) initiated important steps in the study of the origin of comets. He sug-
gested a spherical cloud with a radius between radii 50,000 and 150,000 AU around the
solar system, whence all “new” long-period comets come. A year later, Kuiper (1951)
proposed a disk-like belt outside the orbit of Neptune, the so-called Kuiper Belt, which
serves as the reservoir of short-period comets @mtaz, 1980). At the same time, Whip-
ple (1950) argued that, rather than a cloud of interstellar dust (Lyttleton, 1948), every
comet has a solidified core called the nucleus. He proposed his famous “dirty snowball”
model for cometary nuclei, which was later augmented by the “rubble pile” model of
Weissman (1986) and Weidenschilling (1994). Other models include the “fractal model”
by Donn (1990) and the “icy-glue model” by Gombosi and Houpis (1986). However, the
latter two have not been as widely accepted as the first two.

The origin of comets has been studied intensively from both observations and nu-
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merical simulations since then, and summarized by Weidenschilling (1994, 1997). Comets
are thought to form from the condensation and collisional coagulation of cometesimals
in the central plane of the solar nebula outside proto-Jupiter, and the ice line, throughout
the region of the giant planets to the radius of Kuiper Belt. At about kilometer size, grav-
itational accretion was responsible for the growth of bodies. The effect of this scenario
on the structure of cometary nuclei is that nuclei would be composed of structural ele-
ments having a variety of scales with sizes ranging from about 10 to 100 m, and bodies
would have low mechanical strength and macroscopic voids, both of which are consis-
tent with the existence of active areas and the fragility of nuclei. The long-period and
parabolic comets from the Oort Cloud also originated at small heliocentric distances in-
side proto-Neptune in the solar nebula, and then were scattered outward to very eccentric
and distant orbits by the perturbations of giant planets (Safronov, 196%een and

Ip, 1981). Due to the perturbations of passing stars and giant molecular clouds, comets
scattered into the outer region were stirred from a flattened disk into a spherical cloud
(Chakrabarti, 1992), to form the so-called Oort Cloud. When they are perturbed by the
galactic tidal forces and/or passing stars or other massive stellar systems, and re-enter
the inner solar system, they are discovered as “new” comets. Comets originally formed
outside proto-Neptune’s orbit probably stay where they formed because there are not big
perturbers out there. These might be the progenitors of today’s short period comets and
Kuiper Belt Objects (KBO's). Since comets spend most of their life in the outer solar sys-
tem, and because they are very small, the properties of their nuclei remain almost pristine,
except for the outermost layers of nuclei that probably have been heated during infrequent

passages through small perihelion distances. The above scenario of the formation and
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evolution of comets was supported by both numerical simulations of the dynamical evo-
lution of a large number of test cometesimals in the giant planet cross region (Levison et
al., 2001; Kblikowska, 2001; Ferandez and Gallardo, 1994; Chakrabarti, 1992; Duncan
et al., 1988), and the observations that confirmed the existence of the Kuiper Belt (Jewitt
and Luu, 1995). More detailed physical properties of comets, especially their nuclei, still
need to be understood to evaluate these ideas.

However, because cometary nuclei are usually hidden in thick comae at small he-
liocentric distance where we can most readily observe, only a few cometary nuclei have
been studied from ground-based or earth-orbiting telescopic observations in either opti-
cal or the IR (seee.g., Jewitt and Meech (1985); Brooke and Knacke (1986); Veeder et
al. (1987); Birkett et al. (1987); Millis et al. (1988) for 49P/Arend-Rigaux, Jewitt and
Meech (1985); Meech et al. (1986) for 1P/Halley, Jewitt and Meech (1987)aRdez
et al. (2000) for 2P/Encke, Campins et al. (1987); Birkett et al. (1987); Jewitt and Meech
(1988); Delahodde et al. (2001) for 28P/Neujmin 1, Jewitt and Meech (1988); AHearn et
al. (1989) for 10P/Tempel 2, Lamy et al. (1998) for 19P/Borrelly, Lamy et al. (2001) for
9P/Tempel 1, and Lisse et al. (1999) for C/Hyakutake). None of these observations was
able to resolve the nucleus (nuclear radius about 10 km, telescope resolution about 50
km), and these studies relied on models of coma to extract the nuclear brightness. So they
are limited in accuracy and in providing us detailed information about the nuclear sur-
face scattering properties. The only thiaesitu observations were performed for comet
1P/Halley by ESA's Giotto spacecraft (Reinhard, 1986; Keller et al., 1986) and the Soviet
Union’s Vega 1 and 2 spacecraft (Sagdeev et al., 1986a,b) during its 1986 appatrition, for
comet 19P/Borrelly by NASA's Deep Space 1 (DS1) spacecraft (Soderblom et al., 2004a)
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in 2001, and for comet 81P/Wild 2 by NASA's Stardust spacecraft (Brownlee et al., 2003).
Thesein situ observations were able to tell us much more concerning cometary nuclei
than the sum of all ground-based observations, yielding detailed spectra, shape, surface
features, active areas, and direct measurements of the chemical composition of the inner
coma, and the nucleus itself.

Dynamical and physical properties of asteroids and comets show a strong correla-
tion between these two kinds of small bodies in many aspects. Both of them have small
sizes, irregular shapes, and low albedos (for C- and D-type asteroids). Sometimes it is
hard to give unambiguous definitions to them (Hartmann et al., 1987; McFadden, 1993;
Weissman et al., 2002), or to distinguish a dormant or an extinct comet from an asteroid. It
was suggested that some asteroids might be the end state of comets, especially some near
Earth asteroids (NEASs) (Wetherill, 1988; Coradini et al., 1997a,b). The transition between
comets and asteroids has been discussed for some objects.gse®ilva and Cellone,

2001; Bus et al., 2001; Chamberlin et al., 1996; Badez et al., 1997, 2001; McFad-

den et al., 1993¢tc.), with the direct evidence of cometary activity observed for some of
them, such as (2060) Chiron, (4015) Wilson-Harrington (107P/Wilson-Harrington), and
(7968) Elst-Pizarro (133P/Elst-Pizarro). A good review of the transition from comets to
asteroids was given by Weissman et al. (2002). It was also suggested that comets and C-
or D-type asteroids might have a common origin (Ziolkowski, 1995), or at least might
have formed in similar conditions (Hartmann et al., 1987) and have undergone similar

physical evolution (Weidenschilling, 1997; Weissman et al., 2002).



1.2 Motivation

Because of the close relationship between the properties of small bodies and the origin of
the Solar System, it is important to understand asteroids and comets. What are they like,

why are they so, and how did they form?

1.2.1 Asteroidal photometry

Since von Seeliger (1887) andilMler (1893) started to study the photometry of the Sat-
urnian system, asteroidal photometry has become an important method to study the physi-
cal properties of asteroids. With the distance of an asteroid usually determined from astro-
metric measurements and calculations of its orbit, the brightness usually tells us the com-
bined information about its size and reflectance. If the brightnesses in both the infrared
and visible for an asteroid are obtained, then the standard thermal model (STM) (Brown,
1985; Lebofsky et al., 1986) will yield the size and albedo. The brightness change with
respect to time, or lightcurve, is usually interpreted as the effect of varying apparent illu-
minated cross-section of a rotating non-spherical body. Some information about the shape
of the asteroid can be obtained (See Chapter 3). The phase function contains important
information about the physical properties of its surface.

To interpret asteroidal photometric data such as phase functions in general, Hapke
(1981, 1984, 1986) and Lumme and Bowell (1981a,b) developed independent models to
describe the photometric behaviors of actual regolith, by including effects of microstruc-
ture, multiple scattering and large-scale roughness. A good review about the photom-

etry of solar system small bodies done prior to 1989 was given by Bowell et al. (1989).



Hapke’s and Lumme and Bowell’'s models have been applied successfully to analyze disk-
integrated and disk-resolved phase functions of many inner planets, moons and asteroids.
The applications include the estimates of a variety of regolith optical properties, such as
the average patrticle single-scattering albedo, particle transparency, and structural proper-
ties, such as particle size, shape distribution, soil compaction and large-scale roughness
(Bowell et al., 1989; Helfenstein and Veverka, 1989), which are impossible to measure
directly.

Onthe other hand, any photometric model can also be used in the opposite direction,
that is, to use photometric theories to interpolate and extrapolate available photometric
data to the geometries for which observations are not available or not possible, and thence
to go further to combine with other data to infer some other physical properties of the
body. For example, an accurate thermal model usually requires information about the
whole phase function to calculate the Bond albedo (see Chapter 2). But even if only part
of the phase function is observed, as long as photometric parameters can be modeled well,
there will be no problem to calculate the Bond albedo.

Among those models used to interpret photometric data of asteroids, Hapke'’s the-
ory is the most widely used approximate theory that correlates the physical properties
of an asteroidal surface with its reflectance behavior and phase function, and it has been
applied to almost all observed asteroids since it was developgd Helfenstein and
Veverka, 1987, 1989; Simonelli et al., 1998; Clark et al., 2082.). It interprets the
reflectance of particles as being determined by their size, shape, composition, and purity.
The reflectance of a surface is modeled with the reflectance behavior of single particles,

as well as the macroscopic roughness of the surface, compaction statadi,of which
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hide important information about the evolutionary history of a surface. Hapke’s theory
has been summarized in his book (Hapke, 1993) that is often referred to in the planetary
photometry communities as “Hapke’s bible”, although it is still an approximate model,
and being continuously improved by new observations and laboratory experiments.
Despite the powerful theoretical tools available, it is sometimes very difficult to in-
terpret a whole-disk phase curve unambiguously because of the irregular shape, unknown
rotational state, and the limitation of Earth-based observations to a small range of phase
angles (a few to about 2@or main belt asteroids, and smaller for more distant objects).
One important property of the phase curves of most asteroids is the opposition effect,
which provides porosity of surface texture, and the properties of amorphous or crystalline
structure. (For observations of the opposition effect,esge Belskaya and Shevchenko
(2000); for theories, sexg., Hapke (1986); Shkuratov and Helfenstein (2001)). However,
the lack of photometric data at small phase angles makes the study of the opposition effect
difficult. Another example is that a disk-integrated phase function observed over only a
small range of phase can be fitted equally well with very different photometric parame-
ter sets (see Fig. 2.7 and relevant text). Therefore, to constrain the physical parameters
of an asteroidal surface better, we need observations from space to obtain a large range
of phase angle and/or disk-resolved images. Experimental studies of meteoritic powders

also provide important clues to constrain the physical properties of asteroids.

1.2.2 Cometary photometry

For comets, it is usually very hard to measure the brightness of bare nuclei because they

are usually very faint when far from the Sun, and hidden in thick comae when close to
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the Sun. Cometary nuclei are usually smaller than a hundred kilometers, and the smallest
pixel scale at a comet ever reached from the ground when they are close to the Earth is
only about 50 km, with only a few observations of IRAS-Araki-Alcock reaching 20 km.
Thus the aperture-integrated brightness contains much signal from the coma. Aperture
photometry of comets, through various broadband or narrowband filters, measures their
activities and compositions within comae, indicating nuclear compositional properties
(e.g. AHearn et al., 1995; Farnham and Cochran, 2002; Schleicher et al., 2003; Farnham
and Schleicher, 200%tc.). Direct photometry of cometary nuclei is obtained only when
they are far from the Sun without much coma contamination except for very inactive
comets with very little coma (such as Neujmin 1 and Arend-Rigaux, and Encke in its
post-perihelion phase). But for those cases comets are usually veryXai@ (nag),

and the phase angles reached from the ground are very limited. A method has been
developed to separate the signal from the nucleus from that of the coma when they have
well developed comae (Lamy and Toth, 1995). In this method, the brightness of coma is
modeled by a canonicgl(6)/r™ profile with respect to the cometocentric distance with

an azimuthal angle parametgf?) and a power law index (could be a function of the
azimuthal angled, too). Then it is extrapolated into the optocentric region that contains
signal from both coma and nucleus. The signal from the coma in the central region can
be estimated from the model, and the residual brightness in the central region is then
a point spread function (PSF) formed by a point source, considered to be the nucleus.
An example is shown in Fig. 1.1 for comet Hyakutake from Lisse et al. (1999). This
method has been applied to several comets successfully (Lamy et al., 1998; Lisse et al.,
1999; Lamy et al., 1999, 2001), although in some earlier attempts a simplified version
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that did not take into account the azimuthal variation oftheprofile was usedgg., for
Neujmin 1 and Arend-Rigaux). However, it is obviously model-dependent. If there is any
fine structure that deviates from the power law model, the uncertainty in the estimated
nuclear brightness will be large.

Due to the difficulty in obtaining the brightness of cometary nuclei, observations
over a large range of phase angles have been made for just a few comets, such as comet
Encke (Ferandez, 1999) and comet Neujmin 1 (Delahodde et al., 2001). In addition,
the phase functions of both comets were interpreted by some semi- or entirely empirical
phase laws such as a linear law, the IAU-adopted (H, G) system (Bowell et al., 1989),
the phase law of Lumme and Bowell (1981a,b), and Shevchenko’s law (Belskaya and
Shevchenko, 2000) (for Neujmin 1). None of them was interpreted physically, but some
comparisons with asteroids were made. The phase-range of Encke was’ ftomb®ut
117. It was found that Encke’s phase behavior was comparable with C-type asteroids.
The phase range of Neujmin 1 in Delahodde et al. (2001) was fairly smdili® B3,
but the similarity of Neujmin 1 to D-type asteroids in terms of color was noticed. Its steep
opposition surge might indicate a very porous surface. These studies were very important
in understanding the physics occurring on the surface of nuclei, but limited in providing
detailed, spatially resolved information about the surface of cometary nuclei, and the
physical interpretation. A large scatter in the measurements of disk-averaged results was
found.

Again, space missions are able to do a much more advanced job in obtaining the
photometry of cometary nuclei as for asteroidal photometry. First of all, spacecraft can

go deep inside coma, and observe nuclei directly. Second, disk-resolved images are made

13



|

Madel = f{theta)/¢"

NS, EW Profiles Through Residual

Residupols (Dio = NS, Sq = EW)

Residual
50 100 180

Pixels (0.3 /pixel)

Figure 1.1 The nucleus extraction method applied to comet Hyakutake. By modeling (top
right) and subtracting the coma from the original image (top left), the residual (bottom
left) will only contain signal from the nucleus, with a PSF brightness profile (bottom

right) (Lisse et al., 1999).
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possible fromn situ observations. And third, photometry at phase angles that are impos-

sible to be reached from the ground can be obtained from spacecratft.

1.2.3 Down to my work

During recent years, many photometric and spectral observations have been made avail-
able from successful space missions to comets and asteroids. Galileo successfully en-
countered asteroids 951 Gaspra (Veverka et al., 1994) and 243 Ida and its moon Dactyl
(Belton et al., 1996n route to Jupiter. NEAR flew by a C-type asteroid 253 Mathilde
(Veverka et al., 1999), and successfully rendezvoused with asteroid 433 Eros for a year
(Cheng, 2002). Several comets have been visited by spacecraft, too. Comet 1P/Halley
was visited by spacecraft at its last return to perihelion in 1986 (Reinhard, 1986; Keller
et al., 1986; Sagdeev et al., 1986a,b). Comet 19P/Borrelly was imaged by Deep Space
1 (Soderblom et al., 2004a). Comet 81P/Wild 2 showed its dramatic and complicated
surface to Stardust, which is returning to Earth the samples of dust collected in the coma
(Brownlee et al., 2003). All of those space missions provided excellent photometric data
that are otherwise impossible to be obtained from the ground, and helped to constrain
the photometric properties of those targets dramatically. Once the well interpreted phase
curves and detailed surface properties of a few cometary nuclei are available, it will pro-
vide better understanding for other cometary nuclei, and be valuable for the planning of
future space missions to solar system small bodies.

Looking forward, many other missions are either going to comets or asteroids, or in
preparation. Deep Impact, successfully launched on January 12, 2005, is heading to comet

9P/Tempel 1 to excavate a crater and see what is inside a comet (AHearn et al., 2005).
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ESAs Rosetta is on its way to comet 67P/Churyumov-Gerasimenko and will rendezvous
with it and put a lander on its surface (Wilson and Gimenez, 2004). Rosetta will also
fly by two asteroids, (2867) Steins and (21) Lutetia, on its way to comet Churyumov-
Gerasimenko. Dawn is in preparation, with its objective of orbiting asteroids 4 Vesta and
1 Ceres for about a year each (Russell et al., 2004).

Keeping all these in mind, | aimed my thesis work towards the photometric studies
of asteroids and comets, with Hapke’s theory as the primary theoretical tool to carry out
all analyses, and spacecraft data as the primary input, including disk-resolved data of Eros

from NEAR, disk-resolved images of Borrelly from DS1, and the HST images of Ceres.

1.3 Overview of Chapters

As the fundamental theory used throughout the dissertation, Hapke’s theory of reflectance
will be introduced in the next chapter. The problem of the disk-integrated phase function
for irregular shapes will be studied numerically in Chapter 3 with forward modeling sim-
ulations. Then the photometric properties of three objects, asteroid (433) Eros, comet
19P/Borrelly, and asteroid (1) Ceres, will be studied, each in a chapter. Chapter 4 uses the
excellent dataset of Eros returned from NASA's Near Earth Asteroid Rendezvous (NEAR)
mission, coupled with the shape model determined by Thomas et al. (2002), to study the
photometric properties of Eros. Its Hapke’s parameters are determined, and the further
implications of the photometric properties are discussed. All my software tools developed
to perform disk-resolved photometric analysis are tested and confirmed with this excellent

dataset. Chapter 5 describes an attempt to apply Hapke’s theory to a cometary nucleus

16



with its shape model. | utilized about ten images from NASAs Deep Space 1 (DS1)
spacecraft taken during its Borrelly flyby, and performed Hapke’s analysis for the large
photometrically distinguished terrains on Borrelly’s surface one by one. Large photomet-
ric heterogeneity, unlike the uniformity of Eros, was observed, which is then correlated
to its cometary activity through disk-resolved thermal modeling of Borrelly’s surface.
Chapter 6 takes the Hubble Space Telescope (HST) images of Ceres, with the resolution
of about 60 km, to model the surface albedo maps of Ceres at three wavelengths. A uni-
form surface of Ceres is revealed, and the implication of the similarity of Ceres to icy
satellites of giant planets is discussed. The last chapter, Chapter 7, is a summary of the

whole dissertation, and discusses some possible future work.
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Chapter 2
Light Scattering Theory

2.1 Basic Concepts and Theoretical Preparation

As a fundamental unit of the interaction between particulate medium and electromagnetic
radiation, single-particle scattering is a starting point in understanding the properties of
the light diffusely reflected from a particulate surface. A physically idealized and simplest
particle is spherical with a uniform complex index of refraction interior, through which
some important physical concepts are defined. In this section these basic concepts and

physical quantities are reviewed, following the definitions in Hapke (1993).

2.1.1 Irradiance and radiance

The amount of radiative power at positiererossing unit area perpendicular to the direc-
tion of propagationi?, traveling into unit solid angle abo(i, is calledradiance, denoted
by I(r, 2), or specific intensity.

On the other hand, if the radiation is collimated to directianthen the radiative
power crossing unit area perpendicular to the direction of propagation is oaldthnce,
denoted byJ. Ideally, the radiative energy from a collimated light beam has zero solid
angle width. In reality, since the distance between light sowgcg (he Sun, stars) and
most light scattering bodie®.§., planets, asteroids) are extremely large compared to the

sizes of celestial bodies, this is always a good approximation. Irradiance has the same
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unit as flux (W nr2), but it only refers to the flux of a collimated source.

2.1.2 Cross sections

The extinction cross section is defined as the ratio of the removed powgy from an

incident collimated beam to the irradianéef the incident beam.

It has a unit of area, and can be understood as an equivalent area of the medium that
intercepts and removes all incident energy it receives.

Let the part of the removed powét; that is scattered b€s, and the part that is
absorbed bé,, then thescattering cross section andabsor ption cross section are defined

as, respectively,

os = Ps/J (22)
oa = Pa/J (2.3)
SincePs + P4 = Py, we havess + o4 = og. We can think that in the total extinction

Cross section g, o is responsible for scattering only, ang is responsible for absorption

only.

2.1.3 Particle single-scattering albedo

The fraction of the total amount of power scattered by a single particle into all directions
in the total amount of power that is removed from the incident irradiatids called

particle single-scattering albedo, denoted byv. From the definition of cross sections, the
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single-scattering albedo is defined as
wzps/PEIUS/O'E (24)

If a collimated beam with irradiancé(§2,) travels along directiofi}, onto a par-
ticle, and let the scattered radiance e, 2; ), as a function of distance from the
particle, and along directiof?, then at the surface of the scattering particle, the total
scattered flux,F’, or 1(£2) integrated over all directions, can be related to the incident

irradiance/ by the single-scattering albedo (SSA hereatfter)

F={ I(Q)dQ=wJ] (2.5)

47

The SSA is never larger than unity, and usually is a function of wavelength. It
is directly determined by the physical properties of particles, such as composition, size,
shape.etc. It is also affected by the packing status for particulate surfaces or particle

aggregates, such as porosity, internal strergth,

2.1.4 Single-particle phase function

Thesingle-particle phase function p(«) describes the angular distribution of the scattered
radiance/ (€2, €2), as a function ophase angle «, the angle between the direction of in-
cident beam(,, and the direction of scattered lighkt, The single-particle phase function
is defined by

1(Q) = wJ(QO)pi:) (2.6)

In this definition,p(«) = 1 if particle scatters isotropically, and tHe is a normalization

factor so that Eq. 2.5 holds. For spherical particles, the scattered power is independent
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of azimuth angle, and the normalization condition for single-particle phase function be-

comes
1 7 i
5/ p(a)sinada =1 (2.7)
Jo

Sometimes people may put the factor into the single-particle phase function, and the

normalization constant is therefore 1 in that case.

2.1.5 Incidence angle and emission angle

Now consider the condition of a semi-infinite medium with particulate surface. There
are two geometrical concepts correlated to this condition,rbielence angle and the
emission angle. For the geometry illustrated schematically in Fig. 2.1, the normal to the
surfaceN is along thez axis, and the angle between the surface nofMand incident
light is calledincidence angle, i. After scattered by the surface, some rays emerge from
the surface traveling towards the direction that makes an angiéh N, this is called
emission angle. The common plane of incident ray aiNlis theplane of incidence; the
common plane of emerging ray aidis theplane of emergence; and the common plane

of incident and emerging rays is tlseattering plane. The angle between the plane of
incidence and the plane of emergence is denoted.bdnd as defined before, thahase
angle « is the angle between incident ray and emergent ray. These four angles are related
by geometry,

COS (v = COS 7 COS € + sin 4 sin e cos Y (2.8)

As a common notation, and used in this dissertation, the cosinearafe are usually

denoted byy = cosi, andu = cos e, respectively.
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Figure 2.1 Schematic representation of the scattering geometry (From Hapke (1993) Fig.

8.4). The nominal surface of the medium is the plane.
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2.1.6 Reflectance

As defined in Hapke (1993), the temreflectance refers to the fraction of incident light
diffusively scattered or reflected by a rough surface. A similar teeffectivity, refers to

the fraction that is specularly reflected from a smooth surface. Depending on geometry,
there exist many kinds of reflectance. As initialized by Nicodemus (1970); Nicodemus et
al. (1977), and summarized in Hapke (1993), people usually use two adjectives preceding
the word reflectance to specify the geometry, the first describing the degree of collimation
of the source, and the second that of the detector. The most commonly used adjectives
includedirectional, conical, andhemispherical. If both adjectives are the same, a pre-

fix bi- is used. Therefore, thdirectional-hemispherical reflectance refers to the total
fraction of light reflected into the upper hemisphere when the surface is illuminated by a
collimated source from above. This quantity determines the total reflected energy, there-
fore determines the temperature of the surface. The most commonly used reflectance, the
bidirectional reflectance, (i, ¢, «), refers to the fraction of light scattered into direction

e when the surface is illuminated by collimated incident light in directiorHowever,

it must be noted that the bidirectional reflectance is a physically idealized concept. In
reality, the solid angles for both collimated source and detector are finite, and what we
can measure is actually biconical reflectance. But in most cases of remote sensing, the
angular sizes of both source and detector are very small as seen from the object. The bidi-
rectional reflectance is therefore a good approximation, and an important simplification
in theoretical analysis.

Reflectance is a quantity that can be measured in observations or experiments.
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Therefore to study the behavior of reflectance as a function of geometry and properties
of incident light, and to study the correlation between reflectance and the basic physi-
cal quantities of particles such as the SSA are of great importance in understanding the
physical properties, the evolutionary history, and the chemical composition, of surfaces

of solid bodies.

2.2 Empirical Expressions of Reflectance

At a given phase angle, the reflectance of a surface is usually a function of phase,angle
incidence anglé, and emission angle For a spherical body, theande on its surface

with respect to a fixed light source, and a fixed detector, change systematically from
projected limb to terminator. The reflectance at one particular phase angle as a function
of i ande determines the brightness change of the disk, and thus it is sometimes called

limb darkening profile.

2.2.1 Lambert’s law

The simplest empirical expression of bidirectional reflectance function is Lambert’s law,

in which reflectance is proportional to the cosine of incidence aigle
_ 1
rr(ise ) = ;AL,UO (2.9)

whereA; is a constant called Lambert albedo of the surface. If one calculates the total

flux scattered into upper hemisphere,
Fs :/ I(i,e, ) ud2 :/ r(i,e, ) JudQ = ApJug (2.10)
2 2
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then it is found thatd, is actually the directional-hemispherical reflectance of a Lambert
surface, meaning the fraction of total incident energy that is scattered. A surface with
A, = 1is calledperfectly diffuse surface. Lambert’s law is the simplest approximation

of scattering. It adequately describes a bright surface with high albedo, but not as well for

a dark surface.

2.2.2 Minnaert’s law

Another approximation of bidirectional reflectance function, Minnaert’s law, is a gener-
alization of Lambert’s law suggested by Minnaert (1941). The form of Minnaert's law
is

ralise,a) = Ayl ™! (2.11)
whereA,, is a constant called thdinnaert albedo, andv is another constant, thdin-
naert index. If v = 1, then Minnaert’s law reduces to Lambert’s law, atg = A, /7.
Minnaert’s law empirically describes the variation of scattering of many surfaces over a
limited range of angles. The Minnaert parameters are usually functions of phase angles

(eg. Veverka et al., 198%tc.).

2.2.3 Single-particle scattering

The exact solution of radiative transfer has been obtained for isolated perfectly spherical
and homogeneous particles, known as Mie theory. In Hapke (1993), a simplified summary
is provided. Readers are also referred to the works of Born and Wolf (1980); Stratton
(1941); Van de Hulst (1957), and the books by Bohren and Huffman (1983) for more

detailed derivations. The basic conclusions and equations are listed here for the purpose
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of completeness.

The scattering behavior of single spherical particles depends on the ratio of particle
size to the wavelength of incident light, expressedXas= 7D /). If particle is much
smaller than wavelength, i.eX < 1, the scattering is calleBaleigh scattering. For

unpolarized incident light, the particle phase function is

pla) = i(l + cos? o) (2.12)

If particle size is in the same order of wavelength, the particle phase function is compli-
cated, and depends on the single scattering albedo. If a particle is much larger than wave-
length, then the scattering is close to geometric-optics scattering, with strong diffraction
pattern appearing at large phase angles. The analytic expressions of single-particle phase
function for the latter two cases are complicated and not listed here.

Spherical particles are idealization of real particles, which are actually very irreg-
ular in their shapes. It is not possible to derive a single simple expression for the single-
particle phase funcion of irregular particles, instead, empirical expressions are usually
used. There are two commonly used empirical single-particle phase functidregdye
dre polynomial series and theHenyey-Greenstein function.

The Legendre polynomial representation of a single-particle phase function reads

pe) = X biPi(a) 213

where theb;’s are constants, and th® («) are Legendre polynomials of ordgr The
combination ofb;'s must satisfy the normalization condition (Eq. 2.7). This represen-

tation is most useful when single scattering is not far from isotropic, and only the first
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few terms are important. The shapes of single-particle phase functions of single-term and
double-term Legendre polynomial forms are shown in Fig. 2.2.
Henyey and Greenstein (1941) introduced an empirical phase function

1—g°
(1 + 2gcosa + g2)3/2

pla) = (2.14)

which is calledHenyey-Greenstein function, or HG function, and will be the only single-
particle phase function that is used in this dissertation for theoretical derivation and data
modeling. The constantin the HG function is the cosine asymmetry factor, of which a
zero value gives isotropic scattering, a positive value forward-scattering, and a negative
value backward-scattering (Fig. 2.3). Sometimeible HG function is used, with one

term describing the back-scattering lobe, and another term the forward-scattering lobe.
One form introduced by McGuire and Hapke (1995) is,

() 1+c¢ 1—0% +1—c 1—0%
Oé =
p 2 1—2bcosa+ b2 2 14+ 2bcosa + b?

(2.15)

where the constamtdescribes the amplitude of lobes, and is constrained within the range
0 < b < 1, and the constant is the weight factor, with no constraint except thét)
has to be non-negative everywhere. The double HG function is highly flexible, and can fit
particles of many kinds very well, and is widely used in practeg. ( Domingue et al.,
2002; Clark et al., 2002). McGuire and Hapke (1995) fitted many kinds of particles with
double HG function, and summarized thieandc parameters in the plot as shown in Fig.
2.4, which correlates the physical properties of particles with two empirical parameters
of their phase function to some extent.

There are two other forms of single-particle phase functions, which are for highly
absorbing particles, and are not commonly used. Assume a spherical particle that is suf-
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Figure 2.2 Single-term (solid line) and double-term (dashed line) Legendre polynomial
forms of single-particle phase function. Parameters for single-term Legendre polynomial
are 1 and 1, for double-term polynomial are 1, 1 for zeroth and first order terms, and 1.5

for second order term.
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Figure 2.3 Examples of single-term HG functions with negative, zero, and positive asym-

metry factors.
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Figure 2.4 Plot to show the correlation between the parameters of double-term HG

function with physical properties of particles. Taken from McGuire and Hapke (1995).
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ficiently absorbing so that internally transmitted light can be neglected, and the scattered
light is all from surface scattering. By assuming two different scattering functions, the

Lambert’s law (Eq. 2.9) and the Lommel-Seeliger law (Eqg. 2.20, see later sections), and
integrating over the whole surface of the spherical particle, the phase functions are found

to take the forms of

8sina + (m — «v) cos &
po) = ST (2.16)

3 « « «
- 2 —sinZtandm (ot & 2.17
pe) = Japy L s tang n<co 4)] (2.17)

where Eq. 2.16 corresponds to Lambert's law, and Eq. 2.17 corresponds to Lommel-
Seeliger law. The plots of these two single-particle phase functions are shown in Fig. 2.5.

The corresponding spheres are calladhbert sphere andLommel-Seeliger sphere.

2.3 Hapke’s Scattering Law

Hapke’s scattering theory is an approximate solution of radiative transfer equation solved
for a semi-infinite medium on the surface, as illuminated by a collimated beam with
irradiance.J at incidence anglé. The scattered radiance as detected at viewing angle

e Is, according to radiative transfer equation,

- T dr
I:/O |"LU( )Aﬂp(T,Q/’Q)](,T’Q/)dQ/_I_f-(,r’ Q) 6_7—/”? (2.18)

47

The inner integral in the equation refers to multiple scattering happening at optical depth
7, where the direction of incident irradiance is at direction It is integrated over all
possible directions because the direction of incident irradiance due to previous scattering
I(1,€) can be from anywhere. The second term in the outer integfat, ©2), is the
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Figure 2.5 The phase function of an opaque sphere with its surface following Lambert’s

scattering law and Lommel-Seeliger scattering law, respectively.
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single scattering term, whetE is the source function,

w(r)J

F(r,Q) = p(T, a)e’T/“O (2.19)

47

2.3.1 Single scattering, Lommel-Seeliger law

Assuming thatp andw are independent of optical depth and integrating the single

scattering part of Eqg. 2.18, the total radiance due to single scattéring,

w - Ho
I, =J— 2.20
pE— up(a) (2.20)

And the bidirectional reflectance due to single scattering is then

]s w Ho
’["s = — = —
T dmpo

(@) (2.21)

Whenp(a)=1, i.e. isotropic, Eq. 2.20 is calledommel-Seeliger law. For dark surface
such as the Moon and Mercury, where multiple scattering is almost negligible, this scat-

tering law describe the surfaces accurately.

2.3.2 Multiple scattering

The first term in Eqg. 2.18 refers to multiple scattering, and the integral is extremely hard
to evaluate, partly because it is entangled with the scattered radiance, an unknown, and
partly because the single-particle phase function, which can only be described empirically,
goes into the integral.

The simplest medium is composed of particles that scatter light istotropically and
independently. The exact solution of this kind of medium is solved by Ambartsumian

(1958) using a so-called embedded invariance, based on the fact that adding a new thin
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layer to the surface of semi-infinite medium does not change the reflectance. The re-

flectance of such a medium is

rlie.0) = o H () H (1) (2.22)

whereH (z) is the Ambartsumian-Chandrasekt&function (Chandrasckhar, 1960), sat-
isfying the integral equation

H@z)=1+ %azH(az) /0 1 mdx’ (2.23)

The multiple scattering reflectaneg in this case is therefore the total reflectance sub-

tracted by single scattering reflectance

Fnlise,a) = ;’W“i LH o) H () = 1] (2.24)

Hapke (1993) derived an approximated expression forHheinction by making

simplified assumptions in solving the radiative transfer equation (Eq. 2.18)

Hz) 1+ 2%
)~
1+ 2vx

(2.25)
wherey = /1 — w. Another and better version of the approximaféefunction is de-

rived recently in Hapke (2002) by linearizing the Eq. 2.23,

In

. . (2.26)

1-2 1 -1
H(z) ~ {l—wx (Tg—i- fot +:13)]

wherery = (1 —v)/(1 + ~). In our application of Hapke’s theory to observational data,
we used the most recent version of tHefunction,i.e., Eq. 2.26

The exact solution of reflectance for general anisotropic scattering particles has
not been derived yet. The most recent, and the best, attempt to model the medium of
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anisotropic scatterers is found in Hapke (2002). In this new model, the multiple scattering

part is approximated by

. w o po
rm(i, e, ) = E#O*‘M

M (po, 1) (2.27)

where

M (po, 1) = P(po)[H (p) — 1] + P(p)[H (o) — 1] + P[H (1) — 1][H (o) — 1] (2.28)

P(mo), P(r), andP are the integrals of single-particle phase function

1 ™ 2
Plpo) = o+ elﬁ/z/ - Op( o) sine'de’dy’ (2.29)
Plu) = 2 /z7r/2/’ oF ") sind'di’dy’ (2.30)
w/2 2w /2
P = (2m)2 / / / / )sine'de’dyl sind'di'dy]  (2.31)
)2 Jir o

Because of its complicated formulism, and the fact that many asteroids and almost all
cometary nuclei are dark enough that the approximation of an isotropic single-particle
phase function works fine, the new version of multiple scattering approximation is not
incorporated into my work. Instead, we used the approximation for isotropic scatterers
(Eq. 2.24).

Putting together the two components of reflectance, Hapke’s bidirectional reflectance

r(i,e,) =1y + 1 = ;uo“j Llp(@) + Hlpo)H(p) ~ 1] (2.32)

Since the single scattering part is the exact solution of radiative transfer equation, and the
multiple scattering part only refers to isotropic scattering, this representation gives good

approximation to dark surfaces or a medium of isotropic scatterers. The photometric
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analyses of many asteroids and satellites, including bright ones, using Hapke’s model
show good agreement between the model and observations over a broad range of phase
angles €.g. Helfenstein et al., 1994; Simonelli et al., 1998; Clark et al., 2002; Domingue

et al., 2002¢tc.).

2.3.3 Opposition effect

For many solar system bodies and laboratory samples, the reflectance shows a non-linear
increase at small phase angle close to opposition. This non-linear peak is usually called
opposition surge or opposition effect, with a typical width of about 5to 10° for aster-

oids. One mechanism that may cause the oppposition effect is that, when the phase angle
is small, the emerging ray is close to the preferential path pre-selected by the incident
ray. Or we can understand it by imagining the dramatic increase of the overlap between
the cylinder of incident light and that of emerging light when phase angle decreases to
zero. Therefore, this phenomenon presents itself only when the surface is particulate, and
porous, and the mutual blocking between particles causes shadows that are larger than the
wavelength, giving the name of this effestiadow-hiding opposition effect, or SHOE for

short. This mechanism is studied by Hapke (1993), and an approximate analytic correc-
tion is added to Eq. 2.32 to take into account this effect. Because the SHOE is a single-
scattering phenomenon, only the single scattering part of the bidirectional reflectance is

affected, which takes the form of

- Ko
AT po +

p(a)[1 + Bs(a)] (2.33)

rs(i, e, a)
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where the opposition effect enters into the single scattering reflectance aB4édn

= 2.34
s(a) 1—1—%*5&11% (2.34)
And the total bidirectional reflectance is now
r(iye,0) = " {14 Bs(a)lp(a) + H(po)H(1) — 1} (2.35)
AT f10 + p

Two parameters are introduced here to describe the SHOE. The first is the amplitude
parameterp,, which is actually an empirical parameter. Theoretically, in a perfect case,
the SHOE will give a unity amplitude parameter. But for real cases, this parameter is
usually smaller than unity because of the finite size of particles and their imperfection
from spherical uniform particles. The rangelfis0 < B, < 1. The second parameter is
the width of opposition effect;s, which is determined by patrticle size, size distribution,
packing status, but not likely the compositional properties or scattering properties such
as phase function. If the particle size distribution follows a power law with an index of
4, which is of particular interest because it characterizes a comminution process, then
the width parametets for SHOE is proportional te- In(1 — ¢), where¢ is thefilling
factor, the fraction of volume that is occupied by particles. For loosely packed powder,
is close to 0, and the opposition peak is very narrow; for closely packed powder, however,
the width will be very large, and the opposition effect is actually not pronounced from
observational data. Therefore, an opposition surge with a few degrees is the evidence that
there exists loosely packed regolith on the surface of an object.

If particle size is comparable with or smaller than wavelength, then the SHOE wiill
not be present because there is no shadow between particles due to diffraction. But the
constructive interference between the portions of a wave traveling in opposite directions
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along the same multiple scattering paths within the medium will cause another kind of
opposition effect, namely, theoherent backscattering opposition effect, or CBOE. The
main difference between SHOE and CBOE is that SHOE is caused by the patrticles larger
than wavelength, being a single scattering effect, and uncorrelated with the polarization
signature of scattered light; but CBOE is caused by particles with comparable or smaller
size than wavelength, being a multiple scattering effect as well as a single scattering effect,
and affecting the polarization signature of scattered light. Or, in other words, SHOE is an
effect of geometric optics, while CBOE is an effect of wave optics.

Because CBOE affects both single scattering and multiple scattering, a correction
factor for the bidirectional reflectance is introduced by Hapke (2002), and the reflectance

with consideration of CBOE;-z0%, IS
repor = 11+ Be(o)) (2.36)

wherer is the bidirectional reflectance without considering the CBOE. Hapke (2002) also

provides an approximated expression £ («),

1+ l—ex(p[/—h(lghc)(ta/r;()aﬂ)]
B - B 1/h¢) tan(a 2.37
c(a) “O901 + (1/h¢) tan(e/2)]2 (2.37)

Similar to SHOE, CBOE also needs the amplitude param&gy, and the width para-
meter,h¢, to describe it. The amplitude paramefgs, is also an empirical parameter,
with the physical constraint d¢f < By < 1. The width parametéeli is determined by

the optical properties of scatterers.

he = M4 A (2.38)
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A is wavelength, and is the transport mean free path in the medium, and is expressed as

A = [noQs(1— <cosf>)]" (2.39)

with n the number volume density of particles,the mean particle cross sectiag

the mean particle scattering efficiency, andos # > the mean cosine of the scattering
angle. An important property of CBOE is that the width of opposition surge depends on
wavelength of incident light, providing an easy observational method of distinguishing
between two mechanisms of opposition effect. The first application can be found in Clark

et al. (2002).

2.3.4 Rough surface

Under all the above equations, an implicit but important assumption is that the surface

is smooth on the scale that is much larger than particle size. This is obviously not true
for the surfaces of solar system bodies. Hapke (1984) provided a correction to the above
reflectance model to describe large scale surface roughness, based on the assumption that
the macroscopically rough surface is made up of small, locally smooth facets that are large
compared to the mean particle size and tilted with respect to each other. Assuming that
the normals of those facets of a randomly rough surface are described by a distribution
functiona (v, ¢)dvd(, whered is the zenith angle between a facet normal and the average
normal direction of the whole surface, atds the azimuth angle of the facet normal, we

can reasonably assume that the orientations of these facets are independent of azimuth

angle, and the distribution of facet normal is only a functionfofit is further assumed

39



that the distribution function has the form of a Gaussian distribution
a(¥, C)ddd¢ = Ae BV d(tan ¥)d¢ (2.40)
where A andB are two normalization constants so that
w/2
!/ a(9)dd = 1 (2.41)
0

The roughness of the surface is then characterized by its mean slopé amngleerough-
ness parameter
_ 2 /2
tand = = / a () tan 9V (2.42)
0

™

If the average normal direction is viewed as the zeroth-order approximation to de-
scribe a rough surface, then the roughness paramétroduced by Hapke (1984) is a
first-order correction superimposed onto the average orientation of a rough surface, indi-
cating by how much most of the randomly oriented facets that compose the surface are
tilted from the average normal direction. However, it has to be kept in mind that the di-
rections of the normals of facets are assumed to be independent of azimuth angle, which
means that if the distribution of rough features on the surface has some kind of anisotropic
characteristics, then this description and the following equation may not be accurate. The
assumption of a Gaussian distribution of the facet normals means that this parameter is
probably not good in modeling surfaces that contains many disruptive features such as
cracks or sharp edge craters. Furthermore, the size of the surface patch could also affect
the roughness parameter if the roughness of the surface is not self-similar, meaning that
different distribution functions need to be used at different scales.

In addition to the roughness parameter introduced by Hapke (1984, 1993), there are
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some other methods to characterize large scale roughness, such as those in Van Digge-
len (1959); Hameen-Anttila (1967) to describe impact craters, and the one presented by
Buratti and Veverka (1985) to describe crater density. However, either because those
methods are specifically referred to certain geographic environments, or are not directly
related to a photometric model, they are not as widely used as the roughness pafameter
The method that corrects the Hapke’s smooth surface photometric model for rough
surfaces, introduced by Hapke (1984), is summarized here. The effect of roughness has
three aspects: the illumination shadow, where for parts of the surface the incident light
is blocked and we see shadows; the mutual blocking, where the emission ray is blocked
and we do not see that part of surface; and the change of average incidence angle and
emission angles. The first two effects cause the decrease of total scattered light from the
surface, and is described by a correction function e, ), which should be less than or
equal to 1, and decreases with increasing phase angdlée last effect is accounted for
by the effective incidence anglg and emission angle., which are both functions of
e, anda, and parameterized Iy The expressions of their cosingg, andy:., andsS are
listed here, but details of derivation and the involved assumptions are not repeated here.

Readers are referred to Hapke (1984, 1993).

If e > 1,
~ 7 |cosi + sin i tan 0 P By (e) + sin®(/2) Ey(4)
floe A x(e)l + sini tan 0 > B ()~ () ] (2.43)
~ (@) |cose - sin e tan g 220 ~ sin®(¢/2) By (i)
pe =~ x(0) [ + sine tan 67— (o) (@b/w)El(z‘)] (2.44)

Q

. e Mo X(€_>
S v) () 10e(0) 1= F() (&)X (@) o/ pion (O] (2.45)
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if e <4,

toe ~ x(0) [cosz+81nztan02E2_( ];1_( janEZﬁ))E;Q((Z))] (2.46)

pe ~ x(0) [cose—i—smetanéCOS;D_E;(l () ;L 81?2%{2%;6)] (2.47)

Sthe0) e T R F O] (249

where

x(0) = (1+7Tt1m2 0)1/2 (2.49)

E\(r) = exp <—72Tcotécotx> (2.50)

By(z) = exp (-ico#écot?x) (2.51)

f(@) = exp (—2tané)> (2.52)

Thus the bidirectional reflectance function of a rough surface, without considering

the CBOE, is then

w o flge
47T Hoe + He

rr(i,e, o) = {[1+ B(@)lp(e) + H(poe) H (pre) — 1}5(i,e,0) - (2.53)

2.4 Phase Function and Planetary Photometry

2.4.1 Geometric albedo and phase function

In planetary science, small bodies in the Solar System are usually hard to resolve from
the ground even through the most powerful telescopes, thus it is important to study the
integrated behavior of surface light scattering. Let the collimated irradiance from the
Sun beJ, then the total power scattered by a small area eleméntiith a normallN,

and toward a direction making a phase anglés dP(i,e,a) = Jr(i,e,a)udA. The
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total scattered power detected at directions then the integral ofl P over the whole

iluminated and visible areA(i, U)
P(Q)) = Jr(i, e, a)udA 2.54

The total scattered power over all directions is in turn the integrad?(®t) over a solid
angle of4r.
In practice, it is often more convenient to use two physical quantities that are easier
to measure: thgeometric albedo or physical albedo A,, and theintegral phase function
®(a). The geometric albedo is defined as the ratio of the brightness of a bedy-di
to the brightness if the body is replaced by a perfect Lambert disk of the same size, and

perpendicular to the line of sight, or

fA(l) JT<€7 €, O),udA o 77 fA(z) T(@, e, O)udA
(J/m)A - A

A, (2.55)

where A is the projected cross-section of the body, afja is the power scattered by
a perfect Lambert disk perpendicularly. The integral phase function is defined as the

brightness of a body at any phase angle relative to its brightness at zero phase angle, or

fA(z’,v) JT’(i, €, Oé):udA

O(a) = 2.56
() Jagy Jr(e e, 0)udA (2.56)
With simple manipulation, we find that
m " .
O(a) = AA, /A(i’v)r(z,e,a),udA (2.57)

The disk-averaged bidirectional reflectance at a direction making phasecaisgleen

r(a) = A,®(a)/m (2.58)
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2.4.2 Bond albedo and phase integral

Another even more important physical quantity that is closely related to the thermal bal-
ance of a body is th8ond albedo, or spherical albedo, Az, which is defined as the
fraction of total incident irradiance scattered into all directions. With Eq. 2.54 and 2.58,

Ap can be written as

Ap = Aﬂ r(a)dQ

— 4, [ Lo (2.59)

4 T

The thermal radiation from an object is directly proportionalltee Az. The integral

[ () /7d2 is calledphaseintegral g,
w/2
q= —/ O(a)d) = 2/ ¢ (a) sin adav (2.60)
4 0

S0Ap = qu

2.4.3 Hapke’s theory applied to planetary photometry

Using Hapke’s bidirectional reflectance, the analytic expressiof), @nd®(a) can only
be approximately derived for regular shapes such as spheres, or ellipsoids, and is done by
Hapke (1984) only for a spherical body. From the bidirectional reflectance function of a

smooth surface (Eg. 2.35), these two quantities are approximated as,

12

o (5 +570) + 10+ Baohp(0) — 1 (2.61)

sta) = o[ s BaGabte) - 11+ - ) < Fla)

47“0
4 3G(a)} (2.62)
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where

.« «Q o
F(a) = 1—sin 5 tan 5 In (cot 4) (2.63)
Gla) = sina + (m — @) cos « (2.64)
7T

F(«) andG(«) result from the integration over a spherical surface, and are functions of
only phase angle. The first term of Eq. 2.62 describes a sphere covered by a Lommel-
Seeliger scattering surface, modified by single-particle phase function and opposition ef-
fect. For low albedo bodies such as the Moon, this term dominates. The second term
describes a sphere with Lambert scatterers covering its surface. High albedo bodies such
as Venus or icy satellites of Jupiter and Saturn are mostly described by this term.

For spherical bodies with rough surface, Eq. 2.61, 2.62 are corrected for roughness

parametef as

A0) = S0+ Bap(0) — 1) +U(w, 0o (5+500)  (269)
P(a;0) ~ ®(o;0)K(a,0) (2.66)

where the two correction factodg(w, #) andk(a, #) are both numerically calculated and
approximated by analytical expressions by Hapke (1993, p.353-354), and are not repeated

here.

2.5 Data Modeling Techniques

The ultimate goal of a theoretical model is to describe the physics of real world. Finally,
when photometric data are available from observations, we need to find the Hapke’s pa-
rameter set that best models the observational data, and then study the physical properties
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of the surface from those parameters. Hapke’s model involves five or more parameters,
including the SSA), photometric roughnesg), the amplitude and width of opposition
effect (Bsg andhg for SHOE, andB¢, andh for CBOE), and one or more parameters

to describe single-particle phase functjgia). The model we will stick with throughout

this dissertation is a five-parameter version, which only considers the SHOE opposition
effect, and adopts a one-term HG function involving one asymmetry paramtiete-

scribe the single-particle phase function. The five parameters are summarized in Table
2.1. In this section, | will study the different effects of parameters in determining the
shape of phase function and/or the magnitude of bidirectional reflectance at various phase
angles, and discuss the main data modeling techniques | will follow in modeling both

disk-integrated and disk-resolved photometric data with Hapke’s theory.

2.5.1 Significance range of Hapke’s parameters

The phase function and bidirectional reflectance as modeled by Hapke’s theory are highly
non-linear, and their five parameters are entangled with each other, making data modeling
very difficult. But fortunately, these parameters affect different ranges of phase angles
of the phase curve, or, from data modeling point of view, the reflectance data at different
phase angles make different contributions in fitting the five parameters (Helfenstein and
Veverka, 1989), so the five parameters can be constrained well if an appropriate scheme
is used.
Let us consider disk-integrated photometry. If we define relative partial derivatives

of the disk-averaged reflectance, which is a function of phase angle (Eq. 2.58), with
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Table 2.1. A summary of the five Hapke’s parameters in the version of Hapke’s theory

that | use throughout this thesis.

Parameter Symbol Meaning

Single scattering albedo w Fraction of total incident energy that is scattered
by a single particle towards all directions

Asymmetry factor g Spatial energy distribution in a single particle
scattering phase function

Opposition surge amplitude By Amplitude of opposition effect, SHOE only

Opposition surge width h Width of opposition effect, SHOE only
Roughness parameter 0 Average deviation of local normal with respect
to average
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respect to its parameters, for example, the asymmetry fagtas,

dlogr(a)  Or(a) 1
T (2.67)

This quantity can be used to estimate the relative change of the reflectance caused by
the perturbation of;. At a particular phase angle, the larger the absolute value of this
guantity is, the greater the change of reflectance will be ig perturbed by the same
small amount; if this quantity is zero, then it means that any perturbationsvdf not

affect the reflectance at all. Therefore, for any given parameter, it can be constrained
better by the data at phase angles where the absolute value of the relative partial derivative
of that parameter is larger than where it is smaller. Furthermore, for reflectance data at
a particular phase angle, the parameters with larger relative partial derivatives can be
constrained better than parameters with smaller relative partial derivatives. If the relative
partial derivative of a parameter is zero at some phase angle, then it will not be constrained
by any data at that phase angle at all.

Taking Eros as an example, we plot such partial derivatives with respect to all five
parameters corresponding to its Hapke’s parameters as found by Domingue et al. (2002),
w=0.43,B,=1.0,h=0.022,¢=-0.29, and)=36", in Fig. 2.6. The properties of the relative
partial derivatives can be summarized as follows. The S§&an be determined by the
reflectance data at all phase angles, but the four other parameters have their own signifi-
cant ranges. The data at opposition are crucial in fitting the amplitude of the opposition
effect, By, but are useless for the width paraméiewhich is mostly determined by the
data at about the width of the opposition, i.e.cats h. Because of the exponential-

like decay of the opposition effect with phase angle, neither of the opposition parameters
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makes significant contribution at phase angles greater than several times the width of the
opposition effect. In contrast to the opposition effect parameters, the global roughness pa-
rameterd is affected primarily by the reflectance data at higher phase angles, but almost
unaffected by data around opposition. The most interesting parameter is the asymmetry
factor g, which has no effect at a particular phase angle in the middle, abédb6the
assumed parameters here, if it is perturbed by a small amount. Therefore, according to
the above properties, we can design a data modeling scheme, in which then S&#]
roughness parametér, can be fitted first with disk-resolved images at phase angle about
62°, then we can use data at higher and lower phase angle but not close to zejpaodit
finally use data close to opposition to model opposition parameters. For other asteroids,
their Hapke’s parameter may be different, therefore the fitting scheme can be different,
but the various significance of data at different phase angles in fitting different Hapke’s
parameters can be analyzed similarly, and the scheme can be designed.

It has been noticed that, for an observed disk-integrated phase function alone, it is
usually not possible to find a unique set of Hapke’s parameters to model it (Domingue
and Hapke, 1989), especially when phase angles are limited within a small range. For ex-
ample, high roughness usually simulates the effects as high back-scattering in the overall
shape of a phase function. In Fig. 2.7, we see that very different parameter sets can give
out observationally indistinguishable phase curves at some small phase angles. However,
if disk-resolved photometry is available, then all Hapke’s parameters can be constrained

better.
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Figure 2.6 The relative partial derivatives as defined in Eq. 2.67 with respect to all five

Hapke’s parameters are plotted in upper panel. The lower panel is the close-up view of the

upper panel at phase angles smaller tham @0show the effect of opposition parameters.

The five Hapke’s parameters are=0.43, B,=1.00,,=0.022,9=-0.29,0=36.
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Figure 2.7 An example of the ambiguity of phase function modeling. Symbols are ground
observations of average reflectance for asteroid 1 Ceres (Lagerkvist and Magnusson,
1995). Three very different sets of Hapke’s parameters produce very similar phase func-
tions within 20 phase angle, which is the highest phase angle reached from the ground
for Ceres. All of the three sets of parameters fit data well. However, they are very dif-

ferent at large phase angles. The three sets of Hapke’s parameters are listed in Table 2.2.
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Table 2.2. The Hapke’s parameters for the phase functions shown in Fig. 2.7. RMS

stands for the root mean square error relative to the average of data.

Line w By h g 6 RMS(%)

Solid 0.06 1.63 0.072 -0.42 18 1

Dashed 0.15 1.86 0.045 -0.18 40 0.7

Dash-dot 0.31 6.00 0.064 0.40 20 0.6
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In disk-resolved photometry, the bidirectional reflectance can be measured directly
from an image if the shape model of the object is available. The effects of various pa-
rameters can now be analyzed in a disk-resolved sense, where even at a particular phase
angle, we have a variety of illumination and viewing geometries from the resolved disk
if phase angle is not too small, and the shape of the object is not too simple. With re-
flectance data only within a small range of phase angle, the three phase paramgters,

h, andg cannot be modeled well in any case, as analyzed above, but the other two para-
meters, the SSA«) and the roughness paramety; can still be modeled because at any
given phase angle, the disk limb darkening profile is solely and completely determined by
the SSA and roughness parameter. Take a dark surface as an example, which is actually
the simplest case, the multiple scattering term can be neglected, and the bidirectional re-
flectance is proportional to and the ternt (i, e; ) pio. (4, €; 0) / (p0e (i, €; 0) + p1e(i, €; ).
Therefore, the roughness parameter can be modeled from the limb darkening profile with
fairly high accuracy. If the other three parameters are available or assumed, the SSA can
be modeled as well. Thus with disk-resolved photometry available, we can eliminate the

possible ambiguity betweehand g in determining the overall shape of disk-integrated

phase functions.

2.5.2 Leasty? Fitting

Throughout all of my thesis work in photometric analysis, both disk-integrated or disk-
resolved, observational data are modeled ukeag 2 fitting data modeling technique,
i.e., models with all possible combinations of parameters within their ranges are tested

by calculating the sums of the squares of the residuals between modeled values and data,
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until the smallest sum is found for some combination of parameters, which is returned as

the best modeled parameter set. The sum of the squares of residuals is the sp’called

1 (Ti model — Ti measure)2
= : ’ 2.68
XYTN 2 o2 (2.68)

K3 3

or if the erroro is not available,

X = = Z(ri,model - Ti,measure)g (269)

wherer; joder ANA7T; 1meqsure are the modeled and measured bidirectional reflectance for
data point;, respectivelyg; is the measurement error for data poinand NV is the total
number of data points. The square rootydfis taken as theoot mean square or RMS

error of the modeling (Eqg. 2.69). The percentage RMS error relative to the average value
of data is usually taken as an indicator of the goodness oftffiting. One thing that has

to be noted for the second definition pf (Eq. 2.69) is that, if the values of reflectance
vary largely, then tha? from this equation tends to be dominated by high reflectance, or

bright areas on a surface. To avoid the bias, sometimes the rejatisaised,

2
1 i, model — ri,measme T'i,model
= oy e, Z( _Q (2.70)

i ri,measure rz measure

Or, sometimes magnitudes, which is the logrithm of the reflectance, are used in modeling.
In this dissertation, we only used té defined in Eq. 2.69. But after modeling, the fit is
checked for above bias by plotting modeled values as a function of measured values, and
by plotting the ratios of model and observations as a function of all independent variables,
to make sure that large systematic bias does not exist.

There are several computational methods to find the smafteist data modeling.
The two used in this dissertation are ttyed searching and theLevenberg-Marquardt
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(LM) method. The first one is very simple. All possible grid points in the parameter
space are searched, the grid position with the smalléstins, and the corresponding
set of parameters is returned. With small steps for each parameter, the accuracy of this
method increases, but the computational burden increases following a power low. The LM
method is a gradient search method. It searches the steepest slope in parameter space, and
follows the steepest slope until the minimughis reached. This method is implemented
in IDL by a library routine called nf i t , with the computational scheme following the
one introduced iMNumerical Recipesin C by Press et al. (1992).

It is shown in my work that for bright surfaces such as that of Eros, both of those
two methods work well. But for dark surfaces such as that of Borrelly, the LM method
seems not working as well as for bright surfaces. Therefore for Borrelly and Ceres, we

actually used direct grid searching to find the best-fitted parameter set.
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Chapter 3
Whole-Disk Phase Functions of Irregularly-Shaped Bodies

3.1 From Bidirectional Reflectance to Disk-Integrated Phase Function

It was not until less than a half century ago that human beings started to send spacecraft
to explore the solar system. Spacecraft data of small bodies have been available for no
more than two decades. Before that, the photometric properties of small bodies were
studied only from the ground with whole-disk phase functions. A theoretical solution

or approximation to the radiative transfer equation for a surface yields the bidirectional
reflectance. To model ground-based observations, bidirectional reflectance needs to be
integrated over the disk of an object. In this step, the shape and possible non-uniformity
of photometric properties over the surface come into effect. It was back in the early 1900s
that people realized that the change in total brightness of an asteroid is possibly due to its
reflectance variation and/or non-spherical shape (Russell, 1906), and some methods were
proposed to infer some properties of shapes and orbital geometries of asteroids. In recent
years, lightcurve observations at various geometries have become an important way to
infer the shapes of source bodies (seg.,, Kaasalainen and Torppa, 2001; Kaasalainen

et al., 2001gtc ). However, not until recently when more and more asteroids and comets
were visited by spacecraft, did people realize the large diversity of the shapes of small
bodies (Fig. 3.1).

In addition to the lightcurves, how to take into account the irregular shape of an
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Figure 3.1 The images of asteroids 951 Gaspra (Belton et al., 1992), 243 Ida (Belton et
al., 1994), 253 Mathilde (Veverka et al., 1999), and 433 Eros (our work) (from top to

bottom).
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object is also a problem in photometric modeling to whole-disk phase functions. To
construct a phase function from lightcurves obtained at various phase angles, usually the
average brightness of each lightcurve is calculated to represent the average brightness of
the object at that phase angle. But as shown later, the amplitudes of lightcurves usually
change with viewing geometry, and even at a constant phase angle, the average is not
necessarily a constant, but rather depends on shape. To model the ground-based phase
function, if a shape is needed, a sphere is usually assumed for the unknown shape of the
object because of its simplicity in analytical analysis. But obviously in some cases this
assumption could cause a very large error, because the shape of an asteroid can be far
from a sphere, possibly very irregular with large craters or depressions with their sizes
comparable with the size of the body. For example, as shown in Fig. 3.1, the shape
of Eros is like a bent rod, with two large craters with sizes about 1/4 of the size of Eros;
Mathilde has a very large depression that is almost 4/5 of its size. Many other shapes have
been detected for asteroids, including very elongated shapes, and even contact binaries.
In this chapter, the effect of some irregular shapes of asteroids is studied with nu-
merical simulations. Assuming particular photometric properties for a surface, as well
as a particular non-spherical shape, we used Hapke’s theory to calculate the bidirectional
reflectance for the spatially resolved surface, then numerically integrate bidirectional re-
flectance over the whole visible and illuminated surface under various geometries to sim-
ulate lightcurves of this body. Taking those lightcurves as our “data”, we constructed
disk-integrated phase functions by the methods commonly used in research. Finally, the
simulated phase functions were modeled, with Hapke’s disk-integrated phase function for
spherical shape (Eq. 2.61-2.66). The modeled Hapke’s parameters can be compared to
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the “original” or “true” Hapke’s parameters we assumed, from which we can investigate
and evaluate the goodness of the method we used in constructing phase functions, and
the uncertainties of modeled parameters caused by the assumption of a spherical shape
for that particular non-spherical shapes. In the following section, the effect of a non-
spherical shape on the lightcurve and disk-integrated phase function is first conceptually
analyzed, as well as the conjuncted effect with illumination and viewing geometry. In the
next section an ellipsoidal shape is assumed to study this most common approximation
of asteroid shape in terms of photometric parameter retrieval. Then Eros’s shape is taken
as a real case of very irregular shapes to study the impact on photometric modeling. The
simulative studies for Eros also have an application in the next chapter to photometrically

modeling Eros with NEAR data.

3.2 Effects of Shapes

3.2.1 Shape and lightcurve

The most direct consequence of non-spherical shape is a rotational lightcurve. A spher-
ical object will not change its illuminated and visible cross-section when rotating, thus
producing no lightcurve unless there are some photometric variations over the surface.
Except for some special cases such as lapetus (Squyres and Sagaretd988&,has

been generally thought that non-spherical shape is usually more important for determining
lightcurve shape than are photometric variations, especially at large phase angles when
shadows dominate the total brightness of an asteroid (Kaasalainen and Torppa, 2001).

Therefore rotational lightcurves are important tools for inferring the characteristics of its
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source body shape.

Since the early days of lightcurve studies, it has been believed that the polar ori-
entation can be determined from lightcurve observations at various phase angles (Rus-
sell, 1906), but it was also thought that determining the shape of an asteroid from its
lightcurves is not possible. Lightcurve inversion, namely determining the shape from the
lightcurves it produces, was studied first in both laboratory and numerical simulations
(e.g. Barucci and Fulchignoni, 1983; Barucci et al., 1989), where models of asteroids
with various shapes, compositions, and surface photometric properties were used to sim-
ulate lightcurves under different geometries. The lightcurve inversion to a 2-D shape was
discussed by Ostro and Connelly (1984), and the opposition lightcurves in terms of as-
teroidal shape were subsequently discussed (Ostro and Connelly, 1986). Following the
pioneering work of Russell in 1906, Wild (1989, 1991) developed a formalism to infer
the surface albedo distribution from lightcurves observed at different phase angles and
aspect angles, which is the angle between the direction of the rotational angular velocity
and the direction of the Sun. A detailed consideration and method to find the 3-D shapes
and albedo variations of asteroids from lightcurves has been discussed by Kaasalainen et
al. (1992a) for strictly convex shapes, and its application was discussed and tested in a
following paper (Kaasalainen et al., 1992b). This method was then optimized to deter-
mine the 3-D convex hull for arbitrary shapes (Kaasalainen and Torppa, 2001), as well
as the rotational period, pole orientation, and scattering properties simultaneously from
lightcurves observed at various aspects and phase angles (Kaasalainen et al., 2001). The
inversion problem for highly non-convex and binary asteroids is also under investigation
currently €g. Durech and Kaasalainen, 2003). Although radar observation has been
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a very effective way of determining the shape of small bodies in the solar system (Os-
tro, 2003), due to the #/ radar power dependence on the distance of target from the
Earth, and inherent constraint to Bhase, lightcurve inversion is still an important tool to
studying the shapes of solar system bodies.

For our study of the effect of irregular shapes on phase functions, we want to un-
derstand how lightcurves change with respect to aspect angle and phase angle, so that we
can construct phase functions in a better way to reduce the uncertainty in photometric
modeling. We do not have to consider the lightcurve inversion problem; rather we are
considering what kind of lightcurves are produced by a particular non-spherical shape
under various aspects and phase angles.

To answer the question of how aspect angle affects the lightcurves of an irregularly
shaped body, first, let us take a triaxial ellipsoid (with three axesb > ¢) as the shape
model, and assume a uniform surface so that the lightcurve will be mainly determined
by the projected cross-section of illuminated and visible surface. Another necessary as-
sumption is the polar orientation, which is taken as aligned with the shortestsxihat
the rotational axis is along the direction of the largest angular momentum, correspond-
ing to a stable rotational state. Although some comets are observed in excited rotational
states €.9g. comet Halley), almost all asteroids are found to have relaxed to the short-axis
rotational mode. The lightcurves produced by an ellipsoid withb : ¢=2.7:1.4:1, the
axial ratio of the best fit ellipsoid for Eros, are shown in Fig. 3.2 for phase anglés
30°, and 60, and the polar axis is assumed perpendicular to both the direction to the Sun
and the direction to the observer. They basically have a doubly-peaked sinusoidal shape,
with each peak occurring roughly when the maximum cross-section is seen, if the phase
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angle is small. The lightcurve amplitude represents the approximate projected axial ratio
(2.7/1.4=1.2:0.7 mag at 0 phase angle in this case), and depending on phase angle.
Another very useful plot in understanding the change of lightcurves with respect to
aspect angle is shown in Fig. 3.3, where lightcurve maxima and minima are plotted as
functions of aspect angle for a triaxial ellipsoid with b : ¢<=2.7:1.4:1, and viewed at0
phase angle. AtO(and 180) aspect angle, when the object is viewed pole-on, there is
not any cross-sectionalal change during rotation, and a zero lightcurve amplitude is found.
The projected cross-section in this caseds, the largest possible projected cross-section
for this shape, thus the brightness at these two aspect angles are higher than at any other
aspect angle. At 90aspect angle, when the object is viewed equator-on, the projected
cross-sectional change is the largest, yielding the largest lightcurve amplitude. But since
the projected cross-section varies framx to wbc in this case, the maximum brightness
of the lightcurve then reaches its minimum. What this plot tells us about lightcurves
is that, even at one phase angle, the maximum, mean, and minimum of one lightcurve
do not necessarily represent the true maximum, mean, and minimum of the brightness
of the object at that phase angle. This problem becomes more severe and complicated
when phase angle is large so that the illuminated and visible area diverges more from the
projected cross-section. A question to ask is, for such an ellipsoidal shape model, what
is its average cross-section of many random shots from any aspects and phase angles. A
calculation done by Weissman and Lowry (2003) for biaxial ellipsoids with axesb
shows that the average is close to a large fractiai the maximum cross-sectiatub,
werek=0.924 fora/b=1.5, 0.892 for/b=2, and 0.866 for/b=3.
Lightcurves for arbitrary shapes will be much more complicated. Their main prop-
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Figure 3.2 Examples of doubly-peaked lightcurves. They are produced by a triaxial ellip-
soid with uniform surface, and axial ratios of the best fit ellipsoid for Eros. The photomet-
ric parameters of the surface are assumed to be those of Eros as published by Domingue
et al. (2002) (Table 3.1). Object is illuminated and viewed equator-on. Phase angles,

are 0, 30, and 60, for upper, middle, and lower panel, respectively.
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Figure 3.3 Plot of lightcurve maxima and minima as functions of aspect angle. The shape
model is taken to be the best fit ellipsoid of Eros, and the photometric parameters are

listed in Table 3.1. Solar phase angle is 0

64



erties such as the correlation between lightcurve amplitude and projected axial ratio, the
amplitude variations with respect to aspect angle, are still very similar to those dis-
cussed above for ellipsoidal shapes. But with divergence from an ellipsoidal shape, and
possibly large shadows formed by large concavities, the lightcurves may no longer be si-
nusoidal, with asymmetric shapes or even a single peak, and small scale oscillations. An
example of such a lightcurve is shown in Fig. 3.4, calculated with Eros’s real shape (Fig.
3.1), Hapke’s parameters as assumed before, and illuminated and viewed in equatorial
plane. Therefore real shapes have to be considered case by case, and we are not going to

draw any further general conclusions here.

3.2.2 Construction of disk-integrated phase function

Because of the non-zero lightcurve amplitude for any non-spherical shapes, and the com-
plicated behavior with respect to aspect and phase angles, the construction of a phase
function is not as simple as for a sphere. For example, if lightcurves of an ellipsoid under
all possible aspect angles are plotted with respect to phase angle, as shown in Fig. 3.5,
at any given phase angle, we have to find a way to calculate an “average” or “effective”
brightness, so that a definitive phase function can be constructed. The first idea that most
people come up with would be to take the means of lightcurves at various phase angles.
However, as shown in Fig. 3.3, different lightcurve magnitudes and amplitudes will ap-
pear even at one phase angle if they are observed at different aspects. There will not be
a single method that is good for all cases, and different methods are used by different
people. For example, lightcurve means over each rotational period were used to represent

the average reflectance of the disk, either over tismg ( Helfenstein et al., 1996), or
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Figure 3.4 A lightcurve produced by Eros’s shape, with the same photometric parameters

as assumed for Fig. 3.2, and illuminated and viewed within its equatorial plane.
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over the cross-sections (Domingue et al., 2002) if shape is available. Lightcurve maxima
and minima were also used sometimes to construct a phase function to compare the fitted
photometric parameters with those from lightcurve means (Helfenstein et al., 1994).

In our numerical simulations, we are able to produce lightcurves under all possible
aspects at any phase angle, and the phase function constructed by all three methods stated
above are studied. But one difference between numerical simulations and real observa-
tions has to be kept in mind, namely that in real observations it is not possible to obtain
lightcurves at all possible aspects for any single phase angle. Therefore the results pre-
sented in this chapter are not necessarily accurate for all real observations. The numerical
simulations rather show a method to help modeling real observations photometrically. We
can take the real shape, or an approximated shape to the best knowledge we have, and put
it into the geometries of observations, then insert modeled photometric parameters to see
if observed lightcurves are best modeled with them, or what the discrepancy is and how to
improve parameters. In this sense, we call our numerical simulatiorward modeling

method.

3.3 Numerical Simulations with Ellipsoidal Shape

In this section, the phase functions of ellipsoidal shapes constructed using the three meth-
ods described in the last section will be compared with the phase function produced by a
spherical shape with the radius equal to the effective radius of the ellipsoids, and with the

same photometric parameters.

Three phase functions constructed from the maxima, means, and minima of the
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Figure 3.5 Lightcurves of an ellipsoid at all possible aspect angles are plotted with respect
to phase angle. Three insets show the lightcurves at phase® 0and 100, respectively,

all illuminated and viewed in the equatorial plane, At each phase angle, the brightness of
the object varies, therefore a definitive phase function has to be constructed with some

method.
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lightcurves of an ellipsoid are shown in Fig. 3.6, assuming Eros’s published photometric
parameters as deduced by Domingue et al. (2002) (also listed in Table 3.1). A phase
function produced by a sphere with the same set of photometric parameters is also plotted.
As one can see in Fig. 3.6, if the body is ellipsoidal, then the broadening of the phase
function by a non-zero lightcurve amplitude is almost the same at all phase angles from
zero to at least 150 In other words, the three lightcurves have very similar shapes,
leading to nearly parallel phase curves. This means that a phase function constructed
from lightcurve means can effectively “smooth” out the effect of a non-spherical body

on the phase function, and acts as a reasonably good approximation to an average phase
function to be modeled.

A best-fit of Hapke's parameters was carried out usidgminimization for the
curves of both lightcurve maxima and means (Fig. 3.7), and the modeled parameters
are listed in Table 3.1. Although the phase functions, from both lightcurve maxima and
lightcurve means, have shapes very similar to the phase function from a spherical shape
with the same set of photometric parameters, the modeling is still unable to recover the
original parameters accurately, although the starting parameters are within the error bars
of the fit. The modeled geometric albedo is recovered very well because it is tied down
by the brightness at very small phase angle. The S§Aand asymmetry factog, seem
to be anti-correlated, with underestimate@nd overestimated backscatteripgielding
a correct geometric albedo. The amplitude parameter of the opposition effect is a little bit
underestimated, maybe because the averages of lightcurves under different aspect angles
at small phase angles smooth out the opposition surge a little bit. The width parameter of

the opposition surge is the least constrained because it is usually the hardest parameter to
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Figure 3.6 The three phase functions constructed from lightcurve maxima, minima (two

dashed lines), and means (solid line), in an arbitrary magnitude scale. The dotted line
almost aligned with lightcurve mean phase function is the phase function produced by a
uniform sphere with same photometric parameter set. The dotted line at bottom illustrates
the difference between the lightcurve mean phase function and the phase function from a

sphere.
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Table 3.1. Fit the midpoint phase function and upper limit phase function, constructed
from the theoretical brightnesses of a triaxial ellipsoidal body with the published Eros’s

photometric parameters. The axial ratios of the shape model are 2.731:1.408:1.

w By h g 0 A,

“Original”> 0.43 1.00 0.022 -0.27 36 0.29
Midpoint 0.36 0.89 0.017 -0.36 34 0.30

Upperlimit 0.40 0.73 0.011 -0.35 29 0.30

2Domingue et al. (2002)

be modeled due to the small range of data that are sensitive to this parameter. The rough-
ness parameter is recovered well. Thus we conclude that caution has to be used when
constructing a phase function from ground-based lightcurves. Although an ellipsoidal
shape can be approximated relatively well by a spherical shape in terms of photometric
modeling, the modeled parameters could still be substantially different from the true ones
and require large error bars. With more diverse shapes of the small bodies in the solar
system in reality, one may have to deal with solutions on a case by case basis even though

their shapes may be relatively regular.
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Figure 3.7 Hapke’s modeling for lightcurve mean phase function (upper panel) and
lightcurve maximum phase function (lower panel). Symbols show the phase function
to be modeled, and solid lines show the models. Solid and dashed lines show theoretical

phase functions constructed from numerically calculated lightcurves.
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3.4 Numerical Simulations with Eros’s Shape

As the second part of these simulative studies, the question we wanted to answer was: For
a specific irregular shape, is it possible to recover the photometric parameters by fitting
the phase functions constructed from the maxima, the means, and/or the minima of disk-
integrated lightcurves by assuming a spherical shape? And if the answer is positive, how
to do it? Or if the answer is negative, quantitatively how far from the fitted parameters
are the correct ones? To answer these questions, we took Eros’s real shape in simulations.
Eros is the only solar system small body with its shape precisely determined. We hoped
to demonstrate that our forward modeling procedure would be an effective way