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Summary 

The information content (relative entropy) of transcription factor binding sites (TFBS) is 
used to classify the transcription factors (TFs). The TF classes are clustered based on the 
TFBS clustering using information content. Any TF belonging to the TF class cluster has 
a chance of binding to any TFBS of the clustered group. Thus, out of the 41 TFBS (in 
humans), perhaps only 5 -10 TFs may be actually needed and in case of mouse instead of 
13 TFs, we may have actually 5 or so TFs. The JASPAR database of TFBS are used in 
this study. The experimental data on TFs of specific gene expression from TRRD 
database is also coinciding with our computational results. This gives us a new way to 
look at the protein classification- not based on their structure or function but by the nature 
of their TFBS. 

1 Introduction 

The human and mouse genome projects [1,2] revealed that in eukaryotes the coding region is 
very less than expected before. Human genome contains approximately 30,000 genes that 
represent less than 2% of the whole genome. Unlike in most prokaryotic genomes that contain 
packed gene units with few intergenic regions, repeated and non-coding sequences that do not 
code for proteins make up the remaining part of the human genome. Gene expression and its 
regulation involve the binding of many regulatory transcription factors (TFs) to specific DNA 
elements called Transcription Factor Binding Sites (TFBS). The region 200-300 bp 
immediately upstream of the core promoter is the proximal promoter that has abundant of 
TFBS. Further upstream is the distal promoter region that usually contains enhancers and few 
TFBS. TFBS are represented by relatively short (5-10 bp) nucleotide sequences. Specificity of 
TF is defined by its interaction with TFBS and it is extremely selective, mediated by non-
covalent interactions between appropriately arranged structural motifs of the TF and exposed 
surfaces of the DNA bases and backbone [3]. The ability of the cell to control the expression 
of genes under different developmental and environmental conditions is still poorly 
understood. Identifying functional TFBS is a difficult task because most TFBS are short, 
degenerate sequences occurring frequently in the genome. The non-coding sequences play a 
crucial role in gene regulation hence the computational identification and characterization of 
these regions is very important. 

Substitution matrices are widely used to score biological sequence similarity and in database 
search tools like BLAST [4] and FASTA [5]. The elements of these substitution matrices are 
explicitly calculated from observed frequencies of aligned nucleotides and expected 
frequencies of the nucleotides. The information in these matrices depends on the 
quantification approach like evolutionary models, structural properties and chemical 
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properties of aligned sequences [6-10]. The PAM- Point Accepted Mutation [11,12] matrices 
are based on alignments of closely related sequences and by using these PAM matrices one 
can estimate observed frequencies to any desired evolutionary distance by extrapolation. In 
BLOSUM- BLOcks SUbstitution Matrices [13] the observed frequencies are estimated by 
using the ungapped segments of multiple sequence alignments of protein families and avoids 
extrapolation to different evolutionary distances. We have developed conventional 
substitution matrices for the analysis of TFBS and the developed substitution matrices are 
optimally suitable for TFBS only. The main focus of our study is to find the functional 
classification of TFBS in human and mouse with the help of average mutual information 
content, which is calculated by using neighbor-independent (4×4 matrices) and neighbor-
dependent (16×16 matrices) nucleotide substitutions. Neighbor-independent and neighbor-
dependent substitution matrices have been used to describe the non-coding sequences [14-16] 
like core promoter region [17] and TFBS [18-21].  TFs have been structurally classified based 
on sequence features of TFBS [22] and it has been also shown that a pair of TFs may have a 
co-localized TFBS [23]. 

Although non-coding DNA constitutes majority of most eukaryotic genomes, relatively little 
is known about its function or the nature of its functional classification. Here we characterize 
the functional classification of human and mouse TFBS with the help of information content. 
Characterizing the pattern of clustering within TFBS allows us to explore the nature of their 
functional classification. 

2 Materials and methods 

TFBS data sets 

The sequences in JASPAR database [24] are annotated and experimentally demonstrated 
TFBS profiles for multicellular eukaryotes. It is an open-access TF binding profile database 
that contains over a hundred TFBS profiles of Drosophila melanogaster, Arabidopsis 
thaliana, Zea mays, Homo sapiens, Mus musculus etc.  We have downloaded (Table 1) and 
studied only the TFBS for human (Table 2) and mouse (Table 3). The sequences in this 
database are organized in a FASTA format and also contain the frequencies of the four bases 
for the selected positions.  

Table 1: Database and the corresponding organism with number of TFBS used in the present 
study 

S.No Database Organism No of TFBS 

1 JASPAR Human 41 

2 JASPAR Mouse 13 

Each TFBS is a collection of binding sites with already aligned sequences of different lengths.  
The lengths vary between 5-20 nucleotides and have been used without modifications. This 
implies that the longer sequences have better recognition properties and is expected to have a 
lower noise threshold (and vice-versa). 

Table 2: Human transcription factors with the recognized TFBS and their lengths 

S.No Name of TF  Class of TF Total of 
TFBS 

Length 
of TFBS 

1 Elk-1 ETS 28 10 
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2 NRF-2 ETS 7 10 

3 SAP-1 ETS 20 9 

4 SPI-1 ETS 57 6 

5 SPI-B ETS 49 7 

6 FREAC-4 FORKHEAD 20 8 

7 SOX-9 HMG 76 9 

8 SRY HMG 28 9 

9 Pbx HOMEO 18 12 

10 MEF2 MADS 58 10 

11 SRF MADS 46 12 

12 COUP-TF NUCLEAR RECEPTOR 13 14 

13 PPARgamma-RXRal NUCLEAR RECEPTOR 41 20 

14 PPARgamma NUCLEAR RECEPTOR 28 20 

15 RORalfa-1 NUCLEAR RECEPTOR 25 10 

16 RORalfa-2  NUCLEAR RECEPTOR 36 14 

17 RXR-VDR NUCLEAR RECEPTOR 10 15 

18 p53 P53 17 20 

19 Pax6 PAIRED 43 14 

20 c-REL REL 17 10 

21 p50 REL 18 11 

22 p65 REL 18 10 

23 AML-1 RUNT  38 9 

24 Irf-2 TRP-CLUSTER 12 18 

25 E2F  Unknown 10 8 

26 MZF_1-4 ZN-FINGER, C2H2 20 6 

27 MZF_5-13 ZN-FINGER, C2H2 16 10 

28 RREB-1 ZN-FINGER, C2H2 11 20 

29 SP-1 ZN-FINGER, C2H2 8 10 

30 Yin-Yang ZN-FINGER, C2H2 17 6 

31 GATA-2 ZN-FINGER, GATA 53 5 

32 GATA-3 ZN-FINGER, GATA 63 6 

33 Hen-1 bHLH 54 12 

34 Tal 1 beta-E47S bHLH 44 12 

35 Thing-E47 bHLH 29 12 

36 Max bHLH-ZIP 17 10 

37 Myc-Max bHLH-ZIP 21 11 
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38 USF bHLH-ZIP 30 7 

39 CREB bZIP  16 12 

40 E4BP4 bZIP  23 11 

41 HLF bZIP  18 12 

 

Table 3: Mouse transcription factors with the recognized TFBS and their lengths 

S.No Name of TF Class of TF Total of TFBS Length of TFBS 

1 SOX17 HMG 31 9 

2 Sox-5  HMG 23 7 

3 EN-1 HOMEO 10 11 

4 Nkx HOMEO 17 7 

5 S8 HOMEO 59 5 

6 Bsap PAIRED 12 20 

7 Pax-2 PAIRED 31 8 

8 Brachyury T-BOX 40 11 

9 Evi-1 ZN-FINGER, C2H2 47 14 

10 ARNT bHLH  20 20 

11 Ahr-ARNT bHLH  24 24 

12 n-MYC bHLH-ZIP 31 31 

13 Spz-1 bHLH-ZIP 12 12 

Calculation of information content from TFBS 

Information content is calculated from the mono and dinucleotide substitution matrices of 
multiple aligned sequences (already aligned in the database used). Mononucleotide 
substitutions (Figure 1A) in multiple aligned sequences will give neighbor-independent 
nucleotide substitution matrices. The replacements are calculated in each column of the block 
and the summed results of all columns are stored in a 4×4 matrix. The total number of 

nucleotide pairs (observed frequency, ,i jq ) in a given block is w ( 1)
2

s s −  and the total number 

of nucleotides (expected frequency, ip ) in the block is ws , where s is the number of 
nucleotides in the given position and w is the block width. The resulting 4×4 matrix is used to 
calculate the “log-odds” (usually logarithm of base 2) and is given by ,   2log ,i j

i j
i j

q

p p
s = [25,26]. 

Dinucleotide substitutions (Figure 1B) in multiple sequence alignment will give neighbor-
dependent substitution matrices. The total number of dinucleotide pairs (observed frequency, 

,ij klq ) in a given block is (w-1) ( 1)
2
s s −  and the total number of dinucleotides (expected 

frequency, ijp ) is given by ( 1)w s− , where s is the number of sequences and w is the block 
width.  The resulting 16×16 matrix is used to calculate the log-odds and is given by 
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,
, 2  log ij kl

ij kl
ij kl

q
s

p p
= . The average mutual information content (H) is the relative entropy of the 

target and background pair frequencies and can be thought of as a measure of the average 
amount of information (in bits) available per nucleotide pair [26]. The average mutual 
information content in a given block of neighbor-independent and neighbor-dependent 

substitution matrices is given by 2log ij
ijij ijij ij

i j

q
H q qs

p p
= =∑ ∑  and 

,
,, ,, , 2log ij kl

ij klij kl ij klij kl ij kl
ij kl

q
H q qs

p p
= =∑ ∑  respectively. 

 
(A) 

A1·A2·A3·A4·… … … ·AN 
B1·B2·B3·B4·… … … ·BN 
C1·C2·C3·C4·… … … ·CN 
… ·… ·… ·… ·… … … ·… 
 

(B) 
 
A1·A2·A3·A4·… … … ·AN 
B1·B2·B3·B4·… … … ·BN 
C1·C2·C3·C4·… … … ·CN 
… ·… ·… ·… ·… … … ·… 
 

Figure 1: The principle of counting the frequencies illustrated diagrammatically. (A) The left 
side diagram shows the counting principle for neighbor-independent frequency determination.  
The three lines show the nucleic acid bases corresponding to the TFBS already aligned in the 
database.  The solid box is used for determination of the actual frequencies and the counts for 
A2-B2, A2-C2 and B2-C2 are put in a 4×4 matrix.  Then the counting box is shifted by one 
position (dotted box) and the process is repeated. (B) In the right side illustration, we indicate the 
counting principle for neighbor-dependent (pair-wise) determination of frequencies. In this 
illustration, we get the actual counts for A2A3-B2B3, A2A3-C2C3, B2B3-C2C3 and these are 
placed in a 16×16 matrix.  The counting box is next moved right by one base position (shown by 
the dotted box) and the process continued till the TFBS region is completed.  See text for the 
details. 

Noise computations 

To ascertain the reliability of the results, we have computed the information content based on 
a sample sequence (of length 20 nucleotides) selected at random.  The sample sequence was 
subjected to a BLAST search against the respective genome (NCBI sample BLAST with 
default parameters) and BAC clone sequences were excluded from the results. Finally, 18 best 
matches for human genome and 14 best matches for mouse genome were taken.  The 
information content was computed based on neighbor-independent and neighbor-dependent 
procedures as described above. These values are indicated in the histograms as horizontal 
dotted lines. These values reflect the typical random sequences present in the respective 
genome to be considered as a reference for comparison. The statistical errors (standard errors) 
are also indicated in the histograms in the conventional way. 

Functional classification of TFBS 

We have used the information content as a basis for classification of the results obtained. We 
stress that the actual protein sequences were not involved in this computations-only their 
TFBS.  The plotting was done using the PHYLIP suite of software [27]. We have used only 
the UPGMA and plotting packages from this suite. UPGMA -Unweighted Pair Group Method 
with Arithmetic mean [28] is a simple data clustering method used for the creation of 
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phylogenetic trees. Here the input data is a collection of information content values of TFBS 
and the output is a clustered tree. Initially, each object is in its own cluster. At each step, the 
nearest two clusters are combined into a higher-level cluster. The distance d ij  between any 
two clusters ( )C i and )( jC  is taken to be the average of all distances between pairs of objects 

from each cluster. ( ), ( )
1( ) ( )

( ) ( ) p in C i q in C jd ij d pq
C i C j

= ∑ . Where )(iC  and )( jC  denote the 

number of sequences in clusters i and j, respectively. Distance matrix is developed for 
drawing the tree with DRAWGRAM of PHYLIP.  Note that the labels in the graphs have 
been taken from the class-names of the proteins (as given in the database) involved and 
therefore can occur at multiple places. 

3 Results 

The information content calculated for the 41 and 13 TFBS of human and mouse respectively 
is presented as a histogram in Figure 2. The dotted line shows typical values of information 
content for random sequences as a reference of comparison. The error bars (standard errors) 
calculated on the basis of the elements of the information content matrix (4×4 matrix for the 
neighbor-independent and 16×16 matrix for the neighbor- dependent) are shown on the 
histograms in the usual way (they are sufficiently small to be invisible for the graphs on the 
right Figure2: 1B and 2B). 

One interesting pattern that is noticed in the two graphs is that they are quite similar but not 
same. In particular when we compare graphs in Figure 2, we find that neither the largest peaks 
nor the smallest peaks correspond with each other.  We conclude that the consideration of the 
neighbor dependence provides additional information but the broad features are similar 
(strong peaks remain big and weak peaks are also weak in both). 

We also note another aspect with respect to the random sequence information content.  The 
random sequence chosen is not expected to correspond to a TFBS. If we consider the 
neighbor-independent plot (Figure 2: 1A and 2A), the information content of the random 
sequence is 0.3211 and 0.3863 bits for human and mouse respectively (this corresponds to the 
dotted horizontal line). We note that these random sequence information content values are 
nearly mean to the actual TFBS information content values (here random sequence 
representing actual TFBS). When we consider the neighbor-dependent graphs (Figure2: 1B 
and 2B) the information content of the random sequence is 2.101 and 2.227 bits for human 
and mouse respectively (this corresponds to the dotted horizontal line) we note that only one 
(for humans) or two (for mice) are above the line. This suggests that there exists a strong and 
specific correlation between the neighbor nucleotides in the TFBS regions. This correlation is 
significantly different from the typical genome regions (as represented by the dotted line). 

http://journal.imbio.de/
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Figure 2: The average mutual information content H (in bits) of TFBS (calculated by (A; left) 
neighbor-independent and (B; right) neighbor-dependent nucleotide substitutions) of human (1A 
and 1B) and mouse (2A and 2B). The dotted line represents information content of random 
sequence of their genome. The bars of the histograms represent the standard errors of the 16 
H ij neighbor-independent substitution matrices. In case of neighbor dependent substitution 
matrices, (256 ,ij klH ) the error bars have been calculated as the standard errors of these 256 
elements. The standard errors have been actually plotted but cannot be seen, as they are too 
small in case of neighbor-dependent. 

Even though the neighbor-dependency is observed in TFBS, the information content values of 
both neighbor-independent and neighbor-dependent substitution matrices are used for 
clustering analysis. The trees (Figure 3 and Figure 4) represent the clustering of TFBS. In a 
tree, each node with descendants represents the functional group of TFBS that has close 
information content values.  We believe that one factor may bind to multiple TFBS and cause 
initiation of transcription of a group of proteins. The results of the clustering suggest that this 
is likely to be the possible event. 
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A 

 

B 

 
Figure 3:  Functional classification of TFBS in Human; information content is calculated from 
nucleotide (A) neighbor-independent and (B) neighbor-dependent substitution matrices 
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A 

 

B 

 
Figure 4: Functional classification of TFBS in Mouse; information content is calculated from 
nucleotide (A) neighbor-independent and (B) neighbor-dependent substitution matrices 

We note that the neighbor-dependent and independent results are different in details but are 
very similar in broad appearance.  In case of mouse the two results are practically identical 
particularly at early times.  However, we fully understand that there may be effects due to 
smaller size of the sample (13 vs 41 in case of human). The information about the TFs that are 
involved in a specific gene regulation of human (Table 4) and mouse (Table 5) were collected 
from the Transcription Regulatory Regions Database (TRRD). The results of hierarchical 
clustering of TFBS of specific TFs were compared with the TFs that are involved in specific 
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gene regulation in TRRD. These results show that the computational results are comparable 
with the experimental results.   

Table 4: Human gene with number of TFs involved for their regulation and class/family name of 
TFs (Data is extracted from TRRD database [29]) 

S.No Gene name Name of TF Class/family of TF 

1 Angiotensinogen (AGT)  HNF-4 
COUP-TF 
DBP 
c/EBPdelta 
USF1 

ZN-FINGER, C2H2 
NUCLEAR RECEPTOR 
bHLH-ZIP 

bZIP 

bHLH-ZIP 

2 GammaF-crystallin (CRYGF) RAR/RXR 
Pax-6 
Prox-1  
Sox-1  
L-Maf  

NUCLEAR RECEPTOR 
PAIRED 
HOMEO 
HMG 
bZIP 

3 Multidrug resistance (MDR1) HSF1  
NF-IL6 
NF-R1 
NF-kB 
NF-Y 
YB-1 
SP1 
WT1 

HSF family 
bZIP 

bZIP 

bZIP 
CBF family 
cold-shock domain factors 
ZN-FINGER, C2H2 

ZN-FINGER, C2H2 

4 COX5B GABP  
SP1 
YY-1 
USF2 

ETS 
ZN-FINGER, C2H2 

ZN-FINGER, C2H2 

bHLH 

5 CDC25C SP1 
NF-Y 
p53 
CDF-1  
YY-1 

ZN-FINGER, C2H2 
CBF family 
P53 
CDF family 
ZN-FINGER, C2H2 

 

Table 5: Mouse gene with number of TFs involved for their regulation and class/family name of 
TFs (Data is extracted from TRRD database) 

S.No Gene name Name of TF Class/family of TF 
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1 GammaF-crystallin (CRYGF) RAR/RXR 
Pax-6 
Sox1 
Prox-1  
Six-3 

NUCLEAR RECEPTOR 
PAIRED 
HMG 
HOMEO 
HOMEO 

2 CACNA1S Sox-5 
GATA-2 
CREB  

HMG  
ZN-FINGER, GATA 
bZIP 

3 HOXA7 Antp 
Ftz 
Cad 

HOMEO 
HOMEO 
HOMEO 

4 Discussion 

The information content (relative entropy) of TFBS is used to identify the TF classes required 
to regulate a specific gene expression. When we look at two TFBS, we have information in 
the form of the differences in between these two TFBS, a measure that we can interpret as the 
distance between the TFBS. If a small distance separates two TFBS then they may have a 
common TF binding site.  

We note that apparently diverse proteins are placed closely in the classification given in this 
study. This is not surprising as their TFBS are likely to be very similar. This suggests that 
these groups of proteins may be needed together and they may share the same transcription 
factors.  Thus, out of the 41 TFBS (in humans), perhaps only 5-10 or so transcription factors 
may be actually needed (instead of 41 different transcription factors). For the mouse TFBS, 
instead of 13 transcription factors, we may have actually 5 factors. The JASPAR database 
TFBS are used in this study. The experimental data of TFs of specific gene expression from 
TRRD database is also coinciding with our computational results. This gives us a new way to 
look at the protein classification- not based on their structure or function of TFs - but by the 
nature of their transcription factor binding sites. 
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