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Abstract. The topology optimization method is used to find the distribution of material

phases that extremizes an objective function (e.g., thermal expansion coefficient, piezoelectric
coefficients etc) subject to constraints, such as elastic symmetry and volume fractions of the
constituent phases, within a periodic base cell. The effective properties of the material
structures are found using a numerical homogenization method based on a finite-element
discretization of the base cell. The optimization problem is solved using sequential linear
programming. We review the topology optimization procedure as a tool for smart materials
design and discuss in detail two recent applications of it to design composites with extreme
thermal expansion coefficients and piezocomposites with optimal hydrophone characteristics.

1. Introduction The topology optimization problem is initialized by
discretizing the design domain by a large number of elements.
Smart material systems often consist of mixtures of several Allowing each element to be either solid or void, one can
different passive and active materials. Mixing the constituent imagine that a ‘bit-map’ of the structure can be obtained by
materials in the right way makes it possible to make new smart turning on or off the individual elements or pixels. This 0/1
composites with properties beyond those of the individual problemisill posed since a refinement of the mesh results in
constituents. Whereas the modeling of composite materialsa solution with finer details [2]. In fact, it can be shown that
consisting of various passive and active materials has beerPptimal structures (at least for compliance optimization) will
studied in detail in numerous research papers, only a fewconsist of regions with infinitely fine microstructure (e.g. [3]
papers have considered the systematic design or synthesis dtnd references therein). In order to encompass composites,
smart materials. i.e. structures with fine microstructure, [1] introduced a
A promising new method for the systematic design of microscale through the u_se_of the so-callrmllnogenization
smart materials is theopology optimization methodThe approach to topology optimizatiorF-or an overview of the

topology optimization method was founded a decade ago byhoThogeni;at:o; alf proacg tt% topolggy _optirfnizat(ijop a‘rl\d its d
Bendsge and Kikuchi [1] and was originally intended for the mathematical background, the reader is referred to [4] an

design of mechanical structures. Since then, the method ha%eferences therein. Recently the method has been applied to

reached a level of maturity where it is being applied to man hree-dimensional problems (e.g. [5,6, 7]) and for multiple
. . Y ST gapp Y material problems[8]. Adisadvantage ofthe homogenization
industrial problems. In academia it is being used not only

. .” _approach is that it often produces structures with large ‘grey’
to solve structural problems but also in smart and passive PP P ge grey

terial desi hanism desi . lect hani Iregions consisting of perforated material. This problem can
material gesign, mechanism design, microe'ecromechaniCal, o, qrcome by introducing a penalization of intermediate
systems (MEMS) design and many other design problems.

. o N densities.
In the following we will introduce the topology optimization An alternative to the homogenization approach is the

in fu.rthelr. detail, review it§ applic;ations and discuss its gp (simple isotropic material with penalization [9])
applicability to smart materials design. approach (see also [10,11]). Using the SIMP approach

The basic form of a topology optimization problem can  the stiffness tensor of an intermediate density material is
be defined as followdistribute a given amount of material in Ciju(p) = Cinklpp, whereC-‘}k, is the stiffness tensor of

1

adesign domain such thatan objective functionis extremized solid material ang is the penalization factor which ensures
A typical example would be the design of a load-bearing that the continuous design variables are forced towards a
structure for maximum stiffness (or minimum compliance) black and white (0/1) solution. The influence of the penalty
where the weight should be keptunder a certainlimit. Finding parameter can be explained as follows. By specifying a value
the optimal topology corresponds to finding the optimal of p higher than one, the local stiffness for< 1 is lowered,
connectedness, shape and number of holes in the structuré¢hus making it ‘uneconomical’ to have intermediate densities
such that the objective function is extremized. in the optimal design. Even though the SIMP formulation is
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ill posed (mesh dependent), it is popular because it is easy ta Piezoelectric rods
implement in commercial finite element codes and because
the simple model allows for consideration of more advanced
problems than the compliance optimization problem. A way
of achieving well posedness of the SIMP problem is by
restricting the design space by introducing a constraint on the 3
density variation of the microstructure. This can be done by 2
introducing a perimeter constraint[12, 13, 14, 15, 16], a local [

gradient constraint [17] or a (heuristic) filtering approach ) . ) .
[18, 19] Figure 1. Sketch of the 1-3 piezocomposite construction.

giaiyiaiy
EEEEE

/ >Electrodes

Matrix material

In recent work, the SIMP approach to topology
optimization has been applied to three-dimensional problems
(e.g. [20, 21]), non-linear elasticity [22], plasticity [23, 24],
stress constraints [25, 26], controlled structures [27] and in
MEMS design [28,29,19]. It should be emphasized here

can design materials that minimize the Poisson’s ratio and
hence create materials that possess the unusual property of
having a negative Poisson'’s ratio [29]. Thermal applications
include designing materials with negative thermal expansion

that th ¢ h listed h b . coefficient or materials that could be used as thermal
at the references we have lISled here by N0 means give an, . aiors.  In the case of piezoelectricity, actuators that

e?hﬁustlvelhstmg O.f the pumeroEsollntehrginEg apphcauons maximize the delivered force or displacement can be
0 t. e topology optimization me}t od w 'Ch ave appe?re (ﬁ‘lesigned. Moreover, one can design piezocomposites that
during recentyears. Formore references the readeris referreq,, o imize the sensitivity to acoustic fields.

to the conference literature and to [4].

s o We will describe the general topology optimization
An application of the topology optimization method  rgcedure applied to two- and three-phase designs, and

of special importance to smart materials design is the concentrate on two recent applications of ours to design
design of materials with extreme elastic properties. In this composites with extreme thermal expansion coefficients and
class of topology optimization problems, the design domain piezocomposites with optimal hydrophone characteristics.
is the base cell of a periodic material and the objective Materials with extreme or unusual thermal expansion
function is to extremize some function of the effective pehavior are of interest from both a technological and
properties. The design of material structures with extreme fundamental standpoint. Zero-thermal-expansion materials
elastic properties is considered in [30, 18, 31, 32, 24], with are needed in structures subject to temperature changes such
extremethermoelastigroperties and three material phases as space structures, bridges and piping systems. Materials
in [18, 33, 34] and applications to design piezoelectric  with large thermal displacement or force can be employed as
composites are found for two-dimensional problems in [35] ‘thermal’ actuators. A fastener made of a negative thermal
and for three dimensions in [21]. expansion material, upon heating, can be inserted easily into
In this paper, we will review the topology optimization a hole. Upon cooling, it will expand, fitting tightly into the
method applied to smart composite material design based orhole.
references [33, 34, 21]. A negative thermal expansion material has the
The topology optimization procedure described here counterintuitive property of contracting upon heating.
essentially follows the steps of conventional topology Existing materials with negative expansions include glasses
optimization procedures based on the SIMP approach. Theinthetitania—silicafamily [38] atroomtemperatufesilicon
design problem s initialized by defining a design domain (the and germanium [39] at very lo@ (< 100 K), and ZrWOg
base cell) discretized by a number of finite elements. The for a wide range of7" [40]. Materials with directional
optimization procedure then consists in solving a sequencenegative expansion coefficients at room temperature include
of finite-element problems followed by changes in density Kevlar, carbon fibers, plastically deformed (anisotropic)
and/or material type of each of the finite elements, dependentlnvar (Fe—Ni alloys) [41] and certain molecular networks
on the local strain energies. For simple compliance [42].
optimization, this corresponds to adding material where the Piezoelectric transducers have been employed as sensors

strain energy density is high and removing material where and transmitters of acoustic signals in ultrasound medical
the strain energy density is low. imaging, non-destructive testing and underwater acoustics

[43, 44]. Here we consider a class of composite piezoelectric

have to determine the effective properties of the microstruc- ransducers for hydrophone applications: 1-3 composites
ture. There exist several methods to determine these prop_con5|st|ng .Of an array of . par.allel piezoceramic rods

erties. However, because the topology optimization method embedded in a polymer matrix with electrode layers on the
is based on finite-element discretizations, and because thd©P and bottpm surface; (see flggre 1.

finite-element method allows easy derivation and evaluation The anisotropic p|ezoele_ctr|c_ response Of. pure PZT

of the sensitivities of the effective properties with respect under pure hydrostatic loading is such that it has poor

to design changes, we have chosen to use a finite-elemenPydmphone performance  characteristics. Specifically,

based numerical homogenization procedure as developed inconsidera PZT rod poled in the axial directiog-tlirection)
36, 37] 9 P P subjected to hydrostatic load. The induced polarization field

. .._inthe axial direction is found to be proportional to the applied
We can use the topology procedure to design composite prop bp

. . ) . .- pressure, i.e.,
materials with extreme elastic, thermal or piezoelectric
properties. In the case of elastic properties, for example, one Dy=d’ T dY = dgy) +2d}3) (1)

At each step of the topology optimization procedure, we
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where D3 is the dielectric displacement in thg-direction, and strains, respectively, i.e.
T is the amplitude of the applied pressui,’ is the -
; i i (%) () i =C% ey —CHaPAT —C®d?E
hydrostatic coupling coefficient and;; and d;5 are ij ijki €k = Cija @ ikl Dkt Em
the longitudinal and transverse piezoelectric coefficients = Ci(’flzlgk[ — 5;%) AT — e;#jn E €)
characterizing the dielectric response for axial and lateral ! ! !
compression, respectively. Unfortunatelyy; and d.% where the overbar denotes the volume average. The effective

have opposite signs, thus resulting in a relatively small thermoelastic and piezoelectric properti€sy,, ;. A,

hydrostatic coupling factod,”. For instance, PZTS5A has 4 ang e of the composite are computed using a
dgy = 374 pCN* anddjy = —171 pCN™. Therefore,  numerical homogenization method as described in Sigmund
d\¥ = 32 pC N which is small compared tdyy,. As and Torquato [33].
we will see, a polymer/piezoceramic composite can have a The general goal is to optimize components or
sensitivity that is orders of magnitude greater than a pure combinations of components of the effective tensors by
piezoceramic device. Using a piezo/polymer composite, the distributing, in a clever way, given amounts of one or
factor of 2 on the transverse piezoelectric coefficiéfit two material phases and void within the design domain
in equation (1) can be lowered, or even change sign, if we representing a base cell of a periodic material. In other
use a soft matrix material or a matrix material with negative words, we want to design microstructural topologies that give
Poisson’s ratio (e.g. Smith [44]), thereby ensuring a much us some desirable overall thermoelastic properties. As will
higher hydrostatic charge coefficient. be seen later, materials with extreme thermal expansion or
The remainder of the paper is organized in the following piezoelectric properties tend to have low overall stiffness.
way. In section 2 we describe the topology optimization Thus, for practical applications, one must bound the effective
procedure for two and three phases and its application tostiffness or bulk moduli from below. It should also be
design of material structures with extremal effective behavior. POSSible to specify elastic symmetries such as orthotropy,
The sequential linear programming method used to solve theSAuare symmetry or isotropy of the resulting materials.
topology optimization problem s described insection2.2and ~ An optimization problem including these features can be
numerical implementation issues are discussed in section 2.3Wrtten as
Section 3 summarizes our work on the design of compositesminimize : some effective property

with extreme thermal expansion coefficients. ~Section 4 variables : distribution of one or two material phases and

reviews our work on the optimal design of matrix materials _ void in the base cell _
for 1-3 piezocomposites. Finally, in section 5 we make Subject to : constraints on volume fractions
concluding remarks. : orthotropy, square symmetry or isotropy

constraints
: lower bound constraints on stiffness
2. Procedures for two- or three-phase topology : bounds on design variables (4)
optimization
2.1. Formulation of the optimization problem
We assume perfect bonding between the material phases and

that the behavior of materials can be described by the linear THiS Subsection discusses the individual parts of the
generalized Hooke law given as optimization problem defined in equation (4). We generally

consider d-dimensional composites (with = 2 or 3)
that are comprised of two or three phases. In sections 3
and 4 we specialize to thermoelasticity and piezoelectricity,
respectively.

0ij = Cijuier — Cijuau AT — Cijudni En
= Cijuen — Bij AT — ejjmEn (2

whereCiju, 0ij, €u, o, Bij, dijm ande;j,, are the elasticity,

stress, strain, thermal strain, thermal stress, piezoelectric2-1.1. Objective function. The objective function can be
strain and piezoelectric stress tensors, respectivelyaghd ~ @ny combination of the effective coefficients given in (3).
is the temperature change afig is the electric field. We  For example, suppose we wanted to minimize the isotropic
refer toey, as the ‘thermal strain tensor’ (the resulting strain thermal expansion for a two-dimensional composite, i.e. the
of a material which is allowed to expand freely and which SUM of the thermal strain coefficients in the horizontal and

is subjected to increase in temperature of one unit) and tothe vertical directions. In this case, the objective function
Bi; as the ‘thermal stress tensor’ (the stress in a material Will & f (‘?‘fj)) = apy + “_;*2)’ where subscripts 11 and 22
which is not allowed to expand and which is subjected to define horizontal and vertical directions, respectively.
increase in temperature of one unit). Equivalent definitions

can be made for the piezoelectric strain and stress tedisgrs ~ 2.1.2. Design variables and mixture assumption. Phase
ande;;,,. For the two- or three-phase composite of interest, 1 material has the stiffness tensdﬁjl,zl, thermal strain
the constitutive equation (2) is valid on a local scale (with coefficient tensor;’ and piezoelectric strain coefficient

SCLﬂ,B)e rsizl)ptz(’(ntz), d(<lm)) a;ndd (2<31>E;p;: dn?ﬁ : :: ;:riscrgss:rt'si;;'gtensond,.(/.lk). Similarly, phase 2 material has the stiffness tensor
ijklr & i Cij '

ij *Fij o Yijm ijm 2) . .. 2) . .
(with superscript () appended to the properties). In the latter C;j» thermal strain coefficient tensaf_i and piezoelectric

A . . . ) .
case, the stresses and strains are averages over local stresséi&ain coefficient tensod;;,. The stiffness tensor of the
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Design domain (base cell) Periodic material structure relaxed by allowing the material at a given point to be a
T { mixture of the three phases. This makes it possible to find
,_.’ = ma x sensitivities with respect to design changes, which in turn

I ‘ allows us to use mathematical programming methods to solve
. the optimization problem. At the end of the optimization
procedure however, we hope to have a design where each
element is either void, phase 1 or phase 2 material.
Y, 5 5 5 Using a simple artificial mixture assumption, the
] local stiffness and thermal strain coefficient tensors in
elemente can be written as a function of the two design

M

B rhase | material variablesr{ andx;
K Phase 2 material @ @
(] Void Ciin(x1, x3) = (x7)" [(l —x3)Cji +x§Cijkl:| (5)
e ey _ _ ey, D e (2)
Figure 2. Design domain and discretization for a three-phase, j(xp) = (1= xp)ey;” + x50 (6)
e . giscre - S o (1 @
two-dimensional topology optimization problem. Each square dfjk(xé) = (1— xé)di(jlz + xgdiﬂz )

represents one finite element which can consist of either phase 1 or
2 material or void. wherey is a penalization factor discussed later. The variable
x5 € [xmin, 1] can be seen as a local density variable with
x; = xmin Meaning that the given element is ‘void’ and
x; = 1 meaning that the given element is solid material. The
. variablex$ € [0, 1] is a ‘mixture coefficient’ withx; = 0
i o R ‘ meaning that the given element is pure phase 1 material and
Smaw “sam x5 = 1 meaning that it is pure phase 2 material. The local
‘ ¥ thermal strain tenscu;’j (x%) is not dependent on the density
e H variablexj. This can be explained by the fact that once we
5" ufl have chosen the local material mixture (i.e. the valugspf
- the thermal strain coefficient does not change with density.
It should be emphasized that the local material
Void element: assumptions equations (6) only are valid for the design
variables taking the extreme values. Nevertheless, during
X > O the design process we allow intermediate values meaning
three-dimensional topology optimization problem. Each square - . e . S .
represents one finite element which can consist of either phase 1 Fhat we _a.re working with artificial maFerlaIs._ This V'Ola_t'on
material or void. is not critical as long as we end up with a discrete design as
discussed in the introduction.

Experience shows that the penalty paramgtdrould be
given values ranging from 3 to 10 depending on the design
problem. The influence of the penalty parameter can be
explained as follows: Let us assume thfit= 0 in element.

The local stiffness tensor dependencegiofequation (5)) can

then be Writtep agy, (x]) = (xf)"C((l.lj)k,). By specifyin'g
a value ofn higher than one, the local stiffness for fixed
x§ < 1lis lowered, thus making it ‘uneconomical’ to have

intermediate densities in the optimal design.

Design domain (base cell) Periodic material structure

-+

Solid element: -

Figure 3. Design domain and discretization for a two-phase,

‘'void’ phase is taken as a small numbey;, times C(>,,,
respectively, where,,;, = 1074, for reasons which will be
explained later.

The material type, that is, material phase 1, phase 2 or
void, can vary from finite element to finite element as seen
in figure 2 for the three-phase, two-dimensional problem
or figure 3 for the two-phase, three-dimensional problem.
With a fine finite-element discretization, this allows us to
define complicated composite topologies within the design
domain. Having discretized the design domain (the periodic . . . )
base cell) withv finite elements, the design problem consists 2-1-3- Constraints on volume fractions. Having defined

in assigning either phase 1, 2 or void to each element suchth® design variables, andx, above, and assuming that the
that the objective function is minimized. design domain has been discretizedMyinite elements of

Even for a small number of elements, this integer- volumeY¢, the volume fractions of the three phases can be
type optimization problem becomes a huge combinatorial c@lculated as the sums

problem which is impossible to solve. For a small design 1

problem withN = 100, the number of different distributions == ZXf(l —x3)Y¢

of the three material phases would be astronomic&P (3 YA

5 x 10*"). As each function evaluation requires a full finite 1 (8)
element analysis, it is hopeless to solve the optimization c®== Zx{ngf

problem using random search methods such as genetic Y=

algorithms or simulated annealing methods, which use a O 1_.D_.@

large number of function evaluations and do not make use
of sensitivity information. Following the idea of standard whereY is the volume of the base cell. For a specific design
topology optimization procedures, the problem is therefore problem, we might want to constrain the volume fractions of
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the phases. This can be done by defining two volume fraction2.1.6. Lower bound constraints on design variables. For
constraints as computational reasons (singularity of the stiffness matrix in

@ > @ the finite element formulation), the lower bound on design
N Ny N ) variablex? is set tox,,;,, Not zero §,,;, = 10~%). Numerical

1 mins min

experiments show that the ‘void’ regions have practically
no structural significance and can be regarded as real void
regions. The bounds on the design variables can thus be
written as O< x,,;, < xj < 1and 0< x5 < 1.

1
Cin < ¢V < e,
wherec'? | ¢? ¢ andc@ are lower and upper bounds
on the volume fractions of material 1 and 2, respectively. By
setting the lower bound constraint equal to the upper bound
constraint, it is possible to fix the volume fractions of the

individual phases. i N S
2.1.7. The final optimization problem. An optimization

problem including the above mentioned features can now be

2.1.4. |sotropy or square symmetry constraints. For written as

the purpose of designing materials with either orthotropic, o
square symmetric or isotropic elastic parameters, suchminimize : ®(z1, x2) = f(e;;’, B;°) +r1€rmor,,
constraints must be implemented in the optimization + 15 €ITOl5, + '3 €ITOL horm

roblem. Orthotropy of the materials can be obtained simpl : .
P e - Py . .. Py SUbJeCt to Litmin) S gi(Cl.(;-"k),) i=1....M
by specifying at least one geometrical symmetry axis in the . -
base cell. o <P <,
To illustrate this point, we consider for simplicity @ @ @
* Ymin X = “max

orthotropy in two dimensions with the understanding that
similar statements can be made for three-dimensional
composites.  Assuming that a material structure is 0<z2<1 (11)

orthotropic, the cond(iii)on for square symmetry of the \yherez, andz, are theN-vectors containing the design
elasticity tensor is that; ), — Cjsh, = 0, and the conditions  yariables, the three penalty parametersan be set to zero
for isotropy of the elasticity tensor under the plane stress or non-zero values, depending on the desired symmetry type,
assumption are that; 7}, — C;35, = 0 and(Ciyh; + Cooyy) — andM is the number of constraints.
2(C\Y, + 2C55) = 0. Such conditions are difficult
to implement as equality. constraints. in an .optimi.zatio.n 2.2. Sequential linear programming method
problem because the starting guess might be infeasible (i.e.
anisotropic). Therefore, it is chosen to implement the Topology optimization problems in the literature often
constraints as a penalty function added to the cost function.consist in the optimization of a simple energy functional
The penalty function is defined as the squared error in (e.g.compliance or eigenfrequencies) with a single constraint
obtaining either square symmetry, elastic or thermal isotropy, on material resource, and these problems can therefore be
times the penalization factors, r, andrs, respectively. It solved very efficiently using optimality criterion methods.
should be noted here that three 60 degree symmetry lines ofin this paper, however, we are considering several different
a microstructure is a sufficient but not a necessary condition objective functions and multiple constraints which can
for isotropy. Indeed, this paper shows examples of isotropic not be written in energy forms and therefore it will be
material structures with only one line of symmetry. The cumbersome if not impossible to formulate the optimization
errors in obtaining square symmetry or isotropy, respectively, problem as an optimality criterion problem. Instead we will
can be written as use a mathematical programming method called sequential
€W 2 Iinegr programming (SLP),Which consists in the sequential
error,, = ' ) solving of an approximate linear subproblem, obtained by
(C +C502 writing linear Taylor series expansions for the objective and
constraint functions. The SLP method was successfully used
[(C Th1+ Compp) — 2(Cipny+ 2C 5212)] in optimization of truss structures [46] and was evaluated as
4 o o + eITor,. a robust, efficient and easy to use optimization algorithm in
(Crn* Coz2) (10) a review paper [47].

Using the sequential linear programming method, the
optimization problem equation (11) is solved iteratively. In
each iteration step, the optimization problem is linearized
around the current design poifit1, x>} using the first part
of a Taylor series expansion and the vector of optimal
design change§Axq, Ax,} is found by solving the linear
programming problem

:O<mmin<ml<l

errok,, =

Expressions similar to errgrand erroy;, are also known

in the literature of composite materials (e.g. [45]) as the
practical composite parametets and Us. The error for
thermal isotropy is denoted by erfgy.,..

2.1.5. Lower bound constraints on effective stiffness.
Low stiffness is generally undesirable and therefore we will

generally introduce a lower bound constraint on the Young’s 90 Hd

moduli E* in the ith direction or on the bulk modulus ~ minimize : ® +{ 7} {Azy, Ao}

k® of the material. Such constraints can be written as day” ;

giminy < 8(C{)). For example, in the case of 2D isotropic SUDIECL O 2 — o < | 08 08 (A2 Aws)
materials, we can impose a lower bound constraint on the ! Li(min) — 8i 921" Dz 1, Az
bulk modulus k(), < k™ = (C{73;+ CS) /2 +C1i5))/2). i=l...M
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lower bound on the stiffness, selecting isotropy type and
symmetry lines. For the 2D case, we choose the design
domain discretization, using 900 or 3600 four-node linear
displacement finite elements, corresponding to 30 by 30 or
60 by 60 element discretizations, depending on accuracy

Initialization
(Starting guess)

Homogenization demands and available computing time. To save computer

(Finite element problems) time, a design problem can first be solved on a 30 by 30
] element mesh. When a solution has been reached, each of the

Sensitivity analysis elements is divided into four and the procedure is continued

(Linearization) until convergence. For the 3D case, we use 16 by 16 by 16

(= 4096), 8-node trilinear elements.

Optimization step
(Linear Programming problem) 2.3.2. Starting guess. The starting distribution of densities

, and material types (i.e. starting values of the design variable

vectorse; andzs) is up to the user. Having absolutely noidea

of what the solution will look like, a random distribution of
densities and material types is chosen as the starting guess. If
the user has anidea of what the solution will look like or he has

yes
St an old solution to a similar problem, a considerable amount
°p of computing time is saved by using this (old) topology as a
(Plot results) starting guess.
Figure 4. Flowchart of the design algorithm. 2.3.3. Homogenization step. The equilibrium equations

for the homogenization problem derived in Sigmund and
r Torquato [33] are solved using the finite-element method
} {Azy, Axy} applied to calculation of effective material properties in

G R CIN {acm ac®
[36, 37].

. C s T
min 3$1 3$2
@

max

@

<c —c

- @ < {30(2) dc? 2.3.4. Sensitivity analysis. The sensitivity analysis
« C2min — 50

dxy dxo necessary to solve the linear programming problem in

< Comar — @ equation _(12) is derived in_ _Si_g_mur_ld and Torquato [33]. The

computation of the sensitivities is fast because they can

HAmy, Arar} < {Axy, Awg} < {Azw, Azv} e found from the strain fields already computed by the
(12)  homogenization procedure.

T
} {Azq, Az}

where Axzy;, Axyr, Azyy and Azyy are move-limits on
the design variables. The move-limits are adjusted for the

absolute limits given in equations (11). programming solver DSPLP [48] from the SLATEC library.

The applied move-limit strategy is important for the LS L
stable convergence of the algorithm. Here we use the simplefa‘S the optimization is non-sparse, the DSPLP routine is

rule that the move-limit for a specific design variable is invoked with an option for no sparsity. Nevertheless, the

increased by a factor of 1.4 if the change in the design variablerOUtIne has proven _faster and demands_ Iess_storage space
has the same sign for two subsequent steps. Similarly thethan other LP-algorithm te;ts. Recent |nyest|gat|ons have
move-limit is decreased by a factor of 0.6 if the change in the shown that other mathematical programming methods may

design variable has opposite signs for two subsequent stepsl():;n([)lrz]?mc'em in solving topology optimization problems

2.3.5. Linear programming problem. The linear
programming problem eqution (12) is solved using a linear

2.3. Numerical implementation issues . . . .
P 2.3.6. Convergence. The iterative design procedure is

This subsection describes the numerical implementation of repeated until the change in each design variable from step
the three-phase topology optimization problem including to step is lower than 1@ (by experience).
the finite-element discretization and procedures, the linear
programming package DSPLP [48] from the SLATEC 237  Problems related to topology optimization.
Iibrary, control of move-limits and a flowchart of the App|y|ng the t0p0|ogy Optimization method to different
procedure. design problems, one often encounters regions of alternating
A flowchart of the design algorithm is shown in figure 4. sojid and void elements, referred to as checkerboards, in
The individual steps of the design procedure are described inthe ‘optimal solutions’. These regions appear due to bad
the following. numerical modeling and must be avoided. Furthermore, there
is a strong mesh-dependency meaning that topologically
2.3.1. Initialization.  First, we initialize the design different solutions appear when the mesh is changed or
problem by selecting the objective function, specifying a refined. The mesh-dependency is due to non-existence or
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non-unigueness of solutions. For further explanations of 30
the checkerboard and mesh-dependency problems, the reade

is referred to a recent review paper [49]. To avoid the =
checkerboard and mesh-dependency problems we here us 5 20
the ‘mesh-independency scheme’ suggested in [18, 19] (see
also [49)).

T T T

maximum B(')/B“)

—
——
———

—_
[~
T

2.3.8. Local minima. The topology optimization problem

is very prone to converge to local minima. However,
introducing the mesh-independency scheme [18, 19] makes
it possible to prevent this problem to a certain extent. Solving
a cell design problem is typically done as follows. First
we solve the optimization problem with a low value of
the low-pass filter parameter, i.e., we do not allow rapid

variation in the element densities. This results in a design 20 0o 0.05 0.10 015 020 028
with large areas of intermediate densities but it also prevents Effective bulk modulus &/

the design converging to a local minimum (binary design). e 5 Bounds for th hase desi . The circl
H _ : H ijgure o. ounds Tor tnree-pnase design exampie. e Clrcles
Gradually, we increase the low-pass filter parameter, in with letters a—d denote the compuited values for the

turn letting the design problem converge. In that way, icrostructures of the four design examples.
we gradually arrive at a solution which is entirely binary

and which is, hopefully, a global optimum. To make sure
that the actually obtained microstructures are indeed globa .
optima, the same optimization problem is always solved shear moduli of the phases are then

e ——
——

”~
- OObtained values |

7/ ——- Schapery-Rosen-Hashin bounds
/ —— Gibiansky-Torquato bounds

i

ot

(=
T

Effective thermal strain coefficient o
<

(the composite is macroscopicically isotropic. The bulk and

using differing starting guesses, move-limit strategies and E® _ E®

choices of low-pass filter parameter and penalty parameterk’ = 20— v0) p = 20 +00) i=012
n. However, topologically different solutions with similar (13)
values of the objective function have been found when solving

specific design problems. Solutions which are ‘shifted’ Bounds on the effective thermal strain coefficiefft <

(translated half a base cell dimension) of other solutions «™® < oY) of three-phase, isotropic composites were found
have also been encountered. The fact that the effectivein [50,51]. A bounded domain of possible effective bulk
properties of the design examples are close to theoreticalmoduli and thermal strain coefficients for a specific choice
bounds supports our belief that we are finding the optimal of constituent phases is shown in figure 5. We found that
topologies with the proposed design procedure. the proposed design method did not yield pair®’ (™)

that were close to the 26-year-old Schapery—Rosen—Hashin
2.3.9. Computing time. For the 2D problems, one bounds [51]. There were two possible explanations for
design iteration typically takes three seconds (30 by 30 this discrepancy: either the design method could not find
element discretization) or 20 seconds (60 by 60 element the optimal solutions, or the bounds themselves could be
discretization) on an Indigo 2 work station. To arrive at an improvedupon. Indeed, the latter explanation turned outto be
optimal solution, depending on starting guess, a couple of true. Inspired by the above mentioned discrepancy Gibiansky
thousand iterations may be needed. For 3D problems eactnd Torquato [52] recently found improved bounds, which

iteration may take 2 minutes (for a 16 by 16 by 16 element are also shown in figure 5. As will be seen in the subsequent
discretization). section, the solutions obtained by the design procedure are

very close to the new bounds.

Examination of the thermoelastic bounds in figure 5
reveals that extreme values (e.g. negative values) of thermal
strain coefficients only are possible for low bulk moduli. If
we simply tried to minimize/maximize the thermal strafi,

3. Thermoelastic properties

In this section, we review in some detail our work on the

use of topology optimization to design three-phase, two- Id end ith K ial. Theref h

dimensional composites with extremal thermal expansion wewoulden up wit averywea material. T erefore, t. ere

behavior [33, 34]. is a tradeoff between extremizing thermal strain coefficients
’ on the one hand and ending up with a stiff material on the

. other.
3.1. Rigorous bounds

Rigorous bounds on the effective coefficients of three- 32 Design examples

phase sotropic composites serve to benchmark the design

algorithm.  Here, for simplicity, we assume that the In this section, we will first discuss design examples with
constituent phases are isotropic which implies that they canmixtures of hypothetical materials. These examples are used
be described by their Young’s moduti®, E® and E@, to benchmark the design algorithm for three-phase design.
their Poisson’s ratios @, v and v@ and their thermal ~ We will also study other design examples that utilize real
strain coefficients@, o anda®@. It is also assumed that ~materials as constituent phases.
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Figure 6. Design example (b): optimal microstructures for minimization of effective thermal strain coefficient corresponding to the circle b
in figure 5. The white regions denote void (phase 0), the filled regions consist of low-expansion material (phase 1) and the cross-hatched
regions consist of high-expansion material (phase 2).

3.2.1. Pilotting results. During the iterative procedure, (b), the lower bound onthe possible thermal strain coefficient
a Postscript plot of the topology is generated every tenis —5.567 < o™ /aM. In example (c), the upper bound
iterations. The plot shows the current density and material on possible bulk modulus for zero thermal expansion is
distribution in the base cell, thus allowing the user to follow k®/kY < 0.0692. The upper bound on the thermal stress
the evolution of the microstructure and interact if necessary. coefficient in design example (d) B*/8® < 3.15 (for

The plots in the following sections show the optimal density k*/k® = 0.237).

and material type distributions for the different design The effective properties for examples (a)—(d) are shown
problems. If an element is predominantly material phase intable 1 and plotted as small circles in figure 5. Studying the
two (i.e.,x; > 0.5), the element is illustrated by a cross graphinfigure 5, we see that the obtained effective values are
with grey scale denoting the density; white means void  far away from the original Schapery—Rosen—Hashin bounds.
(x5 = xmin) and black means solid{ = 1). Ifthe elementis  This discrepancy inspired Gibiansky and Torquato to try to
predominantly material phase one (ix.,< 0.5), itis shown improve the bounds and indeed improvement was possible
as a filled rectangle with grey values interpreted as before.as seen in figure 5. The effective values of the examples
For all examples, we both show the resulting topologies (a)—(d) are still somewhat away from the improved bounds.
represented by a single base cell (the design domain) andThis can be explained by the fact that the new bounds by
as a repeated microstructure consisting of 3 by 3 base cells. Gibiansky and Torquato have not been proven to be optimal.
Furthermore, it is our experience that a finer finite-element
mesh makes it possible to get closerto the bounds. Inexample
(a), the minimum thermal strain coefficient obtained for a
The Gibiansky—Torquato three-phase bounds are used to30 by 30 mesh i&™® = —3.59 anda™ = —4.17 for the
benchmark the design algorithm for three-phase design. Thego by 60 element discretization shown in figure 6. Due to

3.3. Hypothetical designs

material data for the two phases are choseA @3 E® = 1, computer time limitations, it has not been possible to try out
v =1v®@ =0.3,a®/a® = 10, and the volume fractions finer discretizations.
are prescribed to hé? = ¢? = 0.25(i.e.c” = 0.5). Note The resulting topology for design example (b) is shown

that the volume fractions are held fixed for this hypothetical  in figures 6. The actual mechanisms behind the extreme
composite, to allow for comparison with the bounds and for thermal expansion coefficients of the material structures

easy interpretation of the results. _ can be difficult to understand. To visualize one of the
Four three-phase design examples, constrained to bemechanisms, the (exaggerated) displacement, due to an
elastically isotropic, are considered as follows: increase in temperature of the microstructure in figure 6

(bottom), is shown in figure 7. Studying figure 7, we
note that there appears to be contact between parts of the
microstructure. This contact is only due to the magnification
of the displacements used in the illustration. The simple
linear modeling used here can not take such problems into
account. Nevertheless, it would be interesting to extend the
analysis to include non-linear behavior including contact,
which would open up a whole new world of interesting design
possibilities. We will leave these extensions to future studies.
When allowing low bulk moduli (as in example (b)),
the main mechanism behind the extreme (negative) thermal
expansion is theeentrant cell structurehaving bimaterial
components which bend and cause large deformation when
heated. The bimaterial interfaces of design example (b) bend
The Schapery—Rosen—Hashin and Gibiansky—Torquatoand make the cell contract, similar to the behavior of negative
theoretical bounds are shown figure 5. In examples (a) andPoisson’s ratio materials [53]. The topological results for

(a) Minimization of theisotropicthermal strain coefficient
a® /a® with a lower bound constraint on the effective
bulk modulus given as 10% of the theoretically attainable
bulk modulus, i.ek®/k® = 0.0258. Horizontal
geometric symmetry is specified.

(b) Same as design example (a) but with horizontal, vertical
and diagonal (geometric) symmetry.

(c) Maximization of bulk modulug®™ /k® for fixed zero
thermal expansion™ /a® = 0. Horizontal geometric
symmetry is specified.

(d) Maximization of isotropic thermal stress coefficient
B® /D with horizontal, vertical and diagonal
geometric symmetry.

372



Topology optimization

Table 1. Thermoelastic parameters for optimal three-phase microstructures composed of hypothetical materials compared with the bounds.

Objective k(*)/k(l) a(*)/a(l) ﬁ(*)/ﬂ(l)
Example constraint (bound) v® (bound) (bound)
(a) Min. a® /a® 0.0258 0.039 -4.17

k™ /k® > 0.0258 (5.567)
(b) Min. a«® /a® 0.0258 0.51 -4.02

k® kD > 0.0258 (5.567)
(c) Max. k) / k@ 0.692 0.54 0

a®/a® < 0.0 (0.0814)
(d) Max. g /gD 0.243 0.51 3.01

(3.15)

Figure 7. Thermal displacement of the negative thermal
expansion microstructure in figure 6 (bottom).

the designs (a), (c) and (d) are quite different from (b).
The interested reader is referred to works of Sigmund and
Torquato [33, 34] to see these differences.

3.4. Mixtures of real materials

For the design of new materials with extreme thermal

expansion coefficients, the two base materials should be of 0.04. 0.52 and 0.055

equal stiffness but widely differing thermal strain coefficients
Two materials fulfilling this requirement are isotropic Invar
(Fe—36% Ni) and nickel as discussed in the introduction.
For the next design examples, the volume fractions of the
material phases are unconstrainedrhis will allow for a
wider range of minimum and maximum values, in contrast
to the hypothetical examples (a)—(d) in which the volume
fractions were fixed.

The material properties of Invar and nickel can be found
in [54]. The Young’s moduli are 150 GPa and 200 GPa,
respectively, Poisson’s ratios are 0.31 for both and the thermal
expansion coefficients are8um mK=* and 134 yum mK-1,
respectively.

(e) Minimization of theisotropicthermal stress coefficient
8. Horizontal geometric symmetry is specified.

(f) Minimization of the vertical thermal stress coefficient
ﬂé*;). Horizontal and vertical symmetry is specified.

(g) Minimization of the vertical thermal stressEy” ayy.

Horizontal and vertical symmetry is specified.

(h) Maximization of theverticalstrain(a*),, with constraint
on vertical Young's modulugy” > 5 GPa. Horizontal
and vertical symmetry is specified.

The resulting topologies are shown in figures 8, 9 and
10, and their effective properties are shown in table 2.

To overcome the positive thermal expansion of other
surrounding materials, we seek to maximize ¢batraction
force i.e., minimize the isotropic thermal stress coefficient
as in example (e). The obtain&btropic contraction stress
of example (e) isg™ —77.6 GPa. By relaxing the
isotropy requirement and allowing orthotropic materials the
directionalcontraction stress can be increased. Inexample (f)
we minimize the value oBS; and obtain the effective value
By = —210 GPa. Minimizing the value ¢f5; gives us a
composite which fofixed boundariefhias high contraction
force (remember that the thermal stress coeffigiéfitis the
stress in a material constrained at the boundaries). If we want
to maximize the contraction force for a material with free
boundaries, we should minimize the prod(gg)(a*),, as
done in example (h). The ‘free boundary’ stress of example
(f) is (E3)(a*)22 = —14 GPa, whereas the ‘free boundary’
stress of example (g) iE3)(«*)22 = —138 GPa.

If we want to maximizethe expansion stress of the
composite, the best choice would be to take solid nickel
material both for the isotropic and the directional cases.

The isotropic negative thermal expansion materials in
examples (a), (b) and (e) all have positive Poisson’s ratios
respectivelyghowing that there
is no mechanistic relationship between negative thermal
expansion and negative Poisson’s ratio

In example (h) we see again that allowing orthotropy can
lead to highdirectional expansion coefficients. The vertical
coefficient(a*),, of example (h) is 2.6 times higher than for
solid nickel, but at the cost of a low vertical Young’s modulus
(2.5% of solid nickel).

4. Piezocomposite design

In this section, we review our work on the use of topology
optimization to design three-dimensional, anisotropic porous
composites with negative Poisson’s ratios (in certain
directions) for use as the matrix phase in 1-3 piezocomposites
[21]. A schematic of the piezocomposite is shown in figure 1.
Thus, we seek the optimal design of the matrix shown in this
figure.

The use of piezocomposites in hydrophone design has
been studied in several papers. Hydrophones composed
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Figure 8. Example (e): optimal microstructure for minimization of the isotropic thermal stress coeffféienThe white regions denote
void (phase 0), the filled regions consist of Invar (phase 1) and the cross-hatched regions consist of nickel (phase 2).

Figure 9. Examples (f) (top) and (@) (bottom): optimal microstructures for minimization of thermal stress coeﬁﬁﬁe@op) and

minimization of vertical contraction stre,ﬁé"’a;*z). The white regions denote void (phase 0), the filled regions consist of Invar (phase 1) and
the cross-hatched regions consist of nickel (phase 2).

Figure 10. Example (h): optimal microstructure for maximization of thermal strain in the vertical dire@ﬁ@lnThe white regions denote
void (phase 0), the filled regions consist of Invar (phase 1) and the cross-hatched regions consist of nickel (phase 2).

of piezoelectric rods in solid polymer matrices have been effect. A more sophisticated analysis has recently been
tested experimentally in [55,43, 56]. Using simple models given by Avellaneda and Swart [59] using the so-called
in which the elastic and electric fields were taken to
be uniform in the different phases, Haun and Newnham ) )
[57], Chan and Unsworth [58] and Smith [44] qualitatively the effective performance factors: the hydrostatic charge
explained the enhancement due to the Poisson ratiocoefficientd;, the hydrostatic voltage coefficiergt; and

differential-effective-medium approximationThey found
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Table 2. Thermoelastic parameters for optimal microstructures made of Invar (phase 1) and nickel (phase 2).

a® E® B

(01 /a))  (EyV/ESY) @ (B /85
Example Objective gmmK-1)  (GPa) WY (kPaKl) /@
Invar 0.8 150 0.31 174 1/0
Nickel (Max. B®) 13.4 200 0.31 3884 o1
(e) Figure 8 Min.g® -4.97 14.8 0.055 —77.6 0.60/0.28
(f) Figure 9 Min. g5 9.98/-1.59 9.19/8.75-0.80/~0.76 258210  0.49/0.38
(9) Figure 9 Min.ESPaly)  5.42/-4.68  69.9/29.5  0.059/0.025 372129  0.60/0.30
(h) Figure 10 Maxaby 23.4/35.0 1.09/5.00-0.14/-0.62 2.01/174 0.38/0.46

the electromechanical coupling factéf as functions of 4.1.1. Properties of the piezoceramic and polymer. The
the effective moduli of the composite and simple structural ceramic rods and the polymer (that will make up the solid
parameters. In [59], it is assumed that the matrix material is material in the designed porous matrix) are specified. The

isotropic. actual properties of the PZT-ceramic rods are taken as
Recently, Gibiansky and Torquato [60] found theoretical 120 75 75

bounds for hydrophone design using the elastic properties ch — [ 75 120 75J:| « 10° Pa

of the matrix material as design variables. In contrast to 75 75 11

Avellaneda and Swart [59], they allowed the matrix material ® >

to be transversely isotropic. However, they did not consider ej3=—2>4Cm (14)

finding the actual matrix microstructure corresponding to the e — 158 C m2

optimal elastic properties. In very recent work [21], we 3 i

took the first steps towards closing this gap by designing g3y = 82Tsg

the optimal microstructural matrix topology simultaneously T6) - o _

with the optimization of the hydrophone performance. wheree;;” is the free body axial dielectric constant. The

Less research has been devoted to the design of threeYoUng's modulus and the Poisson’s ratio of the amorphous
dimensional microstructures. Three-dimensional optimal POlymer are taken to be2x 10° Pa and 0.37, respectively.
rigidity materials can be made as microstructures with severalTherefore' the polymer stiffness tensor is given by
length scales and the design of trusslike microstructures with 44 26 26
extreme elastic properties as described in Sigmund [31]. cP = [2.6 4.4 2.6} x 10° Pa

However, neither of these methods give practically realizable 26 26 44

microstructures. AP _ L0 g (15)
Sigmundet al [21] have designed practically realizable 13 =78

three-dimensional microstructures using the topology g;@ = 3.5¢.

optimization method. They did so in the context of finding ) , . )

matrices that optimize the performance characteristics of | "¢ value of the dielectric constant in vacuum is

1-3 piezocomposites. They considered fixed topology of . 1 10° 2 (16)

the rods (vertical rods) and assumed them to be PZT. The ~ 47 8.98755N m?’

microstructural topology of the matrix material and the The minimum value of the in-plane bulk modulus of the
volume fraction of piezoelectric rods were taken to be the mayix material is chosen as 3% of solid polymer K., =

design variables. Using the topology optimization method, g 11 x 10° Pa and the minimum volume fraction of the

they found the optimal matrix topology using the analytical piezoceramic isf,,, = 0.01.

formulas for the effective piezoelectric moduli developed

by Avellaneda and Swart [59]. In contrast to this two-Step 4 3 5  Optimization. Our objective is to design the best

procedure, Silveet al [35] have used a direct optimization  magriy material (consisting of voids distributed throughout

approach for the case of two-dimensional piezocomposites, polymer) in order to maximize hydrophone performance

but with a fixed rod topology as we assumed. indices. The effective hydrostatic charge coefficigfit is
defined as

4.1. Design examples A (f @) = d$) (f, @) + 245 (f, ) (17)

Sigmundet al [21] considered designing optimal matrices where we explicitly include the dependence on the element
(using a specific polymer material) for four different densitiesr of the discretized base cell (modeling the matrix
piezocomposites. Here we discuss only two of these designsmaterial) and the volume fraction of piezoelectric rofls
piezocomposites with maximuaf” and maximum(k;*)2. embedded in the matrix. The effective non-dimensional
The base cell is discretized with 16 by 16 by 15 4096) electromechanical coupling factor

cubic finite elements. By variable linking due to symmetry, 4 5

the number of design variables (element densities) can be (k,(,*))z(f, x) = (d,”(f, x)) (18)
decreased to 4098 = 512. g5 (f. )3, (f, @)
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Table 3. Effective values for pure piezoceramic, optimal piezocomposite with solid matrix and optimal piezocomposite with
topology-designed matrix.

dy g4 dvg)
Ex. Objective  f (PCNYH  (PCNY)  (PCNY) pPayt *)?2 »nPayt
Pure ceramic
1.0 -171 374 32 0.068 0.0061 0.011

Solid matrix with rods

Max. d\” 0.211 —125 318 68 150 0.0065 0.22

Max. (k)2 0.041 —67 167 41 3.87 0.0135 0.29
Optimal matrix with rods
a Max. d\” 0.042 75 346 497 399 0.049 79
b Max. (k)2 0.010 —4 356 348 685 0292 23

where e33”(f,x) is the effective free body axial

dielectric constant and™ (£, z) is the effective dilatational
compliance.  We choose to work with the squared
electromechanical coupling factor since this has a physical
meaning of electrical energy output divided by mechanical
energy input.

Using the analysis of Avellaneda and Swart [59], we
can re-express all of the above effective relations explicitly
in terms of the effective transverse bulk modulus of the
composite [21]. Following Gibiansky and Torquato [52],
the effective transverse bulk modulus is taken to be equal
to the lower Hashin—Shtrikman bound, implying that the ‘
piezoelectric rods should be ordered in a hexagonal array to|
ensure optimality of the composite. Thus, first we compute |
the effective properties of the matrix composite material
(polymer and voids) and then we calculate the effective
performance indices of the piezocomposite (composed of the|
piezoceramic rods and matrix composite material) via the
aforementioned analytical expressions. Figure 11. Example a: optimal microstructure (one unit cell) for

Given the piezoelectric performance coefficients in Maximization of the piezoelectric charge coefficieft.
terms of the matrix microstructural design variables
(the element densities) and the volume fraction of the (3) find the effective piezocomposite properties as functions

piezoelectric rodg, we consider two design examples: of the element densities and the volume fraction of
(a) maximization of/(*": ?;?;%T;?mc rodg’ using the aforementioned analytical
(b) maximization of(k;”)2. (4) find the r;ydrophone performance coefficients using the
More specifically, we study the following optimization formulas given in [21];

problems: (5) find optimal f by performing golden sectioning loop

over steps 3, 4 and 5 until convergence;

R (942
maximize :|d;"| or (k; ") (6) perform sensitivity analysis (with respect to density

variables : volume fractiorf and element densities change of each finite element);
subject to : transversal isotropy of the matrix material (7) change matrix topology (element densities) using linear
and : lower bound constraint on bulk modulus of programming;
the matrixk ™ (8) go to step 2 (repeat until convergence).
and . lower bound constraint on the volume

The resulting microstructure topologies are shown in
fraction of piezorody. (19) figures 11 and 13, and the resulting hydrophone properties
are shown in table 3. In what follows, we will discuss
the individual examples and the mechanisms behind the
enhanced properties.

The design procedure consists of the following steps:

(1) take a (porous) matrix material, described by a cubic
base cell, discretized by finite elements;

(2) find the effective matrix stiffness properties as a 4.1.3. Example a: maximization Ofdﬁl*). The resulting
function of the element densitiasusing the numerical ~ optimal microstructure for maximization of the hydrostatic

homogenization method and finite-element analysis;  charge coefficienf,(l*) is seen in figure 11.

376



Topology optimization
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Figure 12. Schematic representation of an equivalent
two-dimensional structure that yields the (vertical) negative
Poisson'’s ratio behavior of example a (figure 11). Left: front (1-3
plane) view. Right: side (2—3 plane) view. When the

microstructures are compressed horizontally (solid arrows), they ~ Figure 13. Example b: optimal microstructure (one unit cell) for
contract vertically (dashed arrows). maximization of the effective electromechanical coupling factor

(k2.

The resulting effective properties of the matrix material

are Piezoelectric rods

0.246 Q018 -0.072 S m—
cm :[ 0.018 0246 —0.072} x 10°Pa  (20) — — =§
—0.072 -0.072 0216 = N r——— A, sr————— G se——
I \ﬁ ————
or vl = Vi) = —0.027,0%) = —027, 0 = —0.34 T
and the horizontal and vertical Young's modui” = Matrix material

(Layer wise solid and void)

0.23 x 10° Pa andey” = 0.18 x 10° Pa, respectively. We
note tha_t the vertical PO'SSS’”'S ratiois negatlye, which me"’}nSFigure 14. Interpretation (vertical cut) of the piezo-composite
that horizontal forces are inverted and act like compressive gesign for maximization ofk*)2.

forces and resultin the enhancement of the hydrostatic charge '
coefficient. This meansthatthe negative Poisson’s ratio of the

: . A o . From figure 14, we see that the optimal hydrophone
matrix material makes the effecti 3)-coeff|C|ent positive, g P yarop

h hancing th I hvd ic behavi composition is a layered structure of matrix material with
thus enhancing the overall hydrostatic behavior. embedded piezoelectric rods. The explanation for this is that

Thef_negaulvle Pmsgon(;s_ﬁr_atl? beha""’F of th_?_ mlt_:rosf_ruc- the optimization procedure tries to decouple the horizontal
ture in figure 11 can be difficult to imagine. To visualize -y ceg working ond\?, leading to an overall piezoelectric
the mechanism behind the negative Poisson’s ratio behav- - )

charge coefficient nearly equal dés .

ior, we show a two-dimensional interpretation in figure 12.
Seen from the front (1-3 plane), the negative Poisson’s ra- ) ) )
tio behavior is seen to resemble the mechanism behind the#-1-5. Manufacturing. A number of different techniques
inverted honeycomb structure [61,62]. Seen from the side "OW exist to fabricate our optimal three-dimensional
(2-3 plane), the mechanism is seen to be slightly different. Microstructures. We have employed [21] an approach that
Note that the material structure does not need to be hexagolS based on a stereolithography method developed by 3-

nal or fully symmetric to be transversally isotropic (see for D Systéms, Inc. [64]. In this method, a laser beam is
example [63] or [33]). focused onto a photocurable solution or a dispersion to induce

photocuring of an agent in the continuous liquid phase. The
desired object is built layer by layer by spreading a thin
film, with layer thicknesses between 50 and 20®, and
then laser curing the film to define a pattern. The layering
is repeated multiple times until a desired three dimensional
The optimal matrix properties for this example are body is completed (figure 15). The two-dimensional sections
are created from a three-dimensional solid AutoCAD file and
231 086 001 the motion of the laser beam to cure the two-dimensional
cm = [0.86 231 0.01} x 10° Nm~2 (21) section is controlled by a computer interpreting the CAD
0.01 001 002 file. Although this method was first developed to fabricate
- ) ) ) polymeric prototypes, it has now been extended to ceramics
or " = vy = 037, v;z" = 0003, v3;7 = 032, wjth the use of highly concentrated colloidal suspensions
E™ =2.0x 10° Paande{” = 0.02 Pa. [65, 66].

4.1.4. Example b: maximization of G:EL*))Z. The resulting
optimal microstructure for maximization of the effective
electromechanical coupling fact(jf,(f))2 is seen in figure 13

and an interpretation is seen in figure 14.
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Figure 15. Prototype of one base cell made by stereolithography.

Our approach will be ideal for testing out the optimal
models produced by the formalism established in this paper.
A prototype [21] consisting of one base cell in larger scale
(0.8 cm cubed) for the design in Whidﬁ) is maximized (see
figure 11) is shown in figure 15. The base cell was produced

by the aforementioned manufacturing technique. Recently, [11]

we have fabricated a cubic sample consisting of 5 x 5
cells. We are now in the process of making experimental
measurements of the stiffness tensor of this sample matrix

theoretical predictions of the elastic moduli. Moreover, we
will test the performance of the piezocomposite made up of
our optimally designed matrices and piezoceramic rods. [

5. Conclusions

It is seen that the topology optimization technique
(which relies on the finite-element method, homogenization
techniques, sensitivity analysis and sequential linear

programming) is a very promising means of designing [17]

new composite sensors and actuators for smart materials

applications. We discussed two applications: design of (18

composites with extreme thermal expansion coefficients and

piezocomposites with optimal hydrophone characteristics. [19]

In the case of the piezocomposites, we considered fixed
topology of the ceramic rods. The next step will be to let the

shape of the rods be free to vary as well. This can be donel20]

using the three-phase topology method developedin Sigmund

and Torquato [33, 34] as discussed in the general section 2.[21]

We emphasize that the topology optimization technique also
is a useful way to design devices for MEMS applications

[28, 29, 19]. [2
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