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Abstract. The topology optimization method is used to find the distribution of material
phases that extremizes an objective function (e.g., thermal expansion coefficient, piezoelectric
coefficients etc) subject to constraints, such as elastic symmetry and volume fractions of the
constituent phases, within a periodic base cell. The effective properties of the material
structures are found using a numerical homogenization method based on a finite-element
discretization of the base cell. The optimization problem is solved using sequential linear
programming. We review the topology optimization procedure as a tool for smart materials
design and discuss in detail two recent applications of it to design composites with extreme
thermal expansion coefficients and piezocomposites with optimal hydrophone characteristics.

1. Introduction

Smart material systems often consist of mixtures of several
different passive and active materials. Mixing the constituent
materials in the right way makes it possible to make new smart
composites with properties beyond those of the individual
constituents. Whereas the modeling of composite materials
consisting of various passive and active materials has been
studied in detail in numerous research papers, only a few
papers have considered the systematic design or synthesis of
smart materials.

A promising new method for the systematic design of
smart materials is thetopology optimization method. The
topology optimization method was founded a decade ago by
Bendsøe and Kikuchi [1] and was originally intended for the
design of mechanical structures. Since then, the method has
reached a level of maturity where it is being applied to many
industrial problems. In academia it is being used not only
to solve structural problems but also in smart and passive
material design, mechanism design, microelectromechanical
systems (MEMS) design and many other design problems.
In the following we will introduce the topology optimization
in further detail, review its applications and discuss its
applicability to smart materials design.

The basic form of a topology optimization problem can
be defined as follows:distribute a given amount of material in
a design domain such that an objective function is extremized.
A typical example would be the design of a load-bearing
structure for maximum stiffness (or minimum compliance)
where the weight should be kept under a certain limit. Finding
the optimal topology corresponds to finding the optimal
connectedness, shape and number of holes in the structure
such that the objective function is extremized.

The topology optimization problem is initialized by
discretizing the design domain by a large number of elements.
Allowing each element to be either solid or void, one can
imagine that a ‘bit-map’ of the structure can be obtained by
turning on or off the individual elements or pixels. This 0/1
problem is ill posed since a refinement of the mesh results in
a solution with finer details [2]. In fact, it can be shown that
optimal structures (at least for compliance optimization) will
consist of regions with infinitely fine microstructure (e.g. [3]
and references therein). In order to encompass composites,
i.e. structures with fine microstructure, [1] introduced a
microscale through the use of the so-calledhomogenization
approach to topology optimization. For an overview of the
homogenization approach to topology optimization and its
mathematical background, the reader is referred to [4] and
references therein. Recently the method has been applied to
three-dimensional problems (e.g. [5, 6, 7]) and for multiple
material problems [8]. A disadvantage of the homogenization
approach is that it often produces structures with large ‘grey’
regions consisting of perforated material. This problem can
be overcome by introducing a penalization of intermediate
densities.

An alternative to the homogenization approach is the
SIMP (simple isotropic material with penalization [9])
approach (see also [10, 11]). Using the SIMP approach
the stiffness tensor of an intermediate density material is
Cijkl(ρ) = C0

ijklρ
p, whereC0

ijkl is the stiffness tensor of
solid material andp is the penalization factor which ensures
that the continuous design variables are forced towards a
black and white (0/1) solution. The influence of the penalty
parameter can be explained as follows. By specifying a value
of p higher than one, the local stiffness forρ < 1 is lowered,
thus making it ‘uneconomical’ to have intermediate densities
in the optimal design. Even though the SIMP formulation is
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ill posed (mesh dependent), it is popular because it is easy to
implement in commercial finite element codes and because
the simple model allows for consideration of more advanced
problems than the compliance optimization problem. A way
of achieving well posedness of the SIMP problem is by
restricting the design space by introducing a constraint on the
density variation of the microstructure. This can be done by
introducing a perimeter constraint [12, 13, 14, 15, 16], a local
gradient constraint [17] or a (heuristic) filtering approach
[18, 19].

In recent work, the SIMP approach to topology
optimization has been applied to three-dimensional problems
(e.g. [20, 21]), non-linear elasticity [22], plasticity [23, 24],
stress constraints [25, 26], controlled structures [27] and in
MEMS design [28, 29, 19]. It should be emphasized here
that the references we have listed here by no means give an
exhaustive listing of the numerous interesting applications
of the topology optimization method which have appeared
during recent years. For more references the reader is referred
to the conference literature and to [4].

An application of the topology optimization method
of special importance to smart materials design is the
design of materials with extreme elastic properties. In this
class of topology optimization problems, the design domain
is the base cell of a periodic material and the objective
function is to extremize some function of the effective
properties. The design of material structures with extreme
elastic properties is considered in [30, 18, 31, 32, 24], with
extremethermoelasticproperties and three material phases
in [18, 33, 34] and applications to design ofpiezoelectric
composites are found for two-dimensional problems in [35]
and for three dimensions in [21].

In this paper, we will review the topology optimization
method applied to smart composite material design based on
references [33, 34, 21].

The topology optimization procedure described here
essentially follows the steps of conventional topology
optimization procedures based on the SIMP approach. The
design problem is initialized by defining a design domain (the
base cell) discretized by a number of finite elements. The
optimization procedure then consists in solving a sequence
of finite-element problems followed by changes in density
and/or material type of each of the finite elements, dependent
on the local strain energies. For simple compliance
optimization, this corresponds to adding material where the
strain energy density is high and removing material where
the strain energy density is low.

At each step of the topology optimization procedure, we
have to determine the effective properties of the microstruc-
ture. There exist several methods to determine these prop-
erties. However, because the topology optimization method
is based on finite-element discretizations, and because the
finite-element method allows easy derivation and evaluation
of the sensitivities of the effective properties with respect
to design changes, we have chosen to use a finite-element
based numerical homogenization procedure as developed in
[36, 37].

We can use the topology procedure to design composite
materials with extreme elastic, thermal or piezoelectric
properties. In the case of elastic properties, for example, one

Figure 1. Sketch of the 1–3 piezocomposite construction.

can design materials that minimize the Poisson’s ratio and
hence create materials that possess the unusual property of
having a negative Poisson’s ratio [29]. Thermal applications
include designing materials with negative thermal expansion
coefficient or materials that could be used as thermal
actuators. In the case of piezoelectricity, actuators that
maximize the delivered force or displacement can be
designed. Moreover, one can design piezocomposites that
maximize the sensitivity to acoustic fields.

We will describe the general topology optimization
procedure applied to two- and three-phase designs, and
concentrate on two recent applications of ours to design
composites with extreme thermal expansion coefficients and
piezocomposites with optimal hydrophone characteristics.

Materials with extreme or unusual thermal expansion
behavior are of interest from both a technological and
fundamental standpoint. Zero-thermal-expansion materials
are needed in structures subject to temperature changes such
as space structures, bridges and piping systems. Materials
with large thermal displacement or force can be employed as
‘thermal’ actuators. A fastener made of a negative thermal
expansion material, upon heating, can be inserted easily into
a hole. Upon cooling, it will expand, fitting tightly into the
hole.

A negative thermal expansion material has the
counterintuitive property of contracting upon heating.
Existing materials with negative expansions include glasses
in the titania–silica family [38] at room temperatureT , silicon
and germanium [39] at very lowT (< 100 K), and ZrW2O8

for a wide range ofT [40]. Materials with directional
negative expansion coefficients at room temperature include
Kevlar, carbon fibers, plastically deformed (anisotropic)
Invar (Fe–Ni alloys) [41] and certain molecular networks
[42].

Piezoelectric transducers have been employed as sensors
and transmitters of acoustic signals in ultrasound medical
imaging, non-destructive testing and underwater acoustics
[43, 44]. Here we consider a class of composite piezoelectric
transducers for hydrophone applications: 1–3 composites
consisting of an array of parallel piezoceramic rods
embedded in a polymer matrix with electrode layers on the
top and bottom surfaces (see figure 1).

The anisotropic piezoelectric response of pure PZT
under pure hydrostatic loading is such that it has poor
hydrophone performance characteristics. Specifically,
consider a PZT rod poled in the axial direction (x3-direction)
subjected to hydrostatic load. The induced polarization field
in the axial direction is found to be proportional to the applied
pressure, i.e.,

D3 = d(∗)h T d
(∗)
h = d(∗)33 + 2d(∗)13 (1)
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whereD3 is the dielectric displacement in thex3-direction,
T is the amplitude of the applied pressure,d(∗)h is the
hydrostatic coupling coefficient andd(∗)33 and d

(∗)
13 are

the longitudinal and transverse piezoelectric coefficients
characterizing the dielectric response for axial and lateral
compression, respectively. Unfortunately,d(∗)33 and d(∗)13
have opposite signs, thus resulting in a relatively small
hydrostatic coupling factord(∗)h . For instance, PZT5A has
d
(∗)
33 = 374 pC N−1 andd(∗)13 = −171 pC N−1. Therefore,
d
(∗)
h = 32 pC N−1 which is small compared tod(∗)33 . As

we will see, a polymer/piezoceramic composite can have a
sensitivity that is orders of magnitude greater than a pure
piezoceramic device. Using a piezo/polymer composite, the
factor of 2 on the transverse piezoelectric coefficientd

(∗)
13

in equation (1) can be lowered, or even change sign, if we
use a soft matrix material or a matrix material with negative
Poisson’s ratio (e.g. Smith [44]), thereby ensuring a much
higher hydrostatic charge coefficient.

The remainder of the paper is organized in the following
way. In section 2 we describe the topology optimization
procedure for two and three phases and its application to
design of material structures with extremal effective behavior.
The sequential linear programming method used to solve the
topology optimization problem is described in section 2.2 and
numerical implementation issues are discussed in section 2.3.
Section 3 summarizes our work on the design of composites
with extreme thermal expansion coefficients. Section 4
reviews our work on the optimal design of matrix materials
for 1–3 piezocomposites. Finally, in section 5 we make
concluding remarks.

2. Procedures for two- or three-phase topology
optimization

We assume perfect bonding between the material phases and
that the behavior of materials can be described by the linear
generalized Hooke law given as

σij = Cijklεkl − Cijklαkl1T − CijkldmklEm
= Cijklεkl − βij1T − eijmEm (2)

whereCijkl , σij , εkl , αkl , βij , dijm andeijm are the elasticity,
stress, strain, thermal strain, thermal stress, piezoelectric
strain and piezoelectric stress tensors, respectively, and1T

is the temperature change andEm is the electric field. We
refer toαkl as the ‘thermal strain tensor’ (the resulting strain
of a material which is allowed to expand freely and which
is subjected to increase in temperature of one unit) and to
βij as the ‘thermal stress tensor’ (the stress in a material
which is not allowed to expand and which is subjected to
increase in temperature of one unit). Equivalent definitions
can be made for the piezoelectric strain and stress tensorsdijm
andeijm. For the two- or three-phase composite of interest,
the constitutive equation (2) is valid on a local scale (with
superscripts (0), (1) and (2) appended to the properties, e.g.
C
(m)
ijkl , α

(m)
ij , β(m)ij , d(m)ijm ande(m)ijm) and the macroscopic scale

(with superscript (*) appended to the properties). In the latter
case, the stresses and strains are averages over local stresses

and strains, respectively, i.e.

σ ij = C(∗)ijklεkl − C(∗)ijklα(∗)kl 1T − C(∗)ijkld(∗)mklEm
= C(∗)ijklεkl − β(∗)ij 1T − e(∗)ijmEm (3)

where the overbar denotes the volume average. The effective
thermoelastic and piezoelectric properties,C

(∗)
ijkl , α

(∗)
kl , β(∗)ij ,

d
(∗)
mkl and e(∗)ijm of the composite are computed using a

numerical homogenization method as described in Sigmund
and Torquato [33].

The general goal is to optimize components or
combinations of components of the effective tensors by
distributing, in a clever way, given amounts of one or
two material phases and void within the design domain
representing a base cell of a periodic material. In other
words, we want to design microstructural topologies that give
us some desirable overall thermoelastic properties. As will
be seen later, materials with extreme thermal expansion or
piezoelectric properties tend to have low overall stiffness.
Thus, for practical applications, one must bound the effective
stiffness or bulk moduli from below. It should also be
possible to specify elastic symmetries such as orthotropy,
square symmetry or isotropy of the resulting materials.

An optimization problem including these features can be
written as

minimize : some effective property
variables : distribution of one or two material phases and

void in the base cell
subject to : constraints on volume fractions

: orthotropy, square symmetry or isotropy
constraints

: lower bound constraints on stiffness
: bounds on design variables. (4)

2.1. Formulation of the optimization problem

This subsection discusses the individual parts of the
optimization problem defined in equation (4). We generally
considerd-dimensional composites (withd = 2 or 3)
that are comprised of two or three phases. In sections 3
and 4 we specialize to thermoelasticity and piezoelectricity,
respectively.

2.1.1. Objective function. The objective function can be
any combination of the effective coefficients given in (3).
For example, suppose we wanted to minimize the isotropic
thermal expansion for a two-dimensional composite, i.e. the
sum of the thermal strain coefficients in the horizontal and
the vertical directions. In this case, the objective function
will be f (α(∗)ij ) = α

(∗)
11 + α(∗)22 , where subscripts 11 and 22

define horizontal and vertical directions, respectively.

2.1.2. Design variables and mixture assumption. Phase
1 material has the stiffness tensorC(1)ijkl , thermal strain

coefficient tensorα(1)ij and piezoelectric strain coefficient

tensord(1)ijk . Similarly, phase 2 material has the stiffness tensor

C
(2)
ijkl , thermal strain coefficient tensorα(2)ij and piezoelectric

strain coefficient tensord(2)ijk . The stiffness tensor of the
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Figure 2. Design domain and discretization for a three-phase,
two-dimensional topology optimization problem. Each square
represents one finite element which can consist of either phase 1 or
2 material or void.

Figure 3. Design domain and discretization for a two-phase,
three-dimensional topology optimization problem. Each square
represents one finite element which can consist of either phase 1
material or void.

‘void’ phase is taken as a small numberxmin timesC(1)ijkl ,
respectively, wherexmin = 10−4, for reasons which will be
explained later.

The material type, that is, material phase 1, phase 2 or
void, can vary from finite element to finite element as seen
in figure 2 for the three-phase, two-dimensional problem
or figure 3 for the two-phase, three-dimensional problem.
With a fine finite-element discretization, this allows us to
define complicated composite topologies within the design
domain. Having discretized the design domain (the periodic
base cell) withN finite elements, the design problem consists
in assigning either phase 1, 2 or void to each element such
that the objective function is minimized.

Even for a small number of elements, this integer-
type optimization problem becomes a huge combinatorial
problem which is impossible to solve. For a small design
problem withN = 100, the number of different distributions
of the three material phases would be astronomical (3100 =
5× 1047). As each function evaluation requires a full finite
element analysis, it is hopeless to solve the optimization
problem using random search methods such as genetic
algorithms or simulated annealing methods, which use a
large number of function evaluations and do not make use
of sensitivity information. Following the idea of standard
topology optimization procedures, the problem is therefore

relaxed by allowing the material at a given point to be a
mixture of the three phases. This makes it possible to find
sensitivities with respect to design changes, which in turn
allows us to use mathematical programming methods to solve
the optimization problem. At the end of the optimization
procedure however, we hope to have a design where each
element is either void, phase 1 or phase 2 material.

Using a simple artificial mixture assumption, the
local stiffness and thermal strain coefficient tensors in
elemente can be written as a function of the two design
variablesxe1 andxe2

Ceijkl(x
e
1, x

e
2) = (xe1)η

[
(1− xe2)C(1)ijkl + xe2C

(2)
ijkl

]
(5)

αeij (x
e
2) = (1− xe2)α(1)ij + xe2α

(2)
ij (6)

deijk(x
e
2) = (1− xe2)d(1)ijk + xe2d

(2)
ijk (7)

whereη is a penalization factor discussed later. The variable
xe1 ∈ [xmin, 1] can be seen as a local density variable with
xe1 = xmin meaning that the given element is ‘void’ and
xe1 = 1 meaning that the given element is solid material. The
variablexe2 ∈ [0, 1] is a ‘mixture coefficient’ withxe2 = 0
meaning that the given element is pure phase 1 material and
xe2 = 1 meaning that it is pure phase 2 material. The local
thermal strain tensorαeij (x

e
2) is not dependent on the density

variablexe1. This can be explained by the fact that once we
have chosen the local material mixture (i.e. the value ofxe2),
the thermal strain coefficient does not change with density.

It should be emphasized that the local material
assumptions equations (6) only are valid for the design
variables taking the extreme values. Nevertheless, during
the design process we allow intermediate values meaning
that we are working with artificial materials. This violation
is not critical as long as we end up with a discrete design as
discussed in the introduction.

Experience shows that the penalty parameterη should be
given values ranging from 3 to 10 depending on the design
problem. The influence of the penalty parameter can be
explained as follows: Let us assume thatxe2 = 0 in elemente.
The local stiffness tensor dependence ofxe1 (equation (5)) can
then be written asCeijkl(x

e
1) = (xe1)

ηC
(1)
(ijkl). By specifying

a value ofη higher than one, the local stiffness for fixed
xe1 < 1 is lowered, thus making it ‘uneconomical’ to have
intermediate densities in the optimal design.

2.1.3. Constraints on volume fractions. Having defined
the design variablesx1 andx2 above, and assuming that the
design domain has been discretized byN finite elements of
volumeY e, the volume fractions of the three phases can be
calculated as the sums

c(1) = 1

Y

N∑
e=1

xe1(1− xe2)Y e

c(2) = 1

Y

N∑
e=1

xe1x
e
2Y

e

c(0) = 1− c(1) − c(2)

(8)

whereY is the volume of the base cell. For a specific design
problem, we might want to constrain the volume fractions of
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the phases. This can be done by defining two volume fraction
constraints as

c
(1)
min 6 c(1) 6 c(1)max c

(2)
min 6 c(2) 6 c(2)max (9)

wherec(1)min, c
(2)
min, c

(1)
max andc(2)max are lower and upper bounds

on the volume fractions of material 1 and 2, respectively. By
setting the lower bound constraint equal to the upper bound
constraint, it is possible to fix the volume fractions of the
individual phases.

2.1.4. Isotropy or square symmetry constraints. For
the purpose of designing materials with either orthotropic,
square symmetric or isotropic elastic parameters, such
constraints must be implemented in the optimization
problem. Orthotropy of the materials can be obtained simply
by specifying at least one geometrical symmetry axis in the
base cell.

To illustrate this point, we consider for simplicity
orthotropy in two dimensions with the understanding that
similar statements can be made for three-dimensional
composites. Assuming that a material structure is
orthotropic, the condition for square symmetry of the
elasticity tensor is thatC(∗)1111−C(∗)2222= 0, and the conditions
for isotropy of the elasticity tensor under the plane stress
assumption are thatC(∗)1111−C(∗)2222= 0 and(C(∗)1111+C(∗)2222)−
2(C(∗)1122 + 2C(∗)1212) = 0. Such conditions are difficult
to implement as equality constraints in an optimization
problem because the starting guess might be infeasible (i.e.
anisotropic). Therefore, it is chosen to implement the
constraints as a penalty function added to the cost function.
The penalty function is defined as the squared error in
obtaining either square symmetry, elastic or thermal isotropy,
times the penalization factorsr1, r2 andr3, respectively. It
should be noted here that three 60 degree symmetry lines of
a microstructure is a sufficient but not a necessary condition
for isotropy. Indeed, this paper shows examples of isotropic
material structures with only one line of symmetry. The
errors in obtaining square symmetry or isotropy, respectively,
can be written as

errorsq = (C
(∗)
1111− C(∗)2222)

2

(C
(∗)
1111+C(∗)2222)

2

erroriso =
[
(C

(∗)
1111+C(∗)2222)− 2(C(∗)1122 + 2C(∗)1212)

]2

(C
(∗)
1111+C(∗)2222)

2
+ errorsq .

(10)
Expressions similar to errorsq and erroriso are also known
in the literature of composite materials (e.g. [45]) as the
practical composite parametersU2 andU3. The error for
thermal isotropy is denoted by errortherm.

2.1.5. Lower bound constraints on effective stiffness.
Low stiffness is generally undesirable and therefore we will
generally introduce a lower bound constraint on the Young’s
moduli E(∗)i in the ith direction or on the bulk modulus
k(∗) of the material. Such constraints can be written as
gi(min) 6 gi(C(∗)ijkl). For example, in the case of 2D isotropic
materials, we can impose a lower bound constraint on the
bulk modulus (k(∗)min 6 k(∗) = ((C(∗)1111+C(∗)2222)/2 +C(∗)1122)/2).

2.1.6. Lower bound constraints on design variables. For
computational reasons (singularity of the stiffness matrix in
the finite element formulation), the lower bound on design
variablexe1 is set toxmin, not zero (xmin = 10−4). Numerical
experiments show that the ‘void’ regions have practically
no structural significance and can be regarded as real void
regions. The bounds on the design variables can thus be
written as 0< xmin 6 xe1 6 1 and 06 xe2 6 1.

2.1.7. The final optimization problem. An optimization
problem including the above mentioned features can now be
written as

minimize :8(x1, x2) = f (α(∗)ij , β(∗)ij ) + r1 errorsqr
+ r2 erroriso + r3 errortherm

subject to :gi(min) 6 gi(C(∗)ijkl) i = 1, . . . ,M

: c(1)min 6 c(1) 6 c(1)max
: c(2)min 6 c(2) 6 c(2)max
: 0< xmin 6 x1 6 1

: 06 x2 6 1 (11)

wherex1 andx2 are theN -vectors containing the design
variables, the three penalty parametersri can be set to zero
or non-zero values, depending on the desired symmetry type,
andM is the number of constraints.

2.2. Sequential linear programming method

Topology optimization problems in the literature often
consist in the optimization of a simple energy functional
(e.g. compliance or eigenfrequencies) with a single constraint
on material resource, and these problems can therefore be
solved very efficiently using optimality criterion methods.
In this paper, however, we are considering several different
objective functions and multiple constraints which can
not be written in energy forms and therefore it will be
cumbersome if not impossible to formulate the optimization
problem as an optimality criterion problem. Instead we will
use a mathematical programming method called sequential
linear programming (SLP), which consists in the sequential
solving of an approximate linear subproblem, obtained by
writing linear Taylor series expansions for the objective and
constraint functions. The SLP method was successfully used
in optimization of truss structures [46] and was evaluated as
a robust, efficient and easy to use optimization algorithm in
a review paper [47].

Using the sequential linear programming method, the
optimization problem equation (11) is solved iteratively. In
each iteration step, the optimization problem is linearized
around the current design point{x1,x2} using the first part
of a Taylor series expansion and the vector of optimal
design changes{1x1,1x2} is found by solving the linear
programming problem

minimize :8 +

{
∂8

∂x1
,
∂8

∂x2

}T
{1x1,1x2}

subject to :gi(min) − gi 6
{
∂g

∂x1
,
∂g

∂x2

}T
{1x1,1x2}

i = 1, . . . ,M
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Figure 4. Flowchart of the design algorithm.

: c(1)min − c(1) 6
{
∂c(1)

∂x1
,
∂c(1)

∂x2

}T
{1x1,1x2}

6 c(1)max − c(1)

: c2min − c(2) 6
{
∂c(2)

∂x1
,
∂c(2)

∂x2

}T
{1x1,1x2}

6 c2max − c(2)
: {1x1L,1x2L} 6 {1x1,1x2} 6 {1x1U ,1x2U }

(12)

where1x1L, 1x2L, 1x1U and1x2U are move-limits on
the design variables. The move-limits are adjusted for the
absolute limits given in equations (11).

The applied move-limit strategy is important for the
stable convergence of the algorithm. Here we use the simple
rule that the move-limit for a specific design variable is
increased by a factor of 1.4 if the change in the design variable
has the same sign for two subsequent steps. Similarly the
move-limit is decreased by a factor of 0.6 if the change in the
design variable has opposite signs for two subsequent steps.

2.3. Numerical implementation issues

This subsection describes the numerical implementation of
the three-phase topology optimization problem including
the finite-element discretization and procedures, the linear
programming package DSPLP [48] from the SLATEC
library, control of move-limits and a flowchart of the
procedure.

A flowchart of the design algorithm is shown in figure 4.
The individual steps of the design procedure are described in
the following.

2.3.1. Initialization. First, we initialize the design
problem by selecting the objective function, specifying a

lower bound on the stiffness, selecting isotropy type and
symmetry lines. For the 2D case, we choose the design
domain discretization, using 900 or 3600 four-node linear
displacement finite elements, corresponding to 30 by 30 or
60 by 60 element discretizations, depending on accuracy
demands and available computing time. To save computer
time, a design problem can first be solved on a 30 by 30
element mesh. When a solution has been reached, each of the
elements is divided into four and the procedure is continued
until convergence. For the 3D case, we use 16 by 16 by 16
(= 4096), 8-node trilinear elements.

2.3.2. Starting guess. The starting distribution of densities
and material types (i.e. starting values of the design variable
vectorsx1 andx2) is up to the user. Having absolutely no idea
of what the solution will look like, a random distribution of
densities and material types is chosen as the starting guess. If
the user has an idea of what the solution will look like or he has
an old solution to a similar problem, a considerable amount
of computing time is saved by using this (old) topology as a
starting guess.

2.3.3. Homogenization step. The equilibrium equations
for the homogenization problem derived in Sigmund and
Torquato [33] are solved using the finite-element method
applied to calculation of effective material properties in
[36, 37].

2.3.4. Sensitivity analysis. The sensitivity analysis
necessary to solve the linear programming problem in
equation (12) is derived in Sigmund and Torquato [33]. The
computation of the sensitivities is fast because they can
be found from the strain fields already computed by the
homogenization procedure.

2.3.5. Linear programming problem. The linear
programming problem eqution (12) is solved using a linear
programming solver DSPLP [48] from the SLATEC library.
As the optimization is non-sparse, the DSPLP routine is
invoked with an option for no sparsity. Nevertheless, the
routine has proven faster and demands less storage space
than other LP-algorithm tests. Recent investigations have
shown that other mathematical programming methods may
be more efficient in solving topology optimization problems
(e.g. [14]).

2.3.6. Convergence. The iterative design procedure is
repeated until the change in each design variable from step
to step is lower than 10−4 (by experience).

2.3.7. Problems related to topology optimization.
Applying the topology optimization method to different
design problems, one often encounters regions of alternating
solid and void elements, referred to as checkerboards, in
the ‘optimal solutions’. These regions appear due to bad
numerical modeling and must be avoided. Furthermore, there
is a strong mesh-dependency meaning that topologically
different solutions appear when the mesh is changed or
refined. The mesh-dependency is due to non-existence or
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non-uniqueness of solutions. For further explanations of
the checkerboard and mesh-dependency problems, the reader
is referred to a recent review paper [49]. To avoid the
checkerboard and mesh-dependency problems we here use
the ‘mesh-independency scheme’ suggested in [18, 19] (see
also [49]).

2.3.8. Local minima. The topology optimization problem
is very prone to converge to local minima. However,
introducing the mesh-independency scheme [18, 19] makes
it possible to prevent this problem to a certain extent. Solving
a cell design problem is typically done as follows. First
we solve the optimization problem with a low value of
the low-pass filter parameter, i.e., we do not allow rapid
variation in the element densities. This results in a design
with large areas of intermediate densities but it also prevents
the design converging to a local minimum (binary design).
Gradually, we increase the low-pass filter parameter, in
turn letting the design problem converge. In that way,
we gradually arrive at a solution which is entirely binary
and which is, hopefully, a global optimum. To make sure
that the actually obtained microstructures are indeed global
optima, the same optimization problem is always solved
using differing starting guesses, move-limit strategies and
choices of low-pass filter parameter and penalty parameter
η. However, topologically different solutions with similar
values of the objective function have been found when solving
specific design problems. Solutions which are ‘shifted’
(translated half a base cell dimension) of other solutions
have also been encountered. The fact that the effective
properties of the design examples are close to theoretical
bounds supports our belief that we are finding the optimal
topologies with the proposed design procedure.

2.3.9. Computing time. For the 2D problems, one
design iteration typically takes three seconds (30 by 30
element discretization) or 20 seconds (60 by 60 element
discretization) on an Indigo 2 work station. To arrive at an
optimal solution, depending on starting guess, a couple of
thousand iterations may be needed. For 3D problems each
iteration may take 2 minutes (for a 16 by 16 by 16 element
discretization).

3. Thermoelastic properties

In this section, we review in some detail our work on the
use of topology optimization to design three-phase, two-
dimensional composites with extremal thermal expansion
behavior [33, 34].

3.1. Rigorous bounds

Rigorous bounds on the effective coefficients of three-
phase,isotropic composites serve to benchmark the design
algorithm. Here, for simplicity, we assume that the
constituent phases are isotropic which implies that they can
be described by their Young’s moduliE(0), E(1) andE(2),
their Poisson’s ratiosν(0), ν(1) and ν(2) and their thermal
strain coefficientsα(0), α(1) andα(2). It is also assumed that

Figure 5. Bounds for three-phase design example. The circles
with letters a–d denote the computed values for the
microstructures of the four design examples.

the composite is macroscopicically isotropic. The bulk and
shear moduli of the phases are then

k(i) = E(i)

2(1− ν(i)) µ(i) = E(i)

2(1 + ν(i))
i = 0, 1, 2.

(13)

Bounds on the effective thermal strain coefficientα(L) 6
α(∗) 6 α(U) of three-phase, isotropic composites were found
in [50, 51]. A bounded domain of possible effective bulk
moduli and thermal strain coefficients for a specific choice
of constituent phases is shown in figure 5. We found that
the proposed design method did not yield pairs (k(∗),α(∗))
that were close to the 26-year-old Schapery–Rosen–Hashin
bounds [51]. There were two possible explanations for
this discrepancy: either the design method could not find
the optimal solutions, or the bounds themselves could be
improved upon. Indeed, the latter explanation turned out to be
true. Inspired by the above mentioned discrepancy Gibiansky
and Torquato [52] recently found improved bounds, which
are also shown in figure 5. As will be seen in the subsequent
section, the solutions obtained by the design procedure are
very close to the new bounds.

Examination of the thermoelastic bounds in figure 5
reveals that extreme values (e.g. negative values) of thermal
strain coefficients only are possible for low bulk moduli. If
we simply tried to minimize/maximize the thermal strainα(∗),
we would end up with a very weak material. Therefore, there
is a tradeoff between extremizing thermal strain coefficients
on the one hand and ending up with a stiff material on the
other.

3.2. Design examples

In this section, we will first discuss design examples with
mixtures of hypothetical materials. These examples are used
to benchmark the design algorithm for three-phase design.
We will also study other design examples that utilize real
materials as constituent phases.
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Figure 6. Design example (b): optimal microstructures for minimization of effective thermal strain coefficient corresponding to the circle b
in figure 5. The white regions denote void (phase 0), the filled regions consist of low-expansion material (phase 1) and the cross-hatched
regions consist of high-expansion material (phase 2).

3.2.1. Plotting results. During the iterative procedure,
a Postscript plot of the topology is generated every ten
iterations. The plot shows the current density and material
distribution in the base cell, thus allowing the user to follow
the evolution of the microstructure and interact if necessary.
The plots in the following sections show the optimal density
and material type distributions for the different design
problems. If an element is predominantly material phase
two (i.e., xe2 > 0.5), the element is illustrated by a cross
with grey scale denoting the densityxe1; white means void
(xe1 = xmin) and black means solid (xe1 = 1). If the element is
predominantly material phase one (i.e.,xe2 < 0.5), it is shown
as a filled rectangle with grey values interpreted as before.
For all examples, we both show the resulting topologies
represented by a single base cell (the design domain) and
as a repeated microstructure consisting of 3 by 3 base cells.

3.3. Hypothetical designs

The Gibiansky–Torquato three-phase bounds are used to
benchmark the design algorithm for three-phase design. The
material data for the two phases are chosen asE(1)/E(2) = 1,
ν(1) = ν(2) = 0.3, α(2)/α(1) = 10, and the volume fractions
are prescribed to bec(1) = c(2) = 0.25 (i.e.c(0) = 0.5). Note
that the volume fractionsci are held fixed for this hypothetical
composite, to allow for comparison with the bounds and for
easy interpretation of the results.

Four three-phase design examples, constrained to be
elastically isotropic, are considered as follows:

(a) Minimization of theisotropic thermal strain coefficient
α(∗)/α(1) with a lower bound constraint on the effective
bulk modulus given as 10% of the theoretically attainable
bulk modulus, i.e.k(∗)/k(1) = 0.0258. Horizontal
geometric symmetry is specified.

(b) Same as design example (a) but with horizontal, vertical
and diagonal (geometric) symmetry.

(c) Maximization of bulk modulusk(∗)/k(1) for fixed zero
thermal expansionα(∗)/α(1) = 0. Horizontal geometric
symmetry is specified.

(d) Maximization of isotropic thermal stress coefficient
β(∗)/β(1) with horizontal, vertical and diagonal
geometric symmetry.

The Schapery–Rosen–Hashin and Gibiansky–Torquato
theoretical bounds are shown figure 5. In examples (a) and

(b), the lower bound on the possible thermal strain coefficient
is −5.567 6 α(∗)/α(1). In example (c), the upper bound
on possible bulk modulus for zero thermal expansion is
k(∗)/k(1) 6 0.0692. The upper bound on the thermal stress
coefficient in design example (d) isβ(∗)/β(1) 6 3.15 (for
k(∗)/k(1) = 0.237).

The effective properties for examples (a)–(d) are shown
in table 1 and plotted as small circles in figure 5. Studying the
graph in figure 5, we see that the obtained effective values are
far away from the original Schapery–Rosen–Hashin bounds.
This discrepancy inspired Gibiansky and Torquato to try to
improve the bounds and indeed improvement was possible
as seen in figure 5. The effective values of the examples
(a)–(d) are still somewhat away from the improved bounds.
This can be explained by the fact that the new bounds by
Gibiansky and Torquato have not been proven to be optimal.
Furthermore, it is our experience that a finer finite-element
mesh makes it possible to get closer to the bounds. In example
(a), the minimum thermal strain coefficient obtained for a
30 by 30 mesh isα(∗) = −3.59 andα(∗) = −4.17 for the
60 by 60 element discretization shown in figure 6. Due to
computer time limitations, it has not been possible to try out
finer discretizations.

The resulting topology for design example (b) is shown
in figures 6. The actual mechanisms behind the extreme
thermal expansion coefficients of the material structures
can be difficult to understand. To visualize one of the
mechanisms, the (exaggerated) displacement, due to an
increase in temperature of the microstructure in figure 6
(bottom), is shown in figure 7. Studying figure 7, we
note that there appears to be contact between parts of the
microstructure. This contact is only due to the magnification
of the displacements used in the illustration. The simple
linear modeling used here can not take such problems into
account. Nevertheless, it would be interesting to extend the
analysis to include non-linear behavior including contact,
which would open up a whole new world of interesting design
possibilities. We will leave these extensions to future studies.

When allowing low bulk moduli (as in example (b)),
the main mechanism behind the extreme (negative) thermal
expansion is thereentrant cell structurehaving bimaterial
components which bend and cause large deformation when
heated. The bimaterial interfaces of design example (b) bend
and make the cell contract, similar to the behavior of negative
Poisson’s ratio materials [53]. The topological results for
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Table 1. Thermoelastic parameters for optimal three-phase microstructures composed of hypothetical materials compared with the bounds.

Objective k(∗)/k(1) α(∗)/α(1) β(∗)/β(1)

Example constraint (bound) ν(∗) (bound) (bound)

(a) Min. α(∗)/α(1) 0.0258 0.039 −4.17
k(∗)/k(1) > 0.0258 (−5.567)

(b) Min. α(∗)/α(1) 0.0258 0.51 −4.02
k(∗)/k(1) > 0.0258 (−5.567)

(c) Max. k(∗)/k(1) 0.692 0.54 0
α(∗)/α(1) 6 0.0 (0.0814)

(d) Max. β(∗)/β(1) 0.243 0.51 3.01
(3.15)

Figure 7. Thermal displacement of the negative thermal
expansion microstructure in figure 6 (bottom).

the designs (a), (c) and (d) are quite different from (b).
The interested reader is referred to works of Sigmund and
Torquato [33, 34] to see these differences.

3.4. Mixtures of real materials

For the design of new materials with extreme thermal
expansion coefficients, the two base materials should be of
equal stiffness but widely differing thermal strain coefficients.
Two materials fulfilling this requirement are isotropic Invar
(Fe–36% Ni) and nickel as discussed in the introduction.
For the next design examples, the volume fractions of the
material phases are unconstrained. This will allow for a
wider range of minimum and maximum values, in contrast
to the hypothetical examples (a)–(d) in which the volume
fractions were fixed.

The material properties of Invar and nickel can be found
in [54]. The Young’s moduli are 150 GPa and 200 GPa,
respectively, Poisson’s ratios are 0.31 for both and the thermal
expansion coefficients are 0.8µm mK−1 and 13.4µm mK−1,
respectively.

(e) Minimization of theisotropic thermal stress coefficient
β(∗). Horizontal geometric symmetry is specified.

(f) Minimization of thevertical thermal stress coefficient
β
(∗)
22 . Horizontal and vertical symmetry is specified.

(g) Minimization of the vertical thermal stressE(∗)2 α
(∗)
22 .

Horizontal and vertical symmetry is specified.

(h) Maximization of theverticalstrain(α∗)22 with constraint
on vertical Young’s modulusE(∗)2 > 5 GPa. Horizontal
and vertical symmetry is specified.

The resulting topologies are shown in figures 8, 9 and
10, and their effective properties are shown in table 2.

To overcome the positive thermal expansion of other
surrounding materials, we seek to maximize thecontraction
force, i.e., minimize the isotropic thermal stress coefficient
as in example (e). The obtainedisotropiccontraction stress
of example (e) isβ(∗) = −77.6 GPa. By relaxing the
isotropy requirement and allowing orthotropic materials the
directionalcontraction stress can be increased. In example (f)
we minimize the value ofβ(∗)22 and obtain the effective value
β
(∗)
22 = −210 GPa. Minimizing the value ofβ(∗)22 gives us a

composite which forfixed boundarieshas high contraction
force (remember that the thermal stress coefficientβ(∗) is the
stress in a material constrained at the boundaries). If we want
to maximize the contraction force for a material with free
boundaries, we should minimize the product(E∗2)(α

∗)22 as
done in example (h). The ‘free boundary’ stress of example
(f) is (E∗2)(α

∗)22 = −14 GPa, whereas the ‘free boundary’
stress of example (g) is(E∗2)(α

∗)22 = −138 GPa.
If we want to maximizethe expansion stress of the

composite, the best choice would be to take solid nickel
material both for the isotropic and the directional cases.

The isotropic negative thermal expansion materials in
examples (a), (b) and (e) all have positive Poisson’s ratios
(0.04, 0.52 and 0.055, respectively),showing that there
is no mechanistic relationship between negative thermal
expansion and negative Poisson’s ratio.

In example (h) we see again that allowing orthotropy can
lead to highdirectionalexpansion coefficients. The vertical
coefficient(α∗)22 of example (h) is 2.6 times higher than for
solid nickel, but at the cost of a low vertical Young’s modulus
(2.5% of solid nickel).

4. Piezocomposite design

In this section, we review our work on the use of topology
optimization to design three-dimensional, anisotropic porous
composites with negative Poisson’s ratios (in certain
directions) for use as the matrix phase in 1–3 piezocomposites
[21]. A schematic of the piezocomposite is shown in figure 1.
Thus, we seek the optimal design of the matrix shown in this
figure.

The use of piezocomposites in hydrophone design has
been studied in several papers. Hydrophones composed
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Figure 8. Example (e): optimal microstructure for minimization of the isotropic thermal stress coefficientβ(∗). The white regions denote
void (phase 0), the filled regions consist of Invar (phase 1) and the cross-hatched regions consist of nickel (phase 2).

Figure 9. Examples (f) (top) and (g) (bottom): optimal microstructures for minimization of thermal stress coefficientβ
(∗)
22 (top) and

minimization of vertical contraction stressE(∗)
2 α

(∗)
22 . The white regions denote void (phase 0), the filled regions consist of Invar (phase 1) and

the cross-hatched regions consist of nickel (phase 2).

Figure 10. Example (h): optimal microstructure for maximization of thermal strain in the vertical directionα
(∗)
22 . The white regions denote

void (phase 0), the filled regions consist of Invar (phase 1) and the cross-hatched regions consist of nickel (phase 2).

of piezoelectric rods in solid polymer matrices have been
tested experimentally in [55, 43, 56]. Using simple models
in which the elastic and electric fields were taken to
be uniform in the different phases, Haun and Newnham
[57], Chan and Unsworth [58] and Smith [44] qualitatively
explained the enhancement due to the Poisson ratio

effect. A more sophisticated analysis has recently been

given by Avellaneda and Swart [59] using the so-called

differential-effective-medium approximation. They found

the effective performance factors: the hydrostatic charge

coefficient d∗h , the hydrostatic voltage coefficientg∗h and
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Table 2. Thermoelastic parameters for optimal microstructures made of Invar (phase 1) and nickel (phase 2).

α(∗) E(∗) β(∗)

(α(∗)11 /α
(∗)
22 ) (E(∗)

1 /E
(∗)
2 ) ν(∗) (β(∗)11 /β

(∗)
22 )

Example Objective (µm mK−1) (GPa) (ν
(∗)
12 /ν

(∗)
21 ) (kPa K−1) c(1)/c(2)

Invar 0.8 150 0.31 174 1/0
Nickel (Max. β(∗)) 13.4 200 0.31 3884 0/1

(e) Figure 8 Min.β(∗) −4.97 14.8 0.055 −77.6 0.60/0.28
(f) Figure 9 Min.β(∗)22 9.98/−1.59 9.19/8.75−0.80/−0.76 258/−210 0.49/0.38
(g) Figure 9 Min.E(∗)

2 α
(∗)
22 5.42/−4.68 69.9/29.5 0.059/0.025 372/−129 0.60/0.30

(h) Figure 10 Max.α(∗)22 23.4/35.0 1.09/5.00−0.14/−0.62 2.01/174 0.38/0.46

the electromechanical coupling factork∗h as functions of
the effective moduli of the composite and simple structural
parameters. In [59], it is assumed that the matrix material is
isotropic.

Recently, Gibiansky and Torquato [60] found theoretical
bounds for hydrophone design using the elastic properties
of the matrix material as design variables. In contrast to
Avellaneda and Swart [59], they allowed the matrix material
to be transversely isotropic. However, they did not consider
finding the actual matrix microstructure corresponding to the
optimal elastic properties. In very recent work [21], we
took the first steps towards closing this gap by designing
the optimal microstructural matrix topology simultaneously
with the optimization of the hydrophone performance.

Less research has been devoted to the design of three-
dimensional microstructures. Three-dimensional optimal
rigidity materials can be made as microstructures with several
length scales and the design of trusslike microstructures with
extreme elastic properties as described in Sigmund [31].
However, neither of these methods give practically realizable
microstructures.

Sigmundet al [21] have designed practically realizable
three-dimensional microstructures using the topology
optimization method. They did so in the context of finding
matrices that optimize the performance characteristics of
1–3 piezocomposites. They considered fixed topology of
the rods (vertical rods) and assumed them to be PZT. The
microstructural topology of the matrix material and the
volume fraction of piezoelectric rods were taken to be the
design variables. Using the topology optimization method,
they found the optimal matrix topology using the analytical
formulas for the effective piezoelectric moduli developed
by Avellaneda and Swart [59]. In contrast to this two-step
procedure, Silvaet al [35] have used a direct optimization
approach for the case of two-dimensional piezocomposites,
but with a fixed rod topology as we assumed.

4.1. Design examples

Sigmundet al [21] considered designing optimal matrices
(using a specific polymer material) for four different
piezocomposites. Here we discuss only two of these designs:
piezocomposites with maximumd(∗)h and maximum(k(∗)h )

2.
The base cell is discretized with 16 by 16 by 16 (= 4096)
cubic finite elements. By variable linking due to symmetry,
the number of design variables (element densities) can be
decreased to 4096/8= 512.

4.1.1. Properties of the piezoceramic and polymer. The
ceramic rods and the polymer (that will make up the solid
material in the designed porous matrix) are specified. The
actual properties of the PZT-ceramic rods are taken as

C(i) =
[ 120 75 75

75 120 75
75 75 111

]
× 109 Pa

e
(i)
13 = −5.4 C m−2

e
(i)
33 = 15.8 C m−2

ε
T (i)
33 = 827ε0

(14)

whereεT (i)33 is the free body axial dielectric constant. The
Young’s modulus and the Poisson’s ratio of the amorphous
polymer are taken to be 2.5× 109 Pa and 0.37, respectively.
Therefore, the polymer stiffness tensor is given by

C(p) =
[ 4.4 2.6 2.6

2.6 4.4 2.6
2.6 2.6 4.4

]
× 109 Pa

e
(p)

13 = e(p)33 = 0

ε
T (p)

33 = 3.5ε0.

(15)

The value of the dielectric constant in vacuum is

ε0 = 1

4π

10−9

8.987 55

C2

N m2 . (16)

The minimum value of the in-plane bulk modulus of the
matrix material is chosen as 3% of solid polymer i.e.Kmin =
0.11 × 109 Pa and the minimum volume fraction of the
piezoceramic isfmin = 0.01.

4.1.2. Optimization. Our objective is to design the best
matrix material (consisting of voids distributed throughout
polymer) in order to maximize hydrophone performance
indices. The effective hydrostatic charge coefficientd

(∗)
h is

defined as

d
(∗)
h (f,x) = d(∗)33 (f,x) + 2d(∗)13 (f,x) (17)

where we explicitly include the dependence on the element
densitiesx of the discretized base cell (modeling the matrix
material) and the volume fraction of piezoelectric rodsf
embedded in the matrix. The effective non-dimensional
electromechanical coupling factor(

k
(∗)
h

)2
(f,x) = (d

(∗)
h (f,x))2

ε
T (∗)
33 (f,x)s

(∗)
h (f,x)

(18)
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Table 3. Effective values for pure piezoceramic, optimal piezocomposite with solid matrix and optimal piezocomposite with
topology-designed matrix.

d
(∗)
13 d

(∗)
33 d

(∗)
h d

(∗)
h g

(∗)
h s

(∗)
h

Ex. Objective f (pC N−1) (pC N−1) (pC N−1) p (Pa)−1 (k
(∗)
h )

2 n (Pa)−1

Pure ceramic
1.0 −171 374 32 0.068 0.0061 0.011

Solid matrix with rods
Max. d(∗)h 0.211 −125 318 68 1.50 0.0065 0.22
Max. (k(∗)h )

2 0.041 −67 167 41 3.87 0.0135 0.29
Optimal matrix with rods

a Max. d(∗)h 0.042 75 346 497 399 0.049 7.9
b Max. (k(∗)h )

2 0.010 −4 356 348 685 0.292 2.3

where ε
T (∗)
33 (f,x) is the effective free body axial

dielectric constant ands(∗)h (f,x) is the effective dilatational
compliance. We choose to work with the squared
electromechanical coupling factor since this has a physical
meaning of electrical energy output divided by mechanical
energy input.

Using the analysis of Avellaneda and Swart [59], we
can re-express all of the above effective relations explicitly
in terms of the effective transverse bulk modulus of the
composite [21]. Following Gibiansky and Torquato [52],
the effective transverse bulk modulus is taken to be equal
to the lower Hashin–Shtrikman bound, implying that the
piezoelectric rods should be ordered in a hexagonal array to
ensure optimality of the composite. Thus, first we compute
the effective properties of the matrix composite material
(polymer and voids) and then we calculate the effective
performance indices of the piezocomposite (composed of the
piezoceramic rods and matrix composite material) via the
aforementioned analytical expressions.

Given the piezoelectric performance coefficients in
terms of the matrix microstructural design variablesx
(the element densities) and the volume fraction of the
piezoelectric rodsf , we consider two design examples:

(a) maximization ofd(∗)h ;

(b) maximization of(k(∗)h )
2.

More specifically, we study the following optimization
problems:

maximize :|d(∗)h | or (k(∗)h )
2

variables : volume fractionf and element densitiesx

subject to : transversal isotropy of the matrix material

and : lower bound constraint on bulk modulus of

the matrixK(m)

and : lower bound constraint on the volume

fraction of piezorodsf. (19)

The design procedure consists of the following steps:

(1) take a (porous) matrix material, described by a cubic
base cell, discretized by finite elements;

(2) find the effective matrix stiffness properties as a
function of the element densitiesx using the numerical
homogenization method and finite-element analysis;

Figure 11. Example a: optimal microstructure (one unit cell) for
maximization of the piezoelectric charge coefficientd

(∗)
h .

(3) find the effective piezocomposite properties as functions
of the element densitiesx and the volume fraction of
piezoelectric rodsf using the aforementioned analytical
formulas;

(4) find the hydrophone performance coefficients using the
formulas given in [21];

(5) find optimalf by performing golden sectioning loop
over steps 3, 4 and 5 until convergence;

(6) perform sensitivity analysis (with respect to density
change of each finite element);

(7) change matrix topology (element densities) using linear
programming;

(8) go to step 2 (repeat until convergence).

The resulting microstructure topologies are shown in
figures 11 and 13, and the resulting hydrophone properties
are shown in table 3. In what follows, we will discuss
the individual examples and the mechanisms behind the
enhanced properties.

4.1.3. Example a: maximization ofd(∗)
h . The resulting

optimal microstructure for maximization of the hydrostatic
charge coefficientd(∗)h is seen in figure 11.

376



Topology optimization

Figure 12. Schematic representation of an equivalent
two-dimensional structure that yields the (vertical) negative
Poisson’s ratio behavior of example a (figure 11). Left: front (1–3
plane) view. Right: side (2–3 plane) view. When the
microstructures are compressed horizontally (solid arrows), they
contract vertically (dashed arrows).

The resulting effective properties of the matrix material
are

C(m) =
[ 0.246 0.018 −0.072

0.018 0.246 −0.072
−0.072 −0.072 0.216

]
× 109 Pa (20)

or ν(m)12 = ν
(m)
21 = −0.027, ν(m)13 = −0.27, ν(m)31 = −0.34

and the horizontal and vertical Young’s moduliE(m)1 =
0.23× 109 Pa andE(m)3 = 0.18× 109 Pa, respectively. We
note that the vertical Poisson’s ratio is negative, which means
that horizontal forces are inverted and act like compressive
forces and result in the enhancement of the hydrostatic charge
coefficient. This means that the negative Poisson’s ratio of the
matrix material makes the effectived(∗)13 -coefficient positive,
thus enhancing the overall hydrostatic behavior.

The negative Poisson’s ratio behavior of the microstruc-
ture in figure 11 can be difficult to imagine. To visualize
the mechanism behind the negative Poisson’s ratio behav-
ior, we show a two-dimensional interpretation in figure 12.
Seen from the front (1–3 plane), the negative Poisson’s ra-
tio behavior is seen to resemble the mechanism behind the
inverted honeycomb structure [61, 62]. Seen from the side
(2–3 plane), the mechanism is seen to be slightly different.
Note that the material structure does not need to be hexago-
nal or fully symmetric to be transversally isotropic (see for
example [63] or [33]).

4.1.4. Example b: maximization of (k(∗)
h )2. The resulting

optimal microstructure for maximization of the effective
electromechanical coupling factor(k(∗)h )

2 is seen in figure 13
and an interpretation is seen in figure 14.

The optimal matrix properties for this example are

C(m) =
[ 2.31 0.86 0.01

0.86 2.31 0.01
0.01 0.01 0.02

]
× 109 N m−2 (21)

or ν(m)12 = ν
(m)
21 = 0.37, ν(m)13 = 0.003, ν(m)31 = 0.32,

E
(m)
1 = 2.0× 109 Pa andE(m)3 = 0.02 Pa.

Figure 13. Example b: optimal microstructure (one unit cell) for
maximization of the effective electromechanical coupling factor
(k
(∗)
h )

2.

Figure 14. Interpretation (vertical cut) of the piezo-composite
design for maximization of(k(∗)h )

2.

From figure 14, we see that the optimal hydrophone
composition is a layered structure of matrix material with
embedded piezoelectric rods. The explanation for this is that
the optimization procedure tries to decouple the horizontal
forces working ond(∗)13 , leading to an overall piezoelectric
charge coefficient nearly equal tod(∗)33 .

4.1.5. Manufacturing. A number of different techniques
now exist to fabricate our optimal three-dimensional
microstructures. We have employed [21] an approach that
is based on a stereolithography method developed by 3-
D Systems, Inc. [64]. In this method, a laser beam is
focused onto a photocurable solution or a dispersion to induce
photocuring of an agent in the continuous liquid phase. The
desired object is built layer by layer by spreading a thin
film, with layer thicknesses between 50 and 200µm, and
then laser curing the film to define a pattern. The layering
is repeated multiple times until a desired three dimensional
body is completed (figure 15). The two-dimensional sections
are created from a three-dimensional solid AutoCAD file and
the motion of the laser beam to cure the two-dimensional
section is controlled by a computer interpreting the CAD
file. Although this method was first developed to fabricate
polymeric prototypes, it has now been extended to ceramics
with the use of highly concentrated colloidal suspensions
[65, 66].
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Figure 15. Prototype of one base cell made by stereolithography.

Our approach will be ideal for testing out the optimal
models produced by the formalism established in this paper.
A prototype [21] consisting of one base cell in larger scale
(0.8 cm cubed) for the design in whichd(∗)h is maximized (see
figure 11) is shown in figure 15. The base cell was produced
by the aforementioned manufacturing technique. Recently,
we have fabricated a cubic sample consisting of 5× 5× 5
cells. We are now in the process of making experimental
measurements of the stiffness tensor of this sample matrix
material. These data will then be compared against our
theoretical predictions of the elastic moduli. Moreover, we
will test the performance of the piezocomposite made up of
our optimally designed matrices and piezoceramic rods.

5. Conclusions

It is seen that the topology optimization technique
(which relies on the finite-element method, homogenization
techniques, sensitivity analysis and sequential linear
programming) is a very promising means of designing
new composite sensors and actuators for smart materials
applications. We discussed two applications: design of
composites with extreme thermal expansion coefficients and
piezocomposites with optimal hydrophone characteristics.
In the case of the piezocomposites, we considered fixed
topology of the ceramic rods. The next step will be to let the
shape of the rods be free to vary as well. This can be done
using the three-phase topology method developed in Sigmund
and Torquato [33, 34] as discussed in the general section 2.
We emphasize that the topology optimization technique also
is a useful way to design devices for MEMS applications
[28, 29, 19].
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