
Journal of Computer Networks, 2013, Vol. 1, No. 2, 28-31
Available online at http://pubs.sciepub.com/jcn/1/2/2
© Science and Education Publishing
DOI:10.12691/jcn-1-2-2

DE Based Job Scheduling in Grid Environments

Ch.Srinivasa Rao1,*, Dr.B.Raveendra Babu2

1R.V.R. & J.C. College of Engineering, Guntur, A.P., India
2VNR Vignana Jyothi Institute of Engineering & Technology, Hyderabad, A.P., India

*Corresponding author: chereddy.sriny@gmail.com

Received December 31, 2012; Revised May 17, 2013; Accepted May 18, 2013

Abstract Grid Computing is a computing framework developed to meet the growing computational demands.
Essential grid services contain more intelligent functions for resource management, grid service marketing,
collaboration etc. The load sharing of computational jobs is the major task of computational grids. Grid resource
manager provides functional mechanism for discovery, publishing of resources as well as scheduling, submission
and monitoring of jobs. This paper introduces an approach, based on Differential Evolution Algorithm for
scheduling jobs on computational grid. The proposed approach generates an optimal schedule which helps in
completing the jobs within a minimum period of time. We evaluate the performance of our proposed approach with
a direct Genetic Algorithm (GA), Simulated Annealing (SA) and Particle Swarm Optimization (PSO) approach.

Keywords: grid computing, job scheduling, differential evolution algorithm, optimization, makespan

1. Introduction
Grid Computing is a form of distributed computing that

involves coordinating and sharing computing, application,
data and storage or network resources across dynamic and
geographically dispersed organization [1]. Grid
technologies promise to change, the way organizations
tackle complex computational problems. Grid computing
is an evolving area of computing where standards and
technology are still being developed to enable this new
paradigm.

Users can share grid resources by submitting computing
tasks to grid system. The resources of computational grid
are dynamic and belong to different administrative
domains. The participation of resources can be active or
inactive within the grid. Hence, it is impossible for anyone
to manually assign jobs to computing resources in grids.
Therefore grid job scheduling is one of the challenging
issues in grid computing. Grid scheduling system selects
the resources and allocates the user submitted jobs to
appropriate resources in such a way that the user and
application requirements are met.

There are many research efforts aiming at job
scheduling on the grid. Scheduling m jobs to n resources
with an objective to minimize the total execution time has
been shown to be NP-complete [2]. Therefore the use of
heuristics is the defacto approach in order to cope in
practice with its difficulty. Krauter et al. provided a useful
survey on grid resource management systems, in which
most of the grid schedulers such as AppLes, Condor,
Globus, Legion, Netsolve, Ninf and Nimrod use simple
batch scheduling heuristics [3]. Jarvis et al. proposed the
scheduling algorithm using metaheuristics and compared
FCFS with genetic algorithm to minimize the makespan
and it was found that metaheuristics generate good quality
schedules than batch scheduling heuristics [4]. Braun et al.

studied the comparison of the performance of batch
queuing heuristics, tabu search, genetic algorithm and
simulated annealing to minimize the makespan [5]. The
results revealed that genetic algorithm achieved the best
results compared to batch queuing heuristics. Hongbo Liu
et al. proposed a fuzzy particle swarm optimization (PSO)
algorithm for scheduling jobs on computational grid with
the minimization of makespan as the main criterion [6].
They empirically showed that their method outperforms
the genetic algorithm and simulated annealing approach.
The results revealed that the PSO algorithm has an
advantage of high speed of convergence and the ability to
obtain faster and feasible schedules.

In this paper, we address a job scheduling problem on
computational grid, in which minimization of execution
time is considered as the objective. To tackle this problem,
Differential Evolution algorithm is proposed to search for
the optimal solution, to complete the batch of jobs in a
minimum period of time.

The rest of the paper is organized as follows: Section 2
presents the problem statement related to job scheduling.
In Section 3, background of DE algorithm is described and
the proposed algorithm is outlined. The computational
results are reported in Section 4 and the conclusions are
presented in Section 5.

2. Problem Statement
Scheduling is the process of mapping the jobs to

specific time intervals of the grid resources. The grid job
scheduling problem consists of scheduling m jobs with
given processing time on n resources. Let iJ be the
independent user jobs, {1,2,3,... }j m= . Let Ri be the
heterogeneous resources, {1,2,3,... }i n= . The speed of
each resource is expressed in number of cycles per unit
time (CPUT). The length of each job is expressed in

 Journal of Computer Networks 29

number of cycles. The information related to job length
and speed of the resource is assumed to be known, based
on user supplied information, experimental data and
application profiling or other techniques [7].

The objective of the proposed job scheduling algorithm

is to minimize the makespan. Makespan is a measure of
the throughput of the heterogeneous computing system.
Let { } { }()1,2,... , 1, 2,...ijC i n j m∈ ∈ be the completion

time that the resource Ri finishes the job iJ , iC∑
represents the time that the resource Ri finishes all the jobs
scheduled for itself. Makespan is defined as

{ }max max iC C= ∑ [6].
To address the problem, we start with the following

assumptions.
Any job Jj has to be processed in resource Ri until

completion.
Jobs come in batch mode.
All jobs and grid resources are submitted at once before

the start of processing each batch.

3. Scheduling Using DE
Differential Evolution is a novel population based

evolutionary algorithm, which has been proposed for
optimizing complex problems over a continuous domain.
DE searches for the global optima by utilizing differences
between contemporary population members, which allows
the search behavior of each individual to self-tune. So far,
DE has attracted much attention and wide applications in a
variety of fields [8,9].

Onwubolu et al. addressed the flow-shop scheduling
problem using DE algorithm [10]. In their work, the
algorithm was implemented by mapping Job/Machine
sequence to real numbers for DE operations. Since this
approach is not feasible in the case of grid scheduling,
Talukder et al. proposed a workflow execution planning
approach using Multi objective Differential Evolution to
generate trade-off schedule by considering the completion
time of tasks and the total execution cost of jobs, in which
they dealt with exact scheduling sequences [11]. Our
approach makes use of integer values in order to map the
resource/job sequence.

3.1. Differential Evolution Algorithm
The differential evolution algorithm (DE) introduced by

Storn and Price is a novel parallel direct search method,
which utilizes NP parameter vectors as a population for
each generation G. DE is a kind of evolutionary
optimization algorithm. There are several variants of DE
available [12]. This paper makes use of the DE/rand/1/bin
scheme.

It starts with the random initialization of the initial
population of NP individuals. Each individual has an n
dimensional vector. The ith individual at generation ‘t’ can

be represented as ,1, , 2,..., ,t t t t
i i i iX X X X n = .

According to the mutation operator, a mutant vector is
generated by adding the weighted difference between two
randomly selected target population individuals to a third
individual as follows.

 ()t t t t
i a b cV X F X X= + ∗ − (1)

Where , , (1, 2,...)a b c NP∈ are randomly chosen and
mutually exclusive. []0,1F ∈ is the scaling factor which
affects the differential variation between two individuals.
After the mutation phase, the cross over operator is
applied to obtain the trail vector 1 1 1 1

,1 ,2 ,[, ,...]t t t t
i i i i nU u u u+ + + +=

by the following equation

 {
,,1

, ,,

tv if rand CR or j randnj ii jt
i j tx otherwisei j

u
≤ =+ = (2)

Where randj is the jth independent random number
uniformly distributed in the range of [0,1]. Also randni
refers to a randomly chosen index from the set {1,
2…n}.CR is a user defined cross over factor in the range
[0,1].

Following the crossover operation, to decide whether or
not the trail vector 1t

iU + should be a member of the
population of the next generation, it is compared with the
target individual t

iX
Finally the selection is based on the survival of the

fitness as follows.

 { () ()1 1,1
,

t t tU if fit U fit Xi i it
i tx otherwisei

x
+ + <+ = (3)

3.2. The Proposed Job Scheduling Algorithm
In this section, we proposed a DE based Grid Job

Scheduling Algorithm and presented a solution
representation.

3.2.1. General Scheme of de Based Grid Job
Scheduling Algorithm

The pseudo code for DE based grid job scheduling
algorithm is illustrated in Algorithm 1. Table 1 depicts the
explanation of abbreviated parameters used in Algorithm
1.
Algorithm 1 Grid Job Scheduling
Algorithm using DE
Define RT, JT, ESR, JL, F, CR, NP, MaxIter,
 STR, ETR
Create the initial population of random individuals. Check
the feasibility of initial population vectors
for 1 to MaxIter

Calculate the makespan of each individual
for i = 1 to NP
Select random integer randni ∈ (0, 1, 2... JT)
Select mutually exclusive random individuals Xa, Xb

and Xc
Calculate mutant vector V according to equation (1)

starting from the position randni of each individual.
Select the random value randj ∈[0, 1]
Calculate the trail vector Ui according to equation (2)
Check the feasibility of trail vector Ui
end for
Calculate the makespan of trail vector set
for i = 1 to NP

30 Journal of Computer Networks

if makespan of Ui is less than Xi then
Select Ui
else
Retain Xi
end if
end for
Record the solution with minimum makespan
end for

Table 1.Parameters used in Algorithm 1
RT Total Resources CR Crossover Factor
JT Total Jobs NP Population Size

ESR Execution speed of
Resource MaxIter Maximum number of Iteration

JL Job length STR Start time of resource engaged
in grid

F Scaling factor ETR End time of resource engaged
in grid

3.2.2. Solution Representation
In the proposed scheduling algorithm, the solution is

represented as an array of length equal to the number of
jobs. The value corresponding to each position i in the
array represent the resource to which job i was allocated.
The job-to-resource representation for the resource job
pair (3, 13) is illustrated in Figure 1.

Figure 1. Job-to-resource representation

The first element of the array denotes the first job (J1)
in a batch which is allocated to the Grid resource 2; the
second element of the array denotes the second job (J2)
which is assigned to the Grid resource 1, and so on (see
Figure 2)

Figure 2. Mapping of jobs with grid resource

4. Experiment Settings, Results and
Discussions

In our experiments, Genetic Algorithm (GA) [4,5],
Simulated Annealing (SA) [5] and Particle Swarm
Optimization(PSO) [6] were used to compare the
performance with Differential Evolution(DE). The four
algorithms share many similarities. The performance of
the proposed scheduling algorithm was tested for the
resource job pairs of small scale problem (3,13) and
large scale problems such as (5,100), (8,60) and (10,50).
The numerical simulations are carried out with the dataset
used and tested in the paper[6].

The DE based grid job scheduling algorithm is coded in
MATLAB R2008a and experiments are executed on a
Pentium IV 2.99 GHz PC with 1 GB memory.

To illustrate the algorithm, we considered a finite
number of grid nodes and assumed that the processing
speeds of the grid nodes (cput) and the job lengths
(processing requirements in cycles) are known. Each
experiment (for each algorithm) was repeated 10 times
with different random seeds. Each trial had a fixed number
of 50*m*n iterations (m is the number of the grid nodes, n
is the number of the jobs). The makespan values of the
best solutions throughout the optimization run were
recorded.

In order to closely track the performance of our
algorithms, first we tested a small scale job scheduling
problem, (3,13), in which 3 nodes and 13 jobs are listed in
Figure 1. The results for 10 GA runs were {47, 46, 47,
47.3333, 46, 47, 47, 47, 47.3333, 49}, with an average
value of 47.1167. The results of 10 SA runs were {46.5,
46.5, 46, 46, 46, 46.6667, 47, 47.3333, 47, 47} with an
average value of 46.6. The results of 10 PSO runs were
{46, 46, 46, 46, 46.5, 46.5, 46.5, 46, 46.5, 46.6667}, with
an average value of 46.2667. The results of 10 DE runs
were {46, 46, 46, 46.5, 46, 46, 46, 46, 46, 46}, with an
average value of 46.05. The optimal result is supposed to
be 46.05. Further, we tested the four algorithms for other
three (G; J) pairs, i.e. (5,100), (8, 60) and (10, 50). All the
jobs and the nodes were submitted at one time. The
average makespan values for 10 trials are showed in Table
2. DE had better average makespan values than the other
three algorithms for resource job pairs (3,13) and (10,50).
The experimental results are illustrated in Figure 3.

Table 2. Performance comparison of the four algorithms using the
parameter makespan

Algorithm Resource Job Pair
(3,13) (5,100) (8,60) (10,50)

GA 47.1167 85.7431 42.9270 38.0428
SA 46.6000 90.7338 55.4594 41.7889

PSO 46.2667 84.0544 41.9489 37.6668
DE 46.0500 86.0138 43.0413 37.5748

Figure 3. Comparison between DE, PSO, SA, GA

5. Conclusions
This paper presents a DE based job scheduling

approach to solve grid scheduling problem to minimize
the completion time. The proposed scheduling algorithm
is very simple, as it involves small number of parameters
for devising the algorithm. As the status of resource is
dynamic within the grid environment, it is necessary to
produce the faster and feasible schedules. In our future
work, it is proposed to develop adaptive DE based
algorithms and generalize the DE-based algorithm to

 Journal of Computer Networks 31

multi-objective complex scheduling problems and
stochastic scheduling problems.

Acknowledgements
We would like to thank, Professor A.Abraham for

providing the datasets to implement and test the algorithm
proposed in this paper. The work is supported by
Professor K.Karteeka Pavan.

References
[1] I.Foster,C.Kesselmann,(Eds.), The Grid: Blueprint for a New

Computing Infrastructure, Morgan Kaufmann Publishers, USA,
1999.

[2] O.H.Ibarra and C.E.Kim, Heuristic algorithms for scheduling
independent tasks on nonidentical processors, J.ACM 24, 2
(Apr.1977), pp.280-289.

[3] K.Krauter, R.Buyya, M.Maheswaran,A taxonomy and survey of
grid resource management systems for distributed computing,
Software-Practice and Experience,32:135-164, 2002.

[4] S.A.Jarvis, D.P.Spooner, H.N.Lim Choi Keung, G.R.Nudd, J.Cao,
S.Saini, Performance prediction and its use in parallel and
distributed computing systems. In the Proceedings of the
IEEE/ACM International Workshop on Performance Evaluation

and Optimization of Parallel and distributed Systems, Nice,
France.2003.

[5] T.D.Braun, H.J.Siegel, N.Beck, D.A.Hensgen, R.F.Freund, A
comparison of eleven static heuristics for mapping a class of
independent tasks on heterogeneous distributed systems, Journal
of Parallel and Distributed Computing, 2001, pp.810-837.

[6] H.Liu, A.Abraham, A.E.Hassanien, Scheduling Jobs on
computational grids using a fuzzy particle swarm optimization
algorithm, Future Generation Computer Systems (2009).

[7] S.K.Garg, R.Buyya, H.J.Siegel, Time and cost trade-off
management for scheduling parallel applications on Utility Grids,
Future Generation Computer Systems (2009).

[8] F.P.Chang, C.Hwang, Design of digital PID Controllers for
continuous time plants with performance criteria, Journal of the
chineese Institute of Chemical Engineers, 35(6), 2004, pp.683-696.

[9] Y.P.Chang, C.J.Wu, Optimal multiobjective planning of large-
scale passive harmonic filters using hybrid differential evolution
method considering parameter and loading uncertainty, IEEE
transactions on Power Delivery, 20(1), 2005, pp.408-416.

[10] G.Onwubolu, D.Davendra, Discrete Optmization Scheduling flow
shops using differential evolution algorithm, European Journal of
Operational Research 171 2006, pp.674-692.

[11] A.K.M.K.A.Talukder, M.Kirley, R.Buyya, Multi objective
Differential Evolution for Scheduling workflow applications on
global Grids, Concurrency and Computation: Practice and
Experience, published online in Wiley Interscience, (2009).

[12] K.Price, R.Storn, Differential evolution (DE) for Continuous
function optimization, 2007.
http://www.icsi.berkeley.edu/%7Estorn/code.html.

