
Balancing Accountability and Privacy Using

E-Cash (Extended Abstract)

Jan Camenisch1 and Susan Hohenberger1,� and Anna Lysyanskaya2

1 IBM Research, Zurich Research Laboratory, CH-8803 Rüschlikon
2 Computer Science Department, Brown University, Providence, RI 02912, USA

Abstract. In an electronic cash (e-cash) system, a user can withdraw
coins from the bank, and then spend each coin anonymously and un-
linkably. For some applications, it is desirable to set a limit on the dol-
lar amounts of anonymous transactions. For example, governments re-
quire that large transactions be reported for tax purposes. In this work,
we present the first e-cash system that makes this possible without a
trusted party. In our system, a user’s anonymity is guaranteed so long as
she does not: (1) double-spend a coin, or (2) exceed the publicly-known
spending limit with any merchant. The spending limit may vary with
the merchant. Violation of either condition can be detected, and can
(optionally) lead to identification of the user and discovery of her other
activities. While it is possible to balance accountability and privacy this
way using e-cash, this is impossible to do using regular cash.
Our scheme is based on our recent compact e-cash system. It is secure
under the same complexity assumptions in the random-oracle model.
We inherit its efficiency: 2� coins can be stored in O(� + k) bits and the
complexity of the withdrawal and spend protocols is O(� + k), where k
is the security parameter.

1 Introduction

Electronic cash (e-cash) was invented by David Chaum [18, 19]. Its main goal
is to match the untraceability properties of physical coins: the same bank is
responsible for dispensing e-cash to users, and for later accepting it for deposit
from merchants, and yet it cannot trace how users spent their money.

An important difference between electronic cash and physical cash, is that
electronic cash is represented by data. Data is easy to duplicate, while physi-
cal coins may be made of precious metals so the cost to minting them is high.
Therefore, an e-cash scheme must incorporate a way to ensure that an electronic
coin (e-coin) cannot be spent more than once (double-spent). Typically [20] this
is done by ensuring that, even though spending a coin once does not leak any in-
formation about a user’s identity, spending it twice leaks information that leads
to identification. An e-cash scheme with such a mechanism is a good illustra-
tion of how one can balance anonymity with accountability: a user can remain

� Part of work performed at the Massachusetts Institute of Technology.

anonymous unless she performs a forbidden action. The system is designed in a
way that prevents this type of anonymity abuse.

In this paper we consider what other actions may be forbidden, and how to
realize e-cash schemes that would hold users accountable should they perform
such actions. At the same time, we protect the anonymity of those users who
obey the rules.

We introduce the bounded-anonymity business model. In this model, asso-
ciated with each merchant there is a publicly-known limit to the number of
e-coins that a user may anonymously give to this merchant. This limit cannot
be exceeded even if the user and the merchant collude. Should any user attempt
to exceed the limit with any merchant, and should this merchant attempt to
submit the resulting e-coins for deposit to the bank, the user’s identity will be
discovered, and further penalties may be imposed.

In the real world, this corresponds to restrictions that governments set on
unreported transactions. For example, in the U.S., banks are required by law
to log and report all transactions over $10,000. These restrictions are set up to
ensure proper taxation and to prevent money laundering and other monetary
frauds. Another example application is an anonymous pass with usage limita-
tions. For example, consider the following amusement park pass: “This pass is
good to enter any Disney park up to four times, with the restriction that the
Magic Kingdom can be entered at most twice.” Until now, it was not known
how to realize such passes anonymously.

Interestingly, in the real world it is impossible to set such restrictions on cash
transactions. A merchant may be required by law to report that he received a
lot of money in cash, but he may choose not to obey the law! In contrast, we
show that with e-cash, it is possible to enforce the bounded-anonymity business
model. The cost for achieving this is roughly double the cost of achieving regular
anonymous e-cash.

There have been several previous attempts to solve this problem, but until
now it remained an elusive open problem in electronic cash, as well as one of
the arguments why the financial community resisted any serious deployment of
e-cash, due money laundering regulations.

Some of the past efforts suggested using a trusted third party to mitigate
this problem [40, 9, 31]. This TTP could trace transactions to particular users.
The TTP approach is undesirable. First of all, the whole idea of electronic cash
is to ensure that no one can trace e-cash transactions. Secondly, in these past
solutions, the only way that a TTP can discover money laundering or other
violations of the bounded-anonymity model is by tracing each transaction, which
is very expensive. In a variant that reduces the trust assumption about the TTP,
Kügler and Vogt [30] propose an e-cash scheme where the bank has the ability
to trace coins by specially marking them during the withdrawal protocol. This
tracing is auditable, i.e., a user can later find out whether or not his coins were
traced (this involves an additional trusted judge). Still, this system does not
allow to discover money laundering, unless it involves the marked coins, and the
user must still trust the judge and bank for her anonymity. Another variant [35,

29] prevents money laundering by offering users only a limited form of anonymity.
Users’ coins are anonymous, but linkable, i.e., coins from the same user can be
identified as such. Here it is easy to detect if a user exceeds the spending limit
with some merchant. However, this weak form of anonymity is not suitable for
all applications, and goes against the principle of e-cash.

Another set of papers [41, 34] addressed a related problem of allowing a user
to show a credential anonymously and unlinkably to any given verifier up to
k times. They give a nice solution, but it is not clear how it can be applied
to off-line electronic cash as opposed to on-line anonymous authentication. I.e.,
showing an anonymous credential in their scheme more than k times allows a
verifier to link the k + 1 st show to a previous transaction, but does not lead
to the identification of the misbehaving user. In contrast, in our scheme, any
such violation leads to identification of the user even if the verifier (merchant)
colludes with the user.

Finally, Sander and Ta-Shma [37] propose to limit money laundering by di-
viding time into short time periods and issuing at most k coins to a user per
time period (a user can deposit his unspent coins back into his account). This
way, a user cannot spend more than k coins in a single transactions because he
has at most k coins at any given time.

Our contribution. We present the first e-cash scheme in the bounded-anonymity
business model. A user may withdraw, and anonymously and unlinkably spend
an unlimited number of coins, so long as she does not: (1) double-spend a coin, or
(2) exceed the spending limit with any merchant. Our scheme allows to efficiently
detect either of these violations. We also show how to augment it so as to allow
to reveal the identity of the misbehaving user. Finally, in addition to identifying
a misbehaving user, one is also able to trace all of the user’s previous e-coins.

Our construction takes as a starting point the e-cash system of Camenisch,
Hohenberger, and Lysyanskaya (CHL) [11], which is the most efficient known.
The cost of our resulting withdrawal and spend protocols is roughly double that
of CHL. The size of the coin storage remains the same, but we also require the
user to store a counter for each merchant with whom the user does business,
which appears to be optimal. Thus we maintain CHL’s asymptotic complexity:
2� coins can be stored in O(�+k) bits and the complexity of the withdrawal and
spend protocols is O(� + k), where k is the security parameter.

2 Definition of Security

We now generalize the definition of CHL [11] to handle violations beyond double-
spending. Our offline e-cash scenario consists of the three usual players: the user,
the bank, and the merchant; together with the algorithms BKeygen, UKeygen,
Withdraw, Spend, Deposit, {DetectViolation(i), IdentifyViolator(i), VerifyViolation(i)},
Trace, and VerifyOwnership. Informally, the key generation algorithms BKeygen
and UKeygen are for the bank and the user, respectively. A user interacts with
the bank during Withdraw to obtain a wallet of 2� coins; the bank stores optional

tracing information in database D. In Spend, a user spends one coin from his
wallet with a merchant; as a result the merchant obtains the serial number S of
the coin, the merchant record locator V of the coin, and a proof of validity π.
In Deposit, whenever an honest merchant accepted a coin C = (S, V, π) from a
user, there is a guarantee that the bank will accept this coin for deposit. The
bank stores C = (S, V, π) in database L. At this point, however, the bank needs
to determine if C violates any of the system conditions.

For each violation i, a tuple of algorithms {DetectViolation(i), IdentifyViolator(i),
VerifyViolation(i)} is defined. Here, we have two violations.

Violation 1: Double-spending. In DetectViolation(1), the bank tests if two
coins, C1 = (S1, V1, π1) and C2 = (S2, V2, π2), in L have the same serial number
S1 = S2. If so, the bank runs the IdentifyViolator(1) algorithm on (C1, C2) and
obtains the public key pk of the violator and a proof of guilt Π . Anyone can run
VerifyViolation(1) on (pk, S1, V1, Π) to be convinced that the user with public key
pk double-spent the coin with serial number S1.

Violation 2: Money-laundering. In DetectViolation(2), the bank tests if two
coins, C1 = (S1, V1, π1) and C2 = (S2, V2, π2), in L have the same merchant
record locator V1 = V2. If so, the bank runs the IdentifyViolator(2) algorithm on
(C1, C2) and obtains the public key pk of the violator and a proof of guilt Π .
Anyone can run VerifyViolation(2) on (pk, S1, V1, Π) to be convinced that the
user with public key pk exceeded the bounded-anonymity business limit with
the coin with merchant record locator V1.

Optionally, after any violation, the bank may also run the Trace algorithm on
a valid proof of guilt Π to obtain a list of all serial numbers Si ever spent by the
cheating user, with public key pk, along with a proof of ownership Γ . Anyone
can run VerifyOwnership on (pk, Si, Γ) to be convinced that the user with public
key pk was the owner of the coin with serial number Si.

Security. We generalize the security definition of CHL for e-cash [11]. Their
formalizations of correctness, balance, and anonymity of users remain unchanged.
Roughly, balance guarantees that an honest bank will never have to accept
for deposit more coins than users withdrew, while anonymity of users assures
users that they remain completely anonymous unless they violate one of the
known system conditions. We now informally describe three additional prop-
erties. These properties are generalizations of CHL’s identification and tracing
of double-spenders, and their exculpability, to apply to any specified violation,
in particular those above. Let params be the global parameters, including the
number of coins per wallet, 2�, and a (possibly unique) spending limit for each
merchant. (Recall that each merchant may have a different spending limit, but
that a merchant’s limit will apply uniformly for all of its customers.)

Identification of violators. Suppose two coins C1 = (S1, V1, π1) and C2 =
(S2, V2, π2) are the output of an honest merchant (or possibly merchants) running
two Spend protocols with the adversary or they are two coins that an honest
bank accepted for deposit. This property guarantees that, with high probability,
if, for some i, the algorithm DetectViolation(i)(params , C1, C2) accepts, then

IdentifyViolator(i)(params , C1, C2) outputs a key pk and a proof Π such that
VerifyViolation(i)(params , pk, S1, V1, Π) accepts.

Tracing of violators. Suppose VerifyViolation(i)(params , pk, S, V, Π) accepts
for some violation i derived from coins C1, C2. This property guarantees that,
with high probability, Trace(params , pk, C1, C2, Π, D) outputs the serial numbers
S1, . . . , Sm of all coins belonging to the user of pk along with proofs of ownership
Γ1, . . . , Γm such that for all j, we have that VerifyOwnership(params , pk, Sj , Γj)
accepts.

Exculpability. Suppose an adversary participates any number of times in the
Withdraw protocol with an honest user with key pk, and subsequently to that,
in any number of non-violation Spend protocols with the same user. The ad-
versary then outputs an integer i, a coin serial number S, and a purported
proof Γ that the user with key pk committed violation i and owns coin S. The
weak exculpability property states that, for all adversaries, the probability that
VerifyOwnership(params , pk, S, Γ) accepts is negligible.

Furthermore, the adversary may continue to engage the user in Spend pro-
tocols, forcing her to violate the system conditions. The adversary then outputs
(i, S, V, Π). The strong exculpability property states that, for all adversaries: (1)
when S is a coin serial number not belonging to the user of pk, weak exculpabil-
ity holds, and (2) when the user of pk did not commit violation i, the probability
that VerifyViolation(i)(params , pk, S, V, Π) accepts is negligible.

The formal definitions follow in a straight-forward manner by applying the
above intuition to the CHL definitions [11].

3 Technical Preliminaries

Our e-cash system use a variety of known protocols as building blocks, which we
now briefly review. Many of these protocols can be shown secure under several
different complexity assumptions, a flexibility that will extend to our e-cash
systems. Notation: we write G = 〈g〉 to denote that g generates the group G.

3.1 Bilinear Maps

Let Bilinear Setup be an algorithm that, on input the security parameter 1k,
outputs the parameters for a bilinear mapping as γ = (q, g1, h1, G1, g2, h2, G2,
GT , e) [6]. Each group G1 = 〈g1〉 = 〈h1〉, G2 = 〈g2〉 = 〈h2〉, and GT are of prime
order q = Θ(2k). The efficiently computable mapping e : G1×G2 → GT is both:
(Bilinear) for all g1 ∈ G1, g2 ∈ G2, and a, b ∈ Zq, e(ga

1 , gb
2) = e(g1, g2)ab; and

(Non-degenerate) if g1 is a generator of G1 and g2 is a generator of G2, then
e(g1, g2) generates GT .

3.2 Complexity Assumptions

The security of our scheme relies on the same assumptions as CHL, which are:

Strong RSA Assumption [3, 27]: Given an RSA modulus n and a random
element g ∈ Z∗

n, it is hard to compute h ∈ Z∗
n and integer e > 1 such that he ≡ g

mod n. The modulus n is of a special form pq, where p = 2p′ +1 and q = 2q′ +1
are safe primes.

y-Decisional Diffie-Hellman Inversion Assumption (y-DDHI) [4, 25]:
Given a random generator g ∈ G, where G has prime order q, the values
(g, gx, . . . , g(xy)) for a random x ∈ Zq, and a value R ∈ G, it is hard to de-
cide if R = g1/x or not.

External Diffie-Hellman Assumption (XDH) [28, 39, 32, 5, 2]: Suppose
Bilinear Setup(1k) produces the parameters for a bilinear mapping e : G1×G2 →
GT . The XDH assumption states that the Decisional Diffie-Hellman (DDH) prob-
lem is hard in G1. This implies that there does not exist an efficiently computable
isomorphism ψ′ : G1 → G2.

Sum-Free Decisional Diffie-Hellman Assumption (SF-DDH) [24]: Sup-
pose that g ∈ G is a random generator of order q. Let L be any polynomial func-
tion of |q|. Let Oa(·) be an oracle that, on input a subset I ⊆ {1, . . . , L}, outputs
the value gβI

1 where βI =
∏

i∈I ai for some a = (a1, . . . , aL) ∈ Z
L
q . Further, let

R be a predicate such that R(J, I1, . . . , It) = 1 if and only if J ⊆ {1, . . . , L} is
DDH-independent from the Ii’s; that is, when v(Ii) is the L-length vector with a
one in position j if and only if j ∈ Ii and zero otherwise, then there are no three
sets Ia, Ib, Ic such that v(J) + v(Ia) = v(Ib) + v(Ic) (where addition is bitwise
over the integers). Then, for all probabilistic polynomial time adversaries A(·),

Pr[a = (a1, . . . , aL) ← ZL
q ; (J, α) ← AOa (1|q|); y0 = g

Q
i∈J ai ; y1 ← G;

b ← {0, 1}; b′ ← AOa(1|q|, yb, α) : b = b′ ∧ R(J, Q) = 1] < 1/2 + 1/poly(|q|),

where Q is the set of queries that A made to Oa(·).

3.3 Key Building Blocks

Known Discrete-Logarithm-Based, Zero-Knowledge Proofs. In the common pa-
rameters model, we use several previously known results for proving statements
about discrete logarithms, such as (1) proof of knowledge of a discrete logarithm
modulo a prime [38] or a composite [27, 23], (2) proof of knowledge of equality
of representation modulo two (possibly different) prime [21] or composite [15]
moduli, (3) proof that a commitment opens to the product of two other com-
mitted values [14, 16, 8], (4) proof that a committed value lies in a given integer
interval [17, 14, 7], and also (5) proof of the disjunction or conjunction of any
two of the previous [22]. These protocols modulo a composite are secure under
the strong RSA assumption and modulo a prime under the discrete logarithm
assumption. We can apply the Fiat-Shamir heuristic [26] to turn such proofs of
knowledge into signature proofs of knowledge on some message m.

DY Pseudorandom Function (PRF). Let G = 〈g〉 be a group of prime order q.
Let s be a random element of Zq. Dodis and Yampolskiy [25] recently proposed a

pseudorandom function fDY
g,s (x) = g1/(s+x) for inputs x ∈ Z∗

q . This construction
is secure under the y-DDHI. 3

Pedersen Commitments. Pedersen proposed a perfectly-hiding, computationally-
binding commitment scheme [36] based on the discrete logarithm assumption,
in which the public parameters are a group of prime order q, and generators
(g0, . . . , gm). In order to commit to the values (v1, . . . , vm) ∈ Zq

m, pick a ran-
dom r ∈ Zq and set C = PedCom(v1, . . . , vm; r) = gr

0

∏m
i=1 gvi

i . Fujisaki and
Okamoto [27] showed how to expand this scheme to composite order groups.

CL Signatures. Camenisch and Lysyanskaya [12] came up with a secure signature
scheme based on the Strong RSA assumption with two protocols: (1) An efficient
protocol between a user and a signer with keys (pkS , skS). The common input
consists of pkS and C, a Pedersen commitment. The user’s secret input is the set
of values (v1, . . . , v�, r) such that C = PedCom(v1, . . . , v�; r). As a result of the
protocol, the user obtains a signature σpkS (v1, . . . , v�) on his committed values,
while the signer does not learn anything about them. The signature has size
O(� · log q). (2) An efficient proof of knowledge of a signature protocol between
a user and a verifier. The common inputs are pkS and a commitment C. The
user’s private inputs are the values (v1, . . . , v�, r), and σpkS (v1, . . . , v�) such that
C = PedCom(v1, . . . , v�; r). These signatures are secure under the strong RSA
assumption. For our current purposes, it does not matter how CL signatures
actually work, all that matters are the facts stated above.

Verifiable Encryption. We use a technique by Camenisch and Damg̊ard [10] for
turning any semantically-secure encryption scheme into a verifiable encryption
scheme. A verifiable encryption scheme is a two-party protocol between a prover
and encryptor P and a verifier and receiver V . Roughly, their common inputs
are a public encryption key pk and a commitment A. As a result of the protocol,
V either rejects or obtains the encryption c of the opening of A. The protocol
ensures that V accepts an incorrect encryption only with negligible probability
and that V learns nothing meaningful about the opening of A. Together with the
corresponding secret key sk, transcript c contains enough information to recover
the opening of A efficiently. We hide some details here and refer to Camenisch
and Damg̊ard [10] for the full discussion.

Bilinear Elgamal Encryption. In particular, we apply the verifiable encryption
techniques above to a bilinear variant of the Elgamal cryptosystem [6, 1], which is
semantically secure under an assumption implied by either y-DDHI or Sum-Free
DDH. What we will need is a cryptosystem where gx is sufficient for decryption
and then the public key is f(gx) for some function f .

Assume we run Bilinear Setup on 1k to obtain γ = (q, g1, h1, G1, g2, h2, G2,
GT , e), where we have bilinear map e : G1 × G2 → GT . In bilinear Elgamal [1],

3 It is possible to eliminate the y-DDHI assumption from our e-cash system by re-
placing the DY PRF with a DDH-based PRF such as the one due to Naor and
Reingold [33]. However, this approach would enlarge our wallets from O(� + k) bits
to O(� · k) bits. Thus, we present only the most optimal building blocks.

a public-secret keypair is of the form (e(gu
1 , g2), gu

1) for a random u ∈ Zq. Thus,
we can think of f(·) := e(·, g2) where the value gu

1 is enough to decrypt.

4 Compact E-Cash in the Bounded-Anonymity Model

Overview of our construction. As in the CHL compact e-cash scheme, a user
withdraws a wallet of 2� coins from the bank and spends them one by one. Also,
as in the CHL scheme, we use a pseudorandom function F(·)(·) whose range is
some group G of large prime order q.

At a high level, a user forms a wallet of 2� = N coins by picking five values,
(x, s, t, v, w) from an appropriate domain to be explained later, and running an
appropriate secure protocol with the Bank to obtain the Bank’s signature σ on
these values.

Suppose that the user wants to spend coin number i by buying goods from
merchant M . Suppose that only up to K transactions with this merchant may
be anonymous. Let’s say that this is the user’s j-th transaction with M , j ≤
K. Associated with the i-th coin in the wallet is its serial number S = Fs(i).
Associated with the j-th transaction with the merchant M is the merchant’s
record locator V = Fv(M, j).

The first idea is that in the Spend protocol, the user should give to the
merchant the values (S, V), together with a (non-interactive zero-knowledge)
proof that these values are computed as a function of (s, i, v, M, j), where 1 ≤
i ≤ N , 1 ≤ j ≤ K, and (s, v) correspond to a wallet signed by the Bank.
Note that S and V are pseudorandom, and therefore computationally leak no
information; and the proof leaks no information because it is zero-knowledge.

Suppose that a user spends more than N coins. Then he must have used
some serial number more than once, since there are only N possible values S
of the form Fs(i) where 1 ≤ i ≤ N . (This is the CHL observation.) Similarly,
suppose that a user made more than K transactions with M . Then he must have
used some merchant record locator more than once, since for a fixed M , there
are only K different values V = Fv(M, j), 1 ≤ j ≤ K. Therefore it is easy to see
that double-spending and violations of the bounded-anonymity business model
can be detected.

Now we need to explain how to make sure that using any S or V more
than once leads to identification. Remember that besides s and v, the wallet
also contains x, t and w. The value x ∈ Zq is such that gx is a value that
can be publicly linked to the user’s identity. (Where g is a generator of the
group G.) For example, for some computable function f , f(gx) can be the user’s
public key. Suppose that as part of the transaction the merchant contributes a
random value r
= 0, and the user reveals T = gxFt(i)r and W = gxFw(M, j)r,
together with a proof that T and W are computed appropriately as a function
of (r, x, t, i, w, M, j) corresponding to the very same wallet and the same i and j.
Again, T and W are pseudorandom and therefore do not leak any information.

If a user uses the same serial number S = Fs(i) twice, and q is appropriately
large, then with high probability in two different transactions she will receive

different r’s, call them r1 and r2, and so will have to respond with T1 = gxFt(i)r1 ,
T2 = gxFt(i)r2 . It is easy to see that the value gx can then be computed as
follows: gx = T1/(T1/T2)r1/(r1−r2). This was discovered by CHL building on the
original ideas of offline e-cash [20].

We show that it is also the case that if the user uses the same merchant’s
record locator number V twice, then gx can be found in exactly the same fashion.
Suppose that in the two transactions the merchant used the same r. In that case,
the Bank can simply refuse to deposit this e-coin (since it is the same merchant,
he is responsible for his own lack of appropriate randomization). So suppose that
the merchant used two different r’s, r1 and r2, giving rise to W1 and W2. It is
easy to see that gx = W1/(W1/W2)r1/(r1−r2).

Thus, a double-spending or a violation of the bounded-business model leads
to identification. The only remaining question is how this can be adapted to trace
other transactions of the same user. Note that gx is not necessarily a public value,
it may also be the case that only f(gx) is public, while knowledge of gx gives one
the ability to decrypt a ciphertext which was formed by verifiably encrypting s
(for example, Boneh and Franklin’s cryptosystem [6] has the property that gx is
sufficient for decryption). When withdrawing a wallet, the user must give such a
ciphertext to the bank. In turn, knowledge of s allows to discover serial numbers
of all coins from this wallet and see how they were spent.

Finally, note that the values (x, v, w) should be tied to a user’s identity and
not to a particular wallet. This way, even if a user tries to spend too much money
with a particular merchant from different wallets, it will still lead to detection
and identification.

4.1 Our Protocols

Recall our building blocks from Section 3: the Dodis-Yampolskiy pseudo-random
function [25], i.e., fDY

(g,s)(x) = g1/(s+x), where g is the generator of a suitable
group; CL-signatures [12] and the related protocols to issue signatures and prove
knowledge of signatures; and the Bilinear Elgamal cryptosystem [6, 1] used with
the Camenisch-Damg̊ard [10] verifiable encryption techniques.

Notation: Let F(g,s)(x) = fDY
(g,s)(x), and when H is a hash function whose

range is an appropriate group, let GH
s (M, x) = fDY

(H(M),s)(x).
We are now describing the protocols of our system: Setup, Withdraw, Spend,

and Deposit (including the protocols in response to violations).

Setup: Let k be the security parameter. The common system parameters are
the bilinear map parameters Bilinear Setup(1k) → (q, g1, G1, g2, h2, G2, GT , e), a
wallet size �, and two hash functions H1 : {0, 1}∗ → GT and H2 : {0, 1}∗ → G1.
The bank generates CL signing keys (pkB, skB) as before.

Each user generates a key pair of the form skU = (x, v, w) and pkU =
(e(g1, h2)x, e(g1, h2)v, e(g1, h2)w), where x, v, and w are chosen randomly from
Zq. Each user also generates a signing keypair for any secure signature scheme.
Each merchant publishes a unique identity string idM. Also, an upper-bound
NM for the number of coins each user can spend with merchant idM is fixed.

Withdraw: A user U withdraws 2� coins from the bank B as follows. The user
and the bank engage in an interactive protocol, and if neither report an error,
then at the end:

1. U obtains (s, t, σ), where s, t are random values in Zq, and σ is the bank’s
signature on (skU , s, t), i.e., (x, v, w, s, t).

2. B obtains a verifiable encryption of s under e(g1, h2)x, i.e., the first element
from the user’s public key pkU , together with the user’s signature on this
encryption.

3. B does not learn anything about skU , s, or t.

Step one can be efficiently realized using the Camenisch-Lysyanskaya signa-
tures and the related protocols [13]. Step two can be realized by applying the
Camenisch-Damg̊ard [10] verifiable encryption techniques to the Bilinear Elga-
mal cryptosystem [6, 1]. Step three follows from the other two. All these steps
are essentially the same as in the CHL e-cash scheme, the exception being the
secret key signed which now also includes v and w besides x.

Spend: A user U spends one coin with a merchant M with a spending limit of
NM coins as follows. As in CHL, the user keeps a private counter i from 1 to
2� for the number of coins spent in her wallet. Additionally, the user now also
keeps a counter jM for each merchant M representing the number of coins she
has spent with that merchant.

1. U checks that she is under her spending limit with merchant M; that is,
that jM < NM. If not, she aborts.

2. M sends random r1, r2 ∈ Z
∗
q to U .

3. U sends M the i-th coin in her wallet on her jM-th transaction with M.
Recall that skU = (x, v, w). This coin consists of a serial number S and a
wallet check T , where

S = F(e(g1,h2),s)(i) = e(g1, h2)1/(s+i) , T = gx
1 (F(g1,t)(i))r1 = g

x+r1/(t+i)
1

and two money laundering check values V and W , where

V = GH1
v (idM, jM) = H1(idM)1/(v+jM) ,

W = gx
1 (GH2

w (idM, jM))r2 = gx
1H2(idM)r2/(w+jM)

and a zero-knowledge, proof of knowledge (ZKPOK) π of (i, jM, skU =
(x, v, w), s, t, σ) such that
(a) 1 ≤ i ≤ 2�;
(b) 1 ≤ jM ≤ NM;
(c) S = F(e(g1,h2),s)(i), i.e., S = e(g1, h2)1/(s+i);
(d) T = gx

1 (F(g1,t)(i))r1 , i.e., T = g
x+r1/(t+i)
1 ;

(e) V = GH1
v (idM, jM), i.e., V = H1(idM)1/(v+jM);

(f) W = gx
1 (GH2

w (idM, jM))r2 , i.e., W = gx
1H2(idM)r2/(w+jM) ; and

(g) VerifySig(pkB, (skU = (x, v, w), s, t), σ)=true.

The proof π can be made non-interactive using the Fiat-Shamir heuristic [26].
4. If π verifies and the value Vj was never seen by M before, then M accepts

and saves the coin (r1, r2, S, T, V, W, π). If the value Vj was previously seen
before in a coin (r′1, r′2, S′, T ′, V, W ′, π′), then M runs Open(W ′, W, r′2, r2).
Let us define the Open(·, ·, ·, ·) algorithm as:

Open(A, B, C, D) :=
A

(A/B)C/(C−D)
.

If M executed the Spend protocols honestly (i.e., chose fresh random val-
ues at the start of each protocol), then with high probability r2
= r′2, and
Open(W ′, W, r′2, r2) = gx

1 . Thus, the merchant can identify the user by com-
puting e(gx

1 , h2), which is part of U ’s public key. This allows an honest mer-
chant to protect itself from customers who try to overspend with it. (If the
merchant is dishonest, the bank will catch the overspending at deposit time.)

Steps 3(a,c,d) are the same as in the CHL scheme whereas Steps 3(b,e,f) are
new, and Step 3(g) needs to be adapted properly. Consequently, Steps 3(a) and
3(b) can be done efficiently using standard techniques [17, 14, 7]. Steps 3(c) to
3(f) can be done efficiently using techniques of Camenisch, Hohenberger, and
Lysyanskaya [11]. Step 3(g) can be done efficiently using the Camenisch and
Lysyanskaya signatures [13].

Deposit: A merchant M deposits a coin with bank B by submitting the coin
(r1, r2, S, T, V, W, π). The bank checks the proof π; it if does not verify, the bank
rejects immediately. Now, the bank must make two additional checks.

First, B checks that the spender of the coin has not overspent her wallet;
that is, the bank searches for any previously accepted coin with the same serial
number S. Suppose such a coin (r′1, r

′
2, S, T ′, V ′, W ′, π′) is found. If r1 = r′1, B

refuses to accept the coin. Otherwise, B accepts the coin from the merchant, but
now must punish the user who double spent.

1. B executes Open(T ′, T, r′1, r1) = gx
1 .

2. B identifies user as person with public key containing e(gx
1 , h2).

3. B uses gx
1 to decrypt the encryption of s left with the bank during the

withdraw protocol. Next, B uses s to compute the serial numbers Sj =
F(e(g1,h2),s)(j) for each coin j = 1 to 2� of all coins in the user’s wallet. (In
fact, the bank can use gx

1 to decrypt the secret of all the user’s wallets and
trace those transactions in the same way.)

Second, B checks that the spender of the coin has not exceeded her spend-
ing limit with merchant M. That is, the bank searches for any previously ac-
cepted coin with the same money-laundering check value Vj . Suppose such a
coin (r′1, r

′
2, S

′, T ′, V, W ′, π′) is found. The bank immediately refuses to accept
the deposit and punishes the merchant. The bank now must also determine if
the spender is to blame. If r2 = r′2, B punishes the merchant alone. Otherwise,
B must also punish the user who attempted to money launder.

1. B executes Open(W ′, W, r′2, r2) = gx
1 .

2. B identifies user as person with public key containing e(gx
1 , h2).

3. B uses gx
1 to decrypt the encryption of s left with the bank during the

withdraw protocol. Next, B uses s to compute the serial numbers Sj =
F(e(g1,h2),s)(j) for each coin j = 1 to 2� of all coins in the user’s wallet. (In
fact, the bank can use gx

1 to decrypt the secret of all the user’s wallets and
trace those transactions in the same way.)

If all checks pass, B accepts the coin for deposit in M’s account.
The deposit protocol is again very similar to the deposit protocol of the CHL

scheme, i.e., instead of only checking for double spending, the bank now also
checks for money laundery. Thus, if the user was honest, the bank needs now to
perform two database lookup’s instead of one before.

For completeness, we point out explicitly how the violation-related protocols
work. Let C1 = (r1, r2, S, T, V, W, π) and C2 = (r′1, r′2, S′, T ′, V ′, W ′, π′) be one
existing and one newly deposited coin. Detecting double-spending or money-
laundering involves checking S1 = S2 or V1 = V2, respectively. The identification
algorithm runs Open on the appropriate inputs, and the resulting proof of guilt
is Π = (C1, C2). Verifying the violation entails successfully checking the validity
of the coins, detecting the claimed violation, running Open to obtain gx

1 , and
checking its relation to pk. (Recall that knowledge of x, not just gx

1 , is required
to create a valid coin. Thus the leakage of one violation cannot be used to
spend the user’s coins or fake another violation.) The trace algorithm involves
recovering s, from the encryption E signed by the user during Withdraw, and
computing all serial numbers. The proof of ownership Γ = (E, σ, gx

1), where σ is
the user’s signature on E. Verifying ownership for some serial number S involves
verifying the signature σ, checking that e(gx

1 , h2) = pk, decrypting E to recover
s, computing all serial numbers Si, and testing if, for any i, S = Si.

Theorem 1. In the bounded-anonymity business model, our scheme achieves
correctness, balance, anonymity of users, identification of violators, tracing of
violators, and strong exculpability under the Strong RSA, y-DDHI, and either
the XDH or Sum-Free DDH assumptions in the random oracle model.

Due to space limitations, we refer to the full version of this paper for the
proof of Theorem 1. We briefly provide some informal intuition.

Balance. For each wallet, s deterministically defines exactly 2� values that
can be valid serial numbers for coins. To overspend a wallet, a user must either
use one serial number twice, in which case she is identifiable, or she must forge
a CL signature or fake a proof of validity.

Anonymity of users. A coin is comprised of four values (S, T, V, W), which
are pseudorandom and thus leak no information about the user, together with a
non-interactive, zero-knowledge proof of validity, which since it is zero-knowledge
also leaks nothing. The only abnormality here is that, when computing V and
W , the base used for the PRF is the hash of the merchant’s identity (as opposed
to the fixed bases used to compute S and T). Treating hash H as a random

oracle, we see that given GH
v (idM, j), the output of GH

v (·, ·) on any other input,
in particular GH

v (id ′
M, j) for idM
= id ′

M, is indistinguishable from random.
Specifically, if an adversary given GH

v (idM, j) = fDY
(H(idM),v)(j) = H(idM)1/(v+j)

can distinguish H(id ′
M)1/(v+j) from random for some random, fixed H(idM) and

H(id ′
M), then it is solving DDH.

Exculpability. First, an honest user cannot be proven guilty of a crime he
didn’t commit, because the proof of guilt includes the user’s secret value gx

1 . If a
user is honest, only he knows this value. Second, even a cheating user cannot be
proven guilty of a crime he didn’t commit— e.g., double-spending one coin does
not enable a false proof of money-laundering twenty coins —because: (1) guilt is
publicly verifiable from the coins themselves, and (2) knowledge of x is required
to create coins. The value gx

1 , which is leaked by a violation, is not enough to
spend a coin from that user’s wallet.

4.2 Scaling Back the Punishment for System Violators

When tracing is deemed too harsh a punishment or simply to make the system
more efficient when tracing is not needed, two other options are available:

Option (1): violation is detected and user’s identity is revealed. This system
operates as the above except that during the Withdraw protocol the user does
not give the bank verifiable encryptions of her wallet secret s. Then later during
the Deposit protocol, the bank may still detect the violation and identify the
user, but will not be able to compute the serial numbers of other transactions
involving this user.

Option (2): violation is detected. This system operates as the Option (1)
system, except that during Spend, the user does not provide the merchant with
either values T or W . Then later during the Deposit protocol, the bank may still
detect a violation, but will not be able to run Open and identify the user.

4.3 Efficiency Considerations

We give the detailed protocols in the full version of the paper (they are rather
similar to the detailed ones of the CHL scheme [11] and require slightly less than
double the work of the participants). As indication of the protocols efficiency let
us state some numbers here. One can construct Spend such that a user must com-
pute fourteen multi-base exponentiations to build the commitments and twenty
more for the proof. The merchant and bank need to do twenty multi-base expo-
nentiations to check that the coin is valid. The protocols require two rounds of
communication between the user and the merchant and one round between the
bank and the merchant. If one takes Option (2) above, then it is thirteen multi-
base exponentiations to build the commitments and eighteen more for the proof.
Verification by bank and merchant takes eighteen multi-base exponentiations.

Acknowledgments

Part of Jan Camenisch’s work reported in this paper is supported by the Euro-
pean Commission through the IST Programme under Contract IST-2002-507932
ECRYPT and by the IST Project PRIME. The PRIME projects receives re-
search funding from the European Community’s Sixth Framework Programme
and the Swiss Federal Office for Education and Science. The information in this
document reflects only the author’s views, is provided as is and no guarantee or
warranty is given that the information is fit for any particular purpose. The user
thereof uses the information at its sole risk and liability.

Part of Susan Hohenberger’s work is supported by an NDSEG Fellowship.
Anna Lysyanskaya is supported by NSF Career grant CNS 0347661.

References

1. G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved Proxy Re-encryption
Schemes with Applications to Secure Distributed Storage. In NDSS, p. 29–43, 2005.

2. L. Ballard, M. Green, B. de Medeiros, and F. Monrose. Correlation-Resistant
Storage. Johns Hopkins University, CS Technical Report # TR-SP-BGMM-
050705. http://spar.isi.jhu.edu/~mgreen/correlation.pdf, 2005.

3. N. Barić and B. Pfitzmann. Collision-free accumulators and fail-stop signature
schemes without trees. In EUROCRYPT ’97, volume 1233, p. 480–494, 1997.

4. D. Boneh and X. Boyen. Short signatures without random oracles. In EURO-
CRYPT 2004, volume 3027 of LNCS, p. 54–73, 2004.

5. D. Boneh, X. Boyen, and H. Shacham. Short group signatures using strong Diffie-
Hellman. In CRYPTO, volume 3152 of LNCS, p. 41–55, 2004.

6. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. In
J. Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, p. 213–229, 2001.

7. F. Boudot. Efficient proofs that a committed number lies in an interval. In EU-
ROCRYPT ’00, volume 1807 of LNCS, p. 431–444, 2000.

8. S. Brands. Rapid demonstration of linear relations connected by boolean operators.
In EUROCRYPT ’97, volume 1233 of LNCS, p. 318–333, 1997.

9. E. Brickell, P. Gemmel, and D. Kravitz. Trustee-based tracing extensions to anony-
mous cash and the making of anonymous change. In SIAM, p. 457–466, 1995.

10. J. Camenisch and I. Damg̊ard. Verifiable encryption, group encryption, and their
applications to group signatures and signature sharing schemes. In T. Okamoto,
editor, ASIACRYPT ’00, volume 1976 of LNCS, p. 331–345, 2000.

11. J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact E-Cash. In EURO-
CRYPT, volume 3494 of LNCS, p. 302–321, 2005.

12. J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols. In
SCN 2002, volume 2576 of LNCS, p. 268–289, 2002.

13. J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials
from bilinear maps. In CRYPTO 2004, volume 3152 of LNCS, p. 56–72, 2004.

14. J. Camenisch and M. Michels. Proving in zero-knowledge that a number n is the
product of two safe primes. In EUROCRYPT ’99, volume 1592, p. 107–122, 1999.

15. J. Camenisch and M. Michels. Separability and efficiency for generic group signa-
ture schemes. In CRYPTO ’99, volume 1666 of LNCS, p. 413–430, 1999.

16. J. L. Camenisch. Group Signature Schemes and Payment Systems Based on the
Discrete Logarithm Problem. PhD thesis, ETH Zürich, 1998.

17. A. Chan, Y. Frankel, and Y. Tsiounis. Easy come – easy go divisible cash. In
EUROCRYPT ’98, volume 1403 of LNCS, p. 561–575, 1998.

18. D. Chaum. Blind signatures for untraceable payments. In CRYPTO ’82, p. 199–
203. Plenum Press, 1982.

19. D. Chaum. Blind signature systems. In CRYPTO ’83, p. 153–156. Plenum, 1983.
20. D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In CRYPTO ’90,

volume 403 of LNCS, p. 319–327, 1990.
21. D. Chaum and T. P. Pedersen. Wallet databases with observers. In CRYPTO ’92,

volume 740 of LNCS, p. 89–105, 1993.
22. R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge and

simplified design of witness hiding protocols. In CRYPTO ’94, p. 174–187, 1994.
23. I. Damg̊ard and E. Fujisaki. An integer commitment scheme based on groups with

hidden order. In ASIACRYPT 2002, volume 2501 of LNCS, 2002.
24. Y. Dodis. Efficient construction of (distributed) verifiable random functions. In

Public Key Cryptography, volume 2567 of LNCS, p. 1–17, 2003.
25. Y. Dodis and A. Yampolsky. A Verifiable Random Function with Short Proofs an

Keys. In Public Key Cryptography, volume 3386 of LNCS, p. 416–431, 2005.
26. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification

and signature problems. In CRYPTO, volume 263 of LNCS, p. 186–194, 1986.
27. E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular

polynomial relations. In CRYPTO ’97, volume 1294 of LNCS, p. 16–30, 1997.
28. S. D. Galbraith. Supersingular curves in cryptography. In C. Boyd, editor, ASI-

ACRYPT, volume 2248 of LNCS, p. 495–513, 2001.
29. S. Jarecki and V. Shmatikov. Handcuffing big brother: an abuse-resilient transac-

tion escrow scheme. In EUROCRYPT, volume 3027 of LNCS, p. 590–608, 2004.
30. D. Kügler and H. Vogt. Fair tracing without trustees. In Financial Cryptography

’01, volume 2339 of LNCS, p. 136–148, 2001.
31. A. Kiayias, Y. Tsiounis, and M. Yung. Traceable signatures. In EUROCRYPT,

volume 3027 of LNCS, p. 571–589, 2004.
32. N. McCullagh and P. S. L. M. Barreto. A new two-party identity-based authenti-

cated key agreement. In CT-RSA, volume 3376 of LNCS, p. 262–274, 2004.
33. M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-

random functions. Journal of the ACM, 51, Number 2:231–262, 2004.
34. L. Nguyen and R. Safavi-Naini. Dynamic k-times anonymous authentication. In

ACNS 2005, number 3531 in LNCS, p. 318–333. Springer Verlag, 2005.
35. T. Okamoto and K. Ohta. Disposable zero-knowledge authentications and their

applications to untraceable elec. cash. In CRYPTO, volume 435, p. 481–496, 1990.
36. T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret

sharing. In CRYPTO ’92, volume 576 of LNCS, p. 129–140, 1992.
37. T. Sander and A. Ta-Shma. Flow control: a new approach for anonymity control

in electronic cash systems. In FC, volume 1648 of LNCS, p. 46–61, 1999.
38. C. P. Schnorr. Efficient signature generation for smart cards. Journal of Cryptology,

4(3):239–252, 1991.
39. M. Scott. Authenticated ID-based key exchange and remote log-in with simple

token and PIN number. Available at http://eprint.iacr.org/2002/164, 2002.
40. M. Stadler, J.-M. Piveteau, and J. Camenisch. Fair blind signatures. In EURO-

CRYPT ’95, volume 921 of LNCS, p. 209–219, 1995.
41. I. Teranishi, J. Furukawa, and K. Sako. k-times anonymous authentication (ex-

tended abstract). In Asiacrypt 2004, volume 3329 of LNCS, p. 308–322, 2004.

