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Letter from the CSTA President

In the face of a global economy that rewards innovation and technological supremacy,
many countries, including the United States, are looking to education to ensure their
continuing competitiveness.

With the specific goal of keeping the United States technologically competitive in
fields such as nanotechnology, supercomputing, and bioinformatics, the United States
has committed to training thousands of high school teachers to lead advanced
placement math and science courses.

Computer science as an academic discipline provides the knowledge and skill
foundation for all of these technological advances.

Computer science education in the United States is at a critical juncture. The
number of students pursuing computer science as a career choice or course of study
has dropped precipitously at all levels. The number of high school students taking the
Advanced Placement computer science exam, for example, has declined almost 20%
over the past three years. In addition, the lack of national curriculum standards and
consistent and rational teacher certification requirements continue to hamper our
ability to ensure that our students are adequately prepared to compete in this
increasingly technological world.

In short, policy makers at the local, state, and national levels must prepare for a
21st century technological workforce by giving those workers the computer science
knowledge base necessary for success in these computing-intensive fields.

The warning signs are unmistakable. The solution is clear. Unless we act quickly
and decisively to remedy the disconnect between our national technological goals and
computer science education at the high school level, the United States will soon face
an educational, competitive, and economic crisis.

I urge you to read closely and carefully this final report of the CSTA Curriculum
Improvement Task Force and heed its sobering message. Improving high school
computer science education is indeed a national educational imperative.

Regards,

Robb Cutler
Chairperson

Computer Science Teachers Association
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THE ECONOMIC AND EDUCATION
IMPERATIVE

The United States, a nation once proud of its
leadership in education, is sitting quietly on the
sidelines while other countries make improvements
to ensure their high school graduates will be ready to
meet the demands of tomorrow’s high-tech society.
Countries around the world that once looked to the
United States for guidance when planning new and
innovative curricula are now taking the lead in
computer science education. While other countries are
requiring a computer science course for high school
students just as they require math or biology, high
school computer science education in the United States
is disappearing. In light of the anticipated shortage of
qualified candidates for the 1.5 million computer and
information technology jobs by 2012, this lack of
engagement with issues relating to computer science
education is shortsighted and potentially disastrous.

DEFINING COMPUTER SCIENCE

Unlike other more static disciplines, computer science is
constantly being reshaped. New thinking and new
technologies continue to expand our understanding
of what computer scientists can and need to know.
This has resulted in considerable debate about a single
definition of computer science. The ACM Model

Curriculum for K–12 Computer Science, however, provides
the most appropriate definition of computer science for
high school educators. Computer science, it argues, is

neither programming nor computer literacy. Rather, it
is “the study of computers and algorithmic processes
including their principles, their hardware and software
design, their applications, and their impact on society”
(Tucker, 2003). Computer science therefore includes:

• programming, 
• hardware design, 
• networks, 
• graphics, 
• databases and information retrieval, 
• computer security, 
• software design, 
• programming languages, 
• logic, 
• programming paradigms, 
• translation between levels of abstraction,

artificial intelligence,
• the limits of computations (what computers

can’t do), 
• applications in information technology and

information systems, and
• social issues (Internet security, privacy,

intellectual property, etc.).

HIGH SCHOOL COMPUTER SCIENCE
EDUCATION IN THE UNITED STATES

Computers have infiltrated all areas of society, and
there is now a clear link between technology,
innovation, and economic survival. In light of this,
one would expect a move within our society to
support and standardize computer science education.

The New Educational Imperative:
Improving High School Computer Science Education

Final Report of the CSTA Curriculum Improvement Task Force

February 2005

Executive Summary
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Yet, no national K–12 computer science curriculum
exists. Lack of leadership on high school computer
science education at the highest legislative and policy
levels has resulted in insufficient funding for
classroom instruction, resources, and professional
development for computer science teachers. In
addition, complex and contradictory teacher
certification requirements as well as salaries that
cannot possibly compete with industry make it
exceedingly difficult to ensure the availability of
exemplary computer science teachers. 

In the face of confusing definitions of computer
literacy, information fluency, and the various sub-
branches of computer science itself, many schools
have lost sight of the fact that computer science is a
scientific discipline and not a “technology” that
simply supports learning in other curriculum areas.
Computer science is not about point and click skills.
It is a discipline with a core set of scientific principles
that can be applied to solve complex, real-world
problems and promote higher-order thinking. In
short, knowledge of computer science is now as
essential to today’s educated student as any of the
traditional sciences.

WHAT THE RESEARCH REVEALS

The body of research from around the world relating
to high school computer science education indicates
that learning computer science provides direct benefits
to students. While there are distinct differences
between how various countries implement their high
school computer science programs, a growing 
number of countries already require computer science
education of all high school students.

The primary limitation of the current body of
research is that it is too narrowly focused on
programming and therefore does not give an
appropriately broad view of the discipline. Despite
this limitation, however, the research provides vital
information regarding students’ misconceptions
about computer science (for example, that it is just
about programming or that it is a “male” field). It

also provides critically important insights about the
underlying principles of computer science education. 

• Students should acquire a broad overview of
the field to construct a comprehensive picture 
of computer science as a discipline.

• Students must understand not only the
theoretical underpinnings of the discipline but
also how that theory influences practice.

• Computer science instruction should focus on
problem solving and algorithmic thinking. 

• Concepts should be taught independent of
specific applications and programming
languages.

• Students should be taught what will be
expected from them in the “real world,”
specifically, what is actually required to write
and maintain computer programs and large
software systems. Computer Science should be
taught using real-world applications rather 
than specialized educational tools.

• Computer science instruction should include
integrative and interdisciplinary knowledge. 

• High school students should be exposed to
advanced topics of computer science (e.g.
computational models, modeling, and parallel
computing) to enable them to become familiar
with some of the theoretical aspects of computer
science.

• Students must recognize recurring concepts 
and principles such as abstraction, complexity,
modularity, and reusability.

• Programming should be taught in a broad
sense, covering not only the coding act 
itself, but also the design of the algorithms
underlying the programs and, to some extent,
considerations of correctness and efficiency.

• The curriculum should be designed to address
the under-representation of women and
minority students in computer science.

• Teachers should motivate students to endure
the rigors of traditional computer science
programs by engaging students with exciting,
accessible, and leading-edge courses.

• Teaching and learning activities should be
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designed to treat common misconceptions of
the essence of computer science.

The research also indicates that student success in
computer science is predicated on the teacher’s
knowledge of the discipline and ability to actively engage
students in their own learning, and identifies several 
key factors that help to ensure exemplary teaching.

• High school computer science teachers must
have a thorough formal background in
computer science.

• Pre-service teacher education must prepare
teachers to better employ general pedagogical
principles as well as teaching methods in the
context of computer science education.

• To be best qualified, computer science high
school teachers should be certified and offered
courses in computer science education in
addition to regular computer science courses.

• Classroom teachers require on-going access 
to appropriate and relevant professional
development opportunities that allow them 
to master new technologies, implement new
curricula, and constantly improve their teaching.

• Teachers should become part of a collaborative
computer science teachers' community of
practice by joining local and national associations
that provide useful resources and support their
ongoing learning and leadership development.

WHAT WE CAN LEARN FROM OTHER
COUNTRIES

Looking at the experiences of other countries that
have designed and implemented a high school
computer science curriculum can provide valuable
lessons as to the factors that must be in place to
ensure that our efforts to improve computer science
education are successful. An examination of the
experiences of an international panel of computer
educators from Canada, Israel, Scotland, South Africa,
and the United States support the argument that such
curriculum initiatives will be successful only to the

extent to which they meet the following criteria:
• There is a link between the outcome required

and the strategies used.
• Change is driven by real learning needs and not

politically manufactured needs. 
• Educational change must be seen in the context

of larger social and economic forces.
• All of the stakeholders must agree to the need

for change and on the strategies put in place 
to achieve it.

• Change requires the commitment of adequate
resources through all phases of the design,
implementation, and testing of the new
curriculum.

• Change is a long-term process, not a short-term
intervention.

ACTIONS TO IMPROVE HIGH
SCHOOL COMPUTER SCIENCE
EDUCATION

Education in the United States is at a crossroads. We
can either commit to ensuring that our students have
the skills to be participants and innovators in this
technological world or resign ourselves to a
decreasing international presence in the global
economy. We know that the world continues to
change and that many of the changes we face are
related to the burgeoning possibilities and
consequences of our growing dependence upon and
interrelation with computing technology. Maintaining
our ability to meet present and future challenges
requires us to acknowledge computer science as a
core element of all STEM (science, technology,
engineering, and mathematics) initiatives. Sustaining
our technological and innovative edge in this
increasingly global economy requires a multi-level,
nationwide commitment to improving computer
science education at the high school level. We must
make this commitment if our schools are to continue
to provide relevant education and our society is to
continue to solve problems on the cutting edge of
innovation. Here is what we need to do:



• We must begin with a definition of computer
science education that recognizes computing 
as a scientific discipline and encompasses a
breadth of knowledge and skills. 

• We must implement a national computer
science curriculum for high schools. This
curriculum must be principle-based, must
address core content and key skills, and must
incorporate appropriate strategies to reach and
teach our students.

• We must support the implementation of this
new curriculum with a plan that includes a
realistic timeframe and the provision of the
resources required to achieve it.

• We must ensure that computer science is taught
by exemplary teachers who have the requisite
knowledge to teach the curriculum and 
who continue to upgrade their technical and
teaching skills throughout their careers.

Schools alone cannot achieve these outcomes. This
issue requires a national vision, supportive action,
and commitment at all levels of the political and
educational systems. The final chapter of this
document therefore provides practical, achievable
suggestions for ways in which 

• federal government policy makers, 
• state government policy makers, 
• school district policy makers, 
• school principals, 
• teachers, 
• university and college faculty, and 
• business and industry leaders

can work together to achieve long-term, systemic
improvements to high school computer science
education.

ORGANIZATION OF THIS DOCUMENT

This document has been designed to address a
number of different aspects of high school computer
science education. Chapter One (High School Computer

Science in the United States) provides an overview of the
current state of high school computer science
education. This chapter discusses the ways in which
the United States has failed to support and standardize
computer science education despite the infiltration 
of computing technology into all areas of society. 

Chapter Two (Challenges and Perspectives in High

School Computer Science Education: A Retrospective

Literature Review) provides an extensive review of
international research literature in the area of high school
computer science education, particularly as it relates to
course content and pedagogy. This chapter highlights the
continuing focus on programming despite more recent
educational models that suggest that students need a
broader theoretical and skills foundation to ensure that
they are prepared for college and the workplace. 

Chapter Three (Using Frank’s Framework to Explore

the Development and Implementation of High School

Computer Science Curricula in Five Countries) looks at
the development and implementation of high school
computer science curricula in five countries. Using a
specific framework for critiquing educational policy
reform and implementation, this chapter examines
the experiences of curriculum development
specialists from Canada, Israel, Scotland, South
Africa, and the United States as presented at a panel
session at the 2005 National Educational Computing
Conference. This chapter provides valuable insight on
key implementation issues such as funding,
professional development, and time lines. 

Finally, Chapter Four (Strategies for the Successful

Design and Implementation of a National High School

Computer Science Curriculum) proposes a 
set of practical, achievable strategies and
recommendations that could profoundly improve
high school computer science education in the United
States. These changes, requiring the support and
commitment of federal and state policy-makers,
school district leaders, classroom teachers, university
and college faculty, and business and industry, 
would help provide students with the scientific
knowledge base required for success in the 21st

century and would ensure that the United States
remains competitive in the global economy.
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1.0 INTRODUCTION

Although an increasing number of labor and
economic specialists are beginning to express
concern about the direct and pressing link between
technology and innovation and national economic
survival, very few school administrators and
educational policy leaders understand the profound
need for computer science education at the high
school level. Despite the need for students to
incorporate the foundational computer science skills
that foster an understanding of the essential
technologies found in almost every industry today,
in most high schools in the United States, there is
little recognition of computer science as a scientific
discipline distinct from mathematics or from
technology training (National Research Council,
1999; Tucker, 2003) 

In today’s scientific and economic global
communities, computer science is helping to push 
the boundaries of what we know and what we 
can do. In areas such as nanotechnology and
bioinformatics, computer scientists are addressing
key questions such as:

• Why do people become ill?
• How can we do better at feeding the people of

the world?
• How can we ensure our own national security

and the safety of our people? 

As a result of these kinds of scientific breakthroughs,
the U.S. economy is expected to add 1.5 million
computer- and information-related jobs by 2012. 

The problem, however, is that our education
system is not producing enough highly skilled people
to fill these critical positions. Current projections

indicate that this country will have only half that
many qualified graduates. As a result, if we do not
address these issues immediately and vigorously at
the national level, we face long-term skills shortages
that will cripple both academic computing and
industry (International Technology Association of
America, 2002; Sargent, 2004). As a result, the United
States will be seriously compromised in its ability to
uphold its leadership position in computing,
communications, information science, and
engineering. In addition, we will be unable to
capitalize on current and future innovations that are
already providing untapped economic and social
opportunities.

1.1 WHAT IS COMPUTER SCIENCE
ANYWAY?

One of the challenges we face when discussing
computer science education is that the field of
computer science seems to evolve so quickly that it is
difficult even for computer scientists to clearly define
its contents and delimit its boundaries. As
Shackelford (2005) noted in his presentation Why can’t

smart people figure out what to do about computing

education?, the landscape of computing continues to
evolve and trying to figure out what students need to
learn is like trying to hit a moving target. While we
do know that computing now provides the
infrastructure for how we work and communicate
and that it has redefined science, engineering, and
business, it is still poorly understood.

Even at the university level, where computer
science has long been recognized as a key educational
and career field, it has resisted a single definition or

CHAPTER ONE

HIGH SCHOOL COMPUTER SCIENCE EDUCATION
IN THE UNITED STATES

1717



application. As Shackelford indicated, prior to 1990
the discipline was defined as Computer Science if
taught as part of the traditional Arts and Science
curriculum and as Information Systems if taught as
part of the Business curriculum. Since that time,
however, it has burgeoned into a number of distinct
areas, each of which involves its own approach to
both theory and application. These areas include
Computer Engineering, Software Engineering, and
Information Technology. In terms of university degree
programs, the post-1990s are typified by intersecting
sub-disciplines including:

• Electrical Engineering,
• Computer Engineering,
• Software Engineering,
• Computer Science,
• Information Technology, and
• Information Systems

that focus to varying degrees on hardware, software,
and organizational needs. 

For high school educators, though, the most
profound confusion arises when trying to distinguish
between the three most common kinds of computing
education typical of the 9–12 grade levels. While each
of these areas has been known by various names, for
the purposes of this discussion we define them as:

• Educational Technology
• Information Technology, and
• Computer Science.

In general, Educational Technology can be defined as
using computers across the curriculum, or more
specifically, using computer technology (hardware and
software) to learn about other disciplines. For example,
the science teacher may use a computer-based
simulation program to provide students with a better
understanding of specific physics principles, or an
English teacher may use word-processing software to
help students improve their editing and revision skills. 

Tucker, Deek, Jones, McCowan, Stephenson, and
Verno (2003) defined Information Technology as “the
proper use of technologies by which people
manipulate and share information in its various

forms” (p. 6). While Information Technology involves
learning about computers, it emphasizes the
technology itself. As Shackleford (2005) noted,
Information Technology specialists “assume
responsibility for selecting appropriate hardware and
software products, integrating those products with
organizational needs and infrastructure, and
installing, customizing and maintaining those
resources” (p. 22). Information Technology courses,
therefore, focus on:

• installing and administering computer
networks, 

• installing, maintaining, and customizing
software,

• managing e-mail systems, 
• designing web pages, and
• developing multimedia resources and other

digital media. 

Computer Science, on the other hand, spans a wide
range of computing endeavors, from theoretical
foundations to robotics, computer vision, intelligent
systems, and bioinformatics. According to
Shackelford, for example, the work of computer
scientists is concentrated in three areas:

• designing and implementing software, 
• developing effective ways to solve computing

problems, and
• devising new ways to use computers.

Tucker et al. (2003) has also offered a definition of
computer science that has direct relevance to high
school computer science education. They defined the
discipline as follows: “Computer science (CS) is the
study of computers and algorithmic processes,
including their principles, their hardware and
software designs, their applications, and their impact
on society” (p. 6). They argue that in order to fulfill
this definition, K–12 computer science curricula must
include the following elements:

• programming, 
• hardware design, 
• networks, 
• graphics,
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• databases and information retrieval, 
• computer security, 
• software design, 
• programming languages, 
• logic, 
• programming paradigms, 
• translation between levels of abstraction, 
• artificial intelligence, 
• the limits of computation (what computers 

can’t do), 
• applications in information technology and

information systems, and 
• social issues (Internet security, privacy,

intellectual property, etc.).

Citing the conclusion of the National Research
Council (1999) that a basic understanding of all these
topics is now an essential ingredient to preparing
high school graduates for life in the 21st century,
Tucker et al. (2003) further argued that the goals of a
K–12 computer science curriculum are to:

• introduce the fundamental concepts of
computer science to all students, beginning at
the elementary school level,

• present computer science at the secondary
school level in a way that would be both
accessible and worthy of a curriculum credit
(e.g., math or science),

• offer additional secondary-level computer
science courses that will allow interested
students to study it in depth and prepare them
for entry into the work force or college, and

• increase the knowledge of computer science for
all students, especially those who are members
of underrepresented groups.

Two other terms that often appear in discussions of
computing education are Information Technology Literacy

and Information Technology Fluency (National Research
Council, 1999). As Tucker et al. (2003), indicate:

Whereas IT literacy is the capability to use today’s

technology in one’s own field, the notion of IT
fluency adds the capability to independently learn

and use new technology as it evolves …

throughout one’s professional lifetime. Moreover,
IT fluency also includes the active use of
algorithmic thinking (including programming) to
solve problems, whereas IT literacy is more
limited in scope  (p. 6).

1.2 WHAT IS HAPPENING IN
COMPUTER SCIENCE
EDUCATION?

At present, all evidence points to a crisis in computer
science education at the high school level. This crisis
is most clearly manifested in the decreasing number
of computer science courses being offered to students
and the resulting drop in enrollments in computer
science programs. Course enrollments are dropping
at both the secondary and post-secondary levels
(Taulbee, 2003), and the number of young women
and minority students studying computing is at an
all-time low (The College Board, 2005). The
Computer Science Teachers Association (CSTA,
2005a) has identified a number of factors that
contribute to this situation, including:

• the lack of a national high school curriculum 
for computer science education, 

• the chronic under-funding of computer science
programs in high schools,

• the absence of standards for certification of
computer science teachers, 

• a shortage of professional development
opportunities that would allow teachers to
develop and keep their technical and
pedagogical skills current, 

• the inability of school districts to attract or
maintain highly qualified teachers in the 
face of salary and benefit competition from
industry, and 

• the lack of understanding on the part of
students, parents, guidance counselors, and
teachers about computer science in general,
how it differs from other areas of computer
study, and its newly developing career
opportunities.
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1.2.1 The Curriculum

In recent decades, computers have come to occupy a
pivotal place in our work, personal, and home lives.
Accordingly, the field of computer science has
expanded to encompass the technical, innovative,
conceptual, and psychological ramifications of the
presence of the computer at work and at home. As
Tucker et al. (2003) noted, however, very little
attention has been paid to meeting the need for a
well-structured, conceptually based high school
computer science curriculum at the time when most
students are likely to be building the conceptual
frameworks of their intellectual development and
exploring the options for their life’s work.

To date, efforts to standardize the study of
computer science in U.S. high schools have been
idiosyncratic and uncoordinated. While other
countries have designed and implemented national
computer science education programs in order to
better prepare their students for the increasingly
competitive global economy, attempts to bring
coherent computer science education into U.S. high
schools failed to address the need to instill a fluent
understanding of algorithmic thinking and problem
solving, and to provide exposure to software
development using programming skills in U.S.
students. While various researchers, institutions, and
organizations have attempted to define and
disseminate new computer science curricula, these
efforts have been typified by:

• a persistent shortage of support resources, 
• a lack of initial and sustaining funding,
• an absence of on-going, classroom-relevant

teacher training, and
• the relentless “projectitis” (Fullan, 2002) that

prevents any one educational initiative from
receiving anyone’s attention for very long. 

In addition, the extreme localization of educational
(especially curriculum) policy and decision making
(which is often relegated to individual schools) and a
complete lack of committed engagement by the
federal government (despite the growing awareness

of the impending skills shortage crisis) have resulted
in an abject failure to grapple with this pressing
educational issue.

1.2.2 Students and Courses

In 2004, CSTA (2005) surveyed 14,000 high school
teachers who defined themselves as computer science,
computer programming, or AP computer science
teachers. The study’s purpose was to create a snapshot
of the current state of computer education in the
United States, and it revealed some disturbing trends.
Despite the growing importance of computer
knowledge and skills, only 26% of responding schools
required students to take a computer science course,
and only 40% of responding schools even offered an
Advanced Placement (AP) computer science course.
Among students who took an introductory level
computer science course, on average only 32% were
female. Among students taking the AP computer
science course, the number of females dropped to 23%.

CSTA’s research is further supported by The
College Board (2005), which reported that from
2002–2004 for example, while AP exam taking in
other disciplines rose overall by 19%, the number of
students taking the computer science A exam
dropped by 8%, and the number taking the computer
science AB exam decreased by 19%. In addition, in
2004 while 56% of the AP test takers overall were
female, among CS AB test takers, only 11% were
female (a drop from the 1999 data of 17%), and only
6% were from under-represented minorities.

When asked to explain these increasingly
problematic enrollment results, teachers noted that the
greatest impediment to students taking high school
computer science courses was not the perceived
difficulty of the subject matter or even the perception
that computer science was a “geeky” course, but
rather the lack of time in the students’ schedules. As
the number of mandated courses high school students
are required to take and competition for acceptance to
prestigious university programs increase, students
have fewer and fewer opportunities to study
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computer science because these courses are elective
rather than mandatory courses.

Considerable anecdotal evidence also suggests
that perceptions concerning career opportunities are
playing a role in diminishing student interest in
computer science courses. Teachers are reporting that
an increasing number of students and their parents
believe (based upon media stories rather than
marketplace realities) that computer science is no
longer a source of rewarding and varied career
opportunities. In the absence of solid educational and
career information, students are therefore being
actively dissuaded from computer science courses and
from considering careers in the high tech industry.

1.2.3 The Teachers

Students are also not the only ones affected by the
current crisis in computer science education. A 2002
study of 4,000 U.S. high school computer science
teachers conducted by the Association for Computing
Machinery (ACM, 2005) revealed that 89% of high
school computer science teachers indicated that they
experience a sense of isolation and a lack of collegial
support within schools and school districts. Noting
that rapid changes to both technology and teaching
provide significant challenges, the teachers also
indicated that their greatest professional
development need was actually finding time for their
own on-going learning (CSTA, 2005). They also
indicated that the on-going battle for adequate
resources, the lack of acceptance and understanding
of computer science as a scientific discipline distinct
from technology training, and increasing budget cuts
in these times of fiscal restraint deterred many
interested and qualified teachers from teaching
computer science. 

One additional persistent and often ignored
problem is that there is little motivation for those
with the requisite skills to pursue a career teaching
high school computer science. In most jurisdictions,
teachers’ salaries are so low and the working
conditions so unpleasant when compared to other

career fields, that it is impossible for education to
attract individuals with the appropriate skills. Even
for those who are considering a second career in
computer science education and for whom salary
issues may not be a primary factor, the lack of
consistent and readily available information
concerning certification requirements make it almost
impossible to determine how one should go about
preparing for such a career change.

1.3 IS REAL CHANGE POSSIBLE?

Education is a highly complex and multifaceted
environment within which an almost unimaginable
number of policies, methodologies, strategies,
ideologies, and bureaucracies interact (Bauch &
Goldring, 2000). And while at its most basic level, the
transition of knowledge might appear as a simple
process, effective teaching depends significantly upon
the contexts within which teachers work—department
and social organization and culture, professional
associations and networks, community educational
values and norms, and secondary and higher education
policies (McLaughlin, 1992). These contexts determine
not only what is taught and how it is taught, but also
the value placed upon a given academic discipline’s
place within the larger school curriculum and the
resources that are made available to instructors. 

At present, many of the changes that occur within
education are the result of small-scale bottom-up
innovation at the individual school level. Usually,
such change is structural and superficial and rarely
translates into large-scale innovation at the system or
national levels (Ballantyne, McLean, & Macpherson,
2003). In effect, such changes tinker with, but do not
transform, the educational culture. They do not lead
to lasting change because they do not change what
people in the organization value and how they work
to accomplish it (Fullan, 2002). 

To date many initiatives have been launched and
much money has been spent on proposed
innovations that have resulted in very little change
over time, primarily because these initiatives have
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failed to grapple with the multiplicity of demands
and expectations placed upon schools and teachers.
The reasons such undertakings fail are
multitudinous, but such failures most commonly
result from some or all of the following factors.

1. Too many messages. The education system is
bombarded with demands for changes from
multiple external stakeholders in all
curriculum areas, resulting in too much
competition for attention and resources.
Everyone has an answer, but no one really sees
his/her own suggestions within the holistic
framework of education.

2. Poor communication of Return on Investment

(ROI). Outside interests urge and expect
schools to change but fail to consider or
effectively communicate what the ROI will be
for students, teachers, and administrators.

3. The barrier of vocabulary. The field of education
has its own language where seemingly simple
phrases (such as assessment-based learning)
can be a minefield for unsuspecting outsiders.

4. A lack of respect for K–12 educators. Pre-college
educators are often treated with disdain by
their university colleagues, by industry, and by
politicians. Even those most interested in
building partnerships with K–12 frequently
undermine their own good intentions with
their profound lack of understanding about
what it means to teach in a K–12 environment.

5. Frustration with past failures. Over the years,
industry representatives have become
increasingly frustrated by the frequency with
which they have contributed to initiatives with
little or no lasting impact or return. The
problem is that those promising to ensure these
changes do not have a foundational
understanding of issues of change or the
efficacy of change agents in the K–12 arena. 

Systemic educational change demands a profound
understanding of and engagement with the culture in
which the change must take place. While achieving the
level of change required to address the current issues

in high school computer science education in U.S.
schools may seem like an impossible challenge, time
has shown that when sufficient recognition, resources,
and long-term commitment are brought to bear on a
national challenge, the unthinkable can be achieved.

1.4 HOW CAN THIS DOCUMENT
HELP?

The purpose of this document is to set forth some of
the important factors that must be considered in
order to achieve a substantial improvement to high
school computer science education, an improvement
that must occur if we are to meet the shifting
knowledge needs of our citizens and so remain a
competitive force within the global economic
community. 

To achieve this, we must begin by acknowledging
that other nations may have knowledge they can
share with us, that will help us ensure that we use
our resources wisely and do not repeat mistakes that
others have already made. The second chapter of this
document, therefore, provides a comprehensive
review of the international body of research relating
to high school computer science education. It
examines the issues that have been raised, the
challenges that have been identified, and the
solutions that have been proposed.

The third chapter provides an analysis of five
countries, including the United States, in which
efforts to design and implement a comprehensive
high school computer science curriculum have been
undertaken. This chapter demonstrates that defining
the curriculum is really just a first step and that the
factors that determine the extent to which that
curriculum is actually implemented may in fact be
more important than the curriculum itself.

The last section draws from all of the previous
sections of the document to provide a comprehensive
set of recommendations and strategies that will
significantly increase the likelihood that our national
efforts to improve high school computer science
education will achieve long-term success. 
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2.0 INTRODUCTION

Computer science is considered a young and a
rapidly developing discipline, and its “extremely
short history has led to a diversity of opinions about
its very substance” (Gal-Ezer & Harel, 1998, p. 79).
While many educators believe that computer science
should be taught to prospective students as an
independent subject (Gurbiel, Hardt-Olejniczak, &
Kolczyk, 2005) and as a full-fledged scientific subject
on a par with other scientific subjects (Gal-Ezer, Beeri,
Harel, & Yehudai, 1995), others contend that it should
be offered as a set of integrated courses that link
computing to other subjects (Dagienë, 2005). This
discussion about how computer science should be
taught is further complicated by the fact that many
people have difficulty identifying exactly what
computer science is. As a result, educators have been
deliberating how to portray the field to others
(especially to newcomers) in a compact, compelling,
and coherent way (Denning, 2004), and how to
expose others to a bird’s-eye view of the field 
(Gal-Ezer & Harel, 1998).

In recent years computer science education
research has received increasing interest and
recognition in the computer science education
community (Holmboe, McIver, & George, 2001; Dale,
2002; Almstrum, Hazzan, & Ginat, 2004; Fincher &
Petre, 2004; Goldweber, Fincher, Clark, & Pears, 2004).
Holmboe, McIver, & George (2001), for example,
provided the following general categorization of
computer science education research to date:

• New, untested ideas and methods for teaching
and learning. 

• Reports from the trenches—sharing ideas and

techniques for teaching in particular courses. 
• Discussion of theory—with regard to

epistemological theories such as constructivism. 
• Computer-aided learning and intelligent

systems—aimed at learning about the students’
ways of thinking and giving feedback. 

• Expert/novice differences as a means of setting
up benchmarks for novice achievement. 

• Empirical studies, which focus on real
programming, as a basis for creating effective
tools for teaching programming. 

Despite the increased interest in computer science
education research by the educational research
community, there are still many open questions
relating to computer science education at the high
school level for which answers are still very much
needed. These include: 

• Should we really teach computer science in 
high school, or is it best left to be taught at 
the post-secondary level? 

• What are the goals of high school computer
science education, which topics should be
taught, and how should the curriculum be
organized? 

• How can we successfully promote a massive
implementation of a new computer science
curriculum? 

• What pedagogic strategies and methods of
instruction should be applied to reduce the
complexity and instability that characterizes 
a dynamic discipline? 

• How should computer science teachers best be
prepared to cope with the increasing complexity
and rapid change? 



• How should we cope with students’
preconceptions and expectations, and how
should we better address gender differences
and minorities’ special needs? 

All of these questions have become more pressing in
light of current concerns regarding dropping
enrollments in computer science courses at all
educational levels and predictions of high tech
worker shortages worldwide. For many countries, the
relationship between an educational system that
produces workers capable of building the technology
tools that the rest of the world will use and long-term
economic prosperity is becoming increasing clear.
This has led to efforts to improve computer science
education, especially at the high school level, where
many students have their first opportunity to test
their interest and ability in this field. In the United
States, however, the situation is far more tenuous as
the lack of national standards in both curriculum and
teacher certification have resulted in significant
discrepancies in both quality and quantity, not just
from state to state but from school to school. In
addition, lack of administrator understanding of the
nature and importance of this complex and evolving
discipline may actually be diminishing support for
computer science as part of the high school
curriculum at exactly the time that it should be
receiving more attention and support.

The aim of this review of computer science
education research is to illuminate various aspects of
computer science education at the high school level,
and to summarize reported studies and field
experiences, as well as educators’ recommendations
for addressing the questions outlined above. 

2.1 COMPUTER SCIENCE
EDUCATION IN HIGH SCHOOLS 

The research on high school computer science
education is complex, not just because there is a lot of
it and it focuses on many different aspects of
education, but also because it is truly international in

scope, with researchers from many countries
contributing to the growing body of knowledge. 
This section provides a brief overview of high 
school computer science education in the United
States, Israel, and European countries with the goal 
of providing a snapshot of its current focus and
status internationally. 

2.1.1 United States

In fall 2004, the Computer Science Teachers
Association (CSTA, 2005) surveyed 14,000 high school
computer science, computer programming, and
computer applications teachers in an attempt to
provide a baseline understanding of high school
computer science education in the United States. The
survey respondents (1,047 teachers) provided a rich
body of data on the current state of computer science
education including the following (Roberts &
Halopoff, 2005).

• Many institutions teach computing courses at a
lower level than the Advanced Placement (AP)
curriculum suggests; programming is the most
commonly covered topic, followed by
hardware, ethics, graphics, and web
development (in that order). Courses that focus
on applications are less likely to cover
programming and vice versa.

• Schools offer more pre-AP computer science
courses than AP courses, and the AP courses
tend to have significantly fewer students. 

• The percentage of women declines from 32% in
the pre-AP courses to 23% in the AP program.

• Teachers believe the primary reason that
students are not taking computer science
courses is that they cannot fit them into their
tightly prescribed timetables.

• Teachers perceive the “rapidly changing
technology” as a serious problem and the
greatest challenge in teaching computer science.

• Teachers indicated “time for training” as an
important professional development need and
preferred short workshops as the most effective
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method for delivering professional development.
• Teachers are surprisingly poorly informed about

the rules concerning curriculum content and
teacher certification and the administrative
structures within their own states. 

2.1.2 Israel

In Israel, computer science has existed as an
autonomous subject in the high school curriculum
since the mid-1970s. As in many countries, however,
despite its successful implementation and the
involvement of many highly respected educators and
researchers in the development and evolution of its
curriculum, it still suffers from the perception that it
is not a full-fledged scientific subject like physics,
biology, or chemistry. 

Originally, the curriculum focused on
programming and included elective Information
Technologies modules such as electronic spreadsheet
language. Since 1991, however, a new curriculum that
places significantly more emphasis on principles and
theoretical aspects has been gradually implemented
in Israeli high schools. The new curriculum
“emphasizes the foundations of algorithmic thinking,
and teaches programming as a way to get the
computer to carry out an algorithm” (Gal-Ezer, Beeri,
Harel & Yehudai, 1995, p. 73). The program is
modular and comes in two versions—basic and
advanced. It includes mandatory Fundamentals and
Software Design modules as well as elective modules,
including Second Paradigm, Theory, and
Applications. 

The success of the high school computer science
curriculum in Israel is largely due to the care with
which the government planned the implementation
process and the resources that were put in place to
support that implementation. This support included
the development of course materials (learning
materials for students and corresponding teacher
guides) and an intensive in-service teacher training
program (Gal-Ezer, et al. 1995; Haberman & Ginat,
1999).

2.1.3 Europe

A substantial body of research on computing education
in Europe has supported the argument that educational
standards, continuous teacher training, and enthusiastic
teachers who permanently engage themselves in new
tools and concepts are critical factors for the successful
establishment and maintenance of high school computer
science education, more commonly called informatics, in
European schools (Reiter, 2005; Micheuz, 2005; Dagienë,
2005; Dorninger, 2005; Kuznetsov & Beshenkov, 2005).
According to Mittermeir (2005), however, 

the penetration of personal computing and the
(almost) ubiquitous presence of certain types of
application software have had substantial impact 
on computer science, more commonly called
informatics, education across Europe. Over time, the
principles of abstraction and algorithmization gave
way to intellectually less rewarding topics. (p. 2) 

As a result, a number of countries have drifted
toward a more Information Technology (IT) focus
that was less rigorous and less embedded in science. 

In 2004, a study of twenty European Economic
Union member states as well as Bulgaria, Iceland,
Liechtenstein, Norway, and Romania (Eurydice, 2004)
revealed that studies of information and communication
technology form a part of the compulsory curriculum in
the upper secondary level in all countries. The ways in
which that curriculum is implemented, however, differ
considerably from country to country. In the majority of
European countries, information and communication
technology (or informatics) is included in the national
core curriculum as an independent subject. In Ireland,
however, students do not study programming in
secondary schools (Bergin & Reilly, 2005), and in Finland
and Italy, information and communication technology is
no longer taught as a separate subject but rather as a tool
to support learning in other curriculum areas (Kavander
& Salkoski, 2004; Grandell, 2005; Cartelli, 2002). 

In Poland, all students study informatics in
primary schools and in middle school. High school
students also take a mandatory Information Technology

course that included topics such as networks and
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multimedia tools for managing information. An
elective course called Informatics is also available for
students who are interested in computer science as an
element of their future education. This course focuses
on the science of computing with the goal that
students understand how “computer science as a
discipline is connected with designing and
implementing new systems of information processing”
(Gurbiel, Hardt-Olejniczak, & Kolczyk, 2005, p. 49).

Informatics has been part of the high school
curriculum in Austria since 1985 when it was first
introduced for all students in Grade 9. The recent
reform of the upper secondary level of the academic
schools also added an elective Informatics course for
students in Grades 10–12 that reinforced integration
of informatics methods in other subjects as well
(Micheuz, 2005). The development of informatics in
the Austrian schools is characterized by constant
changes and improvements in hardware, software,
and by corresponding pedagogical approaches as well.
“Didactics in Informatics changed in many schools
from a programming and algorithm orientation to an
application oriented approach” (Micheuz, 2005, p. 27). 

Informatics as a separate subject was also established
in Lithuanian schools in the late 1970s and early
1980s. The subject is compulsory for students in Grades
9–12. Its main goal is to develop students’ information
culture in a broad sense. Students in Grades 11 and 12
may also choose an optional advanced course that
focuses on programming, databases, and multimedia.
“During the lessons the integrative nature of the
course is being stressed; students are prompted to see
parallels with other subjects” (Dagienë, 2005, p. 56). 

2.2 WHO ARE WE, AND HOW
SHOULD WE PORTRAY
OURSELVES ?

2.2.1 An Inconsistent Self-image

As is apparent from the very brief description of high
school computer science education in a number of
countries, the discipline suffers from something of a

crisis of definition. As Gal-Ezer and Harel (1998) and
Holmboe et al. (2001) have noted, even among
computer scientists, there is no clear agreement on
the name of the field (computer science, informatics,

information science), and efforts to determine its exact
contents have been similarly challenging. Researchers
have identified many factors to account for this lack
of consistency. Gal-Ezer and Harel (1998) posited that
the disagreements regarding the essence of computer
science are due to a dichotomy between the
mathematical and engineering facets of the field and
to dichotomies within each facet. Denning, Comer,
Gries, Mulder, Tucker, Turner, and Young (1989)
similarly described computing as sitting “at the
crossroads among the central process of applied
mathematics, science and engineering” (p. 11). 

In addition, constant changes both in the
technology and in our understanding of computing
as a whole have made it extremely difficult to create a
static representation of the core elements of the
discipline. In 1989, when the number of core
technologies was much smaller, Denning et al. (1989)
suggested that an intellectual framework for the
discipline based upon a matrix model of nine core
technologies should replace the common definition of
computer science in terms of its three major
paradigms: theory, abstraction, and design. More
recently, however, in an effort to more accurately
portray the rapidly developing and now more
complex field, Denning (2004) recommended that a
new framework of great principles and computing
practices was required to replace the conception of
the discipline as a set of core technologies. 

2.2.2 An Incorrect Public Image

Computer science’s public image, like its self-image,
is highly problematic. Research has indicated that
beyond disagreements about the nature and content
of the discipline, computer science is plagued by a
number of powerful misconceptions that are shared
not only by “real” outsiders (members of other
disciplines, policy makers, school principals, etc.) but
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also by students, prospective teachers, in-service
teachers, and others involved in computer science
education. Here is a series of brief descriptions of the
most common of these misconceptions.

2.2.2.1  Computer Science Equals Programming

The most common misconception about computer
science arises from the fact that it is still widely
perceived as a programmer’s field (Denning, 2004).
Denning et al. (1989) stated that the view that
computer science equals programming is especially
strong in most of the curricula because introductory
courses focus (sometimes exclusively) on
programming and this focus limits the ability to
reliably describe the intellectual substance of the
discipline. Greening (1998) and Gries (2002) also
demonstrated that students’ most common
misconceptions about the discipline are compatible
with the computer science equals programming view.
Schollmeyer (1996) further noted that this limited
view of the discipline could have a profoundly
negative effect on students’ expectations of further
computer science studies in college. 

2.2.2.2  Computer Science Equals Computer
Literacy

The tremendous effort undertaken to integrate
computer use across the curriculum in K–12 education
has led many educators and administrators to confuse
computer science education with computer literacy,
and as a result, in many schools today there is no
adequate separation between teaching computer
science, computer literacy, and using computers to
teach other subjects (Gal-Ezer & Harel, 1998; Grandell,
2005). Mittermeir’s (2005) study of national
perspectives on teaching Informatics during the last
twenty years in secondary schools in Europe concluded
that intellectually challenging curriculum content (for
example, abstraction and algorithmic thinking) is often
sacrificed to the teaching of simple software

applications such as word processors and spreadsheets.
Sabin, Higgs, Riabov, and Moreira (2005) also

criticized high school computing courses in the
United States because they are sharply polarized
between two curricular approaches: (1) basic training
in using Microsoft office applications and (2) strong
emphasis on AP programming (as preparation for AP
exams). Their concern was that neither of these
approaches reliably portray the essence of computer
science, and they both reinforce the computer science

equals computer literacy and the computer science equals

programming misconceptions. Sabin et al. (2005)
concluded that high school students should be
exposed to an extracurricular enrichment computer
science program that focuses on fundamental concepts
in computing and some of its relevant applications
and interweaves attractive learning activities. 

2.2.2.3  Computer Science is a Tool for Studies
in Other Disciplines

In many countries there has been considerable
confusion between teaching computer science using a
real-world approach and simply using the tools of
computer science to support education in other
(particularly scientific) disciplines. Today there is a
large body of research evidence supporting use of
computer science principles and problem-solving
methods to solve “realistic” problems in various
domains (Sims-Knight & Upchurch, 1993; Dagienë,
2005). Stevenson (1993) for example, argued that
students need to acquire a scientific-engineering
interdisciplinary approach to solve complex problems
in various domains; hence, computer science should
not be taught isolated from mathematics and other
sciences. Scherz and Haberman (2005) also
recommended that students should use the tools of
computer science to develop knowledge-based projects
related to descriptive topics of a qualitative nature. 

While these calls for an interdisciplinary approach
were never intended to be construed as an argument
for eliminating computer science as a distinct subject
of academic study, in some countries, such as Finland
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(Kavander & Salakoski, 2004; Grandell, 2005), there
has been a profound shift toward teaching computer
science only as a tool for addressing problems in
other academic disciplines (Gal-Ezer & Harel, 1998).
It is ironic to note this misinterpretation of the
essence of the interdisciplinary pedagogic approach
may have resulted precisely because computer
science educators attempted to integrate computers
into all high school courses as a means of promoting
high school students’ choice of computer science as a
major. This approach is illustrated by O’Lander (1996)
who stated, “This will make more students
comfortable and expert at using computers for a wide
variety of purposes, and therefore increase the
probability that more of them will choose computer
science as a major in college” (p. 29). 

2.2.2.4  Computer Science is Not a Scientific
Discipline

Members of the computing community of practice
consider computer science as a scientific discipline
(Denning, 2004). For example, one of the underlying
principles of the new high school program in
computer science in Israel is “Computer science is a
full-fledged scientific subject. It should be taught in
high school on a par with other scientific subjects”
(Gal-Ezer et al., 1995, p. 75). Computer science
courses in high schools, however, seem to generally
have a second-class status when compared to other
science courses such as biology, physics, and
chemistry, and rarely count towards satisfying the
science requirements in the high school curricula
(Morris & Lee, 2004; Tucker, Deek, Jones, McCowan,
Stephenson, & Verno, 2004). In order to establish a
correct public image, Denning (2004) suggested that
computer science should portray itself in the same
manner that the mature sciences (e.g., physics,
biology, and astronomy) portray themselves, namely
with a principle-based approach that “promotes
understanding from the beginning and shows how
the science transcends particular technologies” (p.
337). Specifically, he recommended that computer

science, like other sciences, use a set of interwoven
stories about the structure and the behavior of the
field elements.

2.2.2.5  Computer Science is a Male Field

Both male and female students continue to see
computer science as a primarily male field and to
make their career choices accordingly. As Moorman
and Johnson (2003) note, “Women in computing still
perceive themselves as strangers in a strange, male-
dominated land” (p. 193). Educators believe that the
lack of interest in computer science among girls
might be rooted in stereotypes of computer science
formed early in their school experience. Girls think
that computer science is “a boring subject, devoid of
interesting applications and stimulating only to
‘geeks’.” (Graham & Latulipe, 2003, p. 322).
Consequently, female enrollment in undergraduate
computer science programs has been constantly
declining, and women tend to be underrepresented in
computing courses (Stiller & LeBlanc, 2003; Graham
& Latulipe, 2003).

2.2.3 Challenging Student
Preconceptions

Students might actually possess the misconceptions
presented above even before they begin to learn the
subject in school. Rountree, Vilner, Wilson, & Boyle
(2004) argue that the youngsters’ increased access to
home computers may cause many students to form a
misleading view of what computer science is. Many
potential students also incorrectly believe that most
software professionals will spend a significant
amount of their career programming games (Latulipe
& Graham, 2005). Furthermore, 

Young people who like playing computers and
surfing the Internet declare their interest in opting
for an elective subject [i.e., computer science].
They do not know what it is really about, because
there was no signal … that problem solving,
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algorithms, and programming need some skills of
thinking, reasoning, and understanding
mathematical concepts (Gurbiel, Hardt-
Olejniczak, & Kolczyk, 2005, p. 51).

Numerous researchers have noted that common
misconceptions about computer science “raise
obstacles in encouraging students to pursue
computer science majors, minor in computer science,
or simply choose computer science electives in their
program of studies” (Sabin et al., 2005, p. 177). Gupta
and Houtz (2000), for example, argued that students
may hesitate to enroll in computer science programs
because of the negative perceptions about technology
careers and a lack of understanding of the skills
needed to succeed in these careers. Foley (2004) also
supported this contention, noting that since
programming is often considered as a “solitary
activity practiced by so-called geeks,” students might
avoid studying computer science. The general
conclusion of the body of research is that educators
must be aware of common misleading 
preconceptions and expectations and make every
effort to deal with prospective students and find
ways to motivate them to pursue computer science
programs (Sabin et al., 2005). 

In his study of university students’ beliefs about
computer science, Greening (1998) attempted to
determine whether student misconceptions were
related to high early student dropout rates in first-
year computer science courses or to students deciding
not to enroll in computer science courses in the first
place. Greening’s study revealed the following.

Most students were unable to give an
approximate definition of computer science or offered
poor or erroneous descriptions of the domain. 

Many potential students referred to computer
science in terms of the study of the computer as a
machine and indicated that computer science is about
the use of computers for running applications. 

Most of the students shared the perception that
first-year computing courses should teach
programming, general usage skills, and provide
familiarity with general computing skills. 

A significant percentage of potential students
expected to learn about computers and society-
centered issues.

These results led Greening to conclude that
students did not understand the discipline of
computer science or its goals, and that effort required
to address student misconceptions should be
“directed at potential students in order to educate
them about the actual nature of computer science
education, and directed at computer science
education in order to acknowledge changing
expectations of potential students” (p. 154).

Researchers have also attempted to identify the
factors affecting high school students’ choice of
computer science courses, as well as the factors
leading to the decline of computer science majors. For
example, O’Lander’s (1996) study of high school
students who take computer science courses focused
on students’ attitudes and demographic and
background characteristics. The results of this study
clearly indicated gender differences in favor of the
boys. As a result, O’Lander recommended that
following changes be made to ensure that computer
science be perceived as more attractive to all students:

• a unified computing curriculum should be
established to eliminate disparities, 

• computing teachers’ certification should become
a requirement (ensuring that competent
teachers implement a challenging, interesting
curriculum, and eliminating or minimizing the
current practice of teachers certified in other
fields teaching computer science courses in high
school, and

• computers should be integrated into all high
school courses.

Gupta and Houtz (2000) conducted a similar study of
high school students. The primary purpose of their
study, however, was to better understand the
perceptions and attitudes of females and minorities
towards computer use and technology careers. The
students in Gupta and Houtz’s study identified
keyboarding as the primary skill necessary to succeed
in IT careers, followed by computer skills,
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programming, and math (in that order). This study
also showed that boys were significantly more
interested in enrolling in Information Technology
programs and pursuing IT careers than girls were.
The researchers therefore recommended that schools: 

• develop a high-standard, uniform, mandatory
high school computer science curriculum; 

• use software that appeals to both genders; 
• make computers exciting and challenging for

students; 
• implement a vigorous computer career

counseling program; and 
• explore race differences and interest in

computer careers.

2.3 HIGH SCHOOL COMPUTING
STUDIES AND ACADEMIC
SUCCESS

Over the years, many professional bodies have called
for the creation of a standardized computer science
curriculum for high school students as an important
tool for preparing students for post-secondary
studies. The report of the ACM Task Force on the Core

of Computer Science, which laid the foundation for the
computer science curriculum for the major colleges,
for example, recommended that students enter
computer science degree programs with some
programming skills, presumably learned in high
school (Denning, Comer, Gries, Mulder, Tucker,
Turner, & Young, 1988). Yet despite these
organizational recommendations, some computer
science professors have long maintained that
studying computer science in high school is in fact
detrimental to students (Taylor & Mounfield, 1989).
Research, however, largely disproves this contention. 

In general, the research findings indicate that
taking computer studies in high school is a positive
factor for readiness for the college curriculum and
college success (Franklin, 1987; Ramberg, 1986; Taylor
& Mounfield, 1989). Specifically, researchers found
evidence that prior exposure to computers, whether
in high school or college programming courses

(Ramberg, 1986; Taylor & Mounfield, 1989; Cantwell-
Wilson & Shrock, 2001; Cantwell-Wilson, 2002), or
even in computer literacy courses (Ramberg, 1986), is
a critical factor for success in academic computer
science studies. Moreover, a “prior programming
course builds a foundation of logic background”
(Ramberg, 1986, p. 37). Gal-Ezer and Harel (1998)
have noted, however, that it is important that
students’ programming experience be of a high
quality, and cover not only coding but also the design
of algorithms (underlying programs), and basic
considerations of correctness and efficiency. 

Campbell and McCabe (1984) also attempted to
determine the specific factors that influence success
in the first year of a computer science major. Their
study indicated that students’ background in high
school mathematics and science is one important
factor for success. Based upon these results, they
concluded that student participation in high school
courses that focus on problem solving and scientific
reasoning may contribute to the success of freshmen
with a computer science major.

These conclusions were further supported by
Franklin (1987). Franklin’s study aimed at
determining whether high school computer science
courses were a predictor of success in college entry-
level courses. The results showed a highly significant
relationship between success in the entry-level
college course and the completion of one or more
high school computer science courses. A more recent
study, conducted by the Open University of Israel,
also revealed that students with previous
programming experience were more successful in a
university introductory level computer science course
than those who reported having no previous
programming experience (Gal-Ezer, Vilner, & Zur,
2003; Rountree et al., 2004). Sabin et al. (2005)
concluded that an early start in studying computer
science is appropriate in high school for those
students whose professional future is related to
computer science and emphasized the importance of
computing courses designed to motivate prospective
students to pursue computer science programs. 

It is important to note, however, that most of the
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research literature on predictors of success in
computer science studies refers to traditional
(imperative-first) introductory courses. Recently, as a
result of the trend towards teaching introductory
computer science courses using an objects-first
approach, researchers are being challenged to
investigate the relationship of the objects-first
approach to the previously identified predictors for
success in imperative-first introductory courses. Two
such studies were conducted with contradictory
results. A study aimed at assessing the effects of prior
programming experience on the success in an
introductory objects-first course revealed that prior
programming experience (not general experience or
experience with object-oriented programming
languages) had no significant influence on success.
Hence, the researchers concluded that prior
programming experience is not a predictor of success
for the objects-first introductory course (Ventura &
Ramamurthy, 2004). In contrast, Hagan and
Markham (2000) found that students who had
experience in at least one programming language at
the beginning of an introductory Java programming
course performed significantly better than those with
none, and that the more languages with which a
student has experience, the better her/his
performance tends to be. Furthermore, the style of
the programming language previously learned was
not shown to be significant. 

2.4 WHAT SHOULD WE TEACH
AND HOW?

The main goals of high school computer science
education are to ensure that students are comfortable
with everyday computing activities, to open a
window of opportunity for young students in the
field of computing, to educate them about the nature
of the field, and to motivate students who have the
ability and interest to continue their academic studies
in this discipline. The aim is to expose the students to
a fundamental scientific domain whose principles are
characteristic of algorithmic thinking as well as

system-level perception (Denning et al., 1989; Gal-
Ezer et al., 1995). 

The rapid growth of the field of computing and
the continuous emergence of new computing
technologies requires educators to give considerable
thought to what and how they should teach. It
requires them to provide a coherent view of
computer science in a comprehensive and appealing
way and to consider students’ perceptions and
expectations and any factors that may affect students’
further studies in the field. In addition, high school
computer science educators must determine what
topics are required to best prepare students for
college-level computer science courses (Schollmeyer,
1996), and how the long-term needs of students can
be addressed so that they will aspire to become part
of the dynamic technologies-based world (Pham,
1997; Mitchell, 2002).

Educators and scientists also argue that
knowledge of fundamental concepts of computer
science is essential for understanding the technology
that facilitates the “real world” and that these
fundamental concepts should be the core of a high
school curriculum. For this reason, it is important to
organize the curriculum with a suitable balance
between conceptual, experimental, and practical
issues (Merritt, 1995; Gal-Ezer et al., 1995). As a
scientific discipline, computer science has lasting and
fundamental values (essential characteristics), which
are independent of computing technology’s change
(accidental characteristics). Hence, teaching computer
science should emphasize the scientific facets of the
field, along with the knowledge and skills that are
independent of specific computers and programming
languages (Gal-Ezer et al., 1995). The current
approaches to high school computer science
education, however, often hide the vision and the
grand challenges of computer science from students
because they focus exclusively on developing
computer programming skills and ignore the basic
precepts of the scientific method that form the
foundation in natural sciences (Lee, 2004).

Also, computing is a dynamic field, and the
discipline of computer science has continued to evolve
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since its inception. This has presented educators with
two additional pedagogical challenges: 

• complexity—an increase in the programming
details students must master, and 

• instability—rapid changes in the programming
languages and tools. 

Distinguishing between and separating essential and
accidental characteristics of the subject being learned
would help eliminate this complexity and instability. In
an effort to directly address both the complexity and
the instability of the software, for example, Roberts
(2004) argued for the development of a simple and
stable environment explicitly designed for
pedagogical use. Specifically, he concluded that
programming language instruction should emphasize
essential principles and conceptual aspects of the
particular programming paradigm while decreasing
the complexity of accidental implementation features
that are technology-based. 

Denning (2004) noted the need to also address these
issues at a curriculum level. He suggested a framework
for organizing a computing curriculum around great
principles and practices that “promote a greater
understanding of the science and engineering behind
information technology” (p. 340). This framework
offered a balance between concepts and practice. It also
provided a stable context for the core technologies of
computing related to both mechanics and practices. 

In ACM’s Model Curriculum for K–12 Computer

Science, however, Tucker et al. (2003) outlined a
comprehensive model curriculum for K–12 that
builds upon the notion of IT fluency put forward by
the National Research Council (1999). In this context
(education), IT fluency is defined not only as the
capability to use today’s technology (the typical
definition of IT literacy) but also the capability to
independently learn and use new technology as it
evolves. In this way, IT fluency expands the
conception of a successfully educated person to
include the active use of algorithmic thinking to solve
problems. The ACM Model Curriculum is a
comprehensive four-level model for K–12 computer
science education that focuses on fundamental

concepts. It incorporates and enhances the National
Educational Technology Standards (International
Society for Technology in Education, 2002) for grades
K–8 (Foundations of Computer Science) and then
proposes a set of three courses: 

• Computer Science in the Modern World,

• Computer Science as Analysis and Design, and 
• a special Topics in Computer Science course that

could include AP courses and courses leading 
to industry certification.

2.4.1 Guiding Principles

Many researchers and educators have attempted to
define the underlying principles or concepts that are
foundational to all of high school computer science.
This section provides a brief description of the most
commonly agreed-upon principles.

• General capabilities and skills—Students should
develop a wide range of cognitive capabilities
and practical skills, independent of specific
technologies, to enable them to continue to
learn and adapt quickly to new environments
and work practices (Pham, 1997; Gal-Ezer et al.,
1995). They must also acquire a breadth of skills
required for future employment such as writing,
communication, and presentation, and other
skills that enable them to continue to learn and
adapt quickly to new environments and work
practices (Pham, 1997; Mitchell, 2002). 

• Breadth-first approach—Students should acquire
a broad overview of the field to construct a
comprehensive picture of computer science as a
discipline. They should have a sense of the
history of the discipline so that they can better
appreciate how computers have been used to
address real problems (Impagliazzo & Lee,
2004; Hazzan, Impagliazzo, Lister, & Schocken,
2005). Different programming paradigms
should be taught to acquire alternative ways of
algorithmic thinking as well as different
problem-solving methods (Vandenberg &
Wollowski, 2000; Gal-Ezer et al., 1995). 
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• Understanding the interplay between theory and

practice—Students must understand not only
the theoretical underpinnings of the discipline
but also how that theory influences practice.
Accordingly, conceptual and experimental issues
should be interwoven throughout the program
(Gal-Ezer et al., 1995; Ben-Ari, 2002). However,
since beginning computer science students do
not have an effective model of the computer,
“the seductive reality of the computer must not
be allowed to replace construction of models”
(Ben-Ari, 2001); meaning that programming
exercises should therefore be delayed until class
discussion has enabled students to construct a
good model of the computer. 

• Problem solving and algorithmic thinking—

“Students must be taught and coached in the
algorithmic way of thinking” (Gal-Ezer & Harel,
1998, p. 83). To best prepare high school students
for computer science courses in college, the
emphasis at the high school level should not be
limited to the instruction of the syntax of a
programming language. Rather, students’
problem-solving skills should be addressed. This
includes emphasis on teaching problem-solving
methodologies and critical thinking skills (Fadi
& McHugh, 2000) as well as program
specification and design (Schollmeyer, 1996).
Integrated learning environments should also be
designed to support novices through all
problem-solving and programming stages (Fadi
& McHugh, 2001).

• System-level perspective—Students should be
taught what will be expected from them in the
“real world,” specifically, what is actually
required to write and maintain computer
programs and large software systems. They
must therefore develop a high-level
understanding of systems as a whole: the
structure of computer systems and the
processes involved in their construction and
analysis (Gal-Ezer & Zeldes, 2000; Schollmeyer,
1996). Design principles should be taught
explicitly, otherwise, the first programming

course might turn into a course on syntax no
matter how simple the underlying
programming language is (Felleisen, Findler,
Flatt, and Krishmamurthi et al., 2002).

• Integrative and interdisciplinary knowledge—

Denning et al. (1989, p. 13) suggested that
“interacting with other disciplines to support their
interests in effective use of computing” should
be an integral part of a curriculum for computing
majors. Stevenson (1993) presented a possible
foundation for computational science, which is a
much wider domain than computer science, and
embodies a scientific-engineering interdisciplinary
approach to solving very difficult problems. He
remarked that computer science students “can
easily see computer science as devoid of meaning
and programming devoid of empirical import”
(p. 9). He also noted that students are not well
prepared to cope with complex problems that
involve mathematical, scientific, and engineering
reasoning. Hence, the computer science studies in
high school should be enriched with mathematics
and sciences, with emphasis on numerical
analysis applications, and scientific software
engineering concepts, and students should be
educated to employ an interdisciplinary team
approach (Stevenson, 1993).

• Theoretical knowledge—Educators believe that it
is important to expose high school students to
advanced topics of computer science (e.g.
computational models, modeling, and parallel
computing) to enable them to become familiar
with some of the theoretical aspects of computer
science (Armoni & Gal-Ezer, 2003; Loidl,
Muhlbacher, & Schauer, 2005; Ben-David Kolikant,
2004). These concepts may be introduced in a
traditional way; however, they can be made more
comprehensible when demonstrated by means
of new media such as applets (Loidl et al., 2005).

• Familiarity with common principles—students
must recognize recurring concepts and
principles such as abstraction, complexity,
modularity, and reusability (Denning et al.,
1989; Gal-Ezer et al., 1995).
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• Comprehensive programming—Programming
should be taught as a means for getting the
computer to execute an algorithm. It should be
taught in a broad sense, “covering not only the
coding act itself, but also the design of the
algorithms underlying the programs and, to
some extent, considerations of correctness and
efficiency” (Gal-Ezer & Harel, 1998, p. 82). High
school programming classes should attempt to
prepare the students to be successful in
corresponding college-level classes by teaching
material that is universally applicable to any
programming paradigm (Schollmeyer, 1996).
Fincher (1999), however, has questioned the
argument that students must learn
programming first and disputed the notion that
there is a distinguished order to concept
acquisition. “Instead of accepting the view that
students need to learn to code and that from
this experience they will learn complex,
transferable skills…. leaving the students to
abstract these for themselves,” (p. 12a4-5) she
argued, one should first identify the skills that
should be acquired and support student
learning to achieve these goals.

• Meaningful learning of computing principles in

attractive experimental environments—Teachers
should motivate students to endure the rigors of
traditional computer science programs by
enticing students with exciting, accessible, and
leading-edge courses. Guzdial and Solloway
(2003) and Stiller and LeBlanc (2003), for
example, have suggested that introducing
computing in an authentic environment, such as
the world of audio and visual media, would
motivate students and interest them in the rest
of computer science. 

• Teaching from an historical perspective—

Böszörmenyi (2005) recommended that in
addition to teaching formal definitions and
programming practice, teachers should provide
students with an understanding of the great ideas
of the major thinkers in computer science and the
context in which these ideas were developed.

• Diminishing common computer science

misconceptions—Teaching and learning
activities should be designed to treat common
misconceptions of the very essence of computer
science. In particular, it is important to diminish
the computer science equals programming
misconception by developing an appropriate
fundamentals course that emphasizes the
breadth of the discipline beyond the interest in
computer programming (Gries, 2002; Gal-Ezer
& Harel, 1998; Peckham, DiPippo, Reynolds,
Paris, Monte, & Constantinidis, 2000;
Vandenberg & Wollowski, 2000).

• Gender differences and minority issues—The
curriculum should be designed to address the
under-representation of women and minority
students in computer science programs (Rich,
Perry, and Guzdial, 2004; Guzdial & Soloway,
2003; Graham & Latulipe, 2003; Payton, 2003;
Stiller & Leblanc, 2003).

2.4.2 Teaching the Key Concepts

There is also a large body of research that examined the
importance of taking a conceptual approach to teaching
computer science in high schools. In this section, 
we briefly summarize these research studies with 
the intention of highlighting the key findings and
suggestions for curriculum contents and enhancements. 

2.4.2.1  Basic Computing Concepts

Several researchers (Perkins, Schwartz, & Simmons,
1988; Sleeman, Putnam, Baxter, & Kuspa, 1989; du
Boulay, O’Shea, & Monk, 1989) have noted that
students lack an adequate knowledge of programming
and also demonstrate many misconceptions about
basic computing concepts because they lack viable
mental models of the computer. Ben-Ari (2001) argued
that the common difficulties experienced by novices
could be explained by computer science education
being heavily weighted on the side of bricolage and
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involving too much and/or too early use of the
computer (e.g., try it and see what happens, endless
debugging, and avoiding abstraction). As a result, he
concluded, high school students aspire to program
directly on the computer, and they sometimes
complain that algorithm development and analysis,
instead of just getting on with writing and debugging
programs, is a waste of time.

2.4.2.2  Algorithms

A number of researchers have addressed the special
needs of novice programmers. Haberman and Ben-
David Kolikant (2001) concluded that teaching novice
students basic concepts in computation is not a
simple task. In fact, they reported that educators may
be inclined to believe that these concepts are trivial
and therefore easy for students to understand, when
in fact, novice programming students may not
understand them at all. They therefore recommend
that teachers carefully choose an instructional
method that clearly demonstrates and reinforces even
seemingly simple concepts.

Haberman, Averbuch, and Ginat (2005) also
concluded that novices tend to have limited
understanding of algorithms, and so often consider
an algorithm as a stand-alone product, thus ignoring
issues such as correctness and efficiency. Moreover,
they concluded that students perceive algorithms as
operational process emulation elements, rather than
structural concepts that yield a specified I/O
relationship. As a result of these findings, the
researchers suggested that students should be taught
that explanations and justifications are inherent
elements in the solution of an algorithmic problem and
that teachers should demonstrate the complete analysis
and design processes instead of just final products.

2.4.2.3  Recursion

Levy and Lapidot (2002) conducted a study to
determine how novices see recursion as an

interdisciplinary concept and identified patterns of
students’ expressions and ways of thinking when
creating recursive descriptions using a natural
language. The study findings indicated that class
discourse plays an important role in helping students
to understand recursion and in helping educators to
understand students’ conceptual schemes. 

Haberman and Averbuch’s (2002) study focused
on students’ conceptions of the base case as an
integral component of a recursive algorithm. They
found that students have difficulties identifying base
cases. They handle redundant base cases, ignore
boundary values and degenerated cases, avoid out-of-
range values, and may not even define any base cases
when formulating recursive algorithms. They
suggested that teachers should discuss different
aspects of the base case concept, such as declarative
and procedural aspects of categorizing and handling
base cases as part of formulating recursion. In
addition, Haberman (2004b) found that students who
learned recursion in logic programming using a
declarative approach before learning it in a procedural
paradigm, constructed more adequate mental models
of recursion and were therefore better able to use
recursion as a tool for knowledge representation. 

2.4.2.4  Abstraction and Abstract Data Types

Many studies have investigated high-school students’
perceptions of abstraction and abstract data types.
Gal-Ezer and Zeldes (2000) for example, found that
students who studied a software design unit,
acquired technical skills that improved their handling
of problems requiring the definition and use of
abstract data types, even though many of them did
not fully understand the concept itself. Haberman,
Shapiro, and Scherz’s (2002) study on the cognitive
aspects of using abstract data types as tools for
knowledge representation and problem solving in the
declarative logic programming paradigm revealed
that students’ perceptions of the abstract data type
concept varied as did their strategies for program
development. Perhaps surprisingly, Haberman
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(2004a) also found that high school students felt more
comfortable than undergraduate students with
algorithms with low-level abstraction.

2.4.2.5  Non-determinism

Armoni and Gal-Ezer’s (2003) study of high school
students’ perceptions of the advanced abstract
concept of non-determinism showed that students
had a marked tendency to use the deterministic
model independently of the given problem,
indicating that they had only a partial understanding
of the non-deterministic model. Based on the study
results, the researchers suggested that the teaching
process should emphasize both the theoretical and
technical aspects of computer science.

2.4.2.6  Correctness

Haberman and Averbuch (2002) found significant
evidence of students’ misconceptions about correctness.
In their study, students indicated that recursive
algorithms were correct even though they did not
handle every possible instance of the problem while at
the same time they indicated that an algorithm was
incorrect when it handled imperceptible, though
relevant, base cases. This conclusion was further
supported by Ben-David Kolikant (2005). She found
that, in contrast to the professional dichotomous
definition of correctness, students understood
correctness as a relative property of the program and
therefore tolerated errors. For example, students who
produce incorrect programs might describe the
programs as mostly correct; or they might consider
programs as correct when they produce the expected
output, yet in addition, they produce more unexpected
output. Recent research by Haberman, Averbuch, and
Ginat (2005) also determined that students hold the
misconception that a short algorithm is not satisfactory
if it neither represents the story described in the
problem nor the problem’s analysis process. Hence,
students might not consider short concise algorithms as

satisfactory solutions, even though they correctly yield
the desired I/O relationship. 

2.4.2.7  Algorithm Efficiency

Ginat’s (1996) findings indicated that students’
solutions to algorithmic problems varied considerably
in terms of efficiency, reflecting different levels of
insight into the problems. He found that fruitful class
discussions of different solutions to a given problem
regarding efficiency widened students’ repertoire of
possible solutions and made them realize the
importance of analysis and planning in developing
efficient solutions. Gal-Ezer and Zur (2002) also
investigated high school students’ perceptions of the
concept of algorithm efficiency. They found that most
beginners (grade 10 students) had much more
difficulty internalizing the concept of algorithm
efficiency than the 11th graders, because of related
misconceptions such as “the more variables, the more
execution time.” Grade 11 students who opted for
computer science, internalized the concept and
demonstrated the ability to write efficient programs to
solve simple algorithmic problems. When solving
complex algorithmic problems, however, these
students tended to write insufficient programs because
of their inadequate ability to analyze the problem. Gal-
Ezer and Zur therefore recommended that teachers
should invest more effort teaching students
mathematical analysis before writing programs.

2.4.2.8  Program Testing

Ben-David Kolikant (2005) investigated high school
students’ work habits and conceptions of testing. The
study findings indicated that the students used
inadequate methods of testing, and that their
definitions of systematic testing were inherently
different from those of professionals. Ben-David
Kolikant and Pollack (2004a) found that the students’
norm is to produce working, but not necessarily
error-free, programs and to argue for their correctness
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solely on the basis of a few executions. They
suggested the integration of explanatory proofs as a
means of establishing norms of precision in the
students’ practices and methods of communication.
Haberman, Averbuch, and Ginat (2005) further
supported this conclusion and argued that explicit
rules of oral and written discourse should be
elaborated in order to establish reliable and coherent
student-teacher and student-peer communication.

2.4.3 Pedagogical Approaches

In addition to examinations of principles and concepts
in high school computer science instruction,
considerable research effort has been spent attempting
to identify the most effective pedagogical approaches
for addressing the principles and concepts that must
be taught. Much of the research focuses on the use of
specific programming languages and/or integrated
development environments. In this section, however,
we will concentrate on a selection of key studies that
focus on instructional methodologies.

2.4.3.1  Problem-Solving Strategies

Ginat (2000) implemented a problem-solving
approach that used colorful and attractive challenges
and games involving physical objects at the primary
stage of problem analysis to prompt students to look
for the problem’s characteristics “from various
angles, in different ways, and for diverse tasks” (p.
81). They argued that this approach allowed high
school students to develop “a set of values and
perspectives that enhanced their mathematical and
computer science point of view” (Ginat, 2000, p.84).

Muller  (2005) investigated the influence of pattern-
oriented-instruction on the development of problem-
solving skills. The preliminary results of the study
showed that students who had acquired a repertoire of
patterns achieved greater insight into a problem’s
essence in a shorter time and were able to develop
solution ideas more easily and with less distraction

from the details of a problem’s context. Moreover,
pattern-oriented-instruction improved the written and
verbal formulation of ideas of both teachers and
students). 

2.4.3.2  Learning Different Programming
Paradigms

Haberman and Averbuch (2002) found negative
transfer among students transitioning from the
declarative logic programming paradigm to a
procedural paradigm. Their findings indicated that
students who learn list processing in Prolog tended
to ignore boundary cases that control the termination
of recursive computation when developing
procedural algorithms. In contrast, Haberman
(2004b) found that students who learned recursion in
logic programming according to a declarative
approach, before learning it in a procedural
paradigm, constructed better mental models of
recursion than students who were acquainted with
recursion in procedural programming only. 

Paz and Lapidot (2004) investigated the
performance of high school students while they were
first exposed to the functional programming
paradigm. The most prominent finding in the study
concerned the students’ conception that a list
processing function may change the value of its input
parameter.

Ragonis and Ben-Ari’s (2005) study focused on
how novice programmers learn object-oriented
programming. Their investigation into the concepts
held by novices revealed many difficulties and
erroneous conceptions that the researchers
categorized into four primary categories:

• class versus object, 
• instantiation and constructors, 
• simple versus composed classes, and 
• program flow. 

The study findings further indicated that when the
instructor provided a detailed description of the
difficulties and conceptions together with an
integrated and holistic view supported by specific
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examples, authentic episodes, and interpretations, the
students developed a much better understanding of
the basic principles of object-oriented programming. 

2.4.3.3  Software Design and Project Development

Sims-Knight and Upchurch’s (1993) study found that
when instructors taught software design before a
specific programming language, students grasped the
basic concepts necessary to create high-level designs
even though they had no programming experience.
Gal-Ezer and Zeldes (2000), however, found that high
school students who studied software design
exhibited difficulties in designing general top-down
solutions for a given problem; and instead, they
preferred to deal with specific examples. The students,
however, were able to reuse general structures to
distinguish complex tools from basic tools. 

Collofello’s (2002) study indicated that students
who had access to a simulated environment in which
they could learn and practice software development
acquired their understanding of the software
development process as a gradual process composed
of many steps. Moreover, they were better at
documenting the development requirements for their
projects, employing use cases, and in using
systematic testing and inspection techniques.

Pollack and Scherz (2005) investigated the
influence of supportive learning materials on high
school students’ motivation, performance, and final
products as they developed projects in computer
science. The study findings indicated that students
who tended to perceive projects as a school activity
were mainly motivated by outside rewards such as
the projects’ external assessment. Students who did
not use supporting materials for project-based
learning and instruction used a bricolage approach to
develop their projects instead. They also tended to
modify the original problem according to their ability
to develop a proper project. In contrast, students who
used support materials for project-based learning
showed a greater commitment to the project and
submitted a product that referred to the original

problem. Scherz and Haberman (2005) also found
students who used problem-solving organizing tools
in developing their projects were more likely to use
abstract data types that resulted in a structured and
well-organized development process.

2.5 WHOM SHOULD WE TEACH?

The current structure of high school education
provides many indicators as to the value placed upon
a foundational understanding of the traditional
sciences as part of the required knowledge of every
educated citizen. Physics, biology, and chemistry
have long been required elements of high school
student learning. For computer science, however, the
discussion of its increasing importance as part of the
required knowledge base of every citizen in our
increasingly technological world, has been sadly
absent, and hence is long overdue. Lee (2004), for
example, argued that academic computer science
must “re-educate the public-at-large (especially
children) on the scientific foundations and
fundamental questions of the field.” Guzdial and
Solloway (2003) also suggested, “Students should
emerge from an introductory course with a sense
about what’s interesting in the field, and they should
have some practical knowledge that they can apply
in their fields” (p. 5). Unfortunately, however,
research has demonstrated computer science’s
continuing inability to attract young women and
minority students to the discipline in representative
numbers and to keep them there beyond the
introductory level.

Even in countries where there is a commitment to
providing computer science education for all high
school students, research has identified two long-
standing barriers to equity. Specifically, young
women and minority students continue to be
disproportionately under-represented in computer
science education. This pattern is most clearly
exemplified in the United States by the demographic
breakdown of students taking Advanced Placement
(AP) computer science. The College Board (2005)
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reported that in 2004 only 15% of the students taking
the AP computer science exams were female. In
addition, fewer than 5% of students of either sex self-
identified as Latino/Latina and fewer than 3% were
African American. 

To date there has been a considerable amount of
educational research dedicated to determining why
this under-representation persists in computer
science and not in other sciences. Fisher and Margolis
(2002), for example, found that the context of
computing is often very important for women and
that more women than men link their interest in
computer science to other arenas. They therefore
recommended that both the curriculum and the
culture are changed to ensure that young women do
not perceive that they will succeed only if they
“model themselves after the stereotypical male
computer science student” (p. 80). As already
mentioned, research by Moorman and Johnson (2003)
provided further support for Fisher and Margolis’
conclusions. They found that “Women in computing
still perceive themselves as strangers in a strange,
male-dominated land” (p. 193). Moorman and
Johnson (2003) also found that both male and female
students continue to see computer science as a
primarily “male” field and to make their career
choices accordingly. They suggested that single-sex
summer workshops for high school girls and mother-
daughter computer science clubs for elementary
school girls would help to combat this perception.

Moorman and Johnson’s call for single-sex
educational opportunities was consistent with an
earlier study by Crombie, Abarbanel and Anderson
(2000). Their study on girl-only learning settings
found that female enrollment significantly increased
in all-female computer science classes. The girls in
their study also exhibited a higher level of confidence
in their own skills than did girls in mixed gender
classes. These results were also supported by Graham
and Latulipe (2003). As a result of their investigation
at the University of Waterloo, they developed an all-
female computer science seminar for high school girls
to encourage female students to enter computer
science. This program focused on showing young

women a real-world perspective on computer science
and providing them with positive role models to
dispel the negative stereotypes.

Research has also provided significant evidence
that minority students have been similarly disaffected
from computer science, both as a discipline and as a
career area. Although policymakers and industry
leaders encourage minority participation in science
and technology academic studies with the intention
of increasing the number of minority students who
enter, are retained in, and succeed in high-tech
careers, the research indicates that a very low
percentage of minority students intend to major in
this field. Payton (2003), for example, found that
African-American teenagers tended to avoid
majoring in computer science, information science, or
information technology. 

2.6 EXEMPLARY TEACHERS

While it is clear that student attitudes are an
important factor in students choosing to study
computer science in high school, it is also clear that
teachers are the corner stone of successful curriculum
implementation. As a result, there has been
considerable research relating to the development of
appropriate computer science teacher training
programs (Gal-Ezer et al., 1995; Lapidot & Hazzan,
2003; Tucker et al., 2004; Dorninger, 2005). The
general consensus of this research, as Gal-Ezer and
Harel (1998) note, is that high school computer
science teachers should be trained to convey technical
knowledge correctly and reliably, to teach skills, to
provide perspective, and to infuse the students with
interest, curiosity, and enthusiasm. Recruiting and
retraining competent high school computer science
teachers, however, has proven extremely problematic
due to a lack of adequate teacher training programs
and the relatively low pay compared to that of
industrial computer scientists (Poirot, 1979; Poirot,
Taylor, & Norris, 1988).

Researchers such as Poirot (1979) have therefore
identified several levels of educational intervention
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and support needed to ensure an adequate supply of
highly trained computer science teachers. These
include: 

• conducting training institutes for in-service
computer science secondary teachers, 

• implementing a service course within the
computer science curriculum designed
especially for prospective computer science
secondary teacher training, and 

• implementing teacher certification programs in
computer science.

The following sections examine the research relating
to both pre-service and in-service teacher training in
more detail.

2.6.1 Pre-service Teacher Training

The existing research highlighting the link between
student success at the college/university level and
the methodology used to teach high school students
(Taylor & Mounfield, 1991) has raised fundamental
questions concerning pre-service computer science
teacher education. According to Lapidot and Hazzan
(2003) the pressing questions articulated by this
research include the following:

• Which appropriate frameworks would fit a
Methods for Teaching Computer Science in High

School (MTCS) course? 
• Which topics should be included in such

courses? 
• Which kinds of activities would be best suited

for the preparation of future computer science
teachers? 

In an effort to address similar questions, Gal-Ezer
and Harel (1998) recommended that computer
science teachers should acquire both technical and
pedagogical knowledge: “Beyond the mastery of core
CS material, good CS educators should also be
familiar with a significant body of material that will
expand their perspectives of the field, and
consequently, enhance the quality of their teaching”

(p. 77). This conclusion was supported by Lapidot
and Hazzan (2003) who noted that “a merger of
computer science with pedagogy into one amalgam
of content and pedagogy” (p. 30) would prepare
teachers to better employ general pedagogical
principles as well as teaching methods in the context
of computer science education.

2.6.1.1  Technical Knowledge

According to Gal-Ezer and Harel (1998) and Poirot
(1979), high school computer science teachers should
have a thorough formal background in computer
science (on an academic level). Teachers must also have
a broad overview of the pertinent areas of computer
science, and to have acquired a bird’s-eye view of the
discipline: “For those desiring a more thorough
coverage of a particular topic, existing computer science
coursework would be required. The course content of
a computer education course must not only include
computer related material, but also the motivation for
covering each topic” (Poirot, 1979, p. 102). 

2.6.1.2  Pedagogical Knowledge

Many computer science educators lack formal
training in education and are unfamiliar with
educational theories; hence, they rarely attempt to
apply these theories in the computer science
classroom (Gal-Ezer & Harel, 1998; Ben-Ari, 2004). To
be best qualified, computer science high school
teachers should be certified and offered courses in
computer science education in addition to regular
computer science courses (Schollmeyer, 1996). Gal-
Ezer and Harel (1998) additionally recommend that
several topics that would expand teachers’
perspectives of the discipline should be part of a
computer science teacher’s education. These would
include:

• a history of computer science, 
• the nature of computer science and its

relationship to other disciplines, 
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• various computer science curricula, 
• pedagogical knowledge related to teaching

computer science, and 
• the use of tools and aids in teaching the subject. 

They also suggest integrating these subjects into
specially tailored in-service training programs for
high school teachers, especially those who lack a
proper pre-service computer science and pedagogical
education. Based on their experience of teaching the
MTCS course to prospective teachers, Lapidot and
Hazzan (2003) additionally recommended optional
course frameworks and corresponding
implementations arranged as clusters of optional
activities. For example, they suggested an active
learning-based teaching model that would support
the construction of computer science teachers’
professional perception (Hazzan & Lapidot, 2004a).

Tucker et al. (2004) argued that as part of their
pre-service training, prospective computer science
teachers must also practice the teaching of computer
science in schools before becoming actual computer
science teachers. This argument was further
supported by Hazzan and Lapidot (2004b), who
suggested that teaching practice should be organized
in a way that supports bridging gaps between
theoretical knowledge and actual performance: 

no matter how much this topic is discussed in the
MTCS course, the actual implementation of
different teaching methods in real teaching
situations, together with a reflection process that
follows, can improve the prospective teachers’
understanding with respect to this topic. (p. 48)

They also noted that the illustration of situations that
take place during the practice may help bridge the
gap between the theory (the MTCS course), reality
(what actually happens in schools), and the
university mentor’s perspective (academia).

2.6.1.3  Socio-cultural Knowledge

There is also a small but interesting body of research

indicating that prospective computer science teachers
should be educated to become part of a collaborative
computer science teachers’ community of practice
(Haberman, Lev, & Langley, 2003; Ben-David
Kolikant & Pollack, 2004b). Specifically, they should
be motivated to learn from the experience of experts
and experienced teachers and to seek their
counseling. Moreover, they should be guided to
contact supportive groups such as local and national
teacher associations and to attend their activities
(Lapidot, 2002). In this way, it is suggested that
teachers will gradually proceed towards full-fledged
membership in the computer science teachers’
community of practice.

2.6.2 On-going Professional
Development for Teachers

The rapid change of programming languages and
tools for teaching computer science makes it
exceedingly difficult for teachers to remain current in
this discipline. This challenge makes computer
science less attractive to qualified teachers and often
leads to defections to other subject areas (Roberts,
2004). Thus, a tremendous effort is needed to support
teachers in the adaptation to new programming
languages and tools for teaching computer science,
the adoption and implementation of new curricula,
and in the constant enhancement of their pedagogical
approaches.

Assimilating a new computer science curriculum
requires appropriate in-service training aimed at
introducing the curriculum and its didactic approach
(Haberman & Ginat, 1999). In addition, teachers
require on-going support in all aspects of classroom
implementation of the curriculum. According to
Haberman, Lev, and Langley (2003) the assimilation
of a new curriculum “should be accompanied by the
establishment of a collaborative ‘learning and
creating’ community of teachers. This community
will begin its activity within an organized guided
course and continue with intra-school activity and
inter-school cooperation” (p. 144). 
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2.6.3 The Role of Professional
Associations in Supporting
Teachers

In addition to occasional projects of massive widespread
training, national and regional teacher associations are
playing a considerable and growing role in both the
development and support of new curricula. They are
also, especially in the case of computer science teachers,
becoming the primary providers of professional
development opportunities (Driscoll, 1987; Inos &
Quigley, 1995; Adagian, 1996). As Harris (1987) noted,
participation in professional associations has a direct
impact on professional effectiveness because it provides
many direct benefits to teachers. It: 

• provides new expertise through professional
development workshops,

• establishes networking relationships that
provide opportunities to share curricula,

• develops stronger personal commitment to
students and the academic discipline, and

• increases the realization of the importance of
connections with business and industry.

Professional associations also provide exposure to
new ideas, either through organized events such as
conferences and workshops or through professional
publications (Bell, 1983). As Romberg and Middleton
(1995) argued, “without programs that foster
collaboration, teachers would not be able to discover
new teaching methods and ways of dealing with
students and administration that their colleagues can
and do provide” (p. 175).

Professional educational associations also provide
essential support for specific academic disciplines
and play a key role in the development of leadership
within those disciplines. According to Jeffrey (1996)
professional teacher associations support individual
academic disciplines by:

• encouraging the testing of new initiatives,
• sharing expertise,
• satisfying an almost insatiable need for

discipline-based professional development,
• identifying key research needs,

• communicating the perspective of those in a
particular discipline to the wider educational
community,

• recognizing trends in discipline content, and
• putting strategies in place to ensure that

equitable standards are maintained.

The Computer Science Teachers Association (CSTA) for
example, is a membership organization that supports
and promotes the teaching of computer science and
other computing disciplines at the K–12 level.
Established in 2004, CSTA has already built a strong
system of partnerships and carried out a number of
successful projects (development of the ACM Model

Curriculum for K–12 Computer Science Education, the Java
Engagement for Teacher Training project, five Computer
Science and Information Technology symposia) that
have given it credibility and forged strong ties with
the community of computer science educators.

After examining the current research and
experiential classroom and administrative practices,
the CSTA Board of Directors identified the following
key components required to facilitate much needed
improvements to K–12 computer science education:

1. Communication/Partnership: Effective change
requires the engagement and support of
teachers, principals, school board staff,
guidance counselors, administrators, parents,
college faculty, College of Education faculty,
legislators, and key industry partners. 

2. Curriculum Standards: Consultation on,
publication of, endorsement of, and adoption
of curriculum guidelines are needed to
establish the required body of knowledge and
improve consistency in classrooms nationally.

3. Curriculum Support: Models of success and the
development and dissemination of teaching
and learning materials help ensure the
adoption of curriculum standards and address
critical resource shortages. These must be
supported by accessible and relevant
professional development for teachers. 

4. Research: Policy-makers (administrators and
legislators) require data to convince them that
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it is time for a change and that proposed
change mechanisms will work.

5. Teacher Certification Standards: Ensuring that
there are sufficient numbers of qualified
teachers and that teacher certification standards
are consistent from state-to-state will improve
pedagogy and course content nationally.

Like many other such associations internationally,
CSTA has taken on the role of not only advocating for
the place of computer science within the larger high
school curriculum, but also providing the resources
and support that practitioners require to continue to
improve their teaching (http://csta.acm.org/).

Machshava, (the Israeli National Center for High
School Computer Science Teachers)
(http://cse.proj.ac.il), has assumed a similar role for
Israeli teachers (Lapidot, 2002). Its initiatives are
directed at similar goals, including:

• fostering professional leadership of computer
science teachers; 

• helping create a professional community of
computer science teachers; identifying
computer science teachers’ needs; 

• supporting local teacher centers; and 
• collecting and distributing computer science

education knowledge and experience. 

2.7 CONCLUSION

For many years, there has been considerable debate
over the place of computer science education in the
high school curriculum (Stephenson, 2002). While
researchers and educators may hold differing opinions
concerning when a program of computer science
education should be implemented and how it should
be taught, the research consistently supports the
conclusion that, like any other academic discipline, it
must be engaging and rigorous, or as Gal-Ezer et al.
(1995) concluded, high school computer science “must
be challenging, in the sense that it will not only teach
the foundations, but will also relate them to the
practical side of computing, and it should train the

students to deal with intellectually demanding tasks”
(Gal-Ezer et al., 1995). Deciding what and how to teach
is, however, just one element in ensuring that even the
best curriculum is actually implemented and
supported over time. The next chapter will, therefore,
examine the multi-level issues that affect successful
curriculum implementation.
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3.0 INTRODUCTION

In recent decades, computers have come to occupy a
pivotal place in our work, personal, and home lives.
Accordingly, the field of computer science has
expanded to encompass the technical, innovative,
conceptual, and psychological ramifications of the
presence of the computer at work and at home. Much
research (National Research Council, 1999) confirms
the urgent need to improve the level of public
understanding of computer science as an academic
and professional field. In fact, the lack of a current
commitment to computer science education at all
levels is recognized as a major factor in the shortage of
computer science professionals that continues to affect
industries world-wide (Bureau of Labor Statistics,
2005). Many students receive their first exposure to
many scientific disciplines in high school (secondary
school). Lack of support and implementation of
appropriate learning opportunities in computer
science for students at this level therefore significantly
affects the long-term national economic viability, not
just in the high tech industries, but in all industries.

Although a significant amount of research has been
conducted on teaching specific computer science
concepts or using specific software tools for instruction,
minimal attention has been paid to developing a solid
set of instructional and content standards for pre-
college computer science. As Tucker, Deek, Jones,
McCowan, Stephenson, and Verno. (2003) noted:

Computer science is an established discipline at
the collegiate and post-graduate levels. Oddly, the
integration of computer science concepts into the
K-12 curriculum has not kept pace in the United
States. As a result, the general public is not as

well educated about computer science as it should
be, and a serious shortage of information
technologists at all levels exists and may continue
into the foreseeable future. (p. 3)

For this reason, the United States may find itself at
considerable disadvantage when compared to other
countries that have already implemented or are
currently developing a comprehensive computer
science curriculum for K–12 education.

This paper uses Frank’s (1972) framework for
critiquing educational policy and reform to analyze
the transcript of a National Science Foundation-
sponsored panel entitled Finding a Computing

Curriculum that Fits: the United States and Beyond

(Verno, Chiles, Gal-Ezer, Martin & Stephenson, 2005).
The panel, which took place at the National
Educational Computing Conference (NECC) in
Philadelphia in June 2005, brought together
curriculum experts from five countries: Canada,
Israel, Scotland, South Africa, and the United States.
Its goal was to discover elements that could be
identified as contributing to the successful
development and implementation of a national high
school computer science curriculum.

3.1 METHODOLOGY

3.1.1 Method of Analysis

This paper collects the observations of five educators
from five different countries who participated in a
panel at NECC in 2005. Panel organizers selected the
countries based upon their varying levels of



commitment to a national high school computer
science curriculum. The individual panelists were
selected on the strength of their individual and national
curriculum development efforts, their personal
activism in supporting excellence in computer science
education nationally, and their ability to illuminate key
implementation issues and strategies. They also
represented various stakeholder constituencies,
including researchers, curriculum developers, and
educators. The following table contains a list of the
panelists and the countries they represented.

Data for this study is drawn from a single source: a
recorded and then professionally prepared transcript of
the one-hour panel session. Employing the constant
comparative method (Strauss, 1987), data analysis
began with the first presentation and continued
throughout the document. A coding framework for
three main categories was drawn directly from the
structure of the panel presentation (curriculum models,
curriculum dissemination and implementation, and
assessment). This framework was further revised and
expanded as additional themes emerged. To ensure
accuracy of reporting, the panelists and the panel chair
reviewed the transcript drafts. The transcript was then
coded, and 58 illustrative segments ranging in length
from 30 to 187 words were copied from the word-
processed transcript into a database file. 

Analysis began with the grouping of similarly
coded items (e.g., implementation obstacles). The
transcript was then systematically analyzed by
searching for instances of all coded items in each
speaker’s segment of the presentation. The data were
first analyzed by presenter and then across all five
presenters. All of the coded data were then further
sorted and compared using Frank’s (1972) framework
for critiquing educational policy and reform. 

3.1.2 Employing a Framework

Evaluating any educational phenomenon is a complex
task and can be approached from many different
theoretical perspectives or frameworks, each of which
may provide a variety of analytical tools and
perspectives. The benefit of such a framework, as
articulated by Kubow and Fossum (2003), is that it can
be used to analyze the complex factors, motivations,
and ambiguities shaping educational policy and
reform. It is important to note, however, that no single
framework can truly encompass education’s
complexity and, in fact, that even the best frameworks
will “limit reflective inquiry to a select number of items
for analysis, thereby privileging some information and
factors over others and allowing some insights to be
gained while excluding from view other factors that
might influence interpretation of the issue” (p. 235). 

This paper uses Frank’s (1972) framework, which
provides a set of three criteria or elements: policy

effectiveness, theoretical adequacy, and empirical validity.
The policy effectiveness criterion requires an analysis of
policies and programs so that sufficient supports have
been put into place to ensure that intended outcomes
are met. In the case of a computer science curriculum,
for example, this would involve an examination of
the fiscal and structural mechanisms that have been
put in place to support curriculum development and
implementation and to ensure students have access 
to appropriate learning/resource materials. The
determination of theoretical adequacy can be seen as resting
upon the extent to which the strategies used are sufficient
and appropriate to achieve the expected outcomes. The
empirical validity criterion can be applied to questions
relating to the extent to which the evaluation of the policy
initiatives are grounded in research, that is, whether
scientifically proven methods have been employed to
determine the success or failure of the reform.

3.1.3 Understanding Context

Before analyzing the observations of the panel
participants, it is essential to place them within their

53

PANELIST COUNTRY/PROVINCE

Anita Verno (Chair) United States

Chris Stephenson Canada (Ontario)
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specific educational contexts. The following section
therefore provides a brief description of the high
school computer science curriculum in each of the five
countries represented. It should be noted that while
many of the countries do not identify specific years of
instruction by a grade level (for example Grade 10),
the panelists attempted to give what would be the
U.S. grade equivalent (where possible) to make it
easier to compare curricula across countries. 

3.1.3.1  Canada

In Canada, K–12 education policy and curriculum are
developed and administered at the provincial level.
While many provinces have implemented some form
of Information and Communications Technology
curriculum, Ontario has mandated a Computer
Studies curriculum consisting of Computer Science and
Computer Engineering courses (Ministry of Education,
1999 & 2000). The Ontario curriculum consists of a set
of eight courses beginning in Grade 9. The first
course (Integrated Technologies) is intended as a
general introduction to computing technologies,
including computer applications and a small amount
of programming. In Grade 10, the curriculum divides
into two distinct streams: the Computer and
Information Science stream and the Computer
Engineering stream. 

The Computer and Information Science stream
consists of three courses to be taught in Grades 10–12.
Each course must include a minimum of 110 contact
hours. The course for Grade 10 introduces students to
software design concepts and programming
fundamentals (e.g. sequence, selection, and
repetition) as well as the relationship among
networks, operating systems, and applications
software. The course for Grade 11 includes the study
of data control and data structures, problem solving
and programming, the software development cycle,
and operating systems. The Grade 12 course requires
students to design and implement algorithms and
programs, use software development and diagnostic
tools, and use file management techniques in a

project setting. In addition, some of these courses
contain learning expectations relating to computing
ethics and careers.

The Computer Engineering stream consists of four
courses to be taught in Grades 10–12. The single
Grade 10 course provides an introduction to
computer hardware and the control of external
components and includes the study of logic gates,
internal numbering and character representation
systems, operating systems and networks, and
fundamental programming concepts. Students in
Grade 11 have a choice of two Computer Engineering

courses. The Grade 11 college/university preparation
course is intended for students who want to study
computer science or engineering at the college or
university level. This course focuses on the use of
computer hardware and software to solve problems
from an engineering perspective, requiring students
to construct systems that use computer programs to
interact with hardware and to install and configure
computer hardware and software components. The
Grade 11 workplace preparation course, however, is
intended for students who wish to improve their
practical understanding of hardware and software
operations, networks, and operating systems. This
course focuses on installation, maintenance, and
repair procedures for computer systems and
networks. The Grade 12 Computer Engineering course
requires students to develop and construct systems
and design and implement computer programs to
drive real-world devices and to develop a thorough
understanding of networking hardware, protocols,
and configurations.

3.1.3.2  Israel

Unlike Canada’s provincial curricula, Israel has a
national curriculum for computer science. In Israel,
the Ministry of Education sets all educational policy
and then implements it with the aid of professional
committees and supervisors. Israel’s curriculum for
high school computer science (Gal-Ezer, J. & Harel,
D., 1999) was developed on the basis of the following

54



underlying principles:
• Computer Science is a full-fledged scientific

subject.
• The program should concentrate on the key

concepts and foundations of the field. 
• The program should focus on lasting concepts

of computer science, not on changing
technology.

• Two different programs are needed with
differing levels of requirements.

• Each of the programs should have required
units and electives.

• Conceptual and experimental issues should be
interwoven throughout the program.

• Two different programming paradigms should
be taught to provide different ways of
algorithmic thinking or different ways of
solving problems.

• A well-equipped and well-maintained computer
laboratory is mandatory.

• New course material must be written for all
parts of the program by different teams in
different academic institutions. The teams must
have computer scientists on board, as well as
high school teachers and researchers in
computer science education.

• To be certified to teach computer science,
teachers must have an adequate formal
computer science education (at least an
undergraduate degree in computer science).

The 450-hour curriculum is divided into five units of
90 hours each. The first three units are intended for
students seeking an introduction to computer science.
Students wishing to continue with their study of
computer science at the university level would take
two additional advanced units. The first unit
(Fundamentals 1) covers the foundations of computer
science (problem solving, algorithmic thinking, and
algorithmic solutions to algorithmic problems). The
second unit (Fundamentals 2) introduces more
advanced concepts such as recursion and two-
dimensional arrays. The third unit (Applications or a

Second Paradigm) provides students with a choice of

elective courses. Students intending to major in
computer science can choose among courses
including: Logic Programming, Computer Organization

and Assembly Language, Information Systems, or
Graphics. Students planning to complete only three
units usually opt for an Applications course. The unit
four course (Software Design) focuses on abstract data
types and data structures. The final unit course
(Theory), again provides students with a choice of two
electives: Computational Models or Numerical Analysis.

Although these operate as distinct courses within the
curriculum, they all focus on the key concepts and
foundations of computer science: algorithms,
abstraction, and system design, and each of the
courses that comprise the curriculum emphasize these
foundations (Gal-Ezer, Beeri, Harel, & Yehudai, 1995). 

3.1.3.3  Scotland

In Scotland, the government provides recommended
curriculum guidelines for schools in all areas. While
these guidelines are not mandatory, adherence is
largely guaranteed through the linking of final
examination content for Grades 10–12 to the
recommended curriculum. Scotland’s computing
curriculum has been in place since 1984, with several
minor revisions and a major revision in 1999. The
Scottish computing curriculum for high schools (The
Scottish Parliament Information Centre, 1999)
consists of a flexible network of courses covering a
broad range of topics. It’s designed to both educate
pupils about computers and also to provide
application skills. At every stage of the curriculum
framework, teaching, learning, and assessment follow
two principles: knowledge and understanding and
the application of that knowledge in a problem-
solving scenario. Each course in the curriculum
consists of a combination of mandatory and required
units (three in total for each course). Student
evaluations are drawn from a combination of
coursework, course projects, and a final examination. 

In each grade, students choose from a selection of
courses depending upon their interests and their
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performance in preceding courses. Like Israel,
Scotland offers a multi-level curriculum consisting of
a Standard Grade strand and a Higher strand. The
Standard Grade strand consists of an Intermediate 1
Computing Studies course, an Intermediate 2 Computing

Studies course, and an Intermediate 2 Information

Systems course. The Higher strand consists of a Higher

Computing course, a Higher Information Systems

course, an Advanced Higher Computing course, and
an Advanced Higher Information Systems course.
Performance in the first Standard Grade Computing

Studies course is assessed at three levels: foundational,
general, and credit. Pupils who achieve a foundational
credit would progress from the first Standard Grade
Computing Studies course to the Intermediate 1

Computing Studies course. Pupils who achieve a
general credit would progress from the first Standard

Grade course to the Intermediate 2 course. Success in
this course would allow them to proceed to the
Higher strand the following year. Students who
achieve a credit grade in the first Standard Grade

would move directly to the Higher Computing or
Information systems courses. Success in these courses
would then allow them to move onto an Advanced
Higher course. The Standard Grade course is a two-
year course requiring 160 instructional hours while the
Intermediate, Higher, and Advanced Higher courses are
one-year courses with 120 hours of instructional time.

Scotland, however, is unique among the
representatives in that it provides a strand of three
courses referred to as the Access Cluster, specifically
designed for pupils who have disadvantages in
learning. The Access 1 and 2 courses concentrate on
teaching life skills using computer technology.
Students who succeed in the Access 1 and 2 courses
can go on to do Access 3, a very basic computing
skills course. From this course they can go on to do
Intermediate 1 and perhaps Intermediate 2 in Grade 12.

3.1.3.4  South Africa

As is the case with Israel and Scotland, educational
policy in South Africa is determined at the national

level, but like Ontario, it is implemented at the
provincial level. Over the past 10 years, the South
African National Department of Education has been
involved in a complete revision of its curricula (from
Grades 1–12), including its various computing
curricula (Department of Education, 2005a, 2005b).
The new computing curricula have been designed to
be scenario-based, and so, where possible, examples
are drawn from everyday life and integrated with
other subject areas. As in Ontario, South Africa’s
computer studies curriculum consists of two distinct
strands: Computer Applications Technology and

Information Technology. The Computer Applications

Technology strand focuses on end-user applications
for Grades 10–12. The Information Technology strand,
on the other hand focuses on the use of information
and communications technologies in social and
economic applications, with an emphasis on system
analysis, problem solving, logical thinking, and
information management and communication
through the use of various software development
tools (e.g. object-oriented programming). Students
who opt to take the Information Technology strand will
take one course per year in each of Grades 10, 11,
and 12. All subjects in the new curricula to be
introduced in 2006 will have 4 to 5 hours of
instruction time per week with roughly 200 days (or
40 weeks) in the year available for school work. Of
this tuition time, some will be used for contact time,
some for practical (lab) work, and some for formal
assessment (tests and examinations).

Course contents include algorithmic design,
hardware and system software, networking, human
computer interfacing, programming, data structures,
databases and spreadsheets, testing and user
interfaces, and management information systems.
The Information Technology course is organized around
four learning outcomes with the expectation that a
percentage of the time in each course will be spent in
each.

• Hardware and system software (20%)
• E-communications (12%)
• Social and ethical issues (8%)
• Programming and software development (60%).
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As the student progresses through the courses, the
content and level of complexity for each of these
learning outcome areas increases appropriately until
the point where, at the end of Grade 12, the students
are expected to be able to design and implement a
relatively complex, real-world application.

3.1.3.5  United States

Although there is, at present, no national curriculum
for high school computer science education, the
Computer Science Teacher’s Association (CSTA) is
actively promoting the Model Curriculum for K–12

Computer Science Education published by the
Association for Computing Machinery (Tucker, Deek,
Jones, McCowan, Stephenson, & Verno, 2003). This
model curriculum is based upon the principle that
students require an understanding of the place of
computer science in the modern world and that the
discipline of computer science interleaves both
principles and skills.

The ACM Model Curriculum consists of four levels
of courses with the expectation that all students
should complete at least the first two levels. Level 1
(Foundations of Computer Science) is recommended for
delivery at the K–8 level and consists of modules
intended for use in conjunction with existing studies
across the curriculum. The learning outcomes for this
level are drawn primarily from the National

Educational Technology Standards (ISTE, 2002) but
include additional outcomes relating to problem
solving and algorithmic thinking. Level II (Computer

Science in the Modern World) is intended as a first
computer science course for all high school students.
It provides a broad overview of the discipline with
the goal of preparing students for the technological
world. Conceptual content includes a fundamental
understanding of operating systems, networks, the
Internet, problem solving, programming, careers, and
issues in computing ethics. The Level III course
(Computer Science as Analysis and Design) is a pre-
Advanced Placement course in that it focuses on
scientific and engineering principles. This course is

intended for students interested in pursuing more
advanced studies in Computer Science, Engineering,
or Engineering Technology at the college or
university level. Finally, the Level IV course is
intended as a special projects course that would
allow students to focus on a specific area of
computing in which they are especially interested. It
is intended to encompass a broad range of
specialized courses such as AP Computer Science or
courses leading to industry certification.

3.2 EXPLORING CURRICULUM
DEVELOPMENT AND
IMPLEMENTATION USING
FRANK’S FRAMEWORK

3.2.1 Policy Effectiveness

Frank (1972) posits that evaluating the feasibility of a
given educational policy or change requires
consideration of three key aspects of policy
effectiveness: support and dissent, monetary and
other costs, and the consequences of options.
Analysis of the panel transcript illustrates that the
panelists from the five participating countries
provide ample evidence of Frank’s argument
concerning the importance of these aspects as they
relate to the implementation of a high school
computer science curriculum.

The issue of support and dissent, for example,
appears frequently in the panelists’ comments,
primarily in relation to discussions of the originating
site of, or impetus for, the curriculum change. The
panelists from Canada, Israel, and South Africa, for
example, note that the computer science curriculum
revision in their countries was very much a top-down
process. Stephenson, for example, notes that in
Ontario: 

In 1999 a new government was elected and they
decided, “Let’s start all over again in every
subject area in the secondary or high school level.
We’re going to rewrite every single piece of
curriculum in the province.” And so courses were
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developed and implemented one grade level per
year. (p. 6)

Panelists Gal-Ezer (Israel) and Chiles (South Africa) also
indicate that the computer science curriculum reform in
their countries were similarly conceived of and driven by
the government body responsible for education. Martin,
however, indicates that while the Scottish government
plays a central role in the development of the national
curriculum, its adoption and implementation is a matter
of choice rather than mandate. 

Unlike the rest of the UK, the Scottish curriculum is
not actually statutory. It is the responsibility of head
teachers, but most schools do tend to follow the
curriculum guidelines that were set down by our
government as though they were statutory. (p. 10)

Despite the top-down decision-making evident in the
majority of the represented countries, several
panelists also noted their governments attempted to
improve the viability of proposed educational
reforms by engaging the support of key stakeholder
groups at several stages of the process. Stephenson
reports that in Ontario, for example, the government
worked closely with the Association for Computer
Studies Educators (ACSE) in the design of the new
computer science curriculum. It allowed ACSE to
select the team members with the goal of ensuring
that the curriculum would be written by practitioners
with a thorough understanding of the knowledge
base of the subject area. 

Stephenson further indicates that once the
document was written, key stakeholder groups,
including representatives from industry and parent
groups, were also brought together to review and
discuss the new curriculum prior to its
implementation. A similar curriculum vetting
process, specifically designed to address issues of
both rigor and equity, was conducted in South Africa,
about which Chiles notes:

The implementation and review process involved
many groups of people, including the teachers
themselves, teacher unions (teacher unions are
very strong in our country), the Human Rights

Commission (because of the inequities of the past
we had to include what was happening within
human rights), and the tertiary institutions. (p. 23)

The involvement of tertiary or post-secondary
institutions was also a key element in the policy
implementation process in Israel, where teams of
discipline specialists subjected the curriculum to a
rigorous review even after its implementation, and in
Scotland where universities played a key role in on-
going professional development for teachers. 

According to Verno, however, the situation in the
United States differs markedly from that of the other
countries represented on the panel. The United States
is conspicuous in its lack of engagement with
computing curriculum policy at both the federal and
state levels. In this absence of governmental action,
efforts to define a national curriculum for computer
science in the United States are being driven by the
Computer Science Teachers Association (CSTA), a
professional membership organization representing
K–12 computing teachers. In its efforts to promote a
rigorous and consistent computer science curriculum,
CSTA plays a prime role in the continued
development and dissemination of the ACM Model

Curriculum for K–12 Computer Science Education. It is
also developing and disseminating supporting
resources and teaching and learning materials, and
working to improve teacher access to professional
development through workshops and symposia.

As further evidence of the accuracy of Frank’s
framework, the discussion also demonstrates
considerable panelist engagement with issues relating
to funding and resource access. With the exception of
the United States (where there has been no
governmental support for the development of
implementation of a national computer science
curriculum) all of the panelists note the extent to
which the goals of the curriculum reform could only
be achieved with significant financial investment by
the government. Gal-Ezer, for example, indicates that
in Israel, “The Ministry of Education very generously
budgeted the program. The budgets covered the
development of the curriculum and the development
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of the materials, including the salary of the
developers” (p. 19). Martin notes a similar level of
on-going support from the Scottish government:

Schools were given a massive government cash
injection mainly to fund multimedia technology,
which was going to prove to be the most costly
part of the curriculum to implement. But it was
still not enough, and half way through they gave
us another 80 million pounds. (pp. 21–22)

Many of the panelists, however, note that access to
resources was problematic. Chiles indicates that
implementation of the new computer science
curriculum in South Africa has been seriously
impeded by a lack of infrastructure funding, which
serves to exacerbate inequities already present in the
education system.

Funding is a major problem in that the
government provides no funding whatsoever to
schools in terms of implementation of many of
the subjects. They will provide something
towards the training, but in terms of the
implementation, the physical infrastructure that is
required, there is no funding whatsoever. And so
you can imagine what is going to happen in a
situation such as we have currently, that the
advantaged schools—the previously white
schools that come from richer communities—will
have all of the equipment; the disadvantaged
schools—previously the black and Indian, colored
communities—will have very little funding and
will not be able to provide the equipment
themselves. (p. 25)

Problems with hardware were also a factor in the
initial implementation of the Scottish curriculum as,
according to Martin, the Exam Board computer
system required to process the results of student
examinations (which are key to student placement at
universities) was not installed until the day it was to
be used, and then was found to have bugs, which
resulted in incorrect marks or no marks at all being
generated for a considerable number of students. 

In both Ontario and Scotland, access to

curriculum policy documents and support materials
was problematic. According to Stephenson, Ontario
teachers responsible for implementing the new
curriculum had difficulty accessing the curriculum
documents. 

The curriculum documents were all posted online
and every school received just one set of
documents for all courses. So if you had seven
teachers in your department, they were sharing
one set of curriculum [documents] … These
documents were received in the schools anywhere
between September 15th and September 30th, and
school started September 6th. (p. 15)

While all of the panelists articulate the importance of
adequate funding for teacher training as a key factor
in successful curriculum implementation, the
experiences of the panelists differ significantly on this
issue. With the exception of the United States, all of
the governments represented on the panel provided
some funding for teacher training. Martin noted, for
example, that teacher training on the Scottish
curriculum was provided at national, regional, and
local levels.

We had documentation sent to centers for
discussion and that was followed-up by national
meetings with headmasters and headmistresses,
and regional meetings with principle teachers of
the various subjects. Some teachers were seconded
to become national trainers. They went around to
regional meetings training principle teachers. We
did this for a year and a half, and it worked very
well. The final stage of dissemination took place in
the form of in-service training days. Normally
these would take place within a school, but for the
purpose of standardization, what happened was
that, within a local authority, one school would
host an in-set for all the subject teachers within
that local authority, and they attended the same
in-set. (p. 20)

According to Chiles, although to a much more
limited extent, the government of South Africa also
provided training for teachers implementing the new
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Grade 10 computer science course: 
The Grade 10 training will take place across the
country … So the teachers will be receiving one
week’s training for a course which is going to last
for three years. Many of the teachers, in fact, are
under-qualified and consequently have to go
through a qualification phase, and the intent is to
try and do that within one week. I don’t think
that that is a task that is going to be easily dealt
with. And so we’re hoping that many of the
tertiary institutions ought to be offering what are
called Advanced Certificates of Education. (pp.
23–24)

The government was also establishing partnerships
with universities to address the issue of on-going
teacher training.

Verno also highlights the role of partnerships with
colleges and universities in the successful curriculum
implementation of a national computer science
curriculum, especially in the absence of government
funding or support. In particular, she notes that
CSTA funds and oversees two teacher professional
development programs: Java Engagement for Teacher
Training (JETT) and Teacher Engagement for
Computer Science (TECS), which involve colleges
and universities across the country providing
workshops and on-going mentoring for local high
school computer science educators.

As Kubow and Fossum (2003) indicated, the
assessment of policy effectiveness in accordance with
Frank’s criteria also requires consideration of the
policy implementation timeframe. While the panelists
from Israel, Scotland, and South Africa indicate that
their new computer science curricula were developed
and implemented on a reasonable timeframe,
according to Stephenson, the government’s rush to
develop and implement a new curriculum for
Ontario was considerably more problematic.

I think everyone described most accurately the
whole process as ready, fire, aim. “We’re going to
do this new curriculum, we’re going to do it right
now, oh boy we better plan for it.” And, so there
were issues. (p. 15)

3.2.2 Theoretical Adequacy

According to Frank’s critical framework, determining
the theoretical adequacy of an education policy
mandate requires an examination of the linkage
between the outcomes desired and the strategies
employed in three areas: the reasoning and
justification associated with the issue, the
contextualization of the rationales with respect to
current and pressing needs, and the effect of
tangential factors. An examination of the transcript of
the international computer science panel session
reveals, however, that in all cases, significantly more
attention is being paid to setting forward the
expectations than to determining if the strategies put
into place are actually achieving those outcomes.

In both Ontario and Israel, the panelists indicate
that computer science is seen as a full-fledged
scientific discipline and efforts to revise the
curriculum are situated in the desire to increase its
rigor. In Ontario’s case, Stephenson notes:

Many of the provinces went very much toward a
general IT curriculum, cutting out the rigor of their
Computer Science program. But a few provinces,
including Ontario have gone in a different
direction. They chose to make their Computer
Science curriculum both more extensive and more
rigorous. We stuck to the Computer Science
framework, and we looked at expanding it. (p. 6)

According to Martin, changes to the Scottish
computing curriculum were similarly situated in the
desire to make the program more rigorous. In this
case, however, this was driven largely by University
concerns regarding student preparedness for post-
secondary programs. In South Africa, however, new
curriculum policies required serious consideration of
issues of equity and ethnicity that are at the
foundation of all educational policy development and
implementation in that country.

There is a perception that Computer Studies is
exclusively for the privileged white community,
and so we do have a problem in terms of
inclusion of the other race groups. (p. 25)
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This concern with balancing rigor and equity is
further evidenced in both South Africa and Scotland
by additional policies that provide the opportunity
for students for whom the increased rigor is
problematic to take a slower, less rigorous approach
to the same material. As Martin explains, this
commitment to differentiated instruction is perceived
as central to Scotland’s commitment to providing
equitable learning opportunities for all of its citizens.

In Scotland we’re very, very proud of our policy
of inclusion and we firmly believe that education
should be accessible to all. There is no upper
leaving age to school in Scotland. We have
students in our classes who are adults who have
come back to school, and we also have quite a
wide range of alternative assessment techniques
to enable pupils with special needs to participate
in national exams. (pp. 22-23)

While commitment to a more equitable system can be
seen as a primary rationale for educational policies in
Scotland and South Africa, in many countries these
policies are also rationalized in terms of the long-term
economic needs of the country. This is most clearly
exemplified by Chiles of South Africa, who states:

In terms of the expected impact of the new courses
on the economy, on employment opportunities,
and on future studies, we have tried as far as
possible in terms of the development of the course
to take into account what is happening in business
and industry. (pp. 24–25)

and Verno of the United States who argues:

I think it’s time for us to make a broad
commitment to CS education at the K–12 level, so
our students can compete in this global
environment that we are now part of. (p. 29)

The panelists’ considerations of the tangential effects
of new policies on education seem to be manifested
most consistently in areas relating specifically to
teacher preparations and qualifications. The panelists
indicate many countries place insufficient impetus on

the need to ensure that teachers’ skills are consistent
with the policies. Gal-Ezer, notes that in Israel, for
example, teachers who were teaching computer
science without a bachelor’s degree in computer
science prior to the curriculum revision were required
to take 10 additional courses in order to qualify to
continue teaching the subject in high schools.
Stephenson also indicates that in Ontario, the new
educational policies created a series of challenges for
which the government had not adequately planned.

When you change the curriculum you also get a
whole lot of ancillary issues. They [the
government] never passed legislation to address
the teacher certification issues, or addressed the
issues such as mandatory courses and the
shortage of teachers. As a result, the professional
association continues to shoulder the
responsibility of providing the majority of
opportunities for professional development to
implement the curriculum for the teachers. (p. 16)

Chiles of South Africa, also poignantly illustrates that
education never takes place in isolation and that the
world outside can bring its own devastating
tangential effects despite the best-planned reforms.

One of the major problems that we have in
education is HIV/AIDS. As you know, it’s
pandemic in Africa. In South Africa we have a
double-edged sword in that not only are many of
our teachers dying of HIV/AIDS, but many of the
officials or the workforce in business and
commerce are also dying, and where do they get
their trained people from? Education. So we’re
losing teachers to HIV/AIDS on the one side
directly, and we’re losing teachers to industry and
commerce because of HIV/AIDS on the other
side. And that is a major, major problem in our
country. (p. 26)

3.2.3 Empirical Validity

Frank (1972) posits that incorporating the differences
between past and present plans are central to
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ensuring the empirical validity of a given educational
reform. Specifically, he identifies three areas that
must be taken into account for this determination: 

• whether the interpretations of circumstances are
consistent among stakeholders, 

• what signs or changes related to an issue might
be relevant, and 

• whether they will be broadly recognized, and
the strengths and limitations of these means of
judging. 

The transcript of the international computer science
panel indicates, however, that, among all of Frank’s
categories for critiquing educational policy and
reform, empirical validity is the least represented in
the panelists’ reflections. 

It is clear from Stephenson’s comments that the
decision to revise the computer science curriculum in
Ontario was made because the provincial
government had decided to revise the entire high
school curriculum, and that this decision was
consistent with a cyclical pattern of political decision-
making rather than of broader stakeholder
perceptions that change was needed.

In 2006 all of the Computer Science courses will
undergo review again. It starts all over. That has
to do with the fact that the government changes
every four years. So by about their second year
in, it’s like, “Let’s really change something. Let’s
start with education.” So the process continues.
(p. 17)

While Martin (Scotland), Gal-Ezer (Israel), and
Chiles (South Africa) also note that the decision to
reform the high school computer science curriculum
in their countries was similarly government-driven,
Chiles, however, indicates that the new curriculum
policies in South Africa were also driven by a
broader desire among multiple stakeholder groups
for educational reform that would right the wrongs
of apartheid, which ended in 1994: “South Africa has
in the last 10 years been through major curriculum
reform. When we say major, everything that
happened before 1994 has literally been dropped and

is being revised” (p. 12). 
For all of the panelists, the determination of

whether or not the educational reform policies would
achieve their intended aims and how this is to be
measured seemed open to question. While both
Stephenson (Canada) and Gal-Ezer (Israel) indicate
that the reforms were intended to improve the
scientific rigor of the curriculum, Stephenson
contends that the Ontario government is focused
entirely on changing how the teachers assess the
students rather than on indicators of student success.
Gal-Ezer (Israel) and Martin (Scotland) however,
indicate that student performance on standardized
tests is the marker by which their countries measure
the success of the reforms. 

Although educational reform policy development
is clearly a top-down process in the countries
represented by the panelists, the task of determining
the long-term effect of these policies appears to fall
more often to external bodies than to the government
itself. In some cases the relationship between these
bodies is a formal one, as Martin states: 

We also have a national public body called
Learning and Teaching Scotland, which is
seconded computing teachers and teachers from
other subjects and they support the Education
Department by reviewing, assessing, and
developing the curriculum. (p. 22)

while in others, as Stephenson indicates, the
responsibility is undertaken by an arms-length, and
often educator-driven, organization: 

There was no [government] emphasis on
assessing whether these courses were actually
working … again, the professional association, the
subject association, did that assessment to
determine where the problems were. (p. 17)

From these comments it is possible to conclude that,
at least in countries represented by the panel, where
educational policy reform is clearly top-down, and
often politically driven, surprisingly little attention is
paid to determining whether or not the broad goals
of the reform have actually been achieved.
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3.3 CONCLUSION

Applying Frank’s framework for critiquing
educational policy and reform to an examination of
efforts to reform the computer science curriculum in
five countries provides an interesting perspective on
computer science curriculum reform in specific and
on curriculum reform as a whole in that it highlights
areas of strength and weakness that may have long-
term effects on the extent to which the reforms
accomplish what they had ostensibly been designed
to achieve. As this examination demonstrates, even
where the reforms are top-down and politically
driven, chances of successful implementation can be
improved when sufficient attention is paid to policy
effectiveness (especially relating to support by
stakeholder groups and sufficient resource allocation),
theoretical adequacy (the balance of justifications and
tangential effects) and empirical validity (whether and
how the long-term effects of the policy reform are
measured). And while it is clear that none of the
countries represented on the panel can claim an error-
free policy development and reform process, each,
through the honest and open examination of its
successes and failures, provides beneficial insights for
other countries willing to learn the lessons provided.
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4.0 INTRODUCTION

As the previous three chapters have shown, designing
and successfully implementing a high school
computer science curriculum is an exceedingly
complex task involving multiple stakeholders. In the
United States, this process is made even more complex
by an educational system in which decision-making
and funding responsibilities are dispersed and
fragmented, even to the level of individual schools.
This does not mean, however, that it is not possible for
the United States to launch a much-needed effort to
improve high school computer science education; only
that doing so requires a level of understanding and
commitment that encompasses leaders at every level,
from the federal leaders who put forth new legislation
to the state and district education administrators who
interpret and ensure compliance with policy to the
individual teachers who make it a classroom reality. 

This chapter reviews what the previous chapters
have shown, with the goal of formulating strategies
and recommendations that can bring about real,
fundamental, and lasting improvements to high school
computer science education. These improvements will
help provide students with the scientific knowledge
base required to prepare them for success in the 21st
century and will ensure that this country can produce
a future workforce capable of the innovations that will
continue to drive the global economy.

4.1 HOW DO WE DESIGN A BETTER
CURRICULUM?

As demonstrated in Chapter Two, the educational
research clearly shows that high school computer

science education suffers because the discipline itself
seems to defeat all efforts to pin it down to one,
easily understood definition. This has resulted in an
inconsistent self-image, an incorrect public image,
and serious misconceptions among both educational
decision-makers and the broader public about the
scope and focus of the discipline. While in the best of
all possible worlds, attempting to establish a single,
universally accepted definition might seem like the
most practical solution, attempting to develop such a
definition would inevitably lead to more heated
arguments among academics, scientists, and industry
leaders. In addition, even if an agreement could be
reached, the continual evolution of the theory and
technology upon which it is based would render it
immediately out of date. 

4.1.1 Ten Core Principles

Fortunately, research shows us that it is possible to
come to understand computer science and to define a
curriculum for its study at the high school level that
supports the understanding that computer science is
a science. Here is a list of ten principles for a
successful computer science curriculum. 

• A high school computer science curriculum must;
• focus on the scientific principles that underlie

that science; 
• develop students’ familiarity with the key

principles of the discipline, including
abstraction, complexity, modularity, and
reusability;

• focus on teaching problem-solving
methodologies and critical thinking skills;

• help students develop a wide range of cognitive
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capabilities and practical skills, independent of
specific technologies;

• be comprehensive enough to provide students
with a broad overview of the field and sense of
the history of the discipline so they can better
appreciate how computers have been used to
address real problems (It must address the
breadth of the discipline and its manifestation
in multiple areas of scientific engagement
including hardware design, networks, graphics,
databases and information retrieval, computer
security, software design, programming
languages, logic, programming paradigms,
artificial intelligence, applications in
information technology and information
systems, and social issues.);

• deal explicitly with the design and analysis
process so that students develop an
understanding of the structure of computer
systems and the processes involved in their
design, development, and maintenance;

• enable students to learn and to scaffold new
ideas, concepts, and skills across a series of
courses that provide age-appropriate learning
outcomes;

• be taught in such a way that the contents are
engaging to all students regardless of gender
and ethnicity;

• interweave both conceptual and experimental
issues so that students come to understand both
the theoretical underpinnings of the discipline
and how that theory influences practice; and

• not confuse computer science with computer
literacy (Teaching students how to use various
software applications is not teaching computer
science.).

4.1.2 Key Concepts

Like all scientific disciplines, computer science
consists of a set of key concepts that are fundamental
to its understanding and practice, and should
therefore form the basis of any high school

curriculum. The current body of research on computer
science education, (as discussed in Chapter Two) has
identified several concepts key to the teaching of
computer science, including the following:

• Algorithm design: The use of a precise, step-by-
step process for solving a programming problem.

• Recursion: A programming function or method
that repeatedly calls itself until a specified
condition is met. (Note while recursion was
singled out in the research, it is important to
note that it is just one of many concepts that
could be considered under the broader category
of problem solving.)

• Abstraction and data types: Abstraction is a
process of picking out (abstracting) common
features of objects and procedures. A datatype is
a name or label for a set of values and some
operations that one can perform on that set of
values. Programming languages implicitly or
explicitly support one or more datatypes. These
types may act as a statically or dynamically
checked constraint, ensuring valid programs for
a given language.

• Program correctness and efficiency: Determining
program correctness involves ensuring that the
program runs in strict accordance with its
specification. Program efficiency relates to the
efficient use of resources and is generally
contained in two properties: speed (the time it
takes for an operation to be completed), and
space (the memory or non-volatile storage used
up by the construct).

• Program testing and debugging: Testing is a
process used to help identify the correctness,
completeness, and quality of developed
computer software. Debugging is a methodical
process of finding and reducing the number of
bugs, or defects, in a computer program or a
piece of electronic hardware thus making it
behave as expected.

The problem with these research-identified concepts,
however, is that they provide an extremely limited
view of the discipline of computer science. A more
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comprehensive delineation of core computer science
concepts, however, can be found in the National
Research Council report entitled Being Fluent with

Information Technology (National Research Council,
1999). This report puts forth a vision of Information
Fluency that extends beyond the use of today’s
technology in one’s own field (Information Literacy), to
include the use of algorithmic thinking to solve
problems and the ability to independently learn to
master new technologies as they evolve. Towards this
end, Being Fluent with Information Technology identifies
10 key concepts:

• Computers: Key aspects of computing, including
the program as a sequence of steps, the process
of program interpretation, computing memory,
and peripheral devices.

• Information systems: The general structural
features of an information system including
hardware and software components, processes,
and interfaces. 

• Networks: Key attributes and aspects of
information networks including their physical
structure, wide-area networks and logical
structure.

• Digital representation of information: The use of
binary code.

• Information organization: General concepts of
information organization including searching
and retrieving.

• Modeling and abstraction: General techniques for
representing real-world phenomena as
computer models, for example arrays and lists
of procedures.

• Algorithmic thinking and programming: Concepts
of algorithmic thinking including repetition
(iteration or recursion), data organization
(records, arrays, lists), generalization, and
software design processes. 

• Universality: The understanding that any
computational task can be performed by any
computer.

• Limitations of information technology: Assessing
what information technology can be applied
and when it should be applied.

• Societal impact of information and information

technology: Social concerns relating to the use of
information technology such as privacy,
intellectual property, security, online etiquette,
hacking, and free speech.

4.1.3 Example of a Comprehensive
Curriculum

It is often helpful to put these kinds of recommenda-
tions into perspective by providing an example 
of an actual curriculum that incorporates them. This
section examines the Model Curriculum for K–12

Computer Science Education (Tucker, Deek, Jones,
McCowan, Stephenson, & Verno, 2004) previously
described in Chapter Two, with the goal of
demonstrating how the ten principles and concepts
outlined above can be used as the foundation for a
solid curriculum framework. 

• Focus on the scientific principles that underlie

that science. The authors of the Model

Curriculum for K–12 Computer Science Education

clearly state the study of computer science is
indeed a scientific endeavor and that the goal of
their curriculum framework is to introduce the
principles and methodology of computer
science to all students.

• Develop students’ familiarity with the key

principles of the discipline, including students

abstraction, complexity, modularity, and

reusability skills. The Model Curriculum for K–12

Computer Science Education consists of four levels
of learning, each of which attempts to address
these key principles at an appropriate learning
level for students. Both the Level II course,
Computer Science in the Modern World and the
Level III course, Computer Science as Analysis and

Design, require students to develop an
understanding of hierarchy and abstraction and
to master the basic principles of software design,
including modularity and reusability. The
flexible framework also provides for a Level IV
Topics in Computer Science course that could
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include, among other options, an AP course that
would cover modularity and reusability at an
increased level of complexity or a project course
that would focus on some aspect of object
oriented programming and design.

• Focus on teaching problem-solving methodologies

and critical thinking skills. All of the courses
outlined in the Model Curriculum for K–12

Computer Science Education contain requirements
for problem solving and critical thinking.
Learning Level I (covering grades 1–8), for
example, requires students to understand the
relationship between logic and problem solving
in the real world, while Level II requires
students to gain a conceptual understanding of
the basic steps in algorithmic problem solving.
Level III also requires students to understand
the limits of computing by recognizing
problems that are computationally unsolvable. 

• Help students develop a wide range of cognitive

capabilities and practical skills, independent of

specific technologies. The design of the Model

Curriculum for K–12 Computer Science Education is
centered in the authors’ belief that students need
to understand the interleaving of computer
science principles and skills. Students are then
expected to apply these skills (especially
algorithmic thinking) in their problem-solving
activities in all educational subjects. In addition,
the learning outcomes specified in the
curriculum are intended to ensure that students
are prepared to be knowledgeable users and
critics of computers as well as designers and
builders of computer applications.

• Address the breadth of the discipline and its

manifestation in multiple areas of scientific

engagement (hardware design, networks, graphics,

databases and information retrieval, computer

security, software design, programming languages,

logic, programming paradigms, artificial intelligence,

applications in information technology and

information systems, and social issues). Learning
outcomes for all of these areas are included in
all of the courses specified by the Model

Curriculum for K–12 Computer Science Education.

• Deal explicitly with the design and analysis.

Every course in the Model Curriculum for K–12

Computer Science Education contains specific
learning expectations relating to problem solving,
critical thinking, software design, and analysis.

• Enable students to learn and to scaffold new ideas,

concepts, and skills across a series of courses that

provide age-appropriate learning outcomes. The
Model Curriculum for K–12 Computer Science

Education builds a solid framework of conceptual
and empirical learning experiences for students.
By incorporating all of the National Educational
Technology Standards (NETS) developed by the
International Society for Technology in Education
(ISTE, 2002) into its Level I section, it supports and
expands the national standards for educational
technology learning in grades K–8. It then
provides a set of three age and learning-level
appropriate courses that allow students to
progress from foundational knowledge to mastery.

• Be taught in such a way that the contents are

engaging to all students regardless of gender and

ethnicity. While the Model Curriculum for K–12

Computer Science Education does not prescribe
specific pedagogical approaches, it does
highlight the importance of increasing the level
of computer science knowledge for all students,
and most especially for those who are members
of underrepresented groups.

• Interweave both conceptual and experimental

issues so that students come to understand both

the theoretical underpinnings of the discipline

and how that theory influences practice. Each
high school course described in the Model

Curriculum for K–12 Computer Science Education

includes a set of conceptual learning outcomes
as well as practical laboratories designed to
provide students with hands-on learning.

• Not confuse computer science with computer literacy.

Teaching students how to use various software
applications is not teaching computer science. The
introductory section of the Model Curriculum for

K–12 Computer Science Education explicitly
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KEY FLUENCY CONCEPT COURSES LEARNING OUTCOME

Computers Level II Principles of computer organization and the major components
(input, output, memory, storage, processing, software, operating
system, etc.)

Fundamentals of hardware design

Level III Hardware and systems: logic, gates and circuits, binary arithmetic,
machine and assembly language, operating systems, user interfaces,
compilers

Information systems Level II Principles of computer organization and the major components
(input, output, memory, storage, processing, software, operating
system, etc.)

Level III Design for usability

Networks Level II The basic components of computer networks (servers, file
protection, routing protocols for connection/communication, 
spoolers and queues, shared resources, and fault-tolerance)

Digital representation of Level II The notion of hierarchy and abstraction in computing, including 
information high-level languages, translation (compilers, interpreters, linking),

machine languages, instruction sets, and logic circuits

The connection between elements of mathematics and computer
science, including binary numbers, logic, sets, and functions

Level III Topics in discrete mathematics: logic, functions, sets, and their
relation to computer science

Information organization Level II The notion of hierarchy and abstraction in computing, including
high-level languages, translation (compilers, interpreters, linking),
machine languages, instruction sets, and logic circuits

The connection between elements of mathematics and computer
science, including binary numbers, logic, sets, and functions

Level III Levels of language, software, and translation: characteristics of
compilers, operating systems, and networks

describes the distinctions between computer
science and information technology and between
information literacy and information fluency.

An examination of the learning outcomes included in
the Model Curriculum for K–12 Computer Science

Education also indicates the extent to which this
curriculum framework complies with the essential
concepts of information fluency as set forth in the
Being Fluent with Information Technology report. The

following table illustrates coverage of these concepts
in the Level II Computer Science in the Modern World

course, and the Level III Computer Science as
Analysis and Design course. (The Level I Foundations

of Computing course is not included in this table
because this is a pre-high school course. The Level IV
Topics in Computer Science course is excluded from 
this table because this course can take many forms,
including an AP Computer Science course, or a
course geared toward professional certification.)



70

Modeling and abstraction Level II Managing complexity through top-down and object-oriented design

Procedures and parameters

Level III Methods (functions) and parameters

Recursion

Objects and classes (arrays, vectors, stacks, queues, and their uses
in problem-solving)

Event-driven and interactive programming

Algorithmic thinking and Level II Examples (like programming a telephone answering system) that 
programming identify the broad interdisciplinary utility of computers and

algorithmic problem solving in the modern world

The basic steps in algorithmic problem-solving (problem statement
and exploration, examination of sample instances, design, program
coding, testing and verification)

Sequences, conditionals, and loops (iteration)

Level III Fundamental ideas about the process of program design and
problem solving, including style, abstraction, and initial discussions
of correctness and efficiency as part of the software design process.

Principles of software engineering: software projects, teams, the
software life cycle

Universality Level II The notion of computers as models of intelligent behavior (as found
in robot motion, speech and language understanding, and computer
vision), and what distinguishes humans from machines

Limitations of information Level III The limits of computing: what is a computationally “hard” problem?
technology (e.g., ocean modeling, air traffic control, gene mapping) and 

what kinds of problems are computationally unsolvable (e.g., the
halting problem)

Societal impact of Level II Ethical issues that relate to computers and networks (including 
information and security, privacy, intellectual property, the benefits and drawbacks 
information technology of public domain software, and the reliability of information on the

Internet), and the positive and negative impact of technology on
human culture

Identification of different careers in computing (e.g., information
technology specialist, Web page designer, systems analyst,
programmer, CIO)

Level III Social issues: software as intellectual property, professional practice

Careers in computing: computer scientist, computer engineer,
software engineer, information technologist.



While it may be one among many possible options, the
Model Curriculum for K–12 Computer Science Education

serves as an excellent example of a comprehensive and
yet flexible high school computer science curriculum
framework. Designed to reflect both the breadth of the
discipline and the key knowledge needs of today’s
students, it allows schools to focus on core knowledge
while at the same time incorporating local needs and
existing program strengths.

4.2 HOW DO WE ENSURE
SUCCESSFUL
IMPLEMENTATION?

The extent to which a curriculum meets students’
learning needs is a key element in decisions about
what to teach. The curriculum itself, however, will
have no real effects on student learning outcomes
unless it is broadly and successfully implemented at
the classroom level. As demonstrated in Chapter
Three, however, the successful implementation of a
high school computer science curriculum is a
complex process requiring effort and buy-in at every
level of the educational system. This section explores
the key factors for effective curriculum
implementation and provides practical strategies for
success in three key areas: policy effectiveness,
theoretical effectiveness, and empirical validity.

4.2.1 Policy Effectiveness

The sad reality is that very few educational policy
initiatives effectively generate systemic change
simply because there is a fundamental disconnect
between those responsible for creating the policies
and those responsible for making them happen.
Often this gap results from a lack of understanding of
the educational environment, students, and teachers.
Sometimes it is the result of arrogance. It is always a
precursor to failure.

Here, however, are five essential elements that
will help ensure that a new or revised curriculum is

translated into classroom reality in a way that truly
benefits students and the broader society.

1 Support: The new curriculum initiative must
have both top-down and bottom-up support.
Whether it is driven by the federal or state
government (top-down), by school district, or
by teachers and parents (bottom-up) everyone
must agree that change is necessary and
everyone must be committed to making it
happen. This also means that major change
agents must be in place at all of these levels to
ensure a continued level of enthusiasm and
support.

2 Stakeholder Buy-in: External groups must have a
role in the curriculum review process if they are
to support the implementation process. This
means that groups such as teachers unions,
professional associations, parent councils, post-
secondary institutions, and business and
industry should be invited to take part in the
review process and to help create consensus
that the new curriculum is in concert with
larger educational, social, and economic goals.

3 Resources: Schools, teachers, and students must
be provided with the resources required to
successfully implement the new curriculum.
These resources include access to the
appropriate hardware and software (it does not
always have to be the latest and the greatest but
it has to work) and learning resources (e.g.
textbooks, reference resources, and
manipulatives).

4 Professional Development: Teachers must receive
the training necessary to allow them to master
not only the content of the new curriculum but
effective teaching strategies for delivering that
content to students.

5 Timeframe: Often governments or individuals
try to rush the implementation process, either
because they do not understand how long it
takes to achieve real systemic change, or because
the appearance of doing something is more
important than actually doing it right. Every
step toward the successful implementation of a
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new curriculum takes time. Giving less time
than truly needed to accomplish any step along
the path from vision to reality can condemn the
entire process to failure.

4.2.2 Theoretical Effectiveness

Attempts to implement new curricula or simply
improve existing ones also fail because the goals are
not clear or the strategies used to achieve them are
insufficient or inappropriate. As the comments of the
international computer science curriculum experts in
Chapter Three demonstrate, the problem often lies in
the fact that the curriculum developers were
attempting to achieve multiple and conflicting goals.
For example, attempts to increase the academic rigor
of a course or subject area may actually discourage
students (especially those who might shy away from
a program such as computer science) from pursuing
studies in this area, thus undercutting the goal of
making the curriculum more equitable. Curriculum
designers must also deal with the trade-off between
flexibility and the realities of school scheduling. For
example, while a curriculum designed to include a
broad array of possible courses may appear to offer
students increased opportunities to explore their
interests and abilities, in reality, it could ensure that
no courses are offered simply because there are not
enough students in any one course in a given school
to allow that school to staff it. 

Here, therefore, are three suggestions to help
ensure your new or revised computer science
curriculum will be theoretically effective.

1 Be explicit: Begin the curriculum development
process with a clear statement of the intended
outcomes of the curriculum.

2 Examine all assumptions: Do not assume that a
given strategy will achieve one or more
learning outcomes. Also, do not assume that
because two goals are worth achieving that they
will not somehow be in conflict with each other
at the implementation level.

3 Do a school-level reality check: Ensure that those

who will ultimately be responsible for
implementing a new or revised curriculum
have an opportunity to provide feedback on the
model before the content (i.e., specific learning
outcomes and strategies) is written. Once the
content has been written, ask for their feedback
again and make this feedback a driving force of
the pre-implementation revision.

4.2.3 Empirical Validity

One of the most surprising things the research review
reveals, is how little effort is put into measuring the
ultimate, long-term success of a curriculum initiative.
With the exception of the government of Israel, the
research provides little indication that other
governments have funded research to determine if a
new computing curriculum for high schools has
actually achieved its goals. This should not be
surprising since the original curriculum models for
most of the curricula that have been developed to
date were not grounded in existing educational
research. This lack of attention to research may
explain why so few educational change initiatives
achieve their stated goals and why so many teachers
respond to announcements on impending changes
with extreme skepticism. 

Here, therefore, are three suggestions to help
ensure your new or revised computer science
curriculum will be empirically valid.

• Do the research first: Ensure that the curriculum
model and content are solidly ground in the
current body of international educational
research. The research can be very helpful in
pointing out mistakes there is no need to repeat.

• Plan for the long-term: Ensure that everyone
involved in the project at every level of the
educational system understands that systemic
changes will take time and will require a long-
term commitment of attention and resources.

• Measure your success and correct when

necessary: Establish short-term and long-term
metrics for success and perform appropriate
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quantitative and qualitative studies to
determine if they have been met. If early results
show less success than hoped for, do not
hesitate to make appropriate adjustments.

4.2.4 Example of a Comprehensive
Implementation Plan

Recommendations regarding successful curriculum
implementation can sometimes be clearer when
examined in relation to an actual project that attempts
to put them into practice. This section examines one
particular project involving administrators, teachers,
and students in the Los Angeles Unified School
District (LAUSD). 

The Computer Science Equity Collaborative
(CSEC) was initiated by a National Science
Foundation-funded research team and was formed to
address disparities in representation in high school
computer science along lines of race, social class, and
gender. Jointly sponsored by UCLA’s Graduate
School of Education, UCLA’s Henry Samueli School
of Engineering and Applied Sciences, and the
LAUSD, CSEC began with a three-year, multi-site,
longitudinal study of the computer science pipeline
in LAUSD high schools. This study revealed serious
problems in the district’s computer science education
program, including the lack of a teacher computer
science pipeline, a dearth of computing resources for
teachers and students, and a general sense of
misunderstanding of the computer science discipline
by students, teachers, counselors, and administrators.
This research led to the creation of a partnership
focused on addressing these issues through
professional development for teachers and increased
support services for students studying Advanced
Placement Computer Science (AP CS).

• Support: The partnership between the UCLA
Graduate School of Education researchers, the
post-secondary engineering faculty, and the
LAUSD representatives ensured that teachers
and students would be provided with many
different kinds of support from several sources.

This support included both pedagogical and
technical support.

• Stakeholder Buy-in: The CSEC collaborative
allowed for multiple roles for stakeholders that
encompassed knowledge of computer science,
insight on the instructional design leadership
and vision, and an essential awareness of the
complexities of race and gender in computing.
The Dean of the School of Engineering provided
overall support for diversifying the high school
computer science pipeline and articulated the
connections between this high school program
and his own goals for a more culturally diverse
enrollment in computer science at UCLA.
LAUSD’s Director of Science, Todd Ullah,
provided passionate leadership for the project at
the district level with his vision and his
willingness to create change and improve
computer science education in the district. John
Kwan, of LAUSD’s Instructional Technology
Division provided much-needed planning,
implementation, and coordination between the
district, teachers, and schools. School
administrators also provided assistance by
identifying potential AP CS teachers. 

• Resources: The Graduate School of Education
provided the foundational research and
contributed to all areas of curriculum and teacher
support. Under the direction of Jane Margolis and
Joanna Goode, researchers from the Graduate
School of Education provided the facilitation
between LAUSD and the Engineering School.
They provided the research-based evidence to
drive the reform effort and worked with both
institutions to co-develop a model of change that
would increase representation in computer
science classes for females and students of color
while also accounting for the complex ways in
which schools operate. Margolis, who was the
Principal Investigator of the three-year research
project, carried out much of the coordinating and
publicity work, including serving as lead grant
writer, attending conferences, and making
industry connections. Joanna Goode coordinated
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and taught at the monthly AP Readiness program
and served as lead instructor and planner in the
professional development program. She also
developed the curricular materials, coordinated
with teachers via email, provided instructional
materials, and administered evaluations. After the
initial summer institute, follow-up research
revealed that teachers found the existing district
computer science curriculum to be a poor match
for the needs of students in learning computer
science and preparing for the AP exam. Armed
with qualitative data demonstrating the
inadequacy of learning resources, Goode
surveyed available introductory computer science
curriculum and recommended an AP-specific
computer science curriculum for use by LAUSD
teachers. With the approval the District, LAUSD
and UCLA shared the cost of this curriculum. 

• The School of Engineering provided
assistance with logistical issues, such as
providing lab space and classrooms for high
school teachers and students. A lecturer from the
School of Engineering also served as a primary
instructor for both the summer professional
development program and monthly AP
Readiness sessions for teachers and students.

• LAUSD provided district-level coordination
including: identifying and recruiting teachers for
the program, enrolling teachers, providing
substitute teachers, and providing transportation.
The school district also supported the addition of
AP computer science courses to schools’ master
schedules. District staff also took the lead for the
logistical and curricular planning of the summer
professional development program. 

• Professional Development: CSEC began
preparing teachers to teach the AP CS course by
providing a summer program, but soon
determined that one or two summer weeks was
not sufficient. As a result, they then began a
monthly AP Readiness program to support the
teachers’ ongoing knowledge and pedagogy
development throughout the year. The CSEC
team also worked with the teachers, rather than

just trying to “train” them. They maintained
flexibility in program scheduling to
accommodate emerging issues, concerns, and
misunderstandings. They also made a point of
acknowledging many of the teachers in the
room as experts—respecting them while also
providing a safe space for new AP CS teachers
to wrestle with computer science concepts.
Finally, they helped build leadership within the
teaching community by allowing teachers to
take on new roles in helping other teachers
while improving their own teaching practices.

• Timeframe: The project’s three-year research
program exposed many of the underlying issues
of access, equity, and the rigor of computer
science in LA schools and provided a plan for
how to address them. Pending new funding, the
researchers predict that the project will be
completed in 2009.

Several additional elements of the program helped to
ensure that it met the criteria for empirical validity.

• Do the research first: All of the interventions
proposed in this program followed from the
extensive three-year study preceding project
implementation. The project also involved
specialists from several disciplines to ensure
that several different kinds of expertise would
be brought to help interpret the research and to
solve the problems that the data uncovered.

• Plan for the long-term: All of the partners in the
project were committed to maintaining the
implementation plan. Project organizers admit,
however, that they have concerns about the
sustainability of this effort and the pressure of
outside forces that have the potential to
marginalize the importance of computer
science. They note that the national educational
dialogue (and policy) now is not about access,
rigor, deep thinking, scientific reasoning, or
inquiry. Rather, it is about failing schools, a
narrow focus on literacy and numeracy (as
determined by testable topics) accountability,
and so on. In this climate. it is difficult to
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maintain computer science as a vital part of the
K–12 educational system.

• Measure your success and correct when

necessary: The CSEC team is using several data
points to evaluate the success of the project.
They are collecting and analyzing data on
annual computer science enrollment numbers
(e.g., how has enrollment changed) by overall
courses, overall enrollment, and also by gender
and race. They also collected data at each
meeting with teachers and students to examine
the change in their understandings and practices
over time. They continue to conduct research to
determine teacher professional development and
involvement, and if the programs are
sustainable after the research grants expire. 

The CSEC project was designed to ensure sustainability
by involving multiple levels of stakeholder buy-in and
support. Unlike many efforts to improve K–12
computing education, this project provides a relevant
example of a change initiative that is solidly grounded
in research (a three-year study) and clear in its focus
and objectives (to improve equity of access by
traditionally underrepresented students of color and
females to computer science education by increasing
the opportunities for students to take the AP CS
course). The CSEC project leaders were also careful to
acknowledge and include teachers, to recognize and
support their craft knowledge, to encourage and
develop their leadership, and to support their ongoing
development as exemplary educators.

4.3 HOW DO WE IMPROVE HOW
TEACHERS TEACH?

One of the challenges decision-makers face when
attempting to improve existing curricula or introduce
new ones is determining the extent to which they can
and should also attempt to shape how teachers teach.
Pedagogy, however, is a complex phenomenon, both
science and art, and as such it has proven almost
impossible to quantify or replicate.

4.3.1 Five Qualities of Exemplary
Teachers

Although we do not currently have a guaranteed
process for ensuring that all teachers are great
teachers, research into computer science education
has shown that truly effective teachers demonstrate
several key qualities that help them engage and teach
students more effectively. Here are five key qualities
of exemplary high school computer science teachers.

• Problem-solving approach: Exemplary computer
science teachers use a problem-solving
approach that allows students to examine
problems from different angles and perspectives
and formulate solutions.

• Real-world focus: Exemplary computer science
teachers motivate students by having them
create real-world artifacts with an intended
audience and encouraging them to understand
the essential link between the problem, the user,
and the solution

• Explicit emphasis on design: Exemplary
computer science teachers explicitly teach and
use the software design process, ensuring that
students master the steps involved in designing,
creating, testing, and debugging software.

• A welcoming environment: Exemplary computer
science teachers make their classroom a welcoming
environment for all students (especially young
women and minority students) and find creative
ways to engage all students with examples and
exercises that are relevant to their lives.

• Modeling life-long learning: Exemplary computer
science teachers serve as role models for their
students by continuing to enhance their own
teaching and technology skills and by exploring
new ideas and new technologies. 

4.3.2 Seven Systemic Changes
Required to Improve Teaching

For teachers, the challenge of becoming and
remaining exemplary educators is often exacerbated
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by a system of pre-service education and teacher
certification that makes it so difficult to become a
computer science teacher that it actually discourages
highly qualified individuals from applying in the first
place. In many states, there is no pre-service program
that specifically prepares high school computer
science teachers. In many school districts, there are no
core knowledge guidelines for computer science
teachers. In many schools, teachers are expected to
take on teaching responsibilities in subject areas for
which they have little or no preparation (Computer
Science Teachers Association, 2005). 

The responsibility for ensuring that all high
school computer science teachers are knowledgeable,
well prepared, and continuously engaged must be
shared at all levels of the education system. It
requires a profound commitment, a coordinated set
of policies, and the allocation of appropriate and
adequate resources. Here is a list of seven policy
changes that would substantially improve computer
science education in the United States.

• Mastery of core knowledge: High school computer
science teachers should be required to have
completed an undergraduate degree in computer
science or a comparable degree program.

• Standardized pre-service programs: All teacher
preparation programs should be required to
adhere to the National Council for Accreditation
of Teacher Education (NCATE) standards for
high school computer science educators.

• Certification standards: State teacher certification
requirements for high school computer science
teachers should adhere to a consistent (and
enforced) national standard that would allow for
greater clarity and mobility from state to state.

• Professional development: School districts should
provide regular professional development for
computer science teachers to allow them to
keep their knowledge and skills current. 

• Focus on teaching: School districts should employ
a sufficient number of technical specialists with
responsibility to ensure that computer hardware,
networks, and software is maintained, freeing
teachers to concentrate on their teaching.

• Competitive compensation: Salaries for computer
science teachers should be commensurate with
those offered in industry to ensure that the best
possible candidates prepare and apply for
teaching positions.

• Professional affiliation: All high school,
computer science teachers should be members
of professional associations that support their
discipline-based knowledge and provide a
teaching community that mentors and
celebrates them.

4.4 CALL TO ACTION

Computer science has increasingly become a core
knowledge requirement for all educated citizens. Like
the more traditional sciences, it provides an essential
understanding of the world around us. Even if we are
not aware of it, computers are part of almost every
aspect of our lives (e.g., banking, health care,
shopping, and travel) and it is vital that we
understand their capabilities and their limitations. All
students need a basic level of knowledge about how
to use computers safely and securely. Computer
science also teaches students how to be innovative
and solve problems and, in this way, helps them be
better prepared for college and careers. 

There is also a broader national interest at stake.
U.S. government labor forecasts clearly indicate that
we are not producing enough computer science
graduates to meet the needs of industry or to compete
in an increasingly global economy (Bureau of Labor
Statistics, 2005). In addition, fewer college students
are enrolling in computer science courses, and fewer
graduates with computer science degrees are going on
to earn their PhDs (Taulbee, 2003). If we do not begin
to address these pipeline issues immediately and at
the earliest possible educational level, our ability to
compete in the global economy and to participate in
the great scientific and industrial developments of this
new century will continue to diminish. 

Addressing these issues is not just a school issue,
it is an issue that can only be addressed with vision,
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action, and commitment at all levels of the political
and educational systems. The following sections
provide suggestions for ways in which we can work
together to achieve long-term, systemic
improvements to computer science education. These
include federal government policy makers, state
government policy makers, school district policy
makers, school principals, teachers, university and
college faculty, and business and industry leaders.

4.4.1 Federal Government Policy
Makers

Here are 10 ways federal-level policy makers and
leaders can improve high school computer science
education:

• Talk about the importance of computer science
when you are speaking at events and with other
federal leaders.

• Include computer science in the 21st century
skills conversation. When people talk about the
importance of Science, Technology, Engineering
and Math (commonly referred to as “STEM”
skills), emphasize and clarify the “T.” Making
the most of technology education is not just
wiring schools or teaching students to use
computers. That is only half the battle.

• Insist that funded STEM initiatives include
requirements to address issues in K–12
computer science education.

• Support new initiatives that provide funding for
research that will help improve computer
science education.

• Support new initiatives that provide funding for
computer science teacher training.

• Put forward or support an initiative that
encourages states to rationalize their computer
science teacher certification requirements. This
will encourage the development of a larger,
stronger, and better-qualified educational
workforce.

• Put forward or support an initiative that
encourages states to ensure that computer

science teachers have computer science
qualifications.

• Make sure conversations about the
competitiveness of the United States encourage
students to go into computer science careers
and explain why it is so important for our
nation to be a leader in this field.

• Talk to people in your community about
outsourcing technology jobs. Explain how this
trend can be combated by focusing on the
education of future workers in our own country.

• Help improve the public’s understanding of the
many exciting, varied, and cutting edge jobs
available in the field of computer science.

4.4.2 State Government Policy Makers

Here are 10 ways state-level policy makers and leaders
can improve high school computer science education:

• Ask what local school authorities are doing to
ensure students are learning what they need to
get the jobs of the future and require all high
school students to take at least one computer
science course.

• Identify how much is being spent on computer
science education in your state and determine if
there have been cutbacks on computer science
education. 

• Promote funding for computer science course
equipment and materials.

• Ensure that schools of education and on-the-job
professional development opportunities are
adequately training computer science teachers
in your area.

• Ensure that certifications requirements for
computer science teachers guarantee that
teachers have the appropriate knowledge base
to teach in this discipline.

• Provide programs for individuals transitioning
from the information technology industry to
education that offer an opportunity to acquire
the educational knowledge and training needed
to become an exemplary teacher.
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• Talk to your local leaders and community
members about what they see as future
computer science job needs.

• Encourage businesses to provide support and
mentoring opportunities for schools. Explain
the importance of business’ role in the
education of future workers.

• Talk to people in your community about
outsourcing technology jobs. Explain how this
trend can be combated by focusing on the
education of future workers in your state.

• Point community members to the resources of
nonprofit groups, such as CSTA, that provide
curriculum models and other resources to
support computer science teachers.

4.4.3 School District Policy Makers

Here are 10 ways school district policy makers,
curriculum policy leaders, and instructional
technology specialists can improve high school
computer science education:

• Identify how much is being spent on computer
science education in your school district and
determine if there have been cutbacks on
computer science education. 

• Promote funding for computer science courses,
equipment, and materials.

• Put policies in place to ensure that only
qualified teachers are teaching computer science
courses and enforce those policies.

• Review your current computer science
curriculum to determine whether it provides
sufficient opportunities for students to gain the
knowledge and skills they need to succeed in an
increasingly computerized world.

• Review your current computer science curriculum
to determine whether it is both academically
rigorous and welcoming to all students.

• Create and support professional development
opportunities for computer science teachers to
ensure that their technical and pedagogical
skills keep pace with change.

• Help teachers keep their focus on teaching by
providing technical support staff who are
responsible for maintaining and upgrading the
hardware and software.

• Provide opportunities for computer science
teachers across the district to meet with and
mentor each other.

• Work with school counselors to ensure that they
are providing students with accurate and
appropriate information about career
opportunities in computing and the educational
pathways students must take to achieve their
long-term goals. 

• Point community members to the resources of
nonprofit groups, such as CSTA, that provide
curriculum models and other resources to
support computer science teachers.

4.4.4 School Principals

Here are 10 ways school principals can improve high
school computer science education:

• Identify how much is being spent on computer
science education in your school and determine
if there have been cutbacks on computer science
education. 

• Promote funding for computer science courses,
equipment, and materials.

• Ensure that only qualified teachers are teaching
computer science courses.

• Review your current computer science
curriculum to determine whether it provides
sufficient opportunities for students to gain the
knowledge and skills they need to succeed in an
increasingly computerized world.

• Work with your computer science teachers to
ensure that their courses are both academically
rigorous and welcoming to all students.

• Create and support professional development
opportunities that help computer science
teachers ensure that their technical and
pedagogical skills keep pace with student
learning needs.
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• Help teachers keep their focus on teaching by
providing technical support staff who are
responsible for maintaining and upgrading both
the hardware and software.

• Provide opportunities for computer science
teachers to meet with colleagues from across the
district, the state, and the nation.

• Work with school counselors to ensure they are
providing students with accurate and
appropriate information about career
opportunities in computing and the educational
pathways students must take to achieve their
long-term goals.

• Point teachers to the resources of nonprofit
groups, such as CSTA, that provide curriculum
models and other resources to support
computer science teachers.

4.4.5 Teachers

Here are 10 ways teachers can improve high school
computer science education:

• Review your current computer science
curriculum to determine whether it provides
sufficient opportunities for students to gain the
knowledge and skills they need to succeed in an
increasingly computerized world.

• Ensure that your courses are both academically
rigorous and welcoming to all students.

• Model life-long learning to your students by
seeking out and taking advantage of relevant
professional development opportunities.

• Lobby for funding for computer science
courses, equipment, and materials.

• Lobby for your program by speaking to parent
groups, other teachers, and individual students
about computer science.

• Help dispel the myth that there are no job
opportunities in computer science. There are
many exciting and cutting-edge jobs available.

• Work with school counselors to ensure that they
are providing your students with accurate and
appropriate information about career

opportunities in computing and the educational
pathways students must take to achieve their
long-term goals.

• Create opportunities to meet with computer
science teachers from across the district so that
you can share resources and strategies.

• Become a member of a professional association,
such as CSTA, that provides curriculum models,
support materials, mentoring, and community
and that helps you continue to develop your
teaching and leadership skills.

4.4.6 University and College Faculty

Here are 10 ways university and college faculty in
computing and engineering programs and in schools
of education can improve high school computer
science education:

• Support high school computer science
education by requiring students entering your
university to have taken at least one high school
computer science course.

• Create different entry points into your programs
for students with differing levels of high school
computing experience.

• Provide local high school teachers and students
with opportunities to interact with your faculty,
graduate students, and undergraduate students
by inviting them to visit your institution or
offering to send faculty and students to speak at
local schools.

• Provide teachers and students with detailed
information about your computer science and
engineering programs and the skills incoming
students require to ensure their success at your
institution.

• Create opportunities for your female and
minority students to mentor high school
students whose life experiences are similar to
their own.

• Create and support professional development
opportunities that help computer science
teachers ensure that their technical and
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pedagogical skills keep pace with change.
• Provide teachers, students, and school

counselors with information about careers in
computer science and the higher education
pathways required for students to meet their
long-term goals.

• Ensure that schools of education are adequately
preparing pre-service teachers to teach
computer science.

• Help teachers purchase new technology
resources by working with them to develop
grant applications.

• Ensure that your faculty are aware of the Model

Curriculum for K–12 Computer Science Education

and that they play an active role in professional
organizations such as CSTA that support
computer science teachers.

4.4.7 Business and Industry Leaders

Here are 10 ways business and industry leaders can
improve high school computer science education:

• Make sure conversations about the
competitiveness of the United States encourage
students to go into computer science careers
and explain why it is so important for our
nation to be a leader in this field.

• Help improve the public’s understanding of the
many exciting, varied, and cutting edge jobs
available in the field of computer science.

• Include computer science in the 21st century
skills conversation. When people talk about 
the importance of Science, Technology,
Engineering and Math (commonly referred to 
as “STEM” skills), emphasize and clarify the
“T.” Making the most of technology education
is not just wiring schools or teaching students 
to use computer applications. That is only half
the battle.

• Talk to people in your community about
outsourcing technology jobs. Explain how this
trend can be combated by focusing on the
education of future workers in our own country.

• Build partnerships with schools that promote
and demonstrate excellence in computer science
education.

• Support the national implementation of
curriculum standards such as the ACM Model

Curriculum for K–12 Computer Science and the

National Educational Technology Standards.

• Require that all computer education projects
receiving funding from your organization
demonstrate consistency with these national
standards.

• Fund new research initiatives that will help
improve computer science education.

• Fund new teacher professional development
initiatives for computer science teachers.

• Support an initiative that encourages states to
ensure that computer science teachers have
computer science qualifications.

4.5 CONCLUSION

Our goal for this chapter was to provide practical
solutions for a complex problem, and while we
cannot claim that any of our lists are exhaustive, they
do provide a powerful set of suggestions that, if put
into practice, will significantly improve computer
science education in high schools. The reality is that
we are at somewhat of a crossroads. We know that
the world continues to change and that many of the
changes we face are related to the burgeoning
possibilities and consequences of our growing
dependence upon and interrelation with computing
technology. Maintaining our ability to meet the
challenges of the present and future require us to
think very carefully about the kind of knowledge our
students need to grow and to succeed. Supporting
and improving high school computer science
education and ensuring that the opportunities it
provides are open to all students requires a multi-
level commitment. It is a commitment we must make
if our schools are to continue to provide relevant
education and our society is to continue to solve
problems on the cutting edge of innovation.
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WHAT IS THE COMPUTER SCIENCE TEACHERS ASSOCIATION (CSTA)? 

The Computer Science Teachers Association, a limited liability company under the auspices of ACM, has been
organized to serve as a focal point for addressing several serious (crisis level) issues in K–12 computer science
education, including:

• Lack of administrative, curricular, funding, professional development and leadership support for teachers
• Lack of standardized curriculum
• Lack of understanding of the discipline and its place in the curriculum
• Lack of opportunities for teachers to develop their skills and interests
• The above issues result in:
• A profound sense of isolation, and
• Dropping enrollment in college level computer science programs

There are other organizations that address use of technology across the curriculum, but only CSTA speaks
directly and passionately for high school computer science.

OUR MISSION
CSTA is a membership organization that supports and promotes the teaching of computer science and other
computing disciplines at the K–12 level by providing opportunities for teachers and students to better
understand the computing disciplines and to more successfully prepare themselves to teach and to learn.

OUR GOALS
CSTA's organizational and educational goals include:

• Helping to build a strong community of CS educators who share their knowledge
• Providing teachers with opportunities for high quality professional development
• Advocating at all levels for a comprehensive computer science curricula
• Supporting projects that communicate the excitement of CS to students and improve their understanding

of the opportunities it provides
• Collecting and disseminating research about computer science education
• Providing policy recommendations to support CS in the high school curriculum, 
• Raising awareness that computer science educators are highly qualified professionals with skills that

enrich the educational experience of their students

OUR SCOPE
The scope of the organization includes:

• High school (all aspects of computer science education)
• Elementary and middle school (introducing problem solving and algorithmic thinking)
• College/university (to establish better transition for high school programs and provide a greater 

level of support to high school teachers)
• Business and industry (supporting computer science education and teachers)

WHO SHOULD JOIN?
All High School & Middle School Computer Science Teachers
All K-12 Computer Applications Teachers
All individuals interested (and passionate) about K–12 CS Education
The first year of your CSTA membership is FREE!

JOIN US VIA…
Web: http://csta.acm.org/
Phone: 800.342.6626
Email: cstahelp@acm.org

The Following Companies are Gold Level Sponsors of CSTA
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