
User’s Guide for
Quantum ESPRESSO (v.5.4)

Contents

1 Introduction 1
1.1 People . 3
1.2 Contacts . 4
1.3 Guidelines for posting to the mailing list . 4
1.4 Terms of use . 5

2 Installation 5
2.1 Download . 5
2.2 Prerequisites . 6
2.3 configure . 7

2.3.1 Manual configuration . 9
2.4 Libraries . 10
2.5 Compilation . 11
2.6 Running tests and examples . 12
2.7 Installation tricks and problems . 14

2.7.1 All architectures . 14
2.7.2 Intel Xeon Phi . 15
2.7.3 Cray machines . 15
2.7.4 IBM AIX . 16
2.7.5 IBM BlueGene . 16
2.7.6 Linux PC . 16
2.7.7 Linux PC clusters with MPI . 18
2.7.8 Mac OS . 19

3 Parallelism 21
3.1 Understanding Parallelism . 21
3.2 Running on parallel machines . 21
3.3 Parallelization levels . 22

3.3.1 Understanding parallel I/O . 24
3.4 Tricks and problems . 24

1

1 Introduction

This guide gives a general overview of the contents and of the installation of Quantum
ESPRESSO (opEn-Source Package for Research in Electronic Structure, Simulation, and Op-
timization), version 5.4.

The Quantum ESPRESSO distribution contains the core packages PWscf (Plane-Wave
Self-Consistent Field) and CP (Car-Parrinello) for the calculation of electronic-structure prop-
erties within Density-Functional Theory (DFT), using a Plane-Wave (PW) basis set and pseu-
dopotentials. It also includes other packages for more specialized calculations:

• PWneb: energy barriers and reaction pathways through the Nudged Elastic Band (NEB)
method.

• PHonon: vibrational properties with Density-Functional Perturbation Theory.

• PostProc: codes and utilities for data postprocessing.

• PWcond: ballistic conductance.

• XSPECTRA: K-, L1-, L2,3-edge X-ray absorption spectra.

• TD-DFPT: spectra from Time-Dependent Density-Functional Perturbation Theory.

The following auxiliary packages are included as well:

• PWgui: a Graphical User Interface, producing input data files for PWscf and some PostProc
codes.

• atomic: atomic calculations and pseudopotential generation.

• QHA: utilities for the calculation of projected density of states (PDOS) and of the free
energy in the Quasi-Harmonic Approximation (to be used in conjunction with PHonon).

• PlotPhon: phonon dispersion plotting utility (to be used in conjunction with PHonon).

A copy of required external libraries is also included. Finally, several additional packages that
exploit data produced by Quantum ESPRESSO or patch some Quantum ESPRESSO
routines can be installed as plug-ins:

• Wannier90: maximally localized Wannier functions.

• WanT: quantum transport properties with Wannier functions.

• YAMBO: electronic excitations within Many-Body Perturbation Theory: GW and Bethe-
Salpeter equation.

• PLUMED: calculation of free-energy surface through metadynamics.

• GIPAW (Gauge-Independent Projector Augmented Waves): NMR chemical shifts and EPR
g-tensor.

• GWL: electronic excitations within GW Approximation.

• WEST: Many-body perturbation corrections for standard DFT.

2

Documentation on single packages can be found in the Doc/ or doc/ directory of each package.
A detailed description of input data is available for most packages in files INPUT *.txt and
INPUT *.html.

The Quantum ESPRESSO codes work on many different types of Unix machines, in-
cluding parallel machines using both OpenMP and MPI (Message Passing Interface) and GPU-
accelerated machines. Quantum ESPRESSO also runs on Mac OS X and MS-Windows
machines: see section 2.2.

Further documentation, beyond what is provided in this guide, can be found in:

• the Doc/ directory of the Quantum ESPRESSO distribution;

• the Quantum ESPRESSO web site www.quantum-espresso.org;

• the archives of the mailing list: See section 1.2, “Contacts”, for more info.

People who want to contribute to Quantum ESPRESSO should read the Developer Manual:
Doc/developer man.pdf.

This guide does not explain the basic Unix concepts (shell, execution path, directories etc.)
and utilities needed to run Quantum ESPRESSO; it does not explain either solid state
physics and its computational methods. If you want to learn the latter, you should first read a
good textbook, such as e.g. the book by Richard Martin: Electronic Structure: Basic Theory
and Practical Methods, Cambridge University Press (2004); or: Density functional theory: a
practical introduction, D. S. Sholl, J. A. Steckel (Wiley, 2009); or Electronic Structure Calcula-
tions for Solids and Molecules: Theory and Computational Methods, J. Kohanoff (Cambridge
University Press, 2006). Then you should consult the documentation of the package you want
to use for more specific references.

All trademarks mentioned in this guide belong to their respective owners.

1.1 People

The maintenance and further development of the Quantum ESPRESSO distribution is pro-
moted by the Quantum ESPRESSO Foundation under the coordination of Paolo Giannozzi
(Univ.Udine, Italy) and Layla Martin-Samos (Univ.Nova Gorica) with the strong support of
the CINECA National Supercomputing Center in Bologna under the responsibility of Carlo
Cavazzoni.

Contributors to Quantum ESPRESSO, beyond the authors of the paper mentioned in
Sect.1.4, include:

• Fabio Affinito (CINECA) for ELPA support, for contributions to the FFT library, and
for various parallelization improvements;

• Sebastiano Caravati for direct support of GTH pseudopotentials in analytical form, San-
tana Saha and Stefan Goedecker (Basel U.) for improved UPF converter of newer GTH
pseudopotentials;

• Axel Kohlmeyer for libraries and utilities to call Quantum ESPRESSO from external
codes (see the COUPLE sub-directory), made the parallelization more modular and usable
by external codes;

• Èric Germaneau for TB09 meta-GGA functional, using libxc;

3

• Yves Ferro (Univ. Provence) for SOGGA and M06L functionals;

• Robert DiStasio et al. (Princeton) for Tkatchenko-Scheffler vdW corrections;

• Ikutaro Hamada (NIMS, Japan) for OPTB86B-vdW and REV-vdW-DF2 functionals;

• Timo Thonhauser (WFU) for vdW-DF and variants, including the spin development
svdW-DF;

• Daniel Forrer (Padua Univ.) and Michele Pavone (Naples Univ. Federico II) for disper-
sions interaction in the framework of DFT-D;

• Filippo Spiga (University of Cambridge, UK) for mixed MPI-OpenMP parallelization;

• Costas Bekas and Alessandro Curioni (IBM Zurich) for the initial BlueGene porting.

Contributors to specific Quantum ESPRESSO packages are acknowledged in the docu-
mentation of each package.

An alphabetic list of further contributors who answered questions on the mailing list, found
bugs, helped in porting to new architectures, wrote some code, contributed in some way or
another at some stage, follows:

Åke Sandgren, Audrius Alkauskas, Alain Allouche, Francesco Antoniella, Uli As-
chauer, Francesca Baletto, Gerardo Ballabio, Mauro Boero, Pietro Bonfà, Claudia
Bungaro, Paolo Cazzato, Gabriele Cipriani, Jiayu Dai, Cesar Da Silva, Alberto De-
bernardi, Gernot Deinzer, Alin Marin Elena, Marco Govoni, Thomas Gruber, Mar-
tin Hilgeman, Yosuke Kanai, Konstantin Kudin, Nicolas Lacorne, Stephane Lefranc,
Sergey Lisenkov, Kurt Maeder, Andrea Marini, Giuseppe Mattioli, Nicolas Mounet,
William Parker, Pasquale Pavone, Samuel Poncé, Mickael Profeta, Guido Roma,
Kurt Stokbro, David Strubbe, Sylvie Stucki, Paul Tangney, Pascal Thibaudeau,
Antonio Tilocca, Jaro Tobik, Malgorzata Wierzbowska, Vittorio Zecca, Silviu Zil-
berman, Federico Zipoli,

and let us apologize to everybody we have forgotten.

1.2 Contacts

The web site for Quantum ESPRESSO is http://www.quantum-espresso.org/. Releases
and patches can be downloaded from this site or following the links contained in it. The main en-
try point for developers is the QE-FORGE web site: http://qe-forge.org/, and in particular
the page dedicated to the Quantum ESPRESSO project: qe-forge.org/gf/project/q-e/.

The recommended place where to ask questions about installation and usage of Quantum
ESPRESSO, and to report problems, is the pw forum mailing list: pw forum@pwscf.org.
Here you can obtain help from the developers and from knowledgeable users. You have to be
subscribed (see “Contacts” section of the web site) in order to post to the pw forum list. Please
read the guidelines for posting, section 1.3! NOTA BENE: only messages that appear to come
from the registered user’s e-mail address, in its exact form, will be accepted. Messages ”waiting
for moderator approval” are automatically deleted with no further processing (sorry, too much
spam). In case of trouble, carefully check that your return e-mail is the correct one (i.e. the
one you used to subscribe).

4

The same pw forum@pwscf.org mailing-list is used to address specific inquiries related to
QE-GPU. In this case please tag your message subject with “[QE-GPU]” to better identify
your email.

If you need to contact the developers for specific questions about coding, proposals, offers of
help, etc., please send a message to the developers’ mailing list: q-e-developers@qe-forge.org.
Do not post general questions: they will be ignored.

1.3 Guidelines for posting to the mailing list

Life for subscribers of pw forum will be easier if everybody complies with the following guide-
lines:

• Before posting, please: browse or search the archives – links are available in the “Contacts”
section of the web site. Most questions are asked over and over again. Also: make an
attempt to search the available documentation, notably the FAQs and the User Guide(s).
The answer to most questions is already there.

• Reply to both the mailing list and the author or the post, using “Reply to all” (not
“Reply”: the Reply-To: field no longer points to the mailing list).

• Sign your post with your name and affiliation.

• Choose a meaningful subject. Do not use ”reply” to start a new thread: it will confuse
the ordering of messages into threads that most mailers can do. In particular, do not use
”reply” to a Digest!!!

• Be short: no need to send 128 copies of the same error message just because you this is
what came out of your 128-processor run. No need to send the entire compilation log for
a single error appearing at the end.

• Avoid excessive or irrelevant quoting of previous messages. Your message must be imme-
diately visible and easily readable, not hidden into a sea of quoted text.

• Remember that even experts cannot guess where a problem lies in the absence of sufficient
information. One piece of information that must always be provided is the version number
of Quantum ESPRESSO.

• Remember that the mailing list is a voluntary endeavor: nobody is entitled to an answer,
even less to an immediate answer.

• Finally, please note that the mailing list is not a replacement for your own work, nor is
it a replacement for your thesis director’s work.

1.4 Terms of use

Quantum ESPRESSO is free software, released under the GNU General Public License.
See http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt, or the file License in the
distribution).

We shall greatly appreciate if scientific work done using Quantum ESPRESSO distribu-
tion will contain an explicit acknowledgment and the following reference:

5

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli,
G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de
Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L.
Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello,
L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smo-
gunov, P. Umari, R. M. Wentzcovitch, J.Phys.:Condens.Matter 21, 395502 (2009),
http://arxiv.org/abs/0906.2569

Note the form Quantum ESPRESSO for textual citations of the code. Please also see
package-specific documentation for further recommended citations. Pseudopotentials should
be cited as (for instance)

[] We used the pseudopotentials C.pbe-rrjkus.UPF and O.pbe-vbc.UPF from
http://www.quantum-espresso.org.

2 Installation

For machines with GPU acceleration, download the QE-GPU-5.4.0.tar.gz and read the file
README.GPU for information how to install the package.

2.1 Download

Presently, Quantum ESPRESSO is distributed in source form; some precompiled executa-
bles (binary files) are provided for PWgui. Packages for the Debian Linux distribution are how-
ever made available by debichem developers. Stable releases of the Quantum ESPRESSO
source package (current version is 5.4) can be downloaded from the Download section of
www.quantum-espresso.org.

Uncompress and unpack the base distribution using the command:

tar zxvf espresso-X.Y.Z.tar.gz

(a hyphen before ”zxvf” is optional) where X.Y.Z stands for the version number. If your version
of tar doesn’t recognize the ”z” flag:

gunzip -c espresso-X.Y.Z.tar.gz | tar xvf -

A directory espresso-X.Y.Z/ will be created.
Additional packages that are not included in the base distribution will be downloaded on

demand at compile time, using make (see Sec.2.5). Note however that this will work only if
the computer you are installing on is directly connected to the internet and has either wget or
curl installed and working. If you run into trouble, manually download each required package
into subdirectory archive/, not unpacking or uncompressing it: command make will take care
of this during installation.

Package GWL needs a manual download and installation: please follow the instructions given
at gww.qe-forge.org.

The Quantum ESPRESSO distribution contains several directories. Some of them are
common to all packages:

6

Modules/ source files for modules that are common to all programs
include/ files *.h included by fortran and C source files
clib/ external libraries written in C
flib/ external libraries written in Fortran
FFTxlib/ FFT libraries
install/ installation scripts and utilities
pseudo/ pseudopotential files used by examples
upftools/ converters to unified pseudopotential format (UPF)
Doc/ general documentation
archive/ contains plug-ins in .tar.gz form

while others are specific to a single package:
PW/ PWscf package
NEB/ PWneb package
PP/ PostProc package
PHonon/ PHonon package
PWCOND/ PWcond package
CPV/ CP package
atomic/ atomic package
GUI/ PWGui package

Finally, directory COUPLE/ contains code and documentation that is useful to call Quantum
ESPRESSO programs from external codes; directory LR Modules/ contains source files for
modules that are common to all linear-response codes.

2.2 Prerequisites

To install Quantum ESPRESSO from source, you need first of all a minimal Unix envi-
ronment: basically, a command shell (e.g., bash or tcsh) and the utilities make, awk, sed.
MS-Windows users need to have Cygwin (a UNIX environment which runs under Windows)
installed: see http://www.cygwin.com/. Note that the scripts contained in the distribution
assume that the local language is set to the standard, i.e. ”C”; other settings may break them.
Use export LC ALL=C (sh/bash) or setenv LC ALL C (csh/tcsh) to prevent any problem when
running scripts (including installation scripts).

Second, you need C and Fortran-90/95/2003 compilers. For parallel execution, you will also
need MPI libraries and a parallel (i.e. MPI-aware) compiler. For massively parallel machines, or
for simple multicore parallelization, an OpenMP-aware compiler and libraries are also required.

As a rule, Quantum ESPRESSO tries to keep compatibility with older compilers, avoiding
nonstandard extensions and newer features that are not widespread or stabilized. No warranty,
however, if your compiler is older than say 5 years or so. The same applies to mathematical
and MPI libraries.

Big machines with specialized hardware (e.g. IBM SP, CRAY, etc) typically have a Fortran
compiler with MPI and OpenMP libraries bundled with the software. Workstations or “com-
modity” machines, using PC hardware, may or may not have the needed software. If not, you
need either to buy a commercial product (e.g Intel, NAG, Portland) or to use an open-source
compiler like gfortran from the gcc distribution. Note that several commercial compilers (e.g.
Intel, Sun) are available free of charge under some license for academic or personal usage.

7

2.3 configure

To install the Quantum ESPRESSO source package, run the configure script. This is
actually a wrapper to the true configure, located in the install/ subdirectory. configure

will (try to) detect compilers and libraries available on your machine, and set up things ac-
cordingly. Presently it is expected to work on most Linux 32- and 64-bit PCs (all Intel and
AMD CPUs) and PC clusters, SGI Altix, IBM SP and BlueGene machines, NEC SX, Cray
XT machines, Mac OS X, MS-Windows PCs, and (for experts!) on several GPU-accelerated
hardware. Detailed installation instructions for some specific HPC machines can be found in
files install/README.sys, where sys is the machine name.

Instructions for the impatient:

cd espresso-X.Y.Z/

./configure

make all

This will (try to) produce parallel (MPI) executable if a proper parallel environment is detected,
serial executables otherwise. For OpenMP executables, specify ./configure --enable-openmp.
Symlinks to executable programs will be placed in the bin/ subdirectory. Note that both C
and Fortran compilers must be in your execution path, as specified in the PATH environment
variable. Additional instructions for special machines:

./configure ARCH=crayxt4 for CRAY XT machines

./configure ARCH=necsx for NEC SX machines

./configure ARCH=ppc64-mn PowerPC Linux + xlf (Marenostrum)

./configure ARCH=ppc64-bg IBM BG/P (BlueGene)
configure generates the following files:

make.sys compilation rules and flags (used by Makefile)
install/configure.msg a report of the configuration run (not needed for compilation)
install/config.log detailed log of the configuration run (may be needed for debugging)
include/fft defs.h defines fortran variable for C pointer (used only by FFTW)
include/c defs.h defines C to fortran calling convention

and a few more definitions used by C files
NOTA BENE: unlike previous versions, configure no longer runs the makedeps.sh shell script
that updates dependencies. If you modify the sources, run ./install/makedeps.sh or type
make depend to update files make.depend in the various subdirectories.

You should always be able to compile the Quantum ESPRESSO suite of programs without
having to edit any of the generated files. However you may have to tune configure by specifying
appropriate environment variables and/or command-line options. Usually the tricky part is to
get external libraries recognized and used: see Sec.2.4 for details and hints.

Environment variables may be set in any of these ways:

export VARIABLE=value; ./configure # sh, bash, ksh

setenv VARIABLE value; ./configure # csh, tcsh

./configure VARIABLE=value # any shell

Some environment variables that are relevant to configure are:

8

ARCH label identifying the machine type (see below)
F90, F77, CC names of Fortran 90, Fortran 77, and C compilers
MPIF90 name of parallel Fortran 90 compiler (using MPI)
CPP source file preprocessor (defaults to $CC -E)
LD linker (defaults to $MPIF90)
(C,F,F90,CPP,LD)FLAGS compilation/preprocessor/loader flags
LIBDIRS extra directories where to search for libraries

For example, the following command line:

./configure MPIF90=mpif90 FFLAGS="-O2 -assume byterecl" \

CC=gcc CFLAGS=-O3 LDFLAGS=-static

instructs configure to use mpif90 as Fortran 90 compiler with flags -O2 -assume byterecl,
gcc as C compiler with flags -O3, and to link with flag -static. Note that the value of
FFLAGS must be quoted, because it contains spaces. NOTA BENE: do not pass compiler names
with the leading path included. F90=f90xyz is ok, F90=/path/to/f90xyz is not. Do not use
environment variables with configure unless they are needed! try configure with no options
as a first step.

If your machine type is unknown to configure, you may use the ARCH variable to suggest
an architecture among supported ones. Some large parallel machines using a front-end (e.g.
Cray XT) will actually need it, or else configure will correctly recognize the front-end but not
the specialized compilation environment of those machines. In some cases, cross-compilation
requires to specify the target machine with the --host option. This feature has not been
extensively tested, but we had at least one successful report (compilation for NEC SX6 on a
PC). Currently supported architectures are:

ia32 Intel 32-bit machines (x86) running Linux
ia64 Intel 64-bit (Itanium) running Linux
x86 64 Intel and AMD 64-bit running Linux - see note below
aix IBM AIX machines
solaris PC’s running SUN-Solaris
sparc Sun SPARC machines
crayxt4 Cray XT4/XT5/XE machines
mac686 Apple Intel machines running Mac OS X
cygwin MS-Windows PCs with Cygwin
mingw32 Cross-compilation for MS-Windows, using mingw, 32 bits
mingw64 As above, 64 bits
necsx NEC SX-6 and SX-8 machines
ppc64 Linux PowerPC machines, 64 bits
ppc64-mn as above, with IBM xlf compiler
ppc64-bg IBM BlueGene
arm ARM machines (with gfortran)

Note: x86 64 replaces amd64 since v.4.1. Cray Unicos machines, SGI machines with MIPS
architecture, HP-Compaq Alphas are no longer supported since v.4.2; PowerPC Macs are no
longer supported since v.5.0. Finally, configure recognizes the following command-line op-
tions:

9

--enable-parallel compile for parallel (MPI) execution if possible (default: yes)
--enable-openmp compile for OpenMP execution if possible (default: no)
--enable-shared use shared libraries if available (default: yes;

”no” is implemented, untested, in only a few cases)
--enable-debug compile with debug flags (only for selected cases; default: no)
--disable-wrappers disable C to fortran wrapper check (default: enabled)
--enable-signals enable signal trapping (default: disabled)

and the following optional packages:
--with-internal-blas compile with internal BLAS (default: no)
--with-internal-lapack compile with internal LAPACK (default: no)
--with-scalapack=no do not use ScaLAPACK (default: yes)
--with-scalapack=intel use ScaLAPACK for Intel MPI (default:OpenMPI)

If you want to modify the configure script (advanced users only!), see the Developer Manual.

2.3.1 Manual configuration

If configure stops before the end, and you don’t find a way to fix it, you have to write working
make.sys, include/fft defs.h and include/c defs.h files. For the latter two files, follow
the explanations in include/defs.h.README.

If configure has run till the end, you should need only to edit make.sys. A few sample
make.sys files are provided in install/Make.system. The template used by configure is also
found there as install/make.sys.in and contains explanations of the meaning of the various
variables. Note that you may need to select appropriate preprocessing flags in conjunction
with the desired or available libraries (e.g. you need to add -D FFTW to DFLAGS if you want to
link internal FFTW). For a correct choice of preprocessing flags, refer to the documentation in
include/defs.h.README.

NOTA BENE: If you change any settings (e.g. preprocessing, compilation flags) after a
previous (successful or failed) compilation, you must run make clean before recompiling, unless
you know exactly which routines are affected by the changed settings and how to force their
recompilation.

2.4 Libraries

Quantum ESPRESSO makes use of the following external libraries:

• BLAS (http://www.netlib.org/blas/) and

• LAPACK (http://www.netlib.org/lapack/) for linear algebra

• FFTW (http://www.fftw.org/) for Fast Fourier Transforms

A copy of the needed routines is provided with the distribution. However, when available,
optimized vendor-specific libraries should be used: this often yields huge performance gains.

BLAS and LAPACK Quantum ESPRESSO can use any architecture-optimized BLAS
and LAPACK replacements, like those contained e.g. in the following libraries:

MKL for Intel CPUs
ACML for AMD CPUs

10

ESSL for IBM machines
SCSL for SGI Altix
SUNperf for Sun

If none of these is available, we suggest that you use the optimized ATLAS library: see
http://math-atlas.sourceforge.net/. Note that ATLAS is not a complete replacement for
LAPACK: it contains all of the BLAS, plus the LU code, plus the full storage Cholesky code.
Follow the instructions in the ATLAS distributions to produce a full LAPACK replacement.

Sergei Lisenkov reported success and good performances with optimized BLAS by Kazushige
Goto. The library is now available under an open-source license: see the GotoBLAS2 page at
http://www.tacc.utexas.edu/tacc-software/gotoblas2/.

FFT Quantum ESPRESSO has an internal copy of an old FFTW library. It also supports
the newer FFTW3 library and some vendor-specific FFT libraries. configure will first search
for vendor-specific FFT libraries; if none is found, it will search for an external FFTW v.3
library; if none is found, it will fall back to the internal copy of FFTW. configure will add
the appropriate preprocessing options:

• -D ESSL for ESSL on IBM AIX machines,

• -D LINUX ESSL for ESSL on IBM Linux machines,

• -DASL for NEC ASL library on NEC machines,

• -D ARM LIB for ARM Performance library,

• -D DFTI for DFTI (Intel MKL library),

• -D FFTW3 for FFTW3 (external),

• -D FFTW) for FFTW (internal library),

to DFLAGS in the make.sys file. If you edit make.sys manually, please note that one and only
one among the mentioned preprocessing option must be set.

If you have MKL libraries, you may either use the provided FFTW3 interface (v.10 and
later), or directly link FFTW3 from MKL (v.12 and later) or use DFTI (recent versions).

MPI libraries MPI libraries are usually needed for parallel execution (unless you are happy
with OpenMP multicore parallelization). In well-configured machines, configure should find
the appropriate parallel compiler for you, and this should find the appropriate libraries. Since
often this doesn’t happen, especially on PC clusters, see Sec.2.7.7.

Other libraries Quantum ESPRESSO can use the MASS vector math library from IBM,
if available (only on AIX).

11

If optimized libraries are not found The configure script attempts to find optimized
libraries, but may fail if they have been installed in non-standard places. You should exam-
ine the final value of BLAS LIBS, LAPACK LIBS, FFT LIBS, MPI LIBS (if needed), MASS LIBS

(IBM only), either in the output of configure or in the generated make.sys, to check whether
it found all the libraries that you intend to use.

If some library was not found, you can specify a list of directories to search in the envi-
ronment variable LIBDIRS, and rerun configure; directories in the list must be separated by
spaces. For example:

./configure LIBDIRS="/opt/intel/mkl70/lib/32 /usr/lib/math"

If this still fails, you may set some or all of the * LIBS variables manually and retry. For
example:

./configure BLAS_LIBS="-L/usr/lib/math -lf77blas -latlas_sse"

Beware that in this case, configure will blindly accept the specified value, and won’t do any
extra search.

2.5 Compilation

There are a few adjustable parameters in Modules/parameters.f90. The present values will
work for most cases. All other variables are dynamically allocated: you do not need to recompile
your code for a different system.

At your choice, you may compile the complete Quantum ESPRESSO suite of programs
(with make all), or only some specific programs. make with no arguments yields a list of valid
compilation targets:

• make pw compiles the self-consistent-field package PWscf

• make cp compiles the Car-Parrinello package CP

• make neb downloads PWneb package from qe-forge unpacks it and compiles it. All
executables are linked in main bin directory

• make ph downloads PHonon package from qe-forge unpacks it and compiles it. All
executables are linked in main bin directory

• make pp compiles the postprocessing package PostProc

• make pwcond downloads the balistic conductance package PWcond from QE-FORGE unpacks
it and compiles it. All executables are linked in main bin directory

• make pwall produces all of the above.

• make ld1 downloads the pseudopotential generator package atomic from QE-FORGE un-
packs it and compiles it. All executables are linked in main bin directory

• make xspectra downloads the package XSpectra from QE-FORGE unpacks it and compiles
it. All executables are linked in main bin directory

• make upf produces utilities for pseudopotential conversion in directory upftools/

12

• make all produces all of the above

• make plumed unpacks PLUMED, patches several routines in PW/, CPV/ and clib/, recom-
piles PWscf and CP with PLUMED support

• make w90 downloads wannier90, unpacks it, copies an appropriate make.sys file, pro-
duces all executables in W90/wannier90.x and in bin/

• make want downloads WanT from QE-FORGE, unpacks it, runs its configure, produces all
executables for WanT in WANT/bin.

• make yambo downloads yambo from QE-FORGE, unpacks it, runs its configure, produces
all yambo executables in YAMBO/bin

• make gipaw downloads GIPAW from QE-FORGE, unpacks it, runs its configure, produces
all GIPAW executables in GIPAW/bin and in main bin directory.

• make west downloads WEST from www.west-code.org, unpacks it, produces all the exe-
cutables in West/Wfreq and West/Wstat.

For the setup of the GUI, refer to the PWgui-X.Y.Z /INSTALL file, where X.Y.Z stands for the
version number of the GUI (should be the same as the general version number). If you are
using the SVN sources, see the GUI/README file instead.

If make refuses for some reason to download additional packages, manually download them
into subdirectory archive/, not unpacking or or uncompressing them, and try make again. Also
see Sec.(2.1).

2.6 Running tests and examples

As a final check that compilation was successful, you may want to run some or all of the
examples. There are two different types of examples:

• automated tests. Quick and exhaustive, but not meant to be realistic, implemented only
for PWscf and CP.

• examples. Cover many more programs and features of the Quantum ESPRESSO
distribution, but they require manual inspection of the results.

Instructions for the impatient:

cd PW/tests/

./check_pw.x.j

for PWscf; PW/tests/README contains a list of what is tested. For CP:

cd CPV/tests/

./check_cp.x.j

Instructions for all others: edit file environment variables, setting the following variables as
needed.

13

BIN DIR: directory where executables reside
PSEUDO DIR: directory where pseudopotential files reside
TMP DIR: directory to be used as temporary storage area

The default values of BIN DIR and PSEUDO DIR should be fine, unless you have installed
things in nonstandard places. TMP DIR must be a directory where you have read and write
access to, with enough available space to host the temporary files produced by the example
runs, and possibly offering high I/O performance (i.e., don’t use an NFS-mounted directory).
NOTA BENE: do not use a directory containing other data: the examples will clean it!

If you have compiled the parallel version of Quantum ESPRESSO (this is the default if
parallel libraries are detected), you will usually have to specify a launcher program (such as
mpirun or mpiexec) and the number of processors: see Sec.3 for details. In order to do that,
edit again the environment variables file and set the PARA PREFIX and PARA POSTFIX
variables as needed. Parallel executables will be run by a command like this:

$PARA_PREFIX pw.x $PARA_POSTFIX -i file.in > file.out

For example, if the command line is like this (as for an IBM SP):

poe pw.x -procs 4 -i file.in > file.out

you should set PARA PREFIX=”poe”, PARA POSTFIX=”-procs 4”. Furthermore, if your
machine does not support interactive use, you must run the commands specified above through
the batch queuing system installed on that machine. Ask your system administrator for in-
structions. For execution using OpenMP on N threads, you should set PARA PREFIX to "env

OMP NUM THREADS=N ... ".
Notice that most tests and examples are devised to be run serially or on a small number of

processors; do not use tests and examples to benchmark parallelism, do not try to run on too
many processors.

To run an example, go to the corresponding directory (e.g. PW/examples/example01) and
execute:

./run_example

This will create a subdirectory results/, containing the input and output files generated by
the calculation. Some examples take only a few seconds to run, while others may require several
minutes depending on your system.

In each example’s directory, the reference/ subdirectory contains verified output files,
that you can check your results against. They were generated on a Linux PC using the Intel
compiler. On different architectures the precise numbers could be slightly different, in particular
if different FFT dimensions are automatically selected. For this reason, a plain diff of your
results against the reference data doesn’t work, or at least, it requires human inspection of the
results.

The example scripts stop if an error is detected. You should look inside the last written
output file to understand why.

2.7 Installation tricks and problems

2.7.1 All architectures

• Working Fortran and C compilers are needed in order to compile Quantum ESPRESSO.
Most recent Fortran compiles will do the job, but earlier Fortran-90 compilers that

14

do not support allocatable arrays in derived types (e.g. old gfortran versions) are no
longer supported since v.5.1.2. Also, compilers that do not support intrinsic calls flush,
get environment variable, get command argument, command argument count are no
longer supported since v.5.2.1.

C and Fortran compilers must be in your PATH. If configure says that you have no
working compiler, well, you have no working compiler, at least not in your PATH, and
not among those recognized by configure.

• If you get Compiler Internal Error or similar messages: your compiler version is buggy.
Try to lower the optimization level, or to remove optimization just for the routine that
has problems. If it doesn’t work, or if you experience weird problems at run time, try
to install patches for your version of the compiler (most vendors release at least a few
patches for free), or to upgrade to a more recent compiler version.

• If you get error messages at the loading phase that look like file XYZ.o: unknown / not
recognized/ invalid / wrong file type / file format / module version, one of the following
things have happened:

1. you have leftover object files from a compilation with another compiler: run make

clean and recompile.

2. make did not stop at the first compilation error (it may happen in some software
configurations). Remove the file *.o that triggers the error message, recompile, look
for a compilation error.

If many symbols are missing in the loading phase: you did not specify the location of all
needed libraries (LAPACK, BLAS, FFTW, machine-specific optimized libraries), in the
needed order. If only symbols from clib/ are missing, verify that you have the correct C-
to-Fortran bindings, defined in include/c defs.h. Note that Quantum ESPRESSO
is self-contained (with the exception of MPI libraries for parallel compilation): if system
libraries are missing, the problem is in your compiler/library combination or in their
usage, not in Quantum ESPRESSO.

• If you get an error like Can’t open module file global version.mod: your machine doesn’t
like the script that produces file version.f90 with the correct version and revision. Quick
solution: copy Modules/version.f90.in to Modules/version.f90.

• If you get mysterious errors (”Segmentation faults” and the like) in the provided tests
and examples: your compiler, or your mathematical libraries, or MPI libraries, or a
combination thereof, is very likely buggy, or there is some form of incompatibility (see
below). Although the presence of subtle bugs in Quantum ESPRESSO that are not
revealed during the testing phase can never be ruled out, it is very unlikely that this
happens on the provided tests and examples.

2.7.2 Intel Xeon Phi

For Intel Xeon CPUs with Phi coprocessor, there are three ways of compiling:

• offload mode, executed on main CPU and offloaded onto coprocessor ”automagically”;

15

• native mode, executed completely on coprocessor;

• symmetric mode, requiring creation of both binaries.

”You can take advantage of the offload mode using the libxphi library. This library offloads the
BLAS/MKL functions on the Xeon Phi platform hiding the latency times due to the communi-
cation. You just need to compile this library and then to link it dynamically. The library works
with any version of QE. Libxphi is available from https://github.com/cdahnken/libxphi.
Some documentation is available therein.

Instead, if you want to compile a native version of QE, you just need to add the -mmic flag
and cross compile. If you want to use the symmetric mode, you need to compile twice: with
and without the -mmic flag”. ”[...] everything, i.e. code+libraries, must be cross-compiled
with the -mmic flag. In my opinion, it’s pretty unlikely that native mode can outperform the
execution on the standard Xeon cpu. I strongly suggest to use the Xeon Phi in offload mode,
for now” (info by Fabio Affinito, March 2015).

2.7.3 Cray machines

For Cray XE machines:

$ module swap PrgEnv-cray PrgEnv-pgi

$./configure --enable-openmp --enable-parallel --with-scalapack

$ vim make.sys

then manually add -D IOTK WORKAROUND1 at the end of DFLAGS line.
”Now, despite what people can imagine, every CRAY machine deployed can have different

environment. For example on the machine I usually use for tests [...] I do have to unload some
modules to make QE running properly. On another CRAY [...] there is also Intel compiler as
option and the system is slightly different compared to the other. So my recipe should work,
99% of the cases. I strongly suggest you to use PGI, also for a performance point of view.”
(Info by Filippo Spiga, Sept. 2012)

For Cray XT machines, use ./configure ARCH=crayxt4 or else configure will not recog-
nize the Cray-specific software environment.

Older Cray machines: T3D, T3E, X1, are no longer supported.

2.7.4 IBM AIX

v.4.3.1 of the CP code, Wannier-function dynamics, crashes with “segmentation violation” on
some AIX v.6 machines. Workaround: compile it with mpxlf95 instead of mpxlf90. (Info by
Roberto Scipioni, June 2011)

On IBM machines with ESSL libraries installed, there is a potential conflict between a
few LAPACK routines that are also part of ESSL, but with a different calling sequence. The
appearance of run-time errors like ON ENTRY TO ZHPEV PARAMETER NUMBER 1 HAD
AN ILLEGAL VALUE is a signal that you are calling the bad routine. If you have defined
-D ESSL you should load ESSL before LAPACK: see variable LAPACK LIBS in make.sys.

2.7.5 IBM BlueGene

The current configure is tested and works on the machines at CINECA and at Jülich. For
other sites, you may need something like

16

./configure ARCH=ppc64-bg BLAS_LIBS=... LAPACK_LIBS=... \

SCALAPACK_DIR=... BLACS_DIR=..."

where the various * LIBS and * DIR ”suggest” where the various libraries are located.

2.7.6 Linux PC

Both AMD and Intel CPUs, 32-bit and 64-bit, are supported and work, either in 32-bit emu-
lation and in 64-bit mode. 64-bit executables can address a much larger memory space than
32-bit executable, but there is no gain in speed. Beware: the default integer type for 64-bit
machine is typically 32-bit long. You should be able to use 64-bit integers as well, but it is not
guaranteed to work and will not give any advantage anyway.

Currently, configure supports Intel (ifort), NAG (nagfor), and gfortran compilers. Support
for other compilers: g95, Portland (pgf90), Pathscale (pathf95), Sun Studio (sunf95), AMD
Open64 (openf95), added in the past, is still there, but it might have become obsolete. Both
Intel MKL and AMD acml mathematical libraries are supported, the former much better than
the latter.

It is usually convenient to create semi-statically linked executables (with only libc, libm,
libpthread dynamically linked). If you want to produce a binary that runs on different machines,
compile it on the oldest machine you have (i.e. the one with the oldest version of the operating
system).

Linux PCs with gfortran Only recent versions (at least v.4.4) of gfortran properly com-
pile Quantum ESPRESSO. Older versions often produce nonfunctional phonon executables
(segmentation faults and the like); other versions miscompile iotk (the executables work but
crash with a mysterious iotk error when reading from data files).

”There is a known incompatibility problem between the calling convention for Fortran func-
tions that return complex values: there is the convention used by g77/f2c, where in practice
the compiler converts such functions to subroutines with a further parameter for the return
value; gfortran instead produces a normal function returning a complex value. If your system
libraries were compiled using g77 (which may happen for system-provided libraries in not-too-
recent Linux distributions), and you instead use gfortran to compile Quantum ESPRESSO,
your code may crash or produce random results. This typically happens during calls to zdotc,
which is one the most commonly used complex-returning functions of BLAS+LAPACK.

For further details see for instance this link:
http://www.macresearch.org/lapackblas-fortran-106#comment-17071

or read the man page of gfortran under the flag -ff2c.
If your code crashes during a call to zdotc, try to recompile Quantum ESPRESSO using

the internal BLAS and LAPACK routines (using the --with-internal-blas and --with-internal-lapack

parameters of the configure script) to see if the problem disappears; or, add the -ff2c flag”
(info by Giovanni Pizzi, Jan. 2013).

Note that a similar problem with complex functions exists with MKL libraries as well: if
you compile with gfortran, link -lmkl gf lp64, not -lmkl intel lp64, and the like for other
architectures. Since v.5.1, you may use the following workaround: add preprocessing option
-Dzdotc=zdotc wrapper to DFLAGS.

17

Linux PCs with g95 g95 v.0.91 and later versions (http://www.g95.org) should work, but
the executables it produces are noticeably slower than those of other compilers. Also notice
that the development of g95 seems to have stopped.

Linux PCs with Pathscale compiler Version 3.1 and version 4 (open source!) of the
Pathscale EKO compiler work (info by Cezary Sliwa, April 2011, and Carlo Nervi, June 2011).
In case of mysterious errors while compiling iotk, remove all lines like:

1 "iotk_base.spp"

from all iotk source files.

Linux PCs with Sun Studio compiler “The Sun Studio compiler, sunf95, is free (web
site: http://developers.sun.com/sunstudio/ and comes with a set of algebra libraries that
can be used in place of the slow built-in libraries. It also supports OpenMP, which g95 does
not. On the other hand, it is a pain to compile MPI with it. Furthermore the most recent
version has a terrible bug that totally miscompiles the iotk input/output library (you’ll have
to compile it with reduced optimization).” (info by Lorenzo Paulatto, March 2010).

Linux PCs with AMD Open64 suite The AMD Open64 compiler suite, openf95 (web site:
http://developer.amd.com/cpu/open64/pages/default.aspx) can be freely downloaded from
the AMD site. It is recognized by configure but little tested. It sort of works but it fails to
pass several tests (info by Paolo Giannozzi, March 2010). ”I have configured for Pathscale,
then switched to the Open64 compiler by editing make.sys. ”make pw” succeeded and pw.x
did process my file, but with ”make all” I get an internal compiler error [in CPV/wf.f90]” (info
by Cezary Sliwa, April 2011).

Linux PCs with Intel compiler (ifort) The Intel compiler, ifort, is available for free for
personal usage (http://software.intel.com/). It produces fast executables, at least on Intel
CPUs, but not all versions work as expected. ifort versions < 9.1 are not recommended, due
to the presence of subtle and insidious bugs. In case of trouble, update your version with the
most recent patches, available via Intel Premier support (registration free of charge for Linux):
http://software.intel.com/en-us/articles/intel-software-developer-support. Since
each major release of ifort differs a lot from the previous one, compiled objects from different
releases may be incompatible and should not be mixed.

If configure doesn’t find the compiler, or if you get Error loading shared libraries at run
time, you may have forgotten to execute the script that sets up the correct PATH and library
path. Unless your system manager has done this for you, you should execute the appropriate
script – located in the directory containing the compiler executable – in your initialization files.
Consult the documentation provided by Intel.

The warning: feupdateenv is not implemented and will always fail, can be safely ignored.
Warnings on ”bad preprocessing option” when compiling iotk and complains about “recom-
manded formats” may also be ignored.

ifort v.12: release 12.0.0 miscompiles iotk, leading to mysterious errors when reading data
files. Workaround: increase the parameter BLOCKSIZE to e.g. 131072*1024 when opening
files in iotk/src/iotk files.f90 (info by Lorenzo Paulatto, Nov. 2010). Release 12.0.2 seems

18

to work and to produce faster executables than previous versions on 64-bit CPUs (info by P.
Giannozzi, March 2011).

ifort v.11: Segmentation faults were reported for the combination ifort 11.0.081, MKL
10.1.1.019, OpenMP 1.3.3. The problem disappeared with ifort 11.1.056 and MKL 10.2.2.025
(Carlo Nervi, Oct. 2009).

Linux PCs with MKL libraries On Intel CPUs it is very convenient to use Intel MKL
libraries. Recent versions also contain optimized FFT routines and a FFTW interface. MKL
libraries can be used also with non-Intel compilers. They work also for AMD CPU, selecting
the appropriate machine-optimized libraries, but with reduced performances.

configure should recognize properly installed MKL libraries. By default the non-threaded
version of MKL is linked, unless option configure --with-openmp is specified. In case of
trouble, refer to the following web page to find the correct way to link MKL:
http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/.

For parallel (MPI) execution on multiprocessor (SMP) machines, set the environment vari-
able OMP NUM THREADS to 1 unless you know what you are doing. See Sec.3 for more info
on this and on the difference between MPI and OpenMP parallelization.

Linux PCs with ACML libraries For AMD CPUs, especially recent ones, you may
find convenient to link AMD acml libraries (can be freely downloaded from AMD web site).
configure should recognize properly installed acml libraries, together with the compilers most
frequently used on AMD systems: pgf90, pathscale, openf95, sunf95.

2.7.7 Linux PC clusters with MPI

PC clusters running some version of MPI are a very popular computational platform nowadays.
Quantum ESPRESSO is known to work with at least two of the major MPI implementations
(MPICH, LAM-MPI), plus with the newer MPICH2 and OpenMPI implementation. configure
should automatically recognize a properly installed parallel environment and prepare for parallel
compilation. Unfortunately this not always happens. In fact:

• configure tries to locate a parallel compiler in a logical place with a logical name, but
if it has a strange names or it is located in a strange location, you will have to instruct
configure to find it. Note that in many PC clusters (Beowulf), there is no parallel
Fortran compiler in default installations: you have to configure an appropriate script,
such as mpif90.

• configure tries to locate libraries (both mathematical and parallel libraries) in the usual
places with usual names, but if they have strange names or strange locations, you will
have to rename/move them, or to instruct configure to find them. If MPI libraries are
not found, parallel compilation is disabled.

• configure tests that the compiler and the libraries are compatible (i.e. the compiler may
link the libraries without conflicts and without missing symbols). If they aren’t and the
compilation fails, configure will revert to serial compilation.

Apart from such problems, Quantum ESPRESSO compiles and works on all non-buggy,
properly configured hardware and software combinations. In some cases you may have to

19

recompile MPI libraries: not all MPI installations contain support for the Fortran compiler of
your choice (or for any Fortran compiler at all!).

If Quantum ESPRESSO does not work for some reason on a PC cluster, try first if
it works in serial execution. A frequent problem with parallel execution is that Quantum
ESPRESSO does not read from standard input, due to the configuration of MPI libraries: see
Sec.3.4. If you are dissatisfied with the performances in parallel execution, see Sec.3 and in
particular Sec.3.4.

2.7.8 Mac OS

Mac OS-X machines (10.4 and later) with Intel CPUs are supported by configure, both
with gfortran and with the Intel compiler ifort and MKL libraries. Parallel compilation with
OpenMPI also works.

Gfortran information and binaries for Mac OS-X here: http://hpc.sourceforge.net/ and
https://wiki.helsinki.fi/display/HUGG/Installing+the+GNU+compilers+on+Mac+OS+X.

Mysterious crashes, occurring when zdotc is called, are due to the same incompatibility of
complex functions with some optimized BLAS as reported in the ”Linux PCs with gfortran”
paragraph. Workaround: add preprocessing option -Dzdotc=zdotc wrapper to DFLAGS.

Detailed installation instructions for Mac OS X 10.6 (Instructions for 10.6.3 by Osman
Baris Malcioglu, tested as of May 2010) Summary for the hasty:

• GNU fortran: Install macports compilers, Install MPI environment, Configure Quantum
ESPRESSO using

./configure CC=gcc-mp-4.3 CPP=cpp-mp-4.3 CXX=g++-mp-4.3 F77=g95 FC=g95

• Intel compiler: Use Version > 11.1.088, Use 32 bit compilers, Install MPI environment,
install macports provided cpp (optional), Configure Quantum ESPRESSO using

./configure CC=icc CXX=icpc F77=ifort F90=ifort FC=ifort CPP=cpp-mp-4.3

Compilation with GNU compilers . The following instructions use macports version
of gnu compilers due to some issues in mixing gnu supplied fortran compilers with apple
modified gnu compiler collection. For more information regarding macports please refer to:
http://www.macports.org/

First install necessary compilers from macports

port install gcc43

port install g95

The apple supplied MPI environment has to be overridden since there is a new set of compilers
now (and Apple provided mpif90 is just an empty placeholder since Apple does not provide
fortran compilers). I have used OpenMPI for this case. Recommended minimum configuration
line is:

./configure CC=gcc-mp-4.3 CPP=cpp-mp-4.3 CXX=g++-mp-4.3 F77=g95 FC=g95

20

of course, installation directory should be set accordingly if a multiple compiler environment is
desired. The default installation directory of OpenMPI overwrites apple supplied MPI perma-
nently!
Next step is Quantum ESPRESSO itself. Sadly, the Apple supplied optimized BLAS/LAPACK
libraries tend to misbehave under different tests, and it is much safer to use internal libraries.
The minimum recommended configuration line is (presuming the environment is set correctly):

./configure CC=gcc-mp-4.3 CXX=g++-mp-4.3 F77=g95 F90=g95 FC=g95 \

CPP=cpp-mp-4.3 --with-internal-blas --with-internal-lapack

Compilation with Intel compilers . Newer versions of Intel compiler (¿11.1.067) support
Mac OS X 10.6, and furthermore they are bundled with intel MKL. 32 bit binaries obtained
using 11.1.088 are tested and no problems have been encountered so far. Sadly, as of 11.1.088
the 64 bit binary misbehave under some tests. Any attempt to compile 64 bit binary using
v.< 11.1.088 will result in very strange compilation errors.

Like the previous section, I would recommend installing macports compiler suite. First,
make sure that you are using the 32 bit version of the compilers, i.e.

. /opt/intel/Compiler/11.1/088/bin/ifortvars.sh ia32

. /opt/intel/Compiler/11.1/088/bin/iccvars.sh ia32

will set the environment for 32 bit compilation in my case.
Then, the MPI environment has to be set up for Intel compilers similar to previous section.
The recommended configuration line for Quantum ESPRESSO is:

./configure CC=icc CXX=icpc F77=ifort F90=ifort FC=ifort CPP=cpp-mp-4.3

MKL libraries will be detected automatically if they are in their default locations. Otherwise,
mklvars32 has to be sourced before the configuration script.

Security issues: MacOs 10.6 comes with a disabled firewall. Preparing a ipfw based firewall is
recommended. Open source and free GUIs such as ”WaterRoof” and ”NoobProof” are available
that may help you in the process.

21

3 Parallelism

3.1 Understanding Parallelism

Two different parallelization paradigms are currently implemented in Quantum ESPRESSO:

1. Message-Passing (MPI). A copy of the executable runs on each CPU; each copy lives in a
different world, with its own private set of data, and communicates with other executables
only via calls to MPI libraries. MPI parallelization requires compilation for parallel
execution, linking with MPI libraries, execution using a launcher program (depending
upon the specific machine). The number of CPUs used is specified at run-time either as
an option to the launcher or by the batch queue system.

2. OpenMP. A single executable spawn subprocesses (threads) that perform in parallel spe-
cific tasks. OpenMP can be implemented via compiler directives (explicit OpenMP) or
via multithreading libraries (library OpenMP). Explicit OpenMP require compilation for
OpenMP execution; library OpenMP requires only linking to a multithreading version of
mathematical libraries, e.g.: ESSLSMP, ACML MP, MKL (the latter is natively multi-
threading). The number of threads is specified at run-time in the environment variable
OMP NUM THREADS.

MPI is the well-established, general-purpose parallelization. In Quantum ESPRESSO
several parallelization levels, specified at run-time via command-line options to the executable,
are implemented with MPI. This is your first choice for execution on a parallel machine.

Library OpenMP is a low-effort parallelization suitable for multicore CPUs. Its effectiveness
relies upon the quality of the multithreading libraries and the availability of multithreading
FFTs. If you are using MKL,1 you may want to select FFTW3 (set CPPFLAGS=-D FFTW3...

in make.sys) and to link with the MKL interface to FFTW3. You will get a decent speedup
(∼ 25%) on two cores.

Explicit OpenMP is a recent addition, still under development, devised to increase scalability
on large multicore parallel machines. Explicit OpenMP can be used together with MPI and also
together with library OpenMP. Beware conflicts between the various kinds of parallelization! If
you don’t know how to run MPI processes and OpenMP threads in a controlled manner, forget
about mixed OpenMP-MPI parallelization.

3.2 Running on parallel machines

Parallel execution is strongly system- and installation-dependent. Typically one has to specify:

1. a launcher program (not always needed), such as poe, mpirun, mpiexec, with the appro-
priate options (if any);

2. the number of processors, typically as an option to the launcher program, but in some
cases to be specified after the name of the program to be executed;

3. the program to be executed, with the proper path if needed;

1Beware: MKL v.10.2.2 has a buggy dsyev yielding wrong results with more than one thread; fixed in
v.10.2.4

22

4. other Quantum ESPRESSO-specific parallelization options, to be read and interpreted
by the running code.

Items 1) and 2) are machine- and installation-dependent, and may be different for interactive
and batch execution. Note that large parallel machines are often configured so as to disallow
interactive execution: if in doubt, ask your system administrator. Item 3) also depend on your
specific configuration (shell, execution path, etc). Item 4) is optional but it is very important
for good performances. We refer to the next section for a description of the various possibilities.

3.3 Parallelization levels

In Quantum ESPRESSO several MPI parallelization levels are implemented, in which both
calculations and data structures are distributed across processors. Processors are organized in
a hierarchy of groups, which are identified by different MPI communicators level. The groups
hierarchy is as follow:

• world: is the group of all processors (MPI COMM WORLD).

• images: Processors can then be divided into different ”images”, each corresponding to a
different self-consistent or linear-response calculation, loosely coupled to others.

• pools: each image can be subpartitioned into ”pools”, each taking care of a group of
k-points.

• bands: each pool is subpartitioned into ”band groups”, each taking care of a group of
Kohn-Sham orbitals (also called bands, or wavefunctions) (still experimental)

• PW: orbitals in the PW basis set, as well as charges and density in either reciprocal or real
space, are distributed across processors. This is usually referred to as ”PW paralleliza-
tion”. All linear-algebra operations on array of PW / real-space grids are automatically
and effectively parallelized. 3D FFT is used to transform electronic wave functions from
reciprocal to real space and vice versa. The 3D FFT is parallelized by distributing planes
of the 3D grid in real space to processors (in reciprocal space, it is columns of G-vectors
that are distributed to processors).

• tasks: In order to allow good parallelization of the 3D FFT when the number of processors
exceeds the number of FFT planes, FFTs on Kohn-Sham states are redistributed to ”task”
groups so that each group can process several wavefunctions at the same time.

• linear-algebra group: A further level of parallelization, independent on PW or k-point
parallelization, is the parallelization of subspace diagonalization / iterative orthonormal-
ization. Both operations required the diagonalization of arrays whose dimension is the
number of Kohn-Sham states (or a small multiple of it). All such arrays are distributed
block-like across the “linear-algebra group”, a subgroup of the pool of processors, orga-
nized in a square 2D grid. As a consequence the number of processors in the linear-algebra
group is given by n2, where n is an integer; n2 must be smaller than the number of proces-
sors in the PW group. The diagonalization is then performed in parallel using standard
linear algebra operations. (This diagonalization is used by, but should not be confused
with, the iterative Davidson algorithm). The preferred option is to use ScaLAPACK;
alternative built-in algorithms are anyway available.

Note however that not all parallelization levels are implemented in all codes!

23

About communications Images and pools are loosely coupled and processors communicate
between different images and pools only once in a while, whereas processors within each pool are
tightly coupled and communications are significant. This means that Gigabit ethernet (typical
for cheap PC clusters) is ok up to 4-8 processors per pool, but fast communication hardware
(e.g. Mirynet or comparable) is absolutely needed beyond 8 processors per pool.

Choosing parameters : To control the number of processors in each group, command line
switches: -nimage, -npools, -nband, -ntg, -ndiag or -northo (shorthands, respectively: -ni,
-nk, -nb, -nt, -nd) are used. As an example consider the following command line:

mpirun -np 4096 ./neb.x -ni 8 -nk 2 -nt 4 -nd 144 -i my.input

This executes a NEB calculation on 4096 processors, 8 images (points in the configuration space
in this case) at the same time, each of which is distributed across 512 processors. k-points are
distributed across 2 pools of 256 processors each, 3D FFT is performed using 4 task groups (64
processors each, so the 3D real-space grid is cut into 64 slices), and the diagonalization of the
subspace Hamiltonian is distributed to a square grid of 144 processors (12x12).

Default values are: -ni 1 -nk 1 -nt 1 ; nd is set to 1 if ScaLAPACK is not compiled, it
is set to the square integer smaller than or equal to half the number of processors of each pool.

Massively parallel calculations For very large jobs (i.e. O(1000) atoms or more) or for
very long jobs, to be run on massively parallel machines (e.g. IBM BlueGene) it is crucial to use
in an effective way all available parallelization levels. Without a judicious choice of parameters,
large jobs will find a stumbling block in either memory or CPU requirements. Note that I/O
may also become a limiting factor.

Since v.4.1, ScaLAPACK can be used to diagonalize block distributed matrices, yielding
better speed-up than the internal algorithms for large (> 1000 × 1000) matrices, when using a
large number of processors (> 512). You need to have -D SCALAPACK added to DFLAGS in
make.sys, LAPACK LIBS set to something like:

LAPACK_LIBS = -lscalapack -lblacs -lblacsF77init -lblacs -llapack

The repeated -lblacs is not an error, it is needed! configure tries to find a ScaLAPACK
library, unless configure --with-scalapack=no is specified. If it doesn’t, inquire with your
system manager on the correct way to link it.

A further possibility to expand scalability, especially on machines like IBM BlueGene, is
to use mixed MPI-OpenMP. The idea is to have one (or more) MPI process(es) per multicore
node, with OpenMP parallelization inside a same node. This option is activated by configure

--with-openmp, which adds preprocessing flag -D OPENMP and one of the following compiler
options:

ifort -openmp

xlf -qsmp=omp

PGI -mp

ftn -mp=nonuma
OpenMP parallelization is currently implemented and tested for the following combinations

of FFTs and libraries:
internal FFTW copy requires -D FFTW

ESSL requires -D ESSL or -D LINUX ESSL, link with -lesslsmp

Currently, ESSL (when available) are faster than internal FFTW.

24

3.3.1 Understanding parallel I/O

In parallel execution, each processor has its own slice of data (Kohn-Sham orbitals, charge
density, etc), that have to be written to temporary files during the calculation, or to data files
at the end of the calculation. This can be done in two different ways:

• “distributed”: each processor writes its own slice to disk in its internal format to a different
file.

• “collected”: all slices are collected by the code to a single processor that writes them to
disk, in a single file, using a format that doesn’t depend upon the number of processors
or their distribution.

The “distributed” format is fast and simple, but the data so produced is readable only by a
job running on the same number of processors, with the same type of parallelization, as the job
who wrote the data, and if all files are on a file system that is visible to all processors (i.e., you
cannot use local scratch directories: there is presently no way to ensure that the distribution
of processes across processors will follow the same pattern for different jobs).

Currently, CP uses the “collected” format; PWscf uses the “distributed” format, but has the
option to write the final data file in “collected” format (input variable wf collect) so that it
can be easily read by CP and by other codes running on a different number of processors.

In addition to the above, other restrictions to file interoperability apply: e.g., CP can read
only files produced by PWscf for the k = 0 case.

The directory for data is specified in input variables outdir and prefix (the former can
be specified as well in environment variable ESPRESSO TMPDIR): outdir/prefix.save. A
copy of pseudopotential files is also written there. If some processor cannot access the data
directory, the pseudopotential files are read instead from the pseudopotential directory specified
in input data. Unpredictable results may follow if those files are not the same as those in the
data directory!

IMPORTANT: Avoid I/O to network-mounted disks (via NFS) as much as you can! Ideally
the scratch directory outdir should be a modern Parallel File System. If you do not have any,
you can use local scratch disks (i.e. each node is physically connected to a disk and writes to
it) but you may run into trouble anyway if you need to access your files that are scattered in
an unpredictable way across disks residing on different nodes.

You can use input variable disk io to reduce the the amount of I/O done by pw.x. Since
v.5.1, the dafault value is disk io=’low’, so the code will store wavefunctions into RAM and
not on disk during the calculation. Specify disk io=’medium’ only if you have too many k-
points and you run into trouble with memory; choose disk io=’none’ if you do not need to
keep final data files.

For very large cp.x runs, you may consider using wf collect=.false., memory=’small’
and saverho=.false. to reduce I/O to the strict minimum.

3.4 Tricks and problems

Many problems in parallel execution derive from the mixup of different MPI libraries and run-
time environments. There are two major MPI implementations, OpenMPI and MPICH, coming
in various versions, not necessarily compatible; plus vendor-specific implementations (e.g. In-
tel MPI). A parallel machine may have multiple parallel compilers (typically, mpif90 scripts
calling different serial compilers), multiple MPI libraries, multiple launchers for parallel codes

25

(different versions of mpirun and/or mpiexec). You have to figure out the proper combination
of all of the above, which may require using command module or manually setting environment
variables and execution paths. What exactly has to be done depends upon the configuration
of your machine. You should inquire with your system administrator or user support (if avail-
able; if not, YOU are the system administrator and user support and YOU have to solve your
problems).

Always verify if your executable is actually compiled for parallel execution or not: it is
declared in the first lines of output. Running several instances of a serial code with mpirun or
mpiexec produces strange crashes.

Trouble with input files Some implementations of the MPI library have problems with
input redirection in parallel. This typically shows up under the form of mysterious errors when
reading data. If this happens, use the option -i (or -in, -inp, -input), followed by the input
file name. Example:

pw.x -i inputfile -nk 4 > outputfile

Of course the input file must be accessible by the processor that must read it (only one processor
reads the input file and subsequently broadcasts its contents to all other processors).

Apparently the LSF implementation of MPI libraries manages to ignore or to confuse even
the -i/in/inp/input mechanism that is present in all Quantum ESPRESSO codes. In this
case, use the -i option of mpirun.lsf to provide an input file.

Trouble with MKL and MPI parallelization If you notice very bad parallel performances
with MPI and MKL libraries, it is very likely that the OpenMP parallelization performed by
the latter is colliding with MPI. Recent versions of MKL enable autoparallelization by default
on multicore machines. You must set the environment variable OMP NUM THREADS to 1 to
disable it. Note that if for some reason the correct setting of variable OMP NUM THREADS
does not propagate to all processors, you may equally run into trouble. Lorenzo Paulatto (Nov.
2008) suggests to use the -x option to mpirun to propagate OMP NUM THREADS to all
processors. Axel Kohlmeyer suggests the following (April 2008): ”(I’ve) found that Intel is now
turning on multithreading without any warning and that is for example why their FFT seems
faster than FFTW. For serial and OpenMP based runs this makes no difference (in fact the
multi-threaded FFT helps), but if you run MPI locally, you actually lose performance. Also
if you use the ’numactl’ tool on linux to bind a job to a specific cpu core, MKL will still try
to use all available cores (and slow down badly). The cleanest way of avoiding this mess is to
either link with

-lmkl intel lp64 -lmkl sequential -lmkl core (on 64-bit: x86 64, ia64)
-lmkl intel -lmkl sequential -lmkl core (on 32-bit, i.e. ia32)

or edit the libmkl ’platform’.a file. I’m using now a file libmkl10.a with:

GROUP (libmkl_intel_lp64.a libmkl_sequential.a libmkl_core.a)

It works like a charm”. UPDATE: Since v.4.2, configure links by default MKL without
multithreaded support.

26

Trouble with compilers and MPI libraries Many users of Quantum ESPRESSO, in
particular those working on PC clusters, have to rely on themselves (or on less-than-adequate
system managers) for the correct configuration of software for parallel execution. Mysteri-
ous and irreproducible crashes in parallel execution are sometimes due to bugs in Quantum
ESPRESSO, but more often than not are a consequence of buggy compilers or of buggy or
miscompiled MPI libraries.

27

	Introduction
	People
	Contacts
	Guidelines for posting to the mailing list
	Terms of use

	Installation
	Download
	Prerequisites
	configure
	Manual configuration

	Libraries
	Compilation
	Running tests and examples
	Installation tricks and problems
	All architectures
	Intel Xeon Phi
	Cray machines
	IBM AIX
	IBM BlueGene
	Linux PC
	Linux PC clusters with MPI
	Mac OS

	Parallelism
	Understanding Parallelism
	Running on parallel machines
	Parallelization levels
	Understanding parallel I/O

	Tricks and problems

