

Introduction to Digital Signal Processing

This Page Intentionally Left Blank

Essential Electronics Series

Introduction to Digital Signal Processing

Bob Meddins
School of Information Systems
University of East Anglia, UK

Newnes
OXFORD AUCKLAND BOSTON JOHANNESBURG MELBOURNE NEW DELHI

Newnes an imprint of Butterworth-Heinemann
Linacre House, Jordan Hill, Oxford OX2 8DP
225 Wildwood Avenue, Woburn, MA 01801-2041
A division of Reed Educational and Professional Publishing Ltd

" ~ A member of the Reed Elsevier plc group

First published 2000

�9 2000 Bob Meddins

All rights reserved. No part of this publication may be reproduced or
transmitted in any form or by any means, electronically or mechanically,
including photocopying, recording or any information storage or retrieval
system, without either prior permission in writing from the publisher or a
licence permitting restricted copying. In the United Kingdom such licences
are issued by the Copyright Licensing Agency: 90 Tottenham Court Road,
London W 1P 0LP.

Whilst the advice and information in this book are believed to be true and
accurate at the date of going to press, neither the author nor the publisher
can accept any legal responsibility or liability for any errors or omissions
that may be made.

British Library Cataloguing in Publication Data
A catalogue record for his book is available from the British Library

ISBN 0 7506 5048 6

Typeset in 10.5/13.5 New Times Roman by Replika Press Pvt Ltd,
100% EOU, Delhi 110 040, India
Printed and bound in Great Britain by MPG Books, Bodmin.

LANT A
E

FOR EVERY TITLE THAT WE PUBLISH, BUTTERWORTH-HEINEMANN
WILL PAY FOR BTCV TO PLANT AND CARE FOR A TREE.

Series Preface

In recent years there have been many changes in the structure of undergraduate
courses in engineering and the process is continuing. With the advent of
modularization, semesterization and the move towards student-centred learning
as class contact time is reduced, students and teachers alike are having to adjust
to new methods of learning and teaching.

Essential Electronics is a series of textbooks intended for use by students on
degree and diploma level courses in electrical and electronic engineering and
related courses such as manufacturing, mechanical, civil and general engineering.
Each text is complete in itself and is complementary to other books in the series.

A feature of these books is the acknowledgement of the new culture outlined
above and of the fact that students entering higher education are now, through no
fault of their own, less well equipped in mathematics and physics than students
of ten or even five years ago. With numerous worked examples throughout, and
further problems with answers at the end of each chapter, the texts are ideal for
directed and independent learning.

The early books in the series cover topics normally found in the first and
second year curricula and assume virtually no previous knowledge, with mathematics
being kept to a minimum. Later ones are intended for study at final year level.

The authors are all highly qualified chartered engineers with wide experience
in higher education and in industry.

R G Powell
Jan 1995

Nottingham Trent University

To the memory of
my father

John Reginald (Reg) Meddins
(1914-1974)

and
our son

Huw
(1977-1992)

Contents

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19

Preface
Acknowledgements

Chapter 1 The basics
Chapter preview
Analogue signal processing
An alternative approach
The complete DSP system
Recap
Digital data processing
The running average filter
Representation of processing systems
Self-assessment test
Feedback (or recursive) filters
Self-assessment test
Chapter summary
Problems

Chapter 2 Discrete signals and systems
Chapter preview
Signal types
The representation of discrete signals
Self-assessment test
Recap
The z-transform
z-Transform tables
Self-assessment test
The transfer function for a discrete system
Self-assessment test
MATLAB and signals and systems
Recap
Digital signal processors and the z-domain
FIR filters and the z-domain
IIR filters and the z-domain
Self-assessment test
Recap
Chapter summary
Problems

xi
xii

1
1
1
2
3
7
7
7
9

10
10
12
13
13

16
16
16
17
21
21
22
24
24
24
28
29
30
31
33
34
38
39
39
40

viii Contents

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21

Chapter 3 The z-plane
Chapter preview
Poles, zeros and the s-plane
Pole-zero diagrams for continuous signals
Self-assessment test
Recap
From the s-plane to the z-plane
Stability and the z-plane
Discrete signals and the z-plane
Zeros
The Nyquist frequency
Self-assessment test
The relationship between the Laplace and z-transform
Recap
The frequency response of continuous systems
Self-assessment test
The frequency response of discrete systems
Unstable systems
Self-assessment test
Recap
Chapter summary
Problems

41
41
41
42
45
45
46
47
49
52
54
55
55
57
58
61
62
67
68
68
69
70

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22

Chapter 4 The design of IIR filters
Chapter preview
Filter basics
FIR and IIR filters
The direct design of IIR filters
Self-assessment test
Recap
The design of IIR filters via analogue filters
The bilinear transform
Self-assessment test
The impulse-invariant method
Self-assessment test
Pole-zero mapping
Self-assessment test
MATLAB and s-to-z transformations
Classic analogue filters
Frequency transformation in the s-domain
Frequency transformation in the z-domain
Self-assessment test
Recap
Practical realization of IIR filters
Chapter summary
Problems

71
71
71
73
73
78
79
79
79
84
84
89
89
91
92
92
94
95
97
97
98

100
100

Contents ix

5.1
5.2
5.3
5.4
5.5
5.6

5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20

Chapter 5 The design of FIR filters
Chapter preview
Introduction
Phase-linearity and FIR filters
Running average filters
The Fourier transform and the inverse Fourier transform
The design of FIR filters using the Fourier transform or
'windowing' method
Windowing and the Gibbs phenomenon
Highpass, bandpass and bandstop filters
Self-assessment test
Recap
The discrete Fourier transform and its inverse
The design of FIR filters using the 'frequency sampling' method
Self-assessment test
Recap
The fast Fourier transform and its inverse
MATLAB and the FFT
Recap
A final word of warning
Chapter summary
Problems

102
102
102
102
106
107

110
116
118
118
119
119
124
128
128
128
132
134
134
135
135

Answers to self-assessment tests and problems
References and bibliography
Appendix A Some useful Laplace and z-transforms
Appendix B Frequency transformations in the
s- and z - domains
Index

137
153
155

156
159

This Page Intentionally Left Blank

Preface

As early as the 1950s, designers of signal processing systems were using digital
computers to simulate and test their designs. It didn't take too long to realize that
the digital algorithms developed to drive the simulations could be used to carry
out the signal processing directly - and so the digital signal processor was born.
With the incredible development of microprocessor chips over the last few decades,
digital signal processing has become a hugely important topic. Speech synthesis
and recognition, image and music enhancement, robot vision, pattern recognition,
motor control, spectral analysis, anti-skid braking and global positioning are just
a few of the diverse applications of digital signal processors.

Digital signal processing is a tremendously exciting and intriguing area of
electronics but its essentially mathematical nature can be very off-putting to the
newcomer. My goal was to be true to the title of this book, and give a genuine
introduction to the topic. As a result, I have attempted to give good coverage of
the essentials of the subject, while avoiding complicated proofs and heavy maths
wherever possible. However, references are frequently made to other texts where
further information can be found, if required. Each chapter contains many worked
examples and self-assessment exercises (along with worked solutions) to aid
understanding. The student edition of the software package, MATLAB, is used
throughout, to help with both the analysis and the design of systems. Although it
is not essential that you have access to this package, it would make the topic more
meaningful as it will allow you to check your solutions to some of the problems
and also try out your own designs relatively quickly. I have not included a tutorial
on MATLAB as there are many excellent texts that are dedicated to this. A
reasonable level of competence in the use of some of the basic mathematical
tools of the engineer, such as partial fractions, complex numbers and Laplace
transforms, is assumed.

After working through this book, you should have a clear understanding of the
principles of the digital signal processor and appreciate the cleverness and flexibility
of the device. You will also be able to design digital filters using a variety of
techniques. By the end of the book you should have a sound basis on which to
build, if you intend embarking on a more advanced or specialized course.

Bob Meddins
Norwich, 2000

Acknowledgements

Thanks are due to the lecturers who originally introduced me to the mysteries of
this topic and to the numerous authors whose books I have referred to over the
years. Thanks also to the many students who have made my teaching career so
sat isfying- I have learned much from them.

Special thanks are due to Sign Jones of Butterworth-Heinemann, who guided
me through the project with such patience and good humour. I am also indebted
to the team of anonymous experts who had the unenviable task of reviewing the
book at its various stages. I am grateful to Simon Nicholson, a postgraduate
student at the University of East Anglia, who gave good advice on particular
aspects of MATLAB, and also to several staff at the MathWorks, MATLAB
helpdesk, who responded so rapidly to my e-mail cries for help!

Finally, special thanks to my wife, Brenda, and daughter, Cathryn, for their
unstinting encouragement and support.

1 The basics

1.1 CHAPTER PREVIEW

In this first chapter you will be introduced to the basic principles of digital signal
processing (DSP). We will look at how digital signal processing differs from the
more conventional analogue signal processing and also at its many advantages.
Some simple digital processing systems will be described and analysed. The
main aim of this chapter is to set the scene and give a feel for what digital signal
processing is all about - most of the topics mentioned will be revisited, and dealt
with in more detail, in other chapters.

1.2 ANALOGUE SIGNAL PROCESSING

You are probably very familiar with analogue signal processing. Some obvious
examples of this type of processing are amplification, rectification and filtering.
With all analogue processing, signals enter a system, are processed by passing
them through circuits containing capacitors, resistors, inductors, op amps, transistors
etc. They are then outputted from the system with a different shape or size. Figure
1.1 shows a very elementary example of an analogue signal processing system,
consisting of just a resistor and a capacitor- you will probably recognize it as a
simple type of lowpass filter. Analogue signal processing circuits are commonplace
and have been very important system building blocks since the early days of
electrical engineering.

R

I 1

Input
voltage

Processed
~ output

voltage

Figure 1.1

Unfortunately, as useful as they are, analogue processing systems do have
major defects. An obvious one is that they have to be physically modified if the
processing needs to be changed. For example, if the gain of an amplifier has to
be increased, then this usually means that at least a resistor has to be changed.

2 The basics

What if a different cut-off frequency is required for a filter or, even worse, we
want to replace a highpass filter with a lowpass filter? Once again, components
must be changed. This can be very inconvenient to say the least- it's bad enough
when a single system has to be adjusted but imagine the situation where a batch
of several thousand is found to need modifying. How much better if changes
could be achieved by altering a parameter or two in a computer p r o g r a m . . .

Another problem with analogue systems is that of 'repeatability'. It is very
unlikely that two analogue systems will have identical performances, even though
they have been made in exactly the same way, with supposedly the same value
components. This is mainly because of component tolerances. Analogue devices
have two further disadvantages. The first is that their components age and so the
device performance changes. The other is that components are also affected by
temperature changes.

1.3 AN ALTERNATIVE APPROACH

So, having slightly dented the reputation of analogue processors, what's the
alternative? Luckily, signal processing systems do exist which work in a completely
different way and do not have these problems. A major difference is that these
systems first sample, at regular intervals, the signal to be processed (Fig. 1.2).
The sampled voltages are then converted to equivalent binary values, using an

Analogue Sampled
signal values

Voltage __ / I t ,
t s S ~ ~ ~ ~ ~ ~

| --~ ~ Time Sampling
interval (Ts)

Figure 1.2

analogue-to-digital converter (Fig. 1.3). Next, these binary numbers are fed into
a digital processor, containing a particular program, which will change the samples.
The way in which the digital values are modified will obviously depend on the
type of signal processing required- for example, do we want lowpass or highpass
filtering and what cut-off frequency do we require? The transformed samples are
then outputted, via a digital-to-analogue converter, to produce the reconstituted
but processed analogue output signal.

Because computers can process data so quickly, the signal processing can be
done almost in 'real time', i.e. the processed output samples are fed out continuously,
almost in step with the corresponding input samples. Alternatively, the processed
data could be stored, perhaps on a chip or CD-ROM, and then read when required.

1.4 The complete DSP system 3

Digital
input

Current Analogue-, ~, Digital
I .CI input to-digital , ~_, , :_, processing sample (3.7 V) converter '1 -I~' unit

Digital
output

~ Current Digital-to- output
analogue vol tage
converter (2.2 V)

�9 ' Tt 7 V i �9
T " " i 2.2 V , =,

.

Prewous Prewous
input output
samples samples

Figure 1.3

By now, you've probably guessed that this form of processing is called digital
signal processing. Digital signal processing (DSP) does not have the drawbacks
of analogue signal processing, already mentioned. For example, the type of
processing required can be modified very easily - if the specification of a filter
needs to be changed then new parameters can simply be keyed into the DSP
system, i.e. the processing is programmable. The performance of a digital filter
is also constant, not changing with either time or temperature. DSP systems are
also inherently repeatable- if several DSP systems have been programmed to
process signals in a certain way then they will all behave identically. DSP systems
can also process signals in ways impossible for analogue systems.

To summarize:

�9 Digital signal processing systems are available that will do almost everything
that analogue signals can do, and much m o r e - 'versatile'.

�9 They can be easily changed- 'programmable'.

�9 They can be made to process signals identically- 'repeatable'.

�9 They are not affected by temperature or ageing- 'physically stable'.

1.4 THE COMPLETE DSP SYSTEM

The heart of the digital signal processing system, the analogue-to-digital converter
(ADC), digital processor and the digital-to-analogue converter (DAC), is shown
in Fig. 1.3. However, this sub-unit needs 'topping and tailing' in order to create
the complete system. An entire, general DSP system is shown in Fig. 1.4.

Ana o0ue Sampe Anao0ue
si~alin__~ Anti- and- to-digital

aliasing hold converter
filter device

Processed

II I analoguet~ ~ Digital Digital-to-II Recon- t
analogue ~-~ data converter I I struction processor filter

Figure 1.4

4 The basics

Each block will now be described briefly.

The anti-aliasing filter
If the analogue input voltage is not sampled frequently enough then this results
in something of a shambles. Basically, high frequency input signals will appear
as low frequency signals at the output, which will be very confusing to say the
least! This phenomenon is called aliasing. In other words, the high frequency
input signals take on another identity, or 'alias', on leaving the system.

To get a feel for the problem of aliasing, consider a sinusoidal signal, of fixed
frequency, which is being sampled every 7/8 of a period, i.e. 7T/8 (Fig. 1.5).
Having only the samples as a guide, it can be seen that the sampled signal appears
to have a much lower frequency than it really has.

Figure 1.5

In practice, a signal will not usually have a single frequency but will consist of
a very wide range of frequencies. For example, audio signals can contain frequency
components in the range of about 20 Hz to 20 kHz.

To prevent aliasing, it can be shown that the signal must be sampled at least
twice as fast as the highest frequency component.

This very important rule is known as the Nyquist criterion, or Shannon's
sampling theorem, after two distinguished pioneers from the world of signal
processing.

If this sampling rate cannot be achieved, perhaps because the components used
just cannot respond this quickly, then a lowpass filter must be used on the input
end of the system. This has the job of removing signal frequencies greater than
fs/2, where fs is the sampling frequency. This is the role of the anti-aliasing filter.
An anti-aliasing filter is therefore a lowpass filter with a cut-off frequency offs/2.

The important frequency of f s/2 is usually called the Nyquist frequency.

The sample-and-hold device

An ADC should not be presented with a changing voltage to convert. The changing
signal should be sampled and then this sampled voltage held while the conversion
is carried out (Fig. 1.6). (In practice, the sampled value is normally held until the

1.4 The complete DSP system 5

next sample is taken.) If the voltage is not kept constant during conversion then,
depending on the type of converter used, the digital output might not just be a
little inaccurate but could be absolute rubbish, bearing no relationship to the true
value.

Figure 1.6

Voltage

Sampled
value Analogue

signal

" - / 'Hol_~d' ti__me

" \ J r5

| |

.-'. :~ Time
Sampling
period (Ts)

At the heart of the sample-and-hold device is a capacitor (Fig. 1.7). The
electronic switch, S, is closed, causing the capacitor to charge to the current value
of the input voltage. After a brief time interval the switch is reopened, so keeping
the sampled voltage across the capacitor constant while the ADC carries out its
conversion. The complete sample-and-hold device usually includes a voltage
follower at both the input and the output of the basic system shown in Fig. 1.7.
The characteristically low output impedance and high input impedance of the
voltage followers ensure that the capacitor is charged very quickly by the input
voltage and discharges very slowly through the ADC connected to its output, so
maintaining the stored voltage.

/

s I na~ I T input C Sampled
voltage output

To ADC

Figure 1.7

The analogue-to-digital converter

This converts the steady, sampled voltage, supplied by the sample-and-hold device,
to an equivalent digital value in preparation for processing. The more output bits
the converter has, the finer the resolution of the device, i.e. the smaller is the
voltage change represented by the least significant output bit changing from 0 to
1 or from 1 to 0.

6 The basics

You are probably aware that there are many different types of ADC available.
However, some of these are too slow for most DSP applications, e.g. single- and
dual-slope and the basic counter-feedback versions. An ADC widely used in DSP
systems is the sigma-delta converter. If you feel the need to do some extra
reading in order to brush up on ADCs then some keywords to look out for are:
single-slope, dual-slope, counter-feedback, successive approximation, flash, tracking
and sigma-delta converters and also converter resolution. Millman and Grabel
(1987) is just one of many books that give a good general treatment, while
Marven and Ewers (1994) and also Proakis and Manolakis (1996) are two texts
that give good coverage of the sigma-delta converter.

The processor

This could be a general-purpose microprocessor chip, but this is unlikely. The
data processing part of a purpose-built DSP chip is designed to be able to do a
limited number of fairly simple operations, in particular addition and multiplica-
tion, but they do these exceptionally quickly. Most of the major chip-producing
companies have developed their own DSP chips, e.g. Motorola, Texas Instruments
and Analog Devices, and their user manuals are obvious reference sources for
further reading.

The digital-to-analogue converter

This converts the processed digital value back to an equivalent analogue voltage.
Common types are the 'weighted resistor' and the 'R-2R' ladder converters,
although the weighted resistor version is not a practical proposition, as it cannot
be fabricated sufficiently accurately as an integrated circuit. Details of these two
devices can be found in Millman and Grabel (1987), while Marven and Ewers
(1994) describes the more sophisticated 'bit-stream' DAC, often used in DSP
systems.

The reconstruction filter

As the anti-aliasing filter ensures that there are no frequency components greater
than fJ2 entering the system, then it seems reasonable that the output signal will
also have no frequency components greater thanfJ2. However, this is not so! The
output from the DAC will be 'steppy' because the DAC can only output certain
voltage values. For example, an 8-bit DAC will have 256 different output voltage
levels going from perhaps-5 V to +5 V. When this quantized output is analysed,
frequency components off~, 2f~, 3f~, 4f~ etc. (harmonics of the sampling frequency)
are found. The very action of sampling and converting introduces these harmonics
of the sampling frequency into the output signal. It is these harmonics which give
the output signal its steppy appearance. The reconstruction filter is a lowpass
filter having a cut-off frequency offJ2, and is used to filter out these harmonics
and so smooth the output signal.

1.7 The running average filter 7

1.5 RECAP

Analogue signal processing systems have a variety of disadvantages, such as
components needing to be changed in order to change the processor function,
inaccuracies due to component ageing and temperature changes, processors
built in the same way not performing identically.

Digital processing systems do not suffer from the problems above.

Digital signal processing systems sample the input signal and convert the
samples to equivalent digital values. These values are processed and the resulting
digital outputs converted back to analogue voltages. This series of discrete
voltages is then smoothed to produce the processed analogue output.

The analogue input signal must be sampled at a frequency which is at least
twice as high as its highest frequency component, otherwise 'aliasing' will
take place.

1.6 DIGITAL DATA PROCESSING

For the rest of this chapter we will concentrate on the processing of the digital
values by the digital data processing un i t - this is where the clever bit is done!

So, how does it all work? The digital data processor (Fig. 1.4) is constantly
being bombarded with digital values, one following the other at regular intervals.
Its job is to output a suitable digital number in response to each digital input. This
is something of an achievement as all that the processor has to work with is the
current input value and the previous input and output samples. Somehow it
has to use these to generate the output value corresponding to the current input
value.

The mechanics of what happens is surprisingly simple. First, a number of the
previous input and/or output values are stored in special data storage registers,
the number stored depending on the nature of the signal processing to be done.
Weighted versions of these stored values are then added to (or subtracted from)
the current input sample to generate the corresponding output value - the actual
algorithm obviously depending on the type of signal processing required. It is
this processing algorithm which is at the heart of the whole system - arriving at
this can be a very complicated business! This is something we will examine in
detail in later chapters. Here we will look at some fairly simple examples of
processing, just to get a feel for what is involved.

1.7 THE RUNNING AVERAGE FILTER

A good example to start with is the running (or moving) average filter. This
processing system merely outputs a value which is the average of the current
input and a particular number of the previous input samples.

8 The basics

As an example, consider a simple running average filter that averages the
current input and the last three input samples. Let's assume that the sampled
input values are as shown in Table 1.1, where T represents the sampling period.

Table 1. l

Time Input sample

0 2
T 1
2T 4
3T 5
4T 7
5T l0
6T 8
7T 7
8T 4
9T 2

As we need to average the current sample and the previous three input samples,
the processor will clearly need three registers to store the previous input samples,
the contents of these registers being updated every time a new sample is taken.
For simplicity, we will assume that these three registers have initially been reset,
i.e. they contain the value zero.

The following sequence shows how the first three samples of '2' , '1 ' , and '4'
are processed:

Time = O, input sample = 2

Current
sample Reg I

r -1

2
. i

�9 Output value= 2 + 0 + 0 + 0 = 0 . 5
4

Reg 2 Reg 3

Time = T, input sample = 1

Current
sample Reg I Reg 2 Reg 3

1 2
i_ _1

i.e. the previous input sample of '2' has now been shifted to
storage register 'Reg 1'

1 + 2 + 0 + 0 �9 Output value = = 0.75
4

1.8 Representation of processing systems 9

Time = 2T, input sample = 4

Current
sample Reg I Reg 2 Reg 3

1 4 ~ 1 [I 2 I

4 + 1 + 2 + 0 �9 = 1.75 Output value = 4

and so on.
Table 1.2 shows all of the output values - check that you agree with them

before moving on.

Table 1.2

Time Input sample Output sample

0 2 0.5
T 1 0.75
2T 4 1.75
3T 5 3.00
4T 7 4.25
5T l0 6.50
6T 8 7.50
7T 7 8.00
8T 4 7.25
9T 2 5.25

N.B.1 The first three output values of 0.5, 0.75 and 1.75, represent the initial 'transient', i.e. the part
of the output signal where the initial three zeros are being shifted out of the three storage
registers. The output values are only valid once these initial zeros have been cleared out of the
storage registers.

N.B.2 A running average filter tends to smooth out any rapid changes in a signal and so is a form of
lowpass filter.

1.8 REPRESENTATION OF PROCESSING SYSTEMS

The running average filter, just discussed, could be represented by the block
diagram shown in Fig. 1.8. Each of the three 'T' blocks represent a time delay of
one sample period, while the '~ ' box represents the summation of the four values.
The '0.25' triangle is an attenuator which ensures that the average of the four
values is outputted and not just the sum. So A is the current input divided by four,
B the previous input, again divided by four, C the input before that, again divided
by four etc. If we catch the system at 6T say, then, from Table 1.2, A = 8/4,
B = 10/4, C = 7/4 and D = 5/4, giving the output of 7.5, i.e. A + B + C + D.

N.B. The division by four could have been done after the summation rather than before, and this might
seem the obvious thing to do. However, the option used is preferable as it means that, as we are
processing smaller numbers, i.e. numbers already divided by four, we can get away with using
smaller registers during processing. Here there were only four numbers to be added, but what if

10 The basics

Input
value = ~ A

21
"-I

~ Output
value

Figure 1.8

there had been a thousand? Dividing before addition, rather than after, would clearly makes a huge
difference to the size of the registers needed.

1.9 SELF-ASSESSMENT TEST

Calculate the corresponding output samples if the sampled signal, shown in Fig.
1.9, is passed through a running average filter. The filter averages the current
input sample and the previous two samples. Assume that the two processor storage
registers needed are initially reset, i.e. contain the value zero. (The worked solution
is given towards the end of the book.)

Input
value

8

6

4

2 - ' "

.'A
s

s

s
t

t

t

/

t
s

, ~ [' ,
t

n

i x s S

t ~ s
s

i ~ s

t , , s S

" - - ' i h, i i ,

0 T 2T 3T 4T 5T 6T 7T 8T 9T
Time

Figure 1.9

1.10 FEEDBACK (OR RECURSIVE) FILTERS

So far we have only met filters which make use of previous inputs. There is
nothing to stop us from using the previous outputs instead- in fact, much more
useful filters can be made in this way. A simple example is shown in Fig. 1.10.

Because it is the previous output values which are fed back into the system and
added to the current input, these filters are called feedback or recursive filters.
Another name very commonly used is infinite impulse response filters - the
reason for this particular name will become clear later.

As we know, the T boxes represent time delays of one sampling period, and so
A is the previous output and B the one before that. It is often useful to think of

1.10 Feedback (or recursive) filters 11

Data
in

Data
out

B

Figure 1.10

these boxes as the storage registers for the previous outputs, with A and B being
their contents.

From Fig. 1.10 you should see that:

Data out = Data i n - 0.4A + 0.2B (1.1)

This is the simple processing that the digital processor needs to do for every input
sample.

Imagine that this particular recursive filter is supplied with the data shown in
Table 1.3, and that the two storage registers needed are initially reset.

Table 1.3

Time Input A B Output
data data

0 10 0.0 0.0 10.0
T 15 10.0 0.0 11.0
2T 20 11.0 10.0 17.6
3T 15 17.6 11.0 10.2
4T 8 10.2 17.6 7.5
5T 6 7.5 10.2 5.1
6T 9 5.1 7.5 8.5
7T 0 8.5 5.1 -2.4
8T 0 -2.4 8.5 2.7
9T 0 2.7 -2.4 -1.53

From equation (1.1), as both A and B are initially zero, the first output must be the
same as the input value, i.e. '10'.

By the time the second input of 15 is received the previous output of 10 has
been shifted into the storage register, appearing as 'A' (Table 1.3). In the meantime,
the previous A value (0) has been moved to B, while the previous value of B has
been shifted right out of the system and lost, as it is no longer of any use.

So, when time - T, we have:

12 The basics

Input data = 15, A = 10, B = 0

From equation (1.1), the new output value is given by:

1 5 - 0 . 4 x 1 0 + 0 . 2 x 0 = 11

In preparation for generating the next output value, the current output of 11 is
now shifted to A, the A value of 10 having already been moved to B. The third
output value is therefore given by:

2 0 - 0 . 4 x l l + 0 . 2 x 10= 17.6

Before moving on it's best to check through the rest of Table 1.3 for yourself.
(Spreadsheets lend themselves well to this application.)

You will notice from Table 1.3 that we are getting outputs even when the input
values are zero (at times 7T, 8T and 9T). This makes sense as, at time 7T, we are
pushing the previous output value of 8.5 back through the system to produce the
next output of-2.4 . This output value is, in turn, fed back into the system, and so
on. Theoretically, the output could continue for ever, i.e. even if we put just a
single pulse into the system we could get output values, every sampling period,
for an infinite time. This explains the alternative name of infinite impulse response
(IIR) filter for feedback filters. Note that this persisting output will not happen
with processing systems which use only the input samples (' non- recurs ive ') -
with these, once the input stops, the output will continue for only a finite time. To
be more specific, the output samples will continue for a time of N x T, where N
is the number of storage registers. This is why filters which make use of only the
previous inputs are often called finite impulse response (FIR) filters (pronounced
'F-I-R'), for short. A running average filter is therefore an example of an FIR
filter. (Yet another name used for this type of filter is the transversal filter.)

IIR filters require fewer storage registers than equivalent FIR filters. For example,
a particular highpass FIR filter might need 100 registers but an equivalent IIR
filter might need as few as three or four. However, I must add a few words of
warning here, as there are drawbacks to making use of the previous outputs. As
with any system which uses feedback, we have to be very careful during the
design as it is possible for the filter to become unstable. In other words, instead
of acting as a well-behaved system, processing our signals in the required way,
we might find that the output values very rapidly shoot up to the maximum
possible and sit there. Another possibility is that the output oscillates between the
maximum and minimum values. Not a pretty sight! We will look at this problem
in more detail in later chapters.

So far we have looked at systems which make use of either previous inputs or
previous outputs only. This restriction is rather artificial as, generally, the most
effective DSP systems use both previous inputs and previous outputs.

1.11 SELF-ASSESSMENT TEST

As has just been mentioned, DSP systems often make use of previous inputs and
previous outputs. Figure 1.11 represents such a system.

1.13 Problems 13

Data
in

AI
f

Figure 1.11

C

Data
out

(a) Derive the equation which describes the processing performed by the system,
i.e. relates the output value to the corresponding input value.

(b) If the input sequence is 3, 5, 6, 6, 8, 10, 0, 0 determine the corresponding
output values. Assume that the three storage registers needed (one for the
previous input and two for the previous outputs) are initially reset, i.e. contain
the value zero.

1.12 CHAPTER SUMMARY

Hopefully, you now have a reasonable understanding of the basics of digital
signal processing. You should also realize that this type of signal processing is
achieved in a very different way from 'traditional' analogue signal processing. In
this chapter we have concentrated on the heart of the DSP system, i.e. the part
that processes the digital samples of the original analogue signal. Several processing
systems have been analysed. At this stage it will not be clear how these systems
are designed to achieve a particular type of signal processing, or even the nature
of the signal processing being carried out. This very important aspect will be
dealt with in more detail in later chapters. We have met finite impulse response
filters (those that make use of previous input samples only, such as running
average filters) and also infinite impulse response filters (also called feedback or
recursive filters) - these make use of the previous output samples. Although 'IIR'
systems generally need fewer storage registers than equivalent 'FIR' systems, IIR
systems can be unstable if not designed correctly, while FIR systems will never
be unstable.

1.13 PROBLEMS

1 Describe, briefly, four problems associated with analogue signal processing
systems but not with digital signal processing systems.

14 The basics

Data
in Data

out

Figure 1.12

Data
in

AI

"7

Data
out

Figure 1.13

2 'An FIR filter generally needs more storage registers than an equivalent IIR
filter.' True or false?

3 A running average filter has a frequency response which is similar to that of:

(a) a lowpass filter;

(b) a highpass filter;

(c) a bandpass filter;

(d) a bandstop filter.

4 What are two alternative names for IIR filters?

5 'Once an input has been received, the output from a running average filter
can, theoretically, continue for ever.' True or false?

Data
in

IB

Figure 1.14

10

1.13 Problems 15

Data
out

6 'An FIR filter can be unstable if not designed correctly.' True or false?

7 A signal is sampled for 4 s by an 8-bit ADC at a sampling frequency of
10 kHz. The samples are stored on a memory chip.

(a) What is the minimum memory required to store all of the samples?

(b) What should be the highest frequency component of the signal?

8 If the sequence 3, 5, 7, 6, 3, 2 enters the processor shown in Fig. 1.12, find
the corresponding outputs.

9 The sequence 2, 3, 5, 4 is inputted to the processing system of Fig. 1.13. Find
the first six outputs.

A single input sample of '1', enters the system of Fig. 1.14. Find the first
eight output values. Is there something slightly worrying about this system?

2 Discrete signals and
systems

2.1 CHAPTER PREVIEW

In this chapter we will look more deeply into the nature and properties of discrete
signals and systems. We will first look at a way of representing discrete signals
in the time domain. You will then be introduced to the z-transform, which will
allow us to move from the time domain and enter the z-domain. This very powerful
transform is to discrete signals what the Laplace transform is to continuous
signals. It allows us to analyse and design discrete systems much more easily
than if we were to remain in the time domain. Recursive and non-recursive filters
will be revisited in this new domain. We will also look at how the software
package, MATLAB, can be used to help with the analysis of discrete processing
systems.

2.2 SIGNAL TYPES

Before we start to look at discrete signals in more detail, it's worth briefly
reviewing the different categories of signals.

Continuous-time signals
This is the type of signal produced when we talk or sing, or by a musical instrument.
It is 'continuous' in that it is present at all times during the talking or the singing.
For example, if a note is played near a microphone then the output voltage from
the microphone might vary as shown in Fig. 2.1. Clearly, continuous does not
mean that it goes on for ever! Other examples would be the output from a signal
generator when used to produce sine, square, triangular waves etc. They are
strictly called continuous-time, analogue signals.

Discrete-time signals
These, on the other hand, are defined at particular or discrete instants o n l y - they
are usually sampled signals. Some simple examples would be the distance travelled
by a car, atmospheric pressure, the temperature of a process, audio signals, but all
recorded at certain times. The signal is often defined at regular time intervals.
For example, atmospheric pressure might be sampled at the same time each day
(Fig. 2.2), whereas an audio signal would obviously have to be sampled much

Voltage

Time

2.3 The representation of discrete signals 17

Figure 2.1

more frequently, perhaps every 10/Is, in order to produce a reasonable representation
of the signal. (The audio signal could contain frequency components of up to
20 kHz and so, to prevent aliasing, it must be sampled at a minimum of 40 kHz,
i.e. at least every 25/~s.)

Digital signals
This term is used to describe a discrete-time signal where the sampled, analogue
values have been converted to their equivalent digital values. For example, if the
pressure values of Fig. 2.2 are to be automatically processed by a computer then,
clearly, they will first need to be changed to equivalent voltage values by means
of a suitable transducer. An ADC is then needed to convert the resulting voltages
to a series of digital values. It is this series of numbers that constitutes the digital
signal.

Pressure

T 2T 3T 4T 5T 6T 7T 8T 9T10T
Sampling period (T) = 1 day

Figure 2.2

2.3 THE REPRESENTATION OF
DISCRETE SIGNALS

Before we can start to consider d i s c r e t e signal processing in detail, we need to
have some shorthand way of describing our signal. C o n t i n u o u s signals can usually
be represented by continuous mathematical expressions. For example, if a signal
is represented by y - 3 sin 4t, then you will recognize this as representing a sine
wave having an angular frequency, o), of 4 rad/s, and an amplitude of 3. If the
signal had been expressed as y - 3e -2t sin 4t, then this is again the same sinusoidal
variation but the signal is now decaying exponentially with time. More complicated

18 Discrete signals and systems

continuous signals, such as speech, are obviously much more difficult to express
mathematically, but you get the point.

Here we are mainly interested in discrete-time signals, and these are very
different, in that they are only defined at particular times. Clearly, some other
way of representing them is needed. If we had to describe the regularly sampled
signal shown in Fig. 2.3, for example, then a sensible way would be as 'x[n] = 1,
3, 2, 0, 2, 1 '. This method is fine and is commonly used. x[n] indicates a sequence
of values where n refers to the nth position in the sequence. So, for this particular
sequence, x[0] = 1, x[1] = 3, x[2] --- 2, and so on.

x [n]

.

2

1

-1 0 1 2 3 4 5
n

Figure 2.3

Some simpler signals can be expressed more succinctly. For example, how
about the sampled or discrete unit step shown in Fig. 2.4? Using the normal

x [n]

-1 0 1 2 3 4 5
n

Figure 2.4

convention, we could represent this as x[n] = 1, 1, 1, 1, 1, 1 However, as the
'1' continues indefinitely, a neater way would be as:

'x[n] = 1 for n > 0, else x[n] = O'

In other words, x[n] = 1 for n is zero or positive and is zero for all negative n

values.
Because of its obvious similarity to the continuous unit step, which is usually

indicated by u(t), the discrete unit step is often represented by the special symbol

u[n]:

u[n]- 1, 1, 1, 1, 1

2.3 The representation of discrete signals 19

Another simple but extremely important discrete signal is shown in Fig. 2.5. This
is the unit sample function or the unit sample sequence, i.e. a single unit pulse at
t - 0. (The importance of this signal will be explained in a later chapter.)

1

x[n]

I I I 3 I I I I
0 1 2 4 5 6 7

n

Figure 2.5

This sequence could be represented by x[n] = 1, 0, 0, 0, 0 or, more simply,
by:

'x[n] = 1 for n = 0, else x[n] = O'

This particular function is equivalent to the unit impulse or the Dirac delta
function, 6(t), from the 'continuous' world and is often called the Kronecker delta
function or the delta sequence. Because of this similarity it is very sensibly
represented by the symbol b'[n]:

5[n] = 1, 0, 0, 0

A delayed unit sample/delta sequence, for example, one delayed by two sample
periods (Fig. 2.6) is represented by 5[n- 2] where the ' -2 ' indicates a delay of
two sample periods.

5 [n - 2] - 0, 0, 1 , 0 , 0

x[n]

I I I I I I

0 1 2 3 4 5 6 7
n

Figure 2.6

Bewaret It might be tempting to use 8[n + 2] instead of 5 [n - 2], and this mistake
is sometimes made. To convince yourself that this is not correct, you need to start
by looking at the original, undelayed sequence. Here it is the zeroth term (n - 0)
which is 1, i.e. 6[0] - 1.

Now think about the delayed sequence and look where the '1' is. Clearly, this
is defined by n - 2. So, if we now substitute n - 2 into b'[n - 2], then we get
6 [2 - 2], i.e. 5[0]. So, once again, 6[0] -1 . On the other hand if, in error, we had
used '5[n + 2]' to describe the delayed delta sequence, then this is really stating

20 Discrete signals and systems

that 6[4] - 1, i.e. that it is the fourth term in the original, undelayed delta sequence
which is 1. This is clearly nonsense. Convinced?

Question
What shorthand symbol could you use to represent the discrete signal shown in
Fig. 2.7?

1
x[n]

0 1 2 3 7 8 4 5 6
n

Figure 2.7

Answer
Hopefully your answer is ' u [n - 3]', i.e. the signal is a discrete unit step, u[n], but delayed by three
sampling periods.

Example 2.1

An exponential signal, x (t) - 4e -2t, is sampled at a frequency of 10 Hz, beginning
at time t = 0.

(a) Express the sampled sequence, x [n] , up to the fifth term.

(b) If the signal is delayed by 0.2 s, what would now be the first five terms?

(c) What would be the resulting sequence if x [n] and the delayed sequence of
(b) above are added together?

S o l u t i o n

(a) As the sampling frequency is 10 Hz, then the sampling period is 0.1 s. It
follows that the value of the signal needs to be calculated every 0.1 s, i.e.:

Time (s) 0 0.1 0.2 0.3 0.4 0.5
x (t) - 4 e -2t 4.00 3.27 2.68 2.20 1.80 1.47

�9 x [n] - 4.00, 3.27, 2.68, 2.20, 1.80, 1.47

(b) If the signal is delayed by 0.2 s, i.e. two samples, then the first two samples
will be 0,

�9 x [n - 2] - 0, 0, 4.00, 3.27, 2.68 . . .

(c) As x [n] - 4.00, 3.27, 2.68, 2.20, 1.80, 1 .47 , . . . and x [n - 2] = 0, 0, 4.00, 3.27,
2.68

2.5 Recap 21

then

x[n] + x [n - 2] = 4.00, 3.27, 6.68, 5.47, 4 . 4 8 , . . . (first five terms only)

2.4 SELF-ASSESSMENT TEST

1 A signal, given by x(t) = 2 cos(3m), is sampled at a frequency of 20 Hz,
starting at time t = 0.

(a) Is the signal sampled frequently enough? (Hint: 'aliasing')

(b) Find the first six samples of the sequence.

(c) Given that the sampled signal is represented by x[n], how could the above
signal, delayed by four sample periods, be represented?

2 Two sequences, x[n] and win], are given by 2, 2, 3, 1 a n d - 1 , - 2 , 1 , - 4
respectively. Find the sequences corresponding to:

(a) x[n] + w[n];

(b) x[n] + 3(w[n - 2]);

(c) x[n] - 0.5(x[n - 1]).

3 Figure 2.8 shows a simple digital signal processor, the T block representing a
signal delay of one sampling period. The input sequence and the weighted,
delayed sequence at A are added to produce the output sequence y[n].

If the input sequence is x[n] = 2, 1, 3 , -1 , find:

(a) the sequence at A;

(b) the output sequence, y[n].

x[n] _1 -] y-

T]

y[n]

Figure 2.8

2.5 RECAP

A sampled signal can be represented by x[n] = 3, 5, 7, 2, 1 for example,
where 3 is the sample value at time = 0, 5 at time = T (one sampling period),
etc. If this signal is delayed by, say, two sampling periods, then this would be
shown as x [n - 2] = 0, 0, 3, 5, 7, 2, 1 , . . .

22 Discrete signals and systems

Important discrete signals are the discrete unit step u[n] (1, 1, 1, 1) and
the unit sample sequence, or delta sequence, b'[n] (1, O, O, 0).

Sequences can be delayed, scaled, added together, subtracted from each other,
etc.

2.6 THE z-TRANSFORM

So far we have looked at signals and systems in the time domain. Analysing
discrete processing systems in the time domain can be extremely difficult. You
are probably very familiar with the Laplace transform and the concepts of the
complex frequency s and the 's-domain' . If so you will appreciate that using the
Laplace transform, to work in the s-domain, makes the analysis and design of
continuous systems much easier than trying to do this in the time domain. Working
in the time domain can involve much unpleasantness such as having to solve
complicated differential equations and also dealing with the process of convolution.
These are activities to be avoided if at all possible!

In a very similar way the z-transform will make our task much easier when we
have to analyse and design discrete processing systems. It takes a process, which
can be extremely complicated, and converts it to one that is surprisingly simple

- the beauty of the simplification is always impressive to me!
Consider a general sequence

x[n] - x[O], x[1], x[2], x[3]

The z-transform, X(z), of x[n] is defined as"

X (z) - Z x[n]z-"
n=0

In other words, we sum the expression, x[n]z-" for n values between n - 0 and ~.
(The origin of this transform will be explained in the next chapter.)

Expanding the summation makes the definition easier to understand, i.e."

X (z) - x[0]z ~ + x[llz-1 + x[2]z -2 + X[3]Z -3 + . . .

As an example of the transformation, let's assume that we have a discrete
signal, x[n], given by x[n] - 3, 2, 5, 8, 4. The z-transform of this finite sequence

can then be expressed as"

X (z) - 3 + 2Z -1 + 5Z -2 + 8Z -3 -I-4Z -4

Very simply, we can think of the 'z -~' term as indicating a time delay of n
sampling periods. For example, the sample of value '3' arrives first at t - 0, i.e.
with no delay (n - 0 and z ~ - 1). This is followed, one sampling period later, by
the '2", and so this is tagged with z -~ to indicate its position in the sequence.
Similarly the value 5 is tagged with z -2 to indicate the delay of two sampling

2.6 The z-transform 23

periods. (There is more to the z operator than this, but this is enough to know for
now.)

Example 2.2

Transform the finite sequence x[n] - 2, 4, 3, 0, 6, 0, 1, 2 from the time domain
into the z-domain, i.e. find its z-transform.

Solution

From the definition of the z-transform:

X(z) - 2 + 4Z -1 + 3Z -2 + 0Z -3 + 6Z 4 + 0Z -5 + Z -6 Jr 2Z -7

o r

X(z) - 2 + 4Z -1 + 3Z -2 + 6Z -4 + Z -6 Jr 2Z -7

Example 2.3

Find the z-transform for the unit sample function, i.e. b'[n] - 1, 0, 0, 0

Solution

This one is particularly simple - it's just A(z) - 1"

l z ~ + Oz -1 Jr Oz -2 Jr . . .

If the sequence had been a unit sample function delayed by three sample periods,
for example, i.e. x[n] - 0 , 0, 0, 1, 0 then X (z) - z -3. Alternatively, this delayed,
unit sample function could be represented very neatly by z-3A(z).

Example 2.4

Find the z-transform for the discrete unit step, i.e. u[n] - 1, 1, 1, 1, 1, 1

Solution

U (z) - 1 Jr z -1 Jr z -2 Jr z -3 Jr z -4 Jr z - 5 . . .

N.B. The z-transform of the unit step can be expressed in the 'open form' shown above, and also in an
alternative 'closed form'.

The equivalent closed form is

U (z) = z
Z - 1

It is not obvious that the open and closed forms are equivalent, but it's fairly easy
to show that they are.

First divide the top and bottom by z, to give

U (z) - 1
-1 1 - Z

The next stage is to carry out a polynomial 'long division':

24 Discrete signals and systems

l + z - 1 + z - 2 + ...

1 - Z -1)1 + 0

1 - - Z - 1

-1
Z

-1
Z

+ 0

+ 0

_ Z -2

+ 0

Z - 2 + 0

Z - 2 Z-3

Z-3

This gives, 1 + Z -1 + Z -2 + . . . , showing that the open and closed two forms are
equivalent.

2.7 z-TRANSFORM TABLES

We have obtained the z-transforms for two important functions, the unit sample
function and the unit s t ep - others are rather more difficult to derive from first
principles. However, as with Laplace transforms, tables of z-transforms are available.
A table showing both the Laplace and z-transforms for several functions is given
in Appendix A. Note that the z-transforms for the unit sample function and the
discrete unit step agree with our expressions obtained earlier- which is encouraging!

2.8 SELF-ASSESSMENT TEST

1 By applying the definition of the z-transform, find the z-transforms for the
following sequences:

(a) 1, 2, 4, 0, 6;

(b) x[n] - n/(n + 1)2 for 0 < n < 3;

(c) the sequence given in (a) above but delayed by two sample periods;

(d) x[n] = e --O'2n for 0 < n < 3.

2 Given that the sampling frequency is 10 Hz, use the z-transform table of
Appendix A to find the z-transforms for the following functions of time, t:

(a) 3e-Zt; (b) 2 sin 3t; (c) te-Zt; (d) t (unit ramp).

2.9 THE TRANSFER FUNCTION FOR
A DISCRETE SYSTEM

As you are probably aware, if X(s) is the Laplace transform of the input to a

2.9 The transfer function for a discrete system 25

continuous system and Y (s) the Laplace transform of the corresponding output
(Fig. 2.9), then the system transfer function, T (s) , is defined as:

Y(s)
T (s) - X(s)

x(s) I Transfer
-- function -I T(S)

Y(s)
IP

Figure 2.9

In a similar way, if the z-transform of the input sequence to a discrete system is
X (z) and the corresponding output sequence is Y (z) (Fig. 2.10), then the transfer
function, T (z) , of the system is defined as:

Y(z)
T(z) - X(z)

X(z) ._l Transfer
-- function I T(z)

Y(z)
I i ,

Figure 2.10

The transfer function for a system, continuous or discrete, is an e x t r e m e l y important
expression as it allows the response to any input sequence to be derived.

Example 2.5
If the input to a system, having a transfer function of (1 + 2z -1 - Z - 2) , is a discrete
unit step, find the first four terms of the output sequence.

Solution

r (z)
T (z) - X (z)

.'. r(z) = T(z)S(z)

�9 ". Y (z) = (1 + 2z - 1 - z-2)(1 + Z -1 "1- Z -2 4- Z -3)

(As only the first four terms of the output sequence are required then we need
only show the first four of the input sequence.)

�9 ". Y (z) = 1 + z -1 + z -e + z -3 + 2z -1 + 2z -e + 2z - 3 - z - e - z-3 . . .

�9 ". Y (z) = 1 + 3z -1 + 2z -e + 2z -3 + . . .

i.e. the first four terms of the output sequence are 1, 3, 2, 2.

N.B. By working in the z-domain, finding the system response was fairly simple - it is reduced to the

26 Discrete signals and systems

multiplication of two polynomial functions. To have found the response in the time domain
would have been much more difficult.

E x a m p l e 2 . 6

When a discrete signal 1 , -2 is inputted to a processing system the output sequence
is 1 , - 5 , 8 , - 4 .

(a)

(b)

Derive the transfer function for the system.

Find the first three terms of the output sequence in response to the finite
input sequence of 2, 2, 1.

S o l u t i o n

(a) r (z)
T (z) - X(z)

.'. T (z) -
1 - 5z -1 + 8 z -2 - 4 Z -3

1 - 2 z -~

Carrying out a 'long division"

1 - 3 z -1

1 - 2 z -1)1 - 5 z -1

1 - 2 z -1

+ 2Z -2

4- 8Z -2 _ 4Z -3

_ 3Z -1 + 8Z -e

_ 3Z -~ + 6 Z -e

2z -e _ 4Z -3

2z- : - 4 z -3

(b)

i.e. T (z) - 1 - 3 z -1 + 2z -e

Y(z)
T (z) - X(z)

.'. r'(z) - T(z)X(z)

�9 ". Y (z) - (1 - 3z -1 + 2z-e)(2 + 2z -1 + z -e)

.'. Y (z) - 2 + 2 z -1 + z - e - 6 z -1 - 6 z -e + 4z -e

(All terms above z -e are ignored as only the first three terms of the output

sequence are required.)

�9 Y (z) - 2 - 4 z - 1 - z -e

i.e. the first three terms of the output sequence are 2, - 4 , - 1 .

2.9 The transfer function for a discrete system 27

E x a m p l e 2 .7

A processor has a transfer function, T(z), given by T(z) - 0.4/(z - 0.5). Find the
response to a discrete unit step (first four terms only).

Solution

We could solve this one in a similar way to the previous example, i.e. by first
dividing 0.4 by (z - 0.5) to get the first four terms of the open form of the transfer
function, and then multiplying by 1 + z -1 + z -2 + z -3. If you do this you should
find that the output sequence is 0, 0.4, 0.6, 0.7, to four terms.

However, there is an alternative approach, which avoids the need to do the
division. This method makes use of the z-transform tables to find the inverse z-

transform of Y(z).
Using the closed form, z / (z - 1), for u(z), we get:

Y(z) - z - 1 z - 0 . 5

We now need to find the inverse z-transform. The first thing we must do is use
the method of partial fractions to change the format of Y(z) into functions which
appear in the transform tables. (You might have used this technique before to find
inverse Laplace transforms.) For reasons which will be explained later, it's best
to find the partial fractions for Y(z)/z rather than Y(z). This is not essential but it
does make the process much easier. Once we have found the partial fractions for
Y(z)/z all we then need to do is multiply them by z, to get g(z):

Y(z) 0.4
z (z - 1)(z - 0.5)

Y(z) 0.4 A B
, ~ ~ - - - . ~

z (z - 1) (z - 0 . 5) (z - l) (z - 0 . 5)

Using the 'cover-up rule', or any other method, you should find that A - 0.8 and
B - - 0 . 8 .

Y(z) 0.8 0.8
z (z - l) (z - 0 . 5)

or Y (z) - 0.8z 0.8z
(z - 1) (z - 0.5)

Now z / (z - 1) is the z-transform of the unit step, and so 0.8z / (z - 1) must have the
inverse z-transform of 0.8, 0.8, 0.8, 0.8

The inverse transform of 0.8z/(z - 0.5) is slightly less obvious. Looking at the
tables, we find that the one we want is z / (z - e-aT).

Comparing with our expression, we see that 0.5 - e -aT. The function z/(z - e -aT)
inverse transforms to e -at or, as a sampled signal, to e -anT. As 0.5 - e -at, then our
function must inverse transform to 0.8(0.5~), i.e. to 0.8(0.5 ~ 0.5 ~, 0.5 2, 0.5 3)
or 0.8, 0.4, 0.2, 0.1, to four terms.

28 Discrete signals and systems

Subtracting this sequence from the '0.8' step, i.e. 0.8, 0.8, 0.8 gives the
sequence of 0, 0.4, 0.6, 0.7 to four terms.

N.B. 1 If we had found the partial fractions for Y(z), rather than Y(z)/z, then these would have had the
form of b/(z - 1), where b is a number. However, this expression does not appear in the z-
transform tables. This isn't an insurmountable problem but it is easier to find the partial fractions
for Y(z)/z and then multiply the resulting partial fractions by z to give a recognizable form.

N.B.2 It would not have been worth solving Example 2.5 in this way, as it would have involved much
more work than the method used. However, it is worth ploughing through it, just to demonstrate
the technique once again.

The transfer function here is 1 + 2z -~ - z -2 and the input a unit step"

z (1 + 2z -1 - - Z -2) .'. Y (z) - z - 1

o r

Y (z) - z Z 2 + 2 Z - 1 = Z 2 + 2 Z - 1
Z - 1 Z 2 Z (Z - 1)

i .e .

(using positive indices)

Y (z) = Z 2 + 2 z - 1 _ _ A + B + _ C C
Z Z 2 (z - 1) z - 1 z z 2

You should find that this gives A - 2, B - - 1 and C - 1.

Y(z) 2 1 1
z z - 1 z Z 2

o r

2z 1 + 1
Y (z) - z - 1 z

We could refer to the z-transform tables at this point but, by now, you should
recognize 2 z / (z - l) as the z-transform for a discrete 'double' step (2, 2, 2, 2, 2,
� 9 ' -1 ' for the unit sample sequence, but inverted, i.e. -1, 0, 0 and 1/z or
z -1, for the unit sample sequence, but delayed by one sampling period, i.e. 0, 1,
0 , 0 ,

Adding these three sequences together gives us l, 3, 2, 2, to four terms, which
is what we found using the alternative 'long division' method.

2.10 SELF-ASSESSMENT TEST

1 For a particular digital processing system, inputting the finite sequence x[n]
= (1 , -1) results in the finite output sequence of (1, 2 , - 1 , - 2) . Determine the
z-transforms for the two signals and show that the transfer function for the
processing system is given by T (z) - 1 + 3z -1 + 2z -2.

2 A digital processing system has the transfer function of (1 + 3z -1). Determine
the output sequences given that the finite sequences

(a) 1, 0, 2 and (b) 2, 3 , -1 are inputted to the system.

2.11 MA TLAB and signals and systems 2 9

A digital filter has a transfer function of z/(z - 0.6). Use z-transform tables to
find its response to (a) a unit sample function and (b) a discrete unit step
(first three terms only).

2.11 MATLAB AND SIGNALS AND SYSTEMS

In the previous section we looked at manual methods for finding the response of
various processing systems to different discrete inputs. Although it's important to
understand the process, in p rac t i ce it would be unusual to do this manually. This
is because there are plenty of software packages available that will do the work
for us. One such package is MATLAB. This is an excellent CAD tool which has
many applications ranging from the solution of equations and the plotting of
graphs to the complete design of a digital filter. The specialist MATLAB 'toolbox',
'Signals and Systems', will be used throughout the remainder of this book for the
analysis and design of DSP systems. Listings of some of the MATLAB programs
used are included. Clearly, it will be extremely useful if you have access to this
package.

Figure 2.11 shows the MATLAB display corresponding to Example 2.5, i.e.
for T(z) - 1 + 2z -1 - Z -2 and an input of a discrete unit step.

N.B. The output is displayed as a series of steps rather than the correct output of a sequence of pulses.
However, in spite of this, it can be seen from the display that the output sequence is 1, 3, 2, 2,
. . . . which agrees with our values obtained earlier. (It is possible to display proper pulses - we will
look at this improvement later.)

, 5 .

2 . 5 .

1 . 5 .

1 - - , , , , ,

. .

" o

2
{ 3 .

E
<

0 . 5

0 0 . 5 1 1 . 5 2 2 . 5 3 3 . 5 4 4 . 5

T i m e (s a m p l e s)

F i g u r e 2 . 1 1

30 Discrete signals and systems

The program used to produce the display of Fig. 2.11 is as follows:

numz=[l 2 -i] ;

denz=[l 0 O] ;

dstep (numz, denz)

axis([0 5 0 4])

grid

% coefficients of numerator, z 2 + 2z

% - 1 of transfer function

% (N.B. +ve indices must be used, and

% so numerator and

% denominator must be multiplied by z 2)

% coefficients of denominator (z 2 +

% 0z + 0)

% displays step response

% overrides default axis with 'x'

% axis 0 to 5 and 'y' axis 0 to 4

% (N.B. This is not always necessary)

% adds grid

When the inputs are discrete steps or unit sample functions it is quite easy to
display the outputs, as 'dstep' and 'dimpulse' (or 'impz' in some versions) are
standard MATLAB functions ('dimpulse (numz,denz)' would have generated the
response to a unit sample function). However, if some general input sequence is
used, such as the one in Example 2.6, then it is slightly more complicated. The
program n e e d e d for this particular example, i.e. when T(z) - 1 - 3z-1+ 2z -2 and

x[n] = (2, 2, 1) is:

numz=[l -3 2] ; % Transfer function numerator
% coefficients (z 2 - 3z + 2)

denz=[l 0 0] ; % denominator coefficients (z 2 + 0z + 0)

x=[2 2 i] ; % input sequence
dlsim(numz,denz,x) ; % displays output (See MATLAB manual for

% further details of this function)

grid % adds grid

The MATLAB display is shown in Fig. 2.12.

N.B.1 If you have access to MATLAB then it would be a good idea to use it to check the output
sequences obtained in the other worked examples and also the self-assessment exercises.

N.B.2 MATLAB displays can be improved by adding labels to the axes, titles etc. You will need to read
the MATLAB user manual to find out about these and other refinements.

2.12 RECAP

The z-transform can greatly simplify the design and analysis of discrete
processing systems.

�9 The z-transform, X(z), for a sequence, x[n], is given by:
oo

X(z)- Z x[n]z
n=O

o r

_ 9 X (z) - x[O]z ~ + x[1]z -1 + x [2]z ~ + x [3]z -3 +

2.13 Digital signal processors and the z-domain 31

! ! ! !
,
~

,
,

2
,
,
,

1 i
~
~

,

,

o i ,

,

,
,
,

~

,
,
,
,

" 0

E <

- 2

I I I i

i ! : '
' ' i i

i ! i i
, , ,

o ,

. ~ . i . ',, .
, ,

, ,
, ,
, ,

,

,
,

~

. . . . i
I

I

I

, 3

- 4
,

~
,
,

i

0.5
-5

0 3.5

,

,
,
,

i
,

i i

1.5 2
Time (samples)

~
,
,
~
,
,
,
,
,
,
,

i

2.5

Figure 2.12

z -~ can be thought of as a 'tag' to a sample, the '-n' indicating a delay of n
sampling periods.

Important z-transforms are for the discrete unit step, i.e. U (z) - z / (z - 1) and
the unit sample function, A (z) - 1.

The transfer function for a discrete system is given by T (z) - Y (z) / X (z) , where
Y (z) and X (z) are the z-transforms of the output and input sequences respectively.

MATLAB is a powerful software tool which can be used, amongst many
other things, to analyse and design DSP systems.

2.13 DIGITAL SIGNAL PROCESSORS AND
THE z-DOMAIN

In Chapter 1 you were introduced to different types of digital signal processors.
You will remember that digital filters can be broadly classified as r e c u r s i v e or
n o n - r e c u r s i v e , i.e. filters that feed back previous output samples to produce the
current output sample (recursive), and those that don't. An alternative name for
the recursive filter is the infinite impulse response filter (IIR). This is because the
filter response to a unit sample sequence is u s u a l l y an infinite sequence - normally
decaying with time. On the other hand, the response of a non-recursive filter to
a unit sample sequence is always a finite sequence - hence the alternative name
of finite impulse response filter (FIR).

32 Discrete signals and systems

Also in Chapter l, as an introduction to filter action, the response of filters to
various input sequences was found by using tables to laboriously add up sample
values at various points in the system. There we were working in the time domain.
A more realistic approach, still in the time domain, would have been to use the
process of 'convolution' - a technique you will probably have met when dealing
with continuous signals. If so, you will appreciate that this technique has its own
complications. However, we have seen that, by moving from the time domain
into the z-domain, the system response can be found much more simply.

As an example, consider the simple discrete processing system shown in Fig.
2.13. As only the previous input samples are used, along with the current input,
you will recognize this as an FIR or non-recursive filter. As the input and output
sequences are represented by x[n] and y[n] respectively, and the time delay of one
sample period is depicted by a 'T' box (where T is the sampling period), then this
is obviously the t ime d o m a i n model. The processing being carried out is fairly
simple, in that the input sequence, delayed by one sampling period and multiplied
by a factor of -0 .4 , is added to the undelayed input sequence to generate the
output sequence, y[n]. This can be expressed mathematically as:

x[n]

X[z]

Figure 2.13

y[n] - x[n] - 0.4x[n - 1]

y[n]

(2.1)

However, we have chosen to abandon the time domain and work in the z-domain
and so the first thing we will need to do is convert our processing system of Fig.
2.13 to its z-domain version. This is shown in Fig. 2.14.

.- E
Y[z]

v

Figure 2.14

This is a very simple conversion to carry out. The input and output sequences,
x[n] and y[n], of Fig. 2.13, have just been replaced by their z-transforms, and the
time delay of T is now represented by z -1, the usual way of indicating a time delay
of one sampling period in the z-domain.

2. 14 F I R f i l ters a n d the z - d o m a i n 33

The mathematical representation of the 'z-domain' processor now becomes:

Y (z) = X (z) - 0 . 4 X (z) z -1

o r

Y (Z) - X (z) (1 - 0 . 4 z - 1)

r(z)
X(z) = T (z) - (1 - 0.4z -1)

i.e. we can find the transfer function of the processor quite easily. Armed with
this we should be able to predict the response of the system to any input, either
manually, or with the help of MATLAB.

N.B. The z-domain transfer function could also have been found by just converting equation (2.1) to its
z-domain equivalent, i.e.Y(z) = X(z) - 0.4X(z)z -l, and so on (X(z)z-: represents the input sequence,
delayed by one sampling period).

2.14 FIR FILTERS AND THE z-DOMAIN

The processor we have just looked at is a simple form of a finite impulse response,
or non-recursive filter. The z-domain model of a general FIR filter is shown in
Fig. 2.15.

Figure 2.15

i

Y(z)

Each Z -1 box indicates a further delay of one sampling period. For example,
the input to the amplifier a3 has been delayed by three sample periods and so the
signal leaving the amplifier can be represented by a3X(z)z -3.

The processor output is the sum of the input sequence and the various delayed
sequences and is given by:

Y(Z) - aoX(z) + a lX(z) z -1 + a2X(z)z -2 + a3X(z)z -3 + . . .

and so:

T (z) - a o + a l z -1 + a 2 z -2 + a 3 z -3 . . . (2.2)

34 Discrete signals and systems
2.15 IIR FILTERS AND THE z-DOMAIN

These, of course, are characterized by a feedback loop. Weighted versions of
delayed inputs a n d ou tpu t s are added to the input sample to generate the current
output sample. Figure 2.16 shows the z-domain model of a simple example of
this type of filter which adds only previous outputs to the current input.

X(z) ~-I

i
Y(z)

Figure 2.16

Example 2.8

What is the transfer function of the IIR filter shown in Fig. 2.16?

Solution

This one is slightly more difficult to derive than that for the FIR filter. However,
as before, we first need to find Y(z).

From Fig. 2.16:

Y(Z) - X (z) + b l Y (z) z -1 + b 2 Y (z) z -2 + b 3 Y (z) z -3

�9 ". Y (z) - X (z) + Y (z) (b l Z -1 + b2z -2 + b3z -3)

z-1 �9 Y(Z)(1 - bl - b2z - 2 - b3z -3) = X(z)

. ' . T (z) =
1 - blZ -1 - b 2 z -2 - b3z -3

Figure 2.17 shows a more general IIR filter, making use of both the previous
outputs a n d inputs. This arrangement provides greater versatility.

It shouldn't be too difficult to show that the transfer function for this general
recursive filter is given by:

-1 -2 -3
T (z) - aO + a l z + a z z + a 3 z + . . .

1 - b l z -1 - b 2 z -2 - b 3 z -3
(2.3)

Try it!

Figure 2.17

X(z)
I

z-1

I

[
i

i
i

2. 15 IIR filters and the z-domain 35

V(z)

I "-

_7-1

!
z-1

I
z-1

r
i

i
i
i

Reminder

�9 Recursive (IIR) filters can be used to achieve the same processing as almost all

non-recursive (FIR) filters but have the advantage of needing fewer multipliers/

coefficients and so are simpler in terms of hardware.

�9 As with any system that uses feedback, a recursive filter can be u n s t a b l e - this
is not the case with FIR filters - these are always stable. (We will find later that
IIR filters also have a 'phase problem' compared to FIR filters.)

Example 2.9

An FIR filter has three coefficients, a0 - 0.5, a 1 - - 0 . 8 and a 2 = 0.4. Derive the
output sequence corresponding to the finite input sequence of 1, 5.

Solution

We could derive this from first principles, by first drawing the z-domain diagram.
However, by inspection of the transfer function for an FIR filter given earlier
(equation (2.2)):

T(z) = 0.5 - 0.8z -1 + 0.4z -2

Also, as x[n] = 1, 5:

X(z) = 1 + 5z -1

�9 ". Y(z) = (1 + 5z -1) (0 .5 - 0 . S z -1 -!- 0.4Z -e)

which gives:

Y(z) = 0.5 + 1.7z -1 - 3.6z -e + 2z -3

So the output sequence is 0.5, 1 .7 , -3 .6 , 2.
The MATLAB output display is shown in Fig. 2.18.

36 Discrete signals and systems

0
" 0

l = -1
<I:

.

1 - . , . �9 - , ,

. v~ . r . 1

-2 , , , . , -

-3 ' " ' �9 ' �9 '

-4 ..
,,

~ 5 ~

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (samples)

Figure 2.18

E x a m p l e 2 . 1 0

A filter has a transfer function given by

T (z) -

(a)

(b)

(c)

- 1 1 - 0 . 4 z
1 + 0 . 2 z - 2

Draw the z-domain version of the block diagram for the filter.

Derive an expression for the output sequence y[n], in terms of the input
sequence, x[n] , and delayed input and output sequences.

Find the unit sample response for the filter (first four terms only).

S o l u t i o n

(a) This is clearly a recursive filter. By comparison with the general expression
given earlier (equation (2.3)), this filter has coefficients of a0 = 1, al = -0.4,
bl = 0, b 2 = -0.2 and so the z-domain block diagram is as shown in Fig. 2.19.

N . B . T h e t w o ' z - l ' b o x e s , u s e d t o f e e d b a c k t h e o u t p u t s e q u e n c e , c o u l d b e r e p l a c e d b y a s i n g l e ' z - 2 ' b o x .

(b) Y (z) 1 - 0 . 4 Z - 1

X (z) 1 + 0 . 2 Z - 2

�9 Y(Z)(1 + 0 . 2 z - 2) - X (z) (1 - 0 . 4 z - 1)

�9 ". Y (z) - X (z) - 0 . 4 X (z) z -1 - 0 . 2 Y (z) z -2

Changing to the time domain:

2.15 IIR filters and the z-domain 37

X(z)

- 1
Z

Y(z)
y

-1 Z

I
-1 Z

I

Figure 2.19

(c)

y [n] = x [n] - 0.4x[n-1] - 0.2y[n-2]

-1
1 - 0.4z T(z) =

1 +0 .2z -2

Carrying out the polynomial division gives T (z) = 1 - 0 . 4 z - 1 - 0.2z -2,
to three terms. Check this for you r se l f - note that you will need to divide
1 - 0 . 4 z -1 by 1 + 0z -1 + 0.2z -2.

As the z-transform of the input is just '1' , the z-transform of the output
sequence will be exactly the same as the transfer function, i.e. Y (z) = 1 -

0.4z -1 - 0 . 2 z -2 and so the first three terms of the output sequence will be 1,
-0.4, -0.2.

The MATLAB output display is shown in Fig. 2.20.

y[n]

0.5

-0.5
0

Figure 2.20

1 2 3 z
Time (samples)

38 Discrete signals and systems

N . B . The sampled output signal is shown in Fig. 2.20 as pulses, rather than 'steps'. This improved
display is achieved by using the MATLAB 'stem' function. The program is as follows"

numz=[l -0.4 O] ;

denz= [i 0 0.2] ;

n=(0:6) ;
[y x]= dimpulse(numz,denz,n) ;
stem (n, y)
grid

% numerator coefficients after

% multiplying by z 2

% denominator coefficients after
% multiplying by z 2

% 6 samples to be displayed

% evaluate output values (y)
% display output sequence as 'stems'
% add grid to display

2.16 SELF-ASSESSMENT TEST

Derive the transfer function for the IIR filter shown in Fig. 2.21 and, hence,
find the first three terms of its unit sample response.

Figure 2.21

X(z) Y(z)
b .
v

z-1

-

.J

rl
I

z.-1

A simple running average filter generates the average of the current and
previous input samples. Draw the 'z-domain' block diagram of the system.
Hence, derive the transfer function of the filter and use it to find the response
to an input of a discrete unit ramp (first three terms only). (Y(z) - z -1 + 2z -2
+ 3z -3 + . . . for a unit ramp.)

A running average filter averages the current input and the previous five
inputs. Show how this system could be realized with a recursive filter.

Hint: Find expressions for the output Y(z) and also the output delayed by one
sample period, i.e. Y(z)z -1 - and then think about it!

Figure 2.22 is the z-domain block diagram for a biquadratic filter. Show that
its transfer function, T(z), is given by:

T (z) -
1 + a lz -1 + a 2z -2

1 - b l z - 1 - b 2 z -2

Hint: Find two simultaneous equations by deriving expressions for V(z) and
Y(z).

2.18 Chaptersummary 39

x<z) l vlz) _1
-I " - 1 I

iT ! !T
Y(z)

Figure 2.22

2.17 RECAP

A n o n - r e c u r s i v e f i l t e r is one that makes use only of the current input sample
and previous input samples. It is also called a finite impulse response filter
(FIR) as it generates a finite output sequence in response to a finite input
sequence. It has a general transfer function of: T(z) - ao + a l z -1 + aZZ -2

-3
+ a 3 z +

A recur s i ve f i l t e r is one that has a feedback loop, i.e. it makes use of previous
o u t p u t values. It is also called an infinite impulse response filter (IIR) as,
usua l l y , it generates an infinite output sequence in response to a finite input
sequence. If it combines the current input sample with only previous outputs
then it has a general transfer function of

T (z) -
1 - b l z -1 - b 2 z -2 - b 3 z -3 -

If it also makes use of previous inputs, as is most common, then it has the
general transfer function of

-1 -2 -3
T (Z) - aO + a l z + a 2 z + a 3 z + . . .

1 - b l z -1 - b 2 z -2 - b 3 z -3 - . . .

An IIR filter will require fewer coefficients/multipliers than the equivalent
FIR filter.

2.18 CHAPTER SUMMARY

In this chapter we have looked at ways of representing discrete signals, both in
the time domain and the z-domain. For example, a signal represented by x[n] =
1, 4, 6, 2 in the time domain can be expressed as X (z) = 1 + 4z -1 + 6Z -2 + 2Z -3 in
the z-domain. Entering the z-domain allows us to analyse and design digital
systems much more easily than working in the time domain.

40 Discrete signals and systems
The z-transform is used to move from the time domain to the z-domain. The

z-transform of a sequence x[n] is given by

oo

X (z) - ~., x[n]z -n
n = 0

or x[0]z ~ + x[1]z -1 + x[2]z -2 + x[3]z -3 + The 'z -n' operator can be thought of
as a tag which indicates a delay of n sample periods.

The transfer function of a system in the z-domain is given by T(z) = Y(z)/X(z),
where X(z) and Y(z) are the z-transforms of the input and output sequences respect-
ively. The transfer function is used to find the system response to an input signal.

FIR and IIR filters have been revisited, but this time in the z-domain. FIR
filters use the current input sample plus weighted previous inputs to generate the
output, while IIR filters use weighted previous outputs as well.

The software package, MATLAB, has been used to analyse discrete systems.

2.19 PROBLEMS

1 An FIR filter has a transfer function of 1 + Z -1. Find the output sequence in
response to an input sequence of 1, 2 , -2 .

2 When the finite sequence l , - 3 is fed into an FIR filter, the output sequence is
finite, and equal to 1 , -2 , - 1 , - 6 . Find the transfer function of the filter in the
z-domain and also the response of the filter to a discrete unit step (first four
terms only).

3 The output sequence, y[n], from a recursive filter, is related to its input sequence,
x[n], as: y[n] = x[n] + 0.5x[n-1] + 0.5y[n-1]. Draw the block diagram for this
filter, in the z-domain, and find its transfer function. Use the transfer function
to find the filter's response to a unit sample sequence (first four terms only).

4 A filter has a transfer function of T(z) = (z + 1) (z - 1)/z 2. Find its response to
the finite sequence 1, 0, 2 (first five terms only).

5 Find the transfer function for the processor shown in Fig. 2.23.

X(z) -~ ~ Y (z)

Z -1 1 Z -2

Figure 2.23

6 Use z-transform tables to find the response of a digital filter to a discrete unit
step, given that the filter has the transfer function of 0.8/(z - 0.2). Only the first
four terms are required.

3 The z-plane

3.1 CHAPTER PREVIEW

We start this chapter with a review of the s-plane, a concept with which you are
probably familiar. We will then move on to its discrete equivalent- the z-plane.
The z-plane has an extremely important role to play in the design and analysis of
discrete systems. The significance of z-plane pole-zero diagrams will be discussed,
both in terms of signal shapes and system frequency response. The link between
the s-plane and z-plane will also be examined.

3.2 POLES, ZEROS AND THE s-PLANE

It is very likely that you have already encountered the 's-plane'. If so, you will
appreciate how useful this concept is when it comes to the analysis and design of
analogue systems. In a similar way, the z-plane is an invaluable tool when it
comes to the analysis and design of discrete systems. As it's much easier to
explain the significance and the use of the z-plane via the s-plane, we will begin
with a very brief review of the s-plane. If you are completely at ease with the
Laplace transform, the s-plane, and the idea of poles and zeros, then you can
probably afford to skip the next few pages. However, if you know little about
these, or are very rusty, then you will need to do some extra reading, as it is
unlikely that the following review will be sufficient for you. You will find
comprehensive explanations in most textbooks dealing with circuit analysis and
control systems in particular. Just three of many suitable sources are Bolton
(1998), Powell (1995), and Dorf and Bishop (1995).

The s-plane is simply an Argand diagram, used to display the values of s.
Remember that s represents the complex frequency, i.e. s = ~r + jo), and so s
values can be naturally shown on an Argand diagram. As is usual for Argand
diagrams, the real part of s, i.e. or, is plotted along the horizontal axis and the
imaginary part, jco, along the vertical axis.

As an example, consider a continuous system with a transfer function given
by:

T (s) = s + 4
(s + 2)(s + 3)

This transfer function can be represented on an s-plane diagram by displaying its
poles and zeros (Fig. 3.1).

System zeros are the s-values that cause the numerator, and so T(s) itself, to
become zero, while poles are defined as the values of s which result in T(s)

42 The z-plane

Imaginary
je

3

System
zero

o x x I
-4 -3 ~(~'-2 -1

System
poles

1

I
1

-1

- - 2

-3

Real
I

2 c

Figure 3.1

becoming infinite, i.e. its denominator becoming zero. It follows that this particular
transfer function has a single zero at s = - 4 and two poles at s = -2 a n d - 3 . On
pole-zero diagrams, poles are traditionally represented by crosses and zeros by
circles.

In this simple example all values are real and so appear on the real (or) axis -
but what if the transfer function had been more complicated? For example,

T (s) -
S 2 + 2 S + 5

(s + 3)(s 2 + 2s + 2)

We will begin by finding the zeros for this transfer function and so must first
equate the numerator to zero, i.e. s 2 + 2s + 5 - 0. As this quadratic expression
factorizes to (s + 1 +j2)(s + 1 - j2) , then the system must have complex conjugate
zeros at s = - 1 + j2.

To find the poles we need to examine the denominator. Clearly, there must be
one pole at s = -3 (this is obviously a real pole). Also, as s 2 + 2s + 2 factorizes
to (s + 1 + j)(s + 1 - j) , there must be two complex conjugate poles at s = - 1 +j .

The pole-zero diagram for this system is shown in Fig. 3.2.
Pole-zero diagrams of system transfer functions contain a surprising amount

of information about the system and are extremely useful when it comes to the
design and analysis of signal processors. For example, it can be shown that a
system with poles in the right-hand half of the s-plane is an unstable system. We
will examine system pole-zero diagrams in much more detail later in the chapter.

3.3 POLE-ZERO DIAGRAMS FOR
CONTINUOUS SIGNALS

As signals can also be transformed into the s-domain, i.e. expressed as functions
of s, then they too can be represented by pole-zero diagrams. These 'p-z ' diagrams
contain information about the signal shapes and so are very useful.

To illustrate this important link between the signal p-z diagram and the signal
shape consider a signal, y(t), having a Laplace transform, Y(s), given by:

3.3 Pole-zero diagrams for continuous signals 43

Imaginary
j(o

3

0 2

X 1

I
1

-1

0 -2

-3

I)< I I
-4 -3 -2 -1

X

Real
I

2 c~

Figure 3.2

r (s) -
3s 2 + 8s + 14

(s + 2) (s 2 + 2s + 10)

We will first find the time variation of the signal by using the traditional 'inverse
Laplace transform' method. However, before the Laplace transform tables can be
consulted the expression needs to be broken down into its partial fractions, i.e."

Y (s) - 1 + 2 (s + 1)
s + 2 s 2 + 2 s + 10

(You are strongly advised to derive this expression for yourself.)
By inspection of the Laplace transform tables (Appendix A), you should find

that the 1/(s + 2) part corresponds to a signal in the time domain of e - 2 t .

As the other component can be expressed, very conveniently, as 2(s + 1)/[(s +
1) 2 + 32], it 'inverse Laplace transforms' to 2e -t cos 3t. (A g a i n - it's important
that you check this for yourself.)

The time variation of the output is therefore given by:

y(t) - e -2t + 2e -t cos 3t (3.1)

i.e. an exponentially decaying d.c. signal plus an exponentially decaying sinusoidal
(strictly 'cosinusoidal') oscillation.

We now need to look f o r some link between the signal shape and the pole-zero
diagram for Y(s).

As Y(s) factorizes to:

3(s + 1.33 + j l . 7) (s + 1 . 3 3 - j l . 7)
r (s) =

(s + 2)(s + 1 + j 3) (s + 1 - j 3)

then Y(s) has zeros a t -1 .33 + j l .7 and poles a t - 2 a n d - 1 _+ j3 (Fig. 3.3).
So we have a pole a t - 2 and a ' -2 ' also appears in the 'e -2t' term of equation

(3.1). We also have two complex poles at -1 + j3. If we look at the 2e -t cos 3t
component of the signal, then a '1' occurs in the '2e -t' term, i.e. we can think of
this as 2e -it, and obviously a '3' appears in the 'cos 3t' term. In other words, it's
possible that the pole a t - 2 corresponds to the exponentially decaying d.c. signal

4 4 The z-plane

X
-2

I

-1

Imaginary
j e

-1

-2

-3

R e a l

G

Figure 3.3

of e -2 t and the two complex conjugate poles at -1 + j3 to the 2e -t cos 3t part, i.e.
an exponentially decaying cos wave. This is, in fact, the case.

All signals represented by poles on the left-hand side of the s-plane are decaying
signals, the further the poles are away from the imaginary axis, i.e. the more
negative the ~-value, the more rapid the decay. If the pole is on the real axis then
it represents a decaying d.c. signal. Figure 3.4(a) shows the MATLAB p-z diagram

0.5

x

E i

-0 .5

Pole-zero map
, , ,

- - 1 i i i

-0.2 -0.15 -0.1 -0.05
Real axis

(a)

0.8

" ~
Q .

E 0.4 <

0.2

Response
i

, ~ - . . ~ . . ~

10 20
Time (s)

30

1 ~(' ' '

0.5

x

0

E
-0.5

-1

-0.2

(b)

i i i

-0.15 -0.1 -0.05
Real axis

0.5

'1
" O

Q .

E 0 <

-0.5
o 0 1 20 30
Time (s)

Figure 3.4

3.5 Recap 45

and corresponding signal shape for such a signal, with the pole at-0.2. Complex
conjugate poles represent a decaying sinusoidal signal- the imaginary coordinates
indicating the signal angular frequency, co (Fig. 3.4(b)). On the other hand (or
should it be 'other half' !), a signal having poles on the right-hand half of the s-
plane corresponds to an exponentially increasing signal- which is usually extremely
undesirable, for obvious reasons. This increasing signal could be sinusoidal (if
complex conjugate poles) or d.c. (pole on the real axis). For example, if Y(s) =
1 / (s - 0.2), then, from the transform tables, y(t) - e O 2 t , i.e. an exponentially
increasing d.c. signal.

If a signal has complex conjugate poles on the imaginary axis, at +jc0, then this
corresponds to a non-decaying sinusoidal signal of angular frequency, ~o. For
example, if the poles are at + j0.2, i.e.

Y (s) - 1 = 1

(s + 0.2j)(s - 0.2j) (S 2 + 0.04)

then inspection of the Laplace tables gives us y(t) = 5 sin 0.2t.
For the special case of a single pole at the origin, i.e. Y(s) = k/s, this represents

a step of height k.
Why have we concentrated on the poles and ignored the zeros ? This is because

the zeros do not affect the general shape of the individual signal components
corresponding to poles, but only their weight ings- the closer a zero is to a pole,
the smaller the signal corresponding to that pole.

3.4 SELF-ASSESSMENT TEST

1 A signal has a Laplace transform given by

2(s + 2)
Y (s) -

s(s 2 + 4s + 3)

Draw the p-z diagram and hence sketch the rough shapes of the individual
components that make up the signal (there will be three of these). Now use
partial fractions and the Laplace transform tables to find the time variation of
the signal.

2 A signal has the Laplace transform of 6/(s 2 + 4). Use the pole positions to
predict the rough shape of the signal and then use Laplace transform tables to
find the exact shape.

3.5 RECAP

When the Laplace transform of a signal is represented by a p-z diagram:

�9 The negative real component, cr, of a pole position, corresponds to an exponential
d e c a y - the further the pole is from the imaginary axis, the more rapid the
decay of the signal.

46 The z-plane

�9 The imaginary components, +_ jco, of conjugate pole positions, correspond to a
sinusoidal oscillation of angular frequency o9, while a pole on the real axis
corresponds to a d.c. signal.

�9 If a pair of conjugate poles lies on the imaginary axis, i.e. have no real part,
then they represent a non-decaying oscillation. The special case of a pole at the
origin corresponds to a step function, i.e. a non-decaying d.c. signal.

�9 If the signal has a pole (or complex conjugate poles) on the right-hand side of
the pole-zero diagram, i.e. a positive or-value, then this corresponds to a signal
which is increasing exponentially, i.e. bad news! (In a similar way, if the
transfer function of a system has poles on the right-hand side, then this is an
unstable system and must be redesigned.)

�9 The zeros do not affect the shapes of the components making up the signals but
only their weightings - the nearer a zero is to a pole the less the contribution
made by that pole to the signal.

3.6 FROM THE s-PLANE TO THE z-PLANE

We have seen that we can represent continuous signals and systems by their s-
plane, pole-zero diagrams. Further, if a signal has a pole on the right-hand side
of the s-plane, then this represents an exponentially increasing signal. Similarly,
if a transfer function has a pole in the right-hand side, then this indicates an
unstable system (Fig. 3.5); again, something best avoided!

- v e

Region of
stability

Marginal---__--./'`*
stability

t .-
j o .~ / , l " / " .1""

/ " / ,,,

t" / " ,,"
/ - / "

,."" Region of
, " , instability

/ /
,,- / ,,"

,,- /- /
/ " , / . , "

/
/ " /

0 ,," / / "
,,." ,, t

," / ,, I , .
/ z

t / " ,,
z" t" / ,,," ,,,." ,,,

,, ,, ,,
,,," ,,,,,"

t" ,,

+ v e

(5

Figure 3.5

In a similar way, we can represent discrete signals and systems by their p-z
diagrams in the z-plane. For example, if a discrete signal has a z-transform, X(z),
given by:

x (z) -
z - 0.2

z e + 0.6z + 0.13

then there will be a zero at 0.2 and, as the denominator factorizes to (z + 0.3 +
j0.2), complex conjugate poles a t -0 .3 + j0.2. The p-z diagram is shown in Fig.

3.6.

I I I I
- 0 . 4 - 0 . 3 - 0 . 2 -0 .1

3.7 Stability and the z-plane 47

Imaginary
je~
0.3

0.2

0.1

I 0 I
0.1 0.2 0.3

- 0 . 1

-0.2

Real

-0.3

Figure 3.6

We know that the locations of signal poles and zeros in the s-plane give us a
good idea of the signal shape - but how do we interpret these positions in the
z-plane? Also, which regions in the z-plane correspond to stability and
instability?

To answer these questions we need to start with the link between the s-plane
and the z-plane. Although we have used the z -n operator, and appreciate that it
indicates a delay of n sampling periods, no mention has yet been made of any link
between z and s. In fact there is a relationship between them and it is an extremely
important one. This is given by:

I _ esT Z

where T is the sampling period. (Just accept this relationship for now - it will be
explained later in the chapter.)

Using this relationship we will first consider the issue of stability.

3.7 STABILITY AND THE z-PLANE

We know that the imaginary axis in the s-plane is the boundary between the areas
of stability and instability and that this boundary is defined by s -jr From z -
e ~T, this boundary must therefore map on to the z-plane as:

Z -- e j~176

In other words, this equation defines the boundary between the stable and unstable
regions in the z-plane.

O.K. - but what does this boundary look like ? In fact, the equation z - e/c~
defines a circle, centred on the origin, and with a radius of 1.

This is far from obvious and, to prove it, we need to use Euler's identity. This
tells us that:

e j ~]

48 The z-plane

It follows that we can rewrite z - e jc~ as:

z - cos coT + j sin coT

Figure 3.7 shows the point representing this z-value, plotted on the Argand diagram.

[Imag
/ / / ~ ~ ~ c r e a s i n g co

/ sin! l
-1 +1

Real

Figure 3.7

From the theory of complex numbers, or just from Fig. 3.7, the length of Az
must be given by ~Jcos 2 coT + sin 2 coT, which is equal to 1, i.e.

I z l - 1

Also, the tan of the angle made by Az with the real, positive axis is given by

imaginary part sin cot
= = tan coT

real part cos coT

and so this angle must be coT.
From Fig. 3.7 it should be clear that these magnitude and angle values do

indeed define a unit circle in the z-plane, with its centre at the origin. This is
because the length of the line Az, from the origin to the z-value, is always 1, and
it makes an angle of coT with the positive real axis. Therefore, as the signal
frequency increases, i.e. as o9 gets larger, z must mark out a circle of radius 1.

So we now know that the imaginary axis in the s-plane transforms to this 'unit
circle' in the z-plane, i.e. this circle is the boundary between the stable and
unstable regions in the z-plane. This leaves just one obvious question to be
answered" 'Is the stable region inside or outside the circle?' The easiest way to
decide on this is to map an 'unstable' pole in the s-plane, onto the z-plane, and see
where it lies. Any positive s-value corresponds to a point on the unstable right-
hand half of the s-plane. As s - 0 corresponds to a z-value of 1 (e ~ - 1), any
positive s-value must therefore transform to a z-value which is greater than 1 -
i.e. to a point outside the unit circle.

It follows that, for the z-plane, it is the area outside the unit circle which is the
region of instability and the area enclosed by the circle the region of stabil i ty-
the unit circle itself corresponds to marginal stability (as does the imaginary axis
in the s-plane).

3.8 Discrete signals and the z-plane 49

These important 's-to<' mappings are summarized in Fig. 3.8.

Figure 3.8

3.8 DISCRETE SIGNALS AND THE z-PLANE

We now know that the area outside the unit circle in the z-plane corresponds to
the right-hand half of the s-plane. In other words, if the z-domain transfer function
of a discrete system has a pole outside the unit circle in the z-plane, then this is
an unstable system. It also means that if the z-transform of a discrete signal has
a pole in this area, then the signal amplitude increases with time.

But how, exactly, is the shape of the discrete signal related to its z-plane, pole-
zero diagram ? To answer this question, we need to start with an s-plane pole of
a continuous signal. We know that the position of an s-plane pole can be expressed,
completely generally, as s - (y + jo9.

So, from z - e ~r, an s-plane pole will map to the z-plane as:

Z - e (cr+jc~ e~ jc~

We now need to look, in more detail, at the two exponential expressions, e aT and
e/~ that make up z.

From earlier work we know that we can replace the e/c~ part by cos coT +
j sin coT (Euler's identity), i.e. it indicates a point that is unit distance from the
origin. Further, the line joining this point to the origin makes an angle of coT with
the positive real axis.

The 'e aT' part is real, and so just corresponds to a real number. For example,
if T - 0.1 s and c r - - 2 , then e aT -- 0.82. This part therefore acts as a multiplier
and must fix the distance from the pole to the origin (Fig. 3.9). The line joining
the pole to the origin is usually referred to as the pole vector. We know that, for
continuous signals, a indicates how rapidly the signal decays or increases. It
therefore seems reasonable that the more negative is a, i.e. the shorter the distance
from the pole to the origin, the more rapidly the discrete signal decays.

To summarize, it is the angle made by the pole vector with the positive real
axis that represents the signal frequency, while the length of the vector tells us
how quickly the signal is decaying or increasing - the shorter the vector the more
rapid the decay rate.

-1

The z-plane

Imag

50

+1
Real

Figure 3.9

To make this clearer, let's imagine that we have a discrete signal that has a z-
transform of 1/(z- 0.5). The simple p-z diagram is shown in Fig. 3.10.

-1

Imag

 vect i /
+1

Real

Figure 3.10

As the pole vector from the pole to the origin makes an angle of zero with the
positive real axis, then this must represent a discrete signal of frequency 0 Hz, i.e.
a d.c. signal. Also, as the pole vector has a length of 0.5, then this indicates that
the signal should fall to a half of its previous value every sampling period. Figure
3.11 is the MATLAB plot for this signal - encouragingly it agrees with our
prediction.

To confirm this plot we can simply carry out the division of 1/(z- 0.5). This
gives z -1 + 0.5z -2 + 0.25z -3 + 0.125z --4 + which agrees with the MATLAB

plot.
Notice that, although it has the expected rate of decay, the signal is delayed by

one sample period, i.e. it starts at t = T and not t = 0. This is not immediately
obvious from the p-z diagram, but is predicted by the long division.

0 . 9 -

0 .8 -

0 . 7 -

0 . 6 -
x[n]

0.5 -

0 . 4 -

0 . 3 -

0 . 2 -

0.1 -

O)
0

F igu re 3.11

3.8 Discrete signals and the z-plane 51

I I I I I

T T
4 6

Time (samples)

Ci) ~D 0 e) 0 (
8 10 12

This was a fairly simple example, having real roots, but what if the signal z-
transform had been something more complicated, such as 1/(z 2 - z + 0.5)?

As the denominator has the complex conjugate roots of 0.5 + j0.5, then the
p - z diagram is as shown in Fig. 3.12. The pole vector angle is 45 ~ (and so
coT = 45 ~ or n;/4 rad. (N.B. It is the angle made by the pole vector in the top half
of the z-plane which is important, i.e. 45 ~ rather than the 315 ~ o r - 4 5 ~ in the

bottom half.)

Imag

0.5 0.7 """

-1 45 ~ +1

Real

F igu re 3 .12

52 The z-plane

If we use a sampling period of 0.1s then this gives:

0 .1co- 7c/4

or co = 2.57c rad/s, which is equivalent to a frequency of 1.25 Hz, as co = 27cf.
The pole vector has a length of 0.7, and so we would expect the discrete signal

to be a decaying sinusoid of frequency 1.25 Hz, the sinusoid decaying by a factor
of 0.7 every 0.1 s.

The MATLAB plot, Fig. 3.13, certainly confirms the signal frequency, i.e. it
has a period of 0.8 s and so a frequency of 1.25 Hz. It also agrees with the
expected rate of decay - although the latter is not quite so easy to identify. Again
note the delay of one sample period.

x[n]

) 0

--0.5

, , - - , t ~ t ' ~ t

0.5 ~ ~. , , ,, , J

i
i
i
i
i l

(p |

,

i

o i '-' (b

0 2 4 6 8 10 12 14 16 18 20
Time (samples)

Figure 3.13

N.B. If the pole-pair (or single pole if d.c.) lies on the unit circle, then this corresponds to an undamped
signal, i.e. one with a constant amplitude, while poles outside the unit circle correspond to a signal
of increasing amplitude. For example, if the length of the pole vector is 1.2, then the signal
increases by a factor of 1.2 for each sample period. This signal could be a d.c. signal or sinusoidal.
Obviously, if the signal is sinusoidal then this increase is superimposed on to the normal sine
variation, as is a decay for poles inside the unit circle.

3.9 ZEROS

You will remember that signal zeros in the s-plane do not change the overall
shape of the signal but they do affect the magnitude- the nearer a zero is to a

3.9 Zeros 53

pole, the less the size of the corresponding signal component. Zeros have a
similar effect in the z-plane but here they also affect signal time delays. Earlier
we looked at a signal with a z-transform of 1 / (z - 0.5). This signal is a decaying
d.c. waveform with a delay of one sample period (Fig. 3.11). What if the z-
transform had been z/(z - 0.5)? The only difference with this signal is that it has
a zero at the origin. The corresponding signal is shown in Fig. 3.14. Note that

x[n]

1-~

0 .9 -

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0

Figure 3.14

_
1 2 4 5 6 7 8

Time (samples)

D

9

there is now no time delay, i.e. the effect of the zero at the origin is to eliminate
the time delay of one sampling period. This can easily be confirmed by dividing
z by (z - 0.5) which gives 1 + 0.5z -1 + 0.25z -2 + . . . rather than z -1 + 0.5z -2 +
0.25z -3 + So the very existence of the zero will get rid of this time delay.
Further, if the zero had not been at the origin, its closeness to the pole would also
have affected the signal size. For example, Fig. 3.15 shows the signal corresponding
to a z-transform of (z - 0.2)/(z - 0.5), i.e. the presence of this zero results in a
greater rate of decay between the first and second samples - the closer the zero
to the pole, the greater will be the reduction. Again, there is no delay.

Question
What would happen to the rate of decay if the zero were in the other half of the
z-plane to the pole, for example, a t -0 .2 ?

Answer
If you carry out a long division you should find that the signal has a z-transform of 1 + 0.7z -I +

0.35z -2, i.e. surprisingly perhaps, a zero in the other half of the z-plane to the pole actually
reduces the initial rate of decay.

5 4 The z-plane

i i i i i i

1 - [. ~
o,

0 .5 - ," ' -

a , .' \

0 .. ~ o----x ~ .. t - , :
�9 ~ .. -

E - 0 . 5 - ", , '/ - m �9 �9

"',. o. . - "

- 1 - - - ~ - " -

I I I I I I

- 3 - 2 -1 0 1 2 3
Real part

0.8

0.6
x [n]

0.4

0.2

T / t ~ ~ ~ ~

2 3 4 5 6 7 8 9
T ime (samples)

w

10

F i g u r e 3 . 1 5

N.B. MATLAB p-z diagrams are obtained using the 'z-plane' function. For example:

num= [i -0.2] ;
den= [I -0.5] ;
zplane (num, den)

was used to produce the p-z plot of Fig. 3.15. Displaying more than one plot at the same time,
i.e. the p-z plot and the corresponding signal, can be achieved by using the MATLAB 'subplot'
function. Refer to the user manual for further details.

3.10 THE NYQUIST FREQUENCY

Consider a discrete signal represented by a pole on the negative real axis. For
example, let the signal z-transform be given by X(z) = 1/(z + 0.5). This signal will
have a z-plane pole a t -0 .5 and so the pole vector angle is 180 ~ or Jr radians (Fig.
3.16).

Let's assume a sampling frequency of 10 Hz, i.e. T = 0.1 s. As the phase angle
(0) = coT, then Jr = 0.1 co and so this pole indicates a signal with angular frequency
of 10re, or f = 5 Hz.

Note that this frequency is half the sampling frequency of 10 Hz, i.e. it is the
Nyquist f requency- the maximum signal frequency if aliasing is to be avoided.
This is not just a coincidence but will always be the case, no matter what the
sampling frequency.

A signal represented by a pole on the negative real axis has a frequency equal
to the Nyquist frequency.

3. 12 The relationship between the Laplace and z-transform 55

i lmag

-1 +1
Real

i

Figure 3.16

3.11 SELF-ASSESSMENT TEST

1 Sketch the signal represented by the p-z diagram shown in Fig. 3.17, by
inspection of the diagram only. Then check your prediction by carrying out a
suitable polynomial division.

Imag

Real

Figure 3.17

2 Each of the poles/pole-pairs shown in Fig. 3.18 represents a separate discrete
signal. Given that the sampling frequency is 120 Hz, state the frequencies of
each of the signals.

3 Map the poles/pole-pairs shown on the s-plane diagram of Fig. 3.19, onto a z-
plane diagram, assuming a sampling frequency of 2 Hz. (N.B z - e ~r.)

3.12 THE RELATIONSHIP BETWEEN THE LAPLACE
AND z-TRANSFORM

Earlier, I promised to show where the vital relationship z - e~rcomes f rom- well
this is it!

56 The z-plane

Figure 3.18

Imag
Cl

A1

-1 , X

A2

B1 X D1

A~(c,
-1

82• S2-~

jo)

(+1

(E,q/
,/1,,,
+1

Real

+1

Figure 3.19

To be able to do this, we first need to go back to the definition of the Laplace
transform, X(s), for a continuous signal, x(t), i.e.

o o

X(s) - I x (t) e-st dt
o

The discrete version of this signal, i.e. the signal sampled every T seconds, will
only exist at time = 0, T, 2T, 3T, etc. It follows that wef irs t need to replace t with
nT, where n is O, 1, 2, 3

Also, the integral sign, which indicates the area under the x(t) plot, has no
meaning when dealing with discrete signals, as they consist of infinitesimally
thin pulses. The equivalent process is the addition of the pulse magnitudes and so
we must replace the integral symbol with the summation symbol.

The Laplace transform then becomes:

o o

X*(s) - n]~O_ x[n]e - s n T

where X* indicates the discrete version of the Laplace transform.
I f we now define the operator z as:

3.13 Recap 57

sT z - e

then the transform becomes:

e ~

X (z) - n~_~_ x [n] z -n - x [0] -!- x[1]z -1 + x[2]z -2 + . . .

which you should recognize as the definition of the z-transform.
In other words, it is this par t icular relationship o f z - e sT which causes the z-

transform to emerge f rom the Laplace transform.

3 . 1 3 R E C A P

�9 The z-plane plays a similar role in the design and analysis of discrete systems
to that of the s-plane in the design and analysis of continuous systems.

�9 Points on the s-plane map on to the z-plane as z - e sT.

�9 Signals represented by poles within, on and outside the z-plane unit circle are
decaying, non-decaying and increasing in amplitude respectively.

�9 The frequency of a discrete signal is obtained from the angle made by the pole
vector with the positive real axis, while the vector magnitude indicates the rate
of decay - the shorter the vector the greater the rate of decay. A selection of
p-z diagrams along with the corresponding signals is shown in Fig. 3.20.

o": i---x :~ .

- 1 " /

- 2 0 2

~ ' i ~ , .
o~ ,

/

o . ~ i ~ .
�9 .. i ..~"

- 1 , '--'--- ! n

- 2 0 2
1 ' ..--~ '

/
,

o L:: ::.:~

- 1 , ""';~"" ,
- 2 0 2

1 '! '

0 . ~ - i i . '., == ...
- 1 i i ,

- 2 0 2

Figure 3.20

1

o:t ' t T , i : ! : ! : i
0 2 4 6 8 10

2 ~

o T l ~ �9 ~ ~ ~ ,

,
,

- 2 : "
0 2 4 6 8 10

! i 1 i 0 " Q o �9 �9 �9

0 2 4 6 8 10 A

o T t , , ,

- 1 ~ !
0 2 4 6 8 10

T i m e (s a m p l e s)

58 The z-plane

3.14 THE FREQUENCY RESPONSE OF
CONTINUOUS SYSTEMS

We have come this far through a book on digital signal processing - which is
largely to do with digital f i l ters- and there has been no mention made of frequency
response, even though the concept of frequency response is pretty fundamental to
filter analysis and design! I assure you that this has not been an oversight on my
part. It is just that we are only now in a position to make much sense of the
frequency response of discrete systems.

Before we look at this very important topic it's best to take a step backwards,
and first remind ourselves of how we can find the frequency response of continuous
systems. We will also look at how we can get this information from s-plane p-z
diagrams.

The frequency response of a system is the way in which the gain of the system,
and also the phase difference between the output and input signals, depend on the
signal frequency. The test signal is always a non-decaying, pure sinusoidal
waveform.

Suppose we have an analogue system with a transfer function given by T(s) =
(s + 1)/(s + 2), and we need to find its frequency response. We know that s is the
complex frequency of a signal, i.e. s = cr + jco, where cr indicates the rate of decay
of the signal and co is its angular frequency. However, as we are only interested
in the response to a test signal which is a non-decaying sine wave, then cr = 0 and
so we can replace s with just jo9.

We now have

jco+ 1
T(jog) - jo~ + 2

To find the gain of the system we need to find the magnitude of this complex
function, i.e.

4(.0 2 + 12
I T(jco) I - ~/o92 + 22 (3.2)

To find the phase relationship between output and input we must get the phase
angle of T(jco). From complex number theory, this phase angle is given by:

L T (j o g) - tan-1 T ~ - tan-1 T~ (3.3)

For example, let's imagine that we are interested in the gain at an angular frequency

of 1 rad/s. Substituting o9- 1 into equations (3.2) and (3.3) gives a gain of ~/2/5 or

0.63 and a phase angle, ZT(jco), of tan -1 1 - tan -1 -} - 45 ~ - 26.6 ~ - 18.4 ~ i.e.

T(jw) = 0.63Z18.4 ~

You are probably very familiar with what we have just done, as this is the normal
method used to find the frequency response of a system. However, there is an

3. 14 The frequency response of continuous systems 59

alternative way of doing this which makes use of the p-z diagram for the system.
This method can often be more convenient, especially when we want to design or
analyse filters.

To demonstrate this approach we will stick with the same system, i.e. T(s) =
(s + 1)/(s + 2). First its p-z diagram must be drawn (Fig. 3.21). This is a particularly
simple one, having a zero a t - 1 and a pole a t - 2 .

j(o

2

P

-2 -1 |

I Increasing signal
1 frequency

I
1 cy

Figure 3.21

The gain and phase angle at 1 rad/s will again be f o u n d - we can then check
against the values obtained earlier, using the 'traditional' method. To do this, a
point A needs to be placed at position (0 + j).

N.B. This point represents a non-decaying, sinusoidal signal of angular frequency 1 rad/s, (s = jco = j).

To get the gain of the system, all we need to do is f ind the distances from A to
the zero and to the pole and then divide these two distances. The zero distance is

/12 + 12 and the pole distance is ~/12 + 22 and so the gain is 2 ~ ~ - 0.63,

which is what we got using the 'normal' method. This isn't too surprising as, for
any o) value, the length of the zero vector from the zero to A is exactly the same

as the magnitude of the numerator of equation (3.2), i.e. /(.02 4- 12 , while the

length of the pole vector is the same as the magnitude of the denominator,

/ 0) 2 -t- 2 2 .

To f ind the phase angle we just measure the angles between the positive real
axis and both the zero vector and the pole vector, and then subtract these two
angles. As the zero angle, 0z, is tan-ll (45~ and the pole angle, 0p, is tan -11/2
(26.6~ then this gives a phase angle of 18.4 ~ exactly the same as we derived
earlier using the other method.

This graphical method gives a general expression for the phase angle of
tan -1 (o)/1) - tan -1 (c0/2), which, once again, is exactly the same as we obtained
using the more traditional approach (equation (3.3)).

This graphical approach is very useful in that we can get a good idea of the
frequency response just by inspection of the positions of the poles and zeros. For
example, if a pole lies very near to the imaginary axis at co = 3 rad/s say, then we
would expect a large gain at this frequency, while if it had been a zero, then the
gain will be low. With experience it is possible to place poles and zeros so as to

60 The z-plane

design a filter with the required response - this is a particularly useful technique
when designing digital filters.

Example 3.1

Find the gain and phase angle for the previous system, i.e. T(s) - (s + 1)/(s + 2),
for angular frequencies of 0 rad/s (d.c.), 2 rad/s and also for very large frequencies.

Solution

�9 co - 0 rad/s: this frequency (d.c.) is represented by point A in Fig. 3.22.

Gain - A Z
AP

1 = 0.5 and phase angle - 0 - 0 - 0 ~
2

B

P
A V

- 2 -1

j 0)

~-2

-1

A

-1

1 G

Figure 3.22

�9 o~ = 2 rad/s: this frequency is represented by point B:

Gain_ BE 412 +22 ~5
BP = 422 +22 - ~0.8

Phase angle - 0 z - 0p - tan -1 2 - tan -1 1 - 18.4 ~

�9 For large frequencies: here, both zero and pole distances will be very large
and approximately the same size. It follows that the gain must become very
close to unity. Similarly, both zero and pole angles will approach 90 ~ for
sufficiently large frequencies and so the phase angle will be approximately
zero.
Armed with this information, it should be possible to make a reasonable stab

at sketching the frequency response. Figure 3.23 shows precise MATLAB plots,
produced using the 'bode' function, i.e.:

num= [i i] ;
den: [i 2] ;
bode (num, den)

Remember that a Bode plot displays both the gain and the phase angle against
log o)(or log f), the gain being in dB (20 log gain). So we are looking for gains

-1

ca -2
v

"o - 3
(-

9 - 4

- 5

-6 ' i i i i i

3. 15 Self-assessment test 61

20

~ ,15

v

r 10

13_
5

0
10-1

ii ! i ! i ii!iiiiiii[iii!i

I I

100 101
Frequency (rad/s)

Figure 3.23

of 20 log 0.5, 20 log 0.63, 20 log 0.8 and 20 log 1 at angular frequencies of 0, 1
and 2 rad/s and very large frequencies respectively, i.e. approximately-6 dB,
-4 dB, -1.94 dB and 0 dB. Our predicted gain and phase values agree closely
with the Bode plot values. Note that it is impossible to display 0 rad/s on a log
scale. However, our gain has clearly settled a t - 6 dB by 0.1 rad/s and the phase
angle appears to be approaching 0.

N.B. In this particular example we only had one pole and one zero. For the more general case, where
there are several zeros and poles:

Gain = k 1-I zero distances
1-I pole distances

Phase angle = Z zero angles - E pole angles

where k is the 'pure ' gain in the system. For example, if the transfer function of the system had
been 3(s + 1)/(s + 2), then k = 3.
'I-I' is the shorthand symbol commonly used to represent 'product of ' , in the same way as 'Z ' is
used to indicate the sum.
If there is no zero, e.g. T (s) = 1/(s + 2), then a '1 ' must be used for the zero distance.

3.15 SELF-ASSESSMENT TEST

A continuous system has a transfer function given by T (s) - 4(s + 1)(s + 2)/(s 2 +
2s + 2). Plot its p-z diagram and use this diagram to find the response, both gain
and phase, at 0, 1 and 2 rad/s and also for very large frequencies. Also, sketch the
complete frequency response.

62 The z-plane

3.16 THE FREQUENCY RESPONSE OF
DISCRETE SYSTEMS

As with continuous systems, the frequency response of a discrete system can also
be found from its pole-zero diagram. However, as it is the unit circle in the z-
plane that corresponds to the imaginary axis in the s-plane, here the 'frequency
point' moves around the unit circle in an anticlockwise direction as the signal
frequency increases. The point starts at z = +1 (d.c.), and ends at z = - 1 (the
Nyquist frequency).

For example, say we have a discrete system with a transfer function given by
T(z) = (z + 1) / (z - 0.5), and we need to find the response at d.c. (0 Hz), 1 Hz and
2 Hz, given that the sampling frequency is 8 Hz.

The p-z diagram is shown in Fig. 3.24. As the sampling frequency is 8 Hz, the
Nyquist frequency is 4 Hz, and so the three frequencies of 0, 1 Hz and 2 Hz must
correspond to points A, B and C respectively.

C
(2 Hz),, Imag ~ . Increasing

~ ~'"-........~ _ B~signal freq uency
07 (1Bz) '

-1 +1
4Hz ' 1 ~ o.5o.7 T A Real
(Nyquist ~ /(0 Hz)
frequency)

Figure 3.24

�9 Frequency = 0 Hz:

I-I zero distances
Gain = k

H pole distances

.'. Gain = AZ/AP (k = 1 here)

.'. Gain = 2/0.5 = 4

Phase angle = ~ zero angles - Z pole angles

.'. Phase angle = 0 - 0 = 0 ~

�9 Frequency = 1 Hz: The pole and zero distances are more difficult to calculate
h e r e - using a scale diagram and measuring the distances is an alternative
approach. However, whichever method is used, the zero distance, BZ, = 1.84
and the pole distance, BP, = 0.73. Check these for yourself.

.'. Gain = 1.84/0.73 = 2.5

3.16 The frequency response of discrete systems 63

Also the zero angle = tan-l(0.7/1.7) - 22.3 ~ and the pole angle = tan-l(0.7/0.2)

= 74.1 ~

.'. Phase angle = 22.3 ~ - 74.1 ~ - - 5 1 . 8 ~

�9 Frequency - 2 Hz" Here the zero distance is ~/2 and the pole distance is

4 1 2 + 0 .52 (Fig. 3.25).

.'. G a i n - -,,/2 = 1 . 2 7
~/1.25

~Z 0.5 P

C
(2 Hz) Imag

-1
4 Hz

+1
Real

Figure 3.25

The zero angle is 45 ~ and the pole angle is { 180 ~ - tan-l(1/0.5) - 116.5 ~ }.

.'. Phase angle - 45 ~ - 116.5 ~ - -71.5 ~

N.B. Remember that the phase angle is always measured between the horizontal, pointing to the right,
and the vector, measured from the horizontal to the vector moving in an anticlockwise direction.

Figure 3.26 shows the MATLAB frequency response plots for the system, drawn
using the 'freqz' function. Note that with the 'freqz' function the frequency axis
is linear and also 'normalized' , i.e. the frequency of '1' corresponds to the Nyquist
frequency.

Our gain values agree very well with the magnitude plot of Fig. 3.26, i.e. at

0 Hz, 1 Hz (0.25fN) and 2 Hz (0.5fN), we get gains of 4, 2.5 and 1.27 respectively,
or 12 dB, 8 dB and 2 dB. Our corresponding phase angles of 0 , - 5 1 . 8 ~ and
-71.5 ~ are also in good agreement.

The program used to produce these plots is:

num= [i i] ;
den= [i -0.5] ;
freqz (num, den)

N.B. Because the frequency axes of the plots generated by the 'freqz' function are linear rather than
logarithmic, these plots are not strictly Bode plots. There is a MATLAB Bode plotting function for
discrete systems, which could have been used. This is the 'dbode' function. This alternative
display (Fig. 3.27) was produced using:

20

�9 o

-~o

@ -20
= ~ - 3 0

:~ - 4 0

- 5 0

num= [I i] ;
den=[l -0.5] ;
T=0.125; %Sampling period
dbode (num, den, T)

64 The z-plane

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized frequency (Nyquist = 1)

-20
09

(1)
~, -40
(1) " O

- 60
Or)

c -

a . - 8 0

-100

I

I I I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized frequency (Nyquist = 1)

F igure 3 .26

200
. . . .

100 ...

0 .. ~ ...
(D
-o -100 .

C
-200 .

-300 .

-400

- 2 0

CD
-40

v
(1)
(n -60
13.

- 8 0

-100
100

i
! i ! i ! !
i i i i i i

101 102

Frequency (rad/s)

F igure 3 .27

3.16 The frequency response of discrete systems 65

However, this function is not ideal as the gain is shown as becoming very low at the Nyquist
angular frequency of approximately 25 rad/s. Because of this huge magnitude range, values of
interest are extremely compressed. This problem can be overcome to some extent but, generally,
the 'freqz' function is much more convenient.

Notice that the frequency response is only displayed up to the Nyquist frequency
on both of the ffeqz and the dbode plots. The response does not stop at this
frequency, of course, but continues from fN to fs, i.e. as the frequency point
proceeds around the unit circle. Due to the symmetry of the p-z diagram about
the real axis, this portion of the magnitude response is a mirror image of that up
to fN. The frequency response then repeats itself as the frequency point makes a
second revolution of the unit circle, corresponding to frequencies from fs to 2fs -
and so on. However, you need to be clear that this is the frequency response of
the d ig i ta l p r o c e s s o r at the heart of the DSP system. The output from the c o m p l e t e
system will only contain signal components with frequencies up to fN. This is
because the reconstruction filter at the output of the DSP system is a lowpass
filter, with a cut-off frequency offN (see 'The reconstruction filter', Section 1.4).
For this reason we have little interest in the frequency response above the Nyquist
frequency.

Alternative calculation of frequency response

As an alternative to using the p-z diagram, the frequency response of a c o n t i n u o u s
system can be calculated directly from its transfer function by replacing s with
ja). We can also calculate the frequency response of a discrete system directly
from its transfer function but, as usual, it's a bit more complicated.

As an example, let's take the system considered earlier in this section, i.e. the
one with the transfer function (z + 1) / (z - 0.5) and with T = 0.125 s.

We first need to move from the z-domain to the s-domain using the link
provided by z = e ~v. However, as we are interested in the f r e q u e n c y r e sponse , then
s = jro, and so we need to replace z with e jc~

Substituting this z-value into the transfer function gives

e jc~ + 1
T (j o ~) - eJCO ~ _ 0.5

This expression doesn't look too hopeful! However, we can improve things by
applying Euler's identity, i.e. e / ~ cos 0 + j sin 0. This gives

cos roT + j sin roT + 1
T (j r o) =

cos roT + j sin roT- 0.5

which allows the gain and phase angle to be obtained from co = 0 to co = rc/T (the
Nyquist angular frequency).

For example, if we want the response at 1 Hz (2zc tad/s) say, then as T =
0.125 s:

cos 0.785 + j sin 0.785 + 1 1.71 + j0.71
T (j c o) - =

cos 0.785 + j sin 0.785 - 0.5 0.21 + jO.71

66 The z-plane

which has a more famil iar format.

~/1.712 + 0.712
.'. Gain - = 2.5

~]0.212 + 0.712

and

Phase angle - tan -1 0.71 tan_l 0.71 _- _ 51 ~
1.71 0.21

N.B. Before moving on, it would be worth using this method to also check the frequency response at
0 and 2 Hz for yourself.

Example 3.2

A digital filter has a transfer funct ion of 3(z - 0.5)(z + 1)/(Z 2 + 0.25). Find

the f requency response at 0 Hz, and 2.5 Hz, (a) by using the p - z d iagram and

(b) directly f rom the transfer function. The sampl ing f requency is 10 Hz.

Solution

(a) From the p-z diagram.
�9 This sys tem has zeros at 0.5 a n d - 1 and poles at + j0.5. The p - z d iagram is

shown in Fig. 3.28.

Imag

-1 ~ + 1
O

5 Hz 0.5 0 Hz Real
(Nyquist
frequency)

Figure 3.28

�9 f = 0 Hz:

Magni tude = k
1-I zero distances
1-I pole distances

3 x 0 . 5 x 2 = 2 . 4
.'. Magni tude = ~1.25 ~/1.25

Phase angle = 2 zero angles - ~ pole angles

�9 Phase angle - 0 + 0 - tan -1 0.5 - (360 ~ - tan -1 0.5) - 360 ~ or 0 ~

�9 f = 2.5 Hz: f rom Fig. 3.29,

-1

Imag
2.5 Hz]

3. 17 Unstable systems 67

5 Hz
+1

Real

Figure 3.29

3 x ~/1.25 x ~/2
M a g n i t u d e 0.5 • 1.5 - 6.3

Phase angle - tan -1 1 + (180 ~ - tan -1 2) - 9 0 ~ - 90 ~

= 45 ~ + (180 ~ - 63 .4 ~ - 180 ~ - - 18.4 ~

(b) Direc t l y f r o m the t rans f e r f unc t i on .

�9 f - 0 Hz: f r o m z - e jC~ with c o - 0, we get z - 1. (We d i d n ' t rea l ly need to use

z - e/c~ to f ind that z - 1 c o r r e s p o n d s to 0 Hz.)

Subs t i tu t ing z - 1 into the t ransfe r funct ion:

T (z) - 3 x 0 . 5 x 2
1.25

This is a real func t ion and so gain = 2.4 and phase angle = 0 (as the i m a g i n a r y

c o m p o n e n t is zero) .

�9 f = 2.5 Hz: o) = 27cf = 5zc rad/s. We cou ld use z = e/•~ to f ind the z -va lue

c o r r e s p o n d i n g to this pa r t i cu la r f r equency , but this is ano the r f r e q u e n c y w h e r e

we d o n ' t have to bo the r as i t 's o b v i o u s that, as 2.5 Hz is a ha l f o f the N y q u i s t

f r equency , z = j .

Subs t i tu t ing z - j in to the t ransfe r funct ion:

3 (j - 0.5) (j + 1) 3 (1 . 1 2 Z 1 1 6 ~ ~ 4 . 7 Z 1 6 1 o

T (j c o) - (-1 + 0.25) = - 0 . 7 5 = 0 . 7 5 Z 1 8 0 ~

= 6 . 3 Z - 19 ~

(N.B. The d e n o m i n a t o r o f - 0 . 7 5 can be t hough t o f as - 0 . 7 5 + j 0 , g iv ing a phase

ang le o f 180~

3.17 UNSTABLE SYSTEMS

D o n ' t fo rge t that d i sc re te sys t ems wi th t ransfe r func t ion po les outs ide the uni t

68 The z-plane

circle are unstable, and so must be redesigned. Figure 3.30(a) shows the unit step
response for a system with a pole at 1.2, while Fig. 3.30(b) is the unit step
response for a filter with conjugate poles at 0.8 + j0.8, again, outside the unit
circle. More work on these particular designs is clearly needed!

{1:1
0 . 5

t ~

.=_ 0
O'1
t ~

E
- - 0 . 5

- 1

(a)

, i , i i

. ~
oO ,o

.,
,.

/ ,,

...... ! . : . -)<

", i / ", ', , o
" i ' " .

".. ! .

" " ' " i " " ~

i i i i i

-1 -0 .5 0 0.5 1
Real part

200

150 -

100 -

' 0 ;TI
0 5 10 15

Time (samples)
20

o. 0.5
>,,

.= 0
0")

E
- - - 0 . 5

-I

(b)

| i , ,

. . . - - .

.o ..

/ .
,

,
, -] . ~

". : i
',, :: /

�9 , ..
".. , . "

"" i ~

" " " i " * " "

i i] i i

-1 -0 .5 0 0.5 1
Real part

Figure 3.30

20 ' '

1 15

10

5

0

- 5

- 1 0
0 5 10 15 20

Time (samples)

3.18 SELF-ASSESSMENT TEST

A digital filter has a transfer function given by

T (z) - z
(Z 2 + Z + 0 . 5) (Z - - 0 . 8)

The sampling frequency is 16 Hz.

(a) Plot the pole-zero diagram for the filter and, hence, find the gain and phase
angle at 0 Hz and 4 Hz.

(a) Check your gain and phase values at 4 Hz directly from the transfer function.

3.19 RECAP

�9 The frequency response of a continuous system can be found by replacing s

3.20 Chapter summary 69

with jc0 in the transfer function and, for a discrete system, by replacing z with

The frequency response can also be found from the transfer function p-z
diagrams using

Gain = k

and

H zero distances
Fl pole distances

Phase angle = Z zero angles- Z pole angles

The frequency point moves up the imaginary axis from the origin (d.c.) for
continuous systems and around the unit circle in an anticlockwise direction
from z = 1 (d.c.) to z = - 1 (the Nyquist frequency) for discrete systems.

3.20 CHAPTER SUMMARY

We started this chapter by looking at the s-plane - i.e. by reviewing how continuous
signals and systems can be analysed from their pole-zero diagrams. We then
moved to the z-plane, which serves the equivalent purpose for discrete systems
and signals. The link between the s- and z-planes was shown to be provided by
Z = e sT.

The regions in the z-plane corresponding to stability, marginal stability and
instability were identified as being within the unit circle, on the unit circle and
outside the unit circle respectively.

The shapes of discrete signals were established from the positions of their
poles and zeros - the general shape being determined by the pole positions, while
the zero positions govern the magnitude of the signals. The presence or otherwise
of signal zeros also controls signal delays.

The frequency response of a discrete system was derived directly from the z-
plane transfer function by using z = e/c~ cos coT + j sin coT. The frequency
response was also obtained from the p-z diagram of the system transfer function
using

Gain - k H zero distances
H pole distances

and

Phase angle = ~ zero angles- ~ pole angles

This chapter has been mainly concerned with the analysis of discrete systems
but you have now also acquired many of the tools needed to design digital
systems.

70 The z-plane

3.21 PROBLEMS

N.B. If you have access to MATLAB then use it wherever possible to check your answers to the
following problems.

1 A filter has a transfer function of T(z) = (z - O. 1)/(z - 0.3) and is used with a
sampling frequency of 1 kHz.

(a) Sketch the pole-zero diagram for the filter.

(b) Use your pole-zero diagram to estimate the gain and phase angle at 0 Hz
and 250 Hz.

(c) Check the gain and phase angle at 250 Hz direct ly f r o m the t rans fer func t ion .
Also use this method to find the gain and phase angle at 375 Hz.

2 A continuous filter has a transfer function, T(s), given by T(s) = (s + 2)/
[(s + 1)(s + 3)].

(a) Design a digital filter that has equivalent poles and zeros by making use of
the relationship z = e sv. The sampling frequency is 10 Hz.

(b) Compare the d.c. gains of the two filters either with the aid of their p-z
diagram or directly from their transfer functions. Comment on these values.

3 A digital filter has the z-domain transfer function of 1/(Z 2 - Z + 0 . 5) . Sketch the
p-z diagrams for the filter outputs when the input is (a) a unit sample sequence
and (b) a discrete unit step. Use the system p-z diagram to find the gain of the
system at 0 Hz and also at f~/4, where f~ is the sampling frequency.

4 By using the function zZ/(z + 1) as an example, explain why it is impossible for
a system transfer function to have more zeros than poles. (Hint: Consider the
response of the system to a unit sample sequence.)

5 A digital filter has a transfer function of the form T(z) - (z 2 + 0.81)/(z 2 + p2).
The filter is to have a minimum gain o f - 6 dB occurring at a frequency of
50 Hz. Given that the sampling frequency is 200 Hz, find the appropriate p-
value. (Hint: First sketch a p-z diagram to show the zero positions.) Also find
the gain at 0 and 100 Hz. Hence sketch the m a g n i t u d e response of the filter.

4 The design of IIR filters

4.1 CHAPTER PREVIEW

We are now in a position to consider the various approaches to the design of
digital filters. The two types of filter, FIR and IIR, have very different design
methods and so will be considered separately. In this chapter we will focus on the
techniques used to design IIR or recursive filters. We begin with a very brief
r6sum6 of filter essentials.

4.2 FILTER BASICS

Before we move on to the design of digital filters, it is probably worth having a
very brief recap on filters.

An ideal filter will have a constant gain of at least unity in the passband and
a constant gain of zero in the stopband. Also, the gain should increase from the
zero of the stopband to the higher gain of the passband at a single frequency, i.e.
it should have a 'brick wall' profile. The magnitude responses of ideal lowpass,
highpass, bandpass and bandstop filters are as shown in Fig. 4.1(a), (b), (c) and
(d).

Gain Gain

0 0
F req u e ncy F req u e n cy

(a) Lowpass (b) Highpass

Gain Gain

F req ue ncy F req ue ncy
(c) Bandpass (d) Bandstop

Figure 4.1

It is impossible to design a practical filter, either analogue or digital, that will
have these profiles. Figure 4.2, for example, shows the magnitude response for a
practical lowpass filter. The passband and stopband are not perfectly flat, the
'shoulder' between these two regions is very rounded and the transition between

72 The design of IIR filters

them, the 'roll-off' region, takes place over a wide frequency range. The closer
we require our filter to agree with the ideal characteristics, the more complicated
is the filter transfer function.

1

0.8 -

0.6 -
r

(.9

0.4 -

0.2 -

0
10 0

m

101 10 2 10 3 10 4

F r e q u e n c y (rad/s)

F i g u r e 4 . 2

As the gain of a real filter does not drop vertically between the passband and
stopband, we need some way of defining the 'cut-off' frequencies of filters, i.e.
the effective end of the passband. The point chosen is the '-3 dB' point. This is
the frequency at which the gain has fallen by 3 dB, or to 1/~/2 of its maximum
value (gain in dB = 20 log10 [gain]).

If you are rusty on the basic principles of analogue filters, this would be a good
time to do some background reading. Some keywords to look for are: lowpass,
highpass, bandstop, bandpass, cut-off frequency, roll-off, first, second (etc.) order,
passive and active filters, Bode plots and dB. Howatson (1996) is just one of an
abundance of circuit theory and analysis texts which will be relevant.

Much work has been carried out into the design of analogue filters and, as a
result, standard design equations for analogue filters with very high specifications
are available. However, as has been stressed earlier in this book, the characteristics
of all analogue systems alter due to temperature changes and ageing. It is also
impossible for two analogue systems to perform identically. Digital filters do not
have these defects. They are also much more versatile than analogue filters in that
they are programmable.

We will now look at various methods of designing digital filters.

4.4 The direct design of IIR filters 73

4.3 FIR AND IIR FILTERS

You will remember from earlier chapters that digital filters can be divided broadly
into two types - finite impulse response (FIR) and infinite impulse response (IIR)
filters. If a single pulse is used as the input for an FIR filter the output pulses last
for a finite time, while the output from an IIR filter will, theoretically, continue
for ever. G e n e r a l l y , FIR filters are non-recursive, i.e. do not use feedback, while
IIR do. It should be pointed out at this stage that it is possible to design some FIR
filters which are recursive. However, for convenience, the term FIR filter will be
taken to mean a non-recursive filter in this book.

The general expression for the transfer function, T(z) , of an FIR filter is:

T(z) - a o + a l z -1 + a 2 z -2 + a 3 z -3 . . .

while that for the IIR filter is:

-1 -2 -3
T (z) - ao + a l z + a 2 z + a3z . . .

1 - b l z -1 - b 2 z -2 - b 3 z -3 . . .

Although they have the disadvantage of requiring more coefficients to achieve a
similar filter performance, FIR filters do have the advantage that they will never
be unstable, unlike IIR filters. FIR filters also have the potential to feature a
linear phase response - but more on this later. The main point is that the two types
of filter are very different in their performance a n d a l s o in t h e i r d e s i g n . In this
chapter we will deal with the design of IIR filters only; FIR filters are considered
in the next chapter.

There are several approaches that can be taken to the design of IIR filters. One
common method is to take a standard analogue filter, e.g. Butterworth, Chebyshev,
Bessell, etc., and convert this into its discrete equivalent. An alternative procedure
is to start with the z-plane p-z diagram and attempt to place poles and zeros so
as to produce the desired frequency response. This is often called the 'direct'
design method. We will now look at these two approaches in detail.

4.4 THE DIRECT DESIGN OF IIR FILTERS

With this method, poles and zeros are placed on the z-plane in an attempt to
achieve the required frequency response. When designing digital filters in this
way there is sometimes an element of 'trial and error' involved. Often this is
small and just serves to 'tweak' the calculated pole-zero positions, so as to
improve the response, but at other times it is significant- this is usually when it
proves very difficult to calculate the optimum pole-zero positions accurately.
The reliance on trial and error has obviously been made much more viable with
the increased availability of CAD packages such as MATLAB. These packages
allow us to simulate and then modify our designs very quickly.

Once a suitable p-z diagram has been established, the system transfer function
can be derived. One of the many pleasures of using digital filters is that it is very

74 The design of IIR filters

easy to convert the transfer function into the actual filter, i.e. to convert it into the
corresponding DSP software. This is far from true with analogue filters. Here,
once we arrive at a suitable p-z diagram, the corresponding transfer function then
needs to be converted into suitable hardware- i.e. electrical components. This is
a much more difficult task!

This 'direct' method of IIR filter design is best described by means of examples,
and so two follow.

E x a m p l e 4 .1

A lowpass digital filter is required that has a d.c. gain of 1 and a cut-off frequency
which is 0.25 of the sampling frequency. The filter is to have a transfer function
of the form T(z) = k(z + a)/(z + b).

Solution

Our first task is to locate the single zero and pole. To complete the design we then
need to calculate a suitable k-value.

As we require a lowpass filter then, after the initial passband, the gain must fall
as the frequency increases, i.e. as we move around the z-plane unit circle in an
anticlockwise direction, starting at z = 1 (d.c.).

Remembering that

H zero distances Gain = k
H pole distances

it would therefore be sensible to arrange for the zero distance to be zero at
the Nyquist frequency. In other words, we will need to place the filter zero at

z = - l .

.'. a = + 1

Common sense suggests that, in order to achieve the required response, the single
pole probably needs to be placed somewhere on the positive real axis, i.e. this
will ensure a large gain for low frequencies and a lower gain for high frequencies.
Figure 4.3 shows the zero at z = -1 and the pole at z = d. Point A corresponds to
0 Hz and point B to the cut-off frequency, which is half the Nyquist frequency (a

quarter of the sampling frequency).

Using

H zero distances
Gain = k

FI pole distances

the gains at 0 Hz and 0.5fN are given by:

_ k x 2 andGainB = k~,/2
GainA - (1 - d) ~/1 + d 2

Gain B k ~ (1 - d)
�9 . _ .

"" Gain A k2~/1 + d 2

4.4 The direct design of IIR filters 75

Imag.

-1 A

frequency \] d /
(fN)

(0 Hz)
Real

Figure 4.3

But B is t h e - 3 dB point, therefore

GainB 1
GainA ~/2

1 k~x~(1 - d)

- k2~/1 + d 2

1 2(1 - d) 2
2 4(1 + d 2)

.'. 1 + d 2 - 1 - 2d + d 2

.'. 1 - 1 - 2 d

" d - 0

Therefore the pole must be placed at the origin.

" b - 0

Applying

G a i n - k H zero distances
H pole distances

at point A:

k x 2
1 -

1

.'. k - 0 . 5

Substituting the a-, b- and k-values into the transfer function gives us"

0.5(z + 1)
T (z) -

z

Figure 4.4 shows that t h e - 3 dB point d o e s occur at 0.5fN and that the d.c. gain
is 1 (0 dB), and so our design has satisfied the filter specification.

76 The design of IIR filters

0
133

v m 2 (11
if)
c - _ 3 0
~ - - 4 if}

-~ - 6
:3
c"

,

~ - 8 .

-10 . ~ L
0 0.1 0.2 0.3 0.4 0.5 0.6

Normalized frequency (Nyquist = 1)

Figure 4.4

Example 4.2

A digital notchfilter is required which has a notch frequency of 20 Hz, a bandwidth
of no more than 4 Hz and an attenuation at the notch frequency of at least 40 dB.
The gain in the passband is to be 1. The sampling frequency is 160 Hz.

Solution

A notch filter is a very narrow bandwidth bandstop f i l t e r - it has a gain which
drops and then rises very steeply with increasing frequency and so the magnitude
response has the shape of a notch.

As

Fl zero distances Gain = k
FI pole distances

it follows that we must make the 'zero distance' very small at the notch frequency.
As the specification stipulates that the attenuation needs to be at least 40 dB then
the easiest thing to do is to place a zero on the unit circle at the position corresponding
to the notch frequency of 20 Hz. This, theoretically, should cause the gain to fall
to zero. This z-plane zero will, of course, be one of two complex conjugate zeros.

As the sampling frequency is 160 Hz then the Nyquist frequency is 80 Hz and
so the notch frequency of 20 Hz corresponds to an angle of 45 ~ on the z-plane
diagram. Figure 4.5 shows the zero, Z, along with its complex conjugate zero,
placed on the unit circle at the position corresponding to this frequency.

We now need to place the complex conjugate poles so that we obtain the
correct bandwidth of no more than 4 Hz. In other words, the gain must fall to
-3 dB, or to approximately 1/~/2 of its passband gain, at 18 Hz and 22 Hz.

From the symmetry of the frequency response, it seems sensible to place the
poles on the same radii as the zeros. The two poles will have to be sufficiently
close to the corresponding zeros to ensure that the gain is approximately unity for
all of the frequency range, apart from the 'notch'. As they are so close then k =
1 is required to give a passband gain of 1. Their locations must also be such that
the bandwidth is 4 Hz. We might find that this specification is impossible to
achieve.

In Figure 4.5 the two poles are shown as being a distance d away from the

4.4 The direct design of IIR filters 77

two zeros. Also shown are the t w o - 3 dB points, B and A, at 18 Hz and 22 Hz

respectively (not to scale).

-1
80 Hz

Imag ~ ~ (22 Hz)

+1

Real

Figure 4.5

The angle A CB corresponds to 4 Hz and so, as f N - 80 Hz,

Z A C B - 8-~Jr = 0.16 rad

Using s = rO, where s is the arc of a circle, r the radius, and 0 the angle
subtended by the arc, then, as r = 1, the arc length from A to B must also be 0.16,
and so ZA = ZB = 0.08.

As A is very close to Z, the pole, the zero and A (or B) form an approximate

r ight-angled triangle, with Z A Z P = 90 ~ Therefore the pole distance from A or B

must be very close to ~/d 2 + 0 .082 .

As

G a i n - k
1-I zero distances

FI pole distances

a n d k - 1,

1 A Z
~/2 AP

1 0.08

"" 4 5 + o .o8

" (d e + 0 . 0 8 2) - 2 x 0 . 0 8 2

�9 d - 0 . 0 8

Therefore, the poles must be 0.92 from the origin.

It follows that we must place the zeros at cos 45 ~ + j sin 45 ~ i.e. at 0.707 +
j0.707, and the poles at 0.92 cos 45 ~ + j 0.92 sin 45 ~ or 0.651 + j 0.651.

.'. T (z) -
(z - 0.707 + j 0 . 7 0 7) (z - 0.707 - j 0 . 7 0 7) Z, 2 - - 1.414z + 1

(z - 0.651 + j 0 . 6 5 1) (z - 0.651 - j 0 . 6 5 1) Z 2 - - 1.302z + 0.847

78 The design of IIR filters

N.B. The effect of the other pole and zero has not been taken into account in the calculation. This is
because they are so close together that they tend to cancel each other out and so should not affect
the gain significantly.

The design is now complete; all that remains is to check the response - the
MATLAB plot is shown in Fig. 4.6. It can be seen that the magnitude response
satisfies the specification, with the notch frequency occurring at 0.25fy (20 Hz),
the notch attenuation being at least 40 dB and the bandwidth approximately
0.05fN (4 Hz).

1 0 ~

- 1 0
0
o_ - 2 0 .

- 3 0 . : .
" O

_ # _ A h o y ] i [. ~ . [. �9 :"]
[, -

i : : : : i i i ,
-RI3__ ! ! ! ~ . ! ," !

', ,, ,, ,, : ', ,, ,, ,,

- 6 0 i i i i i i i i
0 0 . 0 5 0 . 1 0 . 1 5 0 . 2 0 . 2 5 0 . 3 0 . 3 5 0 . 4 0 . 4 5 0 . 5

Normalized frequency (Nyquist = 1)

F i g u r e 4 . 6

If we had found that the response was not satisfactory then the pole positions
could easily be 'tweaked', with the help of MATLAB, in order to improve the
performance.

Question
Would it be possible to design the filter using zeros only?

Answer
A resounding no!

This approach has a fatal flaw and is doomed to failure. Although,
theoretically, it might be possible to place zeros on the p-z diagram so as to
satisfy the magnitude response, practically it is impossible for the transfer
function of a discrete system to have more zeros than poles. Such a system
would produce an output signal before it receives an input signal! If you' re
not convinced see problem 4 at the end of Chapter 3.

N.B. We probably overdid the calculation in these examples and, practically, could have relied more on
MATLAB to decide on the location of the poles and zeros. For example, once we had calculated
the zero positions in the 'notch' problem, we could have found suitable positions for the poles by
trial and error, which would have saved a lot of work. However, it is important that you understand
the underlying principles in the design process, and so the extra calculations were wor thwhi le-
no doubt you feel much better for having done it?

4.5 SELF-ASSESSMENT TEST

A discrete bandpass filter is required that has a centre frequency of 100 Hz, a

4.8 The bilinear transform 79

bandwidth of 20 Hz and a peak gain of 1. The filter is to have a transfer function
of the form T(z) = k/(z 2 + a 2) and the sampling frequency is 400 Hz.

4.6 RECAP

�9 The direct method for the design of IIR filters relies on poles and zeros being
placed at suitable points in the z-plane so as to achieve an adequate frequency
response.

�9 Some calculation is usually needed for the initial location of the poles and
zeros but the final fine-tuning can often be done with the help of suitable
software, i.e. by using 'trial and error'.

4.7 THE DESIGN OF IIR FILTERS VIA
ANALOGUE FILTERS

The direct design method can give reasonable results for fairly simple filters.
However, it is far from ideal when something rather more sophisticated is needed,
and so an alternative approach is required.

A huge amount of research has been carried out in the past into the design of
analogue filters and, as a result, 'classic' filters such as Butterworth, Chebyshev,
'elliptic' etc. have been developed, each one having its own particular good and
less good features. A modern-day designer of analogue filters therefore has an
excellent library of designs at his or her disposal. It would be a dreadful waste of
effort not to try to make use of this expertise when designing digital filters. Very
sensibly, various s-domain to z-domain transforms have been developed which
allow us to convert analogue filters into their digital 'equivalents' fairly easily. It
must always be remembered that all transforms are approximations and that no
digital filter can be identical to its analogue prototype, i.e. have exactly the same
magnitude, phase and time responses. The various s-to-z transformation methods
have advantages and disadvantages. Remember also that a digital filter should
not be expected to operate above the Nyquist frequency - this is clearly not a
consideration when building analogue filters.

There are many standard methods of converting an analogue filter to its digital
equivalent- a process called 'discretization'. We will look at three of the most
common - the bilinear transform, the impulse-invariant method and the po le -
zero matching technique.

4.8 THE BILINEAR TRANSFORM

I mentioned earlier that there are classic analogue filters which we can use as
templates when we need to design a digital filter. However, some of these have
fairly complicated s-domain transfer functions and so, to save having to deal with

o r

unnecessarily complicated algebra at this stage, a very simple filter will be used
to demonstrate the various conversion methods. The prototype filter that will be
used is a first-order, lowpass filter having the transfer function:

1
T (s) - 1 + S/mc

(The filter is classed as afirst-order filter as the highest power of s is 1. Generally,
the higher the order the better the filter performance.)

This transfer function defines a lowpass filter with a cut-off angular frequency
of mc rad/s. For example, if we choose O)c = 10 rad/s, then:

1
T (s) - 1 + s/lO

0

-3
- - 5 rn

" 0 v

-10 "13

t-"
E~

-15

T(s) - 10
s + 1 0

Figure 4.7 confirms the predicted frequency response of the filter, i.e. it is a
lowpass filter with a cut-off frequency of 10 rad/s (or approximately 1.6 Hz).

-20

-20

Bode diagrams

| i | i

-40 " 0

-60
t ' -

13_
-80

-100
,

10 o 101 102
Frequency (rad/s)

80 The design of IIR filters

Figure 4.7

To apply the bilinear transform we have to replace s with:

S - -

e (z - 1)
T (z + 1)

4.8 Thebilineartransform 81

where T is the sampling period. (See Virk (1991), Oppenheim and Schafer (1975)
or Ludeman (1987) for an explanation of the origin of this transform.)

We will now convert the analogue lowpass filter to its discrete equivalent
using a sampling frequency of 16 Hz (T = 0.065 s).

. ' . T (z) -
10

2 (z - 1)
0.0625 (z + 1)

+ 1 0

lO(z + 1)
3 2 (z - 1)+ lO(z + 1)

lO(z + 1)
42z - 22

lO(z + 1)
42(z - 0.524)

�9 T (z) -
0.238(z + 1)
(z - 0.524)

The frequency response for this filter is shown in Fig. 4.8.

0
rn

-10

-20 t -
O

- 3 0
L

-40

�9 ~ -5o
-60
- 7 0

iiiiiiiiiiiiiiiiiiiiiiiiii!!i!iiiiiiiiiiii!!!!iii!iiiiii!iiiiiiiiiiii••:••••••!!!!!!!!!!!!!!!i!!!!!!!!!!!!!!!i!!!!!!!!!!!!!iiiiiiiiiiiiiiiiiiiii•••iiiiiii•
,

. : : : : , : r : !

: i : i : : : i i
. i '. i : i i i '. '.

I 1 1 I 1 ' 1 1
I I I I I i I I I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized frequency (Nyquist = 1)

-2O
o~

- 4 0

" O
v - 6 0

m

x : - 8 0

-100

I

iiiiiiiiiiiiii
I I I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized frequency (Nyquist = 1)

Figure 4.8

Taking into account the linear frequency scale, the phase response has roughly
the same shape as that of the analogue filter, while the magnitude response
appears to be in very good agreement- it is certainly a lowpass filter! However,

82 The design of IIR filters

a more detailed examination reveals that the cut-off frequency is approximately
0.19fN, or 1.5 Hz, rather than the 1.6 Hz (0.2fN) of the analogue filter, which is an
error of approximately 6%. This is a recognized problem associated with the
bilinear transform, i.e. breakpoint frequencies might be changed significantly
during the transformation.

However, all is not lost. If the approximation is too poor to be acceptable, then
we need to 'pre-warp' the frequencies before we apply the bilinear transformation.
This entails modifying the s-domain transfer function in a particular way, such
that the gain at a 'frequency of interest' (usually an important breakpoint) is the
same for the discrete filter as the continuous filter. (N.B. Frequency pre-warping
does not change the d.c. gain.)

If the frequency at which we want to equate the gains is o9~, then we first need

to calculate a 'pre-warped' version, COc, where"

, 2 oc tan/)
In this example we have just one frequency which is of obvious interest - the

single breakpoint of 10 rad/s.

(,0) .'. co" - 32 tan 10.34

We now need to redesign the digital filter starting with the 'pre-warped' s-
domain transfer function. There are several ways of doing this, but the easiest is
to first change the format of the transfer function such that every s is replaced
with s/O)c.

So, dividing numerator and denominator by 10, our simple transfer function
now becomes:

T (s) -
s +1

10

The final step is to replace all s/COe terms with s/o~, i.e. with s/10.34 in our

example.

" T (s) ' =
s +1

10.34

�9 T (s) ' = 10.34
s + 10.34

We now apply the bilinear transformation to this pre-warped version of the
transfer function. This gives"

T(z) -
0.244(z + 1)

z - 0.512
(check this for yourself)

Figure 4.9 shows the magnitude response before and after pre-warping. The

4.8 The bilinear transform 83

normalized frequency scale has been expanded so as to make the difference
between the responses more obvious. The new cut-off frequency now corresponds
much more closely to the 0.2fN or 1.6 Hz required.

-2.5
r n
" 0
v

O

r

O

~ - 3
O " O

. B

-3.5
0.18

With

.. '; i . : ":

, ,

I I

0.185 0.19 0.195 0.2 0.205 0.21
Normalized frequency (Nyquist = 1)

Figure 4.9

N.B.1

N.B.2

N.B.3

It is always worth checking whether the frequency needs to be pre-warped before carrying out

the bilinear transformation. If co" differs from coc by more than about 1%, then it is probably
worth pre-warping.
If we had used a sufficiently high sampling frequency in the example above, then pre-warping
would not have been necessary. For example, if we had chosenf~ to have been 100 Hz rather than

16 Hz, then co" = 10.008 rad/s, which is not significantly different from coc, and so it is probably
not worth pre-warping.
Pre-warping will only ensure that the gain is matched at the chosen frequency (and 0 Hz). If
there had been several breakpoints, for example, if

s + 2
T (z) =

(s + 3)(s + 4)
then a decision has to be made as to which of the three breakpoints it is best to preserve. An
example follows.

Example 4.3

A continuous filter has a transfer function of

T (s) -
(s + 1) (s + 2)

It is to be converted to its digital equivalent using the bilinear transform. It is
important that the gain is preserved at the upper breakpoint frequency of 2 rad/s.
The sampling frequency used is 2 Hz.

Solution

We first need to check whether pre-warping is necessary to maintain the breakpoints.
Using

,

O)c - T tan ~

& (os - . . _ tan - 2.19
U.D

As the difference between mc and C0c is significant (about 10%), then pre-warping
is necessary.

84 The design of IIR filters

Changing the format of the transfer function by replacing all s-values with
s/O)c, i.e. s/2, gives:

T (s) - 0.5 (s) i s] ~ - + 0 . 5 ~-+ 1

(Here we have divided both bracketed terms by 2, in other words we have divided
the denominator by 4. We therefore also need to divide the numerator by 4 -
hence the '0.5'.)

Replacing all s/2 terms with s/2.19:

T(s)" = 0.5 /s)is] 2.19 + 0.5 2.19 + 1

.'. T (s) ' = 2.4
(s + 1.1)(s + 2.19)

Applying the bilinear transform, i.e. replacing s with 4 (z - 1)/(z + 1), results in
the z-domain transfer function of:

(z + 1) 2
T(z) - 0.073 (z - 0.58)(z - 0.307)

4.9 SELF-ASSESSMENT TEST

Convert the filter with the transfer function of T(s) = 16/(s + 4) 2 into its discrete
equivalent, using the bilinear transformation. The discrete filter is to be used with
a sampling frequency of 5 Hz.

4.10 THE IMPULSE-INVARIANT METHOD

The approach here is to produce a discrete filter that has a unit sample response
which is 'the same' as the unit impulse response of the continuous prototype, as
shown in Fig. 4.10. Clearly, the output from the digital data processor will be a
sampled response, however, if properly designed, the envelope of the signal
should be the same as the unit impulse response of the analogue filter.

Using our prototype lowpass filter as an example, we start with:

T (s) =
10

s + 1 0

If we use a unit impulse as the input then the Laplace transform of the output, i.e.
the 'unit impulse response', is also 10/(s + 10). This is because the Laplace
transform of a unit impulse is '1' and so Y(s) = T(s) x 1.

If we now find the inverse Laplace transform, y(t), then this tells us the shape
of the unit impulse response in the time domain.

4.10 The impulse-invariant method 85

Input

Unit
impulse t Analogue

filter

Output
Continuous

t o u t ~ ~ ~

Unit-sample
function

Discrete

t t 1" 'Equivalent' output, "
discrete , , ,]""

filter l"r-- 1-.

Figure 4.10

From the tables, the inverse Laplace transform of 1/(s + a) is e -at , which is an
exponentially decaying d.c. signal.

.'. y (t) - 10e -10t.

The final step is to find the z-transform, Y(z) , of this time variation. Again,
from the Laplace/z-transform tables, e -at has a z-transform of z / (z - e-aT). As the
sampling frequency is 16 Hz,

lOz lOz
Y(z) - -0.625 = z - e z - 0.535

This function must also be the z-domain transfer function, T(z) , of our equivalent
discrete filter. This is because the z-transform of a unit sample sequence is also
1, and so Y(z) - T(z) x 1. In other words, if we inputted a unit sample sequence
into a discrete filter having a transfer function of 10z/(z - 0.535), the z-transform
of the output would also be l O z / (z - 0 . 5 3 5) . This is exactly what we require of the
discrete filter.

10z
.'. T (z) -

z - 0.535

To make sure that no mistakes have been made during the transformation, it's
worth checking the unit impulse response and unit sample response of the continuous
and discrete filters, respectively. Figure 4.11 shows the impressively close agreement
between t h e m - the continuous response plot passing through the circles of the
discrete response 'stems', so confirming that the transformation has been carried
out correctly.

Figure 4.12 shows its frequency response - this doesn't look quite so good!
Comparing with Fig. 4.7, the phase response is clearly very different. The phase
response is important but not as much as the magnitude r e s p o n s e - we will
discuss phase response more in the next chapter and will concern ourselves solely
with the magnitude response here. Although t h e - 3 dB point on the magnitude
response is close to 0.2 fN, i.e. the normalized frequency which corresponds to
1.6 Hz, the gain values are m u c h bigger than we might have expected. However,
we could have predicted this gain 'mismatch' from an examination of the discrete
filter's p-z diagram, Fig. 4.13.

86 The design of IIR filters

10

6
" O

"E 5

4

Continuous
response

0 2 4

Figure 4.11

6 8 10 12 14
Samples (T = 0.625 s)

16

._. 28
r n
" o

v 26

'- 24 O

22

-o 20
t-"

9 1 8

N 16

-5

-10

- 1 5

-20

,- -25
&.

- 3 0

- 3 5

I I I I I I I I I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized frequency (Nyquist = 1)

I I I I I I I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized frequency (Nyquist = 1)

Figure 4.12

Imag

A

+1 -1

4.10 The impulse-invariant method 87

(0 Hz)
Real

Figure 4.13

Using

Gain - k H zero distances
H pole distances

gives a d.c. gain of 10/0.465, or approximately 21.5, rather than the '1' which we
require for the filter. Luckily, this is not a major problem as we can just scale our
transfer function by 1/21.5. The transfer function now becomes"

" T (z) -
0.465z

z - 0.535

The new magnitude response is shown in Fig. 4.14. This now gives good

-2

-4

-6 rn
"O
t'- om

(-9_ 8

-10

-12

-14
100

7 ~ T I

*'N~~ Discrete
* response

_ . kkk~ *~
Continuous \

i I i i i i I
101

Frequency (rad/s)

response " ~

i i i ~

Figure 4.14

88 The design of IIR filters

agreement with the required response, especially well away from the Nyquist
frequency of approximately 50 rad/s.

N.B. 1 Ideally we should sample at a frequency which is much higher than the desired cut-off frequency
of 1.6 Hz. We are sampling at 10x this frequency which is adequate., However, if we had reduced
the sampling frequency down to 10 Hz, for example, then this would have resulted in the -3 dB
point occurring at 1.75 Hz, which is a significant error.

N.B. 2 During the design process we used the Laplace/z-transform tables to move from the s-domain
to the z-domain, via the time domain. Clearly, there is no need to actually enter the time domain
as the Laplace/z-transform tables allow us to convert d i rec t l y from the s- to the z-domain, i.e.
1/(s + a) = Z/(Z - e-aT).

E x a m p l e 4 . 4

An analogue filter has the transfer function, given by:

T (s) -
6(s + 1)

(s + 2)(s + 3)

Convert this to its discrete equivalent by using the impulse-invariant transform.
The sampling frequency is 20 Hz.

Solution

The first thing to do is to try to identify a function of this 'shape' in the Laplace
transform tables. Unfortunately this one doesn't appear. What we must therefore
do is break it down into functions that d o appear, by using the method of partial
fractions, i.e."

6(s + 1) A B
T (s) - = I

(s + 2)(s + 3) s + 2 s + 3

By using the 'cover-up rule', or any other method, you should find that A - - 6 ,
and B - 12,

.'. T (s) -
12 6

s + 3 s + 2

Using the Laplace/z-transform tables to convert to the z-plane gives us

12z 6z 12z 6z
T (z) - -3x0.05 - - -2x0.05 = 0.86 -- 0.905 z - e z - e Z - Z -

.'. T (z) -
12z(z - 0.905) - 6 z (z - 0.86)

(z - 0.86)(z - 0.905)

z(12z - 1 0 . 8 6 - 6 z + 5.16)
i

(z - 0.86)(z - 0.905)

6z(z - 0.95)
.'. T (z) - (z - 0.86)(z - 0.905)

We now need to make the gains of the two the same at 0 Hz. We could do this by
first plotting the two p-z diagrams for the filters and then finding the gains of the
two filters at 0 Hz from the pole and zero distances. However, there is no need to
do this as we can derive the d.c. gains of the two filters d i r e c t l y from their transfer
functions.

4.12 Pole-zero mapping 89

Remembering that s - 0 and z - 1 correspond to a frequency of 0 Hz in the s-
domain and z-domain respectively, we require to find the value of k, such that:

I [6z(z - 0.95) 6(s + 10) - k
(s + 2)(s + 3) s-0 (z - 0 . 8 6) (z - 0.905) z=l

�9 6__0_0=k 6 x 0 . 0 5
6 0.14 x 0.095

.'. k - 0.443

�9 T (z) -
2.66 z(z - 0.95)

(z - 0.86)(z - 0.905)

4.11 SELF-ASSESSMENT TEST

Two analogue filters have the following transfer functions. Convert them to their
digital equivalents, using the i m p u l s e - i n v a r i a n t t rans fo rma t ion .

4 (a) T(s)- (s + 2) 2

(b) T (s) -
(s + 1)(s + 2)

Assume a sampling frequency of 10 Hz.

4.12 POLE-ZERO MAPPING

The approach adopted here is to use the relationship z - e sT to convert the s-
plane poles and zeros of the continuous filter to equivalent poles and zeros in the
z-plane. Once the z-plane poles and zeros are known, the general form of the z-
domain transfer function can be derived. All that then remains to be done is to
ensure that the two filters have the same gain, at least at some important frequency
- o f t e n 0 Hz.

Once again we will use our prototype lowpass filter, with the transfer function
of T(s) - 10/(s + 10), to illustrate this method, along with a sampling frequency
of 16 Hz.

This particular filter has just a single pole at s - -10. So, using z - esT:

Z - e -10x00625 = 0.535

It follows that our equivalent discrete filter has a z-domain transfer function with
the general form of T(z) - k / (z - 0.535).

We now need to find the value of k which will make the gains of the two filters
the same at a particular frequency. As it is a lowpass filter, it makes sense to use
0 Hz.

90 The design of IIR filters

1~ Is=0 - s + z - 0.535 z=l

o'. 1
0.465

.'. k - 0.465

Therefore, the transfer function of our equivalent discrete filter is given by:

0.465
T (z) - z - 0.535

N.B. Although this method is a very simple one, it generally gives poorer results than the two others,
i.e. the bilinear transform and the impulse-invariant method. One disadvantage is that if the
prototype continuous filter has no zeros then the discrete 'equivalent' will have no zeros. This is
not true with the two other conversion methods. This might not seem to be a major problem but
zeros a r e useful in that they help to shape the frequency response of the discrete filter. For
example, they can increase the rate at which roll-off occurs. To get around this problem, zeros are
often added to 'all-pole' filters so as to balance the number of poles - these zeros are usually
placed at z = -1. This makes sense because all-pole analogue filters will be lowpass or bandpass
filters (draw some pole diagrams to convince yourself of this) and so the equivalent digital filter
must have a low gain at the Nyquist frequency.

Our filter design should therefore be improved if we add a single zero at z -
-1. The transfer function now becomes:

k (z + 1)
T (z) =

z - 0.535

For the d.c. gains of the continuous and discrete filters to be the same, we require
that k - 0.233.

.'. T (z) -
0.233(z + 1)

z - 0.535

Occasionally the gains need to be equalized at a frequency other than 0 Hz.
This is a bit more difficult and so an example is in order.

Let's say that we have an analogue filter with a transfer function of s / (s + 1).
If we convert this to its digital equivalent using the pole-zero mapping method
and assuming a sampling frequency of 5 Hz, say, then you should find that the z-
domain transfer function is given, approximately, by T(z) = k (z - 1) / (z - 0.82).

Question
What type of filter is this?

Answer
It is a highpass filter. Looking at the s-domain transfer function, it 's clear that the gain is zero
when s = 0 and becomes 1 at sufficiently high frequencies, i.e. when s >> 1. Similarly, the z-plane
zero occurs at z - 1 (d.c.) and so the d.c. gain of the discrete filter must also be zero, and then

increases as the frequency increases.

Anyway - back to the problem. It doesn' t make very much sense to try to
equalize gains at 0 Hz, as they are already the same, i.e. zero. Here we need to
equalize the gains at a frequency in the passband. We could do this using MATLAB,

4. 13 Self-assessment test 91

or from the p-z diagram, or directly from the transfer function - the latter approach
will be taken here.

Theoretically, the gain of the analogue filter never quite reaches 1. However,
if we choose an angular frequency which is much greater than the cut-off frequency,
then this should be well into the passband region. As the cut-off frequency is 1
rad/s then a frequency of 10 rad/s should be suitable. Substituting this value into
the s-domain transfer function, i.e. replacing s with j l0 , gives a gain of 0.995,
which is close enough to 1. We also need to check that this frequency is not above
the Nyquist frequency. We are sampling at 5 Hz and so the Nyquist frequency is
2.5 Hz, or approximately 16 rad/s. It follows that our choice of 10 rad/s should
be fine.

We therefore need to equalize the gains of the two filters when s - j l 0 . Using
Z - e sT, the corresponding z value is e j2. Using Euler's identity, z - cos 2 + j sin 2
- -0.416 + j0.91.

�9 s I 1 1
s + 1 s= j lO Z--0.82 z=(-O.416+jO.91)

jlO
j l 0 + 1

- 0 . 4 1 6 - 1 + j 0 . 9 1
- k -0.416 - 0.82 + j0.91

.'. 0.995 = k 1.683
1.535

�9 k - 0.91

.'. T (z) - 0.91 z - 1
z - 0.82

N.B. As this is a highpass filter, it would have made more sense to have just equalized the gains at the
Nyquist frequency, i.e. at s = j l 6 and z = -1. This would have also been easier to do. However, if
it were a bandpass filter, then we would have no choice but to equalize the gains at a frequency
in the passband.

4.13 SELF-ASSESSMENT TEST

Convert the filters with the following transfer functions to their discrete equivalents,
using the pole-zero mapping method. The gains of the digital filters are to be
made the same as their analogue prototypes at 0 Hz. The digital filters are to be
used with a sampling frequency of 10 Hz.

(a) T (s) -
(s + 2) 2

(add two z-plane zeros at z - - 1)

(b) T (s) - s + 2
(s + l) (s + 3)

92 The design of IIR filters

4.14 MATLAB AND s-TO-z TRANSFORMATIONS

Very conveniently, MATLAB has special functions that will perform the main
s-to-z transformations for us. This 'c2dm' function will automatically generate
the appropriate z-domain transfer function coefficients.

For example, if we wish to check our s-to-z conversion of the simple lowpass
filter (T(s) = 10/(s + 10)) using the pole-zero mapping method, say, then the
MATLAB program is:

n=[10] ;
d= [i I0] ;
T=0. 0625 ;
c2dm (n, d, T, 'matched')

% sampling period
% the 'matched' indicates the
% p-z matching method

The bilinear transform, both with and without pre-warping, can also be performed.
The bilinear transform can also be achieved using the 'bilinear' function, while
the ' impinvar ' function can be used to accomplish the impulse-invariant
transformation. Consult the MATLAB user manual for further details.

4.15 CLASSIC ANALOGUE FILTERS

So far we have looked at how to convert some fairly simple analogue filters to
their discrete equivalents. As mentioned earlier, there are many standard analogue
filter types available to us as prototype filters. In other words, if we need to
design a digital filter with a certain maximum ripple in the stopband and passband,
a particular rate of roll-off etc. we do not have to start from scratch. All we need
to do is select one of the classic filters, e.g. Butterworth, Chebyshev, etc., which
best satisfies the specification and then use a suitable s-to-z transformation method
to convert it to the equivalent digital filter.

It is not the aim of this text to cover the very important, but lengthy topic of
analogue filters - here we are only concerned with how to convert a suitable
analogue filter to its digital equivalent. If you have not met the standard filter
types then you are advised to do some background reading. There are many
books available on this topic but you will probably find Ingle and Proakis (1997),
Steiglitz (1995) and also Denbigh (1998) particularly helpful as these texts also
deal with the conversion of standard analogue filters to their digital equivalent.
(Keywords: Butterworth, Chebyshev, elliptic, Bessell, pass/stopband ripple.)

I would not want to leave this particular approach to digital filter design
without converting one of the classic prototypes to its discrete equivalent. The
following worked example is based on a Butterworth filter. The main advantage
of this particular family of filters is that they have very flat stop- and passbands.
The major disadvantage is that the initial roll-off rate is fairly slow. In other
words, the 'shoulder' between the pass and stop regions is rather rounded compared
to some other filter types such as the members of the Chebyshev family. Chebyshev

4.15 Classic analogue filters 93

filters, in turn, have the drawback of a relatively large ripple in the passband or
the stopband.

Example 4.5

A second-order, lowpass Butterworth filter has the following transfer function:

T (s) - 1 I l l l s s
1 + ~ / ~ ~-c + ~-~- ~

where COc is the cut-off angular frequency.
Using this as a prototype, design a lowpass d i g i t a l filter, having a cut-off

frequency of 70 rad/s. The bilinear transform is to be used for the conversion and
the filter is to be used with a sampling frequency of 100 Hz.

Solution

We first need to check whether pre-warping is necessary.

Using O)c - (2/T) tan (o)T/2):

2 tan (7 0 x 10-2)
O)c = 10_----- T 2 - 73 rad/s

This is significantly different from O)c and so pre-warping is worthwhile.
Replacing O)c with COc in the filter transfer function"

T (s) " = 1

Using the bilinear transformation, i.e. s = 2 (z - 1)IT(z + 1):

s = 200

.'. T (z) -

1 +

z-l)
z + l

~~ ~oo(~ ~ ~+ 1')+ ~ ~ ~oo)~() ~+ z 1

1 +3 .87
/ z - , / (- , / 2

+7-5 z
z + 1

(Z + 1) 2

(z + 1) 2 + 3 . 8 7 (z - 1)(z + 1) + 7 . 5 (z - 1) 2

(z + 1) 2

Z 2 + 2z + 1 + 3.87z 2 - 3.87 + 7 . 5 z 2 + 7.5 - 15z

.'. T (z) =
(Z + 1) 2

12.37z 2 - 13z + 4.63

94 The design of IIR filters

Figure 4.15 compares the digital and analogue gain responses. As expected, the
filter responses agree closely at lower frequencies but begin to diverge as the
Nyquist frequency of 50 Hz (314 rad/s) is approached.

-10

-20

-3O

m
"{3

," -40
, i

(.9
-50

-60

-70

-80

-90

, , , , , , , , i , ,

~ Continuous
~ response

-

Discrete ~
- response

t
- ~ -

_

_ -

_ -

~ i ~ ~ i , , I

101 102
Frequency (rad/s)

Figure 4.15

4.16 FREQUENCY TRANSFORMATION IN
THE s-DOMAIN

You have probably noticed that all but one of the discrete filters we have designed,
so far, have been lowpass filters. The reason for concentrating on this particular
class of filter is that the transfer function for a lowpass filter can be used as a
template for the design of other types, i.e. highpass, bandpass and bandstop. In
other words, if we know the expression for the transfer function of a second-
order, lowpass, Chebyshev filter, for example, then we can use it to derive the
transfer function for a second-order, bandpass, Chebyshev filter. This is because
there are standard transformations (yet again!) which can be used to convert the
transfer function of a lowpass filter into the transfer function for any other filter
type within that family of filters.

For example, if we wish to convert a lowpass filter with a cut-off angular
frequency of (Oc to a highpass filter with a cut-off angular frequency of ~c, then
we just need to replace s, in the s-domain transfer function for the lowpass filter

with:

(.0 c -C2 c
s -

s

To demonstrate this we will use our old friend, the simple lowpass filter with
the transfer function of T(s) = 10/(s + 10). This lowpass filter has a cut-off
frequency of 10 rad/s. Let's imagine that we want to design a simple first-order,
highpass filter with a cut-off frequency of 6 rad/s.

We therefore need to replace s with 10 x 6/s, to produce our transfer function,
TH(S), for the highpass filter.

�9 ". TH (s) - 60

s

10

0
-3

+ 1 0

10s s
�9 ". TI-I (s) - 60 + 10s - s + 6

The magnitude response, Fig. 4.16, is clearly that of a highpass filter with a cut-
off angular frequency of 6 rad/s.

-10
r
- ' o
v

"~ -20
t -

~; -30

-40
10-1 100 6 101 102

Frequency (rad/s)

4.17 Frequency transformation in the z-domain 95

Figure 4.16

We can save ourselves much hard work by using the MATLAB functions lp21p,
lp2hp, lp2bp and lp2bs to convert the transfer function of a continuous lowpass
filter into that for another lowpass or highpass, bandpass and bandstop filter,
respectively.

For example, the MATLAB program

n= [I0] ;

d= [i i0] ;
wc=6 ;

[nh, dh] =ip2hp (n, d, wc)

% numerator coefficient for
% the lowpass filter
% denominator

% new cut-off frequency
% convert to highpass transfer
% function

will generate the transfer function coefficients for our simple, first-order, highpass
filter.

4.17 FREQUENCY TRANSFORMATION IN
THE z-DOMAIN

In the above example, the conversion from lowpass to highpass filter was carried

96 The design of IIR filters

out in the s-domain. To produce the digital version of this we would then need to
convert this highpass analogue filter to its digital equivalent using one of the
various methods available to us, possibly with the help of MATLAB. However,
if we know the z-domain transfer function for the discrete lowpass filter then this
change from lowpass to highpass (or to any other type) can also be done directly
in the z-domain.

To make this conversion from a lowpass to a highpass digital filter we have to
replace z with:

Z =
1 + a z
z + a

where

a ~ m
cos [(O)c - ~ c)T/2]
cos [(COc + f2c) T/2]

and O)c and f~c are the cut-off angular frequencies for the low and highpass filters
respectively.

As an example, we will transform the discrete equivalent of our lowpass filter
with the s-domain transfer function T(s) = 10/(s + 10). We will use the z-domain
transfer function obtained earlier using the impulse-invariant technique (Section
4.10), i.e T(z) = 0.465z/(z - 0.535). Again, a highpass filter with a cut-off
frequency of 6 rad/s will be aimed for. The sampling frequency is 16 Hz (T =
0.0625 s).

From

a ~
cos [(O)c - ~2c)T/2]
cos [(COc + ~2c) T/2]

= _ cos [(10 - 6) x 0.0625/2] -- -1.13
cos [(10 + 6) x 0.0625/2]

Replacing z with - (1 - 1.13z)/(z - 1.13) in T(z) = 0.465z/(z - 0.535):

0"465(l '13z-1)z- 1~13

T H (Z) - (l'13zz- 1A31) -0"535

0 .465(1 .13z- 1)
(1 . 1 3 z - 1) - 0 . 5 3 5 (z - 1.13)

0.465 x 1.13(z - 0.885)
0.595z - 0.395

0.465 • 1.13(z - 0.885)
0.595(z - 0.664)

.'. TH(Z) =
0 . 8 8 (z - O.885)

(z - 0.664)

4.19 Recap 97

Figure 4.17 shows the frequency response of this filter. It i s a highpass filter with
a cut-off frequency which is very close to 0.12fN, i.e. 0.96 Hz or 6 rad/s.

0

-3
6)

- - 5 t -
O C l
or)
.~ -10

13

I I

•••
"E -15 ..
03

-20
0 0.05 0.1 0.12 0.15 0.2 0.25 0.3 0.35 0.4

Normalized frequency (Nyquist = 1)

Figure 4.17

N.B. 1 Although we have looked at a fairly simple example, any type of lowpass filter can be changed
to another lowpass filter of different cut-off frequency or to equivalent highpass, bandpass or
bandstop filters. The formulae for all conversions, both in the s-domain and the z-domain, are
shown in Appendix B.

N.B.2 We have worked manually through the various steps of this particular approach to filter design,
just relying on MATLAB to perform some stages of the design and also to check the performance
of our filters. However, we can also use MATLAB to carry out the complete design for us. Once
a decision has been made as to which family of filters is required, e.g. Butterworth, Chebyshev
etc., the filter specification can then be entered and MATLAB will respond by generating the
discrete filter transfer function coefficients directly.
For example, '[nz,dz] = butter(3, 0.4, 'high')' will generate the transfer function coefficients for
a Butterworth, third-order, highpass filter, with a cut-off frequency equal to 0.4 • fN, where fN
is the Nyquist frequency. If we add 'freqz(nz,dz)', to the program, the frequency response (Fig.
4.18) will also be plotted. This facility is obviously invaluable when it comes to the practical

design of digital filters. Refer to the MATLAB user manual for further details.

4.18 SELF-ASSESSMENT TEST

A lowpass digital filter has a transfer function of 0.15 (z + 1)/(z - 0.7). Given that
this filter has a cut-off frequency of 55 Hz when sampled at a frequency of 1 kHz,
use the table of Appendix B to convert it to a highpass filter with a cut-off
frequency of 100 Hz. Assume a sampling frequency of 1 kHz.

4.19 RECAP

�9 A common way of designing IIR filters is to base the design on a suitable
analogue filter. The prototype filter is often one of the tried and trusted classic
filters such as Butterworth, Chebyshev etc. Each one of these filters has its
own particular good and bad points and the initial choice of filter is a very
important stage of the design process.

98 The design of IIR filters

0

v

-50 ...

-~oo ..

-150
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Normalized frequency (Nyquist = 1)

- 4 0 0 I i , i i

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Normalized frequency (Nyquist = 1)

~" -100

-~ -200

o~

'- -300
13_

Figure 4.18

�9 Transformations such as the bilinear (often with pre-warping), pole-zero mapping
and the impulse-invariant can then be used to convert the s-domain transfer
function into its z-domain equivalent.

�9 Designs are usually based on a prototype of a lowpass filter. This is because
the transfer function for all other types, i.e. highpass, bandpass, bandstop and
lowpass filters with different cut-off frequencies can be derived from the transfer
function of a lowpass filter by using yet more transformations.

�9 CAD packages are available which, once given the desired filter specification,
will generate the transfer function of the digital filter for us directly.

4.20 PRACTICAL REALIZATION OF IIR FILTERS

Once the design process has been completed and simulation carried out to check
the design, the final step is to program the DSP system, i.e. to write the controlling
software. The essential data that must be entered into the program are the transfer
function coefficients and the sampling frequency. In Chapter 2, the transfer function
was derived for a general recursive filter. This has the form of:

ao + al z -1 + az Z -2 + a3z -3 (4.1)
T (z) - 1 - b l Z - 1 - b2z - 2 - b3z -3 . . .

The transfer function coefficients must usually be entered into the DSP software
in this form. For example, if we have a filter with a transfer function of:

4.20 Practical realization of IIR filters 99

T (z) -
2z - 0.6

5z 2 + 1 .5z- 0.5

then the format needs to be changed to"

T (z) -
2z - 0.6

5(Z 2 + 0.3z - 0.1)

0.4z - 0.12
z 2 + 0 . 3 z - 0 . 1

Dividing numerator and denominator by z e in order to change all indices to
negative values and the initial value of the denominator to 1"

T (z) - 0"4z-1 - 0"12z-e
1 + 0 . 3 z -1 - 0.1z -2

Therefore, comparing with the general transfer function (equation (4.1)), a 0 - 0,
a 1 - 0 . 4 , a 2 - -0.12 and bl - -0.3, b2 = +0.1 (no t +0.3 and-0.1) .

I should add a word of warning at this point. There can be unexpected problems
with the filter performance if the coefficients are entered directly in this format.
This is particularly likely when the sampling rate is very large compared to the
filter breakpoints. This is because the filter poles and also the zeros tend to cluster
together as fs increases. In other words, the roots of the numerator and also the
denominator polynomials become very close. To convince yourself of this, convert
a filter with a transfer function of (s + 2)/(s + 1)(s + 3) into its z-plane equivalent
using the bilinear transform and a sampling frequency of 20 Hz, 200 Hz and 2000
Hz. You should find that the poles (and the zero) move closer and closer to z - + 1
as the sampling frequency increases. Remember that, practically, there are a
limited number of bits available in a processor to store each coefficient and so
'rounding' of coefficient values inevitably take place during processing. These
approximation errors obviously become extremely significant when the roots of
the polynomials are so close. A pole which should be near to the unit circle could
even be calculated as being just outside - i.e. disas ter ! To overcome this 'clustering'
problem, the filter is often broken down into smaller sections which are then
cascaded to produce the complete filter. It can be shown that this structure reduces
the problem. For more information on this method of implementation see Steiglitz
(1995) and also Ingle and Proakis (1991, 1997). (Keywords" biquadratic sections.)

Hopefully, you are now in a position to do some practical designing and
testing of IIR filters. Unfortunately, in a book of this length, it is not feasible to
deal with the practical details of programming specific DSP systems - for this
you will need to consult the appropriate user manual. Several very useful books
have also been written which concentrate on practical applications of particular
processors, e.g. E1-Sharkawy (1996), Ingle and Proakis (1991) and Chassaing
and Horning (1990).

100

4.21

The design of IIR filters

CHAPTER SUMMARY

In this chapter we began with a very brief review of analogue filters, emphasizing
that the frequency responses of real filters are usually a long way from that of
ideal filters. We then looked at two general methods of designing IIR filters. The
first was the 'direct' method. This entails placing poles and zeros in the z-plane
so as to 'mould' the frequency response into the required shape. The approximate
locations of the poles and zeros can be arrived at by calculation and then fine
adjustments made to improve the response. Suitable CAD packages are invaluable
when adopting this approach to filter design.

This direct method is fairly rough and ready and not feasible when a filter with
a very 'tight' specification is required. We would then have to turn to the second
approach, i.e. base the design on a suitable analogue filter. The analogue prototype,
which will often be one of the 'classics', would then have to be converted to its
digital equivalent using one of the various s-to-z transformations. Filter designs
are usually based on lowpass filters as these can be readily converted to other
types, both in the s-domain and the z-domain.

CAD packages are available which will carry out the complete design process.

4.22 PROBLEMS

1 A highpass filter is to be designed, using the 'direct' method, i.e. by placing
transfer function poles and zeros at suitable points in the z-plane. The filter is
to have a transfer function of the form T(z) = k (z - 1) / (z - a), a cut-off
frequency which is 0.125 of the sampling frequency (0.25fN), and a gain of 1
at the Nyquist frequency.

2 Continuous filters with transfer functions of:

(a) T (s) - s + 2
s + 5

15
(b) T (s) - s2 + 8s + 15

are to be converted to their digital equivalents. The bilinear transform is to be
used, with pre-warping. Both continuous filters have breakpoint frequencies
of 5 rad/s and this breakpoint is to be retained by the discrete filters, i.e. this
is the frequency which must be pre-warped. Both filters are to be used with a
sampling frequency of 8 Hz.

3 Convert the filter with the transfer function of T(s) = s/(s + 4) to its discrete
equivalent using pole-zero mapping. The filter is to be used with a sampling
frequency of 4 Hz. The transfer function of the discrete filter must be scaled
such that it has the same gain as the continuous filter at 2 Hz (IN). (N.B.This
is a highpass filter.)

4.22 Problems 101

4 The following transfer functions are for two lowpass, continuous filters. Use
the impulse- invariant transformation to convert them to the transfer functions
of equivalent discrete filters. The discrete filters must have the same d.c. gains
as the corresponding analogue filter. The discrete filters are to be used with a
sampling frequency of 5 Hz.

(a) T(s)=
(s +4) 2

(b) T(s)=
4(s + 3)

(s + 2)(s + 6)

5 A lowpass analogue filter has a transfer function of T(s) = 3/(s + 3). This
transfer function is to be converted to one for a discrete, highpass filter, with
a cut-off frequency of 6 rad/s. The filter is to be used with a sampling frequency
of 10 Hz and the conversion is to be done by:

(a) changing from lowpass to highpass in the s-domain and then converting to
the discrete, equivalent highpass filter by using the pole-zero mapping
technique. (The discrete highpass filter must have the same gain as the
continuous filter at the Nyquist frequency.)

(b) converting to an equivalent discrete, lowpass filter using the pole-zero
mapping method (the added zero is to be placed at z = - 1) and then
converting from lowpass to highpass in the z-domain. (The continuous
lowpass filter and its discrete equivalent must have the same d.c. gains.)

5 The design of FIR filters

5.1 CHAPTER PREVIEW

This, the final chapter, begins by making a case for the use of FIR filters rather
than IIR filters under certain conditions. We will then look at two standard
methods used to design FIR filters - the 'Fourier' or 'windowing' method and the
'frequency sampling' method. These two design techniques rely heavily on various
forms of the Fourier transform and the inverse Fourier transform, and so these
topics will also be covered, including the 'fast Fourier transform' and its inverse.

5.2 INTRODUCTION

So far we have looked at various ways of designing IIR filters. Compared to FIR
filters, IIR filters have the advantage that they need significantly fewer coefficients
to produce a roughly equivalent filter. On the downside, they do have the
disadvantage that they can be unstable if not designed properly, i.e. if any of the
transfer function poles are outside the unit circle. However, with careful design
this should not happen.

So why bother with FIR filters at all?

They have one major thing going for them which sometimes makes them preferable
to IIR filters. This is that they can be designed to have a linear phase response.

5.3 PHASE-LINEARITY AND FIR FILTERS

Imagine a continuous signal, let's say a rectangular pulse, being passed through
a filter. Also imagine that the transfer function of the filter is such that the gain
is 1 for all frequencies. Such filters exist and are called 'all-pass' filters. It would
seem reasonable that the pulse will pass through an all-pass filter undistorted.
However, this is unlikely to be the case. This is because we have not taken into
account the phase response of the filter. When the signal passes through a filter,
the different frequencies making up the rectangular pulse will usually undergo
different phase changes -effectively, signals of different frequencies are delayed
by different times. It is as though, as a result of passing through the filter, signals
are 'unravelled' and then put back together in a different way. This reconstruction
results in distortion of the emerging signal.

An example of a continuous, all-pass filter is one with the transfer function

5.3 Phase-linearity and FIR filters 103

T(s) = (s -4) / (s + 4). (Note that this transfer function has a zero on the right-hand
side of the s-plane. This is fine - it is only poles which will cause instability if
placed here.) This particular filter will have a gain of 1 for all frequencies - this
should be fairly obvious from its p-z diagram. Interpretation of the signal response
is made slightly easier if we imagine that we have an inverting amplifier in series
with the filter. The frequency response, Fig. 5.1, confirms that the gain of the
combination is 1. Figure 5.2 shows the response of the filter to a rectangular
p u l s e - the signal has clearly been changed. Notice that the distortion occurs
particularly at the leading and falling edges of the pulse. This would be expected,
as the edges correspond to sudden changes in the signal magnitude and rapid
changes consist of a broad band of signal frequencies. Figure 5.3 shows the
output when a unit impulse passes through the filter. Theoretically, a unit impulse
is composed of an infinite range of frequencies and so it should suffer major
distortion- and it certainly does (notice how its width has spread to approximately
1 s). In a similar way, discrete all-pass filters will also cause distortion. Figure 5.4
shows what happens to a sampled rectangular pulse, consisting of three unit
pulses, passed through such a filter.

101 .
.
. . , ,, , �9 , , . . . , . . . , . . , , , , , , , ,

.

.

I ' ~ . a ~ a ~ L L . . . a . . . a . . . ~ . ~ ~ ~ ~ J J ~ - - - q - - . -

" ~ . r r---~---1---r r I ,- T ~ �9 r---r-'-

(1) ...

�9 ~ 10 0 ' , - ' " : :-" : - ' " : " " : : : : : : : : : : %" : " ; : " : : ; ; ;." : : . " : : : " :- ' ." l - " " : " : : r ' " " : : ~ ' : : " ~': " " 2 : : : . ' " : :~." : . " : : " " : - ' " : : : " ' " : : : " : ' r " - ' " : : " . " " " : l :-" : . " : : ; : ' ~ : " ; : : : I : : : : : ; ' . " ;-" 2 : : " " r " : : r : : -
. t }- -I l - ,~ I- I - - - } - . " t " { t -I ~ - - - - , ' - - . -
... ; .. : ::::::::::::::::::::::

: ~ . ~ . i .
,

. ,,, . ! .

. : :
, ,
, ,

10 -I i i
100 101 102

Frequency (radians)

- 5 0
O')

- 1 0 0

o -
n - 1 5 0

- 2 0 0

...................... i [........ i i i i i i

Figure 5.1

10 0 101 10 2
Frequency (radians)

It can be shown that only if a filter is such that the gradient of the plot of phase
shift against frequency is constant will there be no distortion of the signal due to
the phase response.

This is because the effective signal delay introduced by a filter is given by
dr where ~O is the phase change. It follows that we require that ~O = kco, where
k is a constant, if the delay is to be the same for all frequencies, as then d~O/dco = k.

104 The design of FIR filters

2.5

1.5

1
" 0

m

" 0.5 E <

-0.5 -

- 1 -

- 1 . 5
80

Figure 5.2

Input

Output

'1 I I I I I I I I

90 1 O0 110 120 130 140 150 160 170 180
Time (s)

" 0

~ . 4
E <

OJ5. ! 0 1 1.5
Time (s)

Figure 5.3

Clearly, the phase response of our all-pass filter is not linear (Fig. 5.1), and so
the signals suffer distortion. If a filter has a phase response with a constant

5.3 Phase-linearity and FIR filters 105

1.4 r 1- r 1- l

1.2

0.8

0.6

0.4

0.2

-0.2

Input

. . . . Output

o
I

i e)
I

I

(5
-0.4 .I, J. 1 ~ 1

0 2 4 6 8 10 12

Figure 5.4

Sample

gradient, i.e. where the phase response is linear then, very sensibly, the filter is
described as being a 'linear-phase filter'.

In the previous chapter we spent quite a lot of time converting continuous
filters to their discrete IIR equivalents, and then comparing them very critically
in terms of their magnitude responses. However, you might have noticed that not
too much was made of any difference between their phase responses, even though
the differences were sometimes very obvious. This is because the phase response
of the original continuous filter itself was probably far from ideal and so it didn't
matter too much if the phase response of the discrete filter differed from it.

While we' re dealing with this subject, it should be mentioned that we can take
an IIR filter with its poor, i.e. non-linear, phase response and place a suitable 'all-
pass' discrete filter in series with it so as to linearize the combined phase responses.
As well as having a gain of 1 for all signal frequencies, the compensating all-pass
filter will have a phase response which is as close as possible to the inverse of
that of the original filter.

So, to sum up, a case has been made for using FIR filters in preference to IIR
filters, in certain circumstances. This is because FIR filters can be designed to
have a linear phase response. As a result, such an FIR filter will not introduce any
distortion into the output signal due to its phase characteristics. However, do not
get the idea that all FIR filters are automatically linear-phase filters - far from it.
If we want an FIR filter to have a linear phase response, and we usually do, then
we need to design it to have this particular property.

106

5.4

The design of FIR filters

RUNNING AVERAGE FILTERS

You met these filters way back in Chapter 1. Just to remind you, they are FIR
filters that generate an output which is the average of the current input and a
certain number of previous inputs. It is not a particularly useful filter practically
- it behaves as a fairly ordinary lowpass filter. However, it is extremely useful to
me at the moment in that it is an example o f an FIR filter that naturally has a
linear phase characteristic. For example, consider a running (or moving) average
filter that averages the present and the previous three input samples, i.e. �9

r (z) -
X (z) + X (z) z -1 + X (z) z -2 + X(z) -3

where Y(z) and X(z) are the z-transforms of the filter output and input respectively.

X(z)(l+z - l + z - : + z -3) X(z)(z 3+z 2 + z + l)
�9 ". Y (z) - 4 = 4 z 3

o r

Z 3 Z 2 T(z) - + + z + 1
4z 3

Figure 5.5 shows the frequency response for this filter. Note that the magnitude
response is that of a lowpass filter with a cut-off frequency of about 0.2fN but,
much more importantly, that the phase response is linear. The discontinuity at
0.5fN doesn't ma t t e r - what is important is that the gradient of the phase plot has
a constant value.

So, what is it about the transfer function of a running average fi l ter that makes
it a linear-phase fi l ter ?

The secret is the symmetry o f the numerator coefficients. In this example all
numerator coefficients are 1, and so definitely symmetric about the mid-point.
However, any FIR filter with this central symmetry will exhibit a linear phase
response. For example, if we had a filter with the transfer function:

T (z) - 2 + z -1 + 3Z -2 + Z -3 + 2Z -4

o r

T (z) - 2z4 + z3 + 3z2 + z + 2
4

Z

i.e. symmetric coefficients of 2, 1, 3, 1, 2, then the phase response is as shown in
Fig. 5 . 6 - i.e. once again a linear phase response, albeit split into segments.

So, to recap, when we design linear-phase FIR filters we must make sure that
the coefficients of the transfer function numerator are symmetric about the centre,
i.e. about the centre 'space' if there is an even number of coefficients and about
the central coefficient if an odd number.

0

iiiiiiiiiiiii iiiiiiiiiiiiii iiiiiiiiiiiiiii !!!!!!!!iiii iiii
~ - 5 0

-60
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized frequency (Nyquist = 1)

50 I
i

0

"O
v - 50
r

13_
-100

-150

5.5 The Fourier transform and the inverse Fourier transform 107

............... i i i i

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized frequency (Nyquist = 1)

Figure 5.5

150

100

r 50
L

0

-50

az -100
1 3 _

-150
-200

0

I I I I I

. i i i ~ ~ ~ ' i i

.

i i i i i i i i i
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized frequency (Nyquist = 1)

Figure 5.6

5.5 THE FOURIER TRANSFORM AND
THE INVERSE FOURIER TRANSFORM

The first design method which we will use relies heavily on the Fourier transform,
and so it makes sense to carry out a brief review of this extremely important topic
at this point.

You are probably aware that the Fourier series allows us to express a periodic
wave in terms of a d.c. value and a series of sinusoidal signals. The sinusoidal
components have frequencies equal to the frequency of the original wave and
harmonics of this 'fundamental' frequency. For example, a square wave consists

108 The design of FIR filters

of the fundamental frequency and weighted values of the odd harmonics. However,
many signals are not periodic - speech would be an obvious example of a non-
periodic waveform. This is where the Fourier transform is of such importance.

The Fourier transform, F(jo)), of a signal, fit), is defined by:

F(jco) - ~ f (t)e-iC~
_ o o

It is an extremely useful transform as it allows us to break a non-periodic signal,
f(t), down into its frequency components, F(jco). F(jo)) is normally complex,
expressing both the magnitude and the phase of the frequency components. As
the signal is non-periodic the component frequencies will cover a continuous
band, unlike the discrete frequencies composing a periodic wave.

The inverse Fourier transform (IFT) allows us to work the other way round
(the clue is in the name!). In other words, if we use the IFT to operate on the
frequency spectrum of a signal, we can recover the time variation, i.e. the signal
shape. The IFT is given by:

f (t) - ~ F(j(o)eJmtd(_o
- - o o

(5.1)

As it is the inverse Fourier transform which is more relevant to us in the design
of FIR filters, it's worth pausing here to look at an example of its use.

Let's imagine that a signal has the spectrum of Fig. 5.7, i.e. it consists of
frequencies in the range of-fc to +fc, all with equal weighting. As the Fourier
transform of a signal is normally complex, it must be expressed in the form of an
amplitude and a phase spectrum. For this particular signal we are assuming that
the phase angle is zero for all frequencies, i.e. that its Fourier transform has no
imaginary component. In other words, F(jc0) = 1 for -fc < f-< fc, else = 0.

F(jm)

-fc 0 +fc Frequency

Figure 5.7

N.B. You might not be familiar with the concept of 'negative' frequencies. Clearly, a negative frequency
is meaningless practically. However, representing signals in terms of their 'normal' positive
frequencies and also the equivalent negative frequencies is a neat mathematical ploy which helps
with the analysis of the signals.

Applying the inverse Fourier transform (equation (5.1)) with F(jo)) = 1:

2 ~ (Oc f (t) - ~ eJ~ where a)c- 2rife
--0) c

5.5 The Fourier transform and the inverse Fourier transform 1 0 9

N.B. We are now only integrating between-O9c and +C0c as F(jog) has a value of zero outside this
frequency range.

" f (t) - 1 l e J ~ COc
"" 2n'jt I-COc

1 (eJWct e_jCOct
2 z t j t -)

but, from Euler's identity,

sin 0 - ~ j (e j o _ e - j o)

sin (Oct
. ' . f (t) - (5.2)

7Ct

This function is plotted in Fig. 5.8, using COc - 5 rad/s and t - - 1 0 s to +10 s.
(There is nothing special about these values, they were chosen quite randomly.)

1.6

1.4 .. ~ ..
I l l

I , r , ,

0.8 ...

0.6 ...

0.4 . ~ .
,,
==

0.2

0

- 0 - 8 - 6 - 4 - 2 0 2 4 6 8 10
Time in seconds

- 0 . 2

- 0 . 4

Figure 5.8

This signal might appear to be a little unusual and an unlikely one to meet on
a regular basis! It is, in fact, an extremely important signal shape in the world of
signal processing. Also, by using this simple frequency spectrum, the analysis was
reasonably straightforward. You will find that this was a very useful example to
have worked through when we move on to the design of an FIR in the next section.

So, to summarize, if we know the frequency spectrum of a signal we can use
the IFT to derive the signal shape in the time domain. If we need to move in the
opposite direction, i.e. from time domain to frequency domain, then we must use
the Fourier transform.

110 The design of FIR filters

This review is probably sufficient to allow us to move on but, if you feel that
you need to do some more reading, there are plenty of circuit analysis/signal
processing texts that deal with this topic. Some examples are: Howatson (1996),
Denbigh (1998), Lynn and Fuerst (1994), Proakis and Manolakis (1996) and
Meade and Dillon (1991). (Keywords: Fourier series, Fourier transform, inverse
Fourier transform, amplitude spectrum, phase spectrum.)

5.6 THE DESIGN OF FIR FILTERS USING THE
FOURIER TRANSFORM OR 'WINDOWING'
METHOD

The starting point for this filter design method is the desired frequency response
of the filter. To make use of the work done in the previous section, let's suppose
that we want to design an FIR lowpass filter with a cut-off frequency of 4 kHz.
The required magnitude response is shown in Fig. 5.9. We will decide on the
sampling frequency during the design process. We will assume that the phase
response is zero, i.e. that signals of all frequencies experience no phase change
on passing through the filter.

Figure 5.9

Magnitude

m

-4 kHz 0 4 kHz Frequency

The first step in the design process is to move from the frequency domain to the
time domain, by using the inverse Fourier transform. Luckily, we've already
made this particular frequency-to-time conversion in the previous section (although
for a frequency spectrum rather than a frequency response) and know that the
corresponding time function, f(t), is given by:

f (t) -
sin (C0ct)

~ t

Therefore, for this filter, with its cut-off frequency of 4 kHz:

f (t) - sin (8000 rtt) (5.3)
7~t

But what exactly does this time function represent?

It is the unit impulse response of the filter. To convince yourself of this, you need

8000

6000

@
= 4000

2000

0

to imagine using a unit impulse as the filter input. As the Laplace transform of the
unit impulse is '1 ' , then the Laplace transform, Y(s), of the output, will be the
same as the filter transfer function, i.e. Y(s) = 1 x T(s) = T(s). As we are interested
in the frequency response, we can replace 's' with jog. Therefore Y(jco) - T(jco),
where Y(jco) is the frequency spectrum of the unit impulse response. We know
that operating on the frequency spectrum of a signal with the IFT reconstructs the
signal in the time domain. It follows that applying the IFT to T(jco), and therefore
to Y(jog), must give us the time response of Y(jco), which we know is the unit
impulse response of the filter. Make sure that you are happy with this argument,
as it is fundamental to the design process.

Figure 5.10(a) shows the plot of f(t) = [sin (8000rct)]/m, i.e. the filter unit
impulse response, within the time window o f -1 .5 ms to +1.5 ms.

-2000

(a)

8000

i i
�9 .5 - 1 - 0 . 5 0 0 .5 1 1.5

Time in seconds • 10 -3

6000

4000 . D

2000

0

-2000

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time in seconds x 10 -3

5.6 The design of FIR filters using the Fourier transform 111

Figure 5.10

N.B. The time response shows a signal occurring before t - 0, i.e. before the input arrives, but don't
worry about this for the moment.

The next step in the design is to sample the unit impulse response. This is the
crux of the design as these sampled values must be the FIR filter coefficients. For
example, let's imagine that we could represent the signal adequately by taking
just five samples, a, b, c, b, a, with the samples being symmetric about the central
peak. This, of course, is completely unrealistic and many samples would have to
be taken - but bear with me.

If we now use these as the coefficients of the filter transfer function then this
gives:

112 The design of FIR filters

T(z) = a + bz -1 + c z -2 + bz -3 + az 4

If we now use a unit sample sequence as the input to the discrete filter then the
output will be the sequence a, b, c, b, a. It follows that the envelope of the unit
sample response of the discrete filter will be the same as the unit impulse response
of the continuous filter. In other words, we will have designed a digital f i l ter that
has the unit sample response which corresponds to the required frequency response.

This sounds fine, but we have a bit of a practical problem here in that the time
response, theoretically, continues forever. Figure 5.10(a) shows only part of it;
the ripples either side of the central peak gradually get smaller and smaller.
Clearly we cannot take an infinite number of samples! What we have to do is
compromise and sample over only a limited, but adequate, time span. Here we
will sample between approximately +5 x 10 4 s. This time slot is rather short but
it will be adequate to demonstrate the principles of the approach. If we were to
use a more realistic time window then the maths involved would become
unnecessarily tedious and get in the way of the explanation.

If we wish one of our samples to be at the central peak, which seems a sensible
thing to do, then, as the coefficients must be symmetric about the centre to ensure
phase-linear#y, it means that we will need to take an odd number of samples.
Conveniently, if we sample every 0.5 x 10 .4 s then we can fit exactly 21 samples
into the 10 .3 s time slot. We will therefore sample at 20 kHz (T - 0.5 x 10 4 s).
This gives a Nyquist frequency of 10 kHz, which is well above the cut-off
frequency of 4 kHz and so should be satisfactory. (Clearly, it would be pointless
deciding to sample at a frequency that corresponds to a Nyquist frequency which
is below the cut-off frequency!)

Before we carry out the sampling there is one other problem to address - that
of the time response starting at a negative time. This has been referred to earlier
but was put to one side. Clearly, this is an impossible response for a real digital
filter as it means that a signal is generated before an input is received, in other
words, the filter is 'non-causal'. However, this not a major problem mathematically
as we can just shift the required time response to the right by 0.5 x 10 .3 s so that
it begins at t - 0. Practically, this has the effect of introducing a delay into the
filter of 0.5 x 10 -3 s, but this should not be a problem. It can be shown that it also
changes the phase response of the filter from the original zero to a non-zero but
linear phase response. Again, this is fine.

To reflect this time-shifting by 5 x 10 .4 s, equation (5.3) needs to be changed

to:

f (t) - sin (8000 r t (t - 5 • 104))
J r (t - 5 • 10 4) (5.4)

We are now, finally, in a position to sample the signal to obtain our filter coefficients.
To do this we need to replace t with nT in equation (5.4), where n is the sample
number, 0 to 20, and T the sampling period of 0.5 • 10 --4 s.

. ' . f (n T) =
sin (8000 n (n T - 5 • 10 4))

r c (n T - 5 • 10 4)

5.6 The design of FIR filters using the Fourier transform 113

The 'time-windowed', shifted and sampled signal is shown in Fig. 5.10(b), and
the sampled values in Table 5.1.

Table 5.1

n f (nT)

0/20 0

1/19 -673

2/18 -468

3/17 535
4/16 1009
5/15 0
6/14 -1514
7/13 -1247
8/12 1871
9/11 6054

10 8000

N.B. The central value involves dividing 0 by 0, which is problematic! However, if we expand the sine

function using the power series,

X 3 X 5 X 7
s i n x = x - - ~ . + 5! 7! _ ~ + . . .

then we can see that sin x approaches x, as x approaches zero, and so (sin x)/x must approach 1.
It follows that

sin (8000 r t (n T - 5 x 10 -4))
~ (n T - 5 x 10 -4)

must become 8000 when n T = 5 x 10 -4.

From Table 5.1, the filter must have the transfer function of:

T(s)-0- 673z - 1 - 468z -2 + 535z -3 + 1009z - 4 - 1514z -6 - 1247z -7 + 1871z -8

+ 6 0 5 4 Z -9 + 8 0 0 0 Z -lO -I- 6 0 5 4 Z -11 + 1871Z - 1 2 - 1247Z -13 - 1514Z -14

+ l O 0 9 z -16 + 5 3 5 Z -17 _ 468z -18 _ 673z -19 + 0z -20

or:

T (z)
0 Z 2 0 - 6 7 3 z 19- 4 6 8 z 18 + 5 3 5 z 17 + �9 . . + 8 0 0 0 z -1~ + . . . + 5 3 5 z 3 - 4 6 8 z 2 - 673z + 0

(The two zero coefficients have been included for clarity.)
So, now comes the moment of t ru th - the frequency response of the filter. This

is shown in Fig. 5.11 - and it doesn't look too good! Although the filter has a
linear phase response and the cut-off frequency is very close to the required
4 kHz (0.4fN), the magnitude of the response is far too big. However, should we
be too surprised by this? Think back to the previous chapter where we converted
continuous filters to their discrete equivalents, using the impulse-invariant transform
(Section 4.10). This method gave excellent agreement between the unit sample
response of the discrete filter and the unit impulse response of its continuous
prototype. However, although the magnitude response also had the correct shape,

1 14 The design of FIR filters

it was far too big, and so we had to scale the transfer function. This is exactly
what has to be done here. The magnitude of the response in the passband is
approximately 86 dB rather than the 0 dB required, which is approximately
20 000 times too big, and so we need to divide all coefficients by 20 000.

lOO
rn
13

a) 80
if)
c -
O ~ 60

�9 4 0
1 3

.4.., . m

~ 20

0

!!!!!!!!!!!!!! !!!!!!!!!!!!!! !!!!!!!!!!!!!! !!!!!!
I

0 0.1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1
Normal i zed f requency (Nyquist = 1)

-~" - 2 0 0

- 4 0 0
13

-600
t -

& .
- 8 0 0

- 1 0 0 0

|

. i 4 4 ~ i " i- i i

0 0.1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1
Normalized frequency (Nyquist = 1)

F i g u r e 5 .11

The magnitude response of the scaled filter is shown in Fig. 5.12 and now
agrees closely with the filter specification. It follows that our filter has the transfer
function of:

T(z) -

0 z 2~ - 6 7 3 z 19 - 4 6 8 z TM + 5 3 5 z 17 . . . 5 3 5 z 3 - 4 6 8 z 2 - 6 7 3 z + 0

20 000 Z. 20

20 ! w ! ', ,, ',

0 ~ - ~ ... !

o - 2 0

-4o

- 6 0 .J L

:~ - 8 0
0 0.1 0.2 0 . 3 0 . 4 0.5 0.6 0.7 0.8 0 . 9 1

Normalized frequency (Nyquist = 1)

F i g u r e 5 . 1 2

5.6 The design of FIR filters using the Fourier transform 115

N.B. It is no coincidence that we are sampling at 20 kHz and that we needed to scale by 1/20 000. It
is possible to show that, to derive the filter coefficients from the sampled unit impulse response
values, we need to divide the sampled values by the sampling frequency.

So, to summarize: the starting point in the design process is the required
frequency response of the filter. The IFT is then taken of this frequency response
to generate the filter unit impulse response. An adequate time window is now
chosen, with the central peak of the unit impulse response at its mid-point. The
selected section of the unit impulse response is then shifted, sampled symmetrically,
and the samples scaled. These scaled values are the filter coefficients.

A quicker approach
To make the principles behind the design process as clear as possible, the filter
design has been approached in the most logical way. We started with the required
frequency response and then used the IFT to convert to the time domain to get the
corresponding unit impulse response. The unit impulse response was then sampled,
shifted and finally scaled to find the FIR filter coefficients. However, this is
rather a lengthy process and a much more direct and practical way of finding the
coefficients follows.

We know that the unit impulse response is given by f(t) = (sin(2nfct))/zt from
equation (5.2), and so the sampled values, before shifting and scaling, are given
by:

sin (2rC fcnT)
f (nT) - renT

However, we know that to get the filter coefficients, C(n), we need to scale these
samples by dividing by f~.

sin (2Z fcnT) .'. C (n) =
f s:rcnT

ButfsT = 1,

sin (2Z fcnT) .'. C (n) =
yen

It is often more convenient to express the cut-off frequency in the normalized
form, i.e. as a fraction of the Nyquist frequency, fN, and so we can rewrite the
equation for C(n) as:

/) sin 2Z-~NfNnT
C(n) =

yen

But 2fNT = f~T = 1,

.'. C (n) =

fc

116 The design of FIR filters

By making this our starting point and, for our particular example, using n = - 1 0
to + 10, we can find the filter coefficients very quickly. We do not have to bother
to time-shift the expression as long as we remember that C(-10) will correspond
to our first coefficient, C(-9) to the second, etc. Neither is scaling necessary as
this has been incorporated into the expression for C(n).

5.7 WINDOWING AND THE GIBBS PHENOMENON

Although the filter we have just designed satisfies the specification quite well,
you will have noticed the 'ripples' in the stopband (Fig. 5.12). Much more seriously,
these are also present in the passband, although they are less obvious because of
the log scale. Figure 5.13 shows an expanded version of just the passband- the
ripple is now much more apparent. This ripple in the passband is obviously
undesirable as, ideally, we require a constant gain over this frequency range.

1
m

0.5

,- 0
O

.~ - 0 . 5

�9 -o -1

-1 .5

- 2

I I I I

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Normalized frequency (Nyquist = 1)

Figure 5.13

This rippling is termed the 'Gibbs' phenomenon, after an early worker in the
field of signal analysis. It occurs because we have applied a 'window' to the unit
impulse response, i.e. we only considered that portion of the signal contained
within the time-slot of 10 -3 s.

In the previous example we have effectively applied a rectangular window, in
that all signal values were multiplied by 1 over the 10 -3 s time slot and by 0 for
all other time values. There are, however, other standard window profiles available
to us which we can use to reduce the ripple. One that is widely used is the
Hamming window. The profile of this particular window is defined by:

w(n) - 0.54 - 0.46 cos N - 1

where n is the sample number and N the total number of samples. The Hamming
window profile, for N - 21, is shown in Fig. 5.14.

What we have to do is multiply all of the sampled values within the 10 .3 s time
slot by the corresponding window value, before we find our filter coefficients.
More conveniently, this is equivalent to just multiplying each of our 'raw' filter
coefficients by the Hamming window values.

5.7 Windowing and the Gibbs phenomenon

0.8
m

> 0.6
t . -

. m

E 0.4
E
-r" 0.2

I I I I I I I I I I I

- ~ -

- _

- _

- _

I I I I I I I I I I I

0 2 4 6 8 10 12 14 16 18 20
n

F igure 5.14

1 1 7

T h e H a m m i n g w i n d o w v a l u e s and the n e w f i l t e r c o e f f i c i e n t s fo r o u r l o w p a s s

f i l t e r are g i v e n in T a b l e 5.2.

Table 5.2

'Old' Window New
coefficients values coefficients

0/20 0 0.080 0
1/19 -3.37 • 10 -2 0.103 -3.45 x 10 -3
2/18 -2.34 x 10 -2 0.168 -3.93 x 10 -3
3/17 2.68 • 10 -2 0.270 7.21 • 10 -3
4/16 5.05 x 10 -2 0.398 2.01 x 10 -2
5/15 0 0.54 0
6/14 -7.57 x 10 -2 0.682 -5.16 X 10 -2
7/13 -6.24 x 10 -2 0 .810 - 5 . 0 5 • 10 -2

8/12 9.36 • 10 -2 0.912 8.53 • 10 -2
9/11 3.03 • 10 -2 0.978 2.96 • 10 -1

10 0.4 1 0.4

T h e r e s p o n s e fo r the n e w f i l t e r is s h o w n in F ig . 5 .15. A p p l y i n g the H a m m i n g

w i n d o w has c l e a r l y b e e n a s u c c e s s as the r i p p l e in the p a s s b a n d is greatly r e d u c e d

c o m p a r e d to F ig . 5 .13 .

0.5 i ...

" 0 o r

O ~

�9 ~ -0.5

e -

~ - 1 . 5

-2

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!i!!!!!!!!!! !!!!i!!! !!!!!!!!!i!!!!!!!
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Normalized frequency (Nyquist = 1)

F igure 5 .15

118 The design of FIR filters

N.B.1 There are several other window profiles which are commonly used. For example:

H a n n i n g : w (n) = ~ l - c o s N - 1

B l a c k m a n : w (n) = 0 . 4 2 - 0 . 5 c o s N - 1 +0 .08cos N - 1

N.B.2 The MATLAB function 'fir 1' will generate FIR filter transfer function coefficients - the Hamming
window function is automatically included. For example, all that is needed to design our lowpass
filter is the single instruction:

a = firl(20,0.4)

where the '20' is the number of coefficients less 1, and the '0.4' is the normalized cut-off
frequency, i.e. fc/fN.
Other window functions can be used. Refer to the MATLAB user manual or help screen for

further details.

5.8 HIGHPASS, BANDPASS AND BANDSTOP
FILTERS

We have shown that the coefficients for a linear-phase lowpass FIR filter are
given by:

C(n) =
sin (nJr fc

rt7~

But what if we need a highpass filter?

In Chapter 4, a lowpass IIR filter was converted to a highpass IIR filter by
applying a particular transform in the z-domain (Section 4.17). We could do this
here but it would be an unenviable task as there are so many z terms to transform.
Also, even if we bothered, we would end up with an IIR filter, and one with a
non-linear phase response. However, all is not lost, as it can be shown that the
unit sample responses, and so the filter coefficients, for linear-phase highpass,
bandpass and bandstop FIR filters are as shown in Table 5.3, wherefu is the upper
cut-off frequency and fl the lower. If you require more details of the origin of
these expressions see Chassaing and Horning (1990).

Highpass, bandpass and bandstop filters, with a variety of window functions,
can also be designed using the MATLAB, ' f i r l ' function. Refer to the MATLAB
user manual or help screen for further details.

5.9 SELF-ASSESSMENT TEST

1 (a) Design a lowpass FIR filter with a cut-off frequency of 3 kHz. The filter
is to be used with a sampling frequency of 12 kHz and is to have a 'length'
of 11, i.e. 11 coefficients are to be used.

5.11 The discrete Fourier transform and its inverse 119

Table 5.3

Fil ter type C(n) f o r n # 0 C(n) f o r n = 0

Highpass

/ ~c) sin ~ ~ 1 / ~c)
- n//7 - ~ N

sin ~ ~ sin n~~ /~u) /~l/
Bandpass n z - n z ~ - -~N

(~ l l l ~u) sin ~ ~ s,n ~ ~ (~u ~1)
Bandstop - 1 -

n z n z fN fN

(b) Redesign the filter, so as to reduce the passband ripple, by using a Hanning
(N.B. not Hamming?) window.

2 Design a highpass FIR filter with cut-off frequency of 4 kHz. The filter is to
be used with a sampling frequency of 20 kHz. A rectangular window is to be
applied and 21 samples are to be taken. (Hint: Most of the groundwork has
already been done during the design of the lowpass filter in Section 5.6.)

5.10 RECAP

�9 To design an FIR lowpass filter, using the Fourier (or windowing) method,
we need to find the filter coefficients, C(n), by using

sin (nz fc
C (n) =

nT~

We are effectively sampling, shifting and scaling the unit impulse response of
the desired filter.

�9 If necessary, in order to reduce passband (and stopband) ripple, i.e. the 'Gibbs
phenomenon', a suitable window function (other than rectangular) can be
applied.

�9 Expressions also exist for deriving the transfer function coefficients for highpass,
bandpass and bandstop filters.

5.11 THE DISCRETE FOURIER TRANSFORM AND
ITS INVERSE

The Fourier and inverse Fourier transforms were reviewed in Section 5.5. This
was because the 'Fourier', or 'windowing', method of designing FIR filters
relied heavily on the inverse Fourier transform. The other common design method

120 The design of FIR filters

is based on a variation of the inverse Fourier transform, termed the discrete
inverse Fourier transform. A few pages on this transform are therefore in order.

Like the 'normal' or continuous Fourier transform, the discrete Fourier transform
(DFT) allows us to find the frequency components that make up a signal. However,
there is a major difference in that the DFT is an approximation as it converts a
sampled time signal into the corresponding sampled frequency spectrum. In other
words, the frequency spectrum derived from the sampled signal is defined only
at particular frequency values. If the sampling frequency is fs, and N signal
samples are taken, then the frequency spectrum generated by the DFT will consist
only of frequencies of kfs/N, where k = 0 to N - 1. For example, if we sampled a
signal at 5 kHz and we took just 10 samples, then the amplitude spectrum unravelled
by the DFT might look like Fig. 5.16, i.e. only the amplitudes of the signal
components at 0, 500, 1000, 1500 4500 Hz will be revealed. The 'step'
frequency of 500 Hz, (fs/N), is called the frequency resolution.

Magnitude

I I
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Frequency (kHz)

Figure 5.16

Also note the symmetry of the amplitude spectrum about the Nyquist frequency
of 2.5 kHz. All discrete amplitude spectra, resulting from the spectral analysis of
sampled signals, exhibit this symmetry. To understand the symmetry, imagine
that the sequence is the output from a discrete filter, in response to an input of a
unit sample function. As the z-transform of the output Y(z) = 1 x T(z), then the
sampled spectrum of the signal must be the same as the sampled frequency
response of the filter, i.e. the DFTs of the two must be the same. Now imagine the
'frequency point' moving in an anticlockwise direction around the unit circle of
the p-z diagram for the filter transfer function. When the frequency point passes
the Nyquist frequency the amplitude spectrum must begin to repeat itself, due to
the symmetry of the p-z diagram about the real axis. For this reason, the Nyquist
frequency is sometimes referred to as the 'folding' frequency.

Anyway - back to the main story.
Sampled frequency components are just what we need when we are processing

frequency data by means of a computer, and so the DFT serves this purpose very
well. However, a word of caution. If anything unusual is happening between the
sampled frequencies then this will be missed when the DFT is applied. For
example, let's say that there is a 'spike' in the amplitude spectrum at a frequency
of 660 Hz. If we are sampling at 5 kHz, and taking 10 samples as before, then this

5. 11 The discrete Fourier transform and its inverse 121

spike will fall between the displayed, sampled frequencies of 500 Hz and 1 kHz
and so will not be revealed. Clearly, the more samples taken, the better the
frequency resolution and so the less that will be missed, i.e. the more closely the
DFT will approximate to the 'normal' or continuous Fourier transform.

As might be expected, the inverse discrete Fourier transform (IDFT) performs
the opposite process, in that it starts with the sampled frequency spectrum and
reconstructs the sampled signal from it. It is the IDFT which will be of particular
use to us when we move on to the next design method.

The discrete Fourier transform (sampled time to sampled frequency) is defined
by:

N-1 .2 7cnk
X~ - ~, x[n]e -J - -V

n=0
(5.5)

where Xk is the kth value of the frequency samples.
The inverse discrete Fourier transform (sampled frequency to sampled time) is

defined by:

1 N-1 .2 rcnk
x [n] - -~ ~=o X k e J---u (5.6)

where x[n] is the nth sample in the sampled signal.
To make more sense of these two very important transforms it's best to look at

an example.

Example 5.1

Use the DFT to find the sampled frequency spectrum, both magnitude and phase,
of the following sequence: 2 , -1 , 3, given that the sampling frequency is 6 kHz.
When the sampled spectrum has been derived, apply the inverse DFT to regain
the sampled signal.

Solution

As we are sampling at 6 kHz, and taking three samples (very unrealistic but O.K.
to use just to demonstrate the process), the frequency resolution is 6/3 (fs/N), i.e.
2 kHz. Therefore the DFT will derive the sampled spectrum for frequency values
of 0, 2 and 4 kHz (kfs/N for n = 0 to N - 1, where N = 3).

We now need to apply the DFT to find the sampled frequency spectrum, both
magnitude and phase. Therefore, using

N-1 .2~znk
Xk -]~ x[n]e J N (for N - 3)

n=0

�9 k - 0 :
2 2

Xo - ~, x[n]e - ~ ~, x [n] - 2 - 1 + 3 - 4Z0 ~
n=0 n=0

1 2 2 The design of FIR filters

�9 k - l "

2 .2n'n _j2Zr .2Jr2
X1- ~o- x[n]e-J u = 2 e - J O _ le 3 + 3e J 3

�9 ". X1 - 2 - e + 3 e

Using Euler ' s identity"

X 1 - 2 - (cos 0 . 6 7 ~ r - j sin 0.67tc) + 3(cos 1 . 3 3 7 r - j sin 1.33Jr)

" X1 - 2 + 0.51 + j0 .86 - 1.53 + j2 .58 - 0.98 + j3 .44

�9 ". X 1 - 3 . 5 8 - / 7 4 . 1 ~

�9 k - 2 "

2 .2Jrn2 _j_~
X 2 -]~ x [n] e - J 3 = 2 - e + 3 -;8~

n=0

�9 ". X 2 - 2 - (cos 1 . 3 3 J r - j sin 1.33zc) + 3(cos 2 . 6 6 J r - j sin 2.66zc)

= 2 + 0.51 - j0 .86 - 1.45 - j2 .63 - 1.06 - j3 .49

�9 ". X 2 - 3 . 6 5 Z - 7 3 . 1 ~

The magni tude and phase values are shown in Fig. 5.17.

4
Magnitude

90

Phase (o)

-90

3.58 3.65

I ,

0 1 2 3 4
Frequency (kHz)

74.1 ~

Frequency (kHz)

I

1 2

-73.1 ~

Figure 5.17

N.B. As explained earlier in this section, the magnitudes at 2 and 4 kHz should be the same, i.e.
symmetric about the Nyquist frequency of 3 kHz - the difference is due to approximations made
during calculation. Similarly, the phase angles should have inverted symmetry, in other words,
have the same magnitudes but with opposite signs.

We should now be able to process these three sampled frequency values of

4 Z 0 , 3 .58Z74.1 ~ and 3 . 6 5 Z - 73.1 ~ using the IDFT, to get back to the three

signal samples of 2 , - 1 and 3.

5.11 The discrete Fourier transform and its inverse 123

Using

] N-1 .2 ~znk
X [tl] -- -'~ k~.. O= X k e J N

�9 n - 0 :

(the IDFT)

2
1 x[0]- ~ kZo X k e J O _ 1 -~ [4 + (0.98 + j3.44) + (1.06 - j3 .49)]

= 2.01 - j 0 . 0 1 7

�9 x [0] - 2

(Assuming that the relatively small imaginary part is due to approximations
made during the maths, which seems a reasonable assumption. Note that this
is the first signal sample.)

F/-- 1"

2 .27rk

~ , l - ~ ~0 ~e~ ~
1 [.2re

.'. x[1] - -~ 4 + (0.98 +j3 .44)e J 3
4~]

+ (1.06 - j 3 . 4 9) e J-3-

114 + ~~ + ~ 3 4 4 ~ / 3 co~ ~ +~in~;)

+ ~, 06 ~ 49~r 4~ +~ sin 4~)]
Missing out the next few lines of complex maths (which you might wish to
work through for yourself), and ignoring small approximation errors, we end
up with x[1] - -1.

n - 2 :

] 2 .4Jrk

k~0 J x [2] - ~ = Xke 3

.4/t"
1 J3 �9 x[2] - -~ 4 + (0.98 + j3.44)e + (1.06 - j3.49)e 3

! [4 +,0 9~ +~ 44~(co~ ~ +~ sin ~ /

+ ~, 06 j3 49~/cos ~ +j sin ~)]
Leaving out the intervening steps, and again ignoring small rounding errors,
we get x[2] - 3, which agrees with the final signal sample.

124 The design of FIR filters

5.12 THE DESIGN OF FIR FILTERS USING THE
'FREQUENCY SAMPLING' METHOD

The starting point for the previous 'Fourier' or 'windowing' design method (Section
5.6), was the required frequency response. The IFT was then applied to convert
the frequency response to the unit impulse response of the filter. The unit impulse
response was then shifted, sampled and scaled to give the filter coefficients.

The 'frequency sampling' method is very similar but the big difference here is
that the starting point is the sampled frequency response. This can then be converted
directly to the FIR filter unit sample response, and so to the filter coefficients, by
using the IDFT.

To demonstrate this approach we will design a lowpass FIR filter with a cut-
off frequency of 2 k H z - the filter being used with a sampling frequency of
9 kHz. Therefore fc = 0.444fN.

The required magnitude response of the filter is shown in Fig. 5.18. For the
purpose of demonstrating this technique the frequency has been sampled at just

Magnitude

0 1 2

i i i

| i i

, ~
i l i
i | i

, i
I I I
i i i

3 4 T 5
~N

i
I
!
|
|

|
i

|
i
|
I

6 7 8 9
Frequency (kHz)

Figure 5.18

nine points, starting at 0 Hz, i.e. every 1 kHz. Note that fs is not one of the
sampled frequencies. To understand this, look back to Example 5.1, where a
sampled time signal was converted to its corresponding sampled frequency spectrum
using the DFT. By doing this, only frequencies up to (N - 1)fs/N were generated,
i.e. the sampled frequency spectrum stopped one sample away from fs. As would
be expected, by using the IDFT to process these frequency samples, the original
signal was reconstituted. With the frequency sampling method, we start with the
sampled frequency response, stopping one sample short offs, and aim to derive
the equivalent sampled time function by applying the IDFT. As explained in
Section 5.6, this time function will be the filter unit sample response, i.e. Y(z) =
1 • T(z), and so the IDFT of T(z) must be the IDFT for Y(z). These sampled signal
values must also be the FIR filter coefficients.

The frequency samples for the required filter, derived from Fig. 5.18, are
shown in Table 5.4.

Two important points to note. The first is that the response samples shown in
Table 5.4 are the magnitudes of the sampled frequency response, I Xk I, whereas
the Xk in the expression for the IDFT, equation (5.6), also includes the phase
angle.

The second point is that the samples at n = 2 and n = 7 are shown as 0.5 rather

5.12 The design of FIR filters using the 'frequency sampling' method 125

Table 5.4

n IXkl

0 1
1 1

2 0.5
3 0
4 0
5 0
6 0
7 0.5
8 1

than 1 or 0. By using the average of the two extreme values, we will design a
much better filter, i.e. one that satisfies the specification more closely than if
either 1 or 0 had been used.

We will now insert our frequency samples into the IDFT in order to find the
sampled values of the unit impulse response and, hence, the filter coefficients.
However, before we do this, a few changes will be made to the IDFT, so as to
make it more usable.

At the moment our IDFT is expressed in terms of the complex values Xk, rather
than the magnitude values, I X~ I, of Table 5.4. However, it can be shown that I Xk I
and Xk are related by:

X k - IX k l e - J - ~ (~)

or X~ - I X ~ le -j~'~(8) for this particular example.

N.B. This exponential format is just a way of including the phase angle, i.e.

Xk =lXk le =lXk I c o s - - - j s i n

(from Euler's identity).

sin 2 - -~ (N 2 1) 2Nk(N21
.'. tan ~ = 2 ~:k = - tan cos (l / - /
where ~0 is the phase angle.

Therefore the magnitude of the phase angle is

27rk

Although it's not obvious, this particular phase angle indicates a filter delay of
(N- 1)/2 sample periods. When we designed FIR filters using the 'Fourier' method in Section 5.6,
we assumed zero phase before shifting, and then shifted our time response by (N- 1)/2 samples

126 The design of FIR filters

to the right, i.e. we effectively introduced a filter delay of (N - 1)/2 samples. This time-shifting
results in a filter which has a phase response which is no longer zero for all frequencies bu t the
n e w p h a s e r e s p o n s e is l inear . In other words, by using this particular expression for the phase
angle, we are imposing an appropriate constant filter delay for all signal frequencies. The exponential

expression of e is the same for all linear-phase FIRs that have a delay of (N - 1)/2

samples- which is the norm. For a fuller explanation, see Damper (1995).

�9 2 z k a

Therefore, replacing Xk with I X~ le -j u , in the IDFT (equation (5.6)), where

a = (N - 1)/2:

N-1 .2 zkct .2 zkn
1 ~o -J--~ x[n] - -~ = I X~ le e J---y- =

Therefore, f rom Euler ' s identity:

N-1 j 2 z k (n-ct)

l ~ 0 1 X ~ l e N - N

N-1 1 x[n] - ~- ~9 I X~ I(cos [2rck(n - a) /N] + j sin [2rck(n - a) / N])

Further, as x[n] values must be real, i.e. they are actual signal samples, then we

can ignore the imaginary 'sin ' terms.

1 N-1
.'. x [n] - - ~ ~0 I Xk I cos [2 r c k (n - a) /N]

Finally, as all X terms, apart f rom X0, are partnered by an equivalent symmetr ic
sample, i.e. IX11 - I X8 I, IX21 - IX vl etc. (Fig. 5.18), then we can further s implify

to :

, [Nl /2]
- Z 21X~ I cos [2rck(n - a) /N] + Xo (5.7) x[n]

We now only have to sum between k - 1 and k - (N - 1)/2 rather than 0 and
(N - 1) and so avoid some work! In our example this means summing be tween

1 and 4 rather than 0 and 8.
To recap, we can use equation (5.7) to find the values, x[n], of the filter unit

sample response. These values are also the FIR f i l ter coefficients.
O . K - so let 's use equation (5.7) to find the filter coefficients. Subst i tut ing n

= 0 and a - (9 - 1)/2 - 4 into equation (5.7), and carrying out the summat ion:

1 [2(cos [2z (0 - 4)/9] + 0.5 cos [4z (0 - 4)/9]) + 1] - - 0 . 0 1 2 6 x [0] -

As IX31 and IX al - 0 we only have two terms to sum.

�9 n - - 1"

1 [2(cos [2z(1 - 4)/9] + 0.5 cos [4z(1 - 4)/9]) + 1] - - 0 . 0556 x[1] - ~

n - 2 "

1 [2(cos [2z (2 - 4)/9] + 0.5 co s [4 z (2 - 4)/9]) + 1] - 0.0453 x[2] -

5.12 The design of FIR filters using the 'frequency sampling' method 1 2 7

Check for yourself that x[3] = 0.3006 and x[4] = 0.4444.

N.B. As we are designing a linear-phase filter, then the signal samples must be symmetric about the
central value, x[4], i.e. x[0] = x[8], x[1] = x[7], etc., and so we only need to find the five x[n]
values, x[0] to x[4].

It follows that the nine samples of the filter unit sample response are:

- 0 . 0 1 2 6 , - 0 . 0 5 5 6 , 0.0453, 0.3006, 0.444, 0.3006, 0 . 0 4 5 3 , - 0 . 0 5 5 6 , - 0 . 0 1 2 6

and, as these must also be our filter coefficients:

T(z) = - 0 . 0 1 2 6 - 0.0556z -1 + 0.0453z -2 + 0.3006z -3 + 0.444z -4 + 0.3006z -5

+ 0.0453z -6 _ 0.0556z -7 _ 0.0126z -8

or

T(z) - -0"0126z8 - 0"0556z7 + " '" + 0"444z4 + " '" - 0.0556z - 0.0126
Z 8

Figure 5.19 shows the frequency response of our filter and it looks pretty good.

The cut-off frequency is not exactly the 2 kHz (0.444fN) required, but it's not too

far away. To be fair, to save too much mathematical processing getting in the way

of the solution, far too few frequency samples were used. If we had taken a more

realistic number of frequency samples than nine then the response would obviously

have been much better.

~. 2o IZI
"o v 0
(D
t n
t -
o -20
e l .
r

�9 -40
o "o
= -60 .,.,.,
t -

-80

-100
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Normalized frequency (Nyquist = 1)

F igure 5 .19

Here we used an odd number of frequency samples. The expression for the IDFT

for an even number of samples is given in equation (5.8a). For completeness, the
expression for an odd number is repeated as equation (5.8b).

1[(N/2)-1]
- E 21Xk I cos [2~:k(n - a) /N] + Xo (for even N) (5.8a) x[n] -~ ~=1

(N-l)/2]
1]~ 21Xk I cos [2Jrk(n - a)/N] + Xo (for odd N) (5.8b) x[n] - -~ k=l

128 The design of FIR filters

The 'even' expression is the same as for an odd number of samples apart from the
k range being from 1 to (N / 2) - 1 rather than 1 to (N - 1)/2. If you inspect
equation (5.8a) you will notice that the N/2 sample is not included in the IDFT.
For example, if we used eight samples, then X0, X1, X2 and X3 only would be
used, and not X4. I won't go into this in any detail but using an even number of
samples does cause a slight problem in terms of the N/2 frequency term. One
solution, which gives acceptable results, is to t rea t XN/2 aS zero - this is effectively
what has been done in equation (5.8a). See Damper (1995) for an alternative
approach.

5.13 SELF-ASSESSMENT TEST

A highpass FIR filter is to be designed, using the 'frequency sampling' technique.
The filter is to have a cut-off frequency of 3 kHz and is to be used with a
sampling frequency of 9 kHz. The frequency response is to be sampled every
1 kHz.

5.14 RECAP

�9 The discrete Fourier transform (DFT), is used to convert a sampled signal to
its sampled frequency spectrum, while the inverse discrete Fourier transform
(IDFT) achieves the reverse process.

�9 The sampled frequency spectrum obtained using the DFT consists of frequency
components at frequencies of kfJN, for k = 0 to N - 1, where f~ is the sampling
frequency and N the number of samples taken.

�9 By beginning with the desired sampled frequency response of a filter, it is
possible to find the coefficients of a suitable linear-phase FIR filter by applying
the IDFT.

5.15 THE FAST FOURIER TRANSFORM AND
ITS INVERSE

Clearly, the discrete Fourier transform is hugely important in the field of signal
processing as it allows us to analyse the spectral content of a sampled signal. The
IDFT does the opposite, and we have seen how invaluable it is when it comes to
the design of FIR filters. Although we will not be looking at this particular
method, the DFT can also be used to design digital filters.

However, as useful as they are, the DFT and its inverse have a major practical
p rob lem- this is that they involve a great deal of computation and so are very
extravagant in terms of computing time. Earlier, we performed some transforms

5. 15 The fast Fourier transform and its inverse 129

manually, using unrealistically small numbers of samples. Imagine the computation
needed if thousands of samples were to be u s e d - and this is not unusual in
practical digital signal processing. Because of this, algorithms have been developed
which allow the two transforms to be carried out much more qu i ck ly - very
sensibly they are called the fast Fourier transform (FFT), and the fast inverse
Fourier transform (FIFT) or inverse fast Fourier transform (IFFT). Basically,
these algorithms break down the task of transforming sampled time to sampled
frequency, and vice-versa, into much smaller blocks - they also take advantage
of any computational redundancy in the 'normal' discrete transforms.

To demonstrate the general principles, the FFT for a sequence of four samples,
x[0], x[1], x[2] and x[3], i.e. a 'four point' sequence, will now be derived.

From

N-1 .2 ~nk
X k - E x [n] e -J N (the DFT)

n=0

�9 k - O :

X 0 - x[0] + x[1] + x[2] + x[3]

k - l "

-j2zr

X1 - x[O] + x[1]e 4 -I- x[2]e
-j47r -j6zc

4 + x[3]e 4

or, more neatly:

X 1 - x [0] -k- x [1] W § x[2]W 2 + x[3]W 3

- j 2 J r

where W - e 4 . (W is often referred to as the 'twiddle factor' !)

�9 k - 2 "

X 2 - x [0] + x [1] W 2 + x [2] W 4 + x [3] W 6

�9 k - 3 "

X3 -x[0] + x[1]W 3 + x[2]W 6 + x [3] W 9

This set of four equations can be expressed more conveniently, in matrix form, as"

X0 1 1 1 1 x[0]]

X 2 W 2 W 4 W 6 [2] /

X3 W 3 W 6 W 9 [3]J

(5.9)

Expanding W l, W 2, W 3 etc. using Euler's identity, or by considering the periodicity*
of these terms, you should be able to show that"

*Periodicity: Remember that e i~ represents a unit vector on the Argand diagram, inclined at an angle of
- j . 2 n" - j 18n"

0 to the positive real axis. It follows that e and e s , i.e. W 1 and W 9, only differ in that W 9 has made

two extra revolutions. Effectively, they both represent unit vectors inclined a t - 9 0 ~ or +270 ~ to the
positive real axis, and so they are equal to -j.)

130 The design of FIR filters

w ~ = w 9 - - j , w = - w 6 - - 1 , w 3 - j a n d W 4 - 1

Substituting into equation 5.9:

Xo 1 1 1 1 x[0]]
/

Xl _ 1 - j -1 j x [1] |
/

X 2 1 -1 1 -1 x[2] /
/

X3 1 j -1 - j x[3]j
Expanding the matrix equation:

X0 = x[0] + x[1] + x[2] + x[3]

Xl = x[0] - jx[1] - x[2] + jx[3]

X 2 -" x [0] - X[1] + X[2] -- X[3]

X3 = x[0] + jx[1] - x[2] - jx[3]

If we now let:

A(0) = x[0] + x[2]

A(1) = x[0] - x[2]

B(0) = x[1] + x[3]

B(1) = x[1] - x[3]

then:

X0 = A(0) + B(0)

X~ = A (1) - j B (1)

X 2 = A(O) - B(O)

X3 = A(1) +jB(1)

(5.10a)

(5.lOb)

(5.1Oc)

(5.10d)

(5.11a)

(5.11b)

(5.11c)

(5.11d)

When carried out by a computer, the process of multiplication is much more
time consuming than the process of addition and so it is important to reduce the
number of multiplications in the algorithm as much as possible. We have clearly
done this and so the computation of X0 to X3 should be achieved much more
quickly than if the DFT were to be used.

The FFT, represented by the four equations (5.11a-d) above, can be depicted
by the signal flow diagram of Fig. 5.20. These FFT signal flow diagrams are
often referred to as 'butterfly' diagrams for obvious reasons.

We have looked at the FFT for just four samples but the FFT exists for any
number of samples (although the algorithm is simplest for an even number).
Indeed, the relative improvement in processing time increases as N increases. It
can be shown that the number of multiplications performed by the normal DFT,
when transforming a signal consisting of N samples, is of the order of N 2, whereas,
for the FFT, it is roughly N log2 N. For our four-sample sequence this corresponds
to approximately 16 multiplications for the DFT and eight for the FFT. However,

Figure 5.20

5. 15 The fast Fourier transform and its inverse 1 3 1

A(O)
x[O] -- --

-1 A(1) " Xl

x[1] ~ : > ~ e (0) X2

x[3] " " - X 3
--1 B(1) j

if we take a more realistic number of samples, such as 1024, then the DFT carries
out just over one million multiplications and the FFT just over 10 000, i.e. a much
more significant difference. See Proakis and Manolakis (1996), Lynn and Fuerst
(1994), or Ingle and Proakis (1997) if you require a more detailed treatment of
this topic.

N.B. We are spending time looking at the FFT and its inverse, the IFFT, because these transforms are
used in the design of digital signal processing systems. However, before moving on from the FFT
it should be pointed out that digital signal processors, in turn, are used to find the FFT of a signal
and so allow its spectrum to be analysed. This is a very common application of DSP systems.

The fast inverse Fourier transform

So far we have concentrated on the FFT but the fast inverse Fourier transform is
equally important. As it is the inverse process to the FFT, basically, all that is
needed is to move through the corresponding FFT signal flow diagram in the
opposite direction. However, it can be shown that we first need to change the
signs of the exponentials in the W terms - in other words, change the sign of the
phase angle of the multipliers. As phase angles of _+180 ~ _+540 ~ +_900 ~ etc. are
effectively the same, as are +0 ~ +360 ~ +720 ~ etc. then all that is needed is to
change the sign of the j multipliers. This is because unit vectors with phase angles
of +90 ~ or +270 ~ etc., are not the same, one is represented on an Argand diagram
by j and the other by -j.

It can also be shown that the resulting outputs need to be divided by N.
Figure 5.21 shows the modified butterfly diagram for our four-sample system.

Just to show that this works, consider x[0]. From Fig. 5.21:

x[O]

x[2]

1/4

Figure 5.21

1/4 -1

x[1] ~
1/4

x[3]
1/4 -1

A(O)

..x2

B(1) - j

132 The design of FIR filters

x[0] = (A(0) + A(1))/4

but A(0) - X 2 + X 0 and A(1) - X 1 -!- X 3

�9 X[0] -- (X 2 -I- X 0 + X 1 + X3)/4

Substituting for Xo, Xl, X 2 and X 3 using equations 5.10 (a-d), you should find that
you end up with x[0] = x[0], which shows that the algorithm represented by Fig.
5.21 works! (See Damper (1995) and also Ifeachor and Jervis (1993) for further
details.)

5.16 MATLAB AND THE FFT

The FFT for a sequence can be obtained very easily by using the MATLAB, 'fit'
function. The following program will generate the sampled, complex frequency
values for the 10 sample sequence 1, 2, 3, 5, 4, 2 , -1 , 0, 1, 1.

x=[l 2 3 5 4 2 -i 0 1 I] ;

y=fft (x)
% sampled signal values
% generates corresponding
% sampled frequency values

The sampled magnitude and phase values are displayed graphically in Fig. 5.22,
using a sampling frequency of 10 kHz.

2~ t 15 ...

, T ; ; i i i o
o 1 2 3 4 5 6 7 8 9

Frequency in kHz

"O
r

" - - 0

-50 c-
13_

-100
-150
-200

 ,O oo, o

0 1 2 3 4 5 6 7 8 9
Frequency in kHz

Figure 5.22

5.16 MA TLAB and the FFT 1 3 3

More interestingly, Fig. 5.23(a) shows the sampled signal produced by adding
three sine waves of unit amplitude, having frequencies of 100, 210 and 340 Hz,
while Fig. 5.23(b) displays the sampled amplitude spectrum, obtained using the
'fft' function. The sampling frequency used was 1 kHz and 50 samples were
taken and so the frequency resolution is 20 Hz, (fs/N). Note that the signals of
frequencies 100 and 340 Hz show up very clearly in Fig. 5.23(b), while the 210
Hz signal is not so obvious. This is because 100 and 340 Hz are two of the
sampled frequencies, i.e. nfJN, while 210 Hz is not. Even so, the fft makes a
valiant attempt to reveal it!

" 0

.i...,
"F:: 0
t l : l

- 2

- 3

(a)

T T "I' I

............ ~ i ~ i ~ ~, ~ i :,

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Time in seconds

30

25

20 " 0

.m

=15

10

. , ~ ~ i ~ ~ i ~ T ~ i ~ ~ I ~ r ~ i ~ T ~ i ~ ~ i ~ ~ I ,

.............................. ~.] ... [..........

........... i i i i i

0 100 200 300 400 500 600 700 800 900 1000
Frequency in Hz

(b)

F igure 5 .23

The program is"

T=0.001;

fl=100; f2=210;

n= (0-49) ;
t=n*T;

y=sin (2*pi*fl*t)
(2*pi*f2*t)

% sampling frequency of
% 1 kHz

f3=340; % frequencies of the
% three signals
% 50 samples taken
% times at which signal
% sampled

+ sin
+ sin(2*pi*f3*t) ; % y is sum of the three

% signals

134 The design of FIR filters

subplot (2, i, i) ;
stem(t,y)

grid
xlabel('Time in seconds')
fs=n*20

subplot (2, i, 2)
m=abs (fft (y)) ;

stem(fs,m)
grid
xlabel

% plot y against t using
% "s t eros"
% add grid

% sampled f values (freq
% resolution = 20 Hz)

% find magnitude values
% only, i.e not phase
% plot m against frequency

('Frequency in Hz') ,ylabel('Magnitude')

There is also a MATLAB 'ifft' function. The following simple program shows
how the 10-point sequence, 1, 2, 3, 5, etc., 'fft'd' earlier, can be recovered by
using the ifft function.

x=[l 2 3
y=fft (x) ;
z=ifft (y)

5 4 2 -i

The results obtained are:

0 1 i] ; % sampled sequence
% find fft
% find ifft of the sampled
% spectral content

'l+0i, 2+0i, 3+0i, 5+0i . . .'

i.e. the original real, sampled signal of 1, 2, 3, 5, etc. is revealed by the ifft
function.

5.17 RECAP

�9 The DFT and IDFT are extremely useful but have the disadvantage that they
require a relatively large amount of computation.

�9 The fast Fourier transform (FFT), and its inverse, have been developed to
reduce the processing time.

5.18 A FINAL WORD OF WARNING

In this book we have been looking at the theory behind the analysis and design
of digital filters. However, when you tackle some practical processing you might
find that the system doesn't perform quite as expected! The serious problem of
pole and zero 'bunching' was mentioned in the previous chapter, but there are
many other sources of error which could affect the behaviour of digital signal
processing systems. One obvious cause of inaccuracies is the quantization of the
input signal due to the A-to-D converter. The digital output values of the converter

5.20 Problems 135

will only be approximate representations of the continuous input values - the
smaller the number of A-to-D bits the more this quantization error. Further errors
are introduced because the processor registers have a finite number of bits in
which to store the various data, such as input, output and multiplier values. This
will result in numbers being truncated or rounded. These errors will be catastrophic
if, as a result of an addition or a multiplication for example, the resulting values
are just too big to be stored completely. Such an overflow of data usually results
in the most significant bits being lost and so the remaining stored data are nonsense.
To reduce the risk of this, the processing software often scales data, i.e. reduces
them. Under certain circumstances, the rounding of data values in IIR systems
can also cause oscillations, known as 'limit cycles'.

This is just a very brief overview of some of the more obvious shortcomings
of DSP systems. If you would like to learn more about this aspect of digital signal
processors then some good sources are Jackson (1996), Proakis and Manolakis
(1996), Terrell and Lik-Kwan Shark (1996) and Ifeachor and Jervis (1993).

5.19 CHAPTER SUMMARY

In this, the final chapter, a case for using FIR rather than IIR filters was made.
The major advantage of FIR systems is that it is possible to design them to have
linear phase characteristics, i.e the phase shift of any frequency component,
caused by passing through the filter, is proportional to the frequency. These
linear-phase filters effectively delay the various signal frequency components by
the same time, and so avoid signal distortion. For an FIR filter to have a linear
phase response, it must be designed to have symmetric transfer function coefficients.

Apart from it being impossible for an FIR filter to be unstable (unlike IIR
filters), a further advantage is that they can be designed to have a magnitude
response of any s h a p e - although only 'brickwall' profiles have been considered
here.

Two major design techniques were desc r ibed- the 'Fourier' or 'windowing'
method and also the 'frequency sampling' approach. The improvement in filter
performance, resulting from the use of a suitable 'window' profile, such as Hamming,
Hanning or Blackman, was also discussed and demonstrated.

As the two design methods rely heavily on either the continuous or the discrete
Fourier transforms - or their inverses, these topics were also covered. The problem
of the relatively long processing time required by the DFT and IDFT was then
considered and the alternative, much faster FFT and FIFT described.

Finally, some of the more obvious sources of filter error were highlighted.

5.20 PROBLEMS

1 A lowpass FIR filter is to be designed using the 'Fourier' or 'windowing'
method. The filter should have 11 coefficients and a cut-off frequency of

136 The design of FIR filters

0.25fN. The filter is to be designed using (a) a rectangular window and (b) a
Hamming window.

2 A bandpass FIR filter, of length nine (nine coefficients) is required. It is to
have lower and upper cut-off frequencies of 3 and 6 kHz respectively and is
intended to be used with a sampling frequency of 20 kHz. Find the filter
coefficients using the Fourier method with a rectangular window.

A discrete signal consists of the finite sequence 1, 0, 2. Use the DFT to find the
frequency components within the signal, assuming a sampling frequency of 1
kHz. Check that the transformation has been carried out correctly by applying
the IDFT to the derived frequency components in order to recover the original
signal samples.

Use the 'frequency sampling' method to design a lowpass FIR filter with a cut-
off frequency of 500 Hz, given that the filter will be used with a sampling
frequency of 4 kHz. The frequency sampling is to be carried out at eight
points. (N.B. An even number of sampling points.)

A bandstop filter is to be designed using the frequency sampling technique.
The lower and upper cut-off frequencies are to be 1 and 3 kHz respectively and
the filter is to be used with a sampling frequency is 9 kHz. The frequency
sampling is to be carried out at nine points.

6 A discrete signal consists of the four samples 1, 2, 0 , -1 .

(a) Use the FFT butterfly diagram of Fig. 5.20 to find the sampled frequency
spectrum for the signal.

(b) Apply the signal flow diagram of Fig. 5.21, i.e. the fast inverse Fourier
transform, to the frequency samples obtained in (a) above, to reveal the
original sampled signal.

Answers to self-assessment
tests and problems

Chapter 1

Section 1.9

As this is a running average filter which averages the current and previous two input samples, then:

Current input sample plus the previous two inputs
Data out = 3

Applying this equation, and remembering that the two storage registers are initially reset, the
corresponding input and output values will be as shown in Table S 1.1. The first two output values
of 0.67 and 1.67 are not strictly valid as the two zeros, initially stored in the two storage registers,
are still feeding through the system.

Table S 1.1

Time Input data Output data

0 2
T 3
2T 6 3.67
3T 2 3.67
4T 1 3.00
5T 7 3.33
6T 4 4.00
7T 1 4.00
8T 2 2.33
9T 4 2.33

The input and output values are also shown in Fig. S 1.1. Notice how the averaging tends to smooth

8

Input
signal

6

Output
signal - - 4

Figure $1.1

s

2 " "

s

0

s, , " J ~',~
s

s
s

t
t

/ ,q~ - ~,,11~ ..
/

i

T 2T 3T

e
s

s

t ,L

~ s S

" ' " ', ""ID'- ..A

"---j~ ~

4T 5T 6T 7T 8T 9T
Time

138 Answers

out the variations of the input signal. This is a good demonstration that the running average filter
is a type of lowpass filter.

Section 1.11

(a) From Fig. 1.11:

Data out = Data in-0.1A - 0 . 4 B + 0.2C

(b) Table S 1.2 shows all outputs, and also the A, B and C values, corresponding to the eight input
samples.

Table S 1.2

Time Data in A B C Data out

0 3.00 0.00 0.00 0.00 3.00
T 5.00 3.00 3.00 0.00 3.50
2T 6.00 5.00 3.50 3.00 4.70
3T 6.00 6.00 4.70 3.50 4.22
4T 8.00 6.00 4.22 4.70 6.65
5T 10.00 8.00 6.65 4.22 7.38
6T 0.00 10.00 7.38 6.65 -2.62
7T 0.00 0.00 -2.62 7.38 2.53

Problems

1. (a) Not programmable.

(b) Unlikely that two 'identical' analogue processors will behave in an identical way.

(c) Affected by ageing and temperature changes.

(d) Not as versatile.

2. True.

3. (a).

4. Recursive, feedback.

5. False (true for IIR filters - running average is an FIR filter).

6. False (only true for IIR filters).

7. (a) 40 000 bytes; (b) 5 kHz (Nyquist frequency = half sampling frequency).

8. 3, 4.4, 6.9, 6.1, 3.9, 3.2.

9. 2.00, 2.60, 4.56, 3.18, -0.47, 0.19.

10. 1, 1, 1.2, 1.4, 1.64, 1.92.

It looks suspiciously as though the output will continue to increase with time, i.e. that the
system is unstable. (In fact, this particular system is unstable and needs redesigning.)

Chapter 2

Section 2.4

1. (a) x(t) = 2 cos (3m)

.'. co = 3~ = 2nf

Answers 139

. ' . f = 1 .5Hz

To avoid aliasing, this signal must be sampled at a minimum of 3 Hz, and so 20 Hz is fine.

(b) As the sampling frequency is 20 Hz, the samples are the signal values at 0, 0.05, 0.1, 0.15,

0.2 and 0.25 s.

.'. x [n] = 2, 1.78, 1.17, 0 . 3 1 , - 0 . 6 2 , - 1 . 4 2

(c) x[n - 4] = 0, 0, 0, 0, 2, 1.78, 1.17, 0 . 3 1 , - 0 . 6 2 , - 1 . 4 2 .

2. (a) x[n] + w[n] = 1, O, 4 , - 3

(b) 3 w [n - 2] = 3(0, 0 , - 1 , - 2 , 1 , - 4) = 0, 0 , - 3 , - 6 , 3 , - 1 2

.'. x[n] + 3 w [n - 2] = 2, 2, 0 , - 5 , 3 , - 1 2

(c) 0 . 5 x [n - 1] = 0, 1, 1, 1.5, 0.5

.'. x[n] - 0 . 5 x [n - 1] = 2, 1, 2 , - 0 . 5 , - 0 . 5

3. (a) From Fig. 2.8, the sequence at A is -2(x[n - 1]) = 0, -4 , -2 , -6 , 2.

(b) y[n] = x[n] - 2 (x [n - 1]) = 2 , - 3 , 1 , - 7 , 2.

Section 2.8

1. (a) X (z) = x[0] + x[1]z -1 + x[2]z -2 + 1 + 2z -1 + 4z -2 + 6z --4.

(b) x [n] = n
(n + 1) 2

.'. x[0] - 0, x[1] = 1/4 etc.

1 -l 2 3 -3 .'. X (z) = -~ z + -q z-2 + -f-6 z + . . .

(C) z-2X(z) -- Z - 2 + 2Z -3 + 4z -4 + 6Z -6

(d) x[n] = e -0"2n

.'. x[0] = 1, x[1] = 0.82 etc.

.'. X (z) = 1 + 0.82z -1 + 0.67z -2 + 0.55z -3

3z 3z
2. (a) - 2 T = z - e z - 0 .819

2 z sin (0.3)
(b) 2

z - 2 z c o s (0.3) + 1

0. lze -~ 0 .0819 z
(c) =

(z - e -~)2 (z - 0 .819) 2

0.1z (d)
(Z - 1) 2

Section 2.I0

1. X (z) = l - z -1

Y(z) = 1 + 2z -1 - z - 2 - 2z -3

Y (z) 1 + 2z -1 - z -2 - 2z -3 m

T (z) = X (z) - 1 - z -1

Carrying out the polynomial division should give:

T(z) = 1 + 3z -1 + 2z -e

140 Answers

2. (a) Y (z) = (l + 3 z - ~) (l + 2 z -2)= 1 + 3 z - l + 2 z - 2 + 6 z -3
Therefore, the output sequence is 1, 3, 2, 6.

(b) Y (z) = (1 + 3z-1)(2 + 3z - 1 - z -2)

giving an output sequence of 2, 9, 8, -3.

3. (a) Y (z) = z
z - 0 . 6

From the z-transform tables:

0.6 = e -aT

but y(t) = e -at

�9 y[n] = e-a"r(sampled sequence)

�9 y [n] = (0 . 6) n

�9 Y(z) = 1 + 0.6z -1 + 0.36z -2 + . . .

(b) Y (z) = z z =
(z - 0.6) (z - 1)

Y (z) z
m

z (z - 0 .6) (z - 1)

This gives A = -1.5 and B = 2.5

Y (z) 1.5 2.5
�9 " � 9 ~ m ~

z z - 0 . 6 z - 1

. ' . Y (z) = 2 . 5 z - 1 . 5 z
z - 1 z - 0 . 6

�9 y[n] = 2 . 5 u [n] - 1.5 (0.6) n

�9 y[n] = 1 + 1.6z -1 + 1.96z-2 + . . .

2 z
(z - 0.6)(z - 1)

A B + ~
z - 0 . 6 z - 1

S e c t i o n 2 . 1 6

1. Y(z) = X(z) - 0 .SX(z) z -1 + 0 .5Y(z) z -1
�9 ". Y(z) (1 - 0.5z -1) = X(z) (1 - 0.8z -1)

Y(z) 1 - 0.8z -1

�9 X (Z) = T (z) = 1 - 0.5z -1

Dividing (1 - 0 . 8 z -1) by (1 - 0 . 5 z -1) you should get 1 - 0 . 3 z -1 - 0 . 1 5 z - 2 . . . and so the first three

terms of the output sequence are 1, -0.3 and -0.15.

2. From Fig. $2.1"

-I
Y(z)

, v

z-1

Figure $2.1

Y(z) = 0.5X(z) + 0 .5X(z) z -~
.'. T (z) = 0.5 (1 + z -1)

As the z-transform for a unit ramp is 0 + z -~ + 2z -e + 3z -3 + then the z-transform of the

system output is given by:

Y (z) = 0 . 5 (1 + z -1)(z - l + 2 z - 2 + . . .) = 0 + 0 . 5 z - l + 1.5z - 2 + . . .

Answers 141

3. Y(z) = 0.2(X(z) + X (z) z -1 + X(Z)Z -2 + X(Z)Z -3 + X(Z)Z -4)

.'. Y(z)z -1 = 0 . 2 (X (z) z -1 + X (z) z -2 4- X (z) z -3 -4- X (z) z -4 -t- X (z) z -5)

Equation ($2.2) - equation ($2.1):

Y(z)z -1 - Y(z) = 0 . 2 X (z) z -5 - 0.2X(z)
Y(z)(1 - z -1) = 0.2X(z)(1 - z -5)

Y (z) 1 - z -5
,

"" X (z) = T (z) = 0.2 -1
1 - z

i.e. this is the transfer function for a recursive filter.

4. V(z) = X (z) + b 1V(z)z -1 + b2V(z) z -2

�9 V(z) (1 - b l z -1 - b2z -2) = X(z)

X(z)
.'. V (z) = 1 - b l z -1 - b 2 z -2

Also, Y(z) = V(z) + al V(z) z -1 + a2V(z) z -2

- V(z) (1 + a l z -1 + a2z -2)

From equations ($2.3) and ($2.4)"

1 + al z-1 + a2 Z-2
T (z) = 1 - b l z -1 - b2z -2

($2.1)

($2.2)

($2.3)

($2.4)

Problems

1. 1, 3, 0, -2.

2. T(z) = 1 + z -~ + 2z -2. Unit step response: 1, 2, 4, 4.

3. T(z) = (1 + 0.5z-l)/(1 - 0 . 5 z -1) = 1 + z -l + 0.5Z -2 + 0.25Z -3.

Unit sample response: 1, 1, 0.5, 0.25.

4. Output sequence: 1, 0, 1, 0 , - 2 . [T(z) = (1 - z-2)].

5. T(z) = 0.5(1 - 0.4z-l)/(1 - z-2). (Hint: The input to the x0.5 attenuator is 2Y(z).)

6. 0, 0.8, 0.96, 0.992

[(1 + z -1 + Z -2 + Z -3 4 - . . .) - (1 + 0.2z -l + 0.04z -2 + 0.008z -3 +...)]

Chapter 3

Section 3.4

2(s + 2)
1. Y(s)=

S(S 2 + 4 s + 3)

There is therefore a single zero at s = -2. There is a pole at s = 0 and also at s = -3 and -1 (roots
of s 2 + 4s + 3). The pole-zero diagram is shown in Fig. $3.1. The pole at A will correspond to
a step of height kl, while the poles at B and C represent exponentially decaying d.c. signals of
k2 e-t and k3 e-3t respectively, where kl, k2 and k3 are multipliers. (Although it is possible to find
the k-values from the p-z diagram, this is not expected here.) Figure $3.2 shows the MATLAB
plots for the signals corresponding to the three pole positions (k-values of 1 have been used for
all three signals, as it is only general signal shapes that are required).

2 (s + 2) _ a b c
s (s + l) (s + 3) - s + ~ + s + 3

which gives a = 4/3, b = -1 and c = -1/3. Therefore, from the Laplace transform tables:

142 Answers

Imag

C B
X �9 v A

-3 -2 -1

A
(

Real

Figure S3.1

1

0.8

0.6

< 0.4

0.2

.

-0.2 I I
0 0.5 1

I I I

1.5 2 2.5
Time (s)

Figure $3.2

4 - t 1 e_3t y (t) = ~ - e - ~

2. This transform has no zeros but has poles at s = + j2 and so this represents a non-decaying sine
wave of angular frequency 2. From the Laplace transform tables:

y(t) = 3 sin 2t

i.e. the transform first needs to be rearranged to 3 x 2/(s e + 22). It can then be recognized as a
standard transform.

Section 3.11

1. This p-z diagram represents an exponentially decaying d.c. signal - the signal samples falling
to 0.8 of the previous sample - the pulse train being delayed by one sampling period. Carrying
out the polynomial division, i.e. dividing z -l by 1 - 0.8z -1, results in the series z -1 + 0.8z -2 +
0.64z -a + . . . (N.B. This assumes no 'pure' gain in the system, i.e. that T(z) - k/(z - 0.8) where
k = 1. It is impossible to know the true value of k from the p-z diagram alone.)

Answers 143

2. The Nyquist frequency (fN) = 60 Hz, i.e. 180 ~ - 60 Hz.

150 " fA = 1 - ~ • 60 = 50 Hz, fB = fN = 60 Hz, fc = 30 Hz, fD = 0 Hz

3. z = e sT

Pole A:
s = cr + j oo
.'. s = - 1
�9 ". ZA = e -~r = e -~ = 0.61

Pole-pair B1 and B2:

z = e -(1+j)~ = e-~ +j~ = 0.61e +j~

This represents conjugate poles 0.61 from the origin, the pole vectors to the origin being
inclined at angles of +0.5 radians from the positive real axis.

Pole C:

s = 0

.'. z = 1

Pole-pair D1 and D2:

Z = e +jO'5

i.e. the pole vectors have a magnitude of 1 and are inclined at +0.5 radians (+28.6 ~ to the
positive real axis.

Pole E:

z = e ~ 1.65

The z-plane p-z diagram is shown in Fig. $3.3.

Imag

8 611A D1 c XE Real

Figure $3.3

Section 3.15

T (s) =
4 (s + 1)(s + 2)

(S 2 + 2s + 2)

Therefore there are real s-plane zeros at s = - 1 a n d - 2 and complex conjugate poles a t - 1 + j (roots
of the denominator). Figure $3.4 shows the p-z diagram.

144 Answers

�9
-2

[Imag
je)

----e- -

-1

Real
o

Figure S3.4

0 rad/s (Point A):

k H zero distances
Magni tude = FI pole distances

4 x 2
= -,J2-v~- = 4 (12 dB)

Phase angle = ~ zero angles - ~ pole angles = 0

1 rad/s (Point B, Fig. $3.5):

~ lmag
j e

X B ~

Real
o

-1

Figure S3.5

4 x -,J2-,j--5
Magni tude = = 5.66

Phase angle = 01 + 0 2 - 03 = tan -1 1 + tan -1 0.5 - tan -1 2 = 8.2 ~

A similar approach should show that the gain and phase angle at 2 rad/s are 5.66 (15 dB) a n d - 8 . 2 ~
For very large frequencies the distances from the frequency point to the two poles and the two

zeros are almost identical and so the gain must be very close to 4. Further, as the angles made by
the zero and pole vectors approach 90 ~ then the phase angle must be zero. Figure $3.6 shows the
Bode plot for the system.

Section 3.18

T(z) =
(z 2 + z + 0.5)(z - 0.8)

Answers 145

16

~-15
- 0

"o14
t ' -

t~
~ 1 3

12

I ~

....... iiii iil iiii ilill i iiiiiii! i i! i li i ili

i i i l i

20

~. 10 O')

"O
v

0
tl:l
e'-

13.

-10

-20
10-1

.

1

i

10 ~ 101
Frequency (rad/s)

Figure $ 3 6

One zero at z = 0 and three poles at z = 0.8 and-0.5 + j0.5.

The p-z diagram is shown in Fig. $3.7.

Imag

fN = 8 Hz A Real

/ o ~ ~ a7 o

Figure $ 3 7

As the Nyquist frequency is 8 Hz, points A and B must represent signal frequencies of 0 and
4 Hz respectively.

(a) f = 0 Hz:

By using

Magnitude =
k H zero distances

FI pole distances

and

146 Answers

Phase angle = 2 zero angles -]~ pole angles

it should be fairly easy to show that the magnitude and phase angle of the frequency
response at 0 Hz are 2 and 0 ~ respectively.

f = 4 Hz:

From Fig. $3.7:

Magni tude = 1 = 0.7
~/0.25 + 0.25-,/0.25 + 2.25 ~/1 + 0.64

Phase angle = 90 - (tan-ll + tan -1 3 + tanq(-1/0 .8)) = - 155.3 ~ or 204.7 ~

(b) f = 0 Hz:

Substituting z = 1 into T(z) = z .

1
T (z) =

(2 .5) (0 .2)

f = 4 Hz:

= 2 Z O

Substituting z = j into T(z) =

T (z) =
(-1 + j + 0 . 5) (j - 0.8)

J
(-0.5 + j) (- 0 . 8 + j)

J
- 0 . 6 - 1.3j

1 Z 9 0 ~
1 .43Z245 .2 ~

(z 2 + z + 0 . 5) (z - 0.8)

(z 2 + z + 0 . 5) (z - 0 .8)

= 0.7Z - 155.2 ~

Problems

1. (a) Zero at 0.1 and pole at 0.3.

(b) Gain at 0 Hz = 1.29, phase angle = 0.
Gain at 250 Hz = 0.96, phase angle = -11 ~ (or 349").

(c) Gain at 375 Hz = 0.8, phase angle = -6.1 ~ (353.9~

(z - 0.819)
2. (a) T (z) =

(z - 0 .905)(z - 0.741)"

(b) The d.c. gains of the continuous and digital filters are approximately 0.67 and 7.36 respectively.
It follows that the transfer function of the digital filter would have to be scaled by multiplying

by 0.67/7.36.

3. (a) As the z-transform for the unit sample function is 1, then

1
Y (z) = T (z) = z 2 _ z + 0 . 5

i.e. no zeros but poles at 0.5 + j0.5.

(b) The z-transform of a unit step is z / (z - 1). It follows that

1 z
Y (z) = 2

(z - z + 0 . 5) (z - 1)

Answers 147

i.e. p -z diagram as for (a) above, but an extra pole at +1 and a zero at the origin.
Gain at 0 Hz = 2 and at fs/4 = 0.89.

4. Dividing z 2 by z + 1 (or z by 1 + z -1) results in the z-transform of z - 1 + z -1 - z -2 + . . . for the
unit sample response. The initial z indicates that the output sequence begins one sampling
period before the input arrives! Impossible!

5. p = 0.79 (p2 _ 0.62).
The gain at 0 Hz is approximately 1.2.
The filter is a bandstop filter, with maximum gains of 1.2 at 0 and 100 Hz (fN) and minimum
gain of 0.5 (-6 dB) at 50 Hz.

Chapter 4

Section 4.5

k
T(Z) = z2 -t- a 2

There must therefore be two poles at z = + ja. Figure $4.1 shows the two poles and also points
A, B and C corresponding to signal frequencies of 100, 90 and 110 Hz respectively. (N.B. The
positions of points B and C on the unit circle are not drawn to scale.)

Figure $4.1

fN = 200 HZ

Imag
C |jco

Hz)

Real
(y

Using

Gain = k H zero distances
I-I pole distances

At 100 Hz (Point A):

1 = k
(1 - a) (1 + a)

At 90 Hz (or 110 Hz):

The gain = - 3 dB

.'. 0.71 --- k
P1B(1 + a)

('(1 + a) ' as B is very close to A)

(s4.1)

148 Answers

To find P1B:

10 Arc A B = l x O = ~ Jr = O.16

As the angle Z A O B is relatively small (=9~ arc A B -- line AB. Also, triangle PIAB approximates
to a right-angled triangle, with ZP~AB = 90 ~

�9 P1B = ~/(1 - a) 2 + 0.16 2

�9 0.71 = k ($4.2)
(1 + a)~/(1 - a) 2 + 0.162

Dividing equation ($4.2) by ($4.1), and carrying out a few lines of algebra, you should eventually
find that a = 0.86. Substituting this value back into equation ($4.1) or ($4.2) should give k ---
0.26.

0.26 0.26
�9 T (z) = =

z 2 + 0.86 2 z 2 + 0.74

Section 4.9

T (s) = 16
(s + 4) 2

First check whether pre-warping is necessary"

Wc = 7 tan

2 (42021 �9 o9c = b-~- tan = 4.23

This is approximately a 5% difference compared to COc, and so pre-warping is necessary.

T (s) =

16
16 1

m

Replacing all s/Ogc terms with s/COc"

1 17.89 T (s) ' = =
() 2 (s + 4 " 2 3) 2 - ~ - + l s

Applying the bilinear transform:

T (z) = 17.89)2
z + 1 + 4.23

After a few lines of algebra:

T(z) = 0.088
(z + 1) 2

z 2 - 0.81z + 0.164

Answers 149

Section 4.11

(a) T (s) =
(s + 2) 2

From the s/z transform tables"

0.4ze -~ 0.328z
T (z) = =

(z - e -~)2 z 2 - 1.64z + 0.672

Scaling the z-domain transfer function so that the d.c. gains of the two filters become the same:

4 = k 0.328 z

(s + 2) 2 s=O z 2 - 1.64z + 0.672 z=l

0 .328k
o~ 1 ~

1 - 1.64 + 0.672

.'. k = 0.098

0 .032z
.'. T (z) = 2

z - 1 . 6 4 z + 0 . 6 7 2

2
(b) T (s) =

(s + 1)(s + 2)

Applying the method of partial fractions"

2 A B
(s + 1)(s + 2) s + 1 s + 2

Using the 'cover-up' rule (or any other method):

A = 2 , B = - 2

2 2 .'. T(s) =
s + l s + 2

From the s/z transform tables:

2z 2z 2z 2z
T (z)

z - e -~ z - e -~ z - 0.9 z - 0.82

After a few lines of algebra, you should find that

T (z) = 0.172z

Z 2 - - 1.724z + 0.741

and, after equalizing the d.c. gains of the two filters:

T(Z) = 0.0172z

z 2 - 1.724z + 0.741

Section 4.13

4
(a) T (s) =

(s + 2) 2

This particular continuous filter has no zeros and a double pole at s = - 2 .
From z = e st, the equivalent pole positions in the z-plane must be given by z = e -0"2 = 0.82.

k (z + 1) 2
.'. T (z) =

(Z - 0.82) 2

(A double zero has been added at z = -1 to balance up the number of poles and zeros.)

After equalizing the d.c. gains of the filters, the final transfer function is given by:

I
II

II

II

II

"-
I

"1
�9

 ~

~
.o

~

o
l

0
~

-t-

"
�9

b

~

~
~

�
9

�
9

"
-

~
.

~
o~

.

~
0~

o"

~
o"

~

~
~I

 ~
II

~
N

II
II

II
~o

~~

~
II

~
I

N
~

~
I

~
0

~m

II
II

IN

~
~N

.~
--

I
0

0
-"

b~

..
~_

i

i._

~
[0

-

~
~

~o
I_

I~
I

I
.-

I~
-

~
~

I

F-I
-

II
.-

-N

i
i

/
I

+ ~1
--

~~

17
6

~
~~

0

0
0

+ to

I~
O

0

0
0

0

X

X

0
0

b~

b~

X

X

0
0

'
&

II
 I to
 I

#x
l oo

I

#x
l

0
0

0

~-
,

I

L
~

II

-L
 I 0 N

0 i

~
+

?o
 ~

?
~

+

O
o

Answers 151

_ S T(Z)Highpass = 0.761(Z--1) 5. (a) T (S) H i g h p a s s - - s + 6' z - 0.55 "

(b) T(Z)Lowpass = 0 . 1 3 (~ Z+') Z .ighpass=O758(zl)
z - 0 . 7 4 1 ' z - 0 . 5 1 4 "

Chapter 5

Section 5.9

1. (a) fc = 3 kHz, fN = 6 kHz

From Section 5.6:

sin fN) sin (0.5n~)
Cn ~ n rc nit

Substituting n = - 5 to +5 into equation ($5.1) gives coefficients of:

0.063662, 0, -0.106103, 0, 0.31831, 0.5, 0.31831, 0, -0.106103, 0, 0.063662

.'. T(z) = 0.063662 - 0.106103z -2 + 0.3183 lz -4 + 0.5z -5 + 0.3183 lz -6
_ 0.106103z -8 + 0.063662z -1~

(s5.~)

(b) The Hanning window function is given by:

2'-[/ w (n) = l - c o s N - 1

Substituting n = 0 to l0 into equation ($5.2) gives Hanning coefficients of :

0, 0.095492, 0.345492, 0.654508, 0.904508, 1,0.904508, 0.654508, 0.345492, 0.095492, 0

Multiplying the filter coefficients of part (a) by the corresponding Hanning coefficient

gives a modified filter transfer function of:

T(z) = -0.036658z -2 + 0.287914z -4 + 0.5z -5 + 0.287914z -6 - 0.036658z -8

or, more sensibly:

T(z) = -0.036658 + 0.287914z -2 + 0.5z -3 + 0.287914z -4 - 0.036658z -6

The filter coefficients are the same as those for the lowpass filter designed in Section 5.6,
before applying the Hamming window function, apart from (a) the signs being changed and
(b) the central coefficient being 1 - (fc/fN) = 0.6 (see Section 5.8).

Section 5.13

The required magnitude response and the sampled frequencies are shown in Fig. $5.1. From
Section 5.12, equation (5.8b), the filter coefficients, x[n], are given by:

x[n] = ~- = 2lXkl cos [2Jrk(n - ct)/N] + Xo (s5.3)

where N is the number of frequency samples taken (nine here), a = (N - 1)/2, i.e. 4, and IXkl is the
magnitude of the kth frequency sample. In this example I Xo I, I Xt I and I X2 I = 0, while IX3 I = 0.5
and I X4 I= 1. Substituting into equation ($5.3)

1 [2(0.5 cos (6Jr(0 - 4)/9) + cos (8n:(0 - 4)/9))] = - 0.016967 x [Ol = g

152 Answers

Magnitude
0.5

w

0

i i
i ,

| |

I !
! |

i i
! I
| |

i i
I !

A A
w w

1 2

!

I

~

! I '

i,i
TIT
| |

i I i

ill
i |

4 5
~N

| | |

i I i
t 0 I
, | | t [' ! i

i
1
|

i
.k .k I

6 7 8 9
Frequency (kHz)

Figure $5.1

1
x[1] = ~ [2(0.5 cos (6Jr(1 - 4) / 9) + cos (8zr(1 -4) /9))] = 0

Similarly, x[2] = 0.114677, x[3] = -0.264376 and x[4] = 0.333333

" T(z) =-0.016967 + 0.114677z - 2 - 0.264376z -3 + 0.333333z -4 - 0.264376z -5

+ 0.114677z -6 - 0.016967z -8

Problems

1 (a) Filter coefficients: -0.0450, 0, 0.0750, 0.1592, 0.2251, 0.25,

0.2251, 0.1592, 0.0750,-0.0450.

(b) Filter coefficients: -0.0036, 0, 0.0298, 0.1086, 0.2053, 0.25,

0.2053, 0.1086, 0.0298, 0,-0.0036.

2. Filter coefficients: 0.1225,-0.0952,-0.2449, 0.0452, 0.3,

0.0452,-0.2449,-0.0952, 0.1225.

3. Magnitude and phase angle of the three frequency components of 0, 500 Hz and 1500 Hz are
3Z0 ~ 1.732Z90 ~ and 1.732Z-90 ~ respectively.

4. Filter coefficients: -0.0176,-0.0591, 0.1323, 0.4444, 0.4444,

0.1323, -0.0591, -0.0176.

5. Filter coefficients: -0.0103, 0.0556, 0.2451,-0.0681, 0.5556,

-0.0681, 0.2451, 0.0556,-0.0103.

6. The FFT values are: 2, 1 - j 3 , 0, 1 + j3, i.e. the magnitudes of the four frequency components,
O, fs /4 , fs/2 and 3fs/4 are 2, ~/10, 0 and ~/10 respectively, while the corresponding phase angles
are 0, tan-I(-3), 0, tan -1 3.

References and Bibliography

Bolton, W. 1998: Control engineering. Harlow: Addison-Wesley Longman.

Carlson, G.E. 1998: Signal and linear system analysis. Chichester: John Wiley.

Chassaing, R., Horning, D.W. 1990: Digital signal processing with the TMS320C25. Chichester:
John Wiley.

Damper, R.I. 1995: Introduction to discrete-time signals and systems. London: Chapman & Hall.

Denbigh, P. 1998: System analysis and signal processing. Harlow: Addison-Wesley.

Dorf, R.C., Bishop, R.H. 1995: Modern control systems. Harlow: Addison-Wesley.

E1-Sharkawy, M. 1996: Digital signal processing applications with Motorola's DSP56002 processor.
London: Prentice-Hall.

Etter, D.M. 1997: Engineering problem solving with MATLAB. London: Prentice-Hall.

Hanselman, D., Littlefield, B. 1997: The student edition of MATLAB- version 5. London: Prentice-
Hall.

Hayes, M.H. 1999: Digital signal processing. London: McGraw-Hill.

Howatson, A.M. 1996: Electrical circuits and systems - an introduction for engineers and physical
scientists. Oxford: Oxford University Press.

Ifeachor, E.C., Jervis, B.W. 1993: Digital signal processing - a practical approach. Harlow:
Addison-Wesley.

Ingle, V.K., Proakis, J.G. 1991: Digital signal processing laboratory using the ADSP-2101
microcomputer. London: Prentice-Hall.

Ingle, V.K., Proakis, J.G. 1997: Digital signal processing using MATLAB v.4. London: PWS.

Jackson, B.J. 1996: Digital filters and signal processing. London: Kluwer Academic.

Johnson, J.R. 1989: Introduction to digital signal processing. London: Prentice-Hall.

Jones, D.L., Parks, T.W. 1988: A digital signal processing laboratory using the TMS32010. London:
Prentice-Hall.

Ludeman, L.C. 1987" Fundamentals of digital signal processing. Chichester: John Wiley.

Lynn, P.A., Fuerst, W. 1994: Introductory digital signal processing with computer applications.
Chichester; John Wiley.

Marven, C., Ewers, G. 1994: A simple approach to digital signal processing. Texas Instruments.

Meade, M.L., Dillon, C.R. 1991: Signals and systems - models and behaviour. London: Chapman
& Hall.

Millman, J., Grabel, A. 1987: Microelectronics. London: McGraw-Hill.

Oppenheim, A.V., Schafer, R.W. 1975: Digital signal processing. London: Prentice-Hall.

Powell, R. 1995: Introduction to electric circuits. London: Arnold.

Proakis, J.G., Manolakis, D.G. 1996: Digital signal processing -principles, algorithms and
applications. London: Prentice-Hall.

154 References and bibfiography

Steiglitz, K. 1995: A digital signal processing p r i m e r - with applications to digital audio and
computer music. Harlow: Addison-Wesley.

Terrell, T.J. 1980: Introduction to digital filters. London: Macmillan.

Terrell, T.J., Lik-Kwan, S. 1996: Digital signal processing - a student guide. London: Macmillan.

The MathWorks Inc. 1995: The student edition of MATLAB. London: Prentice-Hall.

Virk, G.S. 1991: Digital computer control system. London: Macmillan.

Appendix A Some useful
Laplace and z-transforms

Time f u n c t i o n L a p l a c e z - t r a n s f o r m
t r a n s f o r m

~ t) (unit impulse) 1 1
~ t - nT) (de layed unit impulse) e -nsT z -n

1 z u(t) (unit step) -
s

1
t (unit ramp) $2

t2 2
s 3

e-at

1 - e -aT

te-at

t - 1 (1 - e -a t)
a

te-at

sin cot

cos cot

e -aT sin coT

e -aT cos COT

s + a

a

s (s + a)

1
(s + a) 2

s 2 (s + a)

(S + a) 2

CO
2 2 S +CO

S 2 + (O 2

(S + a) 2 + (0

s + a
(s + a) 2 + (0

z - 1

T z

(z - 1) 2

T 2 z (z + 1)

(Z - 1) 3

Z
- a T z - e

Z(1 - e - a T)

(z - 1) (z - e - a T)

T z e - a T
(z _ e - a T) 2

Tz (1 - - e - a T) z

(Z - 1) 2 a (z - 1)(Z - e - a T)

T z e - a T
(z - e - a T)2

z sin COT

z 2 - 2 z c o s COT+ 1

z (z - cos COT)

z 2 - 2z cos COT+ 1

ze -aT sin coT

z 2 _ 2 z e - aT COS coT + e-2aT

Z(Z -- e - a T COS 09T)

2 Z 2 -- 2 z e - a T cos COT+ e -2aT

Appendix B Frequency
transformations in the
s- and z-domains

s-DOMAIN TRANSFORMATIONS

To transform from a lowpass filter with cut-off frequency co:

Required filter type Replace s with;

Lowpass

Highpass

Bandstop

Bandpass

O)s

f2c

o~f2c

S(-O(~"~h -- ~"~1)

S 2 + ~'~l~-~h

O.)(S 2 + ~'-'~l~'-'~h)

S (~'-~ h -- ~'~1)

where g~c is the new cut-off frequency for the low and highpass filters, and ~1
and ~"~h a r e the lower and higher cut-off frequencies for the bandstop and bandpass
filters.

Appendix B 157

z-DOMAIN TRANSFORMATIONS

To transform from a lowpass filter with cut-off frequency co:

Required f i l ter Replace z with: where:
type

1 - az s i n (c o - f~c)T/2
Lowpass a =

z - a sin(co + f~c)T/2

1 + az cos (c o - f2c)T/2 Highpass a = -
z + a cos (co+ f~c)T/2

Bandstop

Bandpass

2az 2 1 - b 1 - + z
l + b l + b

1 - b 2az
l + b l + b

+ Z 2

2abz
1 -

l + b

b - 1 2abz
l + b l + b

+ Z 2

a -- COS (~"~h + f21)T/2
cos (f2 h - f21)T/2

b = tan [(f~ h - f2~)T/2] tan (- ~)

a - as for the bandstop filter

b = cot [(~ h - ~ l) T / 2] t a n (, 2 T)

where f~c is the new cut-off frequency for the low and highpass filters, and f~l
and f~h are the lower and higher cut-off frequencies for the bandstop and bandpass
filters.

This Page Intentionally Left Blank

Index

ADC 17
aliasing 4, 54
all-pass filters 102-3

transfer function 102-3
analogue filters 92-4

basic principles 72
design 72
design of IIR filters via 79
transfer function 88

analogue signal processing
alternative approach 2-3
disadvantages 7
major defects 1-2
repeatability 2

analogue-to-digital converter (ADC) 2, 3
role of 5-6

angular frequency 45, 54, 58
anti-aliasing filter 4
Argand diagram 41, 48
attenuation 76

bandwidth 76
bilinear transform 79-84, 92
Bode plot 60, 61, 63
boundary between stable and unstable regions

in 'z'-plane 47-8
butterfly diagrams 130, 131

complex conjugate poles 45
continuous filters 102-3

transfer function 83
continuous signals

decay rate 49
Laplace transform 56
pole-zero diagrams 42-5
representation 17-18
's'-plane, pole-zero diagrams 46

continuous systems
frequency response 58-61, 68-9
transfer function 41-2

continuous-time signals, definition 16
continuous unit step 18
cover-up rule 27, 88
cut-off frequency 80, 82, 83, 93-5, 106, 110,

115, 127, 156, 157

decay rate 49-50, 52, 53, 58
decaying signal 49-50
decaying sinusoidal signal 45

delayed unit sample 19
delta sequence 19
denominator 42
digital data processing 7
digital filters

design 60
programmable 72

digital signal processing (DSP) 3, 6, 65
advantages compared with analogue

processing 3
basic principles 1-15
complete system 3-6
programmable 3
the 'z'-domain 31-3

digital signals, definition 17
digital-to-analogue converter (DAC) 3

role of 6
Dirac delta function 19
discrete all-pass filters 103
discrete filters, transfer function 90
discrete Fourier transform, definition 121
discrete signal processing systems 22, 65,

99
discrete signals 16-41

representation 17-21
the 'z'-plane 49-52
'z'-plane pole-zero diagrams 46

discrete systems 16-41
frequency response 62-7
Laplace transform 56
transfer function 24-8, 31

discrete-time signals
definition 16-17
representation 18

discretization process 79

envelope 84
Euler's identity 47, 91, 109, 122, 126, 129

fast Fourier transform (FFT) 128-34
MATLAB 132-4

fast inverse Fourier transform (FIFT) 129,
131-2

feedback (or recursive) filter 10-12
filter coefficients 112, 115, 116, 118, 124, 126
filter transfer function 111
filters

basic principles 71-2
cut-off frequency 72

160 Index

filter c o n t .

ideal 71
(see also) specific types

finite impulse response filters (see) FIR filters
FIR filter coefficients 35, 111
FIR filters 12, 31-2, 39, 73

comparison with IIR filters 102, 105
design 102-36

using Fourier transform or windowing
method 110

using frequency sampling method 124-
8

phase-linearity 102-5
'z'-domain 33

first-order filter 80, 95
Fourier series 107
Fourier transform 107-10, 119-23
frequency domain 110
frequency point 69, 120
frequency resolution 120, 121
frequency response 73, 81, 85, 97, 110, 112,

113
alternative calculation 65-7
continuous systems 58-61, 68-9
definition 58
discrete systems 62-7

frequency samples 127
frequency sampling method 124-8
frequency transformation 156-7

's'-domain 97
's'-domain 95-7

gain 58-60, 62, 63, 66, 69, 71, 72, 74-6, 87,
91, 102

Gibbs' phenomenon 116
graphical approach 59

Hamming window 116-17
Hanning window 119
highpass filter 90, 91, 94-6, 118

IIR filters 10, 12, 31, 39, 73
design 71-101

via analogue filters 79
direct design 73-8
practical realization 98-9
transfer function 34, 73
'z'-domain 34-8

imaginary components 46
impulse-invariant method 84-9
impulse-invariant transformation 89, 113
infinite impulse response filters (see) IIR filters
inverse discrete Fourier transform (IDFT) 120-

2, 124-6
definition 121

inverse fast Fourier transform (IFFT) 129

inverse Fourier transform 107-10, 119-23
inverse Laplace transform 43, 84-5
inverse 'z'-transform 27

Kronecker delta function 19

Laplace transform 24, 25, 42-3, 45, 84, 111,
155

continuous signal 56
discrete systems 56
relationship with 'z'-transform 55-7
tables 43, 88

linear-phase characteristics 106
linear-phase filters 105, 106
linear-phase response 106, 112
lowpass digital filter 74
lowpass filter 80, 81, 84, 93, 94, 95, 106, 117,

156, 157

magnitude response 114, 121, 122, 124
MATLAB 29-31, 33, 73, 78, 90, 92, 95-7,

118
display 30, 35, 37, 52
FFT 132-4
functions 30
plots 60, 63
pole-zero diagrams 44-5, 54
stem function 38

matrix equation 130

negative frequencies 108
non-causal filter 112
non-decaying sine wave 58
non-decaying sinusoidal signal 45
non-recursive filters 31, 35, 39, 73
notch filter 76
notch frequency 76
numerator 41
numerator coefficients, symmetry of 106
Nyquist frequency 4, 54, 62, 63, 65, 74, 76,

79, 88, 90, 91, 112, 115, 120, 122

partial fractions 27
passband 71
periodicity 129
phase angle 58-60, 66, 69, 126
phase change 103
phase difference between output and input signals

58
phase linearity 112

FIR filters 102-5
phase relationship between output and input 58
phase response 81,102-6, 110, 121,122, 126
pole angle 63
pole distance 59, 61
pole-pair 52

Index 161

pole vector 49, 51, 52, 59
pole-zero diagrams 42, 50, 57, 59, 62, 73

and signal shape 43
continuous signals 42-5
'z'-plane 46, 73

pole-zero mapping 89-91
poles 41-2, 73, 76-9
pre-warping 82-3, 92, 93

reconstruction filter 6
recursive filters 31, 35, 39, 73
running average filter, transfer function
running average filters 7-9, 106-7

106

's'-domain 22, 79, 89
frequency transformation 94
transfer function 82, 91
transformations 156

's'-plane 41-2, 57
zeros 52

's'-plane diagram 41
's ' -plane pole-zero diagrams, continuous

signals 46
's'-to-'z' transformations 92
sample-and-hold device 4-5
sampled frequency response 121
sampled frequency spectrum 120
sampled signals 120
sampled time signal 120
sampling frequency 54, 81, 88, 89, 96
second-order filter 93
signal flow diagrams 130, 131
signal frequency 49, 52, 54, 62
signal shape and pole-zero diagram 43
signal time delays 53
signal types 16-17
'Signals and Systems' toolbox 29
stability, 'z'-plane 47-8
stopband 71
symmetry of numerator coefficients 106

'T' box 32
time delay 53
time domain 110

model 32
time function 110-15
time response 112
transfer function

all-pass filters 102-3

analogue filter 88
continuous filters 83
continuous system 41-2
discrete filter 90
discrete system 24-8, 31
FIR filter 73
IIR filter 34, 73
running average filter 106
's'-domain 82, 91
'z'-domain 33, 84, 92

transfer function coefficients 98-9

undamped signal 52
unit impulse 19
unit impulse response 84, 110-11, 113, 115
unit sample function 19, 31
unit sample response 84, 112, 127
unit sample sequence 19
unstable systems 67-8

windowing method 110, 116-18

'z'-domain 79, 89
block diagram 36
digital signal processors 31-3
FIR filters 33
frequency transformation 95-7
IIR filters 34-8
transfer function 33, 84, 92
transformations 157

'z'-plane 57
boundary between the stable and unstable

regions in 47-8
discrete signals 49-52
pole-zero diagrams 73

discrete signals 46
stability 47-8
zeros 53

'z'-transform 30, 46, 53, 120, 155
definition 22
examples 23
relationship with Laplace transform 55-7
tables 24

zero angle 63
zero distance 59, 61
zero vector 59
zeros 41-2, 52-3, 73, 76, 78, 79

's'-plane 52
'z'-plane 53

This Page Intentionally Left Blank

	Introduction to Digital Signal Processing
	Copyrigth Page
	Contents
	Preface
	Acknowledgements
	Chapter 1. The basics
	1.1 Chapter preview
	1.2 Analogue signal processing
	1.3 An alternative approach
	1.4 The complete DSP system
	1.5 Recap
	1.6 Digital data processing
	1.7 The running average filter
	1.8 Representation of processing systems
	1.9 Self-assessment test
	1.10 Feedback (or recursive) filters
	1.11 Self-assessment test
	1.12 Chapter summary
	1.13 Problems

	Chapter 2. Discrete signals and systems
	2.1 Chapter preview
	2.2 Signal types
	2.3 The representation of discrete signals
	2.4 Self-assessment test
	2.5 Recap
	2.6 The z-transform
	2.7 z-Transform tables
	2.8 Self-assessment test
	2.9 The transfer function for a discrete system
	2.10 Self-assessment test
	2.11 MATLAB and signals and systems
	2.12 Recap
	2.13 Digital signal processors and the z-domain
	2.14 FIR filters and the z-domain
	2.15 IIR filters and the z-domain
	2.16 Self-assessment test
	2.17 Recap
	2.18 Chapter summary
	2.19 Problems

	Chapter 3. The z-plane
	3.1 Chapter preview
	3.2 Poles, zeros and the s-plane
	3.3 Pole-zero diagrams for continuous signals
	3.4 Self-assessment test
	3.5 Recap
	3.6 From the s-plane to the z-plane
	3.7 Stability and the z-plane
	3.8 Discrete signals and the z-plane
	3.9 Zeros
	3.10 The Nyquist frequency
	3.11 Self-assessment test
	3.12 The relationship between the Laplace and z-transform
	3.13 Recap
	3.14 The frequency response of continuous systems
	3.15 Self-assessment test
	3.16 The frequency response of discrete systems
	3.17 Unstable systems
	3.18 Self-assessment test
	3.19 Recap
	3.20 Chapter summary
	3.21 Problems

	Chapter 4. The design of IIR filters
	4.1 Chapter preview
	4.2 Filter basics
	4.3 FIR and IIR filters
	4.4 The direct design of IIR filters
	4.5 Self-assessment test
	4.6 Recap
	4.7 The design of IIR filters via analogue filters
	4.8 The bilinear transform
	4.9 Self-assessment test
	4.10 The impulse-invariant method
	4.11 Self-assessment test
	4.12 Pole-zero mapping
	4.13 Self-assessment test
	4.14 MATLAB and s-to-z transformations
	4.15 Classic analogue filters
	4.16 Frequency transformation in the s-domain
	4.17 Frequency transformation in the z-domain
	4.18 Self-assessment test
	4.19 Recap
	4.20 Practical realization of IIR filters
	4.21 Chapter summary
	4.22 Problems

	Chapter 5. The design of FIR filters
	5.1 Chapter preview
	5.2 Introduction
	5.3 Phase-linearity and FIR filters
	5.4 Running average filters
	5.5 The Fourier transform and the inverse Fourier transform
	5.6 The design of FIR filters using the Fourier transform or 'windowing' method
	5.7 Windowing and the Gibbs phenomenon
	5.8 Highpass, bandpass and bandstop filters
	5.9 Self-assessment test
	5.10 Recap
	5.11 The discrete Fourier transform and its inverse
	5.12 The design of FIR filters using the 'frequency sampling' method
	5.13 Self-assessment test
	5.14 Recap
	5.15 The fast Fourier transform and its inverse
	5.16 MATLAB and the FFT
	5.17 Recap
	5.18 A final word of warning
	5.19 Chapter summary
	5.20 Problems

	Answers to self-assessment tests and problems
	References and bibliography
	Appendix A: Some useful Laplace and z-transforms
	Appendix B: Frequency transformations in the s- and z - domains
	Index

