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Abstract

The temporal response properties of cells in primary auditory cortex differ markedly from those
observed sub-cortically, in particular the ability to synchronise firing to amplitude modulations is
restricted to modulations below 10-20 Hz (Schreiner et al 1997). In the thalamocortical
transformation of incoming signals a great deal of the temporal fine structure is lost (Creutzfeldt et al
1980), and the effects of a masker on a probe tone can be detected up to 400 ms after masker offset
(Brosch and Schreiner 1997). What gives rise to these phenomena and can they be explained by some
common mechanism? Explanations in terms of intracortical inhibitory circuits have been proposed
but inhibition does not provide an adequate account, at least in the case of forward masking which is
unaffected by the application of a GABA antagonist. On the other hand, simple threshold neural
models cannot replicate such behaviour without some form of inhibition. The purpose of this
investigation was to explore to what extent synaptic depression at thalamocortical synapses could
account for the temporal response properties observed in primary auditory cortex. A model of
synaptic depression is described and its behaviour investigated in a number of experiments. The
model is shown to successfully replicate many experimental observations. In addition, the model also
provides a novel account of the effect of subthreshold stimuli.

1. Introduction

Despite considerable experimental
investigation, both psychophysical and
physiological, there is as yet no clear
understanding of how sounds are represented
and recognised within the brain. In order to
understand how complex sounds are encoded
within cortex, and ultimately perceived, it is
necessary to take into account the
spectrotemporal nature of sounds. While the
spectral analysis of sounds is quite well
understood and the spectral organisation
within most of the auditory system has been
clearly documented, the way in which the
temporal aspects of sound are encoded and
used is less clear. In moving from the auditory
periphery to the cortex, the typical time
constants associated with processing tend to
become progressively longer, and the upper
limit on synchronisation to amplitude
modulated sounds has been shown to fall in
primary auditory cortex to roughly one
hundredth of that observed in the auditory
nerve (Schreiner et al 1997). In line with
these physiological findings, there are also

many aspects of auditory perception, such as
the growth of loudness with duration and the
effects of masking, which indicate that the
auditory system performs some sort of
temporal integration in processing incoming
acoustic signals. However, the auditory
system is also capable of fine temporal
resolution, as evidenced by very short gap
detection, double click discrimination, and
also in the short latency and lack of jitter of
onset responses in cortex (Viemeister and
Wakefield 1991). This has been termed the
resolution-integration paradox, i.e. how is it
possible for a system to integrate information
over long periods while retaining fine
temporal resolution.

A simple linear model is unable to account
simultaneously for all of these properties,
since if the time constants are chosen to be
long enough to account for the observed
characteristics of temporal integration, they
will be too long to allow the temporal
precision also evident in cortical responses. A
model that overcomes this problem is the
‘multiple looks’ model proposed by
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Viemeister and Wakefield (1991). In this
account it is suggested that a number of short
samples of the stimulus are made, and their
results combined by means of a weighting
function. The model successfully explains
much of the relevant psychophysical data, but
does not attempt to identify the underlying
physiological basis for the behaviour.

The hypothesis explored in this paper is that
by incorporating synaptic dynamics within a
neural model all of the phenomena outlined
above can be explained. It has been shown
that the dynamical properties of cortical
synapses can significantly influence the
temporal sensitivity of cortical circuitry
(Abbott et al 1997). The key idea is that when
synapses are repeatedly activated they do not
simply respond in the same way to each
incoming impulse and may develop a short-
term depression or facilitation, depending on
the nature of the pre- and postsynaptic cells,
and on the characteristics of the particular
synapse involved. In particular,
thalamocortical synapses appear to be
depressing (Thomson and Deuchars 1994);
they are mediated by non-NMDA excitatory
amino acids, depress rapidly and remain
desensitised for some time. The suggestion
that synaptic depression may explain the
temporal characteristics of responses in cortex
is not new and has been described in a
number of other papers (Eggermont 1999,
Chance et al 1998). For example, in the
auditory system the upper limit and phase
relationships of the modulation transfer
function are well replicated by a model of
synaptic depression (Eggermont 1999), and in
the visual system, similar frequency response
properties of cells in V1 were modelled by
incorporating synaptic dynamics (Chance et
al 1998). In both of these accounts, the
behaviour of the model was expressed in
terms of the firing rate of the postsynaptic
cell. However, in order to explain some of the
experimental results below, it was necessary
to take into account the time course of the
depletion and recovery of individual synapses
and for this reason a model that explicitly
represented the synaptic dynamics was used.

Such a model was presented by Tsodyks et al
(1998, 1997) and was shown to replicate

experimental results on the activity-dependent
redistribution of synaptic efficacy (Markram
and Tsodyks 1996). In fact, this model of the
postulated dynamics of neurotransmitter
release had already been proposed much
earlier (Grossberg 1968, 1969), where it was
derived from a set of psychological postulates
and used to explain the excitatory transients in
transmitter release after a rest period and
related to the effects of synaptic depression,
which had been observed experimentally by
Eccles (1964). In the area of auditory
modelling, a very similar model was also
developed by Meddis (1986) to describe
transduction in cochlear inner hair cells.

The remainder of the paper is organised as
follows. Firstly the model is described and its
behaviour explained. Then the model is then
shown to replicate aspects of temporal
processing observed in auditory cortex across
a range of different experiments: including
the loss of temporal fine structure in the
thalamocortical transformation of incoming
signals, the upper limit on synchronisation to
modulation frequencies, the spectrotemporal
course of forward masking, and the sensitivity
to masker duration, the relationship between
onset latency and the onset envelope of the
stimulus, and the sensitivity of cells in
primary auditory cortex to temporal
manipulations of speech signals. In addition
the model is shown to provide a possible
explanation for the effect of subthreshold
stimuli. Finally we discuss the implications of
the model for auditory perception.

2. The dynamic synapse model

The model described here is based on that of
Meddis (1986). The dynamic synapse model
characterises the synapse by defining a
“resource”, e.g. the amount of
neurotransmitter in the synapse, a proportion
of which can be in one of three states:
available, effective, inactive. The dynamical
behaviour of the proportions of the resource
that are in each of these states is determined
by a system of three coupled differential
equations:
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x(t) is the amount of effective resource, and
could be interpreted as the activated
neurotransmitter within the synaptic cleft as a
proportion of the total resource; y(t) is the
amount of available resource or free
neurotransmitter in the synapse, and w(t) is
the amount of inactive resource,
neurotransmitter being reprocessed. In
addition, as in Meddis’ model there is
assumed to be a slow leakage of effective
resource from the synaptic cleft the rate of
which is determined by λ, and manufacturing
of replacement resource at a rate determined
by ρ. The constant β  determines the rate at
which the inactive resource w(t) is released to
the pool of available resource on a continuing
basis, and α represents the rate at which
effective resource becomes rapidly inactive
again subsequent to being activated.

The input signal Ι (t) represents the
occurrence of a presynaptic action potential
and is set equal to one at the time of arrival of
the presynaptic action potential and for a
small period of time δt thereafter, and
otherwise is set equal to 0. The instantaneous
efficacy of the synapse is determined by the
variable g, which can be interpreted as the
fraction of available resource released as a
result of the occurrence of the presynaptic
action potential. It takes a value in the range
zero to one.

The key idea behind the model is that there is
a fixed amount K of total resource available at
the synapse, a proportion of which is
activated in response to presynaptic activity,
rapidly becomes inactive, and is then
subsequently made available again through
reprocessing.  Thus, if the synapse is very
active, i.e. it is bombarded by a large number
of action potentials occurring over a short
period of time, the amount of available
resource y(t) is rapidly reduced. There must

then follow a period during which the synapse
can recover in order to respond fully once
more. This process appears to replicate the
experimentally observed characteristics of
synaptic depression, for example as reported
in (Markram et al 1997, Markram and
Tsodyks 1996).

The EPSP at the synapse, e(t), is computed
from x(t) in (1) using the following equation
for the passive membrane mechanism [26]:
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As has been well documented, synaptic
transmission is a stochastic process,
postsynaptic EPSPs vary in amplitude and
there is a relatively high probability of failure
in transmission at depressing synapses
(Thomson and Deuchars 1995). In Meddis’
model stochastic transmission was simulated
by allowing the probability of a postsynaptic
EPSP to be a function of x(t), the amount of
effective transmitter. However, this can result
in the synapse becoming completely depleted,
and is not consistent with experimental data
showing that the probability of failure is
inversely related to the failure of the previous
presynaptic spike to elicit an EPSP (Galarreta
and Hestrin 1998). Here we simply model
both the probability of successful
transmission and the amount of transmitter
actually released as a probabilistic function of
the transmitter available for release, f[y(t)].
While this is a simple phenomenological
model that does not attempt any detailed
account of the underlying biophysical
processes, it does approximate the observed
behaviour and has the advantage of being
relatively simple to understand. The model
has been tuned to replicate data on rapid and
longer term depletion (Galarreta and Hestrin
1998), time for recovery (Galarreta and
Hestrin 1998), the relationship between
probability of failure and presynaptic spike
train frequency (Galarreta and Hestrin 1998),
and the relationship between the frequency of
the presynaptic spike train and the average
EPSP amplitude (Markram and Tsodyks
1996). The model parameters, used
throughout the simulations are shown in table
1.
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3. The neuron model

The neuron model is described by the
following system of equations, which has
been adapted from a model described in
(McGregor 1989):
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where, E(t) is the variation of the neuron’s
membrane potential relative to its resting
potential, V(t) is the driving input found by
summing all the synaptic EPSPs, GK (t) is the
potassium conductance, divided by the sum of
all the voltage-dependent ionic membrane
conductances, EK is the potassium equilibrium
potential of the membrane relative to the
membrane resting potential, θ(t)  is the firing
threshold potential, θ0  is the resting
threshold, s(t) is the variable which denotes
firing of the cell, τE, τEPSP, τθ, and τGK are
time constants, and γ, χ and η are constant
parameters.

In this system of equations, s(t) is set to 1 to
signal the occurrence of an action potential,
i.e. E(t) reaching a value above the firing
threshold θ(t); otherwise s(t) is zero. Equation
(9) is introduced purely to provide a
refractory period. It allows representation of
an absolute period and a relative period. For
the first few milliseconds after firing the value
of θ(t) becomes very large, preventing any
further firing. As θ(t) decays between spikes,
the threshold for firing decreases with time
elapsed since the last spike. A further spike
can occur therefore in this period if the value
of E(t) is sufficiently large. When s(t) is zero,
the potassium conductance term GK(t) decays
to zero via equation (8). When s(t) =1, the
value of GK is increased instantaneously by an
amount η, and then decays again. We have
not explicitly modelled the action potentials
generated when the cell fires, but in the
simulations below generally use the spiking
variable s(t) as the output from the model.

4. Simulation results

The response of the model was investigated in
a range of experiments, as described below.
However, for most of the experiments
simulated, the thalamocortical signals were
not recorded. In these cases the details of the
acoustic stimuli used in the experiments were
documented and it was decided to simulate
the experiments using similar acoustic
stimuli. For this reason a well-documented
and tested peripheral model, DSAM (O’Mard
et al), was used to generate signals
characteristically found in auditory nerve
fibre recordings in response to acoustic
stimuli. The output from the peripheral model
was reprocessed to ensure that the firing rate
remains below about 200 Hz by enforcing a
reasonable refractory period. Clearly this
ignores the computations which occur in the
rest of the sub-cortical auditory system.
However, there does appear to be a fast
veridical auditory pathway that transmits
signals from the periphery to the cortex with
relatively little alteration (Helfert et al 1991).
While recognising that this simplification
may result in a poor approximation of actual
thalamic relay cell activity, it has the benefit
of making the simulations tractable.

In the simulations, unless otherwise stated,
the acoustic signals specified are processed by
the DSAM peripheral model that includes an
outer-middle ear transfer function, a
gammatone filterbank, and an inner hair cell
model. A simple stochastic spike generator
model is used and a convergence of 20 inner
hair cells to 1 auditory nerve fibre assumed.
The spike trains are then processed to ensure
that refractory periods are generally greater
than 20 ms. However, when more than one
spike occurs simultaneously, as is possible
with a combinations of 20 spike trains per
channel, then the refractory period is allowed
to decrease in proportion to the extent of the
coincidence. This has the benefit of not
destroying the enhanced onset response
generated by the inner hair cells.
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4.1 Loss of temporal fine structure in the
thalamocortical transformation of incoming
signals

Differences between the response properties
of thalamic and cortical neurons were
investigated by Creutzfeldt et al (1980).
Activity in thalamic relay cells and
subsequent activity in paired pyramidal cells
in primary auditory cortex (AI) was recorded,
and it was found that even when thalamic
activity was clearly synchronized to the
stimulus up to 200 Hz, the paired cortical cell
was unable to follow the details of the signal
beyond about 20 Hz. The plots in figure 1
show the response of the model to spike trains
generated to resemble typical thalamic
activity in response to stimuli of the
frequencies indicated. PSTHs of the total
activity for 20 presentations are plotted both
for the presynaptic spike trains and the model
response. The model behaviour closely
resembles that found experimentally. The
model responds to details of the stimuli
occurring at 10 Hz and to a lesser extent to
details at 20 Hz, but for higher stimulus
frequencies, the model only responds strongly
at the onset of the signal. The reason for this
is that at high frequencies successive
presynaptic spikes arrive before the synapse
has time to recover. This causes a strong
depression of the synapse, resulting in the
generation of very small postsynaptic EPSPs
that are insufficient to raise the cell membrane
potential above the firing threshold, as
illustrated in figure 2.

Figure 1. Simulation of the transmission of signals
between thalamic relay and cortical pyramidal cells.
PSTHs of input activity, left column, and model
response, right column, for 20 repetitions, using a 2ms
bin size. Spikes were generated probabilistically,
resulting in the distributions labelled as ‘presynaptic
activity’, and used as inputs to the model. This input
activity resembles the activity in thalamic relay cells
recorded experimentally in response to signals with
periodicity indicated (Creutzfeldt et al 1980). The
model qualitatively replicates the behaviour of paired
pyramidal cells in AI, which showed almost no
response except at signal onset when stimuli exceeded
20 Hz.

Figure 2. Example of the response of the model to a) 10 Hz
and b) 40 Hz spike trains, showing how more rapid
presynaptic spike trains prevent the recovery of the synapses
and give rise to rather small EPSPs which are not sufficient
to raise the membrane potential above the firing threshold.

a)

b)
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4.2 Frequency response of the extended
neuron model

The frequency response of the neuron model
with a depressing synapse is illustrated in
figure 3b. Although the synaptic dynamics
were tuned to match those found
experimentally in the somatosensory cortex
(Markram and Tsodyks 1996), it is interesting
to note that the model clearly responds
preferentially to frequencies under 10 Hz, as
is also found in AI (Schreiner and Urbas
1988). It seems to be the case that the
dynamics of cortical depressing synapses may
be quite similar across different cortical areas.

For comparison the response of a neuron
model without a depressing synapse is shown
in figure 3a. Clearly such a model cannot
replicate the behaviour observed
experimentally without the addition of
delayed inhibitory inputs which increase in
strength with stimulus frequency.
Alternatively, modeling the synapse as a low
pass filter but with very low cut-off frequency
could result in a similar frequency response,
but would fail simultaneously to account for
the short response latencies found in AI (Heil
1997). The benefit of the proposed model is
that it can account both for the low pass
frequency response and short onset latency
(see section 4.7) within a single neuron
model.
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Figure 3. Frequency response of the model. The response of
the neuron model a) with and b) without a depressing synapse
to a spike train of the frequency indicated, simulated for 20
seconds. The plots show the total number of times the cell
fired during the 20-second period. For higher frequencies
there was generally only a response to the first spike in the
train.

4.3 Best modulation frequencies

Rate modulation transfer functions were
extensively investigated by Schreiner and
Urbas (1988), who found that the best
modulation frequencies in AI were generally
below 15 Hz. This contrasts with the upper
limit for best modulation frequencies found in
the inferior colliculus which may be as high
as 1000 Hz (Langner and Schreiner, 1988),
and in the medial geniculate body of the
thalamus where temporal resolution is
maintained up to about 300 Hz (Rodrigues-
Dagaeff 1989). More recently normalised rate
modulation data for AI consistent with
Schreiner and Urbas’ data was presented
(Kilgard and Merzenich 1998). To
demonstrate the validity of the modeling
approach taken, figure 4 shows a comparison
between these experimental results and the
response of the model to similar acoustic
stimuli. As can be seen, the model response
replicates the experimental results reasonably
well.
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Figure 4. Response to repeated tones at the given repetition
rates; model results ‘o__o’ and experimental results ‘__’
(Kilgard and Merzenich 1998). Normalised repetition rate
transfer functions are found using a stimulus consisting of 6
tones pulses at the repetition rate indicated and then
calculating the mean response to the last 5 tones in the
sequence divided by the response to the first tone; each tone
has a duration of 25ms.

Interestingly, although a depressing synapse
will need a recovery period in order to regain
its full strength, this does not mean that the
model is unable to account for the
phenomenon of ‘period doubling’ which is
sometimes observed (Kilgard and Merzenich
1998). Since depression is synapse-specific, it
is quite possible for incoming activity at other
synapses which have not yet become
depressed to sufficiently raise the cell’s
membrane potential so that it fires once more
during a single stimulus period. However,
because of the cell’s refractory period this is
most likely to happen at low modulation
frequencies, and not at higher ones. An
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example of the model reproducing such
behaviour is shown in figure 4.

4.4 The time course of forward masking

Although there are undoubtedly a number of
factors that contribute to the phenomenon of
forward masking, it is clear that the
depression of thalamocortical synapses must
contribute to the total effect. Explanations for
forward masking have also been sought in
terms of lateral or forward inhibition.
However, it has been shown that masking
continues to exist even in the presence of a
GABAA antagonist and therefore even if
inhibitory inputs have some part to play they
cannot provide a full account (Brosch and
Schreiner 1997). Both cortical forward
masking and that evidenced behaviourally
have been shown to last far longer than
explainable in terms of peripheral adaptation
(Relkin and Smith 1991, Calford and Semple
1995, Brosch and Schreiner 1997). The model
clearly provides a mechanism for forward
masking, since synapses that have been
previously activated require time to replenish
their transmitter stores and respond less
strongly when depleted. The time course of
synaptic recovery appears to be consistent
with the time course of cortical forward
masking. The tonotopic distribution of
masking is also consistent with a model of
forward masking in terms of the depression of
thalamocortical synapses since it has been
shown that masking is closely related to the
receptive fields of cortical neurons (Brosch
and Schreiner 1997). Figure 5 shows the
depletion at synapses across the tonotopic
axis in response to masking stimuli at the
intensities indicated. The distribution and
time course of synaptic transmitter depletion
in this figure resembles Brosch and
Schreiner’s plots of the time course and
distribution of masking.

It should be noted that the incoming activity
generated by the peripheral processing due to
the masking stimulus starts at 100 ms and
only lasts for 30 ms, but this causes the long
lasting depletion evident in the figures. The
distribution of the transmitter depletion is
directly dependent on the nature of the tuning
of the filters in the peripheral model. The time

course for recovery is determined by the
extent of the depletion in the model synapses,
which again results from the tuning
characteristics of the peripheral filters.
However, in the peripheral model processing
is governed by much faster time constants
which support very rapid recovery, and
although there is some adaptation, such long
lasting effects are not evident in the peripheral
response. This suggests that cortical forward
masking may be accounted for by a
combination of the characteristics of
peripheral processing together with
depression of thalaomcortical synapses.
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Figure 4. Distribution and time course of transmitter
depletion at synapses across the tonotopic axis in response to
a 1000 Hz masker of 30 ms duration at the intensities
indicated. a) The colour scale indicates the percentage
depletion relative to transmitter levels at the start of the
masker for maskers of the three intensities indicated. b) Time
for transmitter to recover to within 5% of initial mean levels
after masker offset for each masker intensity indicated.

Another important aspect of the model is that
it demonstrates that cortical forward masking
could be dependent on presynaptic rather than
postsynaptic activity. This offers a simple
explanation for the puzzling experimental
observation that masking is sometimes
detected even in response to maskers that do
not actually activate the target cell (Brosch
and Schreiner 1997). If masking is a result of
transmitter depletion of thalamocortical
synapses, then it would be quite possible for
such synapses to become depleted by
thalamic activity even though there is

b)

a)
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insufficient incoming activity to actually
cause the cortical cell to fire, which is how
the response to the masker was determined
experimentally (Brosch and Schreiner 1997).
Since these synapses would nevertheless be
depleted, the probe tone could therefore be
masked by the ‘sub-threshold’ masker. This is
also consistent with the experimental finding
that the suppression of inhibition did not
substantially affect the forward masking
observed (Brosch and Schreiner, 1997).
However, it is possible that lateral inhibition,
when present, could also have the effect of
producing masking in response to
‘subthreshold’ maskers, since the masking
stimulus may not be subthreshold for local
inhibitory interneurons, even if it is so for the
pyramidal cell being observed.

4.5 The effect of masker duration on
forward masking

In psychophysical experiments it has been
shown that the degree of masking is affected
by the duration of the masker and masking
increases with masker duration (Kidd and
Feth 1982). This was also found to be the case
by Brosch and Schreiner (1997) in their
recordings in AI. Moreover, sensitivity to
duration was observed even when the AI cell
responded only at the onset of the masker, and
although the effect of masker duration was
noted, it was not suggested how this could
occur. The model investigated here suggests a
simple explanation, i.e. as long as there is
some tonic incoming activity during the
masker, then transmitter depletion at the
thalamocortical synapses will be related to
masker duration. Therefore, if as we
hypothesize, the degree of masking is related
to the degree of transmitter depletion at
thalamocortical synapses, then the sensitivity
to masker duration follows. The paper by
Brosch and Schreiner (1997) did not include
any detailed results on masker duration, so in
figure 5 a similar experimental paradigm to
that of Kidd and Feth (1982) is used.
However, it should be noted that although the
model clearly exhibits sensitivity both to
masker duration, it is not clear exactly how
the degree of transmitter depletion in the
model can be related to the probe threshold
shifts measured by Kidd and Feth (1982).
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Figure 5. The effect of masker duration. The transmitter
depletion relative to mean levels at the start of the masker is
plotted for masker duration and intensities indicated. As can
be seen the model is clearly sensitive to both masker duration
and intensity, as found by Kidd and Feth (1982).

4.6 Disruption of synchronisation
responses by subthreshold stimuli

In a recent paper Nelken and Yosef (1998)
suggested that their experiments showed a
correlate of comodulation masking release.
Activity was record in AI in response to noise
modulated at 10 Hz, and was found to
synchronize to each noise pulse as expected.
However, when a very soft, even
subthreshold, continuous pure tone with
frequency corresponding to the cell’s best
frequency, was added to the noise, then this
synchronization was disrupted. In contrast,
when the pure tone was added to an
unmodulated noise then the response to the
noise alone was indistinguishable from that to
the noise plus tone. It was suggested that the
cortex might therefore be able to detect
masked sounds by means of their disruption
of the more powerful masker.

Once again a simple explanation of these
results is suggested by the model, which can
easily replicate the experimentally observed
behaviour as long as there is some tonic



9

thalamic activity in response to the pure tone.
Because the activity in response to the pure
tone continues through the silent gaps
between the noise pulses, this prevents the
recovery of the synapses between noise pulses
and so the synchronized response is disrupted.
This explanation is also consistent with
Nelken’s unpublished observations that the
synchronized response to the noise alone was
far more reliably obtained when the noise was
trapezoidally modulated, than when sine wave
modulation was used. Figure 6 shows
Nelken’s experimental results and the model’s
responses to similar stimuli.

Figure 6. a) Response of neurons in AI (Nelken and Yosef
1998), left column, and the model, right column, to a
wideband noise stimulus trapezoidally modulated at 10 Hz,
without ‘---‘ and with ‘___’ a continuous pure tone. b)
Experimental and model responses when the noise is
unmodulated.

4.7 Onset latency

Neurons in AI generally respond to the onset
of stimuli and to transients in acoustic signals.
The factors that influence the timing of the
onset response are not well understood.
However, it has been shown that for a linear
rise function, the onset latency in AI is related
to the rate of change of peak pressure, and is
independent of rise time and plateau peak
pressure (Heil 1997). In figure 7, it can be
seen that the model’s behaviour is very
similar to that observed by Heil (1997). When
the latencies are plotted against rate of change
of peak pressure, then the latencies for
different rise times superimpose quite closely.
However, for stimuli that are close to the
response threshold, this relationship does not
hold so well; an effect also noted by Heil
(1997). It was also found that when a cosine
squared rise function was used for the
stimulus onset envelope, then the onset
response latency was related to the
acceleration of plateau peak pressure, and this
relationship is also clearly evident in figure 7,
i.e. onset latency is similar for stimuli in
which the initial acceleration of the stimulus
envelope is the same, even when the final
amplitude reached is different.
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Stimulus with cosine-squared rise
function

Stimulus with linear rise function
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Figure 7. Onset latency for cosine squared and linear rise functions, plotted, as in (Heil 1997), as a function of peak pressure,
maximum rate of change of the stimulus onset envelope, and maximum acceleration of the stimulus onset envelope.

4.8 Response to speech

The frequency response of the model,
illustrated in figure 2b, is very similar to
speech modulation transfer functions, with
frequencies around 4 to 6 Hz being the
dominant frequency of the envelope of speech
signals. Syllables in speech are generally,
although not always, distinguished by an
amplitude peak preceded and closed by
amplitude trough. Therefore, when the model
is stimulated by a speech signal, it has a
tendency to fire at the onsets of syllables
within the signal, as illustrated in figure 8.
Synaptic depression may therefore give rise to
a syllable-like segmentation of speech signals
within AI. Such segmentation could occur in
parallel across the tonotopic axis,
independently within each frequency channel.
This suggestion is consistent with the
experimentally observed response to species-
specific calls of neurons in AI, which tend to
fire primarily at the onset of segments or
syllables within calls, irrespective of the
characteristic frequency of the neuron (Wang
et al 1995, Creutzfeldt et al 1980). One effect

this would have is to increase temporal
synchrony across the tonotopic axis thereby
promoting the grouping of related frequency
components of a call, an effect previously
modelled by Smith (Smith 1996).
Synchronous activity is likely to be important
for the effective transmission of signals to
further processing centres which integrate
information across frequency channels.

Figure 8. The response of the model to a speech stimulus.
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In experiments in which species-specific calls
were manipulated (Wang et al 1995), it was
also shown that speeding up or slowing down
the signal resulted in reduced responses. We
suggest that the reasons for this differ
between manipulations and that the behaviour
of the model can help to explain these results.
In the first case when the signal is slowed
down, activity is still generated in response to
syllable onsets, but since these occur at a
slower rate, the total amount of activity per
second decreases. In the second case, when
the signal is speeded up, synaptic depression
would prevent synchronisation to syllable
onsets as effectively as for the control case. It
seems reasonable to suppose that
communication sounds have evolved to
optimise their detection by cortex, and that
the communication sounds that are used are
those which are most salient within AI (Wang
1997). Hence, the similarity between the
modulation transfer functions of speech
signals and of those measured in auditory
cortex is perhaps not surprising. Interestingly,
although derived from very different
principals, the behaviour of the model is very
similar to the RASTA filter that was found to
markedly improve speech recognition in noise
(Hermansky and Morgan 1994).

5. Discussion

In this paper it has been shown how a model
neuron which incorporates dynamic synapses
responds to a number of different stimuli. The
results seem to indicate that synaptic
depression at thalamocortical synapses may
explain a number of aspects of the temporal
response properties of neurons in AI.

The nonlinearity of the dynamic synapse
model allows it to behave in many situations
like a low pass filter whilst also retaining a
fast onset response. In response to repeated
stimulation above 10 Hz, synaptic depletion
prevents the cell from responding except at
the onset of the stimulus. However, the
synaptic dynamics are not slow and after a
period of rest the synapse can respond with a
large EPSP to the onset of a new stimulus,
which can result in a response of short
latency. The model’s behaviour is therefore

consistent with the generation of onset
responses of short latency and with little jitter.
Although the cell tends to respond only at the
onset of stimuli, important processing can
continue to occur in the dendrites throughout
the duration of the stimulus. This allows the
cell to exhibit sensitivity to stimulus duration,
even when only responding at stimulus onset.
In addition, some of the apparent
nonlinearities of responses measured in AI,
such as the influence of subthreshold stimuli
or interaction between different components
of a complex stimulus (Nelken and Yosef
1998), could be accounted for in this way.

Since synaptic depression operates at
thalamocortical synapses which are the route
through which sensory signals must pass in
order to get to cortex, it seems likely that the
dynamics of depressing synapses have a
major role to play in sensory processing.
Synaptic depression appears to result in a
relatively infrequent sampling of the sensory
inputs by cortex, where such information is
presumably integrated into ongoing cognitive
processes, and perhaps provides a
physiological basis for the ‘multiple looks’
model of temporal integration (Viemeister
and Wakefield 1991).

Another effect of synaptic depression is to
greatly enhance the response to the onsets of
signals. This could act to promote grouping
across frequency channels. Synaptic
depression effectively provides a kind of
lateral inhibition acting in the temporal
domain, which may help to increase the
temporal contrast of stimuli (Brosch and
Schreiner 1997). In the processing of speech
signals this results in activity linked to the
onsets of syllables, which may help to explain
the perceptual salience of syllable onsets. It
has also been suggested that although
thalamocortical sensory signals on their own
cannot elicit lasting activity, facilitation at
pyramidal NMDA synapses might act to
enhance the response to incoming signals of
interest (Thomson and Deuchars 1994). This
could provide a mechanism for the flexible
processing of sensory signals, depending on
factors such as previous experience or the
current state of attention.
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By taking synaptic dynamics into account in
modeling these experiments, it has been
possible to account for a number of
previously unexplained results in a fairly
straightforward way. On the basis of these
investigations it is suggested that the
dynamics of thalamocortical synapses may
help to explain the temporal response
properties observed in AI and in auditory
perception.
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Table 1. Model parameters used in the
simulations.

Parameter Value

dt 0.0001

α 130

β 4

λ 5

ρ .08

K 1

γ 1

τEPSP .002

τE .005

τGK .01

τθ .001

ΕΚ -10

θ0 10
η 100


