
Learning to Locate Informative Features for Visual Identification
DRAFT: IJCV special issue www.cs.berkeley.edu/∼ferencz/vid/

Andras Ferencz
Computer Science, U.C. Berkeley

ferencz@cs.berkeley.edu

Erik G. Learned-Miller
Computer Science, UMass Amherst

elm@cs.umass.edu

Jitendra Malik
Computer Science, U.C. Berkeley

malik@cs.berkeley.edu

Abstract

Object identification (OID) is specialized recognition where
the category is known (e.g. cars) and the algorithm recog-
nizes an object’s exact identity (e.g. Bob’s BMW). Two spe-
cial challenges characterize OID. (1) Inter-class variation is
often small (many cars look alike) and may be dwarfed by il-
lumination or pose changes. (2) There may be many classes
but few or just one positive “training” examples per class.
Due to (1), a solution must locate possibly subtle object-
specific salient features (a door handle) while avoiding dis-
tracting ones (a specular highlight). However, (2) rules out
direct techniques of feature selection. We describe an on-line
algorithm that takes one model image from a known category
and builds an efficient “same” vs. “different” classification
cascade by predicting the most discriminative feature set for
that object. Our method not only estimates the saliency and
scoring function for each candidate feature, but also models
the dependency between features, building an ordered fea-
ture sequence unique to a specific model image, maximizing
cumulative information content. Learned stopping thresh-
olds make the classifier very efficient. To make this possi-
ble, category-specific characteristics are learned automati-
cally in an off-line training procedure from labeled image
pairs of the category, without prior knowledge about the cat-
egory. Our method, using the same algorithm for both cars
and faces, outperforms a wide variety of other methods.

1. Introduction
Figure 1 shows six cars. The two leftmost cars were cap-
tured by one camera; the right four cars were seen later by
another camera from a different angle. Suppose one wants to
determine which images, if any, show the same vehicle. We
call this task visual object identification. Object identifica-
tion is a specialized form of object recognition in which the
category is known (e.g. faces or cars) and one must recognize

Figure 1: An Identification Problem: Which cars match?
The two cars on the left were photographed from camera 1.
Which of the four images on the right, taken by camera 2,
match the cars on the left?

the exact identity of objects. Most existing identification sys-
tems are aimed at biometric applications such as identifying
fingerprints or faces.

The general term object recognition refers to a whole hier-
archy of problems for detecting an object and placing it into
a group of objects. These problems can be organized by the
generality and composition of the groups into which objects
are placed. The goal of “recognition” can be to put objects in
a very broad group such as vehicles, a narrower one such as
cars, a highly specific group such as red sedans, or the nar-
rowest possible group, a single element group containing a
specific object, such as “Bob’s BMW”.

Here our focus is identification, where the challenge is to
distinguish between visually similar objects of one category
(e.g. faces, cars), as opposed to categorization where the al-
gorithm must group together objects that belong to the same
category but may be visually diverse [1, 11, 21, 25]. Iden-
tification is also distinct from object localization, where the
goal is locating a specific object in scenes in which distrac-
tors have little similarity to the target object [16].

These differences are more than semantic: the Object
Identification (OID) problem poses different challenges than
its coarser cousin, Object Categorization (OC). Specifically,
OID problems are characterized by the following two prop-
erties.

1

Figure 2: Object Categorization vs. Identification: this figure highlights the different learning involved in categorization and
identification. The training sets for OC, shown on the left side, typically contain many examples of each category (e.g. faces
and cars), which are then turned into a fixed model for each in a generative system or a decision boundary in a discriminative
system. A training set for OID contains pairs of images from a known category, with a label of “same” or “different” (denoted
by = and 6=) for each pair. From these labeled pairs, the system must learn how to generate an identifier model given a new
object (e.g. Mr. Carter) from the category (thus identification assumes correct categorization). For these models to work
well, they should highlight distinctive regions of the object. Thus the models are different for each object.

1. The inter-class variation is often small (many cars look
alike), and this variation is often dwarfed by illumina-
tion or pose changes (see Figure 1).

2. There are many classes (each object is a separate class),
but few (in our case just one) positive “training” ex-
amples per class (e.g. one image representing “Bob’s
BMW”).

People are good at identifying individual objects from
familiar categories after seeing them only once. Consider
faces. We zero in on discriminative features for a partic-
ular person such as a prominent mole or unusually thick
eyebrows, yet are not distracted by equally unusual but non-
repeatable features such as a messy strand of hair or illumi-
nation artifacts. Domain specific expertise makes this possi-
ble: having seen many faces one learns that a messy strand of
hair is not often a reliable feature. Human vision researchers
report that acquisition of this expertise is accompanied by
significant behavioral and physiological changes. Diamond
et al. [9] showed that dog experts perform dog identifica-
tion differently than non experts; Tarr et al. [22] argued that
the brain’s fusiform face area does visual processing of cate-
gories for which expertise has been gained.

Categorization algorithms such as [1, 26, 24, 5] learn to
recognize objects that belong to a category. Here, we are at-
tempting to go one step beyond this by becoming category
experts, where instead of having a fixed set of features that
we look for to recognize new objects, we are able to predict
the features of the new object that will be the most infor-
mative for distinguishing it from other objects of the same
category. Figure 2 highlights this difference. Note that cat-
egorization is a prerequisite for identification, because iden-
tification systems such as ours assume that the given objects
are from the known category.

The processes that occur during Object Categorization
(OC) and Object Identification (OID) can be formally char-
acterized. In functional notation, the stages for OC are

1. (Off-line) trainer Tcat: class training images 7→ Ccat,

2. (On-line) classifier Ccat: test image 7→ class label.

There is nothing novel here, just the standard paradigm of
statistical learning. It relies implicitly on having enough ex-
amples of each class to learn discriminative features.

For OID, we assume off-line access to plenty of examples
of the category (cars, dogs, faces). We then must develop
an on-line classifier for a future image of Bob’s BMW, given
only one example of it. We decompose the on-line process
into two stages: (a) producing an “identifier”, a classifier
specialized to reidentify a specific object based on a single
example of it, and (b) running the “identifier” on the incom-
ing data stream. These on-line stages are preceded by the
off-line process of learning category specific characteristics,
resulting in an “identifier generator”. Thus, the three stages
for OID are

1. (Off-line) trainer Tid: category training images 7→ Hid,

2. (On-line) identifier generatorHid: object image 7→ Cid,

3. (On-line) classifier Cid: test image 7→ {same, different}.

We stress that step 1 learns category specific characteris-
tics, while step 2 creates an object specific classifier. Now
we address details.

First we need to pick a family of classifiers Cid. Moti-
vated by the success of patch (a.k.a. part or fragment) based
representations [24, 26] for OC, we use them for OID as

2

well. Specifically, we develop an OID system whose gener-
ated classifier Cid (step 3) is a patch-based classification cas-
cade similar to that of Vidal-Naquet and Ullman [24], where
evidence from features is accumulated incrementally until a
“same” or “different” decision can be made. The tricky part
is to give Hid the ability to pick out object specific discrim-
inative features (e.g. a prominent door handle in one car, a
roof rack in another). But how can we know that a patch
containing a prominent door handle is discriminative, based
on a single image, when we have never seen a door handle
exactly like it before?

The core of our approach is to use hyper-features, which
are generic position and appearance characteristics of a
patch. Examples include location of a patch, edge contrast
in the patch and the dominant oriented energy in the patch.
We might, in the process of becoming a car identification
expert, expect to learn that patches about half-way up with
strong edge contrast and a dominant horizontal orientation
are particularly informative. When given the specific exam-
ple of Bob’s BMW, the identifier generator Hid could pro-
duce an object-specific cascade with the first test based on the
patch containing the door handle. Whereas for Jen’s Ford,
the same set of hyper-features will result in a different order-
ing of salient patches, resulting in a different classification
cascade with the first test using a patch containing the roof
rack (see Figure 9).

More precisely, to instantiate Cid (step 2), the function
Hid is given a single model image of the object (e.g. Bob’s
BMW) and produces a sequence of patches ordered from
most informative to least. To estimate the likely informa-
tion content of a patch and then to score its correspondence
in a test image, our technique uses generalized linear models
(GLMs) to estimate a generative model for the dissimilar-
ity between matched (model-test) patch pairs. The “same”
and “different” distributions for each patch are estimated
using the GLM based on the hyper-features of that patch.
By estimating bivariate “same” and “different” distributions
for neighboring patches, we model the dependency relation-
ships, allowing us to compute a sequence of patches with
high joint information content. This sequence is object-
specific, and may emphasize different parts of each object.

The off-line training Tid (step 1), given a set of image
pairs from the category with each pair labeled “same” or
“different,” produces a class-specific Hid, learning (a) the
GLM based on position and appearance hyper-features, (b)
the dependency model between image patches based on sim-
ilarity of their hyper-features, and (c) a set of thresholds for
the cascade. The specific hyper-features used are themselves
automatically selected during this training step from a large
pool of candidate patch characteristics.

Section 3 summarizes the three stages of our algorithm,
Tid,Hid, and Cid. Section 4 details our model for estimating
“same” and “different” distributions for a patch. Section 5

describes our patch dependency model that allows us to gen-
erate a sequence of informative patches. From this sequence,
we build the cascade in Section 6 by finding stopping thresh-
olds for making “same” or “different” decisions. Section 7
details our extensive experiments on multiple car and face
data sets.

2. Previous Work
In this section, we highlight previous papers that have influ-
enced our work.

2.1. Part-Based Recognition
Breaking an image into local subparts, where each part is
encoded and matched separately, is a popular technique for
object recognition (both categorization and identification)
[5, 2, 12, 14, 16, 19, 20, 24, 27, 26]. This strategy helps
to mitigate the effects of distortion due to pose variation,
as local regions are more likely than the whole object to be
related by simple transformations. It also contains the dis-
turbance due to occlusion and localized illumination effects
such as specularities. Finally, it separates modeling of ap-
pearance and position. The key idea is that the parts, which
are allowed to move relative to one other, can be treated as
semi-independent assessments for the recognition task. The
algorithms then combine this evidence, optionally using the
positional configuration of the detected parts as an additional
cue, to determine the presence or absence of the object. The
choices of representations and comparison metrics for the
parts vary widely in the above systems, and must be chosen
to fit the task at hand (see Section 3.2.2).

2.2. Learning from Few Examples
Identification can be thought of as a special case of the tra-
ditional supervised classification problem. Here, the classes
to be distinguished are not “cars” and “non-cars” but rather
images of a particular car, say Bob’s BMW, versus images of
other cars. If we are given only a single image of Bob’s car,
we cannot use standard supervised feature selection methods
[24, 25, 26] that determine saliency by comparing each fea-
ture (in our case, a local image part) to a set of matching and
non-matching (in-class and out-of-class) examples.

One possible solution to this problem is to try to pick uni-
versally good features, such as corners [14, 16], for detecting
salient points. Such features are likely to be suboptimal as
they are not category specific: we expect Bob to use differ-
ent kinds of image features when distinguishing his car from
other cars versus when he is distinguishing his dog from an-
other dog.

Another possibility is to build generative models for each
class including such characteristics as the typical illumina-
tions, likely deformations, and modeling the effects of vari-
ation in viewing direction. With a precise enough model, an

3

algorithm should be able to find good features for discrim-
inating instances of the category from each other [7]. Al-
ternatively, the good features are sometimes explicitly coded
into the algorithm [27]. However, this tends to be compli-
cated and time consuming, and must be done individually
for a particular class (see Section 2.3 below).

Instead, we wish to teach our system to automatically gen-
eralize what features tend to be salient by looking at other la-
beled matching and non-matching pairs of the same category
(cars) but from different “classes” (which in this case are in-
dividual objects) such as Jen’s car or Bob’s car. Thus when
the system is given a novel model image, it should be able
to scan through all of its candidate features and determine,
by analogy with similar features found in the training set of
labeled pairs, how salient the feature is likely to be. In our
case, the set of candidate features are made up of all possible
sub-image patches.

Two related pieces of work that leverage the modeling of
one class or set of classes to improve the modeling of new
classes are [18] and [11]. In the former, distributions over pa-
rameters of a similarity transformation that are learned from
one group of classes (letters) are then used to model other
classes (digits) for which only a single example is provided.
In the latter, priors are learned from one set of classes to
train a detector for a new class given only a small number of
positive examples of that class. In particular, [11] learns the
parameters for a constellation model with a fixed number of
parts. In both of these works, the set of hidden variables (the
transformations in [18], or the parameters of the constella-
tion model) are predefined and the generalization from other
categories can be thought of as learning priors for these fixed
sets of variables.

In contrast, our Tid actually learns how to identify an ar-
bitrary number of good features for the given category. Thus
our final classifier Cid, while always a cascade of image
patches taken from the model object, will have a different
set of patches (in size, location, and count) for each object.

2.3. Face Identification
Our goal in this work is to develop an identification sys-
tem that is not designed for any particular category, but in-
stead automatically learns category-specific characteristics.
Nonetheless, it is useful to consider previous identification
systems that were designed with a particular category in
mind. Here we highlight a few face identification systems
that are representative and relevant for our work. For an ex-
tensive survey of the field, we refer the reader to [28].

Eigenfaces [23] (PCA) and later fisherfaces [3]
(FDA/LDA) closely follows the three step procedure
laid out above. These are “holistic” methods in that they use
the whole face region as raw input to the recognition system.
Specifically, they take registered and intensity normalized
faces (or labeled collections of images in the case of the

FDA/LDA techniques) and find a lower dimensional sub-
space that, it is hoped, is more conducive to identification
(this is analogous our step 1, Tid). To build a classifier,
the model image is projected into this subspace, and the
classifier compares the model and test images within this
subspace.

More complex, feature-based methods typically use more
face-specific models and hand labeled data. Two techniques
in this category that have had a significant impact are Elastic
Bunch Graph Matching [27], where hand selected fiducial
points are matched within a graph that defines their relative
positions, and [7], which maps images onto a 3D morphable
face model.

3. Algorithm Overview
In this section, we outline the basic components of our sys-
tem. We describe the training (Tid), classifier (identifier)
generating (Hid), and classification (Cid) functions in reverse
order, starting with the final form of the object-specific clas-
sifier.

3.1. Preprocessing: Detection and Alignment
Our algorithm, as most identification systems, assumes that
all images are known to contain objects of the given category
(e.g. cars or faces) and have been brought into rough corre-
spondence. For our algorithm, an approximate alignment is
sufficient, because we search for matching patches in a small
neighborhood around the expected location. The specific de-
tection and alignment methods used for our various data sets
are described in Section 7. For example, for the “Faces” data
set, a face detector was followed by a parts-based model that
aligns the eyes, nose and mouth.

3.2. Classifier Cid
The classifier Cid decides if a test (a.k.a. right) image IR

is the same (C = 1) or different (C = 0) than the model
(a.k.a. left) image IL it was trained for.

3.2.1. Patches
Our strategy is to break up the whole image comparison
problem into multiple local matching problems, where we
encode a small patch FLj (1 ≤ j ≤ n) of the model im-
age and compare each piece separately [24, 26]. Although
the exact choice of features, their encoding and comparison
metric is not crucial to our technique (we could have, for ex-
ample, used features such as vehicle length, height, average
color, etc., within the same framework), we wanted to use
features that were general enough to use in a wide variety of
settings, but informative enough to capture the relative local-
ity of object markings as well as small and large details of
objects.

4

We begin by computing a Gaussian pyramid for each im-
age. For each patch, based on its size, the image pixels are
extracted from a level of the pyramid such that the number of
pixels in the representation is approximately constant. Then
we encode the pixels by applying a first derivative Gaussian
odd-symmetric filter to the patch at four orientations (hori-
zontal, vertical, and two diagonal), giving four signed num-
bers per pixel.

3.2.2. Matching
To compare a model patch FLj to an equally encoded area of
the right image FRj , we compute the normalized correlation

dj = 1− CorrCoef(FLj , F
R
j) (1)

between the arrays of orientation vectors. Thus dj is a patch
appearance distance where 0 ≤ dj ≤ 2.

As the two car images are in rough alignment, we need
only to search a small area of IR to find the best correspond-
ing patch FRj - i.e. the one that minimizes dj . We will refer
to such a matched left and right patch pair FLj , F

R
j , together

with the derived distance dj , as a bi-patch. This appearance
distance dj is used as evidence for deciding if IL and IR are
the same (C = 1) or different (C = 0).

In choosing this representation and comparison function,
we compared a number of commonly used encodings, in-
cluding Lowe’s SIFT features [16] and shape contexts [4].
However, we found that due to the nature of the problem
- where distinct objects can look very similar except for a
few subtle differences - these techniques, which were de-
veloped to be robust to small differences, did not perform
well. Specifically, using SIFT features as described in [16]
(without category specific learning) resulted in false-positive
error rates that were an order of magnitude larger than our
best results and a factor of 2-3 worse than our baseline “No
Hyper-Features” results (at the same recall rate). Among
dense patch features, we chose normalized correlation of fil-
ter outputs after experiments comparing this distance func-
tion to L1 and L2 distances, and the encoding to raw pixels
and edges as in [26].

3.2.3. Likelihood Ratio Score
We pose the task of deciding if the a test image IR is the
same as a model image IL as a decision rule

R =
P (C = 1|IL, IR)

P (C = 0|IL, IR)
(2)

=
P (IL, IR|C = 1)P (C = 1)

P (IL, IR|C = 0)P (C = 0)
> λ. (3)

where λ is chosen to balance the cost of the two types of de-
cision errors. The priors are assumed to be known.1 Specifi-

1For our car tracking application (see Section 7.3), dynamic models of
traffic flow can supply the prior on P (C).

cally, for the remaining equations in this paper, the priors are
assumed to be equal, and hence are dropped from subsequent
equations.

With our image decomposition into patches, the pos-
teriors from Eq. (2) will be approximated using the bi-
patches F1, ..., Fn as P (C|IL, IR) ≈ P (C|F1, ..., Fm) ∝
P (F1, ..., Fm|C). Furthermore, we will assume a naive
Bayes model in which, conditioned on C, the bi-patches are
assumed to be independent (see Section 5 for our efforts to
ensure that the selected patches are, in fact, as independent
as possible). That is,

R =
P (IL, IR|C = 1)

P (IL, IR|C = 0)
≈ P (F1, ..., Fm|C = 1)

P (F1, ..., Fm|C = 0)
(4)

=

m∏

j=1

P (Fj |C = 1)

P (Fj |C = 0)
. (5)

In practice, we compute the log of this likelihood ratio,
where each patch contributes an additive term (denoted
LLRi for patch i). Modeling the likelihoods P (Fj |C) in
this ratio is the central focus of this paper.

In our current system, the only information from bi-patch
Fj that we use for scoring is the distance dj (we don’t, for
example, use the relative position where the matching patch
FRj was found). Thus, to convert dj to a score, Cid stores
probability distributions P (Dj |C = 1) and P (Dj |C = 0)
for each patch and computes the log likelihood ratio. (Note:
dj refers to the specific measured distance for a given model
and test image, while Dj denotes the random variable from
which dj is a sample). After m patches have been matched,
assuming independence, we score the match between images
IL and IR using the sum of log likelihood ratios of matched
patches:

R =

m∑

j=1

log
P (Dj = dj |C = 1)

P (Dj = dj |C = 0)
. (6)

To compute this, we must evaluate P (Dj = dj |C = 1)
and P (Dj = dj |C = 0). In our system, both of these
will take the form of gamma distributions Γ(dj ; θ

C=1
j) and

Γ(dj ; θ
C=0
j), where the parameters θC=1

j and θC=0
j are de-

fined as part of the classifier Cid for each patch and are set by
Hid based on hyper-features.

3.2.4. Making a Decision
In the above Cid matched a fixed number of patches (m),
computed the score R by Eq. 6, and compared it to a thresh-
old λ. R > λ meant that IL and IR are the same. Otherwise
they are declared different. In Section 6, we define a cas-
cade from the sequence of patches by applying thresholds
after the first k patches have been matched. These thresholds
allow Cid to stop and declare a result after only matching k
patches.

5

Figure 3: The Classifier Cid. On the left, a model image IL is shown with a classifier composed of three patches (these would
not be the actual top three patches selected by Hid). The classifier generatorHid estimated same and different distributions
(red and blue curves, respectively) for these three patches. Our patch encoding using oriented filter channels is shown for
patch 2. The classifier matches the patches to the test images, computes the log likelihood ratio score for each using the
estimated distributions, and makes a same vs. different decision based on the sum R (the top image is the correct match).
Looking at the images, compare the informativeness of patches 1 and 3: matching patch 1 should be very informative, since
the true matching patch (top) is much more similar then the best matching patch in the other “different” image (bottom);
matching patch 3 should be much less so, as both matching test image patches look completely dissimilar to the model. This
fact is correctly estimated byHid based on the position and appearance of these patches in the model image (see the mutual
information values I(Dj |C) next to the distributions).

3.2.5. Summary of Cid
To summarize, the classifier Cid is defined by:

1. a sequence of patches of varying sizes F Lj taken from
the model image IL,

2. for each patch FLj , a pair of parameters ΘC=1
j and

ΘC=0
j that define the distributions P (Dj |C = 1) and

P (Dj |C = 0), and

3. optionally, a pair of thresholds λC=1
k and λC=0

k applied
after matching the k-th patch.

For an example, refer to Figure 3.

3.3. Classifier Generator Hid

The classifier generatorHid must take in a single model im-
age IL of a new object from the given category and pro-
duce a sequence of patches FL1 , ..., F

L
m and their associ-

ated gamma distribution parameters, ΘC=1
1 , ...,ΘC=1

m and
ΘC=0

1 , ...,ΘC=0
m , for scoring based on the appearance dis-

tance measurement dj (which is measured when the patch
FLj is matched to a location in a test image IR).

3.3.1. QC: Estimating P (Dj |C) (forward declaration)
Since being able to estimate good distributions ΘC=1

j and
ΘC=0
j (ΘC

j for short) for any model patch FLj is also the key

to picking good patches, we first summarize this step. Con-
ceptually, we want ΘC

j to be influenced by what patch FLj
looks like and where it is on the object. That is, we want a
pair of functions QC=1 and QC=0 that map the position and
appearance of the patch FLj to the parameters of the gamma
distribution ΘC=1

j and ΘC=0
j :

QC=1 : FLj 7→ ΘC=1
j

QC=0 : FLj 7→ ΘC=0
j

These functions are described in detail in Section 4.

3.3.2. Estimating Saliency
If we define the saliency of a patch as the amount of infor-
mation about the decision likely to be gained if the patch
were to be matched, then it is straightforward to estimate
saliency given P (Dj |C = 1) and P (Dj |C = 0). In-
tuitively, if P (Dj |C = 1) and P (Dj |C = 0) are simi-
lar distributions, we don’t expect much useful information
from a value of dj . On the other hand, if the distributions
are very different, then dj can potentially tell us a great
deal about our decision. Formally, this can be measured
as the mutual information between the decision variable C
and the random variable Dj (we assume equal priors on C,
P (C = 0) = P (C = 1) = 0.5):

I(Dj ;C) = H(Dj)−H(Dj |C).

6

Figure 4: Estimating the Distributions and Informativeness of Patches. The classifier generator Hid takes an object model
image, samples patches, estimates the same and different distributions (from the hyper-features using functions QC) and
mutual information score for each, and selects the sequence of patches to use for classifying test images. The distributions
were computed based on 10 selected hyper-features derived from the position and appearance of each patch F L

j . In the model
image (left), each candidate patch is marked by a dot at its center, where the size and color represent the mutual information
score (bigger and redder means more informative). The estimated distributions for two patches is shown in the center (red
and blue curves), together with the log likelihood ratio score (green line). When the patches are matched to a test image, the
resulting appearance distance dj is indicated as a red vertical line.

Here H() is Shannon entropy. The key fact to notice is that
this measure can be computed just from the estimated dis-
tributions of Dj (which, in turn, were estimated from the
position and appearance of the model patch F Lj) before the
patch has been matched.

3.3.3. Finding Good Patches

The above mutual information formula allows us to esti-
mate the saliency of any patch. Thus defining a sequence
of patches to examine in order, from among all candidate
patches, seems straightforward:

1. for each candidate patch
(a) estimate the distributions P (Dj |C) from FLj us-

ing the functions QC

(b) compute the mutual information I(Dj ;C)
2. choose the top m patches sorted by I(Dj ;C)

The problem with this procedure is that the patches are not
independent. Once we have matched a patch F Lj , the amount
of additional information we are expected to derive from
matching a patch FLi that overlaps FLj is likely to be less
then the mutual information I(Di;C) would suggest. We
discuss a solution to this problem in Section 5.

However, assuming that this dependency problem can be
solved, and given the functions QC , we have a complete al-
gorithm for generating the classifier Cid from a single image.

3.4. Off-line Training Tid
The task of the off-line training step Tid is to define the two
functions QC=1 and QC=0, that estimate the distributions
P (Dj |C = 1) and P (Dj |C = 0) from the position and
appearance of the patch FLj (see Section 4). Additionally,
Tid builds the dependency model of Section 5 and defines

the cascade thresholds λacceptk and λrejectk as described in
Section 6.

This off-line training is given a large collection of im-
age pairs from the category (see Section 7 for details about
our data sets), where each left-right image pair is labeled as
“same” or “different”. A large number of patches F Lj are
sampled from the left images and matched to the right im-
ages (by finding the best matching FRj) in the same manner
as during classification Cid (see Matching in Section 3.2),
and the appearance distance dj is recorded.

4. Hyper-Features and Generalized
Linear Models

In this section, we define the form of the functions QC for
C = {0, 1} that map the position and appearance of a model
image patch FLj to the parameters ΘC

j of the gamma distri-
butions for P (Dj |C), and show how to learn the free param-
eters of these functions from the training data during off-line
category training Tid.

For this section, Figure 5 shows the performance of our
models on the Cars 1 data set, with no patch selection (i.e.
we use 105 patches sampled at fixed, equally spaced loca-
tions) and with patch sizes fixed to 25x25. The two bottom
curves are baseline experiments. The direct image compar-
ison method compares the center part of the images using
normalized correlation on a combination of intensity and fil-
ter channels and attempts to overcome slight misalignment.
The patch-based baseline assumes a global distribution for
Dj that is the same for all patches.

We want to differentiate patches by producing distribu-
tions P (Dj |C = 1) and P (Dj |C = 0) tuned for patch
FLj . In this section, we will make this dependence on the

7

Figure 6: Fitting a GLM to the gamma distribution. We demonstrate our approach by fitting a gamma distribution, through
the latent variables Θ = (µ, σ), to the y position of the patches (in practice, we use the parameterization Θ = (µ, γ)). Here
we allowed µ and σ to be a 3rd degree polynomial function of y (i.e. Z = [y3,y2,y,1]T). Each row of the images labeled
(a) displays the empirical density of d conditioned on the y position of the left patch (F L) for all bi-patches sampled from the
training data (darker means higher density). There are 2 of these: one for bi-patches taken from matching vehicles (the pairs
labeled “same”); the other from mismatched data (“different” pairs). (b) show the ordinary linear model fit, where the curve
represents the mean. The outer curves in (c) show the±σ (one standard deviation) range fit by the GLM. On the bottom left,
the centers of patches from a model object are labeled with a dot whose size and color corresponds to the mutual information
score I(D;C). For 2 selected rows (each a range of y positions), the empirical distributions are displayed as a histogram.
The gamma distributions as fit by the GLM are superimposed on the histograms. Notice that this model has learned that the
top portion of the vehicles in the training set is not very informative, as the two distributions (the red and blue lines in the top
histogram plot) are very similar (Dj will have low mutual information with C). In contrast, the bottom area is much more
informative.

8

Figure 5: Identification with Patches. The bottom curve
shows the precision vs. recall for non-patch based direct
comparison of rectified images. (An ideal precision-recall
curve would reach the top right corner.) The other curves
show the performance of our algorithm on the Cars 1 data
set, using all fixed sized patches (25x25 pixels) sampled from
a grid such that each patch overlaps its neighbors by 50%.
Notice that all three patch based models outperform the di-
rect method. The three top curves show results for various
models of dj : (1) no dependence on patch characteristics
(Baseline), (2) non-parametric from Section 4.1 (Discrete),
and (3) generalized linear with hyper-feature selection from
Sections 4.2 and 4.3 (Continuous). The linear model sig-
nificantly outperforms all of others. Compared to the base-
line patch method it reduces the error in precision by close
to 50% for most values of recall below 90% showing that
conditioning the distributions on hyper-features boosts per-
formance.

model patch FLj (or derived quantities of it) explicit by writ-
ing P (Dj |FLj , C) (in later chapters, we will often drop this
term to enhance readability). When a training set of “same”
(C = 1) and “different” (C = 0) images are available for a
specific model image, estimating these distributions directly
for each patch is straightforward. But how can we estimate
the distribution P (Dj |FLj , C = 1), where FLj is a patch
from a new model image, when we only have that single pos-
itive example of FLj ? The intuitive answer: by finding anal-
ogous patches in the training set of labeled (same/different)
image pairs. However, since the space of all possible patches
(for a 25x25 patch, appearance and position is a point in
<25∗25+2) is very large, the chance of having seen a very
similar patch to FLj in the training set is small. In the next
2 sections we present two approaches both of which rely

on projecting FLj into a much lower dimensional space by
extracting meaningful features from its position and appear-
ance (the hyper-features).

4.1. Discrete Hyper-Features
First we attempt a non-parametric approach, where we
bin the hyper-features into a number of pre-specified axis-
aligned bins. For example we might break the x coordi-
nate of the position into four bins and the y into three and
the contrast into two and then label each patch with its po-
sition in this 4-by-3-by-2 histogram (see Discrete curve in
Figure 5). For each bin, we estimate P (Dj |FLj , C = 1) and
P (Dj |FLj , C = 0) by computing the parameters (ΘC

j) of
the gamma distributions from all of the bi-patches Fj whose
left patch FLj falls into that bin. More precisely, we use bi-
patches from the “same” image pairs to estimate ΘC=1

j and
the “different” pairs to find ΘC=0

j .
Doing the same thing but modeling the distribution also

non-parametrically (using a normalized histogram that also
bins the value of dj) produces very similar results when
enough data is available in each bin and degrades when there
are too many bins.

4.2. Continuous Hyper-Features
Similarly, when too many hyper-feature bins are introduced,
the performance of the discrete model using parametric dis-
tributions also degrades. The problem is that the amount
of data needed to populate the histograms grows exponen-
tially with the number of dimensions. In order to add ad-
ditional appearance-based hyper-features, such as mean in-
tensity, oriented edge energy, etc., we moved to a smooth
parametric model for the way the hyper-features influence
the distribution.

Specifically, as before, we model the distributions
P (Dj |FLj , C = 1) and P (Dj |FLj , C = 0) as gamma distri-
butions (Γ(ΘC)) parameterized by the mean and shape pa-
rameter Θ = {µ, γ} (see the left side of Figure 6 for ex-
amples of the gamma approximations to the empirical dis-
tributions). The smooth variation of θ with respect to the
hyper-features can be modeled using a generalized linear
model (GLM). Ordinary (least-squares) linear models as-
sume that the data is normally distributed with constant vari-
ance. GLMs are extensions to ordinary linear models that
can fit data which is not normally distributed and where the
dispersion parameter also depends on the covariates (see [17]
for more information on GLMs).

Our goal is to fit gamma distributions to P (Dj |FLj , C =

1) and P (Dj |FLj , C = 0) for various patches by maximiz-
ing the probability density of data under gamma distributions
whose parameters are simple polynomial functions of the
hyper-features. Consider a set X1, ..., Xk of hyper-features
such as position, contrast, and brightness of a patch. Let

9

Z = [Z1, ..., Zl]
T be a vector of l pre-chosen functions of

those hyper-features, like squares, cubes, cross terms, or sim-
ply copies of the variables themselves. Then each bi-patch
distance distribution has the form

P (d|X1, X2, ..., Xk, C) = Γ(d; αµC · Z, α
γ
C · Z), (7)

where the second and third arguments to Γ() are mean and
shape parameters. For our GLM, we use the identity link
function for both µ and γ. While the identity is not the
canonical link function for µ, its advantage is that our ML
optimization can be initialized by solving an ordinary least
squares problem. We experimentally compared it to the
canonical inverse link (µ = (αµC ∗ Z)−1), but observed no
noticeable change in performance on our data set. Each α
(there are four of these: αµC=0, α

γ
C=0, α

µ
C=1, α

γ
C=1) is a vec-

tor of parameters of length l that weights each hyper-feature
monomialZi. The α’s are adapted to maximize the joint data
likelihood over all patches forC = 1 (using patches from the
“same” image pairs) and C = 0 (from the “different” image
pairs) within the training set. These ideas are illustrated in
detail in Figure 6, where, for demonstration purposes, we let
our covariates Z = [y3,y2,y,1]T be a polynomial function
of the y position.

4.3. Automatic Selection of Hyper-Features
In this section we describe the automatic determination of Z.
Recall that in our GLM model we assumed a linear relation-
ship between Z and µ. By ignoring the dispersion parameter,
this allows us to use standard feature selection techniques,
such as Least Angle Regression (LARS) [10], to choose a
few (around 10) hyper-features from a large set of candi-
dates. In order to use LARS (or most other feature selection
methods) “out of the box”, we use regression based on an
L2 loss function. While this is not optimal for non-normal
data, from experiments we have verified that it is a reason-
able approximation for the feature selection step. LARS was
then asked to choose the hyper-features Z from these candi-
dates: (a) the x and y positions of FL, (b) the intensity and
contrast within FL and the average intensity of the entire ob-
ject, (c) the average energy in each of the eight oriented filter
channels, and (d) derived quantities from the above such as
square, cubic, and cross terms as well as meaningful derived
quantities such as the direction of the maximum edge energy.
Once Z is set, we proceed as in Section 4.2.

Running an automatic feature selection technique on this
large set of possible conditioning features gives us a princi-
pled method of reducing the complexity of our model. Re-
ducing the complexity is important not only to speed up com-
putation, but also to mitigate the risk of over-fitting to the
training set. The top curve in Figure 5 shows results when
Z includes the first 10 features found by LARS. Even with
such a naive set of features to choose from, the performance
of the system improves significantly.

5. Modeling Pairwise Relationships Be-
tween Patches

In Sections 3 and 4, we described our method for scoring a
model image patch FLj and its best match FRj by modeling
the distribution of their distance in appearance, dj , condi-
tioned on the match variable C. Furthermore, in Section 3.3,
we described how to infer the saliency of the patch F Lj for
matching based on these distributions. As we noted in that
section, this works for picking the first patch, but is not op-
timal for picking subsequent patches: once we have already
matched and recorded the score of the first patch, the amount
of information gained from a nearby patch is likely to be
small, because their scores are likely to be correlated. In-
tuitively, the next chosen patch would ideally be a highly
salient patch whose information about C is as independent
as possible from the first patch. Similarly, the third patch
should consider both the first and the second patches.

Let FL(k) represent the kth patch picked for the cascade
and let FL(1...n) denote the first n of these patches. As-
sume we have already picked patches FL(1...n) and we wish
to choose the next one, FL(n+1), from the remaining set of
FLj ’s. We would like to pick the one that maximizes the in-
formation gain or the conditional mutual information:

I(D(n+1);C|D(1...n)) = I(D(1...n+1);C)− I(D(1...n);C).

This quantity is difficult to estimate, due to the need to model
the joint distribution of all D(1...n) patches. However, note
that the information gain of a new feature is upper bounded
by the information gain of that feature relative to any single
feature that has already been chosen. That is,

I(D(n+1);C|D(1...n)) ≤ min
1≤i≤n

I(D(n+1);C|D(i)). (8)

Thus, rather than maximizing the full information gain,
Vidal-Naquet and Ullman proposed the following heuristic
that maximizes this upper bound on the amount of “addi-
tional” information:

arg max
j

min
i
I(Dj ;C|D(i)), (9)

where i varies over the already chosen patches, and j varies
over the remaining patches.

We use a related, but slightly different heuristic. WhenDj

andD(i) are completely correlated (that is,D(i) predictsDj)
then I(Dj ;C|D(i)) = 0. However, even when Dj and D(i)

are completely independent given C, I(Dj ;C|D(i)) does not
equal I(Dj ;C). This somewhat counterintuitive result is due
to the fact that there is only a total of 1 bit of information in
C, some of which has already been discovered by match-
ing patch Fj . This property causes problems for the above
pairwise approximation, as in some circumstances it might

10

Figure 7: Bivariate Gamma Distributions. We demonstrate our technique by plotting the empirical and modeled joint densi-
ties of all patch pairs from the training set which are a fixed distance away from each other. On the left side, the two patches
are far apart, thus they tend to be uncorrelated for both “same” (C = 1) and “different” (C = 0) pairs. This is evident from
the empirical joint densities d1 vs. d2 (labeled dfar), computed by taking all pairs of “same” and “different” 25x25 pixel
bi-patches from the training set that were more than 60 pixels apart. The great mismatch between the P (d1, dfar|C = 1) and
P (d1, dfar|C = 0) distributions implies that the joint mutual information between (d1, dfar) and C is high. Furthermore,
the mismatch in the joint distributions is significantly larger (as measured in bits) than the mismatch between the marginal
conditional distributions shown below them in row (c). This means that the information gain, the joint mutual information
less the marginal mutual information, is high. In contrast, the right side shows the case where the patches are very close
(overlap 50% horizontally). Here d1 vs. d2 (labeled dnear) are very correlated. While there is still some disagreement
between the joint distributions for C = 0 and C = 1, the information contained in this discrepancy (as measured in bits) is
almost equal to the information contained in the discrepancy between the marginal distributions shown beneath them in row
(c). That is, the joint distributions provide no additional information, or information gain, over the marginal distributions.
Our parametric model for these joint densities are shown at the bottom (d). Notice that the modeled marginal distributions
of d2 (c) are gamma and are unaffected by the correlation parameter. The lines superimposed on the bivariate plots show the
mean and variance of d1 conditioned on d2: notice that these are very similar for the empirical (b) and model (d) densities.

11

Figure 8: Patch Correlations. On each image, the patches
most correlated with the white-circled patch are shown. No-
tice that in the left image, where the patch sits in an area
with a highly visible horizontal structure, the most correlated
patches all lie along the horizontal features. Contrast this
with the right image, showing correlation of patches with a
patch sitting on a wheel, where the most correlated patches
are those that strictly overlap the white-circled patch.

lead to choosing a suboptimal next patch F(i) (a patch that
is highly correlated with an uninformative patch might win
out against another patch that is lightly correlated with a very
informative one). Hence, in order to find the best next patch,
we use a quantity related to I(Dj ;C|D(i)), but one which
varies between 0 and I(Dj ;C) depending only on the corre-
lation:

arg max
j

min
i
I(Dj ;C|D(i))×

I(Dj ;C)

I(D∗j ;C|D(i))
. (10)

Here D∗j is a random variable with the same marginal dis-
tribution as Dj but is independent of D(i) when conditioned
on C. This formulation also turns out to be easier to approx-
imate within our framework (see Section 5.3).

5.1. Dependency Model
To compute (10), we need to estimate conditional mutual in-
formations of the form

I(Dj ;C|D(i)) = I(Dj , D(i);C)− I(D(i);C).

In Section 3.3, we showed that we can determine the second
term, I(D(i);C), from the estimated gamma distributions for
P (D(i)|C = 1) and P (D(i)|C = 0). Similarly, to calculate
I(Dj , D(i);C), we need to estimate the bivariate distribu-
tions P (D(i), Dj |C = 1) and P (D(i), Dj |C = 0).

Because there is relatively little data for each pair of patch
locations, and because we want to evaluate the dependence
of patches conditioned not only on location but on a variety
of hyper-features, we again use a generalized linear model
to gain statistical leverage, this time to model joint distribu-
tions of pairs of patch distances. The central goal in choos-
ing a parameterization of the conditional joint distributions
P (D(i), Dj |C = 1) and P (D(i), Dj |C = 0) is to choose a
form for the distributions such that, when the parameters are
estimated, the resulting computation of the joint mutual in-
formation is as accurate as possible. In order to achieve this,

we adopt the following strategy for parametric estimates of
the conditional joint distributions.

• We constrain each joint distribution to be an instance
of Kibble’s bivariate gamma distribution [15], a gen-
eralization of the one-dimensional gamma distribution
that is constrained to have gamma distributions as
marginals. A Kibble distribution has four parameters:
µ1, µ2, γ, and ρ, with 0 < ρ < 1. µ1 and µ2 are mean
parameters for the marginals. γ is a dispersion parame-
ter for both marginals. ρ is the correlation between d(i)

and dj , and varies from 0, indicating full independence
of the marginals, to 1, in which the marginals are com-
pletely correlated (see Figure 7).

• We further constrain each distribution to have the same
mean parameter for each marginal, i.e. µ1 = µ2 for
each joint distribution. The shared mean parameter and
the shared dispersion parameter γ are set to the param-
eters of the marginal distribution P (dj |C = 0) and
P (dj |C = 1) in the respective cases.

• Finally, we constrain the pair of distributions
P (D(i), Dj |C = 1) and P (D(i), Dj |C = 0) to
share the same correlation parameter ρ.

Thus we use Kibble’s bivariate distribution with 3 parame-
ters, which we write as K(µ, γ, ρ) (see Appendix B).

5.2. Predicting Patch Correlations from Hyper-
Feature Differences

Given the above formulation, we have reduced the problem
of finding the next best patch, FL(n+1), to the problem of
estimating the correlation parameter ρ of Kibble’s bivariate
gamma distribution for any pair of patches FL(i) (one of the n
patches already selected) and FLj (a candidate for FL(n+1)).
The intuition is that patches that are nearby and overlapping
or that lie on the same underlying image features (for exam-
ple the horizontal line on the side of the car in Figure 8) are
likely to be highly correlated, whereas two patches that are
of different sizes and far away from one another are likely to
be less so.

We model ρ, the last parameter of K(µC=1
j , γC=1

j , ρ)

and K(µC=0
j , γC=0

j , ρ), similarly to our GLM estimate of
its other parameters (see Section 3.3): we let ρ be a linear
function of the difference of various hyper-features of the
two patches, FL(i) and FLj . Clear candidates for these co-
variates are the difference in position and size of the two
patches, as well as some image-based features such as the
difference in the amount of contrast within each patch. To
ensure 0 < ρ < 1, we use a sigmoid link function

ρ = (1− exp(β ·Y))−1, (11)

12

Figure 9: The Ten Most Informative Patches. The ten rectangles on each object show the top ten patches our classifier
generatorHid selected for the classification cascade for that object. The face model seems to prefer features around the eyes,
while the two car models (two data sets, top and bottom) tend to both like the side and wheels but differ in their interest in the
roof region. Notice, however, that even within a category each cascade is unique, highlighting interesting appearance features
for that object; this is because the patches are selected based on both position and appearance characteristics (hyper-features).
The patches are color coded according to their cascade order, from most informative (red) to least (blue) (see color-bar on
the right).

where Y is our vector of hyper-feature differences and β is
the GLM parameter vector.

Given a data set of patch pairs FL(i) and FLj and asso-
ciated distances d(i) and dj (found by matching the “left”
patches to a “right” image of the same or of a different ob-
ject), we estimate the linear coefficients β. This is done by
maximizing the likelihood of K(µC=1

j , γC=1
j , ρ) using data

taken from image pairs that are known to be the “same”2 and
K(µC=0

j , γC=0
j , ρ) using data taken from “different” image

pairs. Also similarly to Section 3.4, we choose the encoding
of Y automatically, by the method of forward feature selec-
tion [13] over candidate hyper-feature difference variables.
As anticipated, the top ranked variables encoded differences
in position, size, contrast, and orientation energy. Our final
model uses the top 10 variables.

5.3. Online Estimation of Patch Order

As we described in Section 5.1, we wish to select patches in
a greedy fashion based on Eqn. 10. In the previous section,
we have shown how to estimate I(Dj ;C|D(i)). Based on
this, computing I(D∗j ;C|D(i)) is straightforward: use the
same Kibble densities as with Dj but just set the correlation
parameter ρ = 0.

Unfortunately, computing these quantities online is very
expensive (notice that the formula for the Kibble distribu-
tion contains an infinite sum). However, we noticed that
k =

I(Dj ;C|D(i))

I(D∗
j
;C|D(i))

, which varies from 0 < k < 1, is well

approximated by k = (1 − ρ). Thus in practice, to find the

2µC=1
j and γC=1

j are estimated from FLj by the method of Section 3.4
and are fixed for this optimization.

next best patch, our algorithm finds the patch j such that

arg max
j

min
i
I(Dj ;C)× (1− ρj(i)) (12)

where ρj(i) is computed by Eqn. 11 from the hyper-feature
differences between patch Fj and F(i).

6. Building the Cascade
Now that we have a model for patch dependence, we can
create a sequence of patches FLj (see Section 3.3) that, when
matched, collectively capture the maximum amount of in-
formation about the decision C (same or different?). The
sequence is ordered so that the first patch is the most infor-
mative, the second slightly less so and so on. The final step
of creating a cascade is to define early stopping thresholds on
the log likelihood ratio sum R that can be applied after each
patch in the sequence has been matched and its score added
to R (see Section 3.2).

We assume that we are given a global threshold λ (see
Section 3.2) that defines a global choice between selectivity
and sensitivity. What remains is the definition of thresholds
at each step, λC=1

(k) and λC=0
(k) , which allow the system to

accept (declare “same”) if R > λC=1
(k) or reject (declare “dif-

ferent”) ifR ≤ λC=1
(k) , otherwise continue by matching patch

k + 1. To learn these thresholds, we run Hid on the left im-
ages and the resulting classifier Cid on the right images of
our training data set. This will produce a performance curve
for each choice of k, the number of patches included in the
classification score, including k = m, the sum for which λ is
defined. Our goal for the cascade is for it to make decisions
as early as possible (tight thresholds) but, on the training set,
never make a mistake on any pair which was correctly clas-

13

sified using all m patches and the threshold λ. These two
constraints exactly define the thresholds λC=1

(k) and λC=0
(k) :

1. For each “same” and “different” pair in the training set
(a) generate the classifier Cid with a sequence of m

patches based on IL

(b) classify IR by evaluating

R =

m∑

j=1

log
P (Dj = dj |C = 1)

P (Dj = dj |C = 0)
> λ

2. Let IC=1 be the set of correctly classified “same” pairs
(where label is “same” and R > λ). Set the rejection
threshold λC=0

(k) by

λC=0
(k) = max

IC=1

k∑

j=1

log
P (Dj = dj |C = 1)

P (Dj = dj |C = 0)

That is, we want λC=0
(k) to be the maximum without any

“same” pairs that were correctly classified using all of
the patches to be misclassified by this threshold.

3. Similarly define IC=0, and set λC=1
(k) using the min.

7. Results and Conclusion
The goal of this work was to create an identification sys-
tem that could be applied to different categories, where the
algorithm would automatically learn (based on off-line train-
ing examples) how to select category-specific salient features
from a new image. In this section, we demonstrate that after
category training, our algorithm is in fact able take a single
image of a novel object and solely based on it create a highly
effective “same” vs. “different” classification cascade of im-
age patches. Specifically, we wish to show that for visual
identification each of the following leads to an improvement
in performance in terms of accuracy and/or computational
efficiency:

1. breaking the object up into patches (a.k.a parts, frag-
ments), matching each one separately and combining
the results,

2. differentiating patches by estimating a scoring and
saliency function for each patch (based on its hyper-
features),

3. modeling the dependency between patches to create a
sequence of patches to be examined in order, and

4. applying early termination thresholds to the patch se-
quence to create the cascade.

We tested our algorithm on three different data sets: (1)
cars from 2 cameras with significant pose differential, (2)
faces from news photographs, and (3) cars from a wide-area
tracking system with 33 cameras and 1000’s of unique vehi-
cles. Examples from these three data sets are shown in Fig-
ure 9, with the top 10 patches of the classification cascade.

Figure 10: Model-Test Car Image Pairs. Each pair of images
shows a model and a test image, which has been labeled as
“same” or “different” (see upper left corner of test image) by
our algorithm. The patches that were used in the cascade for
that test image are indicated for each pair, where the order
is color coded from red to blue. The first 3 rows show cor-
rect classification results, while the last 2 demonstrate errors.
False-negative errors primarily occur with darker cars where
the main source of features are the illumination artifacts that
can vary greatly between the images. False-positive errors
tend to involve very similar cars.

Notice that the sequence of patches for each object reflects
both category knowledge (for cars, the Hid tends to select
descriptive patches on the side with strong horizontal gradi-
ents and around the wheels, while for faces the eyes and eye-
brows are preferred) and object specific characteristics (for
example, note the focus on the unique trailer).

For each data set, a different automatic preprocessing step
was applied to detect objects and approximately align them.
After this, the same identification algorithm was applied to
all three sets. For lack of space, we detail our experiments
on data set 1, enumerate the results of data set 2, and only
summarize our experience with data set 3. Qualitatively, our
results on the three are consistent in showing that each of the
above aspects of our system improves the performance, and
that the overall system is both efficient and effective.

14

Figure 11: Precision vs. Recall Using Different Numbers of
Patches. These are precision vs. recall curves for our full
model. Each curve represents the performance tradeoff be-
tween precision and recall, when the system uses a fixed
number of patches. The lowest curve uses only the single
most informative patch, while the top curve uses up to 100
patches. The 85% recall rate, where the different models of
Figure 12 are compared, is noted by a vertical black dashed
line. A magenta X, at recall = 84.9 and precision = 84.8,
marks the performance of the cascade model.

7.1. Cars 1
358 unique vehicles (179 training, 179 test) were extracted
using a blob tracker from 1.5 hours of video from two cam-
eras located one block apart. The pose of the cameras rela-
tive to the road (see Figure 1) was known from static cam-
era calibration, and alignment included warping the sides of
the vehicles to be approximately parallel to the image plane.
Additionally, by detecting the wheels, we rescaled each each
vehicle to be the same length (inter-wheel distance of 150
pixels). This last step actually hurts the performance of our
system, as it throws away size as a cue (the camera calibra-
tion gives us a good estimate of actual size). However, we
wanted to demonstrate the performance when such calibra-
tion information is not available (this is similar to our face
data set, where each face has been normalized to a canonical
size). Within training and testing sets, about 2685 pairs (true
to false ratio of 1:15) of mismatched cars were formed from
non-corresponding images, one from each camera. These in-
cluded only those car pairs that were superficially similar in
intensity and size. Using the best whole image comparison
method we could find (normalized correlation on blurred fil-
ter outputs) on this set produces 14% false positives (29%
precision) at a 15% miss rate (85% recall). Example cor-
rect and incorrect classification results using our cascade is
shown in figure 10. This data set together with more example
results are available from our web site.

Figure 12: Comparing Performance of Different Models.
The curves plot the performance of various models, as mea-
sured by the false-positive rate (fraction of different pairs la-
beled incorrectly as same), at a fixed recall rate of 85%. The
y-axis shows the log error rate, while the x-axis plots the log
number of patches the models were allowed to use (up to a
max of 100). As the number of patches increases, the perfor-
mance improves until a point, after which it levels off and,
for the models that order patches according to information
gain, even decreases (when non-informative patches begin to
pollute the score). The (red) model that does not use hyper-
features (i.e. uses the same distributions for all patches), per-
forms very poorly compared to the hyper-feature versions,
even when it is allowed to use 100 patches. The second
curve from the top uses our hyper-feature model to score the
patches, but random selection to pick the patch order. The
position only model uses only position-based hyper-features
for selecting patch order (i.e. it computes a fixed patch order
for all cars). The light blue model sorts patches by mutual in-
formation, without considering dependencies. The last curve
shows our full model based on selecting patches according to
their conditional mutual information, using both positional
and image-based hyper-features. Finally, the magenta X at
4.3 patches and 1.02% error shows the performance of the
cascade model.

15

Figure 13: How many patches does it take to make a deci-
sion? This histogram shows the number of patches that were
matched by the classification cascade before a decision could
be made. On average, 4.2 patches were required to make a
negative (declaring a difference) decision, and 6.7 patches to
make a positive one.

Figure 12 compares several versions of our model by plot-
ting the false-positive rate (y-axis) with a fixed miss rate of
15% (85% recall), for a fixed budget of patches (x-axis). The
85% recall point was selected based on Figure 11, by pick-
ing the equal error point given the 1 to 15 true-to-false ratio.
The Random Order curve uses our hyper-feature model for
scoring, but chooses the patches randomly. By comparing
this curve to its neighbors, notice the performance gain as-
sociated with differentiating patches based on hyper-features
both for scoring (No Hyper-Features vs. Random Order) and
for patch selection (Random Order vs. Mutual Information).
Comparing Mutual Information vs. Conditional MI shows
that modeling patch dependence is important for choosing a
small number of patches (see range 5-20) that together have
high information content (Section 5). Comparing Position
Only (which only uses positional hyper-features) vs. Condi-
tional MI (which uses both positional and appearance hyper-
features) shows that patch appearance characteristics are sig-
nificant for both scoring and saliency estimation. Finally,
the cascade performs (1.02% error, with mean of 4.3 patches
used) as well as the full model and better than any of the
others, even when these are given an unlimited computation
budget.

Figure 11 shows another way to look at the performance
of our full model given a fixed patch (computation) budget
(the Conditional MI curve of Figure 12 represents the inter-
section of these curves with the 85% recall line). The cas-
cade performance is also plotted here (follow the black ar-
row). The distribution of the number of patches it took to
make a decision in the cascade model is plotted in Figure 13.

Figure 14: Model-Test Face Image Pairs. The first 2 rows of
images show correct results, while the bottom 2 demonstrate
errors. The large variations in pose, lighting, expression and
image resolution make this data set very difficult. Our algo-
rithm prefers eyes and seems to have learned that when the
face is partially in profile, the eye that is more frontal is more
informative (probably because it is more likely to be consis-
tent). However, notice that the model for the person wearing
sunglasses in the last row is the only one whose first patch in
the cascade is not on the eye.

7.2. Faces

We used a subset of the “Faces in the News” data set de-
scribed in [6], where the faces have been automatically de-
tected from news photographs and registered by their algo-
rithm. Our training and test sets each used 103 different peo-
ple, with two images per person. This is an extremely dif-
ficult data set for any identification algorithm, as these face
images were collected in a completely uncontrolled manner
(news photographs). Table 1 summarizes our results for run-
ning the same algorithm as above on this set. Note the same
pattern as above: the patch based system generally outper-
forms whole object systems (here we compare against state
of the art PCA and LDA algorithms with face specific pre-
processing using CSU’s implementation [8]); estimating a
scoring and saliency function through hyper-features greatly
improves the performance of the patch based system; the cas-
cades, using less than 6 patches on average, performs as well
as always using the best 50 patches (performance actually
declines above 50 patches). Refer to figure 14 for example
classification results.

16

Recall Rate 60% 70% 80% 90%
PCA + MahCosine 82% 73% 62% 59%
Filter + NormCor 83% 73% 67% 57%

No Hyper-Features 86% 73% 68% 62%
Random 10 Patches 79% 71% 64% 60%

Top 1 CMI Patch 86% 76% 69% 63%
Top 50 CMI Patches 92% 84% 75% 67%

CMI Cascade 92% 84% 76% 66%

Table 1: Precision vs. Recall for Faces.
Each column denotes the precision associated with a given
recall rate along the P-R curve. PCA + MahCosine and Fil-
ter + NormCor are whole face comparison techniques. PCA
+ MahCosine is the best curve produced by [8], which im-
plements PCA and LDA algorithms with face-specific pre-
processing. Filter + NormCor uses the same representation
and comparison method as our patches, but applied to the
whole face. The last four all use our patch based system with
hyper-features. The last three use conditional mutual infor-
mation based patch selection, where the number of patches
allowed is set to 1, 50, and variable (cascade), respectively.
These cascades use between 4 and 6 patches on average to
make a decision.

7.3. Cars 2
We are helping to develop a wide-area car tracking system
where this component must re-identify vehicles when they
pass by a camera. Detection is performed by a blob tracker
and the images are registered by aligning the centroid of the
object mask (the cameras are located approximately perpen-
dicular to the road). We tested our algorithm on a subset of
data collected from 33 cameras and 1000’s of unique vehi-
cles, by learning an identifier generating function (Hid) for
each camera pair (this way, the system incorporates the typ-
ical distortions that a vehicle undergoes between these cam-
eras). Equal error rates for our classification cascade were 3-
5% for near lane (vehicle length ∼140 pixels) and 5-7% for
far lane (∼60 pixels), using 3-5 patches on average. Whole
object comparison methods (we tested several different tech-
niques) and using patches without hyper-features resulted in
error rates that were 2 to 3 times as large. We estimate that
an optimized implementation of our algorithm would be able
to perform the vehicle identification component of this sys-
tem (with up to 5 new vehicle reports per second, and 15
candidate ids per report) in real time on a single processor.

Appendix A. Gamma Distribution
Gamma distributions are non-zero in the range 0 < x < ∞
and have two degrees of freedom, most commonly parame-
terized as a shape parameter γ and a scale parameter β. In
this work, we typically use the parameters γ and the mean µ,

where µ = β×γ. With this parameterization, the probability
density function has the form

f(x;µ, γ) =
γγ(xµ)(γ−1) exp(−x γµ)

µΓ(γ)
,

where Γ() is the gamma function. For examples of gamma
distributions, refer to Figures 3 and 6. In this paper we use
the notation Γ(µ, γ) for the gamma distribution.

Appendix B. Kibble’s Bivariate Distribution
Kibble’s bivariate gamma distribution is non-zero in the
range 0 < x, y < ∞ and has up to four degrees of freedom:
the marginal parameters µx, µy, γ, and a correlation term ρ.
Such a distribution has gamma marginals, where µx and γ
define the x marginal and µy and γ define the y marginal.
The parameter ρ , which ranges 0 ≤ ρ < 1, is the correlation
coefficient between the variables x and y: when ρ is small, x
and y are close to independent; when ρ is large, x and y are
highly correlated. If we let tx = xγ

µx
and ty = yγ

µy
, then this

bivariate distribution has the form

f(x, y;µx, µy, γ, ρ) =
(tx × ty)(γ − 1) exp(− tx+ty

1−ρ)

(1− ρ)γΓ(γ)

×
∞∑

j=0

ρj(tx × ty)j

(1− ρ)2jΓ(γ + j)j!
.

The rate of convergence of the infinite series depends heavily
on the ρ parameter, where values of ρ close to 1 converge
much more slowly. Examples of Kibble’s distribution can be
found in Figure7(d). In this paper, we always set µx = µy,
and thus denote Kibble’s distribution as K(µ, γ, ρ).

Acknowledgments
This work was supported by the DARPA CZTS project. We
would like to thank Sarnoff Corporation for the wide area
car tracking data set (“Cars 2”), especially Ying Sang and
Harpreet Sawhney. From Berkeley, Ryan White provided the
face data set and Hao Zhang an implementation for LARS.

References
[1] Y. Amit and D. Geman. A computational model for

visual selection. Neural Computation, 11(7), 1999.

[2] Y. Amit and M. Mascaro. An integrated network for in-
variant visual detection and recognition, tech. report no.
521. Department of Statistics University of Chicago,
2000.

17

[3] P. N. Belhumeur, J. P. Hespanha, and D. J. Krieg-
man. Eigenfaces vs. fisherfaces: Recognition using
class specific linear projections. IEEE Pattern Analy-
sis and Machine Intelligence, 19(7), 1997.

[4] S. Belongie, J. Malik, and J. Puzicha. Matching shapes.
In International Conference on Computer Vision, 2001.

[5] A. Berg, T. Berg, and J. Malik. Shape matching and
object recognition using low distortion correspondence.
CVPR, 2005.

[6] T. L. Berg, A. C. Berg, J. Edwards, M. Maire, R. White,
Y. W. Teh, E. Learned-Miller, and D. A. Forsyth.
Names and faces in the news. CVPR, 2004.

[7] V. Blanz, S. Romdhani, and T. Vetter. Face identifica-
tion across different poses and illuminations with a 3d
morphable model. Proceedings of the 5th International
Conference on Automatic Face and Gesture Recogni-
tion, 2002.

[8] D. Bolme, R. Beveridge, M. Teixeira, and B. Draper.
The csu face identification evaluation system: Its pur-
pose, features and structure. ICVS, 2003.

[9] R. Diamond and S. Carey. Why faces are and are not
special: An effect of expertise. Journal of Experimental
Psychology, Gen(115):107–117, 1986.

[10] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani.
Least angle regression. Annals of Statistics, 32(2):407–
499, 2004.

[11] L. Fei-Fei, R. Fergus, and P. Perona. A bayesian ap-
proach to unsupervised one-shot learning of object cat-
egories. In International Conference on Computer Vi-
sion, 2003.

[12] B. Heisele, T. Poggio, and M. Pontil. Face detection
in still gray images, a.i. memo no. 521. Massachusetts
Institute of Technology Artificial Intelligence Lab, May
2000.

[13] G. H. John, R. Kohavi, and K. Pfleger. Irrelevant
features and the subset selection problem. In In-
ternational Conference on Machine Learning, pages
121–129, 1994. Journal version in AIJ, available at
http://citeseer.nj.nec.com/13663.html.

[14] T. Kadir and M. Brady. Scale, saliency and image de-
scription. International Journal of Computer Vision,
45(2):83–105, 2001.

[15] W. F. Kibble. A two-variate gamma type distribution.
Sankhya, 5:137–150, 1941.

[16] D. Lowe. Distinctive image features from scale-
invariant keypoints. International Journal of Computer
Vision, 60(2):91–110, 2004.

[17] P. McCullagh and J. A. Nelder. Generalized Linear
Models. Chapman and Hall, 1989.

[18] E. G. Miller, N. E. Matsakis, and P. A. Viola. Learning
from one example through shared densities on trans-
forms. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages ?–?, 2000.

[19] G. Mori, S. Belongie, and J. Malik. Shape contexts en-
able efficient retrieval of similar shapes. CVPR, 2001.

[20] C. Schmid. Constructing models for content-based im-
age retrieval. CVPR, 2001.

[21] H. Schneiderman and T. Kanade. A statistical approach
to 3d object detection applied to faces and cars. CVPR,
2000.

[22] M. Tarr and I. Gauthier. FFA: A flexible fusiform area
for subordinate-level visual processing automatized by
expertise. Nature Neuroscience, 3(8):764–769, 2000.

[23] M. Turk and A. Pentland. Eigenfaces for recognition.
Journal of Cogntive Neuroscience, 3(1):71–86, 1991.

[24] M. Vidal-Naquet and S. Ullman. Object recognition
with informative features and linear classification. In
International Conference on Computer Vision, 2003.

[25] P. Viola and M. Jones. Rapid object detection using
a boosted cascade of simple features. In IEEE Con-
ference on Computer Vision and Pattern Recognition,
2001.

[26] M. Weber, M. Welling, and P. Perona. Unsupervised
learning of models for recognition. ECCV, 2000.

[27] L. Wiskott, J. Fellous, N. Krger, and C. von der Mals-
burg. Face recognition by elastic bunch graph match-
ing. Proc. 7th Intern. Conf. on Computer Analysis of
Images and Patterns, 1997.

[28] W. Zhao, R. Chellappa, A. Rosenfeld, and P. Phillips.
Face recognition: A literature survey. ACM Computing
Surveys, 35(4):399–458, 2003.

18

