Design Concepts in Programming Languages

Franklyn Turbak and David Gifford
Copyright (©)1988-2004 by Franklyn Turbak and David Gifford

Version created on November 23, 2004 at 3:53.
This is a draft. Please do not cite.
Send all bugs, feedback, etc. to fturbak@wellesley.edu.

Contents

Preface

1

Introduction
1.1 Programming Languages
1.2 Syntax, Semantics, and Pragmatics

1.3 Goals
1.4 PosTFix: A Simple Stack Language
1.4.1 Syntax

1.4.2 Semantics
1.4.3 The Pitfalls of Informal Descriptions

Syntax

2.1 Abstract Syntax

2.2 Concrete Syntax

2.3 S-Expression Grammars Specify ASTs
2.3.1 S-Expressions
2.3.2 The Structure of S-Expression Grammars
233 Phrase Tags oL
2.3.4 Sequence Patterns
2.3.5 Notational Conventions

2.4 The Syntax of PostFix L.

Operational Semantics

3.1 The Operational Semantics Game

3.2 Small-step Operational Semantics (SOS)
3.2.1 Formal Framework
3.2.2 Example: An SOS for PosTtFix.
3.23 RewriteRules.

3.3 Big-step Operational Semantics

3.4 Operational Reasoning

ix

N O O O N

12

18
20
21
22
23
28
28
30
32

ii

CONTENTS

3.4.1 Programming Language Properties 72
3.4.2 Deterministic Behavior of EL 73
3.4.3 Termination of PostFix Programs. 7
3.4.4 Safe PosTFIX Transformations 82
3.5 Extending PosTFIX 92
Denotational Semantics 107
4.1 The Denotational Semantics Game 107
4.2 A Denotational Semantics for EL 110
4.2.1 Step 1: Restricted ELMM 111
422 Step 2: Ful ELMM 113
423 Step3: ELM 118
424 Stepd: ELo 120
4.2.5 A Denotational Semantics is Not a Program 122
4.3 A Denotational Semantics for PosTFix 124
4.3.1 A Semantic Algebra for PostFix 125
4.3.2 A Meaning Function for PostFix 128
4.3.3 Semantic Functions for POSTFIX: the Details 135
4.4 Denotational Reasoning 139
4.4.1 Program Equality 139
4.4.2 Safe Transformations: A Denotational Approach 140
4.4.3 Technical Difficulties 143
4.4.4 Relating Operational and Denotational Semantics 144
4.4.5 COperational vs. Denotational: A Comparison 152
Fixed Points 155
5.1 The Fixed Point Game 155
5.1.1 Recursive Definitions 155
5.1.2 Fixed Points L o 158
5.1.3 The Iterative Fixed Point Technique 160
5.2 Fixed Point Machinery 0oL 166
5.2.1 Partial Orders 166
5.2.2 Complete Partial Orders (CPOs) 174
5.2.3 Pointednesso 176
5.2.4 Monotonicity and Continuity 178
5.2.5 The Least Fixed Point Theorem 182
5.2.6 Fixed Point Examples 183
5.2.7 Continuity and Strictness 188
5.3 Reflexive Domains 192

5.4 Summary e 193

CONTENTS iii

6

FL: A Functional Language 195
6.1 Decomposing Language Descriptions 195
6.2 The Structureof FL., 196
6.2.1 FLK: The Kernel of the FL. Language 197
6.2.2 FL Syntactic Sugar 204
6.2.3 The FL Standard Library 216
6.24 Examples 216
6.3 Variables and Substitutiono 224
6.3.1 Terminology 224
6.3.2 General Properties of Variables 227
6.3.3 Abstract Syntax DAGs and Stoy Diagrams 229
6.3.4 Alpha-Equivalence 232
6.3.5 Renaming and Variable Capture 233
6.3.6 Substitutiono 234
6.4 An Operational Semantics for FLK 239
6.4.1 AnSOSfor FLK 239
6.42 Example. 242
6.5 A Denotational Definition for FLK 248
Naming 257
7.1 Parameter Passingo L. 259
7.1.1 Call-by-Name and Call-by-Value: The Operational View . 259
7.1.2 Call-by-Name and Call-by-Value:
The Denotational View 267
7.1.3 Discussion L 269
7.2 Name Control 279
7.2.1 Hierarchical Scoping: Static and Dynamic 281
7.2.2 Multiple Namespaces 294
7.2.3 Non-hierarchical Scope 296
7.3 Object-Oriented Programming 302
7.3.1 Semantics of HOOK 305
State 313
8.1 What is State? 313
8.1.1 Time, State, Identity, and Change 313
8.1.2 FL Does Not Support State 314
8.1.3 Simulating State In FL. 320
8.1.4 TImperative Programming 326
8.2 Mutable Data: FL! 327

iv CONTENTS

8.2.2 Examples of Imperative Programming 329
8.2.3 An Operational Semantics for FLK! 332
8.2.4 A Denotational Semantics for FLK! 341
8.2.5 Referential Transparency, Interference, and Purity 349

8.3 Mutable Variables: FLAVAR! 356
8.3.1 Mutable Variables 356
8.3.2 FLAVAR! 357
8.3.3 Parameter Passing Mechanisms for FLAVAR! 359

9 Control 365
9.1 Motivation: Control Contexts and Continuations 365
9.2 Using Procedures to Model Control 368
9.2.1 Multiple-value Returns 369
9.2.2 Non-local Exits 371
9.2.3 Coroutines 378

9.3 A Standard Semantics of FL! 378
94 Non-local Exits 395
9.5 Exception Handling 402
10 Data 417
10.1 Products. e e 418
10.1.1 Positional Products 419
10.1.2 Named Products 426
10.1.3 Non-strict Products 428
10.1.4 Mutable Products 436

10.2 Sums e 442
10.2.1 Positional Sums. 443
10.2.2 Named Sums 447

10.3 Sum-of-Products 449
10.4 Data Declarations 456
10.5 Pattern Matching oL 464
10.5.1 Introduction to Pattern Matching 464
10.5.2 A Desugaring-based Semantics of match 468
10.5.3 Views 480

11 Concurrency 489
11.1 Motivation e 489
11.2 Threads e 492
11.2.1 MUFL!, a Multi-threaded Language 493

CONTENTS

11.2.3 Other Thread Interfaces
11.3 Communication and Synchronization
11.3.1 Shared Mutable Data,
11.3.2 Locks
11.3.3 Channels

12 Simple Types
12.1 Static Semanticso
12.2 An Introduction to Types
12.2.1 What isa Type? L.
12.2.2 Dimensions of Types
12.2.3 Explicit vs. Implicit,
12.2.4 Simple vs. Expressive
12.3 FL/X: A Language with Monomorphic Types
12.3.1 FL/X . .o
12.3.2 FL/X Type Checking
12.3.3 FL/X Dynamic Semantics and Type Soundness
124 Typed Data
12.4.1 Typed Products
12.4.2 Digression: Type Equality
12.4.3 Typed Mutable Data
1244 Typed Sums
1245 Typed Lists oo
12.5 Recursive Types o o

13 Subtyping and Polymorphism
13.1 Subtyping
13.1.1 Motivation
13.1.2 FL/XS . . .
13.1.3 Discussion
13.2 Polymorphic Types o
13.3 Descriptions
13.4 Kinds and Kind Checking: FL/XSPDK

14 Type Reconstruction
14.1 Introduction Lo
14.2 A Language with Type Reconstruction: FL/R
14.3 Unification Lo
14.4 A Type Reconstruction Algorithm
14.5 Discussion Lo

498
503
504
505
507

513
513
515
515
016
018
519
519
519
925
933
536
536
938
939
542
543
046

551
951
551
552
954
561
267
276

vi CONTENTS
15 Abstract Types 599
15.1 Data Abstraction 599
15.1.1 A Point Abstraction L. 600

15.1.2 Procedural Abstraction is not Enough 601

15.2 Dynamic Locks and Keys 603
15.3 Nonce Types o 619
15.4 Dependent Types e 628
15.4.1 A Dependent Package System 629

15.4.2 Design Issues with Dependent Types 632

155 Modules 636
15.5.1 An Overview of Modules and Linking 636

15.5.2 A First-Class Module System 638

16 Effects Describe Program Behavior 653
16.1 Types, Effects, and Regions - What, How, and Where 653
16.2 An Effect System for FL/R 657
16.3 Using Effects to Analyze Program Behavior 660
16.3.1 Effect Masking Hides Invisible Effects 660

16.3.2 Effects Describe the Actions of Applets 662

16.3.3 Effects Describe Control Transfers 663

16.3.4 Effects Can Be Used to Deallocate Storage 664

16.4 Reconstructing Types and Effects 665

17 Compilation 673
17.1 Why do we study compilation? 673
17.2 TORTOISE Architecture and Languages 675
17.2.1 Overview of TORTOISE 675

17.2.2 The Compiler Source Language: FL/Rrorroise - - - - - - 677

17.2.3 The Compiler Intermediate Language: SILK 678

17.2.4 Purely Structural Transformations 694

17.3 Transform 1: Desugaring 697
17.4 Transform 2: Type Reconstruction 698
17.5 Transform 3: Globalization 699
17.6 Transform 4: Translation 705
17.7 Transform 5: Assignment Conversion 708
17.8 Transform 6: Renaming 714
17.9 Transform 7: CPS Conversion 718
17.9.1 The Structure of CPS Code 720

17.9.2 A Simple CPS Transform 725

17.9.3 A More Efficient CPS Transform 734

CONTENTS vii

17.9.4 CPS Converting Control Constructs 745
17.10Transform 8: Closure Conversion 748
17.10.1Flat Closures v i i 748
17.10.2 Variations on Flat Closure Conversion 756
17.10.3 Linked Approaches 759
17.11Transform 9: Lifting 763
17.12Transform 10: Data Conversion 765
17.13Garbage Collection 765
A A Metalanguage 769
Al TheBasics e 769
A1l Sets e 770
A1.2 Tuples e 773
A.13 Relations 774

A2 Functions 775
A.2.1 Definition 775
A.2.2 Application oL ot
A.2.3 More Function Terminology 779
A.2.4 Higher-Order Functions 780
A.2.5 Multiple Arguments and Results 781
A.2.6 Lambda Notation. 784
A27 Recursion 787
A.2.8 Lambda Notation is not Lisp! 788

A3 Domains 790
A.3.1 Motivation 790
A.3.2 Product Domains 791
A33 SumDomains 793
A.3.4 Sequence Domains 796
A.3.5 Function Domains 798

A.4 Metalanguage Summary 802
A.4.1 The Metalanguage Kernel 802

A.4.2 The Metalanguage Sugar 804

viii CONTENTS

Preface

Acknowledgments

This book owes its existence to many people. We are grateful to the following
individuals for their contributions:

e Both as an early teaching assistant for the MIT course (6.821 Programming
Languages) upon which this book is based and as a technical editor during
the final push to turn the course notes into a book, Mark Sheldon made
innumerable contributions to the content and form of the book. Mark
also played a key role in the development of the material on data, pattern
matching, and abstract types and created the index for the book.

e Jonathan Rees profoundly influenced the content of this book while he
was a 6.821 teaching assistant. Many of the mini-languages, examples,
exercises, and software implementations, as well as some of the sections of
text, had their origins with Jonathan. Jonathan was also the author of an
early data type and pattern matching facility used in course software that
strongly influenced the facilities described in the book.

e Brian Reistad and Trevor Jim greatly improved the quality of the book.
As 6.821 teaching assistants, they unearthed and fixed innumerable bugs,
improved the presentation and content of the material, and created many
new exercises. Brian also played a major role in implementing software for
testing the mini-languages in the book.

e In addition to his contributions as a 6.821 teaching assistant, Alex Salcianu
also collected and edited homework and exam problems from fifteen years
of the course for inclusion in the book.

e Valuable contributions and improvements to this book were made by other
6.821 teaching assistants: Alexandra Andersson, Michael (Ziggy) Blair,

X

CONTENTS

Barbara Cutler, Joshua Glazer, Robert Grimm, Alex Hartemink, David
Huynh, Eddie Kohler, Gary Leavens, Ravi Nanavati, Jim O’Toole, Dennis
Quan, Alex Snoeren, Patrick Sobalvarro, Peter Szilagyi, Bienvenido Velez-
Rivera, Earl Waldin, and Qian Wang.

In Fall 2002, Michael Ernst taught 6.821 based on an earlier version of this
book, and his detailed comments resulted in many improvements.

Based on teaching 6.821 at MIT and using the course materials at Hong
Kong University and at Georgia Tech, Olin Shivers has made many ex-
cellent suggestions on how to improve the content and presentation of the
material.

While using the course materials at other universities, Gary Leavens, An-
drew Myers, Randy Osborne, and Kathy Yelick provided helpful feedback.

Early versions of the pragmatics system were written by Doug Grundman,
with major extensions by Raymie Stata and Brian Reistad.

Pierre Jouvelot did the lion’s share of the implementation of FX (a lan-
guage upon which early versions of 6.821 were based) with some help from
Mark Sheldon and Jim O’Toole.

Guillermo Rozas taught us many nifty pragmatics tricks. Our pragmatics
coverage is heavily influenced by his source-to-source front end to the MIT
Scheme compiler.

David Espinosa introduced us to embedded interpreters and helped us to
improve our presentation of dynamic semantics.

Ken Moody provided helpful feedback on the course material, especially
on the POSTFIX Equivalence Theorem.

Numerous 6.821 students have improved this book in various ways, from
correcting bugs to suggesting major reorganizations. In this regard, we
are especially grateful to: Atul Adya, Kavita Bala, Ron Bodkin, Philip
Bogle, Miguel Castro, Anna Chefter, Natalya Cohen, Richard Davis, An-
dre deHon, Michael Frank, Robert Grimm, Yevgeny Gurevich, Viktor Kun-
cak, Mark Lillibridge, Andrew Myers, Michael Noakes, John Pezaris, Matt
Power, Roberto Segala, Mark Torrance, and Carl Witty.

Jue Wang uncovered numerous typos and inconsistencies in her careful
proofreading of a late draft of the book.

CONTENTS xi

e Special thanks go to Jeanne Darling, who has been the 6.821 course ad-
ministrator for over ten years. Her administrative, editing, and technical
skills, as well as her can-do spirit and cheerful demeanor, were critical in
keeping both the course and the book project afloat.

xii

CONTENTS

Chapter 1

Introduction

Order and simplification are the first steps toward the mastery of a
subject — the actual enemy is the unknown.

— The Magic Mountain, Thomas Mann

1.1 Programming Languages

Programming is a great load of fun. As you have no doubt experienced, clarity
and simplicity are the keys to good programming. When you have a tangle of
code that is difficult to understand, your confidence in its behavior wavers, and
the code is no longer any fun to read or update.

Designing a new programming language is a kind of meta-level programming
activity that is just as much fun as programming in a regular language (if not
more s0). You will discover that clarity and simplicity are even more important
in language design than they are in ordinary programming. Today hundreds of
programming languages are in use — whether they be scripting languages for
Internet commerce, user interface programming tools, spreadsheet macros, or
page format specification languages that when executed can produce formatted
documents. Inspired application design often requires a programmer to provide
a new programming language or to extend an existing one. This is because
flexible and extensible applications need to provide some sort of programming
capability to their end users.

Elements of programming language design are even found in “ordinary” pro-
gramming. For instance, consider designing the interface to a collection data

2 CHAPTER 1. INTRODUCTION

structure. What is a good way to encapsulate an iteration idiom over the ele-
ments of such a collection? The issues faced in this problem are similar to those
in adding a looping construct to a programming language.

The goal of this book is to teach you the great ideas in programming lan-
guages in a simple framework that strips them of complexity. You will learn sev-
eral ways to specify the meaning of programming language constructs and will
see that small changes in these specifications can have dramatic consequences
for program behavior. You will explore many dimensions of the programming
language design space, study decisions to be made along each dimension, and
consider how decisions from different dimensions can interact. We will teach
you about a wide variety of neat tricks for extending programing languages with
interesting features like undoable state changes, exitable loops, pattern match-
ing, and multitasking. Our approach for teaching you this material is based
on the premise that when language behaviors become incredibly complex, the
descriptions of the behaviors must be incredibly simple. It is the only hope.

1.2 Syntax, Semantics, and Pragmatics

Programming languages are traditionally viewed in terms of three facets:
1. Syntax — the form of programming languages.
2. Semantics — the meaning of programming languages.
3. Pragmatics — the implementation of programming languages.

Here we briefly describe these facets.

Syntax

Syntax focuses on the concrete notations used to encode programming language
phrases. Consider a phrase that indicates the sum of the product of w and x
and the quotient of ¥ and z. Such a phrase can be written in many different
notations: as a traditional mathematical expression

wr +y/z
or as a LISP parenthesized prefix expression

+ (xwx) (/y2)
or as a sequence of keystrokes on a postfix calculator

[w][EnTER| [X][ENTER] [X | [v] [ENTER | [2] [ENTER | [+][+]

or as a layout of cells and formulae in a spreadsheet

1.2. SYNTAX, SEMANTICS, AND PRAGMATICS 3

1 2 3 4
A W= wkx = A2 * B2
B x= y/z = | C2 /D2
C y= ans = | A4 + B4
D z=

or as a graphical tree

Although these concrete notations are superficially different, they all designate
the same abstract phrase structure (the sum of a product and a quotient). The
syntax of a programming language specifies which concrete notations (strings
of characters, lines on a page) in the language are legal and which tree-shaped
abstract phrase structure is denoted by each legal notation.

Semantics

Semantics specifies the mapping between the structure of a programming lan-
guage phrase and what the phrase means. Such phrases have no inherent mean-
ing: their meaning is only determined in the context of a system for interpreting
their structure. For example, consider the following expression tree:

Suppose we interpret the nodes labeled 1, 10, and 11 as the usual decimal
notation for numbers, and the nodes labeled + and * as the sum and product of
the values of their subnodes. Then the root of the tree stands for (1+11)-10 =
120. But there are many other possible meanings for this tree. If * stands
for exponentiation rather than multiplication, the meaning of the tree could be
1210, If the numerals are in binary notation rather than decimal notation, the
tree could stand for (in decimal notation) (1 + 3) -2 = 8. Alternatively, 1 and
11 might represent the set of odd integers, 10 might represent the set of even

4 CHAPTER 1. INTRODUCTION

integers, and + and * might represent addition and multiplication on integer
sets; in this case, the meaning of the tree would be the set of even integers.
Perhaps the tree does not indicate an evaluation at all, and only stands for a
property intrinsic to the tree, such as its height (3), its number of nodes (5),
or its shape (perhaps it describes a simple corporate hierarchy). Or maybe the
tree is an arbitrary encoding of a particular object of interest, such as a rock or
a book.

This example illustrates how a single program phrase can have many possible
meanings. Semantics describes the relationship between the abstract structure
of a phrase and its meaning.

Pragmatics

Whereas semantics deals with what a phrase means, pragmatics focuses on the
details of how that meaning is computed. Of particular interest is the effective
use of various resources, such as time, space, and access to shared physical
devices (storage devices, network connections, video monitors, printers, etc.).
As a simple example of pragmatics, consider the evaluation of the following
expression tree (under the first semantic interpretation described above):

Suppose that a and b stand for particular numeric values. Because the phrase
(+ a b) appears twice, a naive evaluation strategy will compute the same sum
twice. An alternative strategy is to compute the sum once, save the result, and
use the saved result the next time the phrase is encountered. The alternative
strategy does not change the meaning of the program, but does change its use of
resources; it reduces the number of additions performed, but may require extra
storage for the saved result. Is the alternative strategy better? The answer
depends on the details of the evaluation model and the relative importance of
time and space.

Another potential improvement in the example is the phrase (¥ 2 3), which
always stands for the number 6. If the sample expression is to be evaluated many
times (for different values of a and b), it may be worthwhile to replace (x 2 3)

1.3. GOALS 5

by 6 to avoid unnecessary multiplications. Again, this is a purely pragmatic
concern that does not change the meaning of the expression.

1.3 Goals

The goals of this book are to explore the semantics of a comprehensive set
of programming language design idioms, show how they can be combined into
complete practical programming languages, and discuss the interplay between
semantics and pragmatics. Except for establishing a few syntactic conventions
at the outset, we won’t say much about syntax at all. We will introduce a num-
ber of tools for describing the semantics of programming languages, and will
use these tools to build intuitions about programming language features and
study many of the dimensions along which languages can vary. Our coverage
of pragmatics is mainly at a high level: we will study some simple program-
ming language implementation techniques and program improvement strategies
rather than focus on squeezing the last ounce of performance out of a particular
computer architecture.

We will discuss programming language features in the context of several
mini-languages. Each of these is a simple language that captures the essen-
tial features of a class of existing programming languages. In many cases, the
mini-languages are so pared down that they are hardly suitable for serious pro-
gramming activities. Nevertheless, these languages embody all of the key ideas
in programming languages. Their simplicity saves us from getting bogged down
in needless complexity in our explorations of semantics and pragmatics. And
like good modular building blocks, the components of the mini-languages are
designed to be “snapped together” to create practical languages.

1.4 PostFix: A Simple Stack Language

We will introduce the tools for syntax, semantics, and pragmatics in the context
of a mini-language called PosTF1X. PoSTFIX is a simple stack-based language
inspired by the POSTSCRIPT graphics language, the FORTH programming lan-
guage, and Hewlett Packard calculators. Here we give an informal introduction
to POSTFIX in order to build some intuitions about the language. In subsequent
chapters, we will introduce tools that allow us to study POSTFIX in more depth.

6 CHAPTER 1. INTRODUCTION

1.4.1 Syntax

The basic syntactic unit of a POSTFIX program is the command. Commands
are of the following form:

e Any integer numeral. E.g., 17, 0, -3.

e One of the following special command tokens: add, div, eq, exec, gt, 1t,
mul, nget, pop, rem, sel, sub, swap.

e An executable sequence — a single command that serves as a subrou-
tine. It is written as a parenthesized list of subcommands separated by
whitespace.! E.g., (7 add 3 swap) and (2 (5 mul) exec add).

Since executable sequences contain other commands (including other executable
sequences), they can be arbitrarily nested. An executable sequence counts as a
single command despite its hierarchical structure.

A PosTFIX program is a parenthesized sequence consisting of (1) the token
postfix followed by (2) a natural number (i.e., non-negative integer) indicat-
ing the number of program parameters followed by (3) zero or more POSTFIX
commands. For example, here are some sample POSTFIX programs:

(postfix 0 4 7 sub)
(postfix 2 add 2 div)
(postfix 4 4 nget 5 nget mul mul swap 4 nget mul add add)

(postfix 1 ((3 nget swap exec) (2 mul swap exec) swap)
(5 sub) swap exec exec)

In PosTFi1X, as in all the languages we’ll be studying, all parentheses are re-
quired and none are optional. Moving parentheses around changes the structure
of the program and most likely changes its behavior. Thus, while the following
PosTFiIX executable sequences use the same numerals and command tokens in
the same order, they are distinguished by their parenthesization, which, as we
shall see below, makes them behave differently.

((1) (2 3 4) swap exec)
((1 2) (3 4) swap exec)
((1 2) (3 4 swap) exec)

YWhitespace is any contiguous sequence of characters that leave no mark on the page, such
as spaces, tabs, and newlines.

1.4. POSTFIX: A SIMPLE STACK LANGUAGE 7

1.4.2 Semantics

The meaning of a POSTFIX program is determined by executing its commands in
left to right order. Each command manipulates an implicit stack of values that
initially contains the integer arguments of the program (where the first argument
is at the top of the stack and the last argument is at the bottom). A value on
the stack is either (1) an integer numeral or (2) an executable sequence. The
result of a program is the integer value at the top of the stack after its command
sequence has been completely executed. A program signals an error if (1) the
final stack is empty, (2) the value at the top of the final stack is not an integer,
or (3) an inappropriate stack of values is encountered when one of its commands
is executed.

The behavior of POSTFIX commands is summarized in Figure 1.1. Each
command is specified in terms of how it manipulates the implicit stack. ~We
use the notation P 2% o to mean that executing the POSTFIX program P on
the integer argument sequence args returns the value v. The notation P -%4%
error means that executing the POSTFIX program P on the arguments signals
an error. Errors are caused by inappropriate stack values or an insufficient
number of stack values. In practice, it is desirable for an implementation to
indicate the type of error. We will use comments (delimited by squiggly braces)
to explain errors and other situations.

To illustrate the meanings of various commands, we show the results of some
simple program executions. For example, numerals are pushed onto the stack,
while pop and swap are the usual stack operations.

123) 3 {Only the top stack value is returned.}
1 2 3 pop) ~> U

(postfix 0
0

(postfix 0 1 2 swap 3 pop) 4,
0
0

(postfix
(postfix 0 1 swap) 1L error {Not enough values to swap.}

(postfix O 1 pop pop) error {Empty stack on second pop.}

Program arguments are pushed onto the stack (from last to first) before the
execution of the program commands.

y B4 3 {Initial stack has 3 on top with 4 below.}

(postfix 2 swap) —— B4, 4

(postfix 2

(postfix 3 pop swap) 1345, 5

It is an error if the actual number of arguments does not match the number of
parameters specified in the program.

(postfix 2 swap) i> error {Wrong number of arguments.}

(postfix 1 swap) £b error {Not enough values to swap.}

8 CHAPTER 1. INTRODUCTION

e N : Push the numeral N onto the stack.

e sub : Call the top stack value v; and the next-to-top stack value vs. Pop these
two values off the stack and push the result of vs —v; onto the stack. If there are
fewer than two values on the stack or the top two values aren’t both numerals,
signal an error. The other binary arithmetic operators — add (addition), mul
(multiplication), div (integer division®) and rem (remainder of integer division)
— behave similarly. Both div and rem signal an error if v; is zero.

e 1t : Call the top stack value v; and the next-to-top stack value vg. Pop these
two values off the stack. If vy < w;, then push a 1 (a true value) on the
stack, otherwise push a 0 (false). The other binary comparison operators — eq
(equals) and gt (greater than) — behave similarly. If there are fewer than two
values on the stack or the top two values aren’t both numerals, signal an error.

e pop : Pop the top element off the stack and discard it. Signal an error if the
stack is empty.

e swap : Swap the top two elements of the stack. Signal an error if the stack has
fewer than two values.

e sel: Call the top three stack values (from top down) v;, vz, and vz. Pop these
three values off the stack. If vs is the numeral 0, push v; onto the stack; if vg
is a non-zero numeral, push vy onto the stack. Signal an error if the stack does
not contain three values, or if v3 is not a numeral.

e nget : Call the top stack value vjpge, and the remaining stack values (from top
down) vy, va, ..., Un. POD Vindes Off the stack. If vj,4e, 1S a numeral ¢ such that
1 < i < n and v; is a numeral, push v; onto the stack. Signal an error if the
stack does not contain at least one value, if v;,4e; 1S not a numeral, if 4 is not
in the range [1,n], or if v; is not a numeral.

e (C; ... Cyp) : Push the executable sequence (C; ... C,) as a single value onto
the stack. Executable sequences are used in conjunction with exec.

e exec : Pop the executable sequence from the top of the stack, and prepend
its component commands onto the sequence of currently executing commands.
Signal an error if the stack is empty or the top stack value isn’t an executable
sequence.

%The integer division of n and d returns the integer quotient g such that n = gd+r, where
r (the remainder) is such that 0 <r < |d| if n > 0 and —|d| <r <0ifn <O0.

Figure 1.1: English semantics of POSTFIX commands.

1.4. POSTFIX: A SIMPLE STACK LANGUAGE 9

Note that program arguments must be integers — they cannot be executable
sequences.

Numerical operations are expressed in postfix notation, in which each oper-
ator comes after the commands that compute its operands. add, sub, mul, and
div are binary integer operators. 1t, eq, and gt are binary integer predicates
returning either 1 (true) or 0 (false).

(postfix 1 4 sub) Bl

(postfix 1 4 add 5 mul 6 sub 7 div) B,

(postfix 5 add mul sub swap div) M -20
(postfix 3 4000 swap pop add) 1300.20.11, 4599
(postfix 2 add 2 dlv) B, 5 {An averaging program.}
(postfix 1 3 div) L7

(postfix 1 3 rem) 07,

(postfix 1 4 1t) £

(postfix 1 4 1t) 2L

(postfix 1 4 1t 10 add) Bl

(postfix 1 4 mul add) i> error {Not enough numbers to add.}
(postfix 2 4 sub div) =25 error {Divide by zero.}

In all the above examples, each stack value is used at most once. Sometimes
it is desirable to use a number two or more times or to access a number that is
not near the top of the stack. The nget command is useful in these situations; it
puts at the top of the stack a copy of a number located on the stack at a specified
index. The index is 1-based, from the top of the stack down, not counting the
index value itself.

(postfix 2 1 nget) —=> 128, {4 is at index 1, 5 at index 2.}

(postfix 2 2 nget) —— 1.5,

It is an error to use an index that is out of bounds or to access a non-numeric
stack value (i.e., an executable sequence) with nget.

(postfix 2 3 nget) & error {Index 3 is too large.}
(postfix 2 0 nget) 123, error {Indea: 0 is too small.}

(postfix 1 (2 mul) 2 nget) error {Value at index 2 is not a number.}

The nget command is particularly helpful for expressing numerical programs,
where it is common to reference arbitrary parameter values and use them mul-
tiple times.

10 CHAPTER 1. INTRODUCTION

(postfix 1 1 nget mul) Bl o5 {4 squaring program.}

(postfix 4 4 nget 5 nget mul mul swap 4 nget mul add add) [3:452], 95

{Given a, b, ¢, z, calculates az® + bz + c.}

As illustrated in the last example, the index of a given value increases every
time a new value is pushed on the stack.

Executable sequences are compound commands like (2 mul) that are pushed
onto the stack as a single value. They can be executed later by the exec com-
mand. Executable sequences act like subroutines in other languages; execution
of an executable sequence is similar to a subroutine call, except that transmission
of arguments and results is accomplished via the stack.

(postfix 1 (2 mul) exec) 1 14 {(2 mul) is a doubling subroutine.}

(postfix 0 (O swap sub) 7 swap exec) U, 7
{(0 swap sub) is a negation subroutine.}

(postfix 0 (7 swap exec) (O swap sub) swap exec) U, 7
(postfix 0 (2 mul)) U, error {Final top of stack is not an integer.}

(postfix 0 3 (2 mul) gt) 1 error
{Ezecutable sequence where number expected.}

(postfix O 3 exec) U error {Number where executable sequence expected.}

(postfix 1 ((3 nget swap exec) (2 mul swap exec) swap)

(6 sub) swap exec exec) 19
{Given n, calculates 2n - 5.}

The last example illustrates that evaluations involving executable sequences can
be rather contorted.

The sel command selects between two values based on a test value, where
zero is treated as false and any non-zero integer is treated as true. It can be
used in conjunction with exec to conditionally execute one of two executable
sequences.

(postfix 1 2 3 sel) LR

(postfix 1 2 3 sel) JURE

(postfix 1 2 3 sel) 07, 9 {Any non-zero number is “true”.}
(postfix 0 (2 mul) 3 4 sel) 1L error {Test not a number.}
(postfix 4 1t (add) (mul) sel exec) 226l 30

(postfix 4 1t (add) (mul) sel exec) 2%, 19

(postfix 1 1 nget 0 1t (O swap sub) () sel exec) L7
{An absolute value program.}

(postfix 1 1 nget 0 1t (0 swap sub) () sel exec) 6

1.4. POSTFIX: A SIMPLE STACK LANGUAGE 11

> Exercise 1.1 Determine the value of the following POSTFIX programs on an empty
stack.

a. (postfix O 10 (swap 2 mul sub) 1 swap exec)
b. (postfix 0 (5 (2 mul) exec) 3 swap)

c. (postfix 0 (() exec) exec)

d. (postfix 0 2 3 1 add mul sel)

e. (postfix 0 2 3 1 (add) (mul) sel)

f. (postfix 0 2 3 1 (add) (mul) sel exec)

g. (postfix 0 O (2 3 add) 4 sel exec)

h. (postfix 0 1 (2 3 add) 4 sel exec)

i. (postfix 0 (56 6 1t) (2 3 add) 4 sel exec)

j. (postfix O (swap exec swap exec) (1 sub) swap (2 mul) <
swap 3 swap exec)

> Exercise 1.2 Write executable sequences that compute the following logical oper-
ations. Recall that 0 is false and all other numerals are treated as true.

a. not: return the logical negation of a single argument.

b. and: given two numeric arguments, return 1 if their logical conjunction is true,
and 0 otherwise.

c. short-circuit-and: return 0 if the first argument is false; otherwise return the
second argument.

d. Demonstrate the difference between and and short-circuit-and by writing a POST-
Fix program that has a different result if and is replaced by short-circuit-and. <

> Exercise 1.3

a. Without nget, is it possible to write a POSTFIX program that squares its single
argument? If so, write it; if not, explain.

b. Is it possible to write a POSTFIX program that takes three integers and returns
the smallest of the three? If so, write it; if not, explain.

c. Is it possible to write a POSTFIX program that calculates the factorial of its single
argument (assume it’s non-negative)? If so, write it; if not, explain. <

12 CHAPTER 1. INTRODUCTION

1.4.3 The Pitfalls of Informal Descriptions

The “by-example” and English descriptions of POSTFIX given above are typical
of the way that programming languages are described in manuals, textbooks,
courses, and conversations. That is, a syntax for the language is presented, and
the semantics of each of the language constructs is specified using English prose
and examples. The utility of this method for specifying semantics is apparent
from the fact that the vast majority of programmers learn to read and write
programs via this approach.

But there are many situations in which informal descriptions of programming
languages are inadequate. Suppose that we want to improve a program by
substituting one phrase for another throughout the program. How can we be
sure that the substitution preserves the meaning of the program?

Or suppose that we want to prove that the language as a whole has a partic-
ular property. For instance, it turns out that every POSTFIX program is guaran-
teed to terminate (i.e., a POSTFIX program cannot enter an infinite loop). How
would we go about proving this property based on the informal description?
Natural language does not provide any rigorous framework for reasoning about
programs or programming languages. Without the aid of some formal reasoning
tools, we can only give hand-waving arguments that are not likely to be very
convincing.

Or suppose that we wish to extend POSTFIX with features that make it easier
to use. For example, it would be nice to name values, to collect values into arrays,
to query the user for input, and to loop over sequences of values. With each new
feature, the specification of the language becomes more complex, and it becomes
more difficult to reason about the interaction between various features. We’d
like techniques that help to highlight which features are orthogonal and which
can interact in subtle ways.

Or suppose that a software vendor wants to develop POSTFIX into a product
that runs on several different machines. The vendor wants any given POSTFIX
program to have exactly the same behavior on all of the supported machines.
But how do the development teams for the different machines guarantee that
they're all implementing the “same” language? If there are any ambiguities
in the POSTFIX specification that they’re implementing, different development
teams might resolve the ambiguity in incompatible ways. What’s needed in
this case is an unambiguous specification of the language as well as a means of
proving that an implementation meets that specification.

The problem with informal descriptions of a programming language is that
they’re neither concise nor precise enough for these kinds of situations. English
is often verbose, and even relatively simple ideas can be unduly complicated

1.4. POSTFIX: A SIMPLE STACK LANGUAGE 13

to explain. Moreover, it’s easy for the writer of an informal specification to
underspecify a language by forgetting to cover all the special cases (e.g., error
situations in POSTF1X). It isn’t that covering all the special cases is impossible;
it’s just that the natural language framework doesn’t help much in pointing out
what the special cases are.

It is possible to overspecify a language in English as well. Consider the
PosSTFIX programming model introduced above. The current state of a pro-
gram is captured in two entities: the stack and the current command sequence.
To programmers and implementers alike, this might imply that a language im-
plementation must have explicit stack and command sequence elements in it.
Although these would indeed appear in a straightforward implementation, they
are not in any way required; there are alternative models and implementations
for POSTFIX (see Exercise 3.12). It would be desirable to have a more ab-
stract definition of what constitutes a legal POSTFIX implementation so that a
would-be implementer could be sure that an implementation was faithful to the
language definition regardless of the representations and algorithms employed.

In the remaining chapters of the first segment of this book, we introduce a
number of tools that address the inadequacies outlined above. First, in Chapter 2
we present s-expression grammars, a simple specification for syntax that we
will use to describe the structure of all of the mini-languages we explore. Then,
using POSTFIX as our object of study, we introduce two approaches to formal
semantics:

e An operational semantics (Chapter 3) explains the meaning of pro-
gramming language constructs in terms of the step-by-step process of an
abstract machine.

e A denotational semantics (Chapter 4) explains the meaning of pro-
gramming language constructs in terms of the meaning of their subparts.

These approaches support the unambiguous specification of programming lan-
guages and provide a framework in which to reason about properties of programs
and languages. This segment concludes in Chapter 5 with a presentation of a
technique for determining the meaning of recursive specifications.

Throughout the book, mathematical concepts are formalized in terms of the
metalanguage described in Appendix A. Readers are encouraged to familiarize
themselves with this language by skimming the appendix early on and later
referring to it in more detail on an “as needed” basis.

While we will emphasize formal tools throughout this book, we do not im-
ply that formal tools are a panacea or that formal approaches are superior to
informal ones in an absolute sense. In fact, informal explanations of language

14 CHAPTER 1. INTRODUCTION

features are usually the simplest way to learn about a language. In addition, it’s
very easy for formal approaches to get out of control, to the point where they are
overly obscure, or require too much mathematical machinery to be of any prac-
tical use on a day-to-day basis. For this reason, we won’t dwell on nitty gritty
formal details and won’t cover material as a dry sequence of definitions, theo-
rems, and proofs. Instead, our goal is to show that the concepts underlying the
formal approaches are indispensable for understanding particular programming
languages as well as the dimensions of language design. The tools introduced in
this segment should be in any serious computer scientist’s bag of tricks.

Reading

No single book can entirely cover the broad area of programming languages. We
recommend the following books for other perspectives of the field:

e Mitchell has authored two relevant books: [Mit96] is a mathematical ex-
ploration of programming language semantics based on a series of typed
lambda calculi, while [Mit03] discusses the dimensions of programming
languages in the context of many modern programming languages.

e Friedman, Wand, and Haynes [FWHO1] uses interpreters and translators
written in SCHEME to study essential programming language features in
the context of some mini-languages.

e Reynolds [Rey98] gives a theoretical treatment of many programming lan-
guage features.

e Gelernter and Jaganathan [GJ90] discusses a number of popular program-
ming languages in a historical perspective and compare them in terms of
expressiveness.

e MacLennan’s text [Mac99] stands out as one of the few books on program-
ming languages to enumerate a set of principles and then analyze popular
languages in terms of these principles.

e Kamin [Kam90] uses interpreters written in PASCAL to analyze the core
features of several popular languages.

e Marcotty and Ledgard [ML86] cover a wide range of programming lan-
guage features and paradigms by presenting a sequence of mini-languages.

e Gunter [Gun92] provides an in-depth overview of formal programming lan-
guage semantics.

1.4. POSTFIX: A SIMPLE STACK LANGUAGE 15

e Winskel [Win93] presents a mathematical introduction to formal program-
ming language semantics.

e Horowitz [Hor95] has collected an excellent set of classic papers on the de-
sign of programming languages that every programming language designer
should be familiar with.

16

CHAPTER 1.

INTRODUCTION

Chapter 2

Syntax

since feeling is first

who pays any attention

to the syntax of things
will never wholly kiss you;

for life’s not a paragraph
And death i think is no parenthesis
— e e cummings

In the area of programming languages, syntax refers to the form of programs
— how they are constructed from symbolic parts. A number of theoretical and
practical tools — including grammars, lexical analyzers, and parsers — have
been developed to aid in the study of syntax. By and large we will downplay
syntactic issues and tools. Instead, we will emphasize the semantics of programs;
we will study the meaning of language constructs rather than their form.

We are not claiming that syntactic issues and tools are unimportant in the
analysis, design, and implementation of programming languages. In actual pro-
gramming language implementations, syntactic issues are very important and a
number of standard tools (like Lex and Yacc) are available for addressing them.
But we do believe that syntax has traditionally garnered much more than its
fair share of attention, largely because its problems were more amenable to so-
lution with familiar tools. This state of affairs is reminiscent of the popular tale
of the person who searches all night long under a street lamp for a lost item
not because the item was lost there but because the light was better. Luckily,
many investigators strayed away from the street lamp of parsing theory in order

17

18 CHAPTER 2. SYNTAX

to explore the much dimmer area of semantics. Along the way, they developed
many new tools for understanding semantics, some of which we will focus on in
later chapters.

Despite our emphasis on semantics, however, we can’t ignore syntax com-
pletely. Programs must be expressed in some form, preferably one that elucidates
the fundamental structure of the program and is easy to read, write, and reason
about. In this chapter, we introduce a set of syntactic conventions for describing
our mini-languages.

2.1 Abstract Syntax

We will motivate various syntactic issues in the context of EL, a mini-language
of expressions. EL describes functions that map any number of numerical inputs
to a single numerical output. Such a language might be useful on a calculator,
say, for automating the evaluation of commonly used mathematical formulae.

Figure 2.1 describes (in English) the abstract structure of a legal EL pro-
gram. EL programs contain numerical expressions, where a numerical expression
can be constructed out of various kinds of components. Some of the components,
like numerals, references to input values, and various kinds of operators, are
primitive — they cannot be broken down into subparts.! Other components
are compound — they are constructed out of constituent components. The
components have names; e.g., the subparts of an arithmetic operation are the
rator (short for “operator”) and two rands, (short for “operands”) while the
subparts of the conditional expression are the test, the consequent, and the
alternate.

There are three major classes of phrases in an EL program: whole programs
that designate calculations on a given number of inputs, numerical expressions
that designate numbers, and boolean expressions that designate truth values
(i.e., true or false). The structural description in Figure 2.1 constrains the ways
in which these expressions may be “wired together”. For instance, the test
component of a conditional must be a boolean expression, while the consequent
and alternate components must be numerical expressions.

A specification of the allowed wiring patterns for the syntactic entities of a
language is called a grammar. Figure 2.1 is said to be an abstract grammar
because it specifies the logical structure of the syntax but does not give any
indication how individual expressions in the language are actually written.

The structure determined by an abstract grammar for an individual program
phrase can be represented by an abstract syntax tree (AST). Consider an EL

!Numerals can be broken down into digits, but we will ignore this detail.

2.1. ABSTRACT SYNTAX 19

A legal EL program is a pair of (1) a numargs numeral specifying the number of
parameters and (2) a body that is a numerical expression, where a numerical expression
is either:

e an intlit — an integer numeral num;

e an input — a reference to one of the program inputs specified by an index
numeral.

e an arithmetic operation — an application of a rator, in this case a binary arith-
metic operator, to two numerical rand expressions, where an arithmetic operator
is either

— addition,

— subtraction,

multiplication,
— division,
— remainder;
e a conditional expression — a choice between numerical consequent and alternate

expressions determined by a boolean test expression, where a boolean expression
is either

— a boollit — a boolean literal bool,

— a relational operation — an application of rator, in this case a binary
relational operator, to two numerical rand expressions, where a relational
operator is one of

x less-than,
x equal-to,
* greater-than;

— a logical operation — an application of a rator, in this case a binary logical
operator, to two boolean rand expressions, where a logical operator is one
of

* and,

* Or.

Figure 2.1: An abstract grammar for EL programs.

20 CHAPTER 2. SYNTAX

program that returns zero if its first input is between 1 and 10 (exclusive) and
otherwise returns the product of the second and third inputs. The abstract
syntax tree for this program appears in Figure 2.2. Each node of the tree
corresponds to a numerical or boolean expression. The leaves of the tree stand
for primitive phrases, while the intermediate nodes represent compound phrases.
The labeled edges from a parent node to its children show the relationship
between a compound phrase and its components. The AST is defined purely in
terms of these relationships; the particular way that the nodes and edges of a
tree are arranged on the page is immaterial.

Logical Arithmetic
Operation Operation
rator randl \1(12 rator,/ randl rand2
and Operation Operation [eue | []
rand2 rator, randl/ rand2 index]

| Input | [meLit |

IntLit

index num

Figure 2.2: An abstract syntax tree for an EL program.

2.2 Concrete Syntax

Abstract grammars and ASTs aren’t very helpful when it comes to representing
programs in a textual fashion.? The same abstract structure can be expressed in

2Tt is also possible to represent programs more pictorially, and visual programming languages
are an active area of research. But textual representations enjoy certain advantages over visual
ones: they tend to be more compact than visual representations; the technology for processing
them and communicating them is well-established; and, most importantly, they can effectively
make use of our familiarity with natural language.

2.3. S-EXPRESSION GRAMMARS SPECIFY ASTS 21

many different concrete forms. The sample EL conditional expression considered
above, for instance, could be written down in some strikingly different textual
forms. Here are three examples:

e if $1 > 1 && $1 < 10 then O else $2 * $3 endif

e (cond ((and (> (arg 1) 1) (< (arg 1) 10))
0)
(else (* (arg 2) (arg 3))))

e 1 input 1 gt 1 input 10 1t and {0} {2 input 3 input mul} choose

The above forms differ along a variety of dimensions:

o Keywords and operation names. The keywords if, cond, and choose all
indicate a conditional expression, while multiplication is represented by
the names * and mul. Accessing the ith input to the program is written
in three different ways: $i, (arg ¢), and ¢ input.

e Operand order. The example forms use infix, prefix, and postfix opera-
tions, respectively.

e Means of grouping. Grouping can be determined by precedence (&& has
a lower precedence than > and < in the first example), keywords (then,
else, and endif delimit the test, consequent, and alternate of the first
conditional), or explicit matched delimiter pairs (such as the parentheses
and braces in the last two examples).

These are only some of the possible dimensions; many more are imaginable. For
instance, numbers could be written in many different numeral formats: e.g.,
decimal, binary, or octal numerals, scientific notation, or even roman numerals!

The above examples illustrate that the nature of concrete syntax necessitates
making representational choices that are arbitrary with respect to the abstract
syntactic structure. These choices are explicitly encoded in a concrete gram-
mar that specifies how to parse a linear text string into a concrete syntax
tree (CST). A concrete syntax tree has the structural relationships of an ab-
stract syntax tree embedded within it, but it is complicated by the handling of
details needed to make the textual layout readable and unambiguous.

2.3 S-Expression Grammars Specify ASTs

While we will dispense with many of the complexities of concrete syntax, we
still need some concrete notation for representing abstract syntax trees. Such
a representation should be simple, yet permit us to precisely describe abstract

22 CHAPTER 2. SYNTAX

syntax trees and operations on such trees. Throughout this book, we need to
operate on abstract syntax trees to determine the meaning of a phrase, the type
of a phrase, the translation of a phrase, and so on. To perform such operations,
we need a far more compact representation for abstract syntax trees than the
English description in Figure 2.1 or the graphical one in Figure 2.2.

We have chosen to represent abstract syntax trees using s-expression gram-
mars. An s-expression grammar unites LISP’s fully parenthesized prefix nota-
tion with traditional grammar notations to describe the structure of abstract
syntax trees via parenthesized sequences of symbols and meta-variables. Not
only are these grammars very flexible for definining unambiguous program lan-
guage syntax, but it is easy to construct programs that process s-expression no-
tation. This facilitates writing interpreters and compilers for the mini-languages
we will study.

2.3.1 S-Expressions

An s-expression (short for symbolic expression) is a LISP notation for rep-
resenting trees by parenthesized linear text strings. The leaves of the trees are
symbolic tokens, where (to first approximation) a symbolic token is any se-
quence of characters that does not contain a left parenthesis (‘(’), a right paren-
thesis (‘)’), or a whitespace character. Examples of symbolic tokens include x,
foo, this-is-a-token, 17, 6.821, and 4/3*pi*r~2.3

An intermediate node in a tree is represented by a pair of parentheses sur-
rounding the s-expressions that represent the subtrees. Thus, the s-expression

((this is) an ((example) (s-expression tree)))

designates the structure depicted in Figure 2.3. Whitespace is necessary for
separating tokens that appear next to each other, but can be used liberally to
enhance the readability of the structure. Thus, the above s-expression could also
be written as
((this is)
an
((example)
(s-expression
tree)))

without changing the structure of the tree.

3We always write s-expressions in teletype-font.

2.3. S-EXPRESSION GRAMMARS SPECIFY ASTS 23

|example| |s—expression|

Figure 2.3: Viewing ((this is) an ((example) (s-expression tree))) as
a tree.

2.3.2 The Structure of S-Expression Grammars

An s-expression grammar combines the domain notation of Appendix A with
s-expressions to specify the syntactic structure of a language. It has two parts:

1. A listing of syntactic domains, one for each kind of phrase.

2. A set of production rules that define the structure of compound phrases.

Figure 2.4 presents a sample s-expression grammar for EL.

A syntactic domain is a class of program phrases. Primitive syntactic do-
mains are collections of phrases with no substructure. The primitive syntactic
domains of EL are Intlit, BooleanLiteral, ArithmeticOperator, RelationalOp-
erator, and LogicalOperator. Primitive syntactic domains are specified by an
enumeration of their elements or by an informal description with examples. For
instance, the details of what constitutes a numeral in EL are pretty much left
to the reader’s intuition.

Compound syntactic domains are collections of phrases built out of other
phrases. Because compound syntactic domains are defined by a grammar’s pro-
duction rules, the syntactic domain listing does not explicitly indicate their
structure. All syntactic domains are annotated with domain variables (such as
NE, BE, and N) that range over their elements; these play an important role
in the production rules.

The production rules specify the structure of compound domains. There is
one rule for each compound domain. A production rule has the form

domain-variable ::= pattern [phrase-type]
| pattern [phrase-type]

| pattern [phrase-type]
where

24 CHAPTER 2. SYNTAX

Syntactic Domains:

P € Program
NE € NumExp
BE € BoolExp
N € Intlit = {-2,-1,0,1,2,...}
B € BooleanLiteral = {true, false}
A € ArithmeticOperator = {+, -, *, /, %}
R € RelationalOperator = {<, =, >}
L € LogicalOperator = {and, or}

Production Rules:

P ::= (el Npumargs NEpody) [Program)]

NE ::= Npum [IntLit]
| (arg Nindes) [Input]
| (Arator NErandi NErandz) [Arithmetic Operation]
| (1f BEtest NEconsequent NEalternate) [Conditional]

BEboo, := B [BoolLit]

| (Rrator NErand: NErandz) [Relational Operation]
| (Lrator BErand] BErg/n,dQ) [Logical Operation]

Figure 2.4: An s-expression grammar for EL.

2.3. S-EXPRESSION GRAMMARS SPECIFY ASTS 25

e domain-variable is the domain variable for the compound syntactic domain
being defined,

e pattern is an s-expression pattern (defined below), and

e phrase-type is a mnemonic name for the subclass of phrases in the domain
that match the pattern. It corresponds to the labels of intermediate nodes
in an AST.

Each line of the rule is called a production; it specifies a collection of phrases
that are considered to belong to the compound syntactic domain being defined.
The second production rule in Figure 2.4, for instance, has four productions
specifying that a NumExp can be an integer literal, an indexed input, an arith-
metic operation, or a conditional.

An s-expression pattern appearing in a production stands for the domain of
all s-expressions that have the form of the pattern. S-expression patterns are like
s-expressions except that domain variables may appear as tokens. For example,
the pattern (if BEiest NE consequent INVE giternate) contains the domain variables
BE sty NE consequent, and NE gjernate- Such a pattern specifies the structure of a
compound phrase — a phrase that is built from other phrases. Subscripts on
the domain variables indicate their role in the phrase. This helps to distinguish
positions within a phrase that have the same domain variable — e.g., the con-
sequent and alternate of a conditional, which are both numerical expressions.
This subscript appears as an edge label in the AST node corresponding to the
pattern, while the phrase type of the production appears as the node label. So
the if pattern denotes an AST node pattern of the form:

tes consequent alternate
BE E NE

An s-expression pattern P is said to match an s-expression SX if P’s domain
variables di, ..., d, can be replaced by matching s-expressions SX 7, ..., SX,
to yield SX. Each SX; must be an element of the domain over which d; ranges.
A compound syntactic domain contains exactly those s-expressions that match

the patterns of its productions in an s-expression grammar.
For example, Figure 2.5 shows the steps by which the NumExp production

(if BEtest NE consequent NE alternate)
matches the s-expression

(if (= (arg 1) 3) (arg 2) 4).

26 CHAPTER 2. SYNTAX

Matching is a recursive process: BE . matches (= (arg 1) 3), NE onsequent
matches (arg 2), and NF gternate matches 4. The recursion bottoms out at
primitive syntactic domain elements (in this case, elements of the domain Intlit).
Figure 2.5 shows how an AST for the sample if expression is constructed as the
recursive matching process backs out of the recursion.

Note that the pattern (if BEicst NE consequent NE aiternate) Would not match
any of the s-expressions (if 1 2 3), (if (arg 2) 2 3),or (if (+ (arg 1) 1) 2 3),
because none of the test expressions 1, (arg 2), or (+ (arg 1) 1) match any
of the patterns in the productions for BoolExp.

More formally, the rules for matching an s-expression pattern to an s-
expression are as follows:

e A symbolic token T in the pattern matches only 7.

e A domain variable for a primitive syntactic domain D matches an s-
expression SX only if SX is an element of D.

e A domain variable for a compound syntactic domain D matches an s-
expression SX only if one of the patterns in the rule for D matches SX.

e A pattern (P; ...P,) matches an s-expression (SX ; ...5X,) only if each
subpattern P; matches the corresponding subexpression SX ;.

We shall use the notation s-expp to designate the domain element in D that
an s-expression designates. When D is a compound domain, s-exp p corresponds
to an abstract syntax tree that indicates how s-exp matches one of the rule
patterns for the domain. For example,

(if (and (> (arg 1) 1) (< (arg 1) 10)) 0 (x (arg 2) (arg 3))) NumExp

can be viewed as the abstract syntax tree depicted in Figure 2.2 on page 20.
Each node of the AST indicates the production that successfully matches the
corresponding s-expression, and each edge indicates a domain variable that ap-
peared in the production pattern. The nodes are labeled by the phrase type of
the production and the edges are labeled by the subscript names of the domain
variables used in the production pattern.

In the notation s-expp, domain subscript D serves to disambiguate cases
where s-exp belongs to more than one syntactic domain. For example, 1t is
1 as a primitive numeral, while 1NumExp 1S 1 as a numerical expression. The
subscript will be omitted when the domain is clear from context.

2.3. S-EXPRESSION GRAMMARS SPECIFY ASTS 27
s-expression |[domain production AST
(arg 1) NE (arg Nindeq;)
index|
3 NE Noum
(Rm.tor
(= (arg 1) 3) BE NEm.nd] g;l(j:ai?;:)anl
NEm.nd.Q)
rator fandl rand2
IntLit
index]
(arg 2) NE (arg N’mdmr)
index|
4 NE Noum
(if (= arg 1) (if BEiest PETRT——
(al”g 2) NE NEconscqucnf, i
4) NEaltcrna,f,c) test ~ consequent alternate
Relational .
Operation Input IntLit
rand2
IntLit 2 4

Figure 2.5: The steps by which (if (= (arg 1) 3) (arg 2) 4) is determined
to be a member of the syntactic domain NumExp. In each row, an s-expression
matches a domain by a production to yield an abstract syntax tree.

28 CHAPTER 2. SYNTAX

2.3.3 Phrase Tags

S-expression grammars for our mini-languages will generally follow the Lisp-style
convention that compound phrases begin with a phrase tag that unambiguously
indicates the phrase type. In EL, if is an example of a phrase tag. The fact
that all compound phrases are delimited by explicit parentheses eliminates the
need for syntactic keywords in the middle of or at the end of phrases (e.g., then,
else, and endif in a conditional).

Because phrase tags can sometimes be cumbersome, we will often omit them
when no ambiguity results. Figure 2.6 shows an alternative syntax for EL in
which every production is marked with a distinct phrase tag. In this alternative
syntax, the addition of 1 and 2 would be written (arith + (num 1) (num 2))
— quite a bit more verbose than (+ 1 2)! But most of the phrase tags can be
removed without introducing ambiguity. Because numerals are clearly distin-
guished from other s-expressions, there is no need for the num tag. Likewise, we
can dispense with the bool tag. Since the arithmetic operators are disjoint from
the other operators, the arith tag is superfluous; similarly for the rel and log
tags. The result of these optimizations is the original EL syntax in Figure 2.4.

P = (el Npumargs NEpody) [Program]

NE = (num N,um) [IntLit]
| (arg Nindes) [Input]
| (arith Asator NEjand: NErand2) [Arithmetic Operation]
| (if BEtest NEconsequent NEalternate) [Conditional]

BE ::= (bool B) [Truth Value]
| (rel Ryutor NErand: NErand2) [Relational Operation]
| (108 Lrator BErandI BErandQ) [Logical Operation]

Figure 2.6: An alternative syntax for EL in which every production has a phrase
tag.

2.3.4 Sequence Patterns

As defined above, each component of an s-expression pattern matches only s-
expressions. But sometimes it is desirable for a pattern component to match se-
quences of s-expressions. For example, suppose we want to extend the + operator
of EL to accept an arbitrary number of numeric operands (making (+ 1 2 3 4)
and (+ 2 (+ 3 4 5) (+ 6 7)) legal numerical expressions in EL). Using the

2.3. S-EXPRESSION GRAMMARS SPECIFY ASTS 29

simple patterns introduced above, this extension requires an infinite number of
productions:

NE ==
| ([Addition-0]
| (+ NE anas) [Addition-1]
| (+ NE,ona: NE. andz) [Addition-2]
| (+ NErandl NErandQ NErandf)’) [AddlthI’l— }
-

Here we introduce a concise way of handling this kind of syntactic flexibility
within s-expression grammars. We extend s-expression patterns so that any
pattern can be annotated with a postfix ‘*’ character. Such a pattern is called a
sequence pattern. A sequence pattern P* matches any consecutive sequence
of zero or more s-expressions SX; ... SX, such that each SX; matches the
pattern P.

For instance, the extended addition expression can be specified concisely by
the pattern (+ NFE ,4,4*). Here are some phrases that match this new pattern,
along with the sequence matched by NFE ,,4* in each case:

(+1234) NE,ana*=1[1, 2, 3, 4NumBsxp

(+2 (+345) (+6T7) NErand —[2 (+ 34 5) (+ 6 7)]NumExp
(+ 1) NErand*—[]NumExp

(+) NEran *= []NumExp

Note that a sequence pattern can match any number of elements, including zero
or one. To specify that an addition should have a minimum of two operands,
we could use the following pattern:

(+ NErandI NErandQ NErest*)'

A postfix ‘*7 is similar to ‘¥, except the pattern matches a sequence with at
least one element. Thus, (+ NE,4,q7) is equivalent to (+ NE,4ng NE,est™).

A postfix “*’ or ‘T’ can be attached to any s-expression pattern, not just a
domain variable. For example, in the s-expression pattern

(cond (BEtest NEaction)* (else NEdefault))a

the subpattern (BE o5t NE 4etion) ™ matches any sequence of parenthesized clauses
containing a boolean expression followed by a numerical expression.

To avoid ambiguity, s-expression grammars are not allowed to use s-expression
patterns in which multiple sequence patterns enable a single s-expression to
match a pattern in more than one way. As an example of a disallowed pat-
tern, consider (op NE,unq1* NE ang2™), which could match the s-expression
(op 1 2) in three different ways:

L4 NErandl * = [1a 2]NumExp and NErandQ* = []NumExp

30 CHAPTER 2. SYNTAX

L4 NErandl * = [1]NumExp and NErandQ *= [Q]NumExp
L4 NErandl *= []NumExp and NErandQ* = [17 2]NumExp-

A disallowed pattern can always be transformed into a legal pattern by inserting
explicit parentheses to demarcate components. For instance, the following are
all unambiguous legal patterns:

(op (NEyand1™) (NE gnaz™*))

(Op (NErandl*) NErandQ*)
(OP NErandl* (NErandQ*))-

2.3.5 Notational Conventions

In addition to the s-expression patterns described above, we will employ a few
other notational conventions for syntax.

Domain Variables

In addition to being used in s-expression patterns, domain variables can appear
inside s-expressions when they denote particular s-expression. For example, if
NE; is the s-expression (+ 1 2) and NFE, is the s-expression (- 3 4), then
(* NE; NEj) is the same syntactic entity as (* (+ 1 2) (- 3 4)).

Sequence Notation

Sequence notation, including the infix notations for the cons (‘") and append
(‘@’) sequence functions (see Section A.3.4), can be intermixed with s-expression
notation to designate sequence elements of compound syntactic domains. For
example, all of the following are alternative ways of writing the same extended
EL addition expression:

(+123)

+ 1, 2, 3D
(+ [1, 2] @ [3])
+1.[2, 3D

Similarly, if NE; =1, NEx*=[2, (+ 3 4)], and NEs*=[(x 5 6), (- 7 8)],
then (+ NE; . NE*) designates the same syntactic entity as

(+12 (+ 3 4)),
and (+ NE,* @ NE3*) designates the same syntactic entity as

(+2 (+34) (x56) (-7 8)).

2.3. S-EXPRESSION GRAMMARS SPECIFY ASTS 31

The sequence notation is only legal in positions where a production for a
compound syntactic domain contains a sequence pattern. For example, the fol-
lowing notations are illegal because if expressions do not contain any component
sequences:

(if [(< (arg 1) 1), 2, 3])
(if [(< (arg 1) 1), 2] @ [3])
(if (< (arg 1) 1) . [2, 3]).

Sequence notation can be used in s-expression patterns as well. For example,
the pattern

(+ NErandI . NErest*)

matches any addition expression with at least one operrand. The pattern
(+]\'f-ETaerdsI>k Q@ NErandSQ*)

can match an addition expression with any number of operands. If the expression
has one or more arguments, the match is ambiguous (and therefore disallowed,
see page 29) since there are multiple ways to bind NE 4n4s; ™ and NE 4452 ™ to
sequences that append to the argument sequence.

Syntactic Functions

We will follow a convention (standard in the semantics literature) that functions
on compound syntactic domains are defined by a series of clauses, one for each
production. Figure 2.7 illustrates this style of definition for two functions on EL
expressions: nheight specifies the height of a numerical expression, while bheight
specifies the height of a boolean expression. Each clause consists of two parts:
a head that specifies an s-expression pattern from a production; and a body that
describes the meaning of the function for s-expressions that match the head
pattern. The double brackets, [], are traditionally used in syntactic functions
to demarcate a syntactic argument, and thus to clearly separate expressions in
the language being defined (program code, for example) from the language of the
semantics. These brackets may be viewed as part of the name of the syntactic
function.

Functions on syntactic domains are formally maps from s-expressions to a
result domain. However, for all intents and purposes, they can also be viewed as
maps from abstract syntax trees to the result domain. Fach clause of a syntactic
function definition specifies how the function at the node of an AST is defined
in terms of the result of applying this function to the components of the AST.

32 CHAPTER 2. SYNTAX

nheight : NumExp — Nat
nheight[NE] =0
nheight[(arg NE)] =0
nheight[(A NE; NEp)] =(1 + (max nheight[NE ;] nheight[NE3]))
nhe1ght[[(1f BEtest NEcon NEalt)]]
= (1 + (max bheight[BEcst] (max nheight[NE .o,] nheight[NE .4])))

bheight : BoolExp — Nat

bheight[B] =0

bheight[(R NE; NEj2)] =(1 + (max nheight[NE ;] nheight[NE:]))
bheight[(L BE; BEj2)] = (1 + (max bheight[BE ;] bheight[BEz]))

Figure 2.7: Two examples illustrating the form of function definitions on syn-
tactic domains.

2.4 The Syntax of PostFix

Equipped with our syntactic tools, we are now ready to formally specify the
syntactic structure of POSTF1X, the stack language introduced in Section 1.4,
and to explore some variations on this structure. Figure 2.8 presents an s-
expression grammar for POSTFIX. Top-level programs are represented as s-
expressions of the form (postfix Npumargs @body) s Where Npymargs i a numeral
specifying the number of arguments and @4, is the command sequence executed
by the program. The sequence pattern C* in the production for Commands
(@) indicates that it is a sequence domain over elements from the Command
domain. Most of the elements of Command (C) are single tokens (e.g., add
and sel), except for executable sequences, which are parenthesized elements
of the Commands domain. The mutually recursive structure of Command and
Commands permits arbitrary nesting of executable sequences.

The concrete details specified by Figure 2.8 are only one way of capturing
the underlying abstract syntactic structure of the language. Figure 2.9 presents
an alternative s-expression grammar for POSTFIX. In order to avoid confusion,
we will refer to the language defined in Figure 2.9 as POSTF1x2.

There are two main differences between the grammars of POSTFIX and
PostF1x2.

1. The PosTF1x2 grammar strictly adheres to the phrase tag convention in-
troduced in Section 2.3.3. That is, every element of a compound syntactic
domain appears as a parenthesized structure introduced by a unique tag.
For example, 1 becomes (int 1), pop becomes (pop), and add becomes

2.4. THE SYNTAX OF POSTFIX 33

P € Program

@ € Commands

C € Command

A € ArithmeticOperator = {add, sub, mul, div, rem}
R € RelationalOperator = {1t, eq, gt}

Nentlit = {..., -2, -1, 0, 1, 2, ...}

P = (postfix Npumargs Qbody) [Program]

Q = C* [Command Sequence]
Cu:=N [IntLit]
| pop [Pop]
| swap [Swap]
| A [Arithmetic Operator]
| R [Relational Operator]
| nget [NumGet]
| sel [Select]
| exec [Execute]
| (@) [Executable Sequence]

Figure 2.8: An s-expression grammar for POSTFIX.

(arithop add).*

2. Rather than representing command sequences as a sequence domain, POST-
F1x2 uses the : and (skip) commands to encode such sequences. (skip)
is intended to be a “no op” command that leaves the stack unchanged,
while (: C; (C5) is intended first to perform C; on the current stack and
then to perform Cy on the stack resulting from C;. The : and (skip)
commands in POSTF1x2 serve the roles of conscommand and []command i
PostFix. For example, the POSTFIX command sequence

[1,2,2dd]command = (cons 1 (cons 2 (cons add []command)))
can be encoded in POSTFIX2 as a single command:
(: (int 1) (: (int 2) (: (arithop add) (skip)))).
The difference in phrase tags is a surface variation in concrete syntax that

does not affect the structure of abstract syntax trees. Whether sequences are ex-
plicit (the original grammar) or implicit (the alternative grammar) is a deeper

“the arithop keyword underscores that the arithmetic operators are related; similarly for
relop.

34 CHAPTER 2. SYNTAX

P € Program

C € Command

A € ArithmeticOperator = {add, sub, mul, div, rem}
R € RelationalOperator = {1t, eq, gt}

Nelntlit = {..., -2, -1, 0, 1, 2, ...}

P ::= (postfix Npumargs Chody) [Program]|

C := (int N) [IntLit]
| (pop) [Pop]
| (swap) [Swap]
| (arithop A) [Arithmetic Operator]
| (relop R) [Relational Operator]
| (nget) [NumGet]
| (sel) [Select)
| (exec) [Execute]
| (seq O [Executable Sequence]
| (: C; Cy) [Compose]
| (skip) [Skip]

Figure 2.9: An s-expression grammar for POSTFIX2, an alternative syntax for
PosTFIX.

variation because the abstract syntax trees differ in these two cases (see Fig-
ure 2.10).

Although the tree structures are similar, it is not a priori possible to deter-
mine that the second tree encodes a sequence without knowing more about the
semantics of compositions and skips. In particular, : and (skip) must satisfy
two behavioral properties in order for them to encode sequences:

e (skip) must be an identity for :. I.e., (: C (skip)) and (: (skip) ()
must behave like C.

e : must be associative. lL.e., (: C; (: Cy C3)) must behave the same
as (: (: C; Cp) Cs).

These two properties amount to saying that (1) skips can be ignored and (2) in a
tree of compositions, only the order of the leaves matters. With these properties,
any tree of compositions is isomorphic to a sequence of the non-skip leaves. The
informal semantics of : and (skip) given above satisfies these two properties.

Is one of the two grammars presented above “better” than the other? It
depends on the context in which they are used. As the following example indi-
cates, the POSTFIX grammar certainly leads to programs that are more concise
than those generated by the POSTFI1X2 grammar:

2.4. THE SYNTAX OF POSTFIX

35

Program

commands!

Command
Sequence
coml, Ic0m2 com3
Integer Integer Arithmetic
Literal Literal Operator

(a) AST for PoSTFIX program

Program

command

Compose

coml com2

Integer
Literal

coml com2
Integer)
Literal Compose
coml
Arithmetic
Operator

(b) AST for POSTFIX2 program

| Compose

Figure 2.10: A comparison of the abstract syntax trees for two encodings of a

PosTFix program.

; PosTFIX

(postfix 1 (1 2 add) (3 4 mul) sel

; PosTFIX2
(postfix2 1

(: (seq (: (int 1) (: (int 2) (:

exec)

(arithop add)
(skip)))))

(: (seq (: (int 3) (: (int 4) (: (arithop mul)

(: (sel)

(: (exec) (skip))))))

(skip)))))

Additionally, we shall see that the explicit sequences of POSTFIX make it more
amenable to certain kinds of semantic analysis. On the other hand, other se-
mantic and pragmatic tools are easier to apply to POSTF1X2 programs. Though
we will focus on the POSTFIX grammar, we will consider POSTFI1X2 when it
is instructive to do so. In any event, the reader should be aware that even
the fairly constrained boundaries of s-expression grammars leave some room for

design decisions.

36 CHAPTER 2. SYNTAX

Reading

The notion of abstract syntax is due to McCarthy [McC62]. This notion is
commonly used in operational and denotational semantics to ignore unimportant
syntactic details (see the references in Chapters 3-4). Interpreters and compilers
often have a “front-end” stage that converts concrete syntax into explicit data
structures representing abstract syntax trees.

Our s-expression grammars are based on McCarthy’s LISP s-expression no-
tation [McC60], which is a trivially parsable generic and extensible concrete
syntax for programming languages. Many tools — most notably Lex [Les75]
and Yacc [Joh75] — are available for converting more complex concrete syn-
tax into abstract syntax trees. A discussion of these tools, and the scanning
and parsing theory behind them, can be found in almost any compiler text-
book. For a particularly concise account, consult one of Appel’s textbooks
[App98b, App98a, AP02].

Chapter 3

Operational Semantics

And now I see with eye serene
The very pulse of the machine.

— She Was a Phantom of Delight, William Wordsworth

3.1 The Operational Semantics Game

Consider executing the following POSTFIX program on the arguments [4, 5]:
(postfix 2 (2 (3 mul add) exec) 1 swap exec sub)

It helps to have a bookkeeping notation that represents the process of applying
the informal rules presented in Chapter 1. For example, the table in Figure 3.1
illustrates one way to represent the execution of the above program. The table
has two columns: the first column in each row holds the current command
sequence; the second holds the current stack. The execution process begins
by filling the first row of the table with the command sequence of the given
program and an empty stack. Execution proceeds in a step-by-step fashion by
using the rule for the first command of the current row to generate the next row.
Each execution step removes the first command from the sequence and updates
the stack. In the case of exec, new commands may also be prepended to the
command sequence. The execution process terminates as soon as a row with an
empty command sequence is generated. The result of the execution is the top
stack element of the final row (-3 in the example).

The table-based technique for executing POSTFIX programs exemplifies an
operational semantics. Operational semantics formalizes the common intu-
ition that program execution can be understood as a step-by-step process that

37

38 CHAPTER 3. OPERATIONAL SEMANTICS

| Commands | Stack |
(2 (3 mul add) exec) 1 swap exec sub 4
5
1 swap exec sub (2 (3 mul add) exec)
4
5
swap exec sub 1
(2 (3 mul add) exec)
4
5
exec sub (2 (3 mul add) exec)
1
4
5
2 (3 mul add) exec sub 1
4
5
(83 mul add) exec sub 2
1
4
5
exec sub (3 mul add)
2
1
4
5
3 mul add sub 2
1
4
5
mul add sub 3
2
1
4
5
add sub 6
1
4
5
sub 7
4
5
-3
5

Figure 3.1: A table showing the step-by-step execution of a POSTFIX program.

3.1. THE OPERATIONAL SEMANTICS GAME 39

evolves by the mechanical application of a fixed set of rules. Sometimes the
rules describe how the state of some physical machine is changed by executing
an instruction. For example, assembly code instructions are defined in terms of
the effect that they have on the architectural elements of a computer: registers,
stack, memory, instruction stream, etc. But the rules may also describe how
language constructs affect the state of some abstract machine that provides a
mathematical model for program execution. Each state of the abstract machine
is called a configuration.

For example, in the POSTFIX abstract machine implied by the table in Fig-
ure 3.1, each configuration is modeled by one row of the execution table: a pair
of a program and a stack. The next configuration of the machine is determined
from the current one based on the first command in the current program. The
behavior of each command can be specified in terms of how it transforms the
current configuration into the next one. For example, executing the add com-
mand removes it from the command sequence and replaces the top two elements
of the stack by their sum. Executing the exec command pops an executable
sequence from the top of the stack and prepends its commands in front of the
commands following exec.

The general structure of an operational semantics execution is illustrated in
Figure 3.2. An abstract machine accepts a program to be executed along with
its inputs and then chugs away until it emits an answer. Internally, the abstract
machine typically manipulates configurations with two kinds of parts:

1. The code component: a program phrase that controls the rest of the
computation.

2. The state components: entities that are manipulated by the program
during its execution. In the case of POSTFIX, the single state component
is a stack, but configurations for other languages might include state com-
ponents modeling random-access memory, a set of name/object bindings,
a file system, a graphics state, various kinds of control information, etc.
Sometimes there are no state components, in which case a configuration is
just code.

The stages of the operational execution are as follows:

e The program and its inputs are first mapped by an input function into
an initial configuration of the abstract machine. The code component
of the initial configuration is usually some part of the given program, and
the state components are appropriately initialized from the inputs. For in-
stance, in an initial configuration for POSTF1X, the code component is the

40

CHAPTER 3. OPERATIONAL SEMANTICS

Inputs <I2r——-——__

Answer

Abstract Machine

Input |
Function |

Initial Configuration |

| Intermediate Configuration | N
; \
S
v /
| Intermediate Conﬁguration| !

<Z[C—--—-——7

Output |
Function |

Final Configuration |

Figure 3.2: The operational semantics “game board.”

command sequence body of the program and the single state component is
a stack containing the integer arguments in order with the first argument
at the top of the stack.

After an initial configuration has been constructed, it’s time to “turn the
crank” of the abstract machine. During this phase, the rules governing the
abstract machine are applied in an iterative fashion to yield a sequence of
intermediate configurations. Each configuration is the result of one step
in the step-by-step execution of the program. This stage continues until a
configuration is reached that is deemed to be a final configuration. What
counts as a final configuration varies widely between abstract machines.
In the case of POSTFIX, a configuration is final when the code component
is an empty command sequence.

The last step of execution is mapping the final configuration to an answer
via an output function. What is considered to be an answer differs
greatly from language to language. For POSTFIX, the answer is the top
stack value in a final configuration, if it’s an integer. If the stack is empty
or the top value is an executable sequence, the answer is an error token. In

3.2. SMALL-STEP OPERATIONAL SEMANTICS (SOS) 41

other systems, the answer might also include elements like the final state
of the memory, file system, or graphics screen.

Sometimes an abstract machine never reaches a final configuration. This can
happen for one of two reasons:

1. The abstract machine may reach a non-final configuration to which no rules
apply. Such a configuration is said to be a stuck state. For example, the
initial configuration for the POSTFIX program (postfix 1 sub) is a stuck
state because the rules in Figure 1.1 don’t say how to handle sub when the
stack doesn’t contain at least two elements. (The configuration is not final
because the command sequence [sub] is non-empty.) Stuck states often
model error situations.

2. The rule-applying process of the abstract machine might not terminate.
In any universal programming language! it is possible to write programs
that loop forever. For such programs, the execution process of the abstract
machine never terminates. As a consequence of the halting theorem?, we
can’t do better than this: there’s no general way to tweak the abstract
machine of a universal language so that it always indicates when it is in

an infinite loop.

We show in Section 3.4.3 that all POSTFIX programs must terminate. This
implies that POSTFIX is not universal.

3.2 Small-step Operational Semantics (SOS)

3.2.1 Formal Framework

Above, we presented a high-level introduction to operational semantics. Here, we
iron out all the details necessary to turn this approach into a formal framework
known as small-step operational semantics (SOS?). An SOS is character-
ized by the use of rewrite rules to specify the step-by-step transformation of
configurations in an abstract machine.

To express this framework formally, we will use the mathematical metalan-
guage described in Appendix A. Before reading further, you should at least

! A programming language is universal if it can express all computable functions.

2The halting theorem states that there is no program that can decide for all programs P
and all inputs A whether P terminates on A.

3This framework, due to Plotkin [Plo81], was originally called structured operational
semantics. It later became known as the small-step approach to distinguish it from — you
guessed it — a big-step approach (see Section 3.3).

42 CHAPTER 3. OPERATIONAL SEMANTICS

skim this appendix to familiarize yourself with the notational conventions of the
metalanguage. Later, when you encounter an unfamiliar notation or concept,
consult the relevant section of the appendix for a detailed explanation.

Consider a programming language L with legal programs P € Program, in-
puts I € Inputs, and elements A € Answer that are considered to be valid answers
to programs. Then an SOS for L is a five-tuple SOS = (CF,=, FC,IF, OF),
where:

e (CF is the set of configurations for an abstract machine for L. The
metavariable cf ranges over configurations.

e = the transition relation, is a binary relation between configurations
that defines the allowable transitions between configurations. The notation
c¢f = cf’ means that there is a (one step) transition from the configu-
ration cf to the configuration c¢f’. This notation, which is shorthand for
(cf,cf’) € =, is pronounced “cf rewrites to c¢f’ in one step.” The two
parts of a transition have names: cf is called the left hand side (LHS)
and cf’ is called the right hand side (RHS). The transition relation is
usually specified by rewrite rules, as described below in Section 3.2.3.

The reflexive, transitive closure of = is written =. So ¢f = ¢f’ means
that cf rewrites to ¢f’ in zero or more steps. The sequence of transitions
between cf and cf’ is called a transition path. The length of a transition
path is the number of transitions in the path. The notation cf . cf’
indicates that cf rewrites to ¢f’ in n steps, i.e., via a transition path of
length n. The notation ¢f = indicates that there is an infinitely long
transition path beginning with cf.

A configuration cf is reducible if there is some cf’ such that c¢f = cf’.
If there is no such cf’, then we write cf % and say that cf is irreducible.
CF can be partitioned into two sets, Reducible sos (containing all reducible
configurations) and Irreducible gos (containing all irreducible ones). We
omit the SO.S subscript when it is clear from context. A transition relation
= is deterministic if for every cf € Reducible sos there is exactly one cf”’
such that c¢f = cf’. Otherwise, = is said to be non-deterministic.

e F(, the set of final configurations, is a subset of Irreduciblesps con-
taining all configurations that are considered to be final states in the ex-
ecution of a program. The set Stuckgog of stuck states is defined to be
(Irreduciblesos — FC) — i.e., the non-final irreducible configurations. We
omit the SOS subscript when it is clear from context.

3.2. SMALL-STEP OPERATIONAL SEMANTICS (SOS) 43

e [F : Program X Inputs — CF' is an input function that maps a program
and its inputs into an initial configuration.

e OF : FC — Answer is an output function that maps a final configura-
tion to an appropriate answer domain.

An SOS defines the behavior of a program in a way that we shall now make
precise. What are the possible behaviors of a program? As discussed above, a
program either (1) returns an answer (2) gets stuck in a non-final irreducible
configuration or (3) loops infinitely. We model these via the following Outcome
domain, where stuckout designates a stuck program and loopout designates a
infinitely looping program:

StuckOut = {stuckout}
LoopOut = {loopout}

o € Outcome = Answer + StuckOut + LoopOut
stuck = (StuckOut — Outcome stuckout)
oo = (StuckOut — Outcome loopout)

Suppose that an SOS has a deterministic transition relation. Then we can define
the behavior of a program P on inputs I as follows:

beh get : Program x Inputs — Outcome
(Answer +— Outcome (OF cf)) if (IF (P,I)) = cf € FC
behger (P,I) = < stuck if (IF (P,I)) = cf € Stuck
% it (IF (P, 1)) =

In the first case, an execution starting at the initial configuration eventually
reaches a final configuration, whose answer is returned. In the second case, an
execution starting at the initial configuration eventually gets stuck at a non-final
configuration. In the last case, there is an infinite transition path starting at
the initial configuration, so the program never halts.

What if the transition relation is not deterministic? In this case, it is possible
that there are multiple transition paths starting at the initial configuration.
Some of these might end at final configurations with different answers. Others
might be infinitely long or end at stuck states. In general, we must allow for
the possibility that there are many outcomes, so the signature of the behavior
function beh in this case must return a set of outcomes — i.e., an element of the

44 CHAPTER 3. OPERATIONAL SEMANTICS

powerset domain P(Outcome)*
beh : Program x Inputs — P(Outcome)
0 = (Answer — Outcome (OF cf))
and (IF (P,I)) = cf € FC
o = stuck and (IF (P,I)) = cf € Stuck
o = oo and (IF (P,I)) =

o € (beh (P, 1)) if

An SOS with a non-deterministic transition relation won’t necessarily give rise
to results that contain multiple outcomes. Indeed, we will see later (in Sec-
tion 3.4.2) that some systems with non-deterministic transition relations can
still have a behavior that is deterministic — i.e., the resulting set of outcomes
is always a singleton.

3.2.2 Example: An SOS for PostFix

We can now formalize the elements of the POSTFIX SOS described informally
in Section 3.1 (except for the transition relation, which will be formalized in
Section 3.2.3). The details are presented in Figure 3.3. A stack is a sequence
of values that are either integer numerals (from domain Intlit) or executable
sequences (from domain Commands). POSTFIX programs take a sequence of
integer numerals as their inputs, and, when no error is encountered, return an
integer numeral as an answer. A configuration is a pair of a command sequence
and a stack. A final configuration is one whose command sequence is empty and
whose stack is non-empty with an integer numeral on top (i.e., an element of
FinalStack). The input function /F' maps a program and its numeric inputs to a
configuration consisting of the body command sequence and an initial stack with
the inputs arranged from top down. If the number of arguments N expected by
the program does not match the actual number n of arguments supplied, then
IF returns a stuck configuration ([]command; []vale) that represents an error.
The output function OF returns the top integer numeral from stack of a final
configuration.

The PosTF1x SOS in Figure 3.3 models errors using stuck states. By def-
inition, stuck states are exactly those irreducible configurations that are non-
final. In POsSTFIX, stuck states are irreducible configurations whose command
sequence is non-empty or those that pair an empty command sequence with a
stack that is empty or has an executable sequence on top. The outcome of a
program that reaches such a configuration will be stuck.

4The result of beh must in fact be a non-empty set of outcomes, since every program will
have at least one outcome.

3.2. SMALL-STEP OPERATIONAL SEMANTICS (SOS) 45

Domains
V € Value = Intlit + Commands
S € Stack = Value*

FinalStack = {S | (length S) > 1 and (nth 1 S) = (Intlit — Value N)}
Inputs = Intlit*
Answer = Intlit

SOS
Suppose that the POoSTFIX SOS has the form PFSOS =(CF,=, FC,IF, OF).
Then the SOS components are:
CF = Commands x Stack
= is a deterministic transition relation defined in Section 3.2.3
FC = {[]command} x FinalStack

IF : Program x Inputs — CF

=A(postfix N @Q),[N;,...,N,]).
if N=n then (Q,[(Intlit — Value Ny),..., (Intlit — Value N,)])
else <HCommand7 []Value> fi

OF : FC — Answer = A\{[]command, (Intlit — Value N) . S'). N

Figure 3.3: An SOS for PoSTF1X.

Although it is convenient to use stuck states to model errors, it is not strictly
necessary. With some extra work, it is always possible to modify the final config-
uration set F'C' and the output function OF so that such programs instead have
as their meaning some error token in Answer. Using POSTFIX as an example,
we can use a modified answer domain Answer’ that includes an error token, a
modified final configuration set F'C'’ that includes all irreducible configurations,
and the modified OF " shown below:

Error = {error}
Answer’ = Intlit + FError

FC'’ = Irreducible prsos
OF : FC' — Answer’
=M@, V*) . matching (Q, V*)

> ([]command, (Intlit — Value N) . S') | (Intlit — Answer’ N)
> else (Error — Answer’ error)

With these modifications, the behavior of a POSTFIX program that encounters
an error will be (Answer’ — Outcome (Error — Answer’ error)) rather than stuck.

46 CHAPTER 3. OPERATIONAL SEMANTICS

> Exercise 3.1 Look up definitions of the following kinds of automata and express
each of them in the SOS framework: deterministic finite automata, non-deterministic
finite automata, deterministic pushdown automata, and Turing machines. Represent
strings, stacks, and tapes as sequences of symbols. <

3.2.3 Rewrite Rules

The transition relation, =, for an SOS is often specified by a set of rewrite
rules. A rewrite rule has the form

antecedents
—_— [rule-name]
consequent

where the antecedents and the consequent contain transition patterns (described
below). Informally, the rule asserts: “If the transitions specified by the an-
tecedents are valid, then the transition specified by the consequent is valid.”
The label [rule-name] on the rule is just a handy name for referring to the rule,
and is not a part of the rule structure. A rewrite rule with no antecedents is an
axiom; otherwise it is a progress rule. The horizontal bar is usually omitted
when writing an axiom.

A complete set of rewrite rules for POSTFIX appears in Figure 3.4. All of
the rules are axioms. Together with the definitions of CF, FC, IF, and OF,
these rules constitute a formal SOS version of the informal POSTFIX semantics
originally presented in Figure 1.1. We will spend the rest of this section studying
the meaning of these rules and considering alternative rules.

3.2.3.1 Axioms

Since an axiom has no antecedents, it is determined solely by its consequent.
As noted above, the consequent must be a transition pattern. A transition
pattern looks like a transition except that the LHS and RHS may contain domain
variables interspersed with the usual notation for configurations. Informally, a
transition pattern is a schema that stands for all the transitions that match the
pattern. An axiom stands for the collection of all configuration pairs that match
the LHS and RHS of the transition pattern, respectively.

As an example, let’s consider in detail the axiom that defines the behavior
of POSTFIX numerals:

(N . Q, S=(Q, N .5 [num)]

This axiom stands for an infinite number of pairs of configurations of the form
{ef,cf’). Tt says that if ¢f is a configuration in which the command sequence is

3.2. SMALL-STEP OPERATIONAL SEMANTICS (SOS) 47

(N. @ 9=(@ N .S [num]

((Qezec) - Qrests S)= (Qrest; (Qezec) - 5) [seq]

(pop . Q, Vip - 8)=(Q,) [pop]

(swap . Q, Vi . Vo .S)=(Q, Vo .V, .S [swap]

(sel . Qrests Viaise - Virwe - 0 o S)= (Qrests Viaise - 9) [sel-false]

<Sel . Qresta Vfalse . Vtrue . Ntest . S>¢<Qrest7 Vtrue . S>7

where Njq 7#0 [sel-true]

<exec . Qrest7 (Qexec) . S>:><Qemec Q Q'resta S> [eXecute}
<A : Q’ Ni . Ng . S>:><Qa Nresult - S>, .

where Nyesuir =(calculate A No Nyp) arithop]

e e om0 [relop-true]

where (compare R No Ny)

where — (compare R Nz Nj) [relop-false]

<nget . Qv Nindes - [VI?"'7VN512(3]>:><Q’ Vdeea; . [Vlv"'aVNs«,chv

where (Compare gt Nindem O) A (Compare gt Nindez Nsize) [ngt]

Figure 3.4: Rewrite rules defining the transition relation (=) for POSTFIX.

48 CHAPTER 3. OPERATIONAL SEMANTICS

a numeral N followed by @ and the stack is S, then there is a transition from
cf to a configuration c¢f’ whose command sequence is @, and whose stack holds
N followed by S.

In the [num)] rule, N, @, and S are domain variables that act as patterns that
can match any element in the domain over which the variable ranges. Thus, N
matches any integer numeral,) matches any command sequence, and S matches
any stack. When the same pattern variable occurs more than once within a
rule, all occurrences must denote the same element; this constrains the class of
transitions specified by the rule. Thus, the [num] rule matches the transition

((17 add swap), [19, (2 mul)]) = ((add swap), [17, 19, (2 mul)])

with N =17, @ = [add, swap|, and S =[19, [2, mul]]. On the other hand, the
rule does not match the transition

((17 add swap), [19, (2 mul)]) = ((add swap), [17, 19, (2 mul), 23])

because there is no consistent interpretation for the pattern variable § — it is
[19, [(2 mul)]] in the LHS of the transition, and [19, (2 mul), 23] in the RHS.

As another example, the configuration pattern (@, N . N . S) would only
match configurations with stacks in which the top two values are the same
integer numeral. If the RHS of the [num] rule consequent were replaced with
this configuration pattern, then the rule would indicate that two copies of the
integer numeral should be pushed onto the stack.

At this point, the meticulous reader may have noticed that in the rewrite
rules and sample transitions we have taken many liberties with our notation.
If we had strictly adhered to our metalanguage notation, then we would have
written the [num] rule as

((Intlit — Command N) . @, S)=(Q, (Intlit — Value N) . S) [num)]

and we would have written the matching transition as

([17,add, swap]command, [(Intlit — Value 19),

(Commands — Value [2,mul]command)])
= ([add, swap|command, [(Intlit — Value 17),

(Intlit — Value 19),

(Commands — Value [2,mu1] Command)])

However, we believe that the more rigorous notation severely impedes the read-
ability of the rules and examples. For this reason, we will stick with our stylized
notation when it is unlikely to cause confusion. In particular, in operational
semantics rules and sample transitions, we adopt the following conventions:

3.2. SMALL-STEP OPERATIONAL SEMANTICS (SOS) 49

e Injections will be elided when they are clear from context. For example, if
N appears as a command, then it stands for (Intlit — Command N), while
if it appears as a stack element, then it stands for (Intlit — Value N).

e Sequences of syntactic elements will often be written as parenthesized s-
expressions. For example, the POSTFIX command sequence

[37 [27 mU1]Command7 SwaP]Command

will be abbreviated as
(3 (2 mul) swap).

The former is more precise, but the latter is easier to read. In POSTFIX
examples, we have chosen to keep the sequence notation for stacks to
visually distinguish the two components of a configuration.

Despite these notational acrobatics, keep in mind that we are manipulat-
ing well-defined mathematical structures. So it is always possible to add the
appropriate decorations to make the notation completely rigorous.®

Some of the POSTFIX rules ([arithop], [relop-true], [relop-false], [sel-true],
and [nget]) include side conditions that specify additional restrictions on the
domain variables. For example, consider the axiom which handles a conditional
whose test is true:

<Sel . Qresta Vfalse . Vtrue . Ntest . S>:><Qresta Vtrue . S>,

where Ny £0 [sel-true]

This axiom encodes the fact that sel treats any nonzero integer numeral as true.
It says that as long as the test numeral Nieg (the third element on the stack)
is not the same syntactic object as 0, then the next configuration is obtained
by removing sel from the command sequence, and pushing the second stack
element on the result of popping the top three elements off of the stack. The
domain variable Ny that appears in the side condition Ni.e #0 stands for the
same entity that N;.s denotes in the LHS of the consequent, providing the link
between the transition pattern and the side condition. Note how the domain
variables and the structure of the components are used to constrain the pairs
of configurations that satisfy this rule. This rule only represents pairs (cf,cf ')
in which the stack of c¢f contains at least three elements, the third of which is
a nonzero integer numeral. The rule does not apply to configurations whose
stacks have fewer than three elements, or whose third element is an executable
sequence or the numeral 0.

5But those who pay too much attention to rigor may develop rigor mortis!

50 CHAPTER 3. OPERATIONAL SEMANTICS

The side conditions in the [arithop], [relop], and [nget] rules deserve some
explanation. The calculate function used in the side condition of [arithop] re-
turns the numeral N,z resulting from the application of the operator A to the
operands Ny and Nj; it abstracts away the details of such computations.® We
assume that calculate is a partial function that is undefined when A is div and
Nj is 0, so division by zero yields a stuck state. The [relop-true] and [relop-false]
rules are similar to [arithop]; here the auxiliary compare function is assumed to
return the truth value resulting from the associated comparison. The rules then
convert this truth value into a POSTFIX value of 1 (true) or 0 (false). In the
[nget] rule, the compare function is used to ensure that the numeral Ny, g, is a
valid index for one of the values on the stack. If not, the configuration is stuck.
In the side conditions, the symbol — stands for logical negation and A stands
for logical conjunction.

You should now know enough about the rule notation to understand all of
the rewrite rules in Figure 3.4. The [num] and [seq| rules push the two different
kinds of values onto the stack. The [swap]|, [pop], [sel-true|, and [sel-false] rules
all perform straightforward stack manipulations. The [exec| rule prepends an
executable sequence from the stack onto the command sequence following the
current command.

It is easy to see that the transition relation defined in Figure 3.4 is determin-
istic. The first command in the command sequence of a configuration uniquely
determines which transition pattern might match, except for the case of sel,
where the third stack value distinguishes whether [sel-true] or [sel-false] matches.
The LHS of each transition pattern can match a given configuration in at most
one way. So for any given POSTFIX configuration cf, there is at most one cf’
such that cf = cf’.

3.2.3.2 Operational Execution

The operational semantics can be used to execute a POSTFIX program in a way
similar to the table-based method presented earlier. For example, the execution
of the POSTFIX program shown earlier in Figure 3.1 is illustrated in Figure 3.5.
The input function is applied to the program to yield an initial configuration,
and then a series of transitions specified by the rewrite rules are applied. In the

5Note that calculate manipulates numerals (i.e., names for integers) rather than the integers
that they name. This may seem pedantic, but we haven’t described yet how the meaning of an
integer numeral is determined. In fact, integers are never even used in the SOS for PosSTFIX.
If we had instead defined the syntax of POSTFIX to use integers rather than integer numerals,
then we could have used the usual integer addition operation here. But we chose integer
numerals to emphasize the syntactic nature of operational semantics.

3.2. SMALL-STEP OPERATIONAL SEMANTICS (SOS) o1

figure, the configuration resulting from each transition appears on a separate
line and is labeled by the applied rule. When a final configuration is reached,
the output function is applied to this configuration to yield -3, which is the
result computed by the program. We can summarize the transition path from
the initial to the final configuration as

(((2 (3 mul add) exec) 1 swap exec sub), [4, 5]) % (0O, [-3, 9]),

where 10 is the number of transitions. If we don’t care about this number, we
write * in its place.

(IF ((postfix 2 (2 (3 mul add) exec) 1 swap exec sub),[4,5]))
=(((2 (3 mul add) exec) 1 swap exec sub), [4, 5])

= ((1 swap exec sub), [(2 (3 mul add) exec), 4, 5]) [seq]

= ((swap exec sub), [1, (2 (3 mul add) exec), 4, 5]) [num)]
= ((exec sub), [(2 (3 mul add) exec), 1, 4, 5]) [swap]
= ((2 (3 mul add) exec sub), [1, 4, 5]) [execute]
= (((3 mul add) exec sub), [2, 1, 4, 5]) [num)]
= ((exec sub), [(3 mul add), 2, 1, 4, 5]) [seq]

= ((3 mul add sub), [2, 1, 4, 5]) [execute]
= ((mul add sub), [3, 2, 1, 4, 5]) [num)]
= ((add sub), [6, 1, 4, 5]) [arithop]
= <(sub) [7, 4, 5]) [arithop)
= (0O, [-3]} € FC [arithop]
(OF (0, [-3, 5])) =-3

Figure 3.5: An SOS-based execution of a POSTFIX program.

Not all PosTFIX executions lead to a final configuration. For example,
executing the program (program 2 add mul 3 4 sub) on the inputs [5, 6] leads
to the configuration ((mul 3 4 sub), [11]). This configuration is not final
because there are still commands to be executed. But it does not match the
LHS of any rewrite rule consequent. In particular, the [arithop] rule requires
the stack to have two integers at the top, and here there is only one. This is an
example of a stuck state. As discussed earlier, a program reaching a stuck state
is considered to signal an error. In this case the error is due to an insufficient
number of arguments on the stack.

> Exercise 3.2 Use the SOS for POSTFIX to determine the values of the POSTFIX

programs in Exercise 1.1. g

> Exercise 3.3 Consider extending POSTFIX with a rot command defined by the
following rewrite rule:

92 CHAPTER 3. OPERATIONAL SEMANTICS

<I‘Ot.Q,N. Vo . Vi o i VNS>:><Q7 Vi o VN . VO.S>,
where (compare gt N 0)
[rot]

a. Give an informal English description of the behavior of rot.

b. What is the contents of the stack after executing the following program on zero
arguments?
(postfix 0 1 2 3 1 2 3 rot rot rot)

c. Using rot, write a POSTFIX executable sequence that serves as subroutine for
reversing the top three elements of a given stack.

d. List the kinds of situations in which rot can lead to a stuck state, and give a
sample program illustrating each one. <

> Exercise 3.4 The SOS for POSTFIX specifies that a configuration is stuck when
the stack contains an insufficient number of values for a command. For example,
((2 mul), []) is stuck because multiplication requires two stack values.

a. Modify the semantics of POSTFIX so that, rather than becoming stuck, it uses
sensible defaults for the missing values when the stack contains an insufficient
number of values. For example, the default value(s) for mul would be 1:

((2 mul), []) = (2, [])
((mul), []) = (O, [])

b. Do you think this modification is a good idea? Why or why not? <

> Exercise 3.5 Suppose the Value domain in the POsTF1x SOS is augmented with a
distinguished error value. Modify the rewrite rules for POSTFIX so that error configura-
tions push this error value onto the stack. The error value should be “contagious” in the
sense that any operation attempting to act on it should also push an error value onto
the stack. Under the revised semantics, a program may return a non-error value even
though it encounters an error along the way. E.g., (postfix 0 1 2 add mul 3 4 sub)
should return -1 rather than signaling an error when called on zero inputs. <

> Exercise 3.6 An operational semantics for POSTFIX2 (the alternative POSTFIX
syntax introduced in Figure 2.9) can be defined by making minor tweaks to the opera-
tional semantics for POSTFIX. Assume that the set of configurations remains unchanged.
Then most commands from the secondary syntax can be handled with only cosmetic
changes. For example, here is the rewrite rule for a POSTFIX2 numeral command:

((dnt N) . @, S=(Q, N . S [numeral’]

3.2. SMALL-STEP OPERATIONAL SEMANTICS (SOS) 53

a. Define an input function that maps POSTFIX2 programs (which have the form
(postfix2 N ()) into an initial configuration.

b. Give rewrite axioms for the POSTFIX2 commands (exec), (skip), and

(: C; Cy).

(See Exercise 3.7 for another approach to defining the semantics of POSTFI1X2.) <

> Exercise 3.7 A distinguishing feature of POSTFI1x2 (the alternative POSTFIX syn-
tax introduced in Figure 2.9) is that its grammar makes no use of sequence domains. It
is reasonable to expect that its operational semantics can be modeled by configurations
in which the code component is a single command rather than a command sequence.
Based on this idea, design an SOS for POSTFI1X2 in which CF = Command x Stack.
(Note: do not modify the Command domain.) <

> Exercise 3.8 The Hugely Profitable Calculator Company has hired you to design
a calculator language called RPN that is based on POosTFix. RPN has the same syntax
as POSTFIX command sequences (an RPN program is just a command sequence that is
assumed to take zero arguments) and the operations are intended to work in basically
the same manner. However, instead of providing a arbitrarily large stack, RPN limits
the size of the stack to four values. Additionally, the stack is always full in the sense that
it contains four values at all times. Initially, the stack contains four 0 values. Pushing a
value onto a full stack causes the bottommost stack value to be forgotten. Popping the
topmost value from a full stack has the effect of duplicating the bottommost element
(i.e., it appears in the last two stack positions after the pop).

a. Develop a complete SOS for the RPN language.

b. Use your SOS to find the results of the following RPN programs:

i. (mul 1 add)
ii. (1 20 300 4000 50000 add add add add)

c. Although PoSTFIX programs are guaranteed to terminate, RPN programs are
not. Demonstrate this fact by writing an RPN program that loops infinitely. <

> Exercise 3.9 A class of calculators known as four-function calculators supports
the four usual binary arithmetic operators (+, -, *, /) in an infix notation.” Here we
consider a language FF based on four-function calculators. The programs of FF are any
parenthesized sequence of numbers and commands, where commands are +, -, *, /, and
=. The = command is used to compute the result of an expression, which may be used
as the first argument to another binary operator. The = may be elided in a string of
operations.

"The one described here is based on the TI-1025. See [You81] for more details.

o4 CHAPTER 3. OPERATIONAL SEMANTICS

(1 + 20 =) 57 21

(1 + 20 =+ 300 =) 5 321

(1 + 20 + 300 =) & 321 {Note elision of first =.}

(1 + 20) 320 {Last number returned when no final =.}

Other features supported by FF include:

e Calculation with a constant. Typing a number followed by = uses the number as
the first operand in a calculation with the previous operator and second operand:

(2*5=)W>10
(2*5=7=)W>35
(2*5=7=11=)W>55

o Implied second argument. If no second argument is specified, the value of the
second argument defaults to the first.
(5 * =) FE 25
e Operator correction. An operator key can be corrected by typing the correct one
after (any number of) unintentional operators.

A *x-+2) 5z 3
a. Design an SOS for FF that is consistent with the informal description given above.

b. Use your SOS to find the final values of the following command sequences. (Note:
some of the values may be floating point numbers.) Comment on the intended
meaning of the unconventional command sequences.

i. (8 -3+ %4 =)
ii. 3+5/==)
iii. 3+5/ =6 =) <

3.2.3.3 Progress Rules

Introduction

The commands of POSTFIX programs are interpreted in a highly linear fash-
ion in Figure 3.4. Even though executable sequences give the code a kind of
tree structure, the contents of an executable sequence can only be used when
they are prepended to the single stream of commands that is executed by the
abstract machine. The fact that the next command to execute is always at the
front of this command stream leads to a very simple structure for the rewrite
rules in Figure 3.4. Transitions, which appear only in rule consequents, are all
of the form

<Cﬁr5t . Qa S>:> <Q/a Sl>7

3.2. SMALL-STEP OPERATIONAL SEMANTICS (SOS) 55

where Q' is either the same as @ or is the result of prepending some commands
onto the front of @. In all rules, the command Cfys at the head of the current
command sequence is consumed by the application of the rule.

These simple kinds of rules are not adequate for programming languages ex-
hibiting a more general tree structure. Evaluating a node in an arbitrary syntax
tree usually requires the recursive evaluation of its subnodes. For example, con-
sider the evaluation of a sample numerical expression written in the EL language
described in Section 2.3:

(+ (« (-51) 2) (/217).

Before the sum can be performed, the results of the product and division must
be computed; before the multiplication can be performed, the subtraction must
be computed. If the values of operand expressions are computed in a left-to-
right order, we expect the evaluation of the expression to occur via the following
transition path:

(+ (x (-51)2) (/217))
=+ (x42) (/217

= (+8 (/217)

= (+ 8 3)

= 11.

In each transition, the structure of the expression tree remains unchanged ex-
cept at the node where the computation is being performed. Rewrite rules for
expressing such transitions need to be able to express a transition from tree to
tree in terms of transitions between the subtrees. That is, the transition

+ x(-51)2) (/21 7)) = (+ (x42) (/217))
is implied by the transition
(x (-51) 2) = (x 4 2),
which is in turn is implied by the transition
(-51)=4.

In some sense, “real work” is only done by the last of these transitions; the other
transitions just inherit the change because they define the surrounding context
in which the change is embedded.

These kinds of transitions on tree-structured programs are expressed by
progress rules, which are rules with antecedents. Progress rules effectively allow
an evaluation process to reach inside a complicated expression to evaluate one of

o6 CHAPTER 3. OPERATIONAL SEMANTICS

its subexpressions. A one-step transition in the subexpression is then reflected
as a one-step transition of the expression in which it is embedded.

Example: ELMM

To illustrate progress rules, we will develop an operational semantics for an
extremely simple subset of the EL language that we will call ELMM (which
stands for EL. MINUs MINUS). As shown in Figure 3.6, an ELMM program is
just a numerical expression, where a numerical expression is either (1) an integer
numeral or (2) an arithmetic operation. There are no arguments, no conditional
expressions, and no boolean expressions in ELMM.

Syntactic Domains:

P € Program
NE € NumExp
N € IntegerLiteral = {-17,0,23,...}
A € ArithmeticOperator = {+, -, *, /, %}

Production Rules:
P = (elmm NEpoqy) [Program)]

NE = Npum [IntLit]
| (Arator NErand: NErande) [Arithmetic Operation]

Figure 3.6: An s-expression grammar for ELMM.

In an SOS for ELMM, configurations are just numerical expressions them-
selves; there are no state components. Numerical literals are the only final
configurations. The input and output functions are straightforward. The inter-
esting aspect of the ELMM SOS is the specification of the transition relation
=, which is shown in Figure 3.7. The ELMM [arithop] axiom is similar to the
same-named axiom in the POSTFIX SOS; it performs a calculation on integer
numerals.

To evaluate expressions with nested subexpressions in a left-to-right order,
the rules [prog-left] and [prog-left] are needed. The [prog-left] rule says that if the
ELMM abstract machine would make a transition from NE ; to NE;’, it should
also allow a transition from (arithop NE; NEj) to (arithop NE;’' NEj).
This rule permits evaluation of the left operand of the operation while leaving
the right operand unchanged. The [prog-right| rule is similar, except that it
only permits evaluation of the right operand once the left operand has been
fully evaluated to an integer numeral. This forces the operands to be evaluated

3.2. SMALL-STEP OPERATIONAL SEMANTICS (SOS) o7

(A4 Ny N2) = Nyesuit, .
where Nyesuir =(calculate A N; Np) larithop]
!/
o 7 [prog-left)
(A NE; NEy)= (A NE,;” NEj)
!/
e Ve 7 [prog-right]
(A N NEp)= (A N NE»")

Figure 3.7: Rewrite rules defining the transition relation (=) for ELMM.

in a left-to-right order. Rules like [prog-left] and [prog-left] are called progress
rules because an evaluation step performed on a subexpression allows progress
to be made on the evaluation of the whole expression.

In the case of axioms, it was easy to determine the set of transitions that were
specified by a rule. But how do we determine exactly what set of transitions are
specified by a progress rule? Intuitively, a transition is specified by a progress
rule if it matches the consequent of the rule and it’s possible to show that
the antecedent transition patterns are also satisfied. For example, since the
ELMM transition (- 7 4) = 3 is justified by the [arithop] rule, the transition
(x (-7 4) (+56)= (x3 (+5 6)) is justified by the [prog-left] rule, and
the transition (* 2 (- 7 4)) = (x 2 3) is justified by the [prog-right] rule.
Furthermore, since the above transitions themselves satisfy the antecedents of
the [prog-left] and [prog-right] rules, it is possible to use these rules again to
justify the following transitions:

(/ (x (-74) (+56) (%92))=((x3 (+586) (h92))
(x2 748) Cho2d)=¢ x23) (h9o2)

(/ 100 (*x (-7 4) (+ 56))) = (/100 (x 3 (+ 5 6)))

(/ 100 (*x 2 (-7 4))) = (/ 100 (x 2 3))

These examples suggest that we can justify any transition as long as we can
give a proof of the transition based upon the rewrite rules. Such a proof can
be visualized as a so-called proof tree (also known as a derivation) that
grows upward from the bottom of the page. The root of a proof tree is the
transition we are trying to prove, its intermediate nodes are instantiated progress
rules, and its leaves are instantiated axioms. A proof tree is structured so
that the consequent of each instantiated rule is one antecedent of its parent
(below) in the tree. For example, the proof tree associated with the transition
of (/ 100 (x (- 7 4) (+ 5 6))) appears in Figure 3.8. We can represent the

o8 CHAPTER 3. OPERATIONAL SEMANTICS

(- 7 4)=3, (asithop]
where (calculate - 7 4) = 3 arrthop

cra=3 left

(* (-74) (+586)=((3 (+586)) [prog-left]

(x (-74) (+56)=(x 3 (+586))
(/ 100 (x (-7 4) (+56)))=(/ 100 (x 3 (+ 5 6)))

(/ 100 (x (-7 4) (+ 56))) = (/ 100 (x 3 (+ 5 6)))

[prog-right]

Figure 3.8: A proof tree for a ELMM transition involving nested expressions.
The root of the tree is at the bottom of the page; the leaf is at the top.

proof tree in the figure much more concisely by displaying each transition only
once, as shown below:

—— [arithop]
(-74)=3

[prog-left)
(x (-74) (+56))=(x3 (+56))

(/ 100 (x (-7 4) (+56)))= (/100 (x 3 (+ 5 6)))

[prog-right]

The proof tree in this particular example is linear because each of the progress
rules involved has only one antecedent transition pattern. A progress rule with n
antecedent transition patterns would correspond to a tree node with a branching
factor of n. For example, suppose we added the following progress rule to the
ELMM SOS:

NE; = NE;' ; NEy = NE,’
(arithop NE; NEj)= (arithop NE;’ NE,")

[prog-both]

This rule allows simultaneous evaluation of both operands. It leads to proof
trees that have branching, such as the following tree in which three arithmetic

3.2. SMALL-STEP OPERATIONAL SEMANTICS (SOS) 99

operations are performed simultaneously:

——— [arithop] ————— [arithop]
-74) =3 (+ 5 6) = 11
[arithop] [prog-both]
(+ 25 75) = 100 (x (-74) (+56))=(x311)
[prog-both]

(/ (+ 25 75) (x (-7 4) (+56)))= (/100 (x 3 11))

It is possible to express any proof tree (even one with branches) in the more
traditional linear textual style for a proof. In this style, a proof of a transition
is a sequence of transitions where each transition is justified either by an axiom
or by a progress rule whose antecedent transitions are justified by transitions
earlier in the sequence. A linear textual version of the branching proof tree
above would be:

Transition Justification
[1] (+ 25 75) =100 [arithop]
2 7 4) =3 [arithop]
3 5 6) =11 [arithop]
[

2] -

B8] +

4] (x (-7 4) (+ 56)) =(x 3 11) prog-both] & [2] & [3]
[5] (/ (+ 25 75) (x (-7 4) (+ 5 6)))

= (/ 100 (x 3 11)) [prog-both] & [1] & [4]

The elements of the linear textual proof sequence have been numbered, and justi-
fications involving progress rules include the numbers of the transitions matched
by their antecedents. There are many alternative proof sequences for this exam-
ple that differ in the ordering of the elements. Indeed, the legal linear textual
proof sequences for this example are just topological sorts of the original proof
tree. Because such linearizations involve making arbitrary choices, we prefer to
use the tree based notation, whose structure highlights the essential dependen-
cies in the proof.

When writing down a transition sequence to show the evaluation of an
ELMM expresssion we will not explicitly justify every transition with a proof
tree, even though such a proof tree must exist. However, if we are listing justi-
fications for transitions, then we will list the names of the rules that would be
needed to perform the proof. See Figure 3.9 for an example. (This example uses
the original SOS, which does not include the [prog-both| rule.)

We shall see in Section 3.4 that the fact that each transition has a proof
tree is key to proving properties about transitions. Transition properties are
often proven by structural induction on the structure of the proof tree for the
transition.

> Exercise 3.10

60 CHAPTER 3. OPERATIONAL SEMANTICS

(IF (elmm (/ (+ 25 75) (*x (- 7 4) (+ 5 6)))))
(/ (+2575) (x (-7 4) (+56)))

= (/ 100 (x (-7 4) (+ 5 6))) [prof-left] & [arithop]

= (/ 100 (x 3 (+ 5 6))) [prog-right] & [prof-left] & [arithop]
= (/ 100 (* 3 11)) [prog-right] (twice) & [arithop]

= (/ 100 33) € FC [prog-right] & [arithop]

(OF 3) = 3

Figure 3.9: An example illustrating evaluation of ELMM expressions.

a. Consider a language ELM (short for EL MINUS) that extends ELMM with
indexed references to program inputs. The syntax for ELM is like that of ELMM
except that (1) ELM programs have the form (elm Npumargs NEpody), Where
Npumargs specifies the number of expected program arguments and (2) numerical
expressions are extended with EL’s (arg Nipgdez) construct, which gives the value
of the argument whose index is given by Nipqe, (assume indices start at 1).

Write a complete SOS for ELM. Your configurations will need to include a state
component representing the program arguments.

b. Write a complete SOS for the full EL language described in Section 2.3.2. You
will need to define two kinds of configurations: one to handle numeric expressions
and one to handle boolean expressions. Each kind of configuration will be a
pair of an expression and a sequence of numeric arguments and will have its own
transition relation. <

Example: POSTFIX

As another example of progress rules, we will consider an alternative ap-
proach for describing the exec command of POSTFIX. The [execute] axiom in
Figure 3.4 handled exec by popping an executable sequence off the stack and
prepending it to the command sequence following the exec command. Fig-
ure 3.10 presents a progress rule, [exec-prog], that, together with the axiom
[exec-done|, can replace the [execute] rule. The [exec-prog] rule says that if
the abstract machine would make a transition from configuration (Qczec, S)
to configuration (Qezec’, S’) then it should also allow a transition from the
configuration <exec o Qrest; Qegec - S> to <exec o Qrest, Qezec, . S,>

Rather than prepending the commands in Qezec t0 Qprest, the [exec-prog] rule
effectively executes the commands in Q¢ while it remains on the stack. Note
that, unlike all the rules that we have seen before, this rule does not remove
the exec command from the current command sequence. Instead, the exec
command is left in place so that the execution of the command sequence at the

3.2. SMALL-STEP OPERATIONAL SEMANTICS (SOS) 61

<Qemeca S>:><Qemecla S/>
(exec . Qresta Qezec . S>:><GXGC . Qresta Qezec/ . S/>

[exec-prog]

(exec . Qrest;, O . Y= {(Qrest, S) [exec-done)]

Figure 3.10: A pair of rules that could replace the [execute] axiom.

top of the stack will continue during the next transition. Since the commands
are removed from Q... after being executed, the executable sequence at the top
of the stack will eventually become empty. At this point, the [exec-done] rule
takes over, and removes both the completed exec command and its associated
empty executable sequence.

Figure 3.11 shows how the example considered earlier in Figure 3.1 and
Figure 3.5 would be handled using the [exec-prog] and [exec-done| rules. Each
transition is justified by a proof tree that uses the rules listed as a justification.
For example, the transition

((exec sub), [(exec), (mul add), 3, 2, 1, 4, 5])
= ((exec sub), [(exec), (add), 6, 1, 4, 5|)

is justified by the following proof tree:

[arithop]
((mul add), [3, 2, 1, 4, 5]) = ((add), [6, 1, 4, 5])
[exec-prog]

((exec), [(mul add), 3, 2, 1, 4, 5]) = ((exec), [(add), 6, 1, 4, 5])

[exec-prog]
((exec sub), [(exec), (mul add), 3, 2, 1, 4, 5])

= ((exec sub), [(exec), (add), 6, 1, 4, 5])

The Meaning of Progress Rules

There are some technical details about progress rules that we glossed over
earlier. When we introduced progress rules, we blindly assumed that they were
always reasonable. But not all progress rules make sense.

For example, suppose we extend POSTFIX with a 1loop command defined by
the following progress rule:

(Loop . Q. S)=(Q.)
{Toop . Q. 5)=(Q, 5) {oop]

62 CHAPTER 3. OPERATIONAL SEMANTICS
(IF ((postfix 2 (2 (3 mul add) exec) 1 swap exec sub),[4,5]))
= (((2 (3 mul add) exec) 1 swap exec sub), [4, 5])
= ((1 swap exec sub), [(2 (3 mul add) exec), 4, 5]) [seq]
= ((swap exec sub), [1, (2 (3 mul add) exec), 4, 5]) [num)]
= ((exec sub), [(2 (3 mul add) exec), 1, 4, 5]) [swap]
= ((exec sub), [((3 mul add) exec), 2, 1, 4, 5]) [exec-prog] & [num)]
= ((exec sub), [(exec), (3 mul add), 2, 1, 4, 5]) [exec-prog] & [seq]
= ((exec sub), [(exec), (mul add), 3, 2, 1, 4, 5]) [exec-prog] (twice)
& [num]
= ((exec sub), [(exec), (add), 6, 1, 4, 5]) [exec-prog] (twice)
& [arithop]
= ((exec sub), [(exec), O, 7, 4, 5]) [exec-prog] (twice)
& [arithop]
= ((exec sub), [O), 7, 4, 5]) [exec-prog]
& [exec-done]
= ((sub), [7, 4, 5]) [exec-done)]
= (0, [-3]) € FC [arithop]
(OF (O,[-3])) =-3

Figure 3.11: An example illustrating the alternative rules for exec.

Any attempt to prove a transition involving loop will fail because there are no
axioms involving loop with which to terminate the proof tree. Thus, this rule
stands for no transitions whatsoever!

We’d like to ensure that all progress rules we consider make sense. We
can guarantee this by restricting the form of allowable progress rules to outlaw
nonsensical rules like [loop]. This so-called structure restriction guarantees
that any attempt to prove a transition from a given configuration will eventually
terminate. The standard structure restriction for an SOS requires the code
component of the LHS of each antecedent transition to be a subphrase of the
code component of the LHS of the consequent transition. Since program parse
trees are necessarily finite, this guarantees that all attempts to prove a transition
will have a finite proof.®

While simple to follow, the standard structure restriction prohibits many
reasonable rules. For example, the [exec-prog] rule does not obey this restriction,
because the code component of the LHS of the antecedent is unrelated to the
code component of the LHS of the consequent. Yet, by considering the entire
configuration rather than just the code component, it is possible to design a
metric in which the LHS of the antecedent is “smaller” than the LHS of the

8This restriction accounts for the term “Structured” in Structured Operational Semantics.

3.2. SMALL-STEP OPERATIONAL SEMANTICS (SOS) 63

consequent (see Exercise 3.11). While it is sometimes necessary to extend the
standard structure restriction in this fashion, most of our rules will actually obey
the standard version.

> Exercise 3.11 To guarantee that a progress rule is well-defined, we must show that
the antecedent configurations are smaller than the consequent configurations. Here we
explore a notion of “smaller than” for the POSTFIX configurations that establishes the
well-definedness of the [exec-prog] rule. (Since [exec-prog] is the only progress rule for
PosTF1x, it is the only one we need to consider.)

Suppose that we define a relation < on POSTFIX configurations such that

(Q1, S) <(exec . Q2, Q1 . 5)

for any command sequences (; and @2 and any stack S. This is the only relation
on POSTFIX configurations; two configurations not satisfying this relation are simply
incomparable.

a. A sequence [a1,aq,...| is strictly decreasing if a;4; < a; for all i. Using the
relation < defined above for configurations, show that every strictly decreasing
sequence [cf1,cfa,...] of POSTFIX configurations must be finite.

b. Explain how the result of the previous part implies the well-definedness of the
[exec-prog] rule. <

> Exercise 3.12 The abstract machine for POSTFI1X described thus far employs con-
figurations with two components: a command sequence and a stack. It is possible to
construct an alternative abstract machine for POSTFIX in which configurations consist
only of a command sequence. The essence of such a machine is suggested by the tran-
sition sequence in Figure 3.12, where the primed rule names are the names of rules for
the new abstract machine, not the abstract machine presented earlier.

a. The above example shows that an explicit stack component is not necessary to
model POSTFIX evaluation. Explain how this is possible. (Is there an implicit
stack somewhere?)

b. Write an SOS for POSTFIX in which a configuration is just a command sequence.
The SOS should have the behavior exhibited above on the given example. Recall
that an SOS has five components; describe all five. Use only axioms to specify
your transition relation.

c. In the above example, the exec command is handled by replacing it and the exe-
cutable sequence @ to its left by the contents of). This mirrors the prepending
behavior of [execute] in the original abstract machine. Write rules for the new
abstract machine that instead mirror the behavior of [exec-prog] and [exec-done].

d. Develop an appropriate notion of “smaller than” that establishes the well-definedness
of your new [exec-prog] rule. (See Exercise 3.11.)

64 CHAPTER 3. OPERATIONAL SEMANTICS

((swap exec swap exec) (1 sub) swap (2 mul) swap 3 swap exec)

= ((1 sub) (swap exec swap exec) (2 mul) swap 3 swap exec) [swap’]

= ((1 sub) (2 mul) (swap exec swap exec) 3 swap exec) [swap']

= ((1 sub) (2 mul) 3 (swap exec swap exec) exec) [swap’]

= ((1 sub) (2 mul) 3 swap exec swap exec) [exec’]

= ((1 sub) 3 (2 mul) exec swap exec) [swap']

= ((1 sub) 3 2 mul swap exec) [exec']

= ((1 sub) 6 swap exec) [arithop']
= (6 (1 sub) exec) [swap’']
= (6 1 sub) [exec’]

= 5 [arithop’]

Figure 3.12: Sample transition sequence for an alternative POSTFIX abstract
machine whose configurations are command sequences.

e. Sketch how you might prove that the new SOS and the original SOS define the
behavior. 4

3.2.3.4 Context-based Semantics

Axioms and progress rules are not the only way to specify the transition relation
of a small-step operational semantics. Here we introduce another approach to
specifying transitions that is popular in the literature. This approach is based
on a notion of context that specifies the position of a subphrase in a larger
program phrase. Here we will explain this notion and show how it can be used
to specify transitions.

In general, a context is a phrase with a single hole node in the abstract
syntax tree for the phrase. A sample context C in the ELMM language is
(+ 1 (- O 2)), where where O denotes the hole in the context. “Filling” this
hole with any ELMM numerical expression yields another numerical expression.
For example, filling C with (/ (x 4 5) 3), written C{(/ (* 4 5) 3)}, yields
the numerical expression (+ 1 (- (/ (x 4 5) 3) 2)).

Contexts are useful for specifying a particular occurrence of a phrase that
may occur more than once in an expression. For example, (+ 3 4) appears
twice in (x (+ 3 4) (/ (+ 3 4) 2)). The leftmost occurrence is specified
by the context (x O (/ (+ 3 4) 2)), while the rightmost one is specified by
(x (+ 34) (/O 2)). Contexts are also useful for specifying the part of a
phrase that remains unchanged (the evaluation context) when a basic com-
putation (known as a redex) is performed. For example, consider the evaluation

3.2. SMALL-STEP OPERATIONAL SEMANTICS (SOS) 65

of the ELMM expression (/ 100 (x (- 7 4) (+ 5 6))). If operands are eval-
uated in a left-to-right order, the next redex to be performed is (- 7 4). The
evaluation context E for this redex is (/ 100 (x O (+ 5 6))). The result of
performing the redex (3 in this case) can be plugged into the evaluation context
to yield the result of the transition: E{3} =(/ 100 (x 3 (+ 5 6))).

Evaluation contexts and redexes can be defined via grammars, such as the
ones for ELMM in Figure 3.13. In ELMM, a redex is an arithmetic operator
applied to two integer numerals. An ELMM evaluation context is either a
hole or an arithmetic operation one of whose two operands is an evaluation
context. If the evaluation context is in the left operand position ([Eval Left))
the right operand can be an arbitrary numerical expression. But if the evaluation
context is in the right operand position ([Eval Right]), the left operand must
be a numeral. This structure enforces left-to-right evaluation in ELMM in a
way similar to the [prog-left] and [prog-right] progress rules. Indeed, evaluation
contexts are just another way of expressing the information in progress rules —
namely, how to find the redex (i.e., where an axiom can be applied).

Redexes
R € ElmmRedex

R = (A N; Ngz) [Arithmetic operation]
Reduction relation (~)
(A N; N2) ~» Nyesuit, where Nyesur =(calculate A N; Ng)
Evaluation Contexts
E € ElmmEvalContext
E =0 [Hole]

| (A E NE) [Eval Left]
| (A N E) [Eval Right]

Transition relation (=)
E{R} = E{R'}, where R ~» R’

Figure 3.13: A context-based specification of the ELMM transition relation.

Associated with redexes is a reduction relation (~) that corresponds to the
basic computations axioms we have seen before. The left hand side of the relation
is the redex, while the right hand side is the reduct. The transition relation
(=) is defined in terms of the reduction relation using evaluation contexts: the
expression E{R} rewrites to E{R '} as long as there is a reduction R ~» R'.
The transition relation is deterministic if there is at most one way to parse an

66 CHAPTER 3. OPERATIONAL SEMANTICS

expression into a evaluation context filled with a redex (which is the case in
ELMM).

The following table shows the context-based evaluation of an ELMM ex-
pression:

Expression Evaluation Context Redex Reduct
(/ (+25675) (x (-74) (+56))) | (/O (-74) (+586))) | (+2575) 100
= (/ 100 (*x (- 7 4) (+ 5 6))) (/ 100 (x O (+ 5 6))) (-7 4 3
= (/ 100 (* 3 (+ 5 6))) (/ 100 (x 3 0)) (+ 5 6) 11
= (/ 100 (x 3 11)) (/ 100 O) (x 3 11) 33
= (/ 100 33) g (/ 100 33) | 3
= 3

Context-based semantics are most convenient in an SOS where the config-
urations consist solely of a code component. But they can also be adapted
to configurations that have state components. For example, Figure 3.14 is a
context-based semantics for ELM, the extension to ELMM that includes in-
dexed input via the form (arg Nj,ge.) (see Exercise 3.10). An ELM config-
uration is a pair of (1) an ELM numerical expression and (2) a sequence of
numerals representing the program arguments. Both the ELM reduction rela-
tion and transition relation must include the program arguments so that the arg
form can access them.

> Exercise 3.13 Starting wih Figure 3.14, develop a context-based semantics for the
full EL language. <

> Exercise 3.14 The most natural context-based semantics for POSTFIX is based
on the approach sketched in Exercise 3.12, where configurations consist only of a com-
mand sequence. Figure 3.15 is the skeleton of a context-based semantics that defines
the transition relation for these configurations. It uses a command sequence context
EQ whose hole can be filled with a command sequence that is internally appended to
other command sequences. For example, if EQ = [1,2,0,sub], then EQ{[3, swap|}
=|[1,2, 3, swap, sub]. Complete the semantics in Figure 3.15 by fleshing out the missing
details. <

3.3 Big-step Operational Semantics

A small-step operational semantics is a framework for describing program execu-
tion as an iterative sequence of small computational steps. But this is not always
the most natural way to view execution. We often want to evaluate a phrase

3.3. BIG-STEP OPERATIONAL SEMANTICS 67

Redexes
R € ElmRedex
R = (A N; Np) [Arithmetic operation]
| (arg Nindesz) [Indexed Input]
Reduction relation (~)

<(A N] NQ);N*> ~ WNresult where Nresult :(CaICUIate A N1 N‘?)
((arg Nindez),[N1,--., N,]) ~ Ny,

index

where (compare > Nipger 0) A — (compare > Nipder Naize)
Evaluation Contexts
E € ElmEvalContext
E =0 [Hole]

| (A E NE) [Eval Left]
| (A N E) [Eval Right]

Transition relation (=)

(E{R}, N*) = (E{R'}, N*) where (R, N*) ~» R’

Figure 3.14: A context-based specification of the ELLM transition relation.

Redexes
R € PostFixRedex

R ::= [V, pop] [Pop]
| [Vi, Va, swap] [Swap]
| [Ny, Ng, A] [Arithmetic operation]
-

. left as an exercise ...

Reduction relation (~)

[V,pop] ~ []

[Vi, Vg,swap] ~ [Vz, V]

[N7, Ng, A] ~> [Nyesuit] where Nyesyir =(calculate A Ng Njp)
. left as an exercise ...

Evaluation Contexts

EQ € PostfixEvalSequenceContext
EQ :=V*a@Ooa Q

Transition relation (=)

EQ{R} = EQ{R'}, where R ~» R’

Figure 3.15: A context-based specification of the transition relation for a subset
of POSTFIX.

68 CHAPTER 3. OPERATIONAL SEMANTICS

by recursively evaluating its subphrases and then combining the results. This
is the key idea of denotational semantics, which we shall study in Chapter 4.
However, this idea also underlies an alternative form of operational semantics,
called big-step operational semantics (BOS) (also known as natural se-
mantics). Here we briefly introduce big-step semantics in the context of a few
examples.

Let’s begin by defining a BOS for the simple expression language ELMM, in
which programs are numerical expressions that are either numerals or arithmetic
operations. A BOS typically has an evaluation relation for each non-trivial
syntactic domain that directly specifies a result for a given program phrase or
configuration. The BOS in Figure 3.16 defines two evaluation relations:

1. —nyr € NumExp X Intlit specifies the evaluation of an ELMM numerical
expression; and

2. —p € Program x Intlit specifies the evaluation of an ELMM program.

NE —NE Nans []
(elmm NE) —p Ngns prog
N —ne N [num]

NE; —nyg N; ; NE; —ng No
(A NE1 NEQ) —NE Nresult

where Nyesur =(calculate A N; Np)

[arithop]

Figure 3.16: Big-step operational semantics for ELMM.

There are two rules specifying — yg. The [num] rule says that numerals evaluate
to themselves. The [arithop] rule says that evaluating an arithmetic operation
(A N; Np) yields the result (Nyesyt) of applying the operator to the results
(N; and Ngz) of evaluating the operands. The single [prog] rule specifying — p
just says that the result of an ELMM program is the result of evaluating its
numerical expression.

As with SOS transitions, each instantiation of a BOS evaluation rule is jus-
tified by a proof tree, which we shall call an evaluation tree. Below is the

3.3. BIG-STEP OPERATIONAL SEMANTICS 69

proof tree for the evaluation of the program (elmm (* (- 7 4) (+ 5 6))):

[num] ———— [num)] — [num] ——— [num)]
7T —NE T 4 —-Nngp 4 5 —Ng b 6 —NE 6
[arithop] [arithop]
(-74) —-nNE 3 (+ 56 6) —np 11
[arithop]

(x (-7 4) (+56)) —=nE 33

[prog]
(elmm (x (-7 4) (+ 56))) —p 33

Unlike the proof tree for an SOS transition, which justifies a single computational
step, the proof tree for a BOS transition justifies the entire evaluation! This is
the sense in which the steps of a BOS are “big”; they tell how to go from a phrase
to an answer (or something close to an answer). In the case of ELMM, the leaves
of the proof tree are always trivial evaluations of numerals to themselves.

With BOS evaluations there is no notion of a stuck state. In the ELMM
BOS, there is no proof tree for an expression like (* (/ 7 0) (+ 5 6)) that
contains an error. However, we can extend the BOS to include an explicit
error token as a possible result and modify the rules to generate and propagate
such a token. Since all ELMM programs terminate, a BOS with this extension
completely specifies the behavior of a program. But in general, the top-level
evaluation rule for a program only partially specifies its behavior, since there is
no tree (not even an infinite one) asserting that a program loops. What would
the answer A of such a program be in the relation P —p A?

The ELMM BOS rules also do not specify the order in which operands are
evaluated, but this is irrelevant anyway since there is no way in ELMM to
detect whether one operation is performed before another. The ELMM BOS
rules happen to specify a (necessarily deterministic) function, but since they can
specify general relations, a BOS can describe non-determistic evaluation as well.

In ELMM, the evaluation relation maps a code phrase to its result. In gen-
eral, the LHS (and RHS) of an evaluation relation can be more complex, con-
taining state components in addition to a code component. This is illustrated in
the BOS for ELM, which extends ELMM with an indexed input construct (Fig-
ure 3.17). Here, the two evaluation relations have different domains than before:
they include an integer numeral sequence to model the program arguments.

1. —ng € (NumExp X Intlit*) x Intlit specifies the evaluation of an ELM
numerical expression; and

2. —p € (Program x Intlit*) x Intlit specifies the evaluation of an ELM
program.

Each of these relations can be read as “evaluating a program phrase relative
to the program arguments to yield a result”. As a notational convenience, we

70 CHAPTER 3. OPERATIONAL SEMANTICS

[Ni,...,Nn,

size]

NE Nans

NE
(elm Npumargs NE) LMl ar o

[prog]

where (compare = Npumargs Nsize)

N N—*>NE N [num)]

N* N*
NE; —ng N1 ; NEy =—nNg N»
(A NE1 NEQ) N—*’NE Nresult
where Nyesuir =(calculate A N; Np)

Ni,...,N, .
(arg Nindez) o NWoie], o NN, e [input]

[arithop]

where (compare > Ninder 0) A — (compare > Nipder Naize)

Figure 3.17: Big-step operational semantics for ELM.

*
abbreviate (X, Ngrgs ™) — x Ngns a8 X ——x Ngps, where X ranges over P and

NE. The [prog] rule is as in ELMM, except that it checks that the number of
arguments is as expected and passes them to the body for its evaluation. These
arguments are ignored by the [num]| and [arithop| rules, but are used by the
[input] rule to return the specified argument.

Here is a sample ELM proof tree showing the evaluation of the program
(elm 2 (x (arg 1) (+ 1 (arg 2)))) on the two arguments 7 and 5:

[num)]] [input]

1 79 o (arg 2) 2L 5

[input] [arithop]

(arg 1) MNE 7 (+ (arg 2) 1) MNE 6

[75] [prOg]
(elm 2 (x (arg 1) (+ 1 (arg 2)))) ~——>p 42

Can we describe POSTFIX execution in terms of a BOS? Yes — via the eval-
uation relations — p (for programs) and —¢ (for command sequences) in Fig-
ure 3.18. The —¢ relation € (Commands x Stack) x Stack treats command
sequences as “stack transformers” that map an input stack to an output stack.
We abbreviate (Q,S) —¢ S’ as @ iQ S’. The [non-exec] rule “cheats” by
using the SOS transition relation = to specify how a non-exec command C
transforms the stack to S’. Then —(specifies how the rest of the commands
transform S into S’’. The [exec| rule is more interesting because it uses —¢
in both antecedents. The executable sequence commands @ cze. transform S to
S’, while the remaining commands Qs transform S’ to S’’. The [exec] rule

3.3. BIG-STEP OPERATIONAL SEMANTICS 71

illustrates how evaluation order (in this case, executing Qczec before Qest) can
be specified in a BOS by “threading” a state component (in this case, the stack)
through an evaluation.

NN [prog]

[’ Nslze]

(POStfiX Nnumargs Q) - P Nans

where (compare = Nypumargs Nsize)

(C.Q 8=(Q S ; Q55g8"

ARG ENT [non-exec]
. Q =0
where C' # exec
S ’ S’ ’
25 S ; 255 8
Qe:pec Q Qrest Q [exec]

Qrest (Qegec) - 8 o S’

exec .

Figure 3.18: Big-step operational semantics for POSTFIX.

It is convenient to define — ¢ so that it returns a stack, but stacks are not
the final answer we desire. The [prog] rule € (Program x Intlit*) x Stack
takes care of creating the initial stack from the arguments and extracting the
top integer (if it exists) from the final stack.

How do small-step and big-step semantics stack up against each other? Each
has its advantages and limitations. A big-step semantics is often more concise
than a small-step semantics and one of its proof trees can summarize the entire
execution of a program. The recursive nature of a big-step semantics also cor-
responds more closely to structure of interpreters for high-level languages than
a small-step semantics. On the other hand, the iterative step-by-step nature of
a small-step semantics corresponds more closely to the way low-level languages
are implemented, and it is often a better framework for reasoning about compu-
tational resources, errors, and termination. Furthemore, infinite loops are easy
to model in a small-step semantics but not in a big-step semantics.

We will use small-step semantics as our default form of operational seman-
tics throughout the rest of this book. This is not because big-step semantics are
not useful — they are — but because we will tend to use denotational seman-
tics rather than big-step operational semantics for language specifications that
compose the meanings of whole phrases from subphrases.

> Exercise 3.15 Construct a BOS evaluation tree that shows the evaluation of
(postfix 2 (2 (3 mul add) exec) 1 swap exec sub) on arguments 4 and 5. <

72 CHAPTER 3. OPERATIONAL SEMANTICS

> Exercise 3.16 Extend the BOS in Figure 3.16 to handle the full EL language. You
will need a new evaluation relation, — g, to handle boolean expressions. <

> Exercise 3.17 Modify each of the BOS specifications in Figures 3.16-3.18 to
generate and propagate an error token that models signalling an error. Be careful to
handle all error situations. <

3.4 Operational Reasoning

3.4.1 Programming Language Properties

The suitability of a programming language for a given purpose largely depends
on many high-level properties of the language. Important global properties of a
programming language include:

e universality: the language can express all computable programs;

e determinism: the set of possible outcomes from executing a program on
any particular inputs is a singleton;

e termination: all programs are guaranteed to terminate (i.e., it is not
possible to express an infinite loop);

e static checkability: a class of program errors can be found by static
analysis without resorting to execution;

e referential transparency: different occurrences of an expression within
the same context always have the same meaning.

Languages often exhibit equivalence properties that allow safe transforma-
tions: systematic substitutions of one program phrase for another that are
guaranteed not to change the behavior of the program. Finally, properties of
particular programs are often of interest. For instance, we might want to show
that a given program terminates, that it uses only bounded resources, or that it
is equivalent to some other program. For these sorts of purposes, an important
characteristic of a language is how easy it is to prove properties of particular
programs written in a language.

A language exhibiting a desired list of properties may not always exist. For
example, no language can be both universal and terminating because a universal
language must be able to express infinite loops.?

9But it is often possible to carve a terminating sublanguage out of a universal language.

3.4. OPERATIONAL REASONING 73

The properties of a programming language are important to language design-
ers, implementers, and programmers alike. The features included in a language
strongly depend on what properties the designers want the language to have.
For example, designers of a language in which all programs are intended to ter-
minate cannot include general looping constructs, while designers of a universal
language must include features that allow nontermination. Compiler writers
extensively use safe transformations to automatically improve the efficiency of
programs. The properties of a language influence which language a programmer
chooses for a task as well as what style of code the programmer writes.

An important benefit of a formal semantics is that it provides a framework
that facilitates proving properties both about the entire language and about
particular programs written in the language. Without a formal semantics, our
understanding of such properties would be limited to intuitions and informal
(and possibly incorrect) arguments. A formal semantics is a shared language for
convincing both ourselves and others that some intuition that we have about a
program or a language is really true. It can also help us develop new intuitions.
It is useful not only to the extent that it helps us construct proofs but also to
the extent that it helps us find holes in our arguments. After all, some of the
things we think we can prove simply aren’t true. The process of constructing a
proof can give us important insight into why they aren’t true.

Below we use operational semantics to reason about EL and PosTFix. We
first discuss the deterministic behavior of EL under various conditions. Then we
show that all POSTFIX programs are guaranteed to terminate. We conclude by
considering conditions under which we can transform one POSTFIX command
sequence to another without changing the behavior of a program.

3.4.2 Deterministic Behavior of EL

Recall that a programming language is deterministic if there is exactly one pos-
sible outcome for any pair of program and inputs. In Section 3.2.1, we saw that
a deterministic SOS transition relation implies that programs behave determin-
istically. In Section 3.2.3.1, we argued that the POSTFIX transition relation is
deterministic, so POSTFIX is a deterministic language.

We can similarly argue that EL is deterministic. We will give the argument
for the sublanguage ELMM, but it can be extended to full EL. We will use
the SOS for ELMM given in Figure 3.7, which has just three rules: [arithop],
[prog-left], and [prog-right]. For a given ELMM numerical expression NE, we
argue that there is at most one proof tree justifying a transition for NE. The
proof is by structural induction on the height of the AST for NFE.

74 CHAPTER 3. OPERATIONAL SEMANTICS

o (Base cases) If NE is a numeral, it matches no rules, so there is no tran-
sition. If NE has the form (A N; Np), it can match only the [arithop]
rule, since there are no transitions involving numerals.

e (Induction cases) NE must have the the form (A NE; NEj), where at
least one of NE'; and NE, is not a numeral. If NE; is not a numeral,
then NE can match only the [prog-left] rule, and only in the case where
there is a proof tree justifying the transition NE; = NE;’. By induction,
there is at most one such proof tree, so there is at most one proof tree for a
transition of NE. If NE; is a numeral, then NE» must not be a numeral, in
which case NE can match only the [prog-right| rule, and similar reasoning
applies.

Alternatively, we can prove the determinism of the ELMM transition rela-
tion using the context semantics in Figure 3.13. In this case, we need to show
that each ELMM numerical expression can be parsed into an evaluation context
and redex in at most one way. Such a proof is essentially the same as the one
given above, so we omit it.

The ELMM SOS specifies that operations are performed in left-to-right or-
der. Why does the order of evaluation matter? It turns out that it doesn’t
— there is no way in ELMM to detect the order in which operations are per-
formed! Intuitively, either the evaluation is successful, in which all operations
are performed anyway, leading to the same answer, or a divsion/remainder by
zero is encountered somewhere along the way, in which case the evaluation is
unsuccessful. Note that if we could distinguish between different kinds of errors,
the story would be different. For instance, if divide-by-zero gave a different error
from remainder-by-zero, then evaluating the expression (+ (/ 1 0) (% 2 0))
would indicate which of the two subexpressions was evaluated first. The issue
of evaluation order is important to implementers, because they sometimes can
make program execute more efficiently by reordering operations.

How can we formally show that evaluation order in ELMM does not matter?
We begin by replacing the [prog-right| rule in the SOS by the following [prog-
right’] rule to yield a modified ELMM transition relation = ’.

NE2:>/NE2/ [. ht/]
(A NE; NE,)='(A NE, NE,)) prog-rig

With this change, operands can be evaluated in either order, so the transition re-
lation is no longer deterministic. For example, the expression (x (- 7 4) (+ 5 6))
now has two transitions:

(x (-74) (+56)) =’ (x3 (+586))
(x (-74) (+586)) =" (x (-7 4) 11)

3.4. OPERATIONAL REASONING (0]

Nevertheless, we would like to argue that the behavior of programs is still de-
terministic even though the transition relation is not.

A handy property for this purpose is called confluence. Informally, conflu-
ence says that if two transition paths from a configuration diverge, there must
be a way to bring them back together. The formal definition is as follows:

Confluence: A relation —€ X x X is confluent if and only if for
every xy,ro,r3 € X such that ;1 = x9 and z7 = x3, there exists
an x4 such that zo = x4 and z3 % z4. Confluence is usually
displayed via the following diagram, in which solid lines are the given
relations and the dotted lines are assumed to exist when the property
holds. Due to the shape of the diagram, confluence is also called the
diamond property.

X
/ *
x2. 43
o

Suppose that a transition relation = is confluent. Then if an initial config-
uration cf; has transition paths to two final configurations cf;, and cfy,, these
are necessarily the same configuration! Why? By confluence, there must be a
configuration cf such that cfy, = ¢f and cft, = ¢f. But cfy, and cfy, are
elements of Irreducible, so the only transition paths leaving them have length 0.
This means cfy, = cf =cfy,. Thus, a confluent transition relation guarantees
a unique final configuration. Indeed, it guarantees a unique irreducible configu-
ration: it is not possible to get stuck on one path and reach a final configuration
on the other.

Confluence by itself does not guarantee a single outcome. It is still possible
for a confluent transition relation to have some infinite paths, in which case
there is a second outcome (00). This possibility must be ruled out to prove
deterministic behavior. In the case of ELMM, it is easy to prove there are no
loops (see Exercise 3.27).

We can now show that ELMM has deterministic behavior under =’ by
arguing that =’ is confluent. We will actually show a stronger property, known
as one-step confluence, in which the transitive closure stars in the diamond
diagram are removed; confluence easily follows from one-step confluence.

Suppose that NE; =’ NE, and NE; =’ NEj3. Using terminology from
context-based semantics, call the redex reduced in the first transition the “red”

76 CHAPTER 3. OPERATIONAL SEMANTICS

redex and the one reduced in the second transition the “blue” redex. Either these
are the same redex, in which case NEy, = NE 3 trivially joins the paths, or the
redexes are disjoint (i.e., one does not occur as a subexpression of another).
In the latter case, there must be an expression NE, that is a copy of NE; in
which both the red and blue redexes have been reduced. Then NE, =’ NE,
by reducing the blue redex and NEy =’ NE, by reducing the red redex. So
NE joins the diverging transitions

We have shown that ELMM has deterministic behavior even when its op-
erations are performed in a non-deterministic order. A similar approach can be
used to show that ELM and EL have the same property. Confluence in these
languages is fairly straightforward. It becomes much trickier in languages where
redexes overlap or performing one redex can copy another.

We emphasize that confluence is a sufficient but not necessary condition for
a non-deterministic transition relation to give rise to deterministic behavior. In
general, many distinct final configurations might map to the same outcome.
> Exercise 3.18 Suppose that in addition to changing the ELMM SOS by replacing

[prog-right] with [prog-right’], the rule [prog-both] introduced on page 58 is added to
the SOS.

a. In this modified SOS, how many different transition paths lead from the expression
(/ (+ 26 76) (x (- 7 4) (+ 5 6))) to the result 37

b. Does the modified SOS still have deterministic behavior? Explain your answer <

> Exercise 3.19 Consider extending ELMM with a construct (either NE; NEg)
that returns the result of evaluating either NE; or NE .

a. What are the possible behaviors of the following program?

(elmm (* (- (either 1 2) (either 3 4)) (either 5 6)))

b. The informal specification of either given above is ambiguous. For example,
must the expression (+ (either 1 (/ 2 0)) (either (% 3 0) 4)) return the
result 5, or can it get stuck? The semantics of either can be defined either way.
Give formal specifications for each interpretation of either that is consistent with
the informal description. <

> Exercise 3.20

a. Show that the two transition relations (one for NumExp, one for BoolExp) in an
EL SOS can be deterministic,

b. Suppose that both transition relations in an EL SOS allow operations to be per-
formed in any order, so that they are non-deterministic. Argue that the behavior
of EL programs is still deterministic. <

3.4. OPERATIONAL REASONING 7

3.4.3 Termination of PostFix Programs

An important property of POSTFIX is expressed by the following theorem:

PosTFIX Termination Theorem: All POSTFIX programs are guar-
anteed to terminate. That is, executing a POSTFIX program always
either returns a numeral or signals an error.'®

This theorem is based on the following intuition: existing commands are con-
sumed by execution, but no new commands are ever created, so the commands
must eventually “run out.” This intuition is essentially correct, but an intuition
does not a proof make. After all, POSTFIX is complex enough to harbor a sub-
tlety that invalidates the intuition. The nget command allows the duplication
of numerals — is this problematic with regards to termination? Executable se-
quences are moved to the stack, but their contents can later be prepended to the
code component. How can we be certain that this shuffling between code and
stack doesn’t go on forever? And how do we deal with the fact that executable
sequences can be arbitrarily nested?

These questions indicate the need for a more convincing argument that ter-
mination is guaranteed. This is the kind of situation in which formal semantics
comes in handy. Below we present a proof for termination based on the SOS for
PosTFIx.

3.4.3.1 Energy

Associate with each POSTFIX configuration a natural number called its energy
(so called to suggest the potential energy of a dynamical system). By considering
each rewrite rule of the semantics in turn, we will prove that the energy strictly
decreases with each transition. The energy of an initial configuration must then
be an upper bound on the length of any path of transitions leading from the
initial configuration. Since the initial energy is finite, there can be no unbounded
transition sequences from the initial configuration, so the execution of a program
must terminate.

10This theorem can fail to hold if POSTFIX is extended with new commands, such as a dup
command that duplicates the top stack value. See Section 3.5 for details.

78 CHAPTER 3. OPERATIONAL SEMANTICS

The energy of a configuration is defined by the following energy functions:

Econfig[(@)] = Eseq[Q] + Estack[S] (3.1)
Esll]] = 0 (3.2)

Ei[C . Q] = 1+ Ecom[C]+E[Q] (3.3)
Estack[[]] = 0 (3.4)
Estack[V - S] = Ecom[V] + Estack [5] (3.5)
Ecom[(@] = EsqlQ] (3.6)
Ecom[C] = 1, Cnot an executable sequence. (3.7)

These definitions embody the following intuitions:

e The energy of a configuration, sequence, or stack is greater than or equal
to the sum of the energy of its components.

e Executing a command consumes at least one unit of energy (the 1 that
appears in 3.3). This is true even for commands that are transferred from
the code component to the stack component (i.e., numerals and executable
sequences); such commands are worth one more unit of energy in the
command sequence than on the stack.!!

e An executable sequence can be worth no more energy as a sequence than
as a stack value (3.6).

The following lemmas are handy for reasoning about the energy of sequences:

Ecom[C] > 0 (3.8)
Eseq[@1 @ Q2] = Eieq[Q1] + Eseq[Q2] (3.9)

These can be derived from the energy definitions above. Their derivations are
left as an exercise.

Equipped with the energy definitions and identity 3.9, we are ready to prove
the POSTF1X Termination Theorem.

3.4.3.2 The Proof of Termination

Proof: We show that every transition reduces the energy of a configuration.
Recall that every transition in an SOS has a proof in terms of the rewrite rules.
In the case of POSTF1x, where all the rules are axioms, the proof is trivial: every

"The invocation Ecom[V] that appears in 3.5 may seem questionable because E com [should
be called on elements of Command, not elements of Value. But since every stack value is also
a command, the invocation is well-defined.

3.4. OPERATIONAL REASONING 79

PosTFiIX transition is justified by one rewrite axiom. To prove a property about
PosTFiIX transitions, we just need to show that it holds for each rewrite axiom
in the SOS. Here’s the case analysis for the energy reduction property:

o [num|: (N . @, S)=(Q, N .S
Econﬁg[[<N . Qv S>]]

= Eseq[[N . Q]] + Estack [[S]] by 3.1
= 1+ Ecom[[N]] + EsequQ]] + Estack [[S]] by 3.3
= 14 E;sq[Q] + Estack[N . 5] by 3.5
= 14 Eoonp[(Q, N .)] by 3.1

The LHS has one more unit of energy than the RHS, so moving a numeral
to the stack reduces the configuration energy by one unit.

b [SGQ]: <Qexec . Qresty S> = <Qresta Qexec . S> MOVing an executable se-
quence to the stack also consumes one energy unit by exactly the same
argument as for [num)].

e [popl: (pop . @, Viep . S) = (Q, S) Popping Vi, off of a stack takes
at least two energy units:

Econﬁg[[<pop . Q7 Vtop . S>]]

= Eseq IIPOP . Q]] + Estack[[vtop . S]] by 3.1
= 14 Ecm[pop] + Eseq[Q] + Ecom[Viop] + Estack[S] by 3.3 and 3.5
= 2+ Ecoml[Vtop]] + Eseq[[Q]] + Estack [[S]] by 3.7
> 24+ Econfig[(Q, S)] by 3.1 and 3.8

o [swapl: (swap . @, V; . Vo . S)=(Q, Vo . V; . S) Swapping the
top two elements of a stack consumes two energy units:

Econfigl(svap . Q, Vi . Vz . S)]
= Esefswap . Q] +Estack[V: - V2 . S| by 3.1
= 14 Ecom[swap] + Eseq[Q]
+ Ecom[[vl]] =+ Ecom[[VQ]] + Estack[[s]] by 3.3 and 3.5
= 2+ Eseq[[Q]] + Estack[[VQ . VI . S]] by 3.7 and 3.5
= 2+ EBeonigl{@, V2 . Vi . S)] by 3.1

d [exeCUte]: <exec o Qrests Qegec - S>:> <Qemec Q@ Qrest, S> Executing the
exec command consumes two energy units:

EconﬁglKexeC . Qrest; Qezec . S>]]
= Eseq [[exec . Qrest]] + Estack[[Qemec . S]] by 3.1
= 1+ Ecom IIGXQC]] + EsquIQrest]]

+ Ecom[[(Qezec)]] + Estack [[S]] by 3.3 and 3.5
= 2 + Eseq[[Qezec]] + Eseq[[Qrest]] + Estack: [[S]] by 3.6 and 3.7
= 2 + Eseq[[Qezec @ Qrest]] + Estack [[S]] by 39

= 2+Econﬁg|I<Qezec Q@ Qrest; S>]] by 3.1

80 CHAPTER 3. OPERATIONAL SEMANTICS

e [nget], [arithop], [relop-true], [relop-false], [sel-true], [sel-false]: These cases
are similar to those above and are left as exercises for the reader. &

The approach of defining a natural number function that decreases on every
iteration of a process is a common technique for proving termination. However,
inventing the function can sometimes be tricky. In the case of POSTFIX, we
have to get the relative weights of components just right to handle movements
between the program and stack.

The termination proof presented above is rather complex. The difficulty
is not inherent to POSTFIX, but is due to the particular way we have chosen
to formulate its semantics. There are alternative formulations in which the
termination proof is simpler (see exercise 3.25).

> Exercise 3.21 Show that lemmas 3.8 and 3.9 hold. <

> Exercise 3.22 Complete the proof of the POSTFIX termination theorem by showing
that the following axioms reduce configuration energy: [nget], [arithop], [relop-true],
[relop-false], [sel-true], [sel-false]. <

> Exercise 3.23 Bud “eagle-eye” Lojack notices that definitions 3.2 and 3.4 do not
appear as the justification for any steps in the POSTFIX Termination Theorem. He
reasons that these definitions are arbitrary, so he could just as well use the following
definitions instead:

Ell = 17 (327)
Estack[[m] = 23 (3.4 /)
Is Bud correct? Explain your answer. <

> Exercise 3.24 Prove the termination property of POSTFIX based on the SOS for
PosTF1x2 from Exercise 3.7.

a. Define an appropriate energy function on configurations in the alternative SOS.

b. Show that each transition in the alternative SOS reduces energy. <

3.4.3.3 Structural Induction

The above proof is based on a POSTF1x SOS that uses only axioms. But what if
the SOS contained progress rules, like [exec-done] from Section 3.2.3.3? How do
we prove a property like reduction in configuration energy when progress rules
are involved?

3.4. OPERATIONAL REASONING 81

Here’s where we can take advantage of the fact that every transition of an
SOS must be justified by a finite proof tree based on the rewrite rules. Recall
that there are two types of nodes in the proof tree: the leaves, which correspond
to axioms, and the intermediate nodes, which correspond to progress rules. Sup-
pose we can show that

e the property holds at each leaf —i.e., it is true for the consequent of every
axiom; and

e the property holds at each intermediate node — i.e., for every progress
rule, if the property holds for all of the antecedents, then it also holds for
the consequent.

Then, by induction on the height of its proof tree, the property must hold for
each transition specified by the rewrite rules. This method for proving a property
based on the structure of a tree (in this case the proof tree of a transition relation)
is called structural induction.

As an example of a proof by structural induction, we consider how the pre-
vious proof of the termination property for POSTFIX would be modified for an
SOS that uses the [exec-done] and [exec-prog] rules in place of the [exec] rule.
It is straightforward to show that the [exec-done] axiom reduces configuration
energy; this is left as an exercise for the reader. To show that the [exec-prog] rule
satisfies the property, we must show that if its single antecedent transition re-
duces configuration energy, then its consequent transition reduces configuration
energy as well.

Recall that the [exec-prog] rule has the form:

<Qezem S>:><Qezec/a S/>
(exec . Qresta Qe:pec . S>:><exec . Qrest7 Qe:pec/ . SI>

[exec-prog]

We assume that the antecedent transition,

<Qemeca S> = <Qe:pec/a S/>7

reduces configuration energy, so that the following inequality holds:

Econﬁg[KQezem S>]] > Econﬁg[KQezec/, S/>]]

82 CHAPTER 3. OPERATIONAL SEMANTICS

Then we show that the consequent transition also reduces configuration energy:

Econﬁg[KexeC . Qresta Qezec . >]]

— Eseq [[GXGC Qrest]] + Estack[[@ezec . S]] by 3.1
- Eseq [[exec . Qrest]] + Ecom[[(Qezec)]] + Estack [[S]] by 35
- Eseq [[exec . Qrest]] + Eseql[Qemec]] + Estack [[S]] by 36
= Eseq [[exec . Qrest]] + Econﬁg [[< Qe:veca S>]] by 3.1
> Egeqlexec . Qrest] + Econfig[{Qezec’, S')] by assumption
- Eseq [[GXGC . Qrest]] + Eseq HQ&Z‘EC I]] + Estuck [[SI]] by 3]-
- seq [[exec . Qrest]] + Ecom[[(Qezec /)]] + Estack [[S /]] by 36
- seq [[exec Qrest]] + Estack[[Qezec/ . S/]] by 3.5
= Econﬁg[[<exec . Qresta Qemecl . S/>]] by 3.1

The > appearing in the derivation sequence guarantees that the energy spec-
ified by the first line is strictly greater than the energy specified by the last
line. This completes the proof that the [exec-prog] rule reduces configuration
energy. Together with the proofs that the axioms reduce configuration energy,
this provides an alternative proof of POSTFIX’s termination property.

> Exercise 3.25 Prove the termination property of POSTFI1X based on the alternative
PosTF1x SOS suggested in Exercise 3.12:

a. Define an appropriate energy function on configurations in the alternative SOS.
b. Show that each transition in the alternative SOS reduces energy.

c. The termination proof for the alternative semantics should be more straight-
forward than the termination proofs in the text and in Exercise 3.24. What
characteristic(s) of the alternative SOS simplify the proof? Does this mean the
alternative SOS is a “better” one? <

> Exercise 3.26 Prove that the rewrite rules [exec-prog| and [exec-done] presented
in the text specify the same behavior as the [execute] rule. That is, show that for any
configuration cf of the form (exec . @, S), both sets of rules eventually rewrite c¢f
into either (1) a stuck state or (2) the same configuration. <

> Exercise 3.27 As in POSTFIX, every program in the EL language terminates.
Prove this fact based on an operational semantics for EL (see Exercise 3.10). <

3.4.4 Safe PosTFIix Transformations
3.4.4.1 Observational Equivalence

One of the most important aspects of reasoning about programs is knowing when
it is safe to replace one program phrase by another. Two phrases are said to be

3.4. OPERATIONAL REASONING 83

observationally equivalent (or behaviorally equivalent) if an instance of
one can be replaced by the other in any program without changing the behavior
of the program.

Observational equivalence is important because it is the basis for a wide
range of program transformation techniques. It is often possible to improve
a pragmatic aspect of a program by replacing a phrase by one that is equiv-
alent but more efficient. For example, we expect that the POSTFIX sequence
[1,add, 2,add] can always be replaced by [3,add] without changing the mean-
ing of the surrounding program. The latter may be more desirable in practice
because it performs fewer additions.

A series of simple transformations can sometimes lead to dramatic perfor-
mance improvements. Consider the following three transformations on PosTF1x
command sequences, which are just three of the many safe POSTFIX transfor-
mations:

Before After Name
[Vi, Vg, swap] [Va, Vi] [swap-trans]
[(@), exec] Q [exec-trans]
[N, Ng, A] [Nresuit] where Npesyir = (calculate A N; Ng) | |arith-trans]

Applying these to our running example of a POSTF1X command sequence yields
the following sequence of simplifications:
((2 (3 mul add) exec) 1 swap exec sub)

— ((2 3 mul add) 1 swap exec sub) [exec-trans]
— ((6 add) 1 swap exec sub) [arith-trans)
[
[

— (1 (6 add) exec sub) swap-trans]
— (1 6 add sub) exec-trans|
— (7 sub) [arith-trans]

Thus, the original command sequence is a “subtract 77 subroutine. The trans-
formations essentially perform at compile time operations that otherwise would
be performed at run time.

It is often tricky to determine whether two phrases are observationally equiv-
alent. For example, at first glance it might seem that the POSTFIX sequence
[swap, swap] can always be replaced by the empty sequence []. While this trans-
formation is valid in many situations, these two sequences are not observationally
equivalent because they behave differently when the stack contains fewer than
two elements. For instance, the POSTFIX program (postfix 0 1) returns 1 as
a final answer, but the program (postfix 0 1 swap swap) generates an error.
Two phrases are observationally equivalent only if they are interchangeable in
all programs.

Observational equivalence can be formalized in terms of the notions of be-
havior and context presented earlier. Recall that the behavior of a program

84 CHAPTER 3. OPERATIONAL SEMANTICS

(see Section 3.2.1) is specified by a function beh that maps a program and its
inputs to a set of possible outcomes:

beh : Program x Inputs — P(Outcome)

The behavior is deterministic when the resulting set is guaranteed to be a sin-
gleton. A program context is a program with a hole in it (see Section 3.2.3.4).

Observational Equivalence: Suppose that P ranges over program
contexts and H ranges over the kinds of phrases that fill the holes in
program contexts. Then H; and Hy are defined to be observation-
ally equivalent (written H; =5 Hz) if and only if for all program
contexts P and all inputs I, beh (P{H;},I) = beh (P{Hs},I).

We will consider POSTFIX as an example. An appropriate notion of program
contexts for POSTFIX is defined in Figure 3.19. A command sequence context
Q is one that can be filled with a sequence of commands to yield another se-
quence of commands. For example, if Q = [(2 mul),3] @ O @ [exec], then
Q{[4,add, swap|} =[(2 mul),3,4,add, swap,exec|]. The [Prefix] and [Suffix]
productions allow the hole to be surrounded by arbitrary command sequences,
while the [Nesting] production allows the hole to be nested within an executable
sequence command. (The notation [(Q)] designates a sequence containing a
single element. That element is an executable sequence that contains a single
hole.) Due to the presence of @, the grammar for PostfixSequenceContext is
ambiguous, but that will not affect our presentation, since filling the hole for
any parsing of a sequence context yields exactly the same sequence.

P € PostfixProgContext
Q € PostfixSequenceContext

P ::= (postfix Npumargs Q) [Program Context]
Q:=0 [Hole]

| Q@ @ Q [Prefix]

|Q @ Q [Suffix]

| ()] [Nesting]

Figure 3.19: Definition of POSTFIX contexts.

The possible outcomes of a program must be carefully defined to lead to
a satisfactory notion of observational equivalence. The outcomes for POSTFIX
defined in Section 3.2.1 are fine, but small changes can sometimes lead to sur-
prising results. For example, suppose we allow POSTFIX programs to return the

3.4. OPERATIONAL REASONING 85

top value of a non-empty stack, even if the top value is an executable sequence.
If we can observe the structure of a returned executable sequence, then this
change invalidates all non-trivial program transformations! To see why, take
any two sequences we expect to be equivalent (say, [1,add, 2,add] and [3,add])
and plug them into the context (postfix 0 (O)). In the modified semantics,
the two outcomes are the executable sequences (1 add 2 add) and (3 add),
which are clearly not the same, and so the two sequences are not observationally
equivalent.

The problem is that the modified SOS makes distinctions between executable
sequence outcomes that are too fine-grained for our purposes. We can fix the
problem by instead adopting a coarser-grained notion of behavior in which there
is no observable difference between outcomes that are executable sequences. For
example, the outcome in this case could be the token executable, indicating
that the outcome is an executable sequence without divulging which particular
executable sequence it is. With this change, all the expected program transfor-
mations become valid again.

3.4.4.2 Transform Equivalence

It is possible to show the observational equivalence of two particular POSTFIX
command sequences according to the definition on page 84. However, we will
follow another route. First, we will develop an easier-to-prove notion of equiva-
lence for POSTF1X sequences called transform equivalence. Then, after giving
an example of transform equivalence, we will prove a theorem that transform
equivalence implies observational equivalence for POSTFI1X programs. This ap-
proach has the advantage that the structural induction proof on contexts needed
to show observational equivalence need only be proved once (for the theorem)
rather than for every pair of POSTFIX command sequences.

Transform equivalence is based on the intuition that POSTFIX command
sequences can be viewed as a means of transforming one stack to another. In-
formally, transform equivalence is defined as follows:

Transform Equivalence: Two POSTFIX command sequences are
transform equivalent if they always transform equivalent input
stacks to equivalent output stacks.

This definition is informal in that it doesn’t say how command sequences can
be viewed as transformers or pin down what it means for two stacks to be
equivalent. We will now flesh these notions out.

In order to view POSTFIX command sequences as stack transformers, we will
extend the PosTFix SOS as follows:

86 CHAPTER 3. OPERATIONAL SEMANTICS

e Modify Stack to contain a distinguished element S¢;o-:

S € Stack = Value* 4+ ErrorStack
ErrorStack = {Serror}

e Extend the transition relation, =, so that for all stuck states cfstuer €
Stuck, cfstuck = ([], Serror). This says that any configuration formerly
considered stuck now rewrites to a final configuration with an error stack.

e Define (finalStack @ S) to be S’ if (Q, S) = ([], S’). The finalStack
function is well-defined because POSTFIX is deterministic; with the exten-
sions for handling Se,., finalStack is also a total function.

As examples of finalStack, consider (finalStack [add,mul] [4,3,2,1]) =[24,1]
and (finalStack [add,exec| [4,3,2,1]) = Serror.

The simplest notion of “stack equivalence” is that two stacks are equivalent
if they are identical sequences of values. But this notion has problems similar to
those discussed above with regard to outcomes in the context of observational
equivalence. For example, suppose we are able to show that (1 add 2 add) and
(3 add) are transform equivalent. Then we’d also like the transform equivalence
of ((1 add 2 add)) and ((3 add)) to follow as a corollary. But given identical
input stacks, these two sequences do not yield identical output stacks — the top
values of the output stacks are different executable sequences!

To finesse this problem, we need a notion of stack equivalence that treats
two executable sequence elements as the same if they are transform equivalent.
The recursive nature of these notions prompts us to define three mutually recur-
sive equivalence relations that formalize this approach: one between command
sequences (transform equivalence), one between stacks (stack equivalence), and
one between stack elements (value equivalence).

e Command sequences @; and @y are transform equivalent (written
Q1 ~q Q2) if, for all pairs of stack equivalent stacks S; and Sg,
(finalStack @Q); Sp) is stack equivalent to (finalStack Q2 S2). The case
S1 =S8ewor =952 can safely be ignored because S¢., models only final
configurations, not intermediate ones.

e Stacks S; and Sy are stack equivalent (written S; ~g S2) if

— both S; and Sy are the distinguished error stack, Sepror; Or

— S; and Sy are equal-length sequences of values that are elementwise
value equivalent. Le., S; = [Vy,..., V,], Se = [V;/,..., V},,/], and
Vi ~v V;' for all ¢ such that 1 < i <n.

3.4. OPERATIONAL REASONING 87

e Stack elements V; and Vy are value equivalent (written V; ~y V)
if V; and V, are the same integer numeral (i.e., V; = N =Vy) or if V;
and Vy are executable sequences whose contents are transform equivalent

(e, Vi =(Qn), Vo = (Q2), and Q; ~g Q2).

Despite the mutually recursive nature of these definitions, we claim that all three
are well-defined equivalence relations as long as we choose the largest relations
satisfying the descriptions.

Two PosTFIX command sequences can be proved transform equivalent by
case analysis on the structure of input stacks. This is much easier than the case
analysis on the structure of contexts that is implied by observational equivalence.
Since (as we shall show below) observational equivalence follows from transform
equivalence, transform equivalence is a practical technique for demonstrating
observational equivalence.

As a simple example of transform equivalence, we show that [1,add, 2, add]
~@ [3,add|. Consider two non-error stacks S; and Sy such that S; ~g Ss. We
proceed by case analysis on the structure of the stacks:

e S; and Sz are both [], in which case

(finalStack [3,add] [])
= (finalStack [add] [3])
- Serror
(finalStack [add,2,add] [1])
= (finalStack [1,add,2,add] [])

e S; and S, are non-empty sequences whose heads are the same numeric
literal and whose tails are stack equivalent. I.e., S; = N . S;', Sy =
N . Sgl, and Sz ,NS Sgl.

(finalStack [3,add] N . S; ')
= (finalStack [add] 3 . N . S;’)

finalStack [] N+3 . S;)
finalStack [N+3] S;’)
finalStack [N+3] Sz”)
finalStack [] N+3 . Sp')

[

[

[

[

~Ss

finalStack [add] 2 . N+1 . S3”)
finalStack [2,add] N+1 . Sp”)
finalStack [add,2,add] 1 . N . Sp)
finalStack [1,add,2,add] N . S2’)

NN N N N S N

e 5; and S, are non-empty sequences whose heads are transform equivalent
executable sequences and whose tails are stack equivalent. l.e., §; =
Qi - S1',8 = Q2 . S2', Q1 ~g Q2,and S;'~g5 Sy,

88 CHAPTER 3. OPERATIONAL SEMANTICS

(finalStack [3,add] Q; . S1')

= (finalStack [add] 3 . Q; . S1”)

= Serror

= (finalStack [add,2,add] 1 . Q2 . S2’)
(finalStack [1,add,2,add] Q2 . S2’)

In all three cases,
(finalStack [1,add,2,add] S;) ~g (finalStack [3,add] Sz),

so the transform equivalence of the sequences follows by definition of ~¢.

We emphasize that stacks can be equivalent without being identical. For
instance, given the result of the above example, it is easy to construct two
stacks that are stack equivalent without being identical:

[(1 add 2 add), 5] ~g [(3 add),b].

Intuitively, these stacks are equivalent because they cannot be distinguished by
any POSTFIX command sequence. Any such sequence must either ignore both
sequence elements (e.g., [pop]), attempt an illegal operation on both sequence el-
ements (e.g., [mul]), or execute both sequence elements on equivalent stacks (via
exec). But because the sequence elements are transform equivalent, executing
them cannot distinguish them.

3.4.4.3 Transform Equivalence Implies Observational Equivalence

We wrap up the discussion of observational equivalence by showing that trans-
form equivalence of POSTFIX command sequences implies observational equiv-
alence. This can be explained informally as follows. Every POSTFIX program
context consists of two parts: the commands performed before the hole and the
commands performed after the hole. The commands before the hole transform
the initial empty stack into Sy.. Suppose the hole is filled by one of two exe-
cutable sequences, (); and ()2, that are transform equivalent. Then the stacks
Spost1 and Spost2 that result from executing these sequences, respectively, on
Spre must be stack equivalent. The commands performed after the hole must
transform Spos; and Spesse into stack equivalent stacks Spna; and Sppaz. Since
behavior depends only on the equivalence class of the final stack, it is impossi-
ble to construct a context that distinguishes @; and)». Therefore, they are
observationally equivalent.

Below, we present a formal proof that transform equivalence implies obser-
vational equivalence.

PosTFIX Transform Equivalence Theorem: @); ~¢g ()2 implies

Q1 =obs Q2.

3.4. OPERATIONAL REASONING 89

This theorem is useful because it is generally easier to show that two command
sequences are transform equivalent than to construct a proof based directly on
the definition of observational equivalence.

Proof: We will show that for all sequence contexts Q, @; ~¢g @2 implies
Q{Q1} ~g Q{Q2}. The latter equivalence implies that, for all sequence contexts
Q and initial stacks S,

(finalStack Q{ @1} Sinit) ~s (finalStack Q{Q2} Sinit) -

This in turn implies that for all numerals N,, and arguments sequences Ngygs*,
beh ((program N, Q{Q:}), Nyys*) = beh ((program N, Q{Q2}), Nargs™).

So Q7 =ops @2 by the definition of observational equivalence.
We will employ the following properties of transform equivalence, which are
left as exercises for the reader:

Qi~qQ: and Q2~qQ2’ implies @Q; Q@ Qe~gQ;" @ Qy' (3.10)
Qi~oQs mplies [(Q1)]~0[(Q2)] (3.11)

Property 3.11 is tricky to read; it says that if J; and ()2 are transform equiv-
alent, then the sequences that result from nesting (); and @2 in executable
sequences within a singleton sequence are also transform equivalent.

We proceed by structural induction on the grammar of the PostfixSequence-

Context domain:

e (Base case) For sequence contexts of the form O, @Q; ~¢g @2 trivially
implies O{Q;} ~q O{Qz2}.

e (Induction cases) For each of the following compound sequence contexts,
assume that Q; ~g Q2 implies Q{Q;} ~o Q{Q2} for any Q.

— For sequence contexts of the form @ @ Q,

Qi1~qQ2
implies Q{Q:}~oQ{Q2} by assumption

implies @ @ (Q{Q:})~oQ @ (Q{Q2}) by reflexivity of ~¢ and 3.10

implies (Q @ Q){Q:}~0(Q @ Q){Q2} by definition of Q

— Sequence contexts of the form @Q @ () are handled similarly to those
of the form @ @ Q.

— For sequence contexts of the form [(Q)],

Qi~qQ2

implies Q{Q:}~oQ{Q2} by assumption

implies [(Q{Q:P)]~o[(Q{Q:}] by 3.1

implies [(Q)]{Q1}~q[(Q@)]{Q2} by definition of Q o

90 CHAPTER 3. OPERATIONAL SEMANTICS

> Exercise 3.28 For each of the following purported observational equivalences, either
prove that the observational equivalence is valid (via transform equivalence), or give a
counterexample to show that it is not.

a. [N, pop] =obs (]

b. [add, N, add] =,ps [V, add, add]

c. [N1,Ng, A] =obs [Nresuit], where Nyegyyr =(calculate A Ng Nyp)

d. [(Q),exec] —ops Q

e. [(Q),(Q),sel,exec| =, pop . Q

f. [Nz, (N2 (Qu) (Qp) sel exec), (Ny (Q.) (Qg) sel exec),sel, exec]

=obs [N2, (N; (Qa) (Q.) sel exec), (N; (Qp) (Q) sel exec),sel,exec]
g. [C1, Cs,swap| =,ps [C2, Cf]

h. [swap, swap, swap| =,ps [swap) <

> Exercise 3.29 Prove lemmas 3.10 and 3.11, which are used to show that transform
equivalence implies operational equivalence. <
> Exercise 3.30

a. Modify the POSTFIX semantics in Figure 3.3 so that the outcome of a POSTFIX
program whose final configuration has an executable sequence at the top is the
token executable.

b. In your modified semantics, show that transform equivalence still implies obser-
vational equivalence. <

> Exercise 3.31 Prove the following composition theorem for observationally equiv-
alent POSTFIX sequences:

QI —obs Ql " and QQ —obs QQ/ 1mphes QI Q@ QQ —obs QI '@ QQI <

> Exercise 3.32 Which of the following transformations on EL numerical expressions
are safe? Explain your answers. Be sure to consider stuck expressions like (/ 1 0).

a. (+12)—3

b. (+ 0 NE) — NE

c. (*x 0 NE) — 0

d. (+ 1 (+ 2 NE)) — (+ 3 NE)

3.4. OPERATIONAL REASONING 91

e. (+ NE NE) — (x 2 NE)

f. (if (= N N) NE; NEjy) — NE,

g. (if (= NE; NE;) NE, NE3) — NE,

h. (if BE NE NE) — NE <

> Exercise 3.331 Develop a notion of transform equivalence for EL that is powerful
enough to formally prove that the transformations in Exercise 3.32 that you think are
safe are really safe. You will need to design appropriate contexts for EL programs,
numerical expressions, and boolean expressions. <

> Exercise 3.34% Given that transform equivalence implies observational equiva-
lence, it is natural to wonder whether the converse is true. That is, does the following
implication hold?

Q1 =obs Q2 implies Q;~q Q2

If so, prove it; if not, explain why. <

> Exercise 3.351 Consider the following 7p function, which translates an ELMM
program to a POSTFIX program:

Tp : Programp; s — Programp, g,
Tp [(elmm NEpo4)] = (postfix 0 Tne[NEsoay])

Tne : NumExp — Commands

Iye[N] =[N

T4 : ArithmeticOperator g 5, — ArithmeticOperator p, g pi,
Ta [[+]] =add

T4l-] =sub, etc.

a. What is 7p [(elmm (/ (+ 25 75) (* (- 7 4) (+ 5 6))))]?

b. Intuitively, 7p maps an ELMM program to a POSTFIX program with the same
behavior. Develop a proof that formalizes this intuition. As part of your proof,
show that the following diagram commutes:

ELMM CeLmM,

CeLMM,

TNE TNE

PostFia. CPostFizg

CPostFiz 1

The nodes Cgrarar, and Cgrara, represent ELMM configurations, and the nodes
Cpostriz, and Cpostriz, represent POSTFIX configurations of the form introduced

92 CHAPTER 3. OPERATIONAL SEMANTICS

in Exercise 3.12. The horizontal arrows are transitions in the respective systems,
while the vertical arrows are applications of Zxyre. It may help to think in terms
of a context-based semantics.

c. Extend the translator to translate (1) ELM programs and (2) EL programs. In
each case, prove that the program resulting from your translation has the same
behavior as the original program. <

3.5 Extending PoOSTFIX

We close this chapter on operational semantics by illustrating that slight per-
turbations to a language can have extensive repercussions for the properties of
the language.

You have probably noticed that POSTFIX has a very limited expressive
power. The fact that all programs terminate gives us a hint why. Any lan-
guage in which all programs terminate can’t be universal, because any universal
language must allow nonterminating computations to be expressed. Even if we
don’t care about universality (maybe we just want a good calculator language),
PosTFix suffers from numerous drawbacks. For example, nget allows us to
“name” numerals by their position relative to the top of the stack, but these
positions change as values are pushed and popped, leading to programs that
are challenging to read and write. It would be nicer to give unchanging names
to values. Furthermore, nget only accesses numerals, and there are situations
where we need to access executable sequences and use them more than once.

We could address these problems by allowing executable sequences to be
copied from any position on the stack and by introducing a general way to name
any value; these extensions are explored in exercises. For now, we will consider
extending POSTFIX with a command that just copies the top value on a stack.
Since the top value might be an executable sequence, this at least gives us a way
to copy executable sequences — something we could not do before.

Consider a new command, dup, which duplicates the value at the top of the
stack. After execution of this command, the top two values of the stack will be
the same. The rewrite rule for dup is given below:

({dup . Q, V. S=(Q, V. V.S [dup]

As a simple example of using dup, consider the executable sequence (dup mul),
which behaves as a squaring subroutine:

3.5. EXTENDING POSTFIX 93

(postfix 1 (dup mul) exec) 02, 149

(posttfix 2 (dup mul) dup 3 nget swap exec swap 4 nget swap exec)
B2, 469

The introduction of dup clearly enhances the expressive power of POsT-
Fix. But adding this innocent little command has a tremendous consequence
for the language: it destroys the termination property! Consider the program
(postfix O (dup exec) dup exec). Executing this program on zero argu-
ments yields the following transition sequence:

(((dup exec) dup exec), [])

= ((dup exec), [(dup exec)])

= ((exec), [(dup exec), (dup exec)])
= ((dup exec), [(dup exec)])

Because the rewrite process returns to a previously visited configuration, it is
clear that the execution of this program never terminates.

It is not difficult to see why dup invalidates the termination proof from
Section 3.4.3. The problem is that dup can increase the energy of a configuration
in the case where the top element of the stack is an executable sequence. Because
dup effectively creates new commands in this situation, the number of commands
executed can be unbounded.

It turns out that extending POSTF1X with dup not only invalidates the ter-
mination property, but also results in a language that is universal!'> That is,
any computable function can be expressed in POSTFIX+{dup}.

This simple example underscores that minor changes to a language can have
major consequences. Without careful thought, it is never safe to assume that
adding or removing a simple language feature or tweaking a rewrite rule will
change a language in only minor ways.

We conclude this chapter with numerous exercises that explore various ex-
tensions to the POSTFIX language.

> Exercise 3.36 Extend the POSTF1X SOS so that it handles the following commands:

e pair: Let V; be the top value on the stack and V2 be the next to top value. Pop
both values off of the stack and push onto the stack a pair object (Va, V;).

o fst: If the top stack value is a pair (Vi, Vina), then replace it with Vi Oth-
erwise signal an error.

e right: If the top stack value is a pair (Vys, Ving), then replace it with V.
Otherwise signal an error. <

12We are indebted to Carl Witty and Michael Frank for showing us that POSTFIX+{dup} is
universal.

94 CHAPTER 3. OPERATIONAL SEMANTICS

> Exercise 3.37 Extend the POSTF1X SOS so that it handles the following commands:

e get: Call the top stack value vipge; and the remaining stack values (from top
down) vy, va, ..., Un. POD Vindes Off the stack. If v;pge, is a numeral ¢ such that
1 <4 < n, push v; onto the stack. Signal an error if the stack does not contain
at least one value, if vjpges 1S not a numeral, or if 7 is not in the range [1,n]. (get
is like nget except that it can copy any value, not just a numeral.)

e put: Call the top stack value v, gz, the next-to-top stack value v,4;, the remaining
stack values (from top down) vy, vg, ..., V. POD Vindes and vy off the stack. If
Vindez 1S @ numeral ¢ such that 1 < ¢ < n, change the slot holding v; on the stack
to hold wv,4;. Signal an error if the stack does not contain at least two values, if
Vindes 18 DOt a numeral, or if ¢ is not in the range [1,n]. <

> Exercise 3.38 Write the following programs in POSTFIX+{dup}. You may also use
the pair commands from Exercise 3.36 and/or the get/put commands from Exercise 3.37
in your solution, but they are not necessary — for an extra challenge, program purely
in POSTFI1X+{dup}.

a. A program that takes a single argument (call it n) and returns the nth factorial.
The factorial f of an integer is a function such that (f 0) =1 and (f n) =
(nx (f (n—1))) for n > 1.

b. A program that takes a single argument (call it n) and returns the nth Fibonacci
number,. The Fibonacci function f is such that (f 0) =0, (f 1) =1, and (f n)
=((f (n=1)) + (f (n—2))) forn >2. <

> Exercise 3.39 Abby Stracksen wishes to extend POSTFIX with a simple means
of iteration. She suggests that POSTFIX should have a new command of the form
(for N (Q)). Abby describes the behavior of her command with the following rewrite
axioms:

<(f0I‘ N (Qfor)) . Qresta S>
j<]V . Qfor Q@ [(fOI‘ Ndec (Qfor))] Q@ Qrest; S>a

where Nge. =(calculate sub N 1) [for-once]
and (compare gt N 0)
((for N (Qfor)) - Qrests S)= (Qrest, S), for-don]

where - (compare gt N 0)

Abby calls her extended language PosTLoOOP.

a. Give an informal specification of Abby’s for command that would be appropriate
for a reference manual.

b. Using Abby’s for semantics, what are the results of executing the following POsT-
LooP programs when called on zero arguments?

3.5. EXTENDING POSTFIX 95

i. (postloop 0 1 (for 5 (mul)))

ii. (postloop 0 1 (for 5 (2 mul)))

iii. (postloop 0 1 (for 5 (add mul)))

iv. (postloop 0 O (for 17 (pop 2 add)))

v. (postloop 0 0 (for 6 (pop (for 7 (pop 1 add)))))

c. Extending POSTFIX with the for command does not change its termination prop-
erty. Show this by extending the termination proof described in the notes in the
following way:

i. Define the energy of the for command.

ii. Show that the transitions in the [for-once| and [for-done| rules decrease
configuration energy.

d. Bud Lojack has developed a repeat command of the form (repeat N (@)) that
is similar to Abby’s for command. Bud defines the semantics of his command
by the following rewrite rules:

((repeat N (Qrpt)) . Qrest; S)
j<]V . (l“ePeat Ndec (Qrpt)) . Qrpt Q Qresta S>7
where Nye. =(calculate sub N 1)
and (compare gt N 0)

[repeat-once]

((repeat N (Qrpt)) . Qrests S) = (Qrest, S),
where - (compare gt N 0) [repeat-done]
Does Bud’s repeat command have the same behavior as Abby’s for command?
That is, does the following observational equivalence hold?

[(repeat N (@Q))] =ops [(for N (@Q))]

Justify your answer. <

> Exercise 3.40 Alyssa P. Hacker has created POSTSAFE, an extension to POSTFIx
with a new command called sdup: safe dup. The sdup command is a restricted form
of dup that does not violoate the termination property of PoSTFIX. The informal
semantics for sdup is as follows: if the top of the stack is a number or a command
sequence that doesn’t contain sdup, duplicate it; otherwise, signal an error.

As a new graduate student in Alyssa’s AHRG (Advanced Hacking Research Group),
you are assigned to give an operational semantics for sdup, and a proof that all POST-
SAFE programs terminate. Alyssa set up several intermediate steps to make your life
easier.

96 CHAPTER 3. OPERATIONAL SEMANTICS

a. Write the operational semantics rules that describe the behavior of sdup. Model
the errors through stuck states. You can use the auxiliary function

contains_sdup : Commands — Bool

that takes a sequence of commands and checks whether it contains sdup or not.

b. Consider the product domain P = N x N (recall that N is the set of natural
numbers, starting with 0). On this domain, Alyssa defined the ordering <p as
follows:

Definition 1 (lexicographic order) {(ai,b1) <p {(as,bs) iff

1. a1 < as or

1. a1 = as and by < by.
E.g., (3,10000) <p (4,0), (5,2) <p (5,3).

Definition 2 A strictly decreasing chain in P is a sequence of elements p1,pa, . ..
such that Vi .p; € P and Vi . pi+1 <p p;.

i. Consider a finite strictly decreasing chain pq,ps,...,pr, where Vi . p; =
{(a;,b;) € P, such that &k > b; + 1 (i.e., the chain has more than b; + 1
elements). Prove that ay < a;.

ii. Show that there is no infinite strictly decreasing chain in P.

c. Prove that each POSTSAFE program terminates by defining an appropriate en-
ergy function £Sconfig- Note: If you need to use some helper functions that are
intuitively easy to describe but tedious to define (e.g., contains_sdup), just give
an informal description of them. <

> Exercise 3.41 Sam Antix extends the POSTFIX language to allow programmers to
directly manipulate stacks as first-class values. He calls the resulting language STACK-
Fix. STAckF1x adds three commands to the POSTFIX collection.

e package: This command packages a copy of the stack as a first-class value, S. It
then clears the stack, leaving S as the only value on the stack.

e unpackage: This command pops the top of the stack, which must be a stack-value
S, and replaces the stack with an “unpackaged” version of S.

e switch: This command pops the top of the stack, which must be a stack-value,
S. Then the rest of the stack is packaged (as if by the package command); this
results in a new stack-value, S,.st. Finally, the stack is completely replaced with
an “unpackaged” version of S, and the stack-value S,.s: is pushed on top of the
resulting stack. Thus, switch effectively switches the roles of the stack-value on
top of the stack and the rest of the stack.

3.5. EXTENDING POSTFIX 97

As a warm-up, Sam has written some simple StackFix programs. First-class stack
values may be returned as the final result of a program execution; in the case, the
outcome is the token stack-value, which hides the details of the stack value.

(stackfix 0 1 2 package) 1, stack-value
(stackfix 0 1 2 package unpackage) 0, 9
(stackfix 0 1 2 package 3 switch) 4, {error: top of stack not stack-value}

2 package 3 swap switch pop) U, 9

0

(stackfix 0 1 2 package 3 swap switch) L, stack-value
(stackfix 0
0

(stackfix 0 1 2 package 3 swap switch unpackage) 1, 3

a. Write a definition of the Value domain for the STACKFIX language.
b. Give transition rules for the package, unpackage, and switch commands.

c. Does unpackage add new expressive power to StackFix? If yes, argue why. If no,
provide an equivalent sequence of commands from POsTFIX+{package,switch}.

d. Does every StackFix program terminate? Give a short, intuitive description of
your reasoning. <

> Exercise 3.42 Rhea Storr introduces a new POSTFIX command called execs that
permits executing a sequence of commands while saving the old stack. She calls her
extended language POSTSAVE.

Rhea asks you to help her define transition rules for POSTSAVE that in several steps
move (execs . @, Qezec - S) to the configuration (Q, V . S). This sequence of
transformations assumes that the configuration (Qegec, S) will eventually result in a
final configuration ([]command, V - S').

Here are some examples that contrast exec with execs:

(postsave 0 1 2 (3 mul) exec add) 4, 7
(postsave 0 1 2 (3 mul) execs add) U, s
(postsave 0 (1) execs) 1,4

(postsave 0 2 3 (mul) execs add add) 1,44

To implement the SOS for POSTSAVE, Rhea modifies the configuration space:

cf € CF = Layer*
L € Layer = Commands x Stack

Rhea’s transition rule for execs is:
(execs . @, Qexec - S) . L¥*={(Qepec, S) - (Q, S) . L* [execs]

Note that the entire stack is copied into the new layer!

a. If(Q, 9) ELIN (Q', S')is a transition rule in POSTFIX, provide the correspond-
ing rule in POSTSAVE.

98 CHAPTER 3. OPERATIONAL SEMANTICS

b. Provide the rule for an empty command sequence in the top layer.

c. Show that programs in POSTSAVE are no longer guaranteed to terminate by giving
a command sequence that is equivalent to dup. <

> Exercise 3.43 One of the chief limitations of the POSTFIX language is that there is
no way to name values. In this problem, we consider extending POSTFIX with a simple
naming system. We will call the resulting language POSTTEXT.

The grammar for POSTTEXT is the same as that for POSTFIX except that there are
three new commands:

Cu=...
| I [Name]
| def [Definition]
| ref [Name-reference]

Here, I is an element of the syntactic domain Identifier, which includes all alphabetic
names except for the POSTTEXT command names (pop, exec, def, etc.), which are
treated as reserved words of the language.

The model of the POSTTEXT language extends the model of POSTFIX by including
a current dictionary as well as a current stack. A dictionary is an object that maintains
bindings between names and values. The commands inherited from POSTF1x have no
effect on the dictionary. The informal behavior of the new commands is as follows:

e [[is a literal name that is similar to an immutable string literal in other lan-
guages. Executing this command simply pushes I on the stack. The Value domain
must be extended to include identifiers in addition to numerals and executable
sequences.

e def: Let v; be the top stack value and vy be the next to top value. The def
command pops both values off of the stack and updates the current dictionary
to include a binding between vy and v;. ve should be a name, but v; can be any
value (including an executable sequence or name literal). It is an error if vq is
not a name.

e ref: The ref command pops the top element v,4me off of the stack, where v,,qme
should be a name I. It looks up the value v,,; associated with [in the current
dictionary and pushes v,4; on top of the stack. It is an error if there is no binding
for I in the current dictionary or if v,4me is not a name.

For example:

(posttext O average (add 2 div) def 3 7 average ref exec) 1, s
(posttext 0 a 3 def dbl (2 mul) def a ref

dbl ref exec 4 dbl ref exec add) 1 14
(posttext 0 a b def a ref 7 def b ref) 4, 7

(posttext O a 5 def a ref 7 def b ref) 1L error {5 is not a name.}
(posttext 0 ¢ 4 def d ref 1 add) 1 error {a is unbound.}

3.5. EXTENDING POSTFIX 99

In an SOS for POSTTEXT, the usual POSTFIX configuration space must be extended
to include a dictionary object as a new state component:

CF posttezt = Commands x Stack x Dictionary
a. Suppose that a dictionary is represented as a sequence of identifier /value pairs:

D € Dictionary = (Identifier x Value)*

i. Define the final configurations, input function, and output function for the
PosTtTEXT SOS.

ii. Give the rewrite rules for the I, def, and ref commands.

b. Redo the above problem, assuming that dictionaries are instead represented as
functions from identifiers to values, i.e.,

D € Dictionary = Identifier — (Value + {unbound})

where unbound is a distinguished token indicating an identifier is unbound in the
dictionary.

You may find the following bind function helpful:

bind : Identifier — Value — Dictionary — Dictionary
:>\Ibind VD. >\Iref~ if Ibind ZIref then V else (D Iref) fi

bind takes a name, a value, and dictionary, and returns a new dictionary in
which there is a binding between the name and value in addition to the existing
bindings. (If the name was already bound in the given dictionary, the new binding
effectively replaces the old.) <

> Exercise 3.44 After several focus-group studies, Ben Bitdiddle has decided that
PosTFIX needs a macro facility. Below is Ben’s sketch of the informal semantics of the
facility for his extended language, which he dubs PosTMAC.

Macros are specified at the beginning of a POSTMAC program, as follows:

(postmac Npumargs (U7 Vi) ... Uy Vi)) @)

Each macro (I; V;) creates a command, called I; € Identifier, that, when executed,
pushes the value V; (which can be an integer or a command sequence) onto the stack.
It is illegal to give macros the names of existing POSTFIX commands, or to use an
identifier more than once in a list of macros. The behavior of programs that do so is
undefined. Here are some examples Ben has come up with:

100

CHAPTER 3. OPERATIONAL SEMANTICS

(postmac 0 ((inc (1 add))) (O inc exec inc exec)) 0, 5
(postmac 0 ((A 1) (B (2 mul))) (A B exec)) b 2

(postmac 0 ((A 1) (B (2 mul))) (A C exec)) U, error
{undefined macro C}

(postmac 0 ((A 1) (B (C mul)) (C 2)) (A B exec)) 1o

(postmac 0 ((A pop)) (1 A)) 1, error
{Ill-formed program: macro bodies must be values, not commands}

Ben started writing an SOS for POsSTMAC, but had to go make a presentation for

some venture capitalists. It is your job to complete the SOS.

Before leaving, Ben made the following changes/additions to the domain definitions:

M € MacroList = (Identifier x Value)*

P € Program = Commands X Intlit x MacroList
CF = Commands x Stack x MacroList

C €Commands ::= ... | I [Macro Reference]

He also introduced an auxiliary partial function, lookup, with the following signature:

lookup : Identifier x MacroList — Value

If lookup is given an identifier and a macro list, it returns the value that the identifier
is bound to in the macro list. If there is no such value, lookup gets stuck.

a. Ben’s notes begin the SOS for POSTMAC as follows:

Q. 9 E5(Q, 59
(Q.5,M)==(Q", S’, M)

[POSTFIX commands]

where == is the original transition relation for POSTFIX and LM is the new
transition relation for PostTMAac. Complete the SOS for PosTMAcC. Your com-
pleted SOS should handle the first four of Ben’s examples. Don’t worry about
ill-formed programs. Model errors as stuck states.

. Louis Reasoner finds out that your SOS handles macros that depend on other
macros. He wants to launch a new advertising campaign with the slogan: “Guar-
anteed to terminate: POSTFIX with mutually recursive macros!” Show that Louis’
new campaign is a bad idea by writing a nonterminating program in POsTMAC.

When Ben returns from his presentation, he finds out you've written a nontermi-
nating program in POSTMAC. He decides to restrict the language so nonterminat-
ing programs are no longer possible. Ben’s restriction is that the body (or value)
of a macro cannot use any macros. Ben wants you to prove that this restricted
language terminates.

i. Extend the POSTFIX energy function so that it assigns an energy to config-
urations that include macros. Fill in the blanks in Ben’s definitions of the

3.5. EXTENDING POSTFIX 101

functions E o, [C, M, Eseq[Q, M] and Egzqer[S, M] and use these functions
to define the configuration energy function Econsig[(Q, S, M)].

Ecom[[(Q),Mﬂ = Eseq[[Q’ M]]
Eoom[C,M] = 1 (C is not an identifier or
an executable sequence)
Ecom[I,M] =
Eseql[]commana, M] = 0
Eseq[[c . Q, M]] =
Estack[[Jvale, M] = 0
Estack[V - S, M] =

Econfig[(@, 5, M)] =

ii. Use the extended energy function (for the restricted form of POSTMAC)
to show that executing a macro decreases the energy of a configuration.
Since it is possible to show all the other commands decrease the energy
of a configuration (by adapting the termination proof for PostFix without
macros), this will show that the restricted form of POSTMAC terminates. <

> Exercise 3.45 Dan M. X. Cope, a Lisp hacker, is unsatisfied with POSTTEXT, the
name binding extension of POSTFIX introduced in Exercise 3.43. He claims that there
is a better way to add name binding to POSTF1X, and creates a brand new language,
PosTLiSP, to test out his ideas.

The grammar for POSTLISP is the same as that for POSTFIX except that there are
four new commands:

Cu=...
| T [Name]
| bind [Push new binding]
| unbind [Remove binding]
[

| lookup [Name lookup]

Here, I is an element of the syntactic domain Identifier, which includes all alphabetic
names except for the POSTLISP command names (pop, exec, bind, etc.), which are
treated as reserved words of the language.

The model of the POSTLISP language extends the model of POSTFIX by including
a name stack for each name. A name stack is a stack of values associated with a name
that can be manipulated with the bind, unbind, and lookup commands as described
below. The commands inherited from POSTFIX have no effect on the name stacks. The
informal behavior of the new commands is as follows:

e [: [is a literal name that is similar to an immutable string literal in other
languages. Executing this command simply pushes I onto the stack. The Value
domain is extended to include names in addition to numerals and executable
sequences.

102

CHAPTER 3. OPERATIONAL SEMANTICS

bind: Let v; be the top stack value and vy be the next-to-top value. The bind
command pops both values off of the stack and pushes v; onto the name stack
associated with vs. Thus vy is required to be a name, but v; can be any value
(including an executable sequence or name literal). It is an error if vo is not a
name.

lookup: The command lookup pops the top element v,gme off of the stack,
where v,qme should be a name 1. If v, is the value at the top of the name stack
associated with I, then v,q; is pushed onto the stack. (vyq is not popped off of
the name stack.) It is an error if the name stack of I is empty, or if vpgme is not
a name.

unbind: The command unbind pops the top element v,.me off of the stack,
where vy, qme should be a name I. It then pops the top value off of the name stack
associated with I. It is an error if the name stack of I is empty, or if v,qme is not
a name.

In the initial state, each name is associated with the empty name stack.

For example:

(postlisp 0 a 3 bind a lookup) U, 3

(postlisp O a 8 bind a lookup a lookup add) 1, 16
(postlisp O a 4 bind a 9 bind a lookup a unbind a lookup add) 1, 13
(postlisp O average (add 2 div) bind 3 7 average lookup exec) 1, s
a b bind a lookup 23 bind b lookup) 1, 23

c 4 bind d lookup 1 add) 1L error {d name stack is empty.}

0
0
0

(postlisp 0 19 a bind a lookup) U, error {19 is not a name.}
0
(postlisp O
0

(postlisp

(postlisp O b unbind) U, error {b name stack is empty}

In an SOS for PosTLisP, the usual POSTFIX configuration space must be extended

to include the name stacks as a new state component. Name stacks are bundled up into
an object called a name file.

CF postrisp = Commands x Stack x NameFile

F' € NameFile = Name — Stack

A NameFile is a function mapping a name to the stack of values bound to the name. If
F is a name file, then (F I) is the stack associated with I in F. The notation F[I = S]
denotes a name file that is identical to F except that I is mapped to S.

a. Define the final configurations, input function, and output function for the PostLisp

SOS.

b. Give the rewrite rules for the I, bind, unbind, and lookup commands. <

3.5. EXTENDING POSTFIX 103

> Exercise 3.46 Abby Stracksen is bored with vanilla POSTFIX (it’s not even univer-
sal!) and decides to add a new feature, which she calls the heap. A heap maps locations
to elements from the Value domain, where locations are simply integers:

Location = Intlit

Note that a location can be any integer, including a negative one. Furthermore, integers
and locations can be used interchangeably in Abby’s language, very much like pointers
in pre-ANSI C.

Abby christens her new language POSTHEAP. The grammar for POSTHEAP is the
same as that for POSTFIX except that there are three new commands:

Cu=...
| allocate [Allocation]
| store [Store in heap location]
| access [Access from heap location]

The commands inherited from POSTFIX have no effect on the heap. The informal
behavior of the new commands is as follows:

e allocate: Executing this command pushes onto the stack a location that is not
used in the heap.

e store: Let v; be the top stack value and vo be the next-to-top value. The store
command pops vy off the stack and writes it into the heap at location ve. Thus
v1 can be any element from the Value domain and v, has to be an Intlit. It is an
error if vy is not an Intlit. Note that v2 remains on the stack.

e access: Let v; be the top stack value. The access command reads from the
heap at location v; and pushes the result onto the stack. Thus v; has to be an
Intlit. It is an error if v; is not an Intlit or if the heap at location v; has not been
written with store before. Note that v; remains on the stack.

For example:

(postheap 0 allocate) U N {implementation dependent}

0
(postheap O allocate 5 store access) U, s
(postheap O allocate 5 store 4 swap access swap pop add) 1,9
(postheap 0 4 5 store) U, 4
(postheap 0 4 5 store access) U s
(postheap 0 access) U, error {no location given}
(postheap 0 allocate access) 1 error {location has not been written}
(postheap 0 5 store) 1 error {no location given}

After sketching this initial description of the heap, Abby realizes that it is already

8:55 on a Friday night and she goes off to watch the X-Files. It is your task to flesh out

her initial draft:

104 CHAPTER 3. OPERATIONAL SEMANTICS

a. Give the definition of the Heap domain and the configuration domain CF.

b. Let access-from-heap be a partial function that, given a Location and a Heap in
which Location has been bound, returns an element from the Value domain. In
other words, access-from-heap has the following signature and definition:

access-from-heap: Location — Heap—Value

(access-from-heap N (N, V) . H) =V
(access-from-heap N; (Ng, V) . H) = (access-from-heap N; H), where N; #Ny

Give the rewrite rules for the allocate, store, and access commands. You may
use access-from-heap.

c. Is POSTHEAP a universal programming language? Explain your answer.

d. Abby is concerned about security because POSTHEAP treats integers and loca-
tions interchangeably. Since her programs don’t use this “feature”, she decides to
restrict the language by disallowing pointer arithmetic. She wants to use tags to
distinguish locations from integers. Abby redefines the Value domain as follows:

V € Value = (Intlit x Tag) + Command
Tag = {integer, pointer}

Informally, integers and locations are represented as pairs on the stack: integers
are paired with the integer tag, while locations are paired with the pointer tag.

Give the revised rewrite rules for integers, add, allocate, store, and access. <

> Exercise 3.47% Prove that POSTFIX+{dup} is universal. This can be done by
showing how to translate any Turing machine program into a POSTFIX+{dup} program.
Assume that integer numerals may be arbitrarily large in magnitude. <

Reading

Early approaches to operational semantics defined the semantics of programming
languages by translating them to standard abstract machines. Landin’s SECD
machine [Lan64] is a classic example of such an abstract machine. Plotkin [Plo75]
used it to study the semantics of the lambda calculus.

Later, Plotkin introduced Structured Operational Semantics [Plo81] as a
more direct approach to specifying an operational semantics. The context-based
approach to specifying transition relations for small-step operational semantics
was invented by Felleisen and Friedman in [FF86] and explored in a series of
papers culminating in [FH92]. Big-step (natural) semantics was introduced by

3.5. EXTENDING POSTFIX 105

Kahn in [Kah87]. A concise overview of various approaches to semantics, includ-
ing several forms of operational semantics, can be found in the first chapter of
[Gun92]. The early chapters of [Win93] present an introduction to operational
semantics in the context of a simple imperative language.

Other popular forms of operational semantics include term rewriting sys-
tems ([DJ90, BN98|) and graph rewriting systems ([Cou90]).

106 CHAPTER 3. OPERATIONAL SEMANTICS

Chapter 4

Denotational Semantics

But this denoted a foregone conclusion

— Othello, William Shakespeare

4.1 The Denotational Semantics Game

We have seen how an operational semantics is a natural tool for evaluating pro-
grams and proving properties like termination. However, it is less than ideal
for many purposes. A framework based on transitions between configurations
of an abstract machine is usually better suited for reasoning about complete
programs than program fragments. In POSTFI1X, for instance, we had to extend
the operational semantics with elaborate notions of observational equivalence
and transform equivalence in order to effectively demonstrate the interchange-
ability of command sequences. Additionally, the emphasis on syntactic entities
in an operational semantics can complicate reasoning. For example, syntacti-
cally distinct executable sequence answers in POSTFIX must be treated as the
same observable value in order to support a non-trivial notion of observational
equivalence for command sequences. Finally, the step-by-step nature of an op-
erational semantics can suggest notions of time and dependency that are not
essential to the language being defined. For example, an operational semantics
for the expression language EL might specify that the left operand of a binary
operator is evaluated before the right even though this order may be impossible
to detect in practice.

An alternative framework for reasoning about programs is suggested by the
notion of transform equivalence developed for POSTFIX. According to this no-
tion, each POSTFIX command sequence is associated with a stack transform that

107

108 CHAPTER 4. DENOTATIONAL SEMANTICS

describes how the sequence maps an input stack to an output stack. It is natural
to view these stack transforms as functions. For example, the stack transform
associated with the command sequence [3, add] would be an add3 function with
the following graph:!

{(errorStack, errorStack), ([], errorStack), ...,

(

((=15,121), <01, 3], ([],[4]), .-,

([add3], errorStack), ([mul2], errorStack), ...,
(

5, 23],[8, 23]), ([5, mul2, 17, add3],[8, mul2, 17, add3)), ... }.

Here, errorStack stands for a distinguished error stack analogous to Seprr in
the extended POSTFIX SOS. Stack elements that are executable sequences are
represented by their stack transforms (e.g., add3 and mul2) rather than some
syntactic phrase.

Associating stack transform functions with command sequences has several
benefits. First, this perspective directly supports a notion of equivalence for pro-
gram phrases. For example, the add3 function is the stack transform associated
with the sequence [1,add,2,add] as well as the sequence [3,add]. This implies
that the two sequences are behaviorally indistinguishable and can be safely in-
terchanged in any POSTFIX context. The fact that stack elements that are
executable sequences are represented by functions rather than syntactic entities
greatly simplifies this kind of reasoning.

The other major benefit of this approach is that the stack transform associ-
ated with the concatenation of two sequences is easily composed from the stack
transforms of the component sequences. For example, suppose that the sequence
[2,mul] is modeled by the mul2 function, whose graph is sketched below:

{{errorStack, errorStack), ([],errorStack), ...,

(

([=1],[=2]), (ol,[0]), ([L],12]), .-,
(ladd3], errorStack), ([mul2], errorStack), ...,
(

[5, 23],[10, 23]), ([5, mul2, 17, add3|,[10, mul2, 17, add3]), ... }.

Then the stack transform of [3,add, 2,mul] = [3,add] @ [2,mul] is simply the
function mul2 o add3, whose graph is:

{{errorStack, errorStack), ([], errorStack), ...,

([=1],14]), ([0],[6]), ([1],[8]), -,

([add3], errorStack), ([mul2],errorStack), ...,

(5, 23],[16, 23]), (5, mul2, 17, add3], [16, mul2, 17, add3)), ... }.

'"Here, and for the rest of this chapter, we rely heavily on the metalanguage concepts and
notations described in Appendix A. Consult this appendix as necessary to unravel the formal-
ism.

4.1. THE DENOTATIONAL SEMANTICS GAME 109

Similarly the stack transform of [2,mul,3,add] = [2,mul] @ [3,add] is the
function add3 o mul2, whose graph is:

{{errorStack, errorStack), ([],errorStack), ...,

(

([=11, 1), ([0}, (3]), <[], [51), -,

(ladd3], errorStack), ([mul2], errorStack), ... ,
(

[5, 23],[13, 23]), ([5, mul2, 17, add3],[13, mul2, 17, add3]), ... }.

The notion that the meaning of a program phrase can be determined from
the meaning of its parts is the essence of a framework called denotational
semantics. A denotational semantics determines the meaning of a phrase in
a compositional way based on its static structure rather than on some sort of
dynamically changing configuration. Unlike an operational semantics, a denota-
tional semantics emphasizes what the meaning of a phrase is, not how the phrase
is evaluated. The name “denotational semantics” is derived from its focus on
the mathematical values that phrases “denote.”

The basic structure of the denotational framework is illustrated in Figure 4.1.
A denotational semantics consists of three parts:

1. A syntactic algebra that describes the abstract syntax of the language
under study. This can be specified by the s-expression grammar approach
introduced in Chapter 2.

2. A semantic algebra that models the meaning of program phrases. A
semantic algebra consists of a collection of semantic domains along with
functions that manipulate these domains. The meaning of a program may
be something as simple as an element of a primitive semantic domain like
Int, the domain of integers. More typically, the meaning of a program is an
element of a function domain that maps context domains to an answer
domain, where

e Context domains are the denotational analog of state components
in an SOS configuration. They model such entities as name/value
associations, the current contents of memory, and control information.

e An answer domain represents the possible meanings of programs. In
addition to a component that models what we would normally think
of as being the result of a program phrase, the answer domain may
also include components that model context information that was
transformed by the program.

3. A meaning function that maps elements of the syntactic algebra (i.e.,
nodes in the abstract syntax trees) to their meanings in the semantic alge-
bra. Each phrase is said to denote its image under the meaning function.

110 CHAPTER 4. DENOTATIONAL SEMANTICS

> Mp)(Ma) (M)
> Ma) | =,
N M
/(r
(Mp)
Syntactic Meaning Semantic
Algebra Function Algebra

(Homomor phism)

Figure 4.1: The denotational semantics “game board.”

Not any function can serve as a meaning function; the function must be
a homomorphism between the syntactic algebra and the semantic alge-
bra. This is just the technical condition that constrains the meaning of
an abstract syntax tree node to be determined from the meaning of its
subnodes. It can be stated more formally as follows:

Suppose M is a meaning function and t is a node in an abstract
syntax tree, with children ¢y, ..., tx. Then

(M t) must equal (f; (M t1) ... (M tg))
where f; is a function that is determined by the syntactic class of ¢.

The advantage of restricting meaning functions to homomorphisms is that
their structure-preserving behavior greatly simplifies reasoning. This design
choice accounts for the compositional nature of denotational semantics, whose
essence is summarized by the motto “the meaning of the whole is composed out
of the meaning of the parts”.

4.2 A Denotational Semantics for EL

As our first example, we will develop a denotational semantics for the EL ex-
pression language. We begin with a pared-down version of the language and
show how the semantics changes when adding features to yield full EL.

4.2. A DENOTATIONAL SEMANTICS FOR EL 111

4.2.1 Step 1: Restricted ELMM

Recall that ELMM (Figure 3.6) is a simple expression language in which pro-
grams are expressions, and expressions are trees of binary operators (+,-,*,/,%)
whose leaves are integer numerals. For the moment, let’s ignore the / and %
operations, because removing the possibility of divide-by-zero and remainder-
by-zero errors simplifies the semantics. In a version of ELMM without / and %,
the meaning of each numeral, expression, and program is just an integer.

This meaning is formalized in Figure 4.2. There is only one semantic domain:
the domain Int of integers. The meaning of an ELMM program is specified by
a collection of so-called valuation functions, one for each syntactic domain
defined by the abstract syntax for the language. For each syntactic domain,
the name of the associated valuation function is usually a script version of the
metavariable that ranges over that domain. For example, P is the valuation
function for P € Program, N& is the valuation function for NE € NumExp,
and so on.

The meaning P[(elmm NEpu4,)] of an ELMM program (elmm NE o4,) is
simply the integer N'E[NE j,qy] denoted by its body expression NE po4,. Since an
ELMM numerical expression may be either an integer numeral or an arithmetic
operation, the definition of N'€ has a clause for each of these two cases. In the
integer numeral case, the A/ function maps the syntactic representation of an
integer numeral into a mathematical integer. We will treat integer numerals as
atomic entities, but their meaning could be determined in a denotational fashion
from their component signs and digits (see Exercise 4.1). In the arithmetic
operation case, the A function maps the operator (one of +, -, and *) into a
binary integer function that determines the meaning of the operation from the
meanings of the operands.

Figure 4.3 illustrates how the denotational semantics for the restricted ver-
sion of ELMM can be used to determine the meaning of the sample ELMM
program (elmm (* (+ 1 2) (- 9 5))). Because P maps programs to their
meanings, P[(elmm (* (+ 1 2) (= 9 5)))] is the meaning of this program.
However, this fact is not very useful as stated because the element of Int denoted
by the program is not immediately apparent from the form of the metalanguage
expression P[(elmm (* (+ 1 2) (- 9 5)))]. We would like to massage the
metalanguage expression for the meaning of a program into another metalan-
guage expression more recognizable as an element of the answer domain. We
do this by using equational reasoning to simplify the metalanguage expres-
sion. That is, we are allowed to make any simplifications that are allowed by
usual mathematical reasoning about the entities denoted by the metalanguage
expressions. Equational reasoning allows such manipulations as:

112 CHAPTER 4. DENOTATIONAL SEMANTICS

Semantic Domain
ient=4{.., =2, =1,0, 1,2, ...}

Valuation Functions

P : Program — Int
P[[(elmm NEbody)]] :Ng[[NEbody]]

NE : NumExp — Int
NE[N] = (NND)
NE[(A NE; NEp)] = (A[A] (NE[NE;]) (NE[NE2]))

A : ArithmeticOperator — (Int — Int — Int)

A[["']] = “+Int
-A[[_]] = —Int
-A[[*]] = Xnt

N :Intlit — Int
N maps integer numerals to the integer numbers they denote.

Figure 4.2: Denotational semantics for a version of ELMM without / and %.

Pllelmm (x (+ 1 2) (- 9 5)))]

= NE[(x (+ 1 2) (-9 5))]

= ([¥] WEGH 1 2)]) WE[G- 9 B)]))

(NE[(+ 1 D)) X WE[C-9 B)]))

(Al+] NVELD) WeE2D) xme (A[-] VELS]) (VELBD))
(141t 2) Xt (9 —1nt 5))

3 Xnt 4)

12

~ ~ —~

Figure 4.3: Meaning of a sample program in restricted ELMM.

4.2. A DENOTATIONAL SEMANTICS FOR EL 113

e substituting equals for equals;
e applying functions to arguments;

e equating two function-denoting expressions when, for each argument, they
map that argument to the same result (this is called extensionality).

Instances of equational reasoning are organized into equational proofs
that contain a series of equalities. Figure 4.3 presents an equational proof that
Plelmm (x (+ 1 2) (- 9 5)))] is equal to the integer 12. Each equality in
the proof is justified by familiar mathematical rules. For example, the equality

NE[x (+ 12) (- 95N] = (A[¥] WNE[+ 1 2)]) (NVE[C- 9 B)]))

is justified by the arithmetic operation clause in the definition of N'E, while the
equality
((1 +Int 2) X Int (9 -Int 5)) = (3 X Int 4)

is justified by algebraic rules for manipulating integers. We emphasize that
PlCelmm (x (+ 1 2) (- 9 5)))], as well as every other line in Figure 4.3,
denotes exactly the same integer. The whole purpose of the equational proof is
to simplify the original expression into another metalanguage expression whose
form more directly expresses the meaning of the program.

4.2.2 Step 2: Full ELMM

What happens to the denotational semantics for ELMM if we add back in the /
and % operators? We now have to worry about the meaning of expressions like
(/ 1 0) and (% 2 0). We will model the meaning of such expressions by the
distinguished token error. Since ELMM programs, numerical expressions, and
arithmetic operators can now return errors in addition to integers, we invent an
Answer domain with both of these kinds of entities to represent their meanings
and change the valuation functions P, NE, and A accordingly (Figure 4.4).
The integer numeral clause for A€ now needs the injection Int — Answer, and
the arithmetic operation clause must now propagate any errors found in the
operands. The A clauses for / and % handle specially the case where the second
operand is zero, and Int — Answer injections must be used in the “regular” cases
for all operators.

In full ELMM, the sample program (elmm (* (+ 1 2) (- 9 5))) has the
meaning (Int — Answer 12). Figure 4.5 presents an equational proof of this fact.
All the pattern matching clauses appearing in the proof are there to handle
the propagation of errors. The sample program has no errors, but we could

114 CHAPTER 4. DENOTATIONAL SEMANTICS

Semantic Domains

iet=1{., -2 —1,0,1,2 ..}
Error = {error}
a € Answer = Int + Error

Valuation Functions

P : Program — Answer
Pl(elmm NE)] = NE[NE]
NE : NumExp — Answer

NE[N] = (Int — Answer (NN]))

NE[(A NE; NEj)] = matching (NE[NE [, NE[NE:])
> ((Int — Answer i;), (Int — Answer ig)) | (A[A] i1 i2)
> else (Error — Answer error) endmatching

A : ArithmeticOperator — (Int — Int — Answer)

A[+] = Nigig . (Int— Answer (is +me 12))
- and * are handled similarly.
A[/] = Nigig . ifiz =0
then (Error — Answer error)
else (Int — Answer (i1 /;,, 12)) fi
% is handled similarly.

N : Intlit — Int
N maps integer numerals to the integer numbers they denote.

Figure 4.4: Denotational semantics for a version of ELMM with / and 7%.

4.2. A DENOTATIONAL SEMANTICS FOR EL

115

PlCelmm (x (+ 1 2) (- 9 5)N]

NE[(x (+ 1 2) (-9 5]

= matching (NE[(+ 1 2)],NE[(- 9 B)])

> ((Int — Answer i;), (Int — Answer ig)) | (A[*] i1 i2)

> else (Error — Answer error) endmatching

matching (matching (VE[1], NE[2])
> ((Int — Answer ig), (Int — Answer iy)) | (A[+] is i;)
> else (Error — Answer error) endmatching ,
matching (NE[9], NE[5])
> ((Int — Answer i5), (Int — Answer ig)) | (A[-] i5 is)
> else (Error — Answer error) endmatching)

> ((Int — Answer i;), (Int — Answer ig)) | (A[*] i1 i2)

> else (Error — Answer error) endmatching

matching (matching ((Int — Answer 1), (Int — Answer 2))
> ((Int — Answer ig), (Int — Answer i;)) | (A[+] is i;)
> else (Error — Answer error) endmatching ,
matching ((Int — Answer 9), (Int — Answer 5))
> ((Int — Answer i5), (Int — Answer ig)) | (A[-] 75 i)
> else (Error — Answer error) endmatching)

> ((Int — Answer i;), (Int — Answer ig)) | (A[*] i1 i2)

> else (Error — Answer error) endmatching

matching ((A[+] 1 2),(A[-] 9 5))

> ((Int — Answer i;), (Int — Answer ig)) | (A[*] i1 i2)

> else (Error — Answer error) endmatching

matching ((Int — Answer (1 +n: 2)), (Int — Answer (9 +7m: 5)))

> ((Int — Answer i7), (Int — Answer ig)) | (A[*] i1 i2)

> else (Error — Answer error) endmatching

matching ((Int — Answer 3), (Int — Answer 4))

> ((Int — Answer i;), (Int — Answer ig)) | (A[*] i1 i2)

> else (Error — Answer error) endmatching

(A[+] 3 4)

(Int — Answer (3 Xt 4))

(Int — Answer 12)

Figure 4.5: Meaning of a sample program in full ELMM.

116 CHAPTER 4. DENOTATIONAL SEMANTICS

introduce one by replacing the subexpression (- 9 5) by (/ 9 0). Then the
part of the proof beginning
= matching ((A[+] 1 2),(A[-] 9 5)) ...
would become:
= matching ((A[+] 1 2),(A[/] 9 0))
> ((Int — Answer i7), (Int — Answer ig)) | (A[*] i1 i2)
> else (Error — Answer error) endmatching

= matching ((Int — Answer (1 +nt 2)), (Error — Answer error))
> ((Int — Answer i;), (Int — Answer iz)) | (A[*] i1 i2)
> else (Error — Answer error) endmatching

= (E’r"ror — Answer error).

Expressing error propagation via explicit pattern matching makes the equa-
tional proof in Figure 4.5 rather messy. As in programming, in denotational
semantics it is good practice to create abstractions that capture common pat-
terns of behavior and hide messy details. This can improve the clarity of the
definitions and proofs while at the same time making them more compact.

We illustrate this kind of abstraction by introducing the following higher-
order function for simplifying error handling in ELMM:

with-int : Answer — (Int — Answer) — Answer
= Aaf . matching «
> (Int — Answer i) | (f 1)
> else (Error — Answer error) endmatching .

with-int takes an answer a and a function f from integers to answers and returns
an answer. It automatically propagates errors, in the sense that it maps an input
error answer to an output error answer. The function f specifies what is done for
inputs that are integer answers. Thus, with-int hides details of error handling
and extracting integers from integer answers.

A metalanguage expression of the form (with-int a (\i. E)) serves as a kind
of binding construct, i.e., a construct that introduces a name for a value. One
way to pronounce this is:

“If @ is an integer answer, then let 7 name the integer in £ and return
the value of E. Otherwise, ¢ must be an error, in which case an error
should be returned.”
The following equalities involving with-int are useful:
(with-int (Error — Answer error) f) = (Error — Answer error)
(with-int (Int — Answer 1) f) = (f 1)
(with-int (NEIN])) = (f (N[N])

4.2. A DENOTATIONAL SEMANTICS FOR EL 117

Pllelmm (*x (+ 1 2) (- 9 5)))]
= NE[x (+ 12) (-9 5))]
= with-int (NE[(+ 1 2)])
(Xiy . with-int (NE[(- 9 5)])
(Nig . (A[*] iz i2)))
= with-int (with-int (NE[1])
(Aig . with-int (NE[2])
(Aig . (A[*] is iy))))
(Aiy . with-int (with-int (N'E[9])
(Xi5 . with-int (NE[5])
(Mg . (A[-] @5 is))))
(Mg . (A[*] iz i2)))
with-int (A[+] 1 2)
(Xiy . with-int (A[-] 9 5)
(Mg . (A[*] iz i2)))
with-int (Int — Answer (1 4t 2))
(Nig . with-int (Int— Answer (9 —n: 5))
(Nig . (Int— Answer (i Xt i2))))
= (Int— Answer ((1 4+t 2) Xt (9 —1mt 5)))
= (Int— Answer (3 X jpt 4))

= (Int+— Answer 12)

Figure 4.6: Example illustrating how with-int hides error propagation.

Using with-int, the N'E valuation clause for arithmetic expressions can be
redefined as:

NE[(A NE; NEjJ)]
= with-int (NE[NE;]) (Ni; . (with-int (NE[NE2]) (Mg . (A[A] i1 i2)))).

With this modified definition and the above with-int equalities, details of er-
ror propagation can be hidden in equational proofs for ELMM meanings (see
Figure 4.6).

One of the powers of lambda notation is that it supports the invention of new
binding constructs like with-int via higher-order functions without requiring any
new syntactic extensions to the metalanguage. We will make extensive use of
this power to simplify our future denotational definitions. Later we will see how
this idea appears in practical programming under as monadic style (Chapter 8)
and continuation passing style (Chapters 9 and 17).

118 CHAPTER 4. DENOTATIONAL SEMANTICS

4.2.3 Step 3: ELM

The ELM language (Exercise 3.10) is obtained from ELMM by adding indexed
input via the expression (arg Nj,ges), where Ny, q4e, specifies the index (start-
ing at 1) of a program argument. The program form is (elm Npumargs NEbody) s
where Npymarg indicates the number of integer arguments expected by the pro-
gram when it is executed. Intuitively, the meaning of ELM programs and nu-
merical expressions must now be extended to include the program arguments.
In Figure 4.7, this is expressed by modeling the meaning of programs and ex-
pressions as functions with signature Int* — Answer that map a sequence of
integers (the program arguments) to an answer (either an integer or an error).
The program argument sequence 7* must be “passed down” the syntax tree to
the body of a program and the operands of an arithmetic operation so that they
can eventually be referenced in an arg form at a leaf of the syntax tree. The
elm program form must check that the number of supplied arguments matches
the expected number of arguments 4,ymargs, and the arg form must check that
the index %;,4e; is between 1 and the number of arguments, inclusive.

Figure 4.8 uses denotational definitions to find the result of applying the
ELM program (elm 2 (+ (arg 2) (x (arg 1) 3))) tothe argument sequence
[4,5]. The equational proof assumes the following equalities, which are easy to
verify:

(with-int (NE[N] i*) f) = (f (NN]))
(with-int (NE[(arg N [izy--siky---sin]) f) = (f @), where N[N] = k
(with-int (A[A] i1 i2) [) = (f ires), where (A[A] i; i2) = (Int— Result ires)

In Figure 4.8, if we replace the concrete argument integers 4 and 5 by abstract
integers iqrg; and i4qy42, respectively, then the result would be

(Int — Answer (im«gg +Int (iargl X Int 3)))

Based on this observation, we can give a meaning to the sample program itself
(i.e., without applying it to particular arguments). Such a meaning must be
abstracted over an arbitrary argument sequence:

Pl(elmm 2 (+ (arg 2) (* (arg 1) 3)))]

= Ai*. matching *
> [iargl s iarg?] |] (Int — Answer (iargQ +Int (iargl X Int 3)))
> else (Error — Answer error) endmatching .

Here we have translated the if that appears in the P definition in Figure 4.7
into an equivalent matching construct that gives the names i4yy; and isy2 to

4.2. A DENOTATIONAL SEMANTICS FOR EL 119

Semantic Domains

Error = {error}
a € Answer = Int + Error

Valuation Functions

P : Program — Int* — Answer

P[[(elm Nnumargs NEbody)]]

then NE[NE] *

NE : NumExp — Int* — Answer

NE[(A NE; NEJ)]

ielnt={. , -2 —1,01,2 ..

= (with-int (NE[NE] i*) (Nig .

= \i* . if (length *) = N[Npumargs]

else (Error — Answer error) fi

NE[Npum] =Ai*. (Int — Answer N[Npum])

NE[(arg Ningez)] = i*. if (1 < N[Nindez]) and (N[Ningez] < (length i*))
then (Int — Answer (nth (N[Nindez]) *))
else (Error — Answer error) fi

A and N are unchanged from ELMM.

Figure 4.7: Denotational semantics for ELM.

120 CHAPTER 4. DENOTATIONAL SEMANTICS

Pllelm 2 (+ (arg 2) (x (arg 1) 3)))] [4,5]
= if (length [4,5]) = N[2]
then (WE[(+ (arg 2) (x (arg 1) 3))] [4,5])
else (Error — Answer error)
= (NWE[(+ (arg 2) (x (arg 1) 3))] [4,5])
= with-int (NE[(arg 2)] [4,5])
(Xig . with-int (NE[(* (arg 1) 3)] [4,5])
(Nig . (A[+] 41 i2)))
= with-int (with-int (NE[(arg 1)] [4,5])
(Aig . with-int (NE[3] [4,5])
(Nig - (A[*] 45 i)
(Aig . (A[+] 5 iz))
= (with-int (A[*] 4 3) (Aig. (A[+] 5 i2)))
= (A[+] 5 12)
(Int — Answer 17)

Figure 4.8: Meaning of an ELM program applied to two arguments.

the two integer arguments in the case where the argument sequence i* has two
elements. We showed above that the result in this case is correct, and we know
that an error is returned for any other length.

4.2.4 Step 4: EL

Full EL (Figure 2.4) is obtained from ELM by adding a numerical if expres-
sion and boolean expressions for controlling these expressions. Boolean expres-
sions BE include the truth literals true and false, relational expressions like
(< NE; NEj), and logical expressions like (and BE; BEj). Since boolean
expressions can include numerical expressions as subexpressions and such subex-
pressions can denote errors, boolean expressions can also denote errors (e.g.
(<1 (/2 0))). In Figure 4.9, we model this by having the valuation func-
tion BE for boolean expressions return an element in the domain BoolAnswer
of “boolean answers” that is distinct from the domain Answer of “integer an-
swers”. Since a numerical subexpression of a relational expression could be an
arg expression, the meaning of a boolean expression is a function with signa-
ture Int* — BoolAnswer that maps implicit program arguments to a boolean
answer. The error handling for relational and logical operations is handled by
BE, so the R and L valuation functions manipulate only non-error values.

Note that the error-handling in BE[(Ryuor NE; NE)] is performed by

4.2. A DENOTATIONAL SEMANTICS FOR EL

121

Semantic Domains

ieht=4{.., =2, =1,0,1, 2, ...}
b € Bool = {true, false}
Error = {error}
a € Answer = Int + Error
ba € BoolAnswer = Bool + Error

Valuation Functions

P : Program — Int* — Answer

The P clause is unchanged from ELM (except the keyword elm becomes el).

NE : NumExp — Int* — Answer

NS[[(lf BEtest NEthen NEelse)]]
= \i* . matching (BE[BE test] i)
> (Bool — BoolAnswer b) |
if b then NE[NE pe,] i* else NE[NE] i* fi
> else (Error — Answer error) endmatching

The other N€ clauses are unchanged from ELM.

BE : BoolExp — Int* — BoolAnswer

BE[true] = Ai*. (Bool+— BoolAnswer true)
BE[false] =Ai*. (Bool— BoolAnswer false)
BSII(Rrator NEJ NEQ)]]
=\¢* . matching (NVE[NE] i*, NE[NE,] i*)
> ((Int — Answer iy), (Int — Answer ig)) |

(Bool — BoolAnswer (R[R] i1 i2))
> else (Error — BoolAnswer error) endmatching
BSII(Lrator BE; BEQ)]]
= Ai* . matching (BE[BE] i*, BE[BE 2] i*)
> ((Bool — BoolAnswer b;), (Bool — BoolAnswer bz)) |
(Bool — BoolAnswer (L[L] b; b2))
> else (Error — BoolAnswer error) endmatching

R : RelationalOperator — (Int — Int — Bool)
RII<]] = <Int
= and > are handled similarly.

L : LogicalOperator — (Bool — Bool — Bool)

E[[and]] :>\b1 bg . (b1 and bg)
or is handled similarly.

A and N are unchanged from ELM.

Figure 4.9: Denotational semantics for EL.

122 CHAPTER 4. DENOTATIONAL SEMANTICS

pattern matching. Could it instead be done via with-int? No. The final return
value of with-int is in Answer, but the final return value of BE is in BoolAnswer.
However, we could define and use a new auxiliary function that is like with-int
but returns an element of BoolAnswer(see Exercise 4.3).

Something that stands out in our study of the denotational semantics of
the EL dialects is the importance of semantic domains and the signatures of
valuation functions. Studying these gives insight into the fundamental nature of
a language, even if the detailed valuation clause definitions are unavailable. For
example, consider the signature of the numerical expression valuation function
NE in the various dialects we studied. In ELMM without / and %, the signature

NE : NumExp — Int

indicates that expressions simply stands for an integer. In full ELMM, the
“unwound” signature

NE : NumExp — (Int + Error)

indicates that errors may be encountered in the evaluation of some expressions.
The ELM signature

NE : NumExp — Int* — (Int + Error)

has a context domain Int* representing program arguments that are passed
down the abstract syntax tree. We will see many kinds of contexts in our study
of other languages. Some, like ELM program arguments, only flow down to
subexpressions. We shall see later that other contexts can have more complex
flows, and that these flows are reflected in the valuation function signatures.

4.2.5 A Denotational Semantics is Not a Program

You may have noticed that the denotational definitions for the dialects of EL
strongly resemble programs in certain programming languages. In fact, it is
straightforward to write an executable EL interpreter that reflects the structure
of its valuation clauses, especially in functional programming languages like ML,
HASKELL, and SCHEME. Of course, an interpreter has to be explicit about many
of the details suppressed in the denotational definition (parsing the concrete
syntax, choosing appropriate data structures to represent domain elements, etc.).
Furthermore, details of the implementation language may complicate matters.
In particular, the correspondence will be much less direct if the implementation
programming language does not support first-class procedures.

4.2. A DENOTATIONAL SEMANTICS FOR EL 123

Although a denotational definition often suggests an approach for implement-
ing an interpreter program, it can be misleading to think of the denotational
definition itself as a program. Programming language procedures typically im-
ply computation; denotational specifications do not. An interpreter specifies a
process for evaluating program phrases, often one with particular operational
properties. In contrast, there is no notion of process associated with a valuation
function: it is simply a declarative description for a mathematical function (i.e.,
a triple of a source, a target, and a graph).

For example, consider the following metalanguage expression, which might
arise in the context of reasoning about an ELMM program:

Aig . with-int (A[[/]] 10 2) ()\Zj . (Witb—int (A[[—]] 3 3) ()\Zg . (.A[[*ﬂ 17 22))))

If we (incorrectly) view this as an expression in a programming language like ML
or SCHEME, we might think that no evaluation can take place until an integer
is supplied for iy, and, after that happens, the division must be performed
first, followed by the subtraction, and finally the multiplication. But there is no
inherent notion of evaluation order associated with the metalanguage expression.
We can perform any mathematical simplifications in any order on this expression.
For example, observing that (A[-] 3 3) has the same meaning as (NV[0]) allows
us to rewrite the expression to

Nig . with-int (A[/] 9 2) (Aig . (with-int (N0]) (Nig . (A[*] i1 i2)))).
This is equivalent to
Xig . with-int (A[/] ip 2) (Aig . (A[*] iz 0)),
which is in turn equivalent to
Aig . with-int (A[/] 9 2) (Aig . (Int — Answer 0)) ,

since the product of 0 and any integer is 0. A division result cannot be an error
when the second argument is non-zero, so this can be further simplified to:

Aig . (Int — Answer 0).

The moral of this example is that many simplifications can be done with meta-
language expressions that would be difficult to justify with expressions in most
programming languages.?

2Certain real-world programming languages, particularly the purely functional language
HASKELL, were designed to support the kind of mathematical reasoning that can be done with
metalanguage expressions.

124 CHAPTER 4. DENOTATIONAL SEMANTICS

Despite the above warning, sometimes it is useful to think of denotational
descriptions as programs, if only for building intuitions about what they mean.
This situation is reminiscent of the dy/dx notation in calculus, which teachers
and textbooks commonly warn should never be viewed as a fraction. And yet,
viewing it as a fraction has many advantages for understanding its meaning as
well as for remembering formulae (the chain rule in particular). Similarly, view-
ing denotational definitions as programs can sometimes be helpful, especially for
a beginner. To avoid misleading processing intuitions from familiar program-
ming languages, you should view the lambda notation of the metalanguage as a
typed, curried, normal-order programming language.

> Exercise 4.1 We have treated integer numerals atomically, but we could express
them in terms of their component signs and digits via an s-expression grammar:

SN € SignedNumeral
UN € UnsignedNumeral
D € Digit
SN == (+ UN) | (- UN) | UN
UN == D | (@ UN D)
D:=0|1]2|3|4|5]|6]7]|8]|9
For example, the numeral traditionally written as —273 would be written in s-expression
form as (- (@ (@ 2 7) 3)). Give a denotational semantics for numerals by providing
valuation functions for each of SignedNumeral, UnsignedNumeral, and Digit. <

> Exercise 4.2 Use the ELM semantics to determine the meaning of the following
ELM program: (elm 2 (/ (arg 1) (- (arg 1) (arg 2)))). <

> Exercise 4.3 o By analogy with the with-int auxiliary function in the ELM
semantics, define functions with the following signatures and use them to “hide” error-
handling in the EL valuation clauses for conditional expressions, relational operations,
and logical operations:

with-bool : BoolAnswer — (Bool — Answer) — Answer
with-intga : Answer — (Int — BoolAnswer) — BoolAnswer
with-boolga : BoolAnswer — (Bool — BoolAnswer) — BoolAnswer 4

4.3 A Denotational Semantics for PosTFIX

We are now ready to flesh out the details of the denotational description of
PosTFI1X that were sketched in Section 4.1. The abstract syntax for POSTF1x
was already provided in Figure 2.8, so the syntactic algebra is already taken
care of. We therefore need to construct the semantic algebra and the meaning
function.

4.3. A DENOTATIONAL SEMANTICS FOR POSTFIX 125

t € StackTransform = Stack — Stack
s € Stack = Value® + Error
v € Value = Int + StackTransform
r € Result = Value + FError
a € Answer = Int + Error
Error = {error}
iet=1{.., -2 —1,0,1,2 ..}
b € Bool = {true, false}

Figure 4.10: Semantic domains for the POSTF1X denotational semantics.

4.3.1 A Semantic Algebra for PosTFix

What kind of mathematical entities should we use to model POSTF1xX programs?
Suppose that we have some sort of entity representing stacks. Then it’s natural
to model both POSTFIX commands and command sequences as functions that
transform one stack entity into another. For example, the swap command could
be modeled by a function that takes a stack as an argument, and returns a stack
in which the top two elements have been swapped.

We need to make some provision for the case where the stack contains an in-
sufficient number of elements or the wrong type of elements. For this purpose we
will assume that there is a distinguished stack, errorStack, that indicates that an
error has occurred. For example, calling the transform associated with the swap
command on a stack with fewer than two elements should return errorStack. All
transforms should return errorStack when given errorStack as an argument.

Figure 4.10 presents domain equations that describe one implementation of
this approach. The StackTransform domain consists of functions from stacks to
stacks, where an element of the domain Stack is either a sequence of values or
the distinguished error stack (here modeled by the single element of the unit
domain Error). The domain Value of stackable values includes not only integers
but also stack transforms, which model executable sequences that have been
pushed on the stack. The Result domain models intermediate results obtained
via stack manipulations or arithmetic operations. It includes an error result to
model situations like popping an empty stack and dividing by zero. The Answer
domain models the final outcome of a POSTFIX program. Like Result, Answer
includes an error answer, but its only non-error answers are integers (because
executable sequences at the top of a final stack cannot be observed and are
treated as errors).

A somewhat unsettling property of the domain equations in the figure is that
they are defined recursively — transforms operate on stacks, which themselves

126 CHAPTER 4. DENOTATIONAL SEMANTICS

may contain transforms. In Chapter 5 we will discuss how to understand a set
of recursively defined equations. For now, we’ll just assume that these equations
have a sensible interpretation.

We extend the semantic domains into a semantic algebra by defining a col-
lection of functions that manipulate the domains. Right now we’ll just specify
the interfaces to these functions. We’ll defer the details of their definitions un-
til after we’ve studied the meaning function. This will allow us to move more
quickly to the core of the denotational semantics — the meaning function —
without getting sidetracked by various issues concerning the definition of the
semantic functions.

Figure 4.11 gives informal specifications for the functions that we will use
to manipulate the semantic domains. We will defer studying the implemen-
tation of these functions until later. errorResult, errorAnswer, errorStack, and
errorTransform are just names for useful constants involving errors. push, pop,
and top are the usual stack operations. Their specifications are complicated
somewhat by the details of error handling. For example, top returns an element
of Result rather than just Value because it must return errorResult in the case
where the given stack is empty. push takes its argument from Result rather
than Value so that it can be composed with top. intAt is an auxiliary function
that simplifies the specification of nget. arithop simplifies the specifications for
arithmetic and relational commands; it serves to abstract over common behav-
ior (replacing the top two integers on the stack by some value that depends
on them) while suppressing error detail (return an error stack if any error is
encountered along the way). transform facilitates error handling when a result
that is expected to be a transform turns out to be an integer or an error result
instead. resToAns handles the conversion from results to answers.

The signatures of the functions, especially the stack functions, may seem
strange at first glance, because few of them explicitly refer to the Stack domain.
But recall that StackTransform is defined to be Stack — Stack, so that the
signature of push, for instance, is really

Result — (Stack — Stack) .

From this perspective, push probably seems more familiar: it is a function that
takes an result and stack (in curried form) and returns a stack. However, since
stack transforms are the key abstraction of this semantics, we have written the
signatures to emphasize this fact. Under this view, push is a function that takes
a result and returns a stack transform. Of course, in either case push is exactly
the same mathematical entity; the only difference is in how we think about it!

4.3. A DENOTATIONAL SEMANTICS FOR POSTFIX 127

e errorResult : Result
An error in the domain Result.

e crrorAnswer : Answer
An error in the domain Answer.

e crrorStack : Stack
The distinguished error stack.

e crrorTransform : StackTransform
A transform that maps all stacks to errorStack.

e push : Result — StackTransform
Given the result value v, return a transform that pushes v on a stack; otherwise
return errorTransform.

e pop : StackTransform
For a nonempty stack s, return the stack resulting from popping the top value;
otherwise return errorStack.

e top: Stack — Result
Given a nonempty stack s, return result that is the top element of s; otherwise
return errorResult.

o intAt: Int — Stack — Result
Given an integer i;,4e; and a stack whose #jpge,th element (starting from 1) is
the integer iresyit, return ipesye; otherwise return errorResult.

e arithop: (Int — Int — Result) — StackTransform
Let f : Int — Int — Result be the functional argument to arithop. Return a
transform with the following behavior: if the given stack has two integers i;
and ig followed by syest, then return a stack whose top value vyesqyir is followed
by Srest, where (Value — Result Vyesyit) is the result of the application (f iz 7).
If the given stack is not of this form or if the result of applying f is errorResult,
then return errorStack.

o transform : Result — StackTransform
Given a result that is a stack transform, return it; otherwise return
errorTransform.

e resToAns: Result — Answer
Given a result that is an integer, return it as an answer; otherwise return
errorAnswer.

Figure 4.11: Specifications for functions on POSTFIX semantic domains.

128 CHAPTER 4. DENOTATIONAL SEMANTICS

P : Program — Int* — Answer

Q : Commands — StackTransform

C : Command — StackTransform

A : ArithmeticOperator — (Int — Int — Result)
R : RelationalOperator — (Int — Int — Bool)
N : Intlit — Int

Figure 4.12: Signatures of the POSTFIX valuation functions.

4.3.2 A Meaning Function for PosTFix

Now we’re ready to study the meaning function for POSTFIX. As in EL, we
specify the meaning function by a collection of valuation functions, one for each
syntactic domain defined by the abstract syntax for the language.

As we learned in studying the denotational semantics of EL, the signatures
of valuation functions contain valuable information about the meaning of the
language. It is always prudent to study the signatures before delving into the
details of the definitions for the valuation functions.

The signatures for the POSTFIX valuation functions appear in Figure 4.12.
In the case of POSTFIX, one of the things the signatures say is that a POSTFIxX
program is like an EL program: it takes a sequence of integers as arguments and
either returns an integer or signals an error. If the signature of P were instead

P : Program — Int* — Result,

it would indicate that some POSTFIX programs could return a stack transform
(i.e., an executable sequence) instead of an integer. If the signature were one of

P : Program — Int* — Int or P :Program — Int* — Value,

it would tell use that errors could not be signaled by a POSTFIX program.

The signatures also tell us that both commands and command sequences map
to stack transforms. Since stack transforms are easily composable, this suggests
that the meaning of a command sequence will be some sort of composition of
the meanings of its component commands. This turns out to be the case. The
return type of 4 matches the argument type of arithop, one of the auxiliary
functions specified in Figure 4.11. This is more than coincidence; the auxiliary
functions and valuation functions were designed to dovetail in a nice way.

Now we'’re ready to study the definitions of the POSTFIX valuation functions,
which appear in Figure 4.13. The meaning of a program (postfix Nyumargs @)
is a function that transforms an initial stack consisting of the integers in the ar-
gument sequence i* via the transform Q[Q] and returns the top integer of the

4.3. A DENOTATIONAL SEMANTICS FOR POSTFIX 129

P[[(POStfiX Nnumargs Q)]]
=Xi* . if (length ©*) =N[Npumargs]
then (resToAns (top (Q[Q] (Value* — Stack (map Int — Value i¥)))))
else errorAnswer fi

Q[C . Q] =Q[@]~C[C]
Oll=Xs. s

Q

N] =
(@] = (push (Value — Result (StackTransform — Value Q[Q])))

[(push (Value — Result (Int — Value (NN]))))

[
Clpop] = pop

[

[

Q

Clswap] =AXs. (push (top (pop s)) (push (top s) (pop (pop s))))

C[nget] =As. matching (top s)
> (Value — Result (Int — Value ©)) | (push (intAt i (pop s)) (pop s))
> else errorStack endmatching

C[sel] =As. matching (top (pop (pop $)))
> (Value — Result (Int — Value 1)) |
(push (if (i =p: 0) then (top s) else (top (pop s)) fi)
(pop (pop (pop 3))))
> else errorStack endmatching

Clexec] =As. (transform (top s) (pop s))
C[A] = (arithop A[A])
C[R] = (arithop (Xijig . (Value— Result

(Int — Value (if (R[R] i; i2) then Ielse 01i)))))

Alsub] = Xigig . (Value— Result (Int— Value (i; —rnt i2)))
Similarly for add, mul
A[div] = Xigig . if (izg =p 0) then errorResult

else (Value — Result (Int — Value (i /,,; 12))) fi

R[[lt]] = <[nt
Similarly for eq and gt

N maps integer numerals to the integer numbers they denote.

Figure 4.13: Valuation functions for POSTFIX.

130 CHAPTER 4. DENOTATIONAL SEMANTICS

resulting stack. The definitions of resToAns and top guarantee that an error
answer is returned when the stack is empty or does not have an integer as its
top element. An error is also signaled when the number of arguments does not
match the expected number Npymargs-

The meaning of a command sequence is the composition of the transforms
of its component commands. The order of the composition

Q@] o C[C] = As. (Q[Q] (CIC] 9))

is crucial, because it guarantees that the stack manipulations of the first com-
mand can be observed by the subsequent commands. Reversing the order of the
composition would have the effect of executing commands in a right-to-left order
instead. The stack transform associated with the empty command sequence is
the identity function on stacks.

Most of the clauses for the command valuation function C are straightfor-
ward. The integers and transforms corresponding to numerals and executable
sequences are simply pushed onto the stack after appropriate injections into the
Value and Result domains.?> The transform associated with the pop command
is simply the pop auxiliary function, while the transform associated with swap
is expressed as a composition of push, top, and pop. If the top stack element is
an integer ¢, the nget transform replaces it by the ith element from the rest of
the stack if that element is an integer; in all other cases, nget returns an error
stack. The sel transform selects one of the top two stack elements based on the
numeric value of the third stack element; an error is signaled if the third element
is not an integer. In the exec transform, the top stack element is expected to be
a stack transform ¢ representing an executable sequence. Applying ¢ to the rest
of the stack yields the stack resulting from executing the executable sequence. If
the top stack element is not a stack transform, an error is signaled. The meaning
of arithmetic and relational commands is determined by arithop in conjunction
with A and R, valuation functions that map operator symbols like add and 1t
to the expected functions and predicates. A treats div specially so that division
by 0 signals an error.

Before we move on, a few notes about reading the POSTFIX denotational
definitions are in order. Valuation functions tend to be remarkably elegant and
concise. But this does not mean that they are always easy to read! To the
contrary, the density of information in a denotational definition often demands

3Whereas the operational semantics used a stack with syntactic values — integer numerals
and command sequences — the denotational semantics uses a stack of semantic values —
integers and stack transforms. This is because the valuation functions N' and Q are readily
available for translating the syntactic elements to the semantic ones. Here and elsewhere, we
will follow the convention of using explicit injections in denotational descriptions.

4.3. A DENOTATIONAL SEMANTICS FOR POSTFIX 131

meticulous attention from the reader. The ability to read semantic functions
and valuation functions is a skill that requires patient practice to acquire. At
first, unraveling such a definition may seem like solving a puzzle or doing de-
tective work. However, the time invested in reading definitions of this sort pays
off handsomely in terms of deep insights into the meanings of programming
languages.

The conciseness of a denotational definition is due in large part to the lib-
eral use of higher-order functions, i.e., functions that take other functions as
arguments or return them as results. arithop is an excellent example of such a
function: it takes an argument in the function domain Int — Int — Result,
and returns a stack transform, which itself is an element of the function domain
Stack — Stack.

Definitions involving higher-order functions can be rather daunting to read
until you acquire a knack for them. A typical problem is to think that pieces are
missing. For example, a common reaction to the valuation clause for numerals,

C[N] = (push (Value — Result (Int — Value (N[N])))),

is that a stack is somehow missing. After all, the value has to be pushed onto
something — where is it? Carefully considering types, however, will show that
nothing is missing. Recall that the signature of push is Result — StackTrans-
form. Since

(Value — Result (Int — Value NN]))

is clearly an element of Result, the result of the push application is a stack trans-
form. Since C is supposed to map commands to stack transforms, the definition
is well-typed. It’s possible to introduce an explicit stack in this valuation clause
by wrapping the right hand side in a A of a stack argument:

C[N] = As. (push (Value — Result (Int — Value NN])) s).

This form of the definition probably seems much more familiar, because it’s
more apparent that the meaning of the command is a function that takes a
stack and returns a stack, and push is actually given a stack on which to push
its value. But the two definitions are equivalent. In order to stress the power
of higher-order functions, we will continue to use the more concise versions. We
encourage you to type check the definitions and expand them with extra As as
ways of improving your skill at reading them.

Figure 4.14 illustrates using the POSTFIX denotational semantics to deter-
mine the result of applying the program (postfix 2 3 sub swap pop) to the
argument integers [7, 8]. To make the figure more concise, we use the shorthand

132 CHAPTER 4. DENOTATIONAL SEMANTICS

Note: 1 is a shorthand for (Int+— Value n)
P[(postfix 2 3 sub swap pop)] [7,8]
= if (length [7,8]) = N[2]
then resToAns (top (Q[3 sub swap pop] (Value* — Stack [?,é])))

else errorAnswer fi
= resToAns (top (Q[3 sub swap pop] (Value* — Stack [7,8])))
= resToAns (top (((Q[sub swap pop]) o (C[3])) (Value* — Stack [7,8])))
= resToAns (top (Q[sub swap pop] (C[3] (Value* — Stack |)))
((

= resToAns (top ((Q[sub swap pop]) (push (Value — Result 3)
(Value* — Stack [7,8]))))

Q[sub swap pop] (Value* — Stack [3,7,8])))
s
s

= resToAns (Q[

top (((Q[swap pop]) o (C[sub])) (Value* — Stack 3,
(Ql D)
(Ql

top
= resToAns

= resToAns (top

7.8])))
wap pop] (C[sub] (Value* — Stack 3,7.8]))))
wap pop] (arithop (A[sub]) (Value* — Stack [3,7,8]))))

(
(
(Q[
= resToAns (top (9

= resToAns (top (Q[swap pop] (push (Value — Result (?f;3))
(Value* — Stack [8]))))

= resToAns (top (Q[swap pop] (Value* — Stack [4,8])))

= resToAns (top (((Q[pop]) o (C[swap])) (Value* — Stack [4,8])))

= resToAns (top (Q[pop] (C[swap] (Value* — Stack [4,8]))))

= resToAns (top (Q[pop] (push (top (pop (Value* — Stack [4A 8A])))
(push (top (Value* — Stack [4,8]))
(pop (pop (Value* — Stack [41, é])))))))
= resToAns (top (Q[pop] (push (top (Value* — Stack [§]))
(push (Value — Result 4)
(Value* — Stack [])))))

top (Q[pop] (push (Value — Result 8) (Value* +— Stack [21]))))
top (Q[pop] (Value* — Stack 8, 21])))
top (((Q[[]] o (Clpop])) (Value* — Stack [8,4])))

(Ql)

(

= resToAns (
(
(
= resToAns (top 1 (Clpop] (Value* — Stack |))
(
(

= resToAns

T

= resToAns

Q

= resToAns (top ((As.s) (Value* — Stack [4])))
= resToAns (top (Value* — Stack [4]))
= resToAns (Value — Result 4)

= (Int+— Answer 4)

Figure 4.14: Equational proof that applying the POSTFIX program (postfix 2
3 sub swap pop) to the arguments [7, 8] yields the answer 4.

4.3. A DENOTATIONAL SEMANTICS FOR POSTFIX 133

n to stand for (Int — Value n). Each line of the equational proof is justified by
simple mathematical reasoning. For example, the equality

resToAns (top (((Q[pop]) o (C[swap])) (Value* — Stack [Zl,é])))

= resToAns (top (Q[pop] (C[swap] (Value* — Stack [4,8]))))

is justified by the definition of function composition, while the equality

resToAns (top (Q[swap pop] (push (Value — Result (72;3))

(Value* — Stack [8]))))
= resToAns (top (Q[swap pop] (Value* — Stack [4,8])))

is justified by the definition of —j,; and the specification for the push function.
The proof shows that the result of the program execution is the integer 4.

Just as programs can be simplified by introducing procedural abstractions,
equational proofs can often be simplified by structuring them more hierarchically.
In the case of proofs, the analog of a programming language procedure is a
theorem. For example, it’s not difficult to prove a theorem stating that for any
numeral N, any command sequence (), and any stack s, the following equality
is valid:

(Q[N . Q] (Value* — Stack v*))
=(9[Q] (Value* — Stack ((Int+— Value NTN]) . v*))).

This theorem is analogous to the operational rewrite rule for handling integer
numeral commands. It can be used to justify equalities like

(Q[3 sub swap pop] (Value* — Stack [7,8]))
= (Q[sub swap pop] (Value* — Stack 3,7, 8]))

A few such theorems can greatly reduce the length of the sample proof. In fact,
if we prove other theorems analogous to the operational rules, we can obtain a
proof whose structure closely corresponds to the configuration sequence for an
operational execution of the program (see Figure 4.15).

Figure 4.16 shows how the equational proof in Figure 4.15 can be generalized
two handle two arbitrary integer arguments. Based on this result, we conclude
that the meaning of the POSTFIX program (postfix 2 3 sub swap pop) is:

Pl(postfix 2 3 sub swap pop)]

= Ai*. matching *
> [ir,42] | (Int— Answer (i —pmt 3))
> else errorAnswer endmatching .

134 CHAPTER 4. DENOTATIONAL SEMANTICS

P[(postfix 2 3 sub swap pop)] [7, 8]
top (Q[3 sub swap pop] (Value* — Stack [?,é])))

7.8))))

= resToAns

= resToAns Q[sub swap pop] (Value* — Stack [3

[swap pop] (Value* — Stack [4,8])))

o] pop]] Value* — Stack [8, 21])))
(Value* +— Stack [4])))

= resToAns (top (Value* — Stack [4]))

= resToAns (Value — Result 4)

= (Int — Answer 4)

(@l
(Q
= resToAns (top (
= resToAns (

(
(top

= resToAns (top
(
(top
(

Figure 4.15: Alternative equational proof with an operational flavor.

P[(postfix 2 3 sub swap pop)] [is, iz]

= resToAns |(top (Q[[B sub swap pop] (Value* — Stack [z},fg]))

= resToAns

()
(tOP (Q[[Sub swap pop] (Value* — Stack [3,2},1}])))
= resToAns (top (Q[[swap pop] (Value* — Stack [(iz/—;?)),i]))
(
(

)

= resToAns (top (Q[[pop (Value* — Stack [{2,(@'1/—33)])))
top (Q[[]] (Value* + Stack [(i 1/—33)])))

— resToAns (top (Value* v Stack [(i; —m 3)]))

= resToAns

o —

= resToAns (Value — Result (i; —nt 3))
(Int — Answer (i; —nt 3))

Figure 4.16: Version of equational proof for two arbitrary integer arguments.

4.3. A DENOTATIONAL SEMANTICS FOR POSTFIX 135

> Exercise 4.4 Use the POSTFIX denotational semantics to determine the values of
the POSTFIX programs in Exercise 1.1. <

> Exercise 4.5 Modify the POSTF1x denotational semantics to handle POSTF1X2.
Include valuation functions for :, (skip), and (exec). <

> Exercise 4.6 For each of the following, modify the POSTFIX denotational semantics
to handle the specified extensions:

a. The pair, left, and right commands from Exercise 3.36.
b. The for and repeat commands from Exercise 3.39.

c. The I, def, and get commands from Exercise 3.43. <

4.3.3 Semantic Functions for PosTFix: the Details

Now that we’ve studied the core of the POSTFIX semantics, we’ll flesh out the
details of the functions specified in Figure 4.11. Figure 4.17 presents one imple-
mentation of the specifications. As an exercise, you should make sure that these
definitions type check, and that they satisfy the specifications in Figure 4.11.

Notice that several functions in Figure 4.17 describe similar manipulations.
push, pop, and arithop all check to see if their input stack is an error stack. If so,
they return errorStack; if not, they perform some manipulation on the sequence
of values in the stack. We can abstract over these similarities by introducing
three abstractions (Figure 4.18) similar to the with-int error hiding function
defined in the EL denotational semantics:

e with-stack-values takes a function f from value sequences to stacks and
returns a stack transform that (1) maps a non-error stack to the result of
applying f to the value sequence in the stack, and (2) maps an error stack
to an error stack.

e with-val&stack takes a function f from a value to a stack transform and
returns a stack transform that (1) maps any stack whose value sequence
consists of the value v followed by v,s* to the result of applying f to v
and the stack whose values are v,.s*, and (2) maps any stack not of this
form to the error stack.

e with-int&stack takes a function f from an integer to a stack transform and
returns a stack transform that (1) maps any stack whose value sequence
consists of an integer 7 followed by vyes* to the result of applying f to v

136 CHAPTER 4. DENOTATIONAL SEMANTICS

empty-stack : Stack = (Value* — Stack []vaiue)
errorStack : Stack = (Error — Stack error)
errorTransform : StackTransform = \s . errorStack
errorResult : Result = (Error — Result error)
errorAnswer : Answer = (Error — Answer error)

push : Result — StackTransform

= Ars. matching (r, s)
> ((Value — Result v), (Value* — Stack v¥)) | (v . v¥)
> (Error — Result error) | errorStack endmatching

pop : StackTransform

= \s. matching s
> (Value* — Stack (Vhead - Vtair™)) | (Value® — Stack viai™)
> else errorStack endmatching

top : Stack — Result

= \s. matching s
> (Value* — Stack (Uhead - Vtair™)) | (Value — Result Upeqd)
> else errorResult endmatching

intAt : Int — Stack — Result
= \is. matching s
> (Value* — Stack v*) |
if (1 <zt tindex) and (binder <jn¢ (length v*))
then matching (nth i v¥)

> else errorResult
else errorResult fi
> else errorResult endmatching

arithop : (Int — Int — Result) — StackTransform
=Afs. matching s

(pUSh (.f 12 ZI) Urest*)
> else errorStack endmatching

transform : Result — StackTransform

= \r. matching r
> (Value — Result (StackTransform — Value t)) | t
> else errorTransform endmatching

resToAns : Result — Answer

= \r. matching r
> (Value — Result (Int+— Value 1)) | (Int — Answer 7)
> else errorAnswer endmatching

> (Int — Value iresuit) | (Value — Result (Int— Value iresuit))

> (Value* — Stack ((Int+— Value i;) . (Int— Value ig) . Upest™)) |

Figure 4.17: Functions manipulating the semantic domains for POSTFIX.

4.3. A DENOTATIONAL SEMANTICS FOR POSTFIX 137

with-stack-values : (Value® — Stack) — StackTransform
= \fs. matching s

> (Value* — Stack v*) | (f v¥)

> else errorStack endmatching

with-val&stack : (Value — StackTransform) — StackTransform
=\f . (with-stack-values
(Av* . matching v*
Dvs . Upest® | (f vr (Value* — Stack vpest™))
> else errorStack endmatching))

with-int&stack : (Int — StackTransform) — StackTransform
=\f . (with-val&stack
(Av. matching v
> (Int — Value %) | (f)
> else errorTransform endmatching))

push : Result — StackTransform

= \r. matching r
> (Value — Result v) | (with-stack-values (Av* . (Value* — Stack (v . v*))))
> else errorTransform
endmatching

pop : StackTransform = with-val&stack (Avpasy - su)

arithop : (Int — Int — Result) — StackTransform
=\ . (with-int&stack (\i; . (with-int&stack (Aig . (push (f iz i1))))))

Figure 4.18: The auxiliary functions with-stack-values, with-val&stack, and
with-integer&stack simplify some of the semantic functions for POSTF1x. (Only
the modified functions are shown.)

138 CHAPTER 4. DENOTATIONAL SEMANTICS

and the stack whose values are v,.s*, and (2) maps any stack not of this
form to the error stack.

The purpose of these new functions is to hide the details of error handling in
order to highlight more important manipulations. As shown in Figure 4.18,
rewriting push in terms of with-stack-values removes an error check from the
definition. Using with-val&stack and with-int&stack greatly simplify pop and
arithop; the updated versions concisely capture the essence of these functions
without the distraction of case analyses and error checks.

As with the valuation functions, these highly condensed semantic functions
can be challenging for the uninitiated to read. The fact that push, pop, and
arithop are ultimately manipulating a stack is even harder to see in the new
versions than it was in the original ones. As suggested before, reasoning about
types and inserting extra As can help. For example, since the result of a call to
with-int&stack is a stack transform ¢, and ¢ is equivalent to As. (¢ s), the new
version of arithop can be rewritten as:

Af sp . ((with-int&stack
(Nig sy . ((with-int&stack
(/\2282 (push (f ig iz) 82)))
s1)))

80).

At least in this form it’s easier to see that there are stacks from which each
occurrence of with-int&stack can extract an integer and substack.
Even more important is recognizing the pattern

((with-int&stack (NiSpest - E)))
as a construct that binds names to values. This pattern can be pronounced as:

“Let i be the top value of s and s, be all but the top value of s in
the expression E. Return the value of E, except when s is empty or
its top value isn’t an integer, in which cases the error stack should
be returned instead.”

Some of the PoSTFIX valuation functions can be re-expressed using the
error hiding functions directly. For example, the valuation clause for swap can
be written as:

C[swap] = with-val&stack (Avy . (with-val&stack (Avg . (push vg) o (push vy))))

You should convince yourself that this has the same meaning as the version
written using push, top, and pop.

> Exercise 4.7

4.4. DENOTATIONAL REASONING 139

a. By analogy with with-int&stack, define a function with-trans&stack whose sig-
nature is (StackTransform — StackTransform) — StackTransform.

b. Rewrite the valuation clauses for the commands nget, sel, and exec using
with-val&stack, with-int&stack, and with-transéstack to eliminate all occur-
rences of top, pop, transform, and matching. <

4.4 Denotational Reasoning

The denotational definitions of EL and POSTFIX presented in the previous sec-
tion are mathematically elegant, but how useful are they? We have already
shown how they can be used to determine the meanings of particular programs.
In this section we show how denotational semantics helps us to reason about pro-
gram equality and safe program transformations. The compositional structure
of the denotational semantics makes it more amenable to proving certain prop-
erties than the operational semantics. We also study the relationship between
operational semantics and denotational semantics.

4.4.1 Program Equality

Above, we studied the POSTFIX program (postfix 2 3 sub swap pop), which
takes two integer arguments and returns three less than the first argument:

P[(postfix 2 3 sub swap pop)]

= Ai*. matching *
> [ir,42] | (Int— Answer (i —pmt 3))
> else errorAnswer endmatching .

Intuitively, the purpose of the swap pop is to get rid of the second argument,
which is ignored by the program. But in a POSTF1X program, only the integer at
the top of the final stack can be observed and any other stack values are ignored.
So we should be able to remove the swap pop from the program without changing
its behavior.

We can formalize this reasoning using denotational semantics. Figure 4.19
shows a derivation of the meaning of the program (postfix 2 3 sub) when
it is applied to two arguments. From this, we deduce that the meaning of
(postfix 2 3 sub) is:

Pl(postfix 2 3 sub)]

= Ai*. matching *
> [ir,42] | (Int— Answer (i —pmt 3))
> else errorAnswer endmatching .

140 CHAPTER 4. DENOTATIONAL SEMANTICS

P(postfix 2 3 sub)] [iz, ig]
= resToAns |(top (Q[[S sub] (Value* — Stack [i1, iz)))

Q[sub] (Value* — Stack 3 21,22))

(
top (Q[[]] (Value* — Stack [(21 —Int 3), 1])))

(
= resToAns (top
= resToAns (

= resToAns (tOp (Value* — Stack [(i; —mt 3), z;]))

-

= resToAns (Value — Result (i; —nt 3))

= (Int— Answer (i; —pmt 3))

Figure 4.19: The meaning of (postfix 2 3 sub) on two arguments.

Since (postfix 2 3 sub) and (postfix 2 3 sub swap pop) have exactly the
same meaning, they cannot be distinguished as programs.

Denotational semantics can also be used to show that programs from different
languages have the same meaning. For example, it is not hard to show that the
meaning of the EL program (el 2 (- (arg 1) 3)) is:

PlCel 2 (- (arg 1) 3)]
= Ai*. matching *
> [ig,i2] | (Int— Answer (i; —mt 3))
> else errorAnswer endmatching .
If you review the semantic domains for EL and PoOSTFIX, you will see that
the Answer domain is the same for both languages. So the above fact means
that this EL program is interchangeable with the two POSTFIX programs whose
meanings are given above.

4.4.2 Safe Transformations: A Denotational Approach

Because denotational semantics is compositional, it is a natural tool for proving
that it is safe to replace one phrase by another. Recall the following three facts
from the operational semantics of POSTFIX:

1. Two PosTFIX command sequences are observationally equivalent if they
behave indistinguishably in all program contexts.

2. Two PosTFIX command sequences are transform equivalent if they map
equivalent stacks to equivalent stacks.

3. Transform equivalence implies observational equivalence.

4.4. DENOTATIONAL REASONING 141

Since the POSTFIX denotational semantics models command sequences as stack
transforms, the denotational equivalence of POSTFIX command sequences cor-
responds to transform equivalence in the observational framework. So we expect
the following theorem:

PosTFix Denotational Equivalence Theorem:

QlQ:] =9[Q2] implies Q1 =4ps Q2.

This theorem is a consequence of a so-called adequacy property of POSTFIX,
which we will study later in Section 4.4.4.2.

We can use this theorem to help us prove the behavioral equivalence of two
command sequences. For instance, consider the pair of command sequences
[1,add,2,add] and [3,add]. Figure 4.20 shows that these are denotationally
equivalent, so, by the above theorem, they must be observationally equivalent.
The equational reasoning in Figure 4.20 uses the following three equalities, whose
proofs are left as exercises:

(Q[C; Cq ...Cu]) = (C[Ch]) o ... o (C[C2]) o (C[C:]) (4.1)
(with-int&stack f) o (push (Value — Result (Int+— Value ©))) = (f i) (4.2)
t o (with-int&stack f) = (with-int&stack (Ai. (t o (f %)))) (4.3)

where t maps errorStack to errorStack

It is worth noting that the denotational proof that [1, add, 2, add] = ;5 [3, add]
has a very different flavor than the operational proof of this fact given in Sec-
tion 3.4.4. The operational proof worked by case analysis on the initial stack.
The denotational proof in Figure 4.20 works purely by equational reasoning —
there is no hint of case analysis here. This is because the all the case analyses
are hidden within the carefully chosen abstractions with-int&stack and push and
equalities (4.1)—(4.3). The case analyses would become apparent if these were
expanded to show explicit matching expressions.

Denotational justifications for the safety of transformations are not limited
to PosTFix. For example, Figure 4.21 shows that EL numerical expressions
(+ NE NFE) and (x 2 NE) have the same meaning. So one can safely be
substituted for the other in any EL program without changing the meaning of
the program.

> Exercise 4.8
a. Prove equalities (4.1)—(4.3).

b. Equality (4.3) requires that ¢ maps errorStack to errorStack. Show that the
equality is not true if this requirement is violated. <

142 CHAPTER 4. DENOTATIONAL SEMANTICS

(Q[1 add 2 add])
= (Cladad]) o (C[2]) o (C[add]) o (C[1]) , by (4.1)
= (with-int&stack
(Aig " (with-inté&stack
(Mg’ . (push (Value — Result (Int— Value (ig’ +14;"))))))))
(push (Value — Result (Int— Value (N2]))))
(with-int&stack
(Aiy . (with-int&stack
(Mig . (push (Value — Result (Int— Value (iz +i1))))))))
o (push (Value — Result (Int — Value (N[1])))) , by definition of C

= (with-int&stack
(Mig " . (push (Value — Result (Int — Value (ig’ + 2))))))
o (with-int&stack
(MNig . (push (Value — Result (Int— Value (iz +1)))))) , by (4.2)
= (with-int&stack
(Mig . (with-int&stack
(Mg’ . (push (Value — Result (Int+— Value (iz’ + 2))))))
o (push (Value — Result (Int— Value (ig + 1)))))), by (4.3)
= (with-int&stack
(Mig . (push (Value — Result (Int+— Value ((iz +1) +2)))))) , by (4.2)
= (with-int&stack
(Aig . (push (Value — Result (Int+— Value (ig + 3)))))) , by definition of +
= (with-int&stack
(Mig . (with-int&stack
(Mig . (push (Value — Result (Int— Value (ig + i3))))))))
o (push (Value — Result (Int— Value (N[3])))) , by (4.2)

Cladd]) o (C[3]) , by definition of C
Q[3 add]) , by (4.1)

o
o

~(
~(

Figure 4.20: Proof that [1, add, 2, add] and [3, add] are denotationally equivalent.
This implies that the two sequences are observationally equivalent.

4.4. DENOTATIONAL REASONING 143

NE[(+ NE NE)]

= \i* . with-int (NE[NE] *) (Ni; . with-int (NE[NE] i*) (Nig . (A[+] i1 iz2)))
= \i* . with-int (NE[NE] i*) (i +1nt i2)

= \i* . with-int (NE[NE] *) (2 X st i2)

= \i* . with-int (NE[NE] i*) (Nig . (A[+] iz is))

= \i* . with-int (NE[NE] i) (Mg . (A[*] 2 i2))

= \i* . with-int (NE[2] *) (Nig . with-int (NE[NE] i*) (Mig . (A[*] i1 i2)))

= NE&[(x 2 NE)]

Figure 4.21: Denotational proof that (+ NE NE) may safely be replaced by
(x 2 NFE) in EL.

> Exercise 4.9

a. We have seen that (postfix 2 3 sub swap pop) and (postfix 2 3 sub) are
equivalent programs. But in general it is not safe to replace the command se-
quence 3 sub swap pop by 3 sub. Give a context in which this replacement
would change the meaning of a program.

b. Use denotational reasoning to show that it is safe to replace any of the following
command sequences by 3 sub swap pop:
i. swap pop 3 sub
ii. (3 sub) swap pop exec

ili. 3 2 nget swap sub swap pop swap pop <

> Exercise 4.10 Use the POSTFIX denotational semantics to either prove or disprove
the purported observational equivalences in Exercise 3.28. <

> Exercise 4.11 Use the EL denotational semantics to either prove or disprove the
safety of the EL transformations in Exercise 3.32. <

4.4.3 Technical Difficulties

The denotational definition of POSTFIX depends crucially on some subtle details.
As a hint of the subtlety, consider what happens to our denotational definition
if we extend POSTF1X with our old friend dup. A valuation clause for dup seems
straightforward:

Cldup] = As. (push (top s) s).

144 CHAPTER 4. DENOTATIONAL SEMANTICS

At the same time we know that adding dup to the language introduces the
possibility that programs may not terminate. Yet, the signature for P declares
that programs map to the Answer domain, and the Answer domain does not
include any entity that represents nontermination. What’s going on here?

The source of the problem is the recursive structure of the semantic domains
for POSTFIX. As the domain equations show, the StackTransform, Stack, and
Value domains are mutually recursive:

StackTransform = Stack — Stack

Stack = Value* + Error

Value = Int + StackTransform
It turns out that solving such recursive domain equations sometimes requires
extending some domains with an element that models nontermination, written
1 and pronounced “bottom.” We will study this element in more detail in the
next chapter, where it plays a prominent role. In the case of POSTFIX, it turns
out that both the Stack and Answer domains must include L, and this is able
to model the meaning of non-terminating command sequences.

4.4.4 Relating Operational and Denotational Semantics

We have presented the operational and denotational semantics of several simple
languages, but have not studied the connection between them. What is the
relationship between these two forms of semantics? How can we be sure that
reasoning done with one form of semantics is valid in the other?

4.4.4.1 Soundness

Assume that an operational semantics has a deterministic behavior function of
the form
beh get : (Program x Inputs) — Outcome

and that the related denotational semantics has a meaning function
meaning : (Program x Args) — Answer,

where Args is a domain of program arguments and Answer is the domain of
final answers. Also suppose that there is a function in that maps between the
syntactic and semantic input domains and a function out that maps between
the syntactic and semantic output domains:

in : Inputs — Args
out : Outcome — Answer.

Then we define the following notion of soundness:

4.4. DENOTATIONAL REASONING 145

I € Inputs = Intlit*
0 € Outcome = Intlit + StuckOut
StuckOut = {stuckout}
ar € Args = Int*
a € Answer = Int + Error
Error = {error}

in : Inputs — Args

in = AN*. (map N' N¥)

out : Outcome — Answer

out = Ao. matching o
> (Intlit — Outcome N) | (Int — Answer (N[N]))
> else (Error — Answer error) endmatching

beh get : (Program x Inputs) — Outcome
beh et g1, is defined in Exercise 3.10
and beh et postiz 1s defined in Section 3.2.2.

meaning : (Program x Args) — Answer
meaninggr, = MNP, ar). (PeL[P] ar) , where Pgy, is defined in Section 4.2.4.
meanjngPostFiw =)\<Pa GT'> . (PPostFiw [[P]] ar),

where P postriz is defined in Section 4.3.2.

Figure 4.22: Instantiation of soundness components for EL. and PosTFIX.

Denotational Soundness: A denotational semantics is sound
with respect to (wrt) an operational semantics if for all programs
P and inputs I,

meaning (P, (in I)) = (out (behge (P1))).

This definition says that the denotational semantics agrees with the operational
semantics on the result of executing a program on any given inputs. Figure 4.22
shows how the parts of the soundness definition can be instantiated for EL and
PosTFIX.

We will now sketch a proof that the denotational semantics for POSTFIX is
sound wrt the operational semantics for POSTFIX. The details of this proof,
and a denotational soundness proof for EL, are left as exercises. The essence
of the denotational soundness proof for POSTFIX is to define the meaning of
an operational configuration, and show that each step in the PosTFix SOS
preserves this meaning. Recall that a configuration in the PoSTFIx SOS has
the form Commands x Stack, where

146 CHAPTER 4. DENOTATIONAL SEMANTICS

VY : Value — Value
¢ = AV. matching V

> (Intlit — Value N) | (Int+— Value (NN]))

> (Commands — Value Q) | (StackTransform — Value (Q[Q]))
endmatching

S : Stack — Stack = AV*. (Value* — Stack (map V V*))

CF : Commands x Stack — Answer = AQ, S)

. resToAns (top (Q[Q] (S[S])))

Figure 4.23: Meaning of a POSTFIX configuration.

S € Stack = Value*
V € Value = Intlit + Commands

Figure 4.23 defines a function CF that maps an operational configuration to an
element of Answer. We establish the following lemmas:

1. For any POSTFIX program P = (postfix Npymargs) and numerals N*,
(P[P] (in N¥)) = CF[(IF (P,N*))],

where IF is the input function defined in Figure 3.3 that maps a POSTF1x
program and inputs into an initial SOS configuration. There are two cases:

(a) When N[Npymargs] = (length N*), both the left and right hand sides
of the equation denote

resToAns (top (Q[Q] (Value* — Stack (map (Int+ Value o N') N¥*)))).

(b) When N [Nypumargs] # (length N*), the left hand side of the equation
denotes errorAnswer and the right hand side denotes
CFI(IF (P,N*))]
:C-/T[K[]Commandsa []Stack>]]

=resToAns (top (Q[[]commands] (Value* — Stack []stack)))
=resToAns (top (Value* — Stack []stack))
= errorAnswer.

2. For any transition c¢f = cf’, CF[cf] = CF[ef']. This can be shown by

demonstrating this equality for each of the POSTFIX transition rules in
Figure 3.4. For example, one such rule is:

4.4. DENOTATIONAL REASONING 147

(exec . Qresta (Qemec) . S>:><Qe:vec Q@ Qresta S> [eXGCUte]

For this rule we have

CF[(exec . Qrest; (Qewec) - S)]

=resToAns (top (Qexec . Qrest] (Value* — Stack (V[(Qezec)] - v*)))),
where v* = (map V 9)

=resToAns
(top (Q[Qrest] (Clexec] (Value* — Stack (V[(Qezec)] - v™)))))

=resToAns

(tOp (Q[[Qrest]]
(transform (top (Value* — Stack (V[(Qegec)] - v*)))

(pOp (Value* — Stack (VII(Qezec)]] . U*))))))
=resToAns

(tOp (Q[[Qrest]]
(transform (Value — Result (StackTransform — Value (Q[Qezec])))
(Value* — Stack v*))))
=resToAns (tOp (Q[[Qrest]] (Q[[Qezec]] (Value* — Stack ’U*))))
=resToAns (top ((Q[Qrest] © QQexec]) (Value* — Stack v*)))
=resToAns (top (Q[Qrest @ Qexec] (Value* — Stack (map V 5))))

:C]:[KQemec Q Qresty S>]]

3. For any stuck configuration cf, CF[cf] = errorAnswer. This can be shown
by enumerating the finite number of configuration patterns that stand for
configurations in Irreducible prgog, and showing that each denotes the
error answer. For example, one such pattern is (swap . @, [V]):

CFl(svap . Q, [V])]
=resToAns (top (Q[swap . Q] (Value* — Stack [V V])))

=resToAns

(top (Q[Q] (push (top (pop (Value* — Stack [V V])))
(push (top (Value* — Stack [V V]))

(pop (pop (Value* — Stack [V V1)))))))

=resToAns (top (Q[Q] (push (top (Value* — Stack []))

(push (Value — Result (V[V]))

(pop (Value* — Stack []))))))

=resToAns (top (Q[Q] (push errorResult

(push (V[V]) errorStack))))
=resToAns (top (Q[Q] errorStack))
=resToAns (top errorStack)

= errorAnswer.

148 CHAPTER 4. DENOTATIONAL SEMANTICS

We’re now ready to put the lemmas together to show denotational soundness

for a POSTFIX program (postfix Npumargs Qbody) executed on inputs Nippuss™
There are two cases:

1. M[Nnumargs] = (length Nippus™) and the initial program configuration
has a transition path to a final configuration:

<Qbody, Ninputs*> :*> <[]Commandsa Nans . Vrest*>

In this case,

meaning ((postEix Nuumargs Qbods)s (in Ninputs ™)
=P[(postfix Npumargs Qvody)] (in Ninputs™)

=CF[(IF ((postfix Npumargs @body)s Ninputs™))] , by lemma 1
=CF[{Qbody, (map Intlit — Value Nippuss®))]
=CF{[]Commands, (Intlit — Value Ngps)

=resToAns

(top (Q[] (Value* — Stack ((Int+— Value (N[Nans]))

. Viest™)] , by lemma 2 on each =

. (map V Vrest*)))))
=resToAns (top (Value* — Stack ((Int+— Value (N'[Nans])) . (map V Viest™))))
= (Int — Answer (N[[Nans]]))

= (out (Intlit — Outcome Ngys))

:(OUt (behdetPostFim <(POStfiX Nnumargs Qbody)aNinputs*>))

2. N[Npumargs] # (length Nippyss™) or the initial program configuration has
a transition path to a stuck configuration. In these cases,

IF ((postfix Npumargs Qvody), N*) = Cfstucks

where ¢fgpuck is a stuck configuration. Then we have:
meaning ((postfix Npumargs Qbody), (10 Ninputs™))
=P[(postfix Npumargs Qbody)] (In Nipputs™)
=CF[(IF ((postfix Npumargs @body); Ninputs™))] , by lemma 1
=CF|cfstuck] » by lemma 2 on each =
= errorAnswer, by lemma 3

= (out stuck)

:(OUt (behdetPostFim <(POStfiX Nnumargs Qbody)aNinputs*>))

4.4. DENOTATIONAL REASONING 149

This completes the sketch of the proof that the denotational semantics for
PosTFixX is sound with respect to the operational semantics for POSTF1x. The
fact that all POSTFIX programs terminate simplifies the proof, because it is not
necessary to consider the case of infinitely long transition paths (in which case
(behger (P,I)) = o0). For languages containing nonterminating programs, a
denotational soundness proof must also explicitly handle this case.

> Exercise 4.12 Complete the proof that the denotational semantics for POSTFIX is
sound with respect to its operational semantics by fleshing out the following details:

a. Show that lemma 2 holds for each transition rule in Figure 3.4.

b. Make a list of all stuck configuration patterns in the PoSTF1x SOS and show that
lemma 3 holds for each such pattern. <

> Exercise 4.13 Show that the denotational semantics for each of the following
languages is sound with respect to its operational semantics: (1) a version of ELMM
whose operators include only +, -, and *; (2) full ELMM; (3) ELM; and (4) EL. <

4.4.4.2 Adequacy

The notion of soundness developed above works at the level of a whole pro-
gram. But often we want to reason about smaller phrases within a program.
In particular, we want to reason that we can substitute one phrase for another
without changing the operational behavior of the program. The following ade-
quacy property says that denotational equivalence implies the operational notion
of observational equivalence:

Adequacy: Suppose that P ranges over program contexts, H ranges
over the kinds of phrases that fill the holes in program contexts, and
‘H is a denotational meaning function for phrases. A denotational
semantics is adequate with respect to (wrt) an operational se-
mantics if the following holds:

H[H;] = H[Hz] implies H; =5 Ho.

Recall from page 84 that H; =, H2 means that for all program contexts P and
all inputs I, beh (P{H;},I) = beh (P{H},I)

In the case of a deterministic behavior function, the following reasoning
shows that adequacy is almost implied by denotational soundness:

H[H;] = H[H:]

150 CHAPTER 4. DENOTATIONAL SEMANTICS

implies P[P{H;}] = P[P{Hz}] , by compositionality of denotational semantics
implies meaning (P{H;},(in I)) = meaning (P{Hyz}, (in I)) for any inputs [
implies (out (behger (P{H;},1))) = (out (behger (P{H2},1))) , by soundness

But demonstrating the observational equivalence requires showing

behdet <P{H1},I> = behdet <P{Hg},]>

To conclude this from the above line of reasoning requires an additional prop-
erty. Suppose that A ranges over observable answer expressions in the syntactic
domain Answer. Then we need a property we shall call denotational distinct-
ness of observables:

(out A7) = (out Ag) implies A; = Ag.

Recall that out maps syntactic answers to semantic ones. So the above property
requires that syntactically distinct answers be denotationally distinct. That
is, we cannot have two observationally distinct answers answers with the same
meaning.

Both EL and PosTFiX have denotational distinctness of observables. In
each language, observable answers are either integer numerals or an error token.
Assuming that only canonical integer numerals are used (e.g., 17 rather than
017 or +17) distinct integer numerals denote distinct integers. Note that PosT-
Fix would not have this property if executable sequences at the top of a final
stack could be returned as observable answers. For example, the syntactically
distinct sequences (1 add 2 add) and (3 add) would both denote the same
transformation:

(push (Value — Result (Int — Value 3))).

The above discussion allows us to conclude that any language with denota-
tional soundness and denotational distinctness of observables has the adequacy
property. In turn, this property justifies the use of denotational reasoning for
proving the safety of program transformations. For example, the POSTFIX De-
notational Equivalence Theorem on page 141 is a corollary of the adequacy of
PosTFIX.

4.4.4.3 Full Abstraction

Changing the unidirectional implication of adequacy to a bidirectional implica-
tion yields a stronger property called full abstraction:

4.4. DENOTATIONAL REASONING 151

Full Abstraction: Suppose that P ranges over program contexts,
H ranges over the kinds of phrases that fill the holes in program
contexts, and H is a denotational meaning function for phrases. A
denotational semantics is adequate with respect to (wrt) an
operational semantics if the following holds:

H[H;] = H[H:] iff H; =ops Ho.

In addition to adequacy, full abstraction requires that observational equivalence
imply denotational equivalence. That is, program fragments that behave the
same in all contexts must have the same denotational meaning.

The various dialects of EL we have considered are all fully abstract. Consider
the restricted version of ELMM in which the only operations are +, -, and *. In
this language, every numerical expression denotes an integer. We already know
that this language is adequate; to prove full abstraction, we need to show that
observational equivalence implies denotational equivalence. We will prove this
by contradiction. Suppose that NE; =,,s NEg2, but NE[NE ;] # NE[NE,].
Consider the ELMM context P = (elmm 0O). Modeling the non-existent inputs
in this case by unit, we have:

(out (behger (P{NE;}, unit)))

=P[P{NE;}] , by soundness

=NE[NE,] , by definition of P

#NE[NE,] , by assumption

=P[P{NE2}] , by definition of P

= (out (behget (P{NE2},unit))) , by soundness

Because ELMM has denotational distinctness of observables, we conclude that
NE; #,s NE», contradicting our original assumption. A similar proof works
to show full abstraction for the other dialects of EL we have studied.

Surprisingly, POSTFIX is not fully abstract! As argued in Section 4.4.3, even
though all POSTFIX programs terminate, the denotational domains for answers
and stacks in POSTFIX must include an entity denoting nontermination, which
we will write as 1. This is the denotational analog of the operational token oco.
Even though no PoOsTFIX command sequence can loop, the presence of L in
the semantics can distinguish the meanings of some observationally equivalent
command sequences.

For example, consider the following two command sequences:

Q1 =1 0 div
Q2 = exec 1 0 div.

152 CHAPTER 4. DENOTATIONAL SEMANTICS

(; signals an error for any stack. @) first executes the top value Vy,, on the
stack and then executes 1 0 div. We argue that @) is observationally equivalent
to ()7, because it will also signal an error for any stack:

o if the stack is empty or if Vy,, is not an executable sequence, the attempt
to perform exec will fail with an error;

o if Vi, is an executable sequence, @2 will execute it. Since all POSTFIX
command sequences terminate, the execution of Vi, will either signal an
error, or it will terminate without an error. In the latter case, the execution
continues with 1 0 div, which necessarily signals an error.

Even though Q; =,s @2, they do not denote the same stack transform! To
see this, consider a stack transform £,.;,q =As. L and a stack $,e;;q whose top
value is (StackTransform +— Value tyeirg). Both tyeirg and Syeiq are “weird” in
the sense that they can never arise during a POSTFIX computation, in which
all stack transforms necessarily terminate. Nevertheless, ty.irq is a legal element
of the domain StackTransform, and it must be considered as a legal stack ele-
ment in denotational reasoning. Observe that (Q[Q1] Sweira) = errorStack, but
(Q[Q2] Sweira) = L — i.e., the latter computation does not terminate. So @
and ()2 denote distinct stack transforms even though they are observationally
equivalent.

Intuitively, full abstraction says that the semantic domains don’t contain any
extra “junk” that can’t be expressed by phrases in the language. In the case
of POSTF1X, the domains harbor | even though it cannot be expressed in the
language.

4.4.5 Operational vs. Denotational: A Comparison

We have noted in this chapter that a denotational semantics expresses the mean-
ing of a program in a much more direct way than an operational semantics. Fur-
thermore, the compositional nature of a denotational semantics is a real boon
for proving properties of programs and languages. Why would we ever want to
choose an operational semantics over a denotational semantics?

For one thing, an operational semantics is usually a more natural medium for
expressing the step-by-step nature of program execution. The notion of “step”
is an important one: it is at the heart of a mechanistic view of computation; it
provides a measure by which computations can be compared (e.g., which takes
the fewest steps); and it provides a natural way to talk about nondeterminism
(choice between steps) and concurrency (interleaving the steps of more than one
process). What counts as a natural step for a program is explicit in the rewrite

4.4. DENOTATIONAL REASONING 153

rules of an SOS. These notions cannot always be expressed straightforwardly in
a denotational approach. Furthermore, in computer science, the bottom line is
often what actually runs on a machine, and the operational approach is much
closer to this bottom line.

From a mathematical perspective, the advantage of an operational seman-
tics is that it’s often much easier to construct than a denotational semantics.
Since the objects manipulated by an SOS are simple syntactic entities, there
are very few constraints on the form of an operational semantics. Any SOS
with a deterministic set of rewrite rules specifies a well-defined behavior func-
tion from programs to answer expressions. Creating or extending a set of rewrite
rules is fairly painless since it rarely requires any deep mathematical reasoning.
Of course, the same emphasis on syntax that facilitates the construction of an
operational semantics limits its usefulness for reasoning about programs. For
example, it’s difficult to see how some local change to the rewrite rules affects
the global properties of a language.

Constructing a denotational semantics, on the other hand, is mathematically
much more intensive. It is necessary to build consistent mathematical represen-
tations for each kind of meaning object. The difficulty of building such models
in general is illustrated by the fact that there was no mathematically viable in-
terpretation for recursive domain equations until Dana Scott invented one in the
early 1970s. Since then, a variety of tools and techniques have been developed
that make it easier to construct a denotational semantics that maps programs
into a restricted set of meanings. Extending this set of meanings requires po-
tentially difficult proofs that the extensions are sound, so most semanticists are
content to stick with the well-understood meanings. This class of meanings
is large enough, however, to facilitate a wide range of formal reasoning about
programs and programming languages.

Reading

Denotational semantics was invented by Christopher Strachey and Dana Scott.
For a tutorial introduction to denotational semantics, we recommend the articles
[Ten76] and [Mos90]. Coverage of both operational and denotational semantics
along with their use in reasoning about several simple programming languages
can be found in several semantics textbooks [Gun92, Win93, Mit96]. Full-length
books devoted to denotational semantics include [Gor79, Sto85, Sch86a).

Our notions of denotational soundness and adequacy are somewhat different
than (but related to) those in the literature. For a discussion of (the traditional
approach to) soundness, adequacy, and full abstraction, see [Gun92].

154 CHAPTER 4. DENOTATIONAL SEMANTICS

Chapter 5

Fixed Points

Bottom! O most courageous day! O most happy hour!
— A Midsummer Night’s Dream, William Shakespeare

Recursive definitions are a powerful and elegant tool for specifying complex
structures and processes. While such definitions are second nature to experi-
enced programmers, novices are often mystified by recursive definitions. Their
confusion often centers on the following question: “how can something be de-
fined in terms of itself?” Sometimes there is a justifiable cause for confusion —
not all recursive definitions make sense!

In this chapter, we carve out a class of recursive definitions that do make
sense, and present a technique for assigning meaning to them. The technique
involves finding a fixed point of a function derived from the recursive definition.
We will make extensive use of this technique in our denotational descriptions
of programming languages to define recursive valuation functions and recursive
domains.

5.1 The Fixed Point Game

5.1.1 Recursive Definitions

For our purposes, a recursive definition is an equation of the form

155

156 CHAPTER 5. FIXED POINTS

where ... x ... designates a mathematical expression that contains occurrences
of the defined variable z. Mutually recursive definitions of the form

rT = ... X1 .. Ty ...

Tp = oo XY oo Ty on.
can always be rephrased as a single recursive definition

x = (... (Projl z) ... (Projn x) ...,

. (Proj1 z) ... (Projn z) ...),

where x stands for the n-tuple (x1, ..., z,,) and Proji extracts the ith element
of the tuple. For this reason, it is sufficient to focus on recursive definitions
involving a single variable.

A solution to a recursive definition is a value that makes the equation
true when substituted for all occurrences of the defined variable. A recursive
definition may have zero, one, or more solutions. For example, suppose that x
ranges over the integers. Then:

e r =1+ z has no solutions;
e x =4 — z has exactly one solution (2);
e 7 =2 has two solutions (-3, 3);

e z =z has an infinite number of solutions (each integer).

It is important to specify the domain of the defined variable in a recursive
definition, since the set of solutions depends on this domain. For example, the
recursive definition x = ﬁ has

e zero solutions over the integers!;
. L. . 1\,
e one solution over the positive rationals (3);

e two solutions over the rationals (3, —3);

).

In this case, division is interpreted as a quotient function on integers.

ol

i
IR

D=

e four solutions over the complex numbers (%, —

5.1. THE FIXED POINT GAME 157

In fact, many numerical domains were invented precisely to solve classes of
equations that were insoluble with existing domains.

Although we are most familiar with equations that involve numeric variables,
equations can involve variables from any domain, including product, sum, se-
quence, and function domains. For example, consider the following recursive
definitions involving an element p of the sequence domain Nat x Nat:

e p={((Proj2 p),(Proj1 p)) has an infinite number of solutions of the form
n,n), where n: Nat.
e p={(Proj2 p),(Proj1 p) -1) has the unique solution (0, 0).2
e p={((Proj2 p),(Proj1 p) + 1) has no solutions in Nat x Nat. The first
element n of a solution p =(n,...) would have to satisfy the equation
n = n + 1, and this equation has no solutions.

We can also have recursive definitions involving an element s of the sequence
domain Nat*:

o s=(cons 3 (tail s)) has an infinite number of solutions: all non-empty
sequences s whose first element is 3.

e s=(cons 3 s) has no solutions in Nat*, which includes only finite se-
quences of natural numbers and so does not contain an infinite sequence of
3s. However, this equation does have a solution in a domain that includes
infinite sequences of numbers in addition to the finite ones. We shall use
the notation Nat* to designate this domain.

o s=(cons 3 (tail (tail s))) has the unique solution [3]. This definition
requires that (tail s) = (tail (tail s)), and in Nat* only a singleton se-
quence s satisfies this requirement.? However, in Nat*, this equation has
an infinite number of solutions, since for any integer ¢, an infinite sequence
of is satisfies (tail s) = (tail (tail s)).

We will be especially interested in recursive definitions over function domains.
Suppose that f is an element of the domain Nat — Nat. Consider the following
recursive function definition of f:

f = An.it (n=0) thenOelse (2+ (f (n- 1)) fi.

2Recall that (ni — n2)=01if ny,ne: Nat and (n; < nz).
3Recall that (tail []) is defined to be [].

158 CHAPTER 5. FIXED POINTS

Intuitively, this equation is solved when f is a doubling function, but how do we
show this more formally? Recall that a function in Nat — Nat can be viewed as
its graph, the set of input/output pairs for the function. The graph associated
with the lambda expression is

{{0,if (0 =0) then O else (2+ (f 0))),
(1,if (1 =0) then 0 else (2+ (f 0))),
(2,if (2=0) thenOelse (2+ (f 1))),
(3,if (3=0) thenOelse (2+ (f 2))),

After simplification, this becomes

{(0,0),(1,(2+ (£ 0)), 2,2+ (f 1)), 3,2+ (f 2)), -~ }-

If f is a doubling function, then the graph of the right-hand side can be further
simplified to

{(0,0), (1,2), (2,4), (3,6), ... }.

This is precisely the graph of the doubling function f on the left-hand side of the
equation, so the equation holds true. It is not difficult to show that the doubling
function is the only solution to the equation; we leave this as an exercise.

As with recursive definitions over other domains, recursive definitions of
functions may have zero, one, or more solutions. Maintaining the assumption
that f is in Nat — Nat, the definition

Jo= An. (L4 (f)

has zero solutions, because the result n, for any given input would have to satisfy
n, = N, + 1. On the other hand, the definition

fo= An(f (1+m)

has an infinite number of solutions: for any given constant n., a function with
the graph {(n,n.) | n : Nat} is a solution to the equation.

5.1.2 Fixed Points

If d ranges over domain D, then a recursive definition
d = (...d...)
can always be encoded as the D — D function

M. (... d ..

5.1. THE FIXED POINT GAME 159

We will call this the generating function for the recursive definition. For
example, if r: Real, the numeric equation

r o= 1-—r2

can be represented by the Real — Real generating function
Ar. (1= (r*r)).
Similarly, the recursive function definition
dbl : Nat — Nat = An.if (n=0) thenOelse (2+ (dbl (n—1))) fi

can be represented by the generating function

gavi © (Nat — Nat) — (Nat — Nat)
=M. An. if(n=0) thenO else 2+ (f (n—1))) fi,

where f: Nat — Nat. A generating function is not recursive, so its meaning can
be straightforwardly determined from its component parts.

A solution to a recursive definition is a fixed point of its associated generating
function. A fixed point of a function g: D — D is an element d : D such that
(g d) = d. If a function in D — D is viewed as moving elements around
the space D, elements satisfying this definition are the only ones that remain
stationary; hence the name “fixed point.”

To build intuitions about fixed points, it is helpful to consider functions from
the unit interval? [0, 1] to itself. Such functions can be graphed in the following
box:

lp=m=== A
| |
| . |
| |
| ’ |
I |
[J

05 1

Every point where the function graph intersects the y = x diagonal is a fixed
point of the function. For example, Figure 5.1 shows the graphs of functions
with zero, one, two, and an infinite number of fixed points.

It is especially worthwhile to consider how a generating function like g
moves elements around a domain of functions. Here are a few examples of how
ga4p maps various functions f: Nat — Nat:

4The unit interval is the set of real numbers between 0 and 1, inclusive.

160 CHAPTER 5. FIXED POINTS

Figure 5.1: Functions on the unit interval with zero, one, two, and an infinite
number of fixed points.

o If fis the identity function An . n, then (g4, f) is the function that incre-
ments positive numbers and returns 0 for 0:

An . if (n=0) thenOelse (n+ 1) fi

e If fis the function An. ((n +1)% - 2) then (gg,; f) is the function An.n?

e If fis a doubling function, then (g, f) is also the doubling function, so
the doubling function is a fixed point of gg;. Indeed, it is the only fixed
point of ggp;.

Since generating functions D — D correspond to recursive definitions, their
fixed points have all the properties of solutions to recursive definitions. In partic-
ular, such a function may have zero, one, or more fixed points, and the existence
and character of fixed points depends on the details of the function and the
nature of the domain D.

5.1.3 The Iterative Fixed Point Technique

Above, we saw that recursive definitions can make sense over any domain. How-
ever, the methods we used to find and/or verify solutions in the examples were
rather ad hoc. In the case of numeric definitions, there are many familiar tech-
niques for manipulating equations to find solutions. Are there any techniques
that will help us solve recursive definitions over more general domains?

There is a class of recursive definitions for which an iterative fixed point
technique will find a distinguished solution of the definition. This technique
finds a unique fixed point to the generating function encoding the recursive
definition. The iterative fixed point technique is motivated by the observation
that it is often possible to find a fixed point for a generating function by iterating
the function starting with an appropriate initial value.

5.1. THE FIXED POINT GAME 161

As a graphical example of the iteration technique, consider a transformation
T on two-dimensional line drawings that is the sequential composition of the
following three steps:

1. Rotate the drawing 90 degrees counter-clockwise about the origin.
2. Translate the drawing right by one unit.

3. Add a line from (0,0) to (0,1).

Figure 5.2 shows what happens when T is iterated starting with the empty
drawing. Fach of the first four applications of T" adds a new line until the unit
square is produced. Subsequent applications of 7' do not modify the square; it
is a fixed point of T.

Figure 5.2: Iterating the transformation 7' starting with an empty line drawing
leads to a fixed point in four steps.

In the line drawing example, a fixed point is reached after four iterations of
the transformation. Often, iterating a generating function does not yield a fixed
point in a finite number of steps, but only approaches one in the limit. A classic
numerical example is finding square roots. The square root of a non-negative
rational number n is a solution of the recursive definition

Iterating the generating function for this definition starting with n yields a
sequence of approximations that converge to y/n. For example, for n = 3 the
generating function is

q+
2

QW

8sqrts © Rat — Rat = Aq.

162 CHAPTER 5. FIXED POINTS

and the first few iteration steps are:

(ggqrtf? 3) 3
(géqrté’ 3) = 2
7
(g5ms 3) = 7 = LT
3 97
(Qorts 3) = g~ L7321428571428572
18817
4
= 220 & 1.73205081001472
(gsmg 3) 10361 7320508100147276

Since v/3 is not a rational number, the fixed point clearly cannot be reached in
a finite number of steps, but it is approached as the limit of the sequence of
approximations.

Even in non-numeric domains, generating functions can produce sequences
of values approaching a limiting fixed point. For example, consider the following
recursive definition of the even natural numbers:

evens = {0} U{(n+ 2) | n € evens}.
The associated generating function is
Zevens : P(Nat) — P(Nat) = As. {0} U{(n+2) | n € s},

where s ranges over the powerset of Nat. Then iterating g.yens starting with the
empty set yields a sequence of sets that approaches the set of even numbers in
the limit:

(8ens 1) = {3

(ghvens {}) = {0}

(82,ens {}) = {0, 2}
(82hens {}) = {0, 2, 4}
(8hoens {}) = {0, 2, 4, 6}

The above examples of the iterative fixed point technique involve different
domains but exhibit a common structure. In each case, the generating function
maps an approximation of the fixed point into a better approximation, where
the notion of “better” depends on the details of the function:

5.1. THE FIXED POINT GAME 163

e In the line drawing example, picture b is better than picture a if b contains
at least as many lines of the unit square as a.

e In the square root example, number b is a better approximation to /n
than number a if [b?> — n| < |a? — n).

e In the even number example, set b is better than set a if a C b.

Moreover, in each of the examples, the sequence of approximations produced
by the generating functions converges to a fixed point in the limit. This doesn’t
necessarily follow from the fact that each approximation is better than the pre-
vious one. For example, each element of the series 0,0.9,0.99,0.999, ... is closer
to v/2 than the previous element, but the series converges to 1, not to v/2. The
notion of approaching a limiting value is central to the iterative fixed point
technique.

The basic structure of the iterative fixed point technique is depicted in Fig-
ure 5.3. The generating function g: D — D is defined over a domain D whose
values are assumed to be ordered by their information content. A line connects
two values when the lower value is an approximation to the higher value. That
is, the higher value contains all the information of the lower value plus some ex-
tra information. What counts as “information” and “approximation” depends
on the problem domain. When values are sets, for instance, a line from a up to
b might indicate that a C b.

In the iterative fixed point technique, iteratively applying g from an appro-
priate starting value dy yields a sequence of values with increasing information
content. Intuitively, iterative applications of g climb up through the ordered
values by refining the information of successive approximations. If this process
reaches a value d; such that d; = (g d;), then the fixed point d; has been found.
If this process never actually reaches a fixed point, it should at least approach
a fixed point as a limiting value.

We emphasize that the iterative fixed point technique does not work for every
generating function. It depends on the details of the domain D, the generating
function g: D — D, and the the starting point dy. The technique must certainly
fail for generating functions that have no fixed points. Even when a generating
function has a fixed point, the iterative technique won’t necessarily find it. For
example, iterating the generating function for n = % starting with any non-zero
rational number ¢ yields an alternating sequence g, %, q, %, ... that never gets

any closer to the fixed point v/3. presented earlier in this section. As shown in
Figure 5.4, if we start with an “X” in the upper right quadrant, the iterative
fixed point technique yields a different fixed point than when we start with an
empty picture. Figure 5.5 shows an example in which the technique does not

164 CHAPTER 5. FIXED POINTS

least fixed point

Figure 5.3: The “game board” for the iterative fixed point technique.

find a fixed point of T" for an initial picture. Instead, it eventually cycles between
four distinct pictures.

Figure 5.4: A different initial picture can lead to a different fixed point for the
picture transformation 7'

In the next section, we describe an important class of generating functions
that are guaranteed to have a fixed point. A fixed point of these functions can
be found by applying the iterative fixed point technique starting with a special
informationless element called bottom. Such functions may have more than one
fixed point, but the one found by iterating from bottom has less information than
all the others — it is the least fixed point. We will choose this distinguished
fixed point as the solution of the associated recursive definition. This solution
matches our operational intuitions about what solution the computer will find
when the recursive definition is expressed as a program. We are guaranteed
to be able to solve any recursive definition whose generating function is in this

5.1. THE FIXED POINT GAME 165

Figure 5.5: An example in which the iterative fixed point technique cannot find
a fixed point of the picture transformation 7" for a non-empty initial picture.

special class.

> Exercise 5.1 Above, we showed two fixed points of the picture transformation 7.
a. Draw a third line drawing that is a fixed point of T
b. How many fixed points does T have?

c. Characterize all the fixed points of T. That is, what properties must a picture
have in order to be a fixed point of T'7

d. Figure 5.5 shows an initial picture for which the iterative technique finds a cycle
of four distinct pictures related by T rather than a fixed point of T. Give an
initial picture for which the iterative technique finds a cycle containing only two
distinct picture related by T'. In the case of T, can the iterative technique find
cycles of pictures with periods other than 1, 2, and 47 <

> Exercise 5.2 For each of the following classes of functions from the unit interval to
itself, indicate the minimum and maximum number of fixed points of functions in the
class.

constant functions (i.e., functions of the form Az . a);

IS

linear functions (i.e., functions of the form Az . ax + b);

quadratic functions (i.e., functions of the form Az . az? + bx + c);

e o

continuous functions (i.e., functions whose graph is an unbroken curve);

non-decreasing functions (i.e., functions f for which a < b implies (f a) < (f b).

- 0

non-increasing functions (i.e., functions f for which a < b implies (f a) > (f b).
<

166 CHAPTER 5. FIXED POINTS

!

Figure 5.6: A Hasse diagram for the partial order PO.

5.2 Fixed Point Machinery

In this section we (1) present the mathematical machinery for defining a class
of functions for which a distinguished fixed point always exists and (2) illustrate
the use of this machinery via several examples.

5.2.1 Partial Orders

A partial order is a pair (D, C) of a domain D and a relation C that is reflexive,
transitive, and anti-symmetric. A relation is anti-symmetric if a C b and b C
a together imply a = b. The notation a C b is pronounced “a is weaker than b”
or “b is stronger than a.” Later, we shall be ordering elements by information
content, so we will also pronounce a C b as “a approximates b.” When the
relation C is understood from context, it is common to refer to the partial order
(D,C) as D.

Partial orders are commonly depicted by Hasse diagrams in which elements
(represented by points) are connected by lines. In such a diagram, a C b if and
only if there is a path from the point representing a to the point representing b
such that each link of the path goes upward on the page. For example, Figure 5.6
shows the Hasse diagram for the partial order PO on six symbols whose relation
is defined by the following graph:

{(a;2), (a,d), (a,e), (a,1)

(c,c), (c,e), {(c,£f), (d, d;,

(b,b), (b,d), (b,e), (b, £),
(d,e), (d,f), (e,e), (f,£)}.

Elements of a partial order are not necessarily related. Two elements of
a partial order that are unrelated by C are said to be incomparable. For
example, here is a listing of all the pairs of incomparable elements in PO: (a,b),

(a,c), (b,c), (c,d), and (e,).

5.2. FIXED POINT MACHINERY 167

Figure 5.7: The domain Nat is assumed to have the discrete ordering.

An upper bound of a subset X of a partial order D is an element u € D
that is stronger than every element of X i.e., for every z in X, x C u. In PO,
the subset {a,b} has upper bounds d, e, and f; the subset {a,b,c} has upper
bounds e and f; and the subset {e,f} has no upper bounds. The least upper
bound (lub®) of a subset X of D, written | |, X, is the upper bound of X that
is weaker than every other upper bound of X; such an element may not exist.
In PO, the lub of {a,b} is d, but neither {a,b,c} nor {e,f} has a lub. There
are symmetric notions of lower bound and greatest lower bound (glb®),
but our fixed point machinery will mainly use upper bounds.

An element that is weaker than all other elements in a partial order D is
called the bottom element and is denoted L p. Symmetrically, an element that
is stronger that all other elements in D is the top element (written T p). Bottom
and top elements do not necessarily exist. For example, PO has neither.

Any partial order D can be lifted to another partial order D | that has all
the elements and orderings of D, but includes a new element L p, that is weaker
than all elements of D. If D already has a bottom element 1 p, then Lp and
Lp, are distinct, with L p being the weaker of the two. Symmetrically, the
notation DT designates the result of extending D with a new top element.

A discrete partial order is one in which every pair of elements is incom-
parable. By default, we will assume that primitive semantic domains have the
discrete ordering. For example, Figure 5.7 depicts the discrete ordering for Nat.
In this partial order, numbers are not ordered by their value, but by their infor-
mation content. Each number approximates only itself.

A flat partial order D is a lifted discrete partial order. Flat partial orders
will play an important role in our treatment of semantic domains. Figure 5.8
depicts the flat partial order Nat | of natural numbers. Note that L yq:, acts as
an “unknown natural number” that approximates every natural number.

A total order is a partial order in which every two elements are related (i.e.,
no two elements are incomparable). For example, the natural numbers under the
traditional value-based ordering form a total order called w. The elements of a
total order can be arranged in a vertical line in a Hasse diagram (see Figure 5.9).

5The pronunciation of “lub” rhymes with “club.”
64glb” is pronounced “glub.”

168 CHAPTER 5. FIXED POINTS

J*N(LtL

Figure 5.8: The flat partial order Nat | .

Figure 5.9: The partial order w of natural numbers under the traditional value-
based ordering.

5.2. FIXED POINT MACHINERY 169

[N

G H

Figure 5.10: Two simple partial orders.

Figure 5.11: The product partial order G x H.

A chain is a totally-ordered, non-empty subset of a partial order. The chains
of PO include {a,d,e}, {c,f}, {b,f}, and {d}. In Nat, the only chains are (1)
singleton sets and (2) doubleton sets containing | y,;, and a natural number.

Given partially ordered domains, we would like to define orderings on prod-
uct, sum, sequence, and function domains such that the resulting domains are
also partially ordered. That way, we will be able to view all our semantic do-
mains as partial orders. In the following definitions, assume that D and F are
arbitrary partial orders ordered by Cp and C g, respectively. We will illustrate
the definitions with examples involving the two concrete partial orders G and
H in Figure 5.10.

5.2.1.1 Product Domains

D x FE is a partial order under the following ordering;:
<d1, 61>ED><E<d27 €2> iff dlngg and elgEeg.

The partial order G x H is depicted in Figure 5.11. Note how the Hasse diagram
for G x H is visually the product of the Hasse diagrams for G and H. G x H
results from making a copy of G at every point of H (or, symmetrically, making
a copy of H at every point of GG) and adding the extra lines specified by the
ordering.

170 CHAPTER 5. FIXED POINTS

5.2.1.2 Sum Domains

D + FE is a partial order under the following ordering:
(Injlp g di) Cpip (Injlp g do) iff di Ep do
(Inj2D7E el) ChiE (Inj2D7E 62) iff e;1 Cg eo.

This ordering preserves the order between elements of the same summand, but
treats elements from different summands as incomparable. The Hasse diagram
for a sum partial order is simply the juxtaposition of the diagrams for the sum-
mands (see Figure 5.12).

(Injlg ;4 b) (Inj2g 5 d) (Inj2g 1 e)

(IHle’H a) (IHJ2G,H C)

Figure 5.12: The sum partial order G + H.

5.2.1.3 Function Domains

D — FE is a partial order under the following ordering:

fiCp_pfsiff,foralldin D,(f; d)Cg(f, d).

Consider using this ordering on the elements of G — H. As usual, a total
function from G to H can be represented by a graph of input/output pairs, but
here we employ a more compact notation in which such a function is represented
as a pair of the elements that a and b map to, respectively. Thus, the function
with graph {(a, c), (b,d)} can be abbreviated as (c,d). Using this notation, the
partial order G — H is isomorphic’ to the partial order H x H (see Figure 5.13).

This sort of isomorphism holds whenever D is a finite domain. That is, if D
has n elements, then D — F is isomorphic to E™.

"Informally, two partial orders are isomorphic if their Hasse diagrams can be rearranged
to have the same shape (ignoring the labels on the vertices). Formally, two partial orders
A and B are isomorphic if there is a bijective function f : A — B that preserves ordering in
both directions. That is, a T4 a’ implies (f a) Cp (f a’) and b Cp b’ implies (f~' b) Cy4
(F=").

5.2. FIXED POINT MACHINERY 171

(d,d) (dye) (egd) (ege)

{c7c)

Figure 5.13: The function partial order G — H. Each pair (z,y) is shorthand
for a function with a graph {(a,), (b,y)}.

5.2.1.4 Sequence Domains

There are two common ways to order the elements of D*. These differ in whether
sequence elements of different lengths are comparable.

e Under the prefix ordering,

[dl, d27 ey dk]ED*[dll, d2/, ey dl,]
iff k<land d;Cpd;’ foralll1 <i<k

If D is a discrete domain, this implies that a sequence s; is weaker than
59 if 57 is a prefix of s — i.e., so =s; @Q s’ for some sequence s’.

As an example, suppose that Bit is the discrete partial order of the binary
digits 0 and 1. Then Bit* under the prefix order is isomorphic to the
partial order of binary numerals shown in Figure 5.14. (For example, the
numeral 110 corresponds to the sequence [1, 1,0].) This partial order is an
infinite binary tree rooted at the empty sequence. Each element of the tree
can be viewed as an approximation to all of the elements of the subtree
rooted at it. For example, 110 is an approximation to 1100, 1101, 11000,
11001, 11010, etc. In computational terms, this notion of approximation
corresponds to the behavior of a computation process that produces its
answer by printing out a string of Os and 1s from left to right, one character
at a time. At any point in time, the characters already printed are the
current approximation to the final string that will be produced by the
process.

Note that if D has some non-trivial ordering relations, i.e., DD is not a
discrete domain, the prefix ordering of D* is more complex than a simple
tree.

172 CHAPTER 5. FIXED POINTS

Figure 5.14: The sequence partial order Bit* under the prefix ordering.

e Under the sum-of-products ordering, D* is treated as isomorphic to
the infinite sum of products

D+D*+D?*+ D3+ ...

As in the prefix ordering, sequences are ordered component-wise by their

elements, but the sum-of-products ordering treats sequences of different
lengths as incomparable. For example, under the sum-of-products order-
ing, Bit | * is isomorphic to the partial order depicted in Figure 5.15.

Bit, ° Bit ! Bit | ?

Figure 5.15: The sequence partial order Bit, * under the sum-of-products or-
dering.

Although we have stated that the above definitions are partial orders, we
have not argued that each ordering is in fact reflexive, transitive, and anti-
symmetric. We encourage the reader to show that these properties hold for each
of the definitions.

5.2. FIXED POINT MACHINERY 173

The orderings defined above are not the only ways to order compound do-
mains, but they are relatively natural and are useful in many situations. Later,
we will refine some of these orderings (particularly in the case of function do-
mains). But, for the most part, these are the orderings that will prove useful
for our study of semantic domains.

> Exercise 5.3 Using the partial orders G and H in Figure 5.10, draw a Hasse
diagram for each of the following compound partial orders:

a. G x G
H x H
G—-G
H—H
H—-G

=

I

-

G* under the prefix ordering (show the first four levels)
H* under the prefix ordering (show the first four levels)

P ®

G* under the sum-of-products ordering (show the first three summands)

H* under the sum-of-products ordering (show the first three summands) <

—-

> Exercise 5.4 Suppose that A and B are finite partial orders with the same number
of elements, but they are not isomorphic. Partition the following partial orders into
equivalence classes based on isomorphism. That is, each class should contain all the
partial orders that are isomorphic to each other.

Ax A, AxB, BxA BXxB,

A+ A A+ B, B+ A B+ B,

A—A A—B, B—A B-—B <

> Exercise 5.5 Given a discretely ordered domain D, the powerset P(D) is a partial
order under the subset ordering:

SEP(D)S/ if § C S’

Draw the Hasse diagram for the partial order P({a,b, c}) under the subset ordering.
If D is a partial order that is not discrete, it turns out that there are many “natural”

ways to order the elements of the powerdomain P (D), each of which is useful for

different purposes. See [Sch86a] or [GS90] for details. <

> Exercise 5.6 For each ordering on a compound domain defined above, show that
the ordering is indeed a partial order. I.e., show that the orderings defined for product,
sum, function, and sequence domains are reflexive, transitive, and anti-symmetric. <

174 CHAPTER 5. FIXED POINTS

5.2.2 Complete Partial Orders (CPOs)

A partial order D is complete if every chain in D has a least upper bound in
D. The term “complete partial order” is usually abbreviated CPO. Intuitively,
completeness means that any sequence of elements visited on an upward path
through a Hasse diagram must converge to a limit. Completeness is important
because it guarantees that the iterative fixed point technique converges to a
limiting value.

Here are some examples of CPOs:

e Any partial order with a finite number of elements is a CPO because every
chain is finite and necessarily contains its lub. PO, G, and H from the
previous section are all finite CPOs.

e Any flat partial order is a CPO because every chain has at most two
elements, the stronger of which must be the lub. Nat | is a CPO with an
infinite number of elements.

e P(Nat) is a CPO in which the elements (each of which is a subset of the
naturals) are ordered by subset inclusion (see Exercise 5.5). It is complete
because the lub of every chain C' is the (possibly infinite) union of the
elements of C'. Unlike the previous examples of CPOs, this is one in which
a chain may be infinite and not contain its own lub. Consider the chain C
with elements ¢;, where ¢; is defined to be {n|n <i,n : Nat} Then:

| | ¢ =J{{0}.{0,1},{0,1,2},...} = Nat

P(Nat)

The lub of C' is the entire set of natural numbers, but no individual ¢; is
equal to this set.

e The unit interval under the usual ordering of real numbers is a CPO. It is
complete because the construction of the reals guarantees that it contains
the least upper bound of every subset of the interval. The unit interval is
another CPO in which chains do not necessarily contain their own lubs.
For example, the set of all rational numbers less than v/.5 does not contain

V5.

e The partial functions from Nat to Nat (denoted Nat — Nat) form a
CPO. Recall that a partial function can be represented by a graph of
input/output pairs. So the function that is undefined everywhere is rep-
resented by {}, the function that returns 23 given 17 and is elsewhere

5.2. FIXED POINT MACHINERY 175

-

Figure 5.16: The partial order w' is the partial order w of natural numbers
extended with a largest element T 7.

undefined is represented by {(17,23)}, and so on. The ordering of ele-
ments in this CPO is just subset inclusion on the graphs of the functions.
It is complete for the same reason that P(Nat) is complete.

It is worthwhile to consider examples of partial orders that are not CPOs:

e The total order w depicted in Figure 5.9 is not a CPO because the chain
consisting of the entire set has no least upper bound (i.e., there is no
largest natural number). This partial order can be turned into a CPO w '
by extending it with a top element T 7 that by definition is larger than
every natural number (see Figure 5.16.)

e The partial order of rational numbers (under the usual ordering) between

0 and 1, inclusive, is not complete because it does not contain irrational

numbers like \/g It can be made complete by extending it with the

irrationals between 0 and 1; this results in the unit interval [0, 1].

e The partial order of sequences Bit* under the prefix ordering is not a CPO.
By definition, D* is the set of finite sequences whose elements are taken
from D. But the chain {[], [1], [1,1], [1,1,1], ... } has as its lub an
infinite sequence of 1s, which is not an element of Bit*. To make this
partial order complete, it is necessary to extend it with the set of infinite
sequences over 0 and 1, written Bit®. So the set of strings Bit* U Bit™
under the prefix ordering is a CPO.

Generalizing Bit™, we introduce the notation D* to denote the set of all
infinite sequences whose elements are taken from the domain D We also intro-

176 CHAPTER 5. FIXED POINTS

duce the notation D* to stand for D* U D> under the prefix ordering. (The
overbar notation is commonly used to designate the completion of a set, which
adds to a set all of its limit points.)

As with partial orders, we are interested in combination properties of CPOs.
As indicated by the following facts, we can use L, x , +, — , and * to build
new CPOs out of existing CPOs. Suppose that D and FE are CPOs. Then:

e D, isa CPO;
e D x E is a CPO under the partial order for products;
e D + FE is a CPO under the partial order for sums;

e D — FE is a CPO under the partial order for functions;

D* is a CPO under the sum-of-products ordering for sequences;

D* is a CPO under the prefix ordering for sequences.

> Exercise 5.7 For each of the compound CPOs described above, show that the com-
pound partial order is indeed complete. That is, show that the completeness property
of D and E implies that each chain of the compound domain has a lub in the compound
domain. <

5.2.3 Pointedness

A partial order is pointed if it has a bottom element. Pointedness is important
because the bottom element of a CPO is the natural place for the iterative fixed
point technique to start. Here are some of the pointed CPOs we have studied,
listed with their bottom elements:

e (G, bottom = a;

e H, bottom = c;

Nat |, bottom = 1 yg;

P(Nat), bottom = {};

[0,1], bottom = 0;
e Nat — Nat, bottom = the function whose graph is {};

w', bottom = 0;

5.2. FIXED POINT MACHINERY 177

e Bit*, bottom =][].

CPOs that we have studied that are not pointed include PO, G + H, and
Bit | * under the sum-of-products ordering.

In the iterative fixed point technique, the bottom element of a pointed CPO
is treated as the element with least information — the “worst” approximation
to the desired value. For example, L g, is the unknown natural number,
[] is a (bad) approximation to any sequence of Os and 1s, and {} is a (bad)
approximation to the graph of any partial function from Nat to Nat.

In computational terms, the bottom element of a CPO can informally be
viewed as representing a process that diverges (i.e., gets caught in an infinite
loop). For example, a procedure that returns a boolean for even numbers but
diverges on odd numbers can be modeled as an element of the domain Int —
Bool | that maps every odd number to L gy, -

Pointed CPOs are commonly used to encode partial functions as total func-
tions. Any partial function f in D — E can be represented as a total function
f'in D — E,| by having f’ map to Lg, every element d:D on which f is
undefined. For example, the partial function in PO — PO with graph

{(a,;a), (c,b), (£,£)}.

can be represented as the total function in PO — PO with graph

{(a,d), <b7J—POJ_>7 (c,b), <d7J—POJ_>7 <evLPOJ_>7 (£,£)}

Because of the isomorphism between D — E and D — E |, we casually perform
implicit conversions between the two representations.

The following are handy facts about the pointedness of partial orders con-
structed out of parts. Suppose that D and E are arbitrary partial orders (not
necessarily pointed). Then:

e D is pointed.
e D x FE is pointed if D and E are pointed.
e D + FE is never pointed.

e D — F is pointed if E is pointed.

D* under the sum-of-products ordering is never pointed.

e D* and D* under the prefix ordering are pointed.

178 CHAPTER 5. FIXED POINTS

Unpointed compound domains like D + E and D* under the sum-of-products
ordering can always be made pointed by lifting them with a new bottom element
or by coalescing their bottom elements if they are pointed (see Exercise 5.9).

> Exercise 5.8 Prove each of the facts about pointedness claimed above. <

> Exercise 5.9 The smash sum (also known as coalesced sum) of two pointed
partial orders D and FE, written D & E, consists of the elements

{J—DGBE}U{(IHJ'IDE d) |d e (D—J—D)}U{(IHJ2D,E 6) le € (FE— Lg)},

where | pgp is a single new bottom element that combines the bottom elements L p
and Lg. D @ FE is a partial order under the following ordering:

J_D@E ED@Ex for all I‘ED@E
(IHle7E dl) EDGBE (IHle’E dg) iff dy, dy € (D—J_D) and di; Cp do
(Inj2D’E el) CheE (Inj2D’E 62) iff e1,e2 € (E—_Lg) and e; Cg eo.

a. Using the CPOs G and H from Figure 5.10, draw a Hasse diagram for the partial
order G @ H.

b. If D and E are CPOs, show that D & E is a CPO.
c. What benefit does D & E have over D + E.

d. Suppose that D is a pointed CPO. Extend the notion of smash sum to a smash
sequence D ® such that D® is a pointed CPO under an ordering analogous to
the sum-of-product ordering. What does Bit | ® look like? <

5.2.4 Monotonicity and Continuity

Suppose that f: D — E, where D and E are CPOs (not necessarily pointed).
Then

e f is monotonic if d Cp dy implies (f d1) Cg (f da).
e f is continuous if, for all chains C'in D, (f (||, C)) =Ug{(f ¢) |c€ C}.

A monotonic function preserves order between CPOs, while a continuous func-
tion preserves limits. In the iterative fixed point technique, monotonicity is
important because when f : D — D is monotonic, the set of values

(Lo, L), ¢ -3

is guaranteed to form a chain. Continuity guarantees that this chain approaches
a limit.

5.2. FIXED POINT MACHINERY 179

As an example of these properties, consider the CPO of functions G —
H depicted in Figure 5.13. Any function represented by the pair (x,y)% is
monotonic if and only if z C y. Although there are 32 = 9 total functions from
G to H, only five of these are monotonic:

{<C7C>7 <C7d>7 <d7d>7 <C7e>7 <e7e>}

The reason that there are fewer monotonic functions than total functions is that
choosing the target t for a particular source element s constrains all the source
elements stronger than s to map to a target stronger than t. For example, a
monotonic function that maps a to e must necessarily map b to e. With larger
domains, the reduction from total functions to monotonic functions can be more
dramatic.

What functions from G to H are continuous? The only non-singleton chain in
G is {a,b}. By the definition of continuity, this means that a function f : D — FE

is continuous if
(f <|_|{a,b}>) = | {7 2).(f v}
D E

In this case, this condition simplifies to (f a) Cg (f b), which is equivalent to
saying that f is monotonic. Thus, the continuous functions from G to H are
exactly the five monotonic functions listed above.

The relationship between monotonic and continuous functions in this exam-
ple is more than coincidence. Monotonicity and continuity are closely related,
as indicated by the following facts:

e On finite CPOs (and even infinite CPOs with only finite chains), mono-
tonicity implies continuity.
e On any CPO, continuity implies monotonicity.

We leave the proof of these facts as exercises.

Although monotonicity and continuity coincide on finite-chain CPOs, mono-
tonicity does not imply continuity in general. To see this, consider the following
function from w' to the two-point CPO Two= {1, T}:

mon-not-con: w' — Two = An.if (n=T_,7) then T else L fi

(See Figure 5.17 for a depiction of this function.) This function is clearly mono-
tonic, but it is not continuous because on the subset w of w ',

<f <|_|w>> =(f Ter) =T #L=||{L} = | {(f n) [necw}

Two Two

8Recall that in this compact notation from page 170, we simply record the function’s value
on a and b, respectively.

180 CHAPTER 5. FIXED POINTS

—

Figure 5.17: An example of a function that is monotonic but not continuous.

An important fact about continuous functions is that the set of continuous
functions between CPOs D and FE is itself a CPO. For example, Figure 5.18
depicts the CPO of the five continuous functions between G and H. If F is
pointed, the function that maps all elements of D to L g is continuous and
serves as the bottom element of the continuous function CPO.

(d,d ee)

(c,d c,e)

(cre)

Figure 5.18: The CPO G % H of continuous functions between G and H.

Since the CPO of total functions between D and E and the CPO of contin-
uous functions between D and E are usually distinct, it will be helpful to have
a notation that distinguishes them. We will use D -5 E to designate the CPO
of total functions from D to E and D < E to designate the CPO of continuous
functions from D to E. It turns out that the CPO of continuous functions is
almost always the “right thing” in semantics, so we adopt the convention that,
throughout the rest of this text, any unannotated — should be interpreted as
L, We shall use L whenever we wish to discuss set-theoretic functions, and
will eécplicitly use & only when we wish to emphasize the difference between L
and .

5.2. FIXED POINT MACHINERY 181

A B

Figure 5.19: CPOs A and B.

> Exercise 5.10 Using the CPOs G and H from Figure 5.10, draw Hasse diagrams
for the following CPOs:

a. G S G
b. H< H
c. HS @ <

> Exercise 5.11 Consider the CPOs A and B pictured in Figure 5.19. For each of
the following functional domains, give the number of the (1) total, (2) monotonic, and
(3) continuous functions in the domain:

a. A— A
b. B— B
c. A—>B
d B— A <

> Exercise 5.12
a. Show that a continuous function between CPOs is necessarily monotonic.

b. Show that a monotonic function must also be continuous if its source is a CPO
all of whose chains are finite.

c. Show that if D and E are pointed CPOs then D < E is a pointed CPO. <

> Exercise 5.13 This problem considers functions f from [0, 1] to itself. We will say
that f is continuous in the CPO sense if it is a member of [0,1] < [0,1], where [0, 1]
is assumed to have the traditional ordering. We will say that f is continuous in the
classical sense if for all x and € there exists a d such that

(f [x_57x+5])g[(f :L')—G,(f :U)-i—E].

(Here we are abusing the function call notation to designate the image of all of the
elements of the interval.)

182 CHAPTER 5. FIXED POINTS

a. Does classical continuity imply CPO continuity? If so, give a proof; if not, provide
a counter-example of a function that is continuous in the classical sense but not
in the CPO sense.

b. Does CPO continuity imply classical continuity? If so, give a proof; if not, provide
a counter-example of a function that is continuous in the CPO sense but not in
the classical sense. <

5.2.5 The Least Fixed Point Theorem

Suppose D is a domain and f:D — D. Then d:D is a fixed point of f if
(f d) =d. If (D,C) is a partial order, then d: D is the least fixed point of f
if it is a fixed point of f and d C d’ for every fixed point d’ of f.

Everything is now in place to prove the following fixed point theorem:

Least Fixed Point Theorem: If D is a pointed CPO, then a con-
tinuous function f : D — D has a least fixed point (fixp f) defined

by Lp{(/™ Lp) |n=0}.

Proof:
First we show that the above definition of (fixp f) is a fixed point of f:

e Since L p is the least element in D, Lp C (f Lp).

e Since f is monotonic (recall that continuity implies monotonicity), Lp
C (f Lp) implies (f Lp) C (f (f Lp)). By induction, (f" Lp) C
(f™*! Lp) for every n >0, so {(f™ Lp) | n >0} is a chain in D.

e Now,

(f (fixp f))
= (f Up{(f™ Lp) |n=>0}) By definition of fixp.
= Up{(f (f" Lp)) |n>0} By continuity of f.
Up{(f™ Lp) [n =1}
Up{(f™ Lp) [n >0} (f° Lp) =Lp can’t change lub.
= (fixp f) By definition of fixp.

Thus, (f (fixp f)) =(fixp f), showing that (fixp f) is indeed a fixed point
of f.

To see that this is the least fixed point of f, suppose d’ is some other fixed
point. Then clearly 1 p C d’, and by the monotonicity of f, (f™ Lp)C (f™ d')
=d’. So d’ is an upper bound of the set S ={(f" Lp) | » > 0}. But then, by
the definition of least upper bound, (fixp f) = (|_|D S) Cd.)

5.2. FIXED POINT MACHINERY 183

We can treat fixp as a function of type (D — D) — D. It turns out that
fixp is itself a continuous function, and satisfies some other properties that make
it “the right thing” for many semantic purposes (see Gunter and Scott [GS90]).

The Least Fixed Point Theorem describes an important class of situations
in which fixed points exist, and we shall use it to specify the meaning of various
recursive definitions. However, we emphasize that there are many generating
functions that have least fixed points but do not satisfy the conditions of the
Least Fixed Point Theorem. In these cases, some other means must be used to
find the least fixed point.

5.2.6 Fixed Point Examples

Here we present several brief examples of the Least Fixed Point Theorem in
action. We have discussed many of these examples informally already but will
now show how the fixed point machinery formalizes the intuition underlying the
iterative fixed point technique.

5.2.6.1 Sequence Examples

As a first application of the Least Fixed Point Theorem, we consider some
examples. In order to model sequences of natural numbers, we will use the
domain

s € Natseq = Nat | *.

We use the flat domain Nat | instead of Nat to model the elements of a sequence
so that there is a distinguished bottom element to which head can map the empty
sequence. We will assume that (tail []) =[], though we could alternatively in-
troduce a new bottom element for sequences if we wanted to distinguish (tail [])
from []. We use Nat | * rather than Nat | * because the former is a pointed CPO
that contains all the limiting values that are missing from the latter. In order
to apply the iterative fixed point technique, we will need to assume that Natseq
has the prefix ordering on sequences rather than the sum-of-products ordering.

The equation s = (cons 3 (cons (1+ (head s)) [])) has as its associated
generating function the following:

Zseq1 : Natseq — Natseq = As. (cons 3 (cons (1+ (head s)) [])).

Natseq is a pointed CPO with bottom element [], and it is not hard to show
that gseq; is continuous. Thus, the Least Fixed Point Theorem applies, and the

184 CHAPTER 5. FIXED POINTS

least fixed point can be found by iterating g starting with []:

(ﬁXNatseq gseqj)

= I_lNatseq{(ggeql [])7 (géeql [])7 (gfeql [])7 (gfeql [])7 }
= I_lNatseq{[]7 [37J-Nat¢]7 3,4]}
= [3.4].

In this case, the unique fixed point [3,4] of gseqs is reached after two iterations

of 8seql -
What happens when we apply this technique to an equation like

s = (cons (head s) (cons (1+ (head s)) [])),

which has an infinite number of fixed points? The corresponding generating
function is

8seqz : Natseq — Natseq = As. (cons (head s) (cons (1+ (head s)) [])).

This function is continuous as long as + returns L y4;, when one of its arguments
is L ng¢, - The Least Fixed Point Theorem applies, and iterating ggeq2 on [] gives:

(ﬁXNatseq gsqu)
= LlNatseq{(ggqu H)’ (giqu H)’ (gfqu H)’ (ggqu H)) }
= LlNatseq{[]7 [J-NatJ_aJ-NaU_]}
= [J—NatJ_ 5 J—NatJ_]

After one iteration, the iterative fixed point technique finds the fixed point
[LNat, » L Nat,], which is indeed less than all the other fixed points [n, (n + 1)].
Intuitively, this result indicates that the solution is a sequence of two numbers,
but that the value of those numbers cannot be determined without making
an arbitrary decision. Note the crucial roles that the bottom elements [] and
L g, play in this example. Each represents the value of a domain with the
least information. Iterative application of the generating function may or may
not refine these values by adding information.
A similar story holds for equations like

s = (cons (1+ (head s)) (cons (head s) []))

that have no solutions in Nat*. The reader can verify that this equation does
have the unique solution [L ygt, , L nat,] in Natseq and that this solution can be
found by an application of the Least Fixed Point Theorem.

As a final sequence example, we consider the equation s = (cons 1 s), whose
associated generating function is

Zseqs : Natseq — Natseq = As. (cons 1 s).

5.2. FIXED POINT MACHINERY 185

This function is continuous, and the Least Fixed Point Theorem can be invoked
to find a solution to the original equation:

(ﬁXNatseq gsqu)

= I_lNatseq{(ggeqS’ [])7 (géeqs’ [])7 (gfeqs’ [])7 (gfeqs’ [])7 }
I_lNatseq{[]’ [1], [17 1], [lu 17 1}’ }
1, 1,1, ...

In this case, the unique fixed point of gse3 is an infinite sequence of 1s. This
fixed point is not reached in a finite number of iterations, but is the limit of

the sequence of approximations (g?qu []) This example underscores why it is

necessary to extend Nat | * with Nat | *° to make Natseq a CPO. Without the
infinite sequences in Nat | *°, the iterative fixed point technique could not find a
solution to some equations.

5.2.6.2 Function Examples

In the remainder of this book, we will typically apply the iterative fixed point
technique to generating functions over function domains. Here we consider a
few examples involving fixed points over the following domain of functions:

f € Natfun = Nat — Nat | .

Since we assume that — designates continuous functions, Natfun is a domain
of the continuous functions between Nat and Nat . Natfun is a CPO because
the set of continuous functions between CPOs is itself a CPO under the usual
ordering of functions. Furthermore, Natfun is pointed because Nat | is pointed.
Recall that Nat — Nat, is isomorphic to Nat — Nat, so elements of Natfun
can be represented by a function graph in which pairs whose target is L y,;, are
omitted.
Our first example is the definition of the doubling function studied earlier:

dbl = An.if (n=0) thenOelse (2+ (dbl (n—1))) fi.

A solution to this definition is the fixed point of the generating function g g;:

gant : Natfun — Natfun
=M. An. if (n=0) thenO else (2+ (f (n—1))) fi.

Natfun is a pointed CPO, and Natfun’s bottom element is the function whose
graph is {}. In this CPO, | | on a chain of functions in Nat — Nat is equivalent
to | | on a chain of graphs of functions in Nat — Nat. It can be shown that g g

186 CHAPTER 5. FIXED POINTS

is continuous, so the Least Fixed Point Theorem applies:

(X Natfun Sani)
= I_lNatfun{(ggbl {})7 (gzlibl {})7
= I_lNatfun{{}’ {<070>}7 {<070>7 <17
= {(n,2n)|n : Nat}.

(b {}) (gdbl {}))
2}, {{0,0), (1,2), (2, 4>} oo}

Each (g7, {}) is a finite approximation of the doubling function that is only
defined on the naturals 0 < ¢ < n — 1. The least (and only) fixed point is the
limit of these approximations: a doubling function defined on all naturals.

As an example of a function with an infinite number of fixed points, consider
the following recursive definition of a function in Natfun:

even0 : Natfun = An .if (n =0) then 0 else (even0 (n mod 2)) fi

Here (a mod b) returns the remainder of dividing a by b. For each constant ¢ in
Nat | , the function whose graph is

U {(2n,0),(2n + 1,¢)}

n: Nat

is a solution for even0. Each solution maps all even numbers to zero, but maps
every odd number to the same constant ¢, where c is a parameter that distin-
guishes one solution from another. Each of these solutions is a fixed point of the
generating function gepeno:

Zeveno : Natfun — Natfun
=\. An. if (n=0) then 0 else (f (nmod?2)) fi.

It turns out that this function is continuous, so the Least Fixed Point Theorem
gives:

(ﬁXNatfun gevenO)

= I_lNatfun{(ggvenO {})’ (gevenO {}) ggvenO {<) (gevenO {}) }

(.
= Unatse {{} {0,00}, {{0,0), (2,0)}, {(0,0), (2,0, {(4,0)}, ot
{(2n,0) | n : Nat}.

The least fixed point is a function that maps every even number to zero, but
is undefined (i.e., yields L g4,) on the odd numbers. Indeed, this is the least
element of the class of fixed points described above; it uses the least arbitrary
value for the constant c.

The solution for even0 matches our intuitions about the operational behavior
of programming language procedures for computing even(0. For example, the
definition for even0 can be expressed in the SCHEME programming language via
the following procedure:

5.2. FIXED POINT MACHINERY 187

(define (evenO n)
(if (=n 0)
0
(even0 (mod n 2)))).

We expect this procedure to return zero in a finite number of steps for an even
natural number, but to diverge for an odd natural number. The fact that the
function even0 maps odd numbers to L y,;, can be interpreted as signifying that
the procedure evenO diverges on odd-numbered inputs.

> Exercise 5.14 For each of the following equations:

e Characterize the set of all solutions to the equation in the specified solution
domain;

e Use the iterative fixed point technique to determine the least solution to the
equation.

Assume that s: Natseq, p: P(Nat), f: Natfun, and h:Int — Int, .
a. s =(cons 2 (cons (head (tail s)) s))

b. s =(cons (14 (head (tail s))) (cons 3 s))

c. s =(cons 5 (mapinc s)), where mapinc is a function in Natseq — Natseq that
maps every sequence [ng,ng,ng,...] into the sequence
[(1—|—n1), (1+n2), (1+n3),]

[N

p={l}Ufe +3|zep)
. p ={1} Uf2e|x € p)
fp ={1) U{|2e — 4| |z € p)
Cf=n. (fn)
Cf=An. (f (1+n)

L f= . 1+ (fn)

i f=An.if(n=1)
then 0
else if (even? n)
then (1+ (f (n/2)))
glse (f (n+2)

[¢)

=

fi

where even? is a predicate determining if a number is even.

k. h = Xi. if (1 =0) thenO else (h (1—2)) fi <

188 CHAPTER 5. FIXED POINTS

> Exercise 5.15 Section 5.1.3 sketches an example involving the solution of an
equation on line drawings involving the transformation 7. Formalize this example by
completing the following steps:

a. Represent line drawings as an appropriate pointed CPO Lines.
b. Express the transformation T as a continuous function g in Lines — Lines.

c. Use the iterative fixed point technique to find the least fixed point of gr. <

> Exercise 5.16 A binary relation R on a set A is a subset of A x A. The reflexive
transitive closure of R is the smallest subset R’ of A x A satisfying the following
properties:

e If a €A, then (a,a) ER’;
e If (a,b) isin R' and (b,c) is in R, then (a,c) isin R’.

a. Describe how the reflexive transitive closure of a binary relation can be expressed
as an instance of the Least Fixed Point Theorem. What is the pointed CPO?
What is the bottom element? What is the generating function?

b. Use the iterative fixed point technique to determine the reflexive transitive closure
of the following relation on the set {a, b, c, d, e}:

{(a,c); (cre); (d,a), (d,b), (e;0)} <

> Exercise 5.17 Show that each of the generating functions gseqs, 8seq2, Sseq3: Ldbls
Zeveno 18 COntinuous. <

5.2.7 Continuity and Strictness

We have seen how compound CPOs can be assembled out of component CPOs
using the domain operators |, x , + ,* and — . We have also seen how the
pointedness of a compound CPO is in some cases dependent on the pointedness
of its components.

But a pointed CPO D is not the only prerequisite of the Least Fixed Point
Theorem. The other prerequisite is that the generating function f:D — D
must be continuous. In the examples of the previous section, we waved our
hands about the continuity of the generating functions, but did not actually
prove continuity in any of the cases. The proofs are not difficult, but they are
tedious. Below, we argue that all generating functions that can be expressed in
the metalanguage summarized in Section A.4 are guaranteed to be continuous, so
we generally do not need to worry about the continuity of generating functions.

5.2. FIXED POINT MACHINERY 189

We also introduce strictness, an important property for characterizing functions
on pointed domains.
Recall that metalanguage expressions include:

e constants (both primitive values and primitive functions on such values);
e variables;

e assembly and disassembly operators for compound domains (e.g., { ...)
and Proji notation for products, Inji and matching notation for sums,
cons, empty?, head, and tail for sequences, A abstraction and application
for functions);

e syntactic sugar like if and the generalized pattern-matching version of
matching .

It turns out that all of the assembly and disassembly operators for compound
domains are continuous and that the composition of continuous functions is con-
tinuous (see [Sch86a] for the details). This implies that any function expressed
as a composition of assembly and disassembly operators is continuous. As long
as primitive functions are continuous and the if and matching notations pre-
serve continuity, all functions expressible in this metalanguage subset must be
continuous. Below, we refine our interpretation of primitive functions and the
sugar notations so that continuity is guaranteed.

Assume for now that all primitive domains are flat CPOs. What does it
mean for a function between primitive domains to be continuous? Since all
chains on a flat domain D can contain at most two elements (Lp and a non-
bottom element d), the continuity of a function f : D — E between flat domains
D and FE is equivalent to the following monotonicity condition:

(f Lp)Ep(f d).

This condition is only satisfied in the following two cases:

e f maps Lp to L, in which case d can map to any element of E;

e f maps all elements of D to the same non-bottom element of F.

In particular, f is not continuous if it maps L p and d to distinct non-bottom
elements of F.

For example, a function sqr in Nat; — Nat; that maps L g, to Lyg,
and every number to its square is continuous. So is the constant function three

190 CHAPTER 5. FIXED POINTS

that maps every element of Nat | (including L g,) to 3. But a function f that
maps every non-bottom number n to its square and maps L g, to 3 is not
continuous, because (f n) is not a refinement of the approximation (f L ng,)
=3.

From a computational perspective, the continuity restriction makes sense
because it only permits the modeling of computable functions. Uncomputable
functions cannot be expressed without resorting to non-continuous functions.
The celebrated halting function, which determines whether or not a program
halts on a given input, is an example of an uncomputable function. Intuitively,
the halting function requires a mechanism for detecting whether a computation
is caught in an infinite loop; such a mechanism must map | to one non-bottom
element and other inputs to different non-bottom elements.

If D and E are pointed domains, a function f : D — E is strict if (f Lp)
= 1. Otherwise, f is non-strict. For example, the sqr function described
above is strict, while the three function is non-strict. Although strictness and
continuity are orthogonal properties in general, strictness does imply continuity
for functions between flat domains (see Exercise 5.18).

Strictness is important because it captures the operational notion that a
computation will diverge if it depends on an input that diverges. For example,
strictness models the parameter-passing strategies of most modern languages,
in which a procedure call will diverge if the evaluation of any of its arguments
diverges. Non-strictness models the parameter-passing strategies of so-called
lazy languages. See Chapters 7 and 11 for a discussion of these parameter-
passing mechanisms.

When pointed CPOs are manipulated in our metalanguage, we shall assume
the strictness of various operations:

e All the primitive functions on flat domains are strict. When such a function
has multiple arguments, we will assume it is strict in each of its arguments.
Thus, +pngt, returns L yq , if either argument is L yg;, , and =pq, returns
L Boot, if either argument is L g -

e An if expression is strict in its predicate whenever it is an element of
Bool | rather than Bool. Thus the expression

if T =ngt, ythen 3else 3 fi

is guaranteed to return L g, (not 3) if either = or y is L yq¢, . Together
with the strictness of =pq,, the strictness of if predicates thwarts at-
tempts to express non-computable functions. For example, the expression

if v = | nygt, then true else false fi

5.2. FIXED POINT MACHINERY 191

will always return L gy, -

e A matching expression is strict in its discriminant whenever it is an
element of a pointed CPO. As with the strictness of if predicates, this
restriction matches computational intuitions and prevents the expression
of non-computable functions.

e If D is a pointed domain, we require the head operation on sequences to
be strict on D* under the prefix ordering. That is, (head []) must equal
Lp. If D is not pointed, or if D* has the sum-of-products ordering, head
is undefined for []; i.e., it is only a partial function.

With the above provisions for strictness, it turns out that all functions express-
ible in the metalanguage are continuous.

Since we often want to specify new strict functions, it is helpful to have
a convenient notation for expressing strictness. If f is any function between
pointed domains D and E, then (strictp g f) is a strict version of f. That is,
(strictp g f) maps Lp to Lg and maps every non-bottom element d of D to
(f d). As usual, we will omit the subscripts on strict when they are clear from
context. For example, a strict function in Nat | — Nat | that returns 3 for all
non-bottom inputs can be defined as:

strict-three = (strict (An.3)).

We adopt the abbreviation A. ... for (strict (A. ...)), so An. 3 is another
way to write the above function.

> Exercise 5.18

a. Show that strictness and continuity are orthogonal by exhibiting functions in
D — D that have the properties listed below. You may choose different Ds for
different parts.

i. Strict and continuous;
ii. Non-strict and continuous;
iii. Strict and non-continuous;
iv. Non-strict and non-continuous.

b. Which combinations of properties from the previous part cannot be achieved if
D is required to be a flat domain? Justify your answer. <

192 CHAPTER 5. FIXED POINTS

5.3 Reflexive Domains

Reflexive domains are domains that are defined by recursive domain equa-
tions. We have already seen reflexive domains in the context of POSTFIX:

StackTransform = Stack — Stack
Stack = Value* + Error
Value = Int + StackTransform.

These equations imply that a stack may contain as one of its values a function
that maps stacks to stacks. A simpler example of reflexive domains is provided
by the lambda calculus (see Chapter 6), which is based upon a single domain
Fen defined as follows:

Fen = Fen — Fen.

We know from set theory that descriptions of sets that contain themselves
(even indirectly) as members are not necessarily well-defined. In fact, a simple
counting argument shows that equations like the above are nonsensical if inter-
preted in the normal set-theoretic way. For example, if we (improperly) view
— as the domain constructor for set theoretic functions from Fecn to Fen, by
counting the size of each set we find:

|Fen| = |Fen|!Fen.

For any set Fen with more than one element, |Fen|!/Fe?l is bigger than |Fen).
Even if |Fen| is infinite, |Fen|/F¢"l is a “bigger” infinity! In the usual theory of
sets, the only solution to this equation is a trivial domain Fcn with one element.
A computational world with a single value is certainly not a very interesting,
and is a far cry from computationally complete world of the lambda calculus!

Dana Scott had the insight that the functions that can be implemented on
a computer are limited to continuous functions. There are fewer continuous
functions than set theoretic functions on a given CPO, since the set theoretic
functions do not have to be monotonic (you can get more information out of
them than you put in!). If we treat — as a constructor that describes com-
putable (continuous) functions and we interpret “equality” in domain equations
as isomorphisms, then we have a much more interesting world. In this world,
we can show an isomorphism between Fecn and Fen — Fen:

Fen ~ Fen — Fen.

The breakthrough came when Scott [Sco77] provided a constructive tech-
nique (the so-called inverse limit construction) that showed how to build
such a domain and prove the isomorphism. Models exist as well for all of the

5.4. SUMMARY 193

other domain constructors we have introduced (lifting, products, sums, sum-of-
products, prefix ordering of sequences) and as long as we stick to well defined
domain constructors, we can be assured that there is a non-trivial solution to
our reflexive domain equations.

The beauty of this mathematical approach is that there is a formal way of
giving meaning to programming language constructs without any use of compu-
tation. We shall not describe the details of the inverse limit construction here.
For these, see Scott’s 1976 Turing Award Lecture [Sco77], Chapter 11 of Schmidt
[Sch86a], and Chapter 7 of Stoy [Sto85].

It is important to note that this construction requires that certain domains
have bottom elements. For example, in order to solve the POSTFIX domain
equations, we need to lift the Stack and Answer domains:

StackTransform = Stack — Stack

Stack = (Value® + Error) |

Value = Int + StackTransform

Answer = (Int + Error) |
This lifting explains how non-termination can “creep in” when POSTFIX is ex-
tended with dup.

The inverse limit construction is only one way to understand reflexive do-
main equations. Many approaches to interpreting such equations have been
proposed over the years. One popular modern approach is based on the no-
tion of information systems. You can find out more about this approach in
[GS90, Gun92, Win93].

5.4 Summary

Here are the “big ideas” of this chapter:

e The meaning of a recursive definition over a domain D can be understood
as the fixed point of a function D — D.

e Complete partial orders (CPOs) model domain elements as approximations
that are ordered by information. In a CPO, every sequence of information-
consistent approximations has a well-defined limit.

e A CPO D is pointed if it has a least element (bottom, written L p). The
bottom element, which stands for “no information,” is used as a starting
point for the fixed point process. Bottom can be used to represent a partial
function as a total function. It is often used to model computations that
diverge (go into an infinite loop). A function between CPOs is strict if it
preserves bottom.

194

CHAPTER 5. FIXED POINTS

Functions between CPOs are monotonic if they preserve the information
ordering and continuous if they preserve the limits. Continuity implies
monotonicity, but not vice versa.

If D is a pointed CPO, every continuous function f : D — D has a least
fixed point (fixy f) that is defined as the limit of iterating f starting at
1p.

The domain constructors |, x , +, — , and * can be viewed as
operators on CPOs. In particular, D; — D5 is interpreted as the CPO
of continuous functions from D to Dy. Only some of these constructors
preserve pointedness. The new domain constructor | extends a domain
with a new bottom element, guaranteeing that it is pointed.

Functions that can be expressed in the metalanguage of Section A.4 are
guaranteed to be continuous. Intuitively, such functions correspond to the
computable functions.

Recursive domain equations that are not solvable when domains are viewed
as sets can become solvable when domains are viewed as CPOs. The key
ideas (due to Scott) are to interpret equality as isomorphism and to focus
only on continuous functions rather than all set-theoretic functions. There
are restricted kinds of CPOs for which any domain equations over a rich
set of operators are guaranteed to have a solution.

Reading

This chapter is based largely on Schmidt’s presentation in Chapter 6 of [Sch86a].
The excellent overview article by Gunter and Scott [GS90] presents alternative
approaches involving more restricted domains and touches upon many technical
details omitted above. See Mosses’s article on denotational semantics [Mos90]
to see how these more restricted domains are used in practice. Gunter’s book
[Gun92] discusses many domain issues in detail.

For an introduction to the techniques of solving recursive domain equations,

see [Sto85, Sch86a, GS90, Gun92, Win93].

Chapter 6

FL: A Functional Language

Things used as language are inexhaustible attractive.

— The Philosopher, Ralph Waldo Emerson

6.1 Decomposing Language Descriptions

The study of a programming language can often be simplified if it is decomposed
into three parts:

1. A kernel language that forms the essential core of the language.

2. Syntactic sugar that extends the kernel with convenient constructs. Such
constructs can be automatically translated into kernel constructs via a
process known as desugaring.

3. A standard library of primitive constants and operators supplied with
the language.

We shall refer to the combination of a kernel, syntactic sugar, and a standard
library as a full language to distinguish it from its components.

Decomposing a programming language definition into parts relieves a com-
mon tension in the design and analysis of programming languages. From the
standpoint of reasoning about a language, it is desirable for a language to have
only a few simple parts. However, from the perspective of programming in a
language, it is desirable to concisely and conveniently express common program-
ming idioms. A language that is too pared down may be easy to reason about
but horrendous to program in — try writing factorial in POSTF1x+{dup}. On

195

196 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

the other hand, a language with many features may be convenient to program
in but difficult to reason about — try proving some non-trivial properties about
your next JAVA, C, ADA, or COMMON LISP program.

The technique of viewing a full language as mostly sugar coating around a
kernel lets us have our cake and eat it too. When we want to reason about
the language, we consider only the small kernel upon which everything else is
built. But when we want to program in the language, we make heavy use of the
syntactic sugar and standard library to express what we want in a readable fash-
ion. Indeed, we can even add new syntactic sugar and new primitives without
changing the properties of the kernel.

There are limitations to this approach. We’d like the kernel and full language
to be close enough so that the desugaring is easy to understand. Otherwise we
might have the situation where the kernel is a machine instruction set and the
desugaring is a full-fledged compilation from high-level programs into object
code. For this reason, we require that syntactic sugar be expressed via simple
local transformations; no global program analysis is allowed.

We shall study this language decomposition technique in the context of a
mini-language we call FL (for Functional Language).! FL provides us with
the opportunity to use the semantic tools developed in the previous chapters to
analyze a programming language that is much closer to a “real” programming
language than POSTFIX or EL. Along the way, we will introduce two approaches
for modeling names in a programming language: substitution and environments.

FL is a language that examplifies what is traditionally known as the func-
tional programming paradigm. As we shall see, functional programming
languages are characterized by an emphasis on the manipulation of values that
model mathematical functions. The name “functional language” is a little
bit odd, since it suggest that languages not in this paradigm are somehow
dysfunctional — a perception that many functional language aficionados ac-
tively promote! Perhaps function-oriented languages would be a more ac-
curate term for this class of languages.

6.2 The Structure of FL

FL is a typical functional programming language for computing with numeric,
boolean, symbolic, procedural, and compound data values. The computational
model of FL is based on the functional programming paradigm exemplified by

!Our FL language is not to be confused with any other similarly-named language. In partic-
ular, our FL is not related to the FL functional programming language [BWW90, BWW*89)
based on Backus’s FP [BacT78].

6.2. THE STRUCTURE OF FL 197

such languages as ERLANG, FX, HASKELL, ML, and SCHEME. FL programs
are free of side effects and make heavy use of first-class functional values (here
called procedures?. Syntactically, FL bears a strong resemblance to SCHEME,
but semantically we shall see that it is closer to so-called purely functional
lazy languages like HASKELL and MIRANDA.

6.2.1 FLK: The Kernel of the FL. Language

We begin by presenting the syntax and informal semantics of FLK, the FL
kernel.

6.2.1.1 The Syntax of FLK

A well-formed FLK program is a member of the syntactic domain Program
defined by the s-expression grammar in Figure 6.1. FLK programs have the
form (£1k (tormar™) FEpody) , where Ifymmq™ are the formal parameters of the
program and Ep,q, is the body expression of the program. Intuitively, the
formal parameters name program inputs and the body expression specifies the
result value computed by the program for its inputs.

FLK expressions are s-expression syntax trees whose leaves are either literals
or variable references. FLK literals include the unit literal, booleans, integers,
and symbols. We adopt the SCHEME convention of writing the boolean literals
as #t (true) and #f (false). The unit literal (#u) is used in situations where the
value of an expression is irrelevant, such as contexts in C and JAVA modeled
by the void type. For symbolic (i.e., non-numeric) processing, FLK supports
the Lisp-like notion of a symbol. Symbols are similar to strings in traditional
languages, except that they a written with a different syntax (using the keyword
symbol rather than double quotes) and they are atomic entities that cannot be
decomposed into their component characters. For simplicity, FLK assumes a
Lisp-like convention in which symbols are sequences of characters (1) that do
not include whitespace, bracket characters ({, }, (,), [, 1), or quote characters
(", ¢ ?); (2) that do not begin with #; and (3) in which case is ignored. So
the symbols xcoord, xCoord, and XCOORD are considered equivalent.

2We shall consistently use the term procedure to refer to entities in programming lan-
guages that denote mathematical functions, and function to refer to the mathematical notion
of function. In some languages, these two terms are used to distinguish different kinds of pro-
gramming language entities. For example, in PAScAL, “function” refers to a subroutine that
returns a result whereas “procedure” refers to a subroutine performs its work via side effect
and returns no result. Much of the functional programming literature uses the term “function”
to refer both to the programming language entity and the mathematical entity it denotes.

198 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

P € Program

E e Exp

L ¢ Lit

K € Keyword = {call, if,pair, primop, proc, rec, symbol, error}
Y € Symlit = {x,1lst,make-point,map tree, 4/3*pi*r~21,...}

I € Identifier = Symlit — Keyword

B € Boollit = {#t,#f}

N € Intlit = {...,-2,-1,0,1,2,...}

O € Primop = Defined by standard library (Section 6.2.3).

P = (f1k formal™) Eboay) [Program]
E:=1 [Literal]
| I [Variable Reference]
| (primop Ongme FEarg™) [Primitive Application]
| (proc Iformai Ebody) [Abstraction]
| (call FErutor Erand) [Application]
| (if Etest Ethen Eelse) [BranCh]
| (pair Bty Esna) [Pairing]
| (rec Lnar Ebody) [Recursion]
| (error Ipnsy) [Errors]
L = #u [Unit Literal]
| B [Boolean Literal]
| N [Integer Literal]
| (symbol D) [Symbolic Literal]

Figure 6.1: An s-expression grammar for FLK

6.2. THE STRUCTURE OF FL 199

A key difference between FLK and PoSTF1x/EL is that that FLK provides
constructs (£1k, proc, and rec) that introduce names for values. Syntactically,
names are expressed via identifiers. The rules for what constitutes a well-
formed identifier differs from language to language. In FLK we shall assume
that any symbol that is not one of the reserved keywords of the language
(call, if, pair, primop, proc, rec, symbol, and error) can be used as an
identifier. This means that expressions like x-y and 4/3xpi*r~2 are treated
as atomic identifiers in FLK. In many other languages, these would be infix
specifications of trees of binary operator applications.

For compound expressions, FLK supports procedural abstractions (proc)
and applications (call), primitive applications (primop), conditional branches
(if), pair creation (pair), simple recursion (rec), and error signaling (error).

Although many of the syntactic conventions of FLK are borrowed from Lisp-
like languages, especially SCHEME, it’s worth emphasizing that FLK differs from
these languages in some fundamental ways. For example, in SCHEME, abstrac-
tions may take any number of formal parameters, are introduced via the keyword
lambda, and are invoked via an application syntax with no keyword. In con-
trast, FLK abstractions have exactly one formal parameter, are introduced via
the keyword proc, and are applied via the keyword call.

6.2.1.2 An Informal Semantics for FLK

Intuitively, every FLK expression denotes a value that is tagged with its type in
addition to whatever information distinguishes it from other values of the same
type. The primitive values supported by FLK include the unit value, boolean
truth values, integers, and textual symbols. The unit value is the unique value
of a distinguished type that has a single element. In addition, FLK supports
pairs and procedures. A pair is a compound value that allows any two values
(which may themselves be pairs) to be glued together to form a single value. A
procedure is a value that represents a mathematical function by specifying how
to map an input value to an output value.

We will informally describe the semantics of FLK by considering some sam-
ple evaluations of FLK expressions. We use the notation F -7z V to indicate
that the expression E evaluates to the value V. Here are some example values
that indicate our conventions for writing FLK values:

200 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

unit The unit value
false, true The boolean values
17, =8 Integer values
"abstraction, 'captain Symbolic values
procedure Procedural values
(17, true), (procedure, (' abstraction, unit)) Pair values
error:not-an-integer Errors

oo—loop Non-termination

(represents an infinite loop)

Additionally, the following abbreviation will be handy for representing lists of
values that are encoded as a unit-terminated chain of pairs:

Vi, Va,..., Vo] = (Vi, (Va, ... (Vip,umit) ...))

For example, the notation [17, true, (’foo, procedure)] is an abbreviation for a
three-element list values (17, (true, ({’foo, procedure), unit))).

Our value notation does not distinguish procedural values that denote differ-
ent mathematical functions. For instance, a squaring procedure and a doubling
procedure are both written procedure. This is because our operational seman-
tics will not allow us to directly observe the function designated by a procedural
value that is the outcome of a program. As explained in Section 3.4.4, inten-
tionally blurring distinctions between certain values is sometimes necessary to
enable program transformations. However, our notation for errors does distin-
guish errors with different messages.

The literal expressions designate constants in the language:

#u e unit
#t o true
(symbol captain) wrz= 'captain

The primitive application (primop O FE; ... E,) denotes the result of ap-
plying the primitive operator named by O to the n values of the argument
expressions F;. The behavior of most of the primitive operators should be ap-
parent from their names. E.g.,

(primop not? #t) L= false

(primop integer? 1) 73~ true

(primop integer? #t) L3 false

(primop + 1 2) 4y 3

(primop / 17 8) = 3 {integer division}

(primop rem 17 5) 7 2

(primop sym=7 (symbol captain) (symbol abstraction)) 3 false
(primop sym=? (symbol captain) (symbol Captain)) —rg true

6.2. THE STRUCTURE OF FL 201

The last example illustrates that FLK symbols are case-insensitive. The full list
of primitive operations is specified by the FL standard library in Section 6.2.3.

The value of a primitive application is not defined when primitive functions
are given the wrong number of arguments, when an argument has an unexpected
type, or when integer division or remainder by 0 is performed. These situations
are considered program errors:

(primop + 1) rj error:too-few-args
(primop not? 1) g~ error:not-a-bool
(primop + #t 1) g~ error:not-an-integer
(primop / 1 0) —pj error:divide-by-zero

The abstraction (proc I E) specifies a procedural value that represents a
mathematical function. The application (call E; Fz) stands for the result of
applying the procedure denoted by E; to the operand value denoted by Fs. It
is an error to use any value other than a procedure as an operator. Multiple-
argument procedures can be simulated by currying (see Section A.2.5.1).

(proc x (primop * x x)) = procedure
(call (proc x (primop * x x)) 5) w7 25
(call (call (proc a (proc b (primop - b a))) 2) 3) w7 I
(call 3 5) 4y~ error:non-procedural-rator
(call not? #t) 4y~ error:unbound-variable
{not? is a primop, not a variable name}

(call (proc x (call x x)) (proc x (call x x))) —Jpx> oo-loop

As in HAsSkELL, FLK’s procedures are non-strict. This means that a call to
a procedure may return a value even if one of its arguments denotes an error
or a non-terminating computation. Intuitively, non-strictness indicates that an
expression will never be evaluated if the rest of the computation does not require
its value. For example:

(call (proc x 3) (primop / 1 0)) w7 3
(call (proc x (primop + x 3))

(primop / 1 0)) 4y~ error:divide-by-zero
(call (proc x 3)

(call (proc x (call x x))

(proc x (call x x)))) w1 3

(call (proc x (primop + x 3))

(call (proc x (call x x))

(proc x (call x x)))) G oo-loop

Unlike FLK, most real-world languages (including C, JAVA, PASCAL, SCHEME,
and ML) have strict procedures. In these langauges, operands of procedure
applications are always evaluated, even if they are never referenced by the pro-

202 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

cedure body.

The branch expression (if Fiest Ehen Fese) requires the value of Fieg to
be a boolean, and evaluates one of Eye, or E.. depending on whether the test
is true or false:

(if (primop > 8 7) (primop + 2 3) (primop * 2 3)) w7z I
(if (primop < 8 7) (primop + 2 3) (primop * 2 3)) w7 6
(if (primop - 8 7) (primop + 2 3) (primop * 2 3))

FIx errormon-bool-in-if-test

The pairing expression (pair Ep; FEg,q) is the means of gluing two values
together into a single value of the pair type. The values of the two components
can be extracted via the primitive operators fst and snd. A chain pairs linked
by their second components and terminated by the unit value is a standard way
of encoding a list:

(pair 1 (pair 2 (pair 3 #w))) - [I, 2, 3]

Like procedure calls, pairing in FLK is non-strict. The result of pair is always
a well-defined pair even if one (or both) of its argument expressions is not an
FLK value. The unspecified nature of a contained value can only be detected
when it is extracted from the pair.
(pair (primop not? #f) (primop / 1 0))
17 (true, error:divide-by-zero)
(primop fst (pair (primop not? #f) (primop / 1 0))) g true
(primop snd (pair (primop not? #f) (primop / 1 0)))
w1 error:divide-by-zero

As we shall see in Section 10.1.3, non-strict data structures are an important
mechanism for supporting modularity in programs.

We choose to make pair a special form rather than a primitive like not? or
+ to emphasize the fact that pairing is non-strict. If we made pair a primitive
operator, we would still have to treat it specially when we describe the semantics
of the primop form because all the other primitives are strict. Treating pair as
a special form provides a cleaner description of the semantics. This is a purely
stylistic decision; it is also possible to treat pair as a binary primitive operator
(see Exercise 6.20).

The recursion expression (rec I E) allows the expression of recursion equa-
tions over one variable. The value of the rec expression is the value of its body,
where the value of I within F is the value of the entire rec expression. That is,
the value returned by a recursion is the solution to the equation I = E. rec is
used to specify recursive procedures and data structures. For example:

6.2. THE STRUCTURE OF FL 203

(rec fact (proc n
(if (primop = n 0)
1
(primop * n (call fact (primop - n 1))))))
w17 DProcedure {A factorial procedure.}

(rec ones (pair 1 ones))
= |1, 1, 1, ...] {An infinite sequence of 1s.}

FLK programs are parameterized expressions. We use the notation P

% Viesut to indicate that running the FLK program P on argument
values Vy, ..., V, yields the result value Vi .5. For example:

(f1k (x) (* x x)) % 25
(f1k (ab) (/ (+ab) 2)) &5 5

(flk (a b) (/ (+ a b) 2)) % error:wrong-number-of-args
(f1k (x nums)
(call (rec scale

(proc ys
(if (primop unit? ys) {Is ys the empty list?}
ys {If so, return it;}
(pair {otherwise, prepend the}
(primop * x (primop fst ys)) {scaled first number}
(call scale {to the result of scaling}
(primop snd xs)))))) {the rest of the numbers.}
nums)) % [47 87 12]

The penultimate example illustrates that it is an error if the number of argu-
ments supplied to the program differs from the number of formal parameters
declared. The final example illustrates that FLK program arguments may in-
clude values other than integers, such as lists of integers in this case.

In general, the values considered to be valid program arguments will be a
proper subset of the values manipulated by a language. In languages such as
C and JAVA, program arguments must be strings, and these can be parsed into
other kinds of values (such as integers, floating-point numbers, arrays of num-
bers, etc.) where necessary. Program arguments are typically limited to literal
data with simple textual representations, which excludes procedural values as
program arguments. In the case of FLK, we shall assume that program argu-
ments may be any of the literal values (unit, booleans, integers, symbols) and
binary trees (i.e., trees with pair nodes) whose leaves are such literals. Since
s-expressions can be represented as such trees, this will allow us to write FLK
programs that manipulate representations of programming language ASTs.

204 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

This concludes our informal description of the semantics of FLK. While FLK
has considerably more expressive punch than POSTFIX or FL, expressing even
simple programs within FLK is rather cumbersome. In the next section, we will
see how to extend FLK to another language, FL, that maintains simplicity in
the semantics but yields a language in which it is practical to write (and read!)
non-trivial functional programs.

6.2.2 FL Syntactic Sugar

6.2.2.1 Syntactic Sugar Forms

P € Program
D € Def

SX € SExp
E € Exp
I € Identifier
B € Boollit = {#t,#f}
N € Intlit = {..,-2,-1,0,1,2,...}
P = (fl1 (Iformal*) Ebody Ddeﬁnitions*) [Progl"am}
D = (define Ingme Poalue) [Definition]

E:=... [FLK constructs]
| (Qambda (formar™) Ebody) [Multi-Abstraction]
| (Erator Frand™) [Multi-Application]
| Qist FEeement™) [List]
| (quote SX) [S-Expression]
| °SX [S-Expression Shorthand]
| (cond (Eiest Eqction)™® (else Egefaunr)) [N-Way Branch]
| (scand Econjunct™ [Short-Circuit And]
| (scor Egisjunct™) [Short-Circuit Or]
| (Let (Upar Eaefn)™) Ebody) [Local Binding]
| Qetrec ((yar Faefn)™) Epody) [Recursive Binding]
SX =1 [Symbol]
| #u [Unit)
| B [Boolean|]
| N [Integer]
| (5X o™ [List]

Figure 6.2: Grammar for FL syntactic sugar.

6.2. THE STRUCTURE OF FL 205

The syntax of FL’s syntactic abbreviations are specified in the grammar
presented in Figure 6.2. In the definition of F, the ellipses ... stand for all
the expression productions in the FLK grammar. The new expression forms
in Figure 6.2 can be used anywhere the nonterminal E appears in the kernel
FLK constructs as well as in the new syntactic abstractions. We first explain
informally the meaning of each abbreviation before showing how to desugar
them into FLK. Many of these syntactic abbreviations are inspired by constructs
in Lisp dialects, but we shall see that some of them have somewhat different
meanings in FL than in Lisp.

FL’s lambda construct can bind any number (possibly zero) of identifiers
within a procedure body. In the tagless multi-application form, a procedure
can be applied to any number (possibly zero) of arguments. Because multi-
applications are the only tagless form, the lack of an explicit tag is not am-
biguous. Because applications tend to be the most common kind of compound
expression, eliminating the explicit tag for this case makes expressions more con-
cise. The multi-abstraction and multi-application forms are inspired by SCHEME
syntax. Unlike SCHEME, FL supports implicit currying with these constructs.
For example, suppose that E ;43 is the three-parameter multi-abstraction

(lambda (a b c¢) (primop * a (primop + b c¢))).

Then (Ey s 2 3 4) denotes 14, (Eguss 2 3) denotes the same procedure as
(lambda (c) (primop * 2 (primop + 3 c))),and (E 3 2) denotes the same
procedure as (lambda (b c¢) (primop * 2 (primop + b c))).

The 1list construct is a shorthand for creating lists by a sequence of nested
pairings. (list FE; ... E,) constructs a unit-terminated, chain of n pairs
linked by their second components where the value of E; is the value of the
first element of the ¢th pair in the chain. For example,

(list (primop + 1 2) (primop = 3 4) (pair 4 5))
is equivalent to
(pair (primop + 1 2)
(pair (primop = 3 4)

(pair (pair 4 5)
#u))).

The quote construct facilitates the construction of s-expressions , which
are recursively defined to be literals (unit, numeric, boolean, and symbolic) and
lists of s-expressions. Quoted s-expressions are a very concise way to specify tree-
structured data. The quote form can be viewed as a means of a constructing a
tree from a printed representation of the tree. For example, the s-expression

206 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

(quote (1 (#t three) (four 5 six)))

is a shorthand for

(list 1
(1ist #t (symbol three))
(list (symbol four) 5 (symbol six))).

To make the abbreviation even more concise, we adopt the LiSP convention
that ’>SX is a shorthand for (quote SX), so the above example can also be
written ’ (1 (#t three) (four 5 six)). The ability to express s-expressions
so concisely with the quotation forms makes them very handy for specifying
programs that manipulate program phrases from languages with s-expression
syntax. For example, the POSTFIX program (postfix 1 (2 mul) exec) can
be represented as the FL s-expression form ’ (postfix 1 (2 mul) exec).

The cond construct is an n-way conditional branch that stands for a nested
sequence of if expressions. For example,

(cond ((primop > temp 80) (symbol hot))
((primop < temp 50) (symbol cold))
(else (symbol mild)))

is equivalent to

(if (primop > temp 80)
(symbol hot)
(if (primop < temp 50)
(symbol cold)
(symbol mild))).

The scand and scor expressions provide for so-called short-circuit eval-
uation of boolean conjunctions and disjunctions, respectively. If a false value
is encountered in the left-to-right evaluation of the conjuncts of a scand form,
then the result of the form is the false value, regardless of whether subsequent
conjuncts contain errors or infinite loops. So

(scand (primop = 1 2) (primop / 3 0))
evaluates to false but
(scand (primop / 3 0) (primop = 1 2))

signals a divide-by-zero error. Similarly, if a true value is encountered in the
left-to-right evaluation of the disjuncts of a scor form, then the result of the
form is the true value, regardless of whether the subsequent disjuncts contain
errors or infinite loops.

The (let ((I; E;) ... (U, E,)) Ep) expression evaluates Fy in a con-

6.2. THE STRUCTURE OF FL 207

text where the names I; ... I, are bound to the values of the expressions E; ...
E,,. For example,

(let ((a (primop * 4 5))
(b (primop + 3 4)))
(/ (primop + a b) (primop - a b)))

evaluates to 2.

The (letrec ((I; E;) ... (I, Ey)) Epoay) expression is similar to the
let expression except that the names I ... I, are visible inside of the expressions
E; ... E,. The letrec expression is similar to the rec expression, except that
it can be thought of as solving a group of mutually recursive equations. For
example,

(letrec ((even? (lambda (x)
(if (primop = x 0)
#t
(0dd? (primop - x 1)))))
(0dd? (lambda (y)
(if (primop = y 0)
#£
(even? (primop - y 1))))))
(list (even? 0) (odd? 1) (odd? 2) (even? 3)))

evaluates to [true, true, false, false].
The top-level program construct (program (Ufommais™) Ebody Ddefinitions™)
evaluates the body expression Ej.g, in a context where

e the formal program parameters Iformals* are bound to the program argu-
ments;

e the definition names Dgefinitions™ in are bound to the values of the corre-
sponding definition expressions;

e and each member of a set of standard identifiers (names in the standard
library) is bound to the value specified by the library.

The advantage of a standard library is that many primitive constants and pro-
cedures can be factored out of the syntax of the language. Of course, it is still
necessary to specify the components of the library somewhere in a language de-
scription. Typically the library is specified by listing all elements in the library
along with a description of the semantics of each one. We will do this for the
FL library in Section 6.2.3.

Definitions make it convenient to name top-level values (typically procedures)
that are used within Ej.q,. The value expressions of the definitions are evaluated

208 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

in a mutually recursive context: the expression in a definition may refer to any
name introduced by the definitions.
Consider the following sample FL program:

(f1 (ns) (pair (map even? ns) (map odd? ns))
(define even? (lambda (x)
Gf (=x0)
#t
(0dd? (- x 1)))))
(define odd? (lambda (y)
(if (=y 0)
#f
(even? (- y 1)))))
(define map (lambda (f xs)
(if (unit? xs)
XS
(pair (f (fst xs))

(map £ (snd xs)))))))

The body expression (pair (map even? ns) (map odd? ns)) refers to the
procedures even?, odd?, and map defined via definitions within P. As above,
even? and odd? are mutually recursive. The fact that standard identifiers are
bound to appropriate procedures in the program body and definitions means
that =, -, unit?, fst, and snd can all be used without the primop tag.

6.2.2.2 Desugaring

The transformation that desugars FL into FLK is presented in Figures 6.3
and 6.4. The transformation is specified by two desugaring functions:

1. Dexp maps an FL expression to a FLK expression.
2. Dprog maps FL programs to FLK programs.

As these desugaring functions walk down FL program and expression ASTs,
they perform local transformations that replace the syntactic sugar constructs
of FL by FLK constructs. Some clauses of the functions require the introduction
of an identifier. In these cases, we want to ensure that the name does not conflict
with any identifiers used by the programmer (or other identifiers introduced by
the rules themselves). An implementation of the desugaring rules will include
a way to generate such new names. We refer to these variables as fresh. (See
page 237 for further discussion of fresh variables.)

In Figure 6.3, the top clauses descend the syntactic constructs of FL that are
inherited from FLK, recursively applying Dey, to all subexpressions. This will

6.2. THE STRUCTURE OF FL 209

Dexp = Exprr — Exprrk

Dexp[L] = L

Dexpll] = 1

Dexp[(primop O E; ... E,)] = (primop O Dexp[E:] ... DexplEn])
Dexpl(call By Ep)] = (call Dexp[E:] DexplE2])

Dexp[[(if Etest Ethen Eelse)]] = (1f DexplIEtest]] DexplIEthen]] Dexp[[Eelse]])
Dexpl(pair Efy Esna)] = (pair Dexp[Efst] DexplEsndl)

Dexp[[(rec Ljar Ebody)]] = (rec Ivar Dexp[[Ebody]])

Dexpl(error I,)] = (error I,.,)

Dexp[(lambda () E)] = (proc Ifresh Dexp[E]) , where Iy is fresh
Dexp[(lambda () E)] = (proc I Dexp[E]
Dexpl(lambda (I; Irest™) E)] = (proc I; Dexp[(lambda (L™ ED])

Dexp[(E)] = (call Deyp[E] #w)

Dexp[[(El Eg)]] = (Call Dexp[[El]] DGXPIIEQ]])

Dexp[[(E] EQ ErestJr)]] = Dexp[[((call E1 EQ) ErestJr)]]

Dexp[(1ist)] = #u

Dexp[[(liSt E; Erest*)]] = (Pair Dexp[[El]] Dexp[[(liSt Erest*)]])

Dexp[(quote #u)] = #u

Dexp[(quote B)] = B

Dexp[(quote N)] = N

Dexpl(quote D] = (symbol D

Dexp[(quote (SX; ... SX,.))] = Dexp[(list (quote SX;) ... (quote SX,))]

Dexp[[(cond (else Edefault))]] = Dexpl[Edefault]]
Dexp[[(cond (Etestl Eactionl) (Etesti Eactioni)* (else Edefault))]]
= (if Dexp[[Etestl]]
Dexp IIEactionI]]
Dexpﬂ(cond (Etesti Eactioni)* (else Edefault))]])

Dexpl(scand Econjunct™] and Dexp[(scor Egigunct™] Left as exercises.

Dexp[(let (I E;) ... (I, E,)) Ep]

= Dexp[((Qambda (I; ... I,) Ep) E; ... E,)]
Dexp[(letrec ((I; E;) ... (I, E)) Ep]

= Dexpﬂ(call (rec IchurchList

(PI'OC Iselector
(IselectOT (]churchList (1a-mbda (II In) El))

(IchurchList (lambda (11 In) En)))))
(lambda (I; ... I,) Ep))]
where IohurcnList 7 Isciector ave fresh and ¢ |J!' _ , FreeIds[E;]

Figure 6.3: Desugaring F'L. expressions into FLK expressions.

210 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

Dprog : Programp; — Programpr i

Dprog [(£1 Uformar™) Eboqy (define I; E;) ... (define I, E,))]
- (flk (Iformal*)
Dexp[(let ((unit? (lambda (x) (primop unit? x)))
(boolean? (lambda (x) (primop boolean? x)))

(+‘(1ambda (x y) (primop + x y)))

(unit #u)
(true #t)
(false #f)
(cons (lambda (x y) (pair x y)))
(car (lambda (p) (primop fst p)))
(cdr (lambda (p) (primop snd p)))
(null? (lambda (x) (primop unit? x)))
(null (lambda () #u))
(nil #uw)
(equal? ...) {Definition of this predicate left as an exercise.})
)

(letrec ((I; Ey)

(I, E))
Epody))]

Figure 6.4: Desugaring FL programs into FLK programs.

6.2. THE STRUCTURE OF FL 211

expand any syntactic sugar constructs appearing in the subexpressions. Note
that Deyp acts as the identity function when applied to an FLK expression.

The rules for desugaring multi-abstraction into proc and multi-applications
into call are based on the same currying trick that we use extensively in the
metalanguage. (See Exercise 6.15 for an alternative approach to desugaring these
constructs.) The recursive 1ist desugaring creates a unit-terminated chain of
pairs. The recursive quote desugaring descends an s-expression tree and builds
up a corresponding tree of pairs with constants as leaves. The cond construct
desugars into a nested sequence of ifs. The scand and scor desugarings are
left as exercises.

A let desugars into an application of an abstraction. This underscores the
fact that abstractions are a fundamental means of naming in FL. Note that
E; ... E, are outside the scope of I; ... I, and therefore cannot refer to the
variables named by these identifiers.

However, in a letrec, the E; ... E, are inside the scope of I; ... I, and
should refer to the variables named by these identifiers. Achieving this effect is
challenging. We will present the desugaring in two stages. Suppose that nth is
a standard identifier bound to a procedure that takes a list and an integer n and
returns the nth element of the list (where elements are numbered from 1 up).
Then an almost-correct desugaring for letrec is:

Dexp[(letrec ((I; E;) ... (I, En)) Ep)]

Dexpﬂ(let ((Iouter (rec]inner
(let ((I; (nth Lipper 1))

(I, (th Lpper n)))
(list E; ... ED))))
(let ((I; (nth Iyyuer 1))

(I, (ath Louer m)))
Eo)]
where Ioyter # Linner are fresh identifiers
and louter, Linner € U:L — Freelds [[Ez]]

Freelds is defined in Section 6.3.1 and in Figure 6.10. Assume for the moment
that I,uter and Ij,er are brand new names that don’t conflict with any other
names.

The basic idea of the desugaring is this: since rec can only find a single

fixed point, design that fixed point to be a list of the n fixed points we really
want. Inside the rec, the value of formal I, (which is a list of length n)

212 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

is destructured into its n elements, and the list expression is evaluated in a
context where I; is bound to the ith element of the list. Since let and 1ist are
both non-strict in FL, the solution to the rec is nontrivial. The name I, 18
bound to the solution of the rec and this list of length n is similarly destructured
so that the body expression Ejy can be evaluated in a context where each I; is
bound to its individual solution.

The above result is an adequate desugaring, but it is complicated, and its use
of the standard identifier nth is not only unaesthetic but also can lead to bugs
due to name capture. For this reason, we will present an alternative desugaring
that is more elegant. This desugaring is based on the same idea but represents
lists as procedures. In this representation, which we shall call a Church list,
an n-element list is a unary procedure whose single argument is an n-argument
selector procedure that is applied to the n elements of the list. If I.purchist 18
bound to an n-element Church list, then the application

(IchurchList (1alnbda (II ce In) Iz))
extracts the ith element of the list. More generally, the application
(IchurchList (lambda (11 o In) E))

returns the value of F in a context where each I; is bound to the ith element of
the list. Church lists give rise to the desugaring for recursive bindings shown in
Figure 6.3.

Dprog is defined by a single clause, which transforms the definitions and
body of a program using the 1let and letrec constructs. The desugaring makes
standard identifiers available to the definitions and the body of the program by
using an outer let to binding them to functions that perform the corresponding
primitive applications via primop. Since multi-argument lambdas are used in the
bindings, functions associated with the binary function names are appropriately
curried. For example, in an FL program, (+ 1) stands for the incrementing
function. The standard identifier cons makes FLK’s pair construct available
as a curried FL procedure, and the traditional LiSP names car, cdr, null?, and
nil are provided as synonyms for £st, snd, unit?, and #u. There are a few other
handy synonyms as well. The mutually recursivene nature of the definitions is
implemented by desugaring them into a letrec.

Note that Dey, is applied once again to the result of Dy, on letrec and

Dprog ON program.

> Exercise 6.1 Provide the missing desugarings for FL’s scand and scor constructs
(see Figure 6.3). <

6.2. THE STRUCTURE OF FL 213

> Exercise 6.2 The desugaring for letrec in Figure 6.4 requires a pair of fresh
identifiers. There is another desugaring for letrec that requires no fresh identifiers
whatsoever. This desugaring has a recursive structure not exhibited by the other ver-
sions. Below is a skeleton of the desugaring.

Dexp[(letrec ((I; E;) ... (I, En)) Ep)]

Dexp[(let ((I; (rec I; Op)) ... (I, (rec I, 0,))) Ep]
where the boxes O; are to be filled in appropriately.

a. Give the general form for expressions that fill the boxes O; in such a way that
the above skeleton defines a correct desugaring for letrec.

b. Using your approach, how many recs will appear in a desugaring of a letrec
with 5 bindings?

c. Give a closed form solution for the number of recs that will appear in a desugaring
of a letrec with n bindings.

d. Comment on the practicality of this letrec desugaring. <

> Exercise 6.3 Two constructs are said to be idempotent (roughly, “of equal power”)
if each can be expressed as a desugaring into the other. For example, multi-argument
procedures and single-argument procedures are idempotent: multi-argument abstrac-
tions and calls can be desugared into single-argument ones via currying; and single-
argument abstractions and calls are a special subcase of the multi-argument ones. On
the other hand, pairs and procedures are not idempotent; although Church’s techniques
give a desugaring of pairs into procedures, procedure abstractions and calls cannot be
desugared into pairs.

We have considered a version of FLK where rec is the kernel recursion construct
and FL’s letrec is desugared into rec. Show that rec and letrec are idempotent by
providing a desugaring of rec into letrec. <

> Exercise 6.4 Many Lisp dialects support an alternative version of define for
constructing new functions. The syntax is of the form

(define (function-name arg-1 ... arg-n) function-body)
For example, the squaring function can be defined as:

(define (square x) (* x x))

Extend the desugaring for FL to handle this syntax. Hint: It is easier to add another
processing step for definitions rather than modifying the desugaring of program expres-
sions. <

> Exercise 6.5 It is often useful for the value of a 1let-bound variable to depend on
the value of a previous let-bound variable. In the current version of FL, achieving this

214 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

behavior requires nested let expressions. For example:

(let ((r (+ 1 2)))
(let ((square-r (* r r)))
(let ((circum (* 2 (* pi square-r))))
... code using r, square-r, and circum ...

)

Many Lisp dialects support a let* construct that looks just like let except that its
variables are guaranteed to be bound to their associated values in the order that they
appear in the list of bindings. A val expression in let* can refer to the result of
a previous binding within the same let*. Using let*, the above example could be
rendered:

(letx ((r (+ 1 2))

(square-r (* r r))

(circum (* 2 (* pi square-r))))
. code using r, square-r, and circum ...

Write an appropriate desugaring for letx. <

> Exercise 6.6 It is common to create locally recursive procedures and then call
them immediately to start a process. For example, iterative factorial can be expressed
in FL as:

(define fact

(lambda (n)
(letrec ((iter (lambda (num ans)
(if (= num 0)
ans

(iter (- num 1) (* num ans))))))
(iter n 1)))))

Some versions of LisP have a “named let” or “let loop” construct that makes this
pattern easier to express. The construct is of the form

(let Iname ((Ivar Eval)*) Ebody)

It looks like a let expression except that it has an additional identifier I,4me. The n
variables I, are first bound to the values E,, and then the Ejy,q, is evaluated in a
context where these bindings are in effect and the name I, refers to a procedure
of the n variables I,q that computes Eyoqy. Using named let, the iterative factorial
construct can be expressed more succinctly as:

6.2. THE STRUCTURE OF FL 215

(define fact
(lambda (n)
(let iter ((num n) (ans 1))
(if (= num 0)
ans
(iter (- num 1) (* num ans))))))

Extend the desugaring for let to handle named let. <

> Exercise 6.7 In FL, definitions are only allowed within the program construct
at “top-level”; yet a local form of definition within lambda and let expressions would
often be useful. Generalize the idea of definitions by modifying FL to support local
definitions. Design a syntax for your change, and show how to express it in terms of a
desugaring. <

> Exercise 6.8 Ben Bitdiddle is upset by the desugaring for nullary (i.e., zero-
argument) abstractions and applications. He argues (correctly) that, according to the
desugarings, the FL expression ((lambda (x) x)) will return #u. He believes that
evaluating this expression should give an error.

One way to fix this problem is to package up multiple arguments into some sort of
data structure. See Exercise 6.15 for an example of this approach. Here we will consider
other approaches for handling nullary abstractions and applications.

a. Bud Lojack suggests desugaring (lambda () FE) into F and (F) into E. Give
examples of FL expressions that have a questionable behavior under this desug-
aring.

b. Paula Morwicz suggests a desugaring in which

Dexp[(E)] = (call (call Deyp[E] #t) #u)

Dexpﬂ(EJ EQ)]] = (call (Call Dexp[[El]] #f) Dexp[[EQ]])

Dexpl(Er Es Eres™)] = ((call (call Dexp[E:] #£) Dexp[Ea])
Dexp [[Erest +]])

i. Give the corresponding desugarings for multi-abstractions.
ii. What value does ((lambda (x) x)) have under this desugaring?

c. Ben reasons that the fundamental problem exhibited by the nullary desugarings
is that there is no way to call a procedure without passing it an argument. He
decides to extend FLK with the following kernel forms for parameterless proce-
dures:

(freeze FE): Return a “frozen” value that suspends the evaluation of E.
(thaw FE): Unsuspends the expression frozen within a frozen value. Gives

an error if called on any value other than one created by freeze.

Show how freeze and thaw can be used to fix Ben’s problem.

216 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

d. Sam Antix doesn’t like the fact that multi-abstractions and multi-applications
both have three desugaring clauses. Figuring that only two clauses should suffice
in each case, he develops the following desugaring rules based on Ben’s freeze
and thaw commands:

Dexp[(lambda () E)] = Dexp|[(freeze E)]
Dexp[(lambda (I; Lest™) ED]
= (proc I; Dexp[(lambda (Lrest™ ED])
Dexpl[(E)]] = Dexp[[(thaw E)]]
Dexpﬂ(El Erest*)]] = DexplI((call E; EQ) Dexp IIErest*]])]]

Discuss the strengths and weaknesses of Sam’s desugaring. <

> Exercise 6.97 Show that a desugaring process based on the rules in Figures 6.3
and 6.4 is guaranteed to terminate. <

6.2.3 The FL Standard Library

The FL standard library is shown in Figure 6.5. All of FLK’s primitives (those
names that can be used in primop) are included as curried procedures. Note
that FL only supports integers and not floating point numbers, so arithmetic
operations like +, *, <=, etc. only work on integers. It would be straightforward
to extend FL to support floating point numbers, and in some code examples
it will be convenient to assume that FL does support floating point numbers.
In such examples, we will use arithmetic operation names prefixed with f to
indicate floating point operations: e.g., £+, £* and f<=.

The standard library also includes a number of other standard identifiers
that are convenient, such as constants (unit, true, false, and nil), SCHEME-
style operations on lists (cons, car, cdr, null?), a generic binary equality tester
(equal?) that tests for equality between any two FL values that are not proce-
dures.

6.2.4 Examples
Although FL is a toy language, it packs a fair bit of expressive punch. In this
section, we illustrate the expressive power of FL in the context of a few examples.

6.2.4.1 List Utilities

As a simple example of FL procedures, consider the list procedures in Figure 6.6.
The 1ist? procedure takes a value and determines if it is a list —i.e., a sequence
of pairs terminated with the unit value. The 1length procedure returns the length

6.2. THE STRUCTURE OF FL 217

Primitives (can be used in primop):

unit?
boolean?
integer?
symbol?
procedure?
pair?

not?
and?
or?
bool="?

sym="7

fst
snd

Unary type predicate for the unit value.

Unary type predicate for booleans.

Unary type predicate for integers.

Unary type predicate for symbols.

Unary type predicate for procedures (i.e., a functional value).
Unary type predicate for pairs.

Unary boolean negation.

Binary boolean conjunction (not short-circuit).
Binary boolean disjunction (not short-circuit).
Binary boolean equality predicate.

Binary integer addition.

Binary integer subtraction.

Binary integer multiplication.

Binary integer division.

Binary integer remainder.

Binary integer equality predicate.

Binary integer inequality predicate.

Binary integer less-than predicate.

Binary integer less-than-or-equal-to predicate.
Binary integer greater-than predicate.

Binary integer greater-than-or-equal-to predicate.

Binary symbol equality.

Unary selector of the first element of a given pair.
Unary selector of the second element of a given pair.

Other Standard Identifiers:

unit
true
false

cons
car
cdr
nil
null
null?

equal?

The unit value.
Boolean truth.
Boolean falsity.

Binary list constructor.

Unary list selector — head of list.

Unary list selector — tail of list.

The empty list (synonym for the unit value).
Unary empty list constructor.

Unary empty list predicate.

Generic binary equality test

Figure 6.5: FL Standard Library.

218 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

of a list. The member? procedure determines if a value is an element of a list.
The merge procedure takes a less-than-or-equal-to predicate 1eq and two lists
xs and ys that are assumed to be sorted according to this predicate and returns
the sorted list containing all the elements of both lists (including duplicates, if
any). The alts procedure returns a pair of (1) all the odd-indexed?® elements
and (2) all the even-indexed elements of a given list, preserving the relative
order of elements in each sublist. The merge-sort procedure takes an ordering
predicate and a list of elements and returns a list of the same elements ordered
according to the ordering predicate.
Here are some sample uses of these procedures:

(1ist? 17) 57 false
(1ist? (list 7 2 5)) & true

(1ist? (pair 3 (pair 4 5))) o> false

(length (1ist)) > 0
(length (list 7 2 5)) 3

(member? 2 (list 7 2 5)) ﬁ true
(member? 17 (list 7 2 5)) 1 false

(member? ’*x > (+ - * /)) ﬁ true

(merge < (null) (list 3 4 6)) - [3,4,6]
(merge < (list 1 6 8) (list 3 4 6)) - [1,3,4,6,6,8]

(alts (null)) = ([I,[])

(alts (list 7)) - ([7],[])

(alts (list 7 2)) - ([7],[2])

(alts (1ist 7 24514 3)) wp ([7,4,1,3],(2,5,.4])

(merge-sort <= (list 7 24 15 4 3)) w1 [1,2,3,4,4,5,7]
(merge-sort >= (list 7 2 4 15 4 3)) = [7,5,4,4,53,2,1]
(merge-sort (lambda (a b) (<= (% a 4) (70 4)))

(list 724154 3)) = [4,4,1,5,7,2,8]

3 Assume that list elements are indexed starting with 1.

6.2. THE STRUCTURE OF FL 219

6.2.4.2 An ELM Interpreter

As a more interesting example of an FL program, in Figure 6.7 we use FL to
write an interpreter for the ELM subset of the EL language (Exercise 3.10).
Recall that ELM is EL without conditional and boolean expressions. The
elm-eval procedure evaluates an ELM expression relative to a list of num-
bers, args, which are the the program inputs. ELM expressions are represented
as F L s-expressions. elm-eval is written as a dispatch on the type of expression,
which is determined by the syntax predicates 1it?, arg?, and arithop?. The
selectors 1it-num, arg-index, arithop-op, arithop-randl, arithop-rand?2
extract components of syntax nodes. The arg-index procedure returns the
indexth element of the given list nums (where indices are assumed to start at
1). The primop->proc procedure converts a symbol (such as ’+) to a binary
FL procedure (such as the addition procedure +).
Here are some examples of the elm-eval procedure in action:

(elm-eval ’(* (arg 1) (arg 1)) ’(8)) > 25

(elm-eval ’(/ (+ (arg 1) (arg 2)) 2) (6 8)) > 7

(elm-eval ’(+ (arg 1) (arg 2)) ’(3)) 4y error:arg-index-out-of-bounds

6.2.4.3 A Pattern Matcher

Programs that match a pattern against a tree structure are so useful that they
should be part of every programmer’s bag of tricks. Figures 6.8 and 6.9 present
a simple pattern matching program written in FL.

The pattern matcher manipulates trees represented as s-expressions. Pat-
terns are trees whose leaves are either constants (unit, booleans, integers, or
symbols) or pattern variables. We represent the pattern variable named I by
the s-expression (? I). Because of this convention, the symbol ? is considered
special and should never be used as one of the symbol constants in the pattern
or the structure being matched. Examples of legal patterns include:

(7 pat)

(The (7 adjective) programmer (7 adverb) hacked (? noun))
((? a) is equal to (7 a))

(((? a) (? b)) is the reflection of ((? b) (? a)))

A pattern p matches an s-expression s if there is some set of bindings between

220 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

(define 1list?
(lambda (val)
(scor (null? val)
(scand (pair? val) (list? (snd val))))))

(define length
(lambda (1st)
(if (null? 1st)
0
(+ 1 (length (cdr 1st))))))

(define member?
(lambda (elt 1st)
(scand (not (null? 1st))
(scor (equal? elt (car lst))
(member? elt (cdr 1lst))))))

(define merge
(lambda (leq xs ys)

(cond ((null? xs) ys)
((null? ys) xs)
((leq (car xs) (car ys))
(cons (car xs) (merge leq (cdr xs) ys)))
(else
(cons (car ys) (merge leq xs (cdr ys)))))))

(define alts
(lambda (ws)
(if (null ws)
(pair (null) (null))
(let ((alts-rest (alts (cdr ws))))
(pair (cons (car ws) (snd alts-rest))
(fst alts-rest))))))

(define merge-sort
(lambda (leq zs)
(if (scor (null? zs) (null? (cdr zs)))
zs
(let ((split (alts zs)))
(merge (fst split) (snd split))))))

Figure 6.6: Some list procedures written in FL.

6.2. THE STRUCTURE OF FL 221

(f1 (pgm args)
(cond ((not? (elm-program pgm)) (error ill-formed-program))
((not? (1list? args)) (error ill-formed-argument-list))
((not? (= (elm-nargs pgm) (length args)))
(error wrong-number-of-args))
(else (elm-eval (elm-body pgm) args)))

(define elm-eval
(lambda (exp args)
(cond ((1it? exp) (lit-num exp))
((arg? exp) (get-arg (arg-index exp) args))
((arithop? exp)
((primop->proc (arithop-op exp))
(elm-eval (arithop-randl exp) args)
(elm-eval (arithop-rand2 exp) args)))
(else (error illegal-expression)))))

(define get-arg
(lambda (index nums)
(cond ((scor (<= index 0) (null? nums))
(error arg-index-out-of-bounds))
((= index 1) (car nums))
(else (get-arg (- index 1) (cdr nums))))))

(define primop->proc
(lambda (sym)
(cond ((sym=7 sym ’+) +) ((sym=7? sym ’-) -)
((sym=7? sym ’*) *) ((sym=7 sym ’/) /)
(else (error illegal-op)))))

;; Abstract syntax
(define elm-program?
(lambda (sexp)
(scand (1list? sexp) (= (length sexp) 3) (sym=7 (car exp) ’elm))))
(define elm-program-nargs (lambda (sexp) (car (cdr sexp))))
(define elm-program-body (lambda (sexp) (car (cdr (cdr sexp)))))
(define 1it? integer?)
(define lit-num (lambda (1it) 1it))
(define arg?
(lambda (exp)
(scand (1list? exp) (= (length exp) 2) (sym=7 (car exp) ’arg))))
(define arg-index (lambda (exp) (car (cdr exp))))
(define arithop?
(lambda (exp)
(scand (1list? exp) (= (length exp) 3) (member? (car exp) ’(+ - * /)))))
(define arithop-op (lambda (exp) (car exp)))
(define arithop-randl (lambda (exp) (car (cdr exp))))
(define arithop-rand2 (lambda (exp) (car (cdr (cdr exp)))))

;; List utilities

(define list? (lambda (sexp) ...))
(define length (lambda (xs) ...))
(define member? (lambda (x xs) ...))

Figure 6.7: An interpreter for ELM, a subset of EL.

222 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

pattern variables and s-expressions such that instantiating the variables with
their bindings in p yields s. Constraints on the form of the pattern can be
specified by using the same pattern variable in more than one place.

For example, consider the pattern ((? a) is equal to (? a)). It matches
the following two s-expressions:

(1 is equal to 1) and
((Ben Bitdiddle) is equal to (Ben Bitdiddle))

but not

(1 is equal to 2) or
(Ben Bitdiddle is equal to Ben Bitdiddle)

In the final example, Ben Bitdiddle is two s-expressions and cannot be matched
by a single pattern.

The entry point of the pattern matcher is the match-sexp procedure, which
takes a pattern and an s-expression as arguments. If the pattern does not
match the s-expression, match-sexp returns the symbol *failed*. Otherwise,
match-sexp returns a dictionary structure that contains pattern variable bind-
ings that make the match successful. match-sexp just passes responsibility to
match-with-dict, which does the real work.

In addition to a pattern and an s-expression, match-with-dict takes a dic-
tionary. It matches the pattern to the s-expression in the context of the dictio-
nary. That is, any match of a variable in the pattern must be consistent with the
binding that is already in the dictionary. In high-level terms, match-with-dict
performs a left-to-right depth-first walk in lock-step over both the pattern tree
and s-expression tree. A dictionary representing the bindings of variables seen
so far flows along this depth-first path. Along the path, the matching process
checks whether:

e an internal node of the pattern tree has the same number of subtrees as
the corresponding internal node of the s-expression.

e a constant leaf in the pattern is matched by exactly the same constant leaf
in the corresponding position of the pattern.

e a variable leaf in the pattern is matched by an s-expression that is consis-
tent with the bindings represented by the current dictionary.

A successful check allows the dictionary to flow to the next part of the path, pos-
sibly extended with a new binding. After an unsuccessful check, the dictionary
is replaced by a failure symbol that propagates through the rest of the path.

6.2. THE STRUCTURE OF FL 223

(define match-sexp (lambda (pat sexp)
(match-with-dict pat sexp (dict-empty))))

(define match-with-dict
(lambda (pat sexp dict)
(cond ((failed? dict) dict) ; Propagate failures.
((null? pat)
(if (null? sexp)

dict ; PAT and SEXP both ended.
(fail))) ; PAT ended but SEXP didn’t.
((null? sexp) (fail)) ; SEXP ended but PAT didn’t.

((pattern-constant? pat)
(if (sexp=7 pat sexp) dict (fail)))
((pattern-variable? pat)
(dict-bind (pattern-variable-name pat) sexp dict))
(else (match-with-dict (cdr pat)
(cdr sexp)
(match-with-dict (car pat)
(car sexp)

dict))))))

(define pattern-variable?
(lambda (pat) (if (pair? pat)
(sexp=7 (car pat) ’7?7)

#£)))
(define pattern-variable-name (lambda (sexp) (car (cdr sexp))))

(define pattern-constant?
(lambda (p) (or (symbol? p) (integer? p) (boolean? p) (unit? p))))

(define fail (lambda () ’*failedx))
(define failed? (lambda (dict) (sexp=7 dict ’*failedx*)))

Figure 6.8: A pattern matcher in FL, part 1.

224 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

There are many possible representations for dictionaries. We represent a
dictionary as a list of bindings, where each binding is a pair of a pattern variable
identifier and the associated s-expression.

Examples of using match-sexp:

(match-sexp ’(a short sentence) ’(a short sentence))
w7 || {Match succeeds with the empty dictionary.}

(match-sexp ’(a short sentence) ’(a longer sentence))
1 '*failed« {Match failed.}

(match-sexp ’((? article) (7 adjective) sentence)
’(a longer sentence))
+ [('article, ' a), (' adjective, "longer)]

;5 Can make use of FL’s currying
(define m1 (match-sexp ’((a (b (? ¢))) (((? c) b) a))))

(m1 ’((a (b (c (@))) (((c @) b)) 5 [(‘e.['c,["d]))]

(m1 ’((a (b (c (d)))) ((((d) ¢) b) a))) s> '*failed*

6.3 Variables and Substitution

Intuitively, the meaning of an FLK abstraction (proc I E) shouldn’t depend
on the particular name chosen for I, which is known as its formal parameter.
Just as we expect the meaning of an integral to be independent of the choice
of the variable of integration (so that ff f(x)dx = ff f(y)dy), we expect the
meaning of an FLK abstraction to be invariant under a change to the name of its
variable. Thus, the identity abstraction (proc a a) should also be expressible
as (proc x x) or (proc square square). Furthermore, the variable references
named by a, x, and square are logically distinct from any variable references
coincidentally sharing the same name in other expressions.
This section formalizes this intuition about variables in FLK expressions.

6.3.1 Terminology

First, it’s important to tease apart several related but distinct concepts in our
terminology concerning names. We reserve the word variable for the logi-
cal entity that is introduced by an abstraction and is referenced by a variable
reference. The word identifier designates the name that stands for a given
variable within an expression. The identity abstraction discussed above has a

6.3. VARIABLES AND SUBSTITUTION 225

;53 Dictionaries
(define dict-bind
(lambda (syml sexp dict)
(let ((value (dict-lookup syml dict)))
(cond ((unbound? value)

(dict-adjoin-binding (binding-make syml sexp) dict))
((sexp=7 value sexp) dict)
(else (fail))))))

(define dict-lookup
(lambda (name dict)
(cond ((dict-empty? dict) (unbound))
((sym=7 name (binding-name (dict-first-binding dict)))
(binding-value (dict-first-binding dict)))
(else (dict-lookup name (dict-rest-bindings dict))))))

(define dict-empty (lambda () (1list)))

(define dict-empty? null?)

(define dict-adjoin-binding cons)

(define dict-first-binding car)

(define dict-rest-bindings cdr)

(define unbound (lambda () ’*unboundx))

(define unbound? (lambda (sym) (sexp=7 sym ’*unboundx)))

;55 Bindings

(define binding-make cons)
(define binding-name car)
(define binding-value cdr)

;3 Utilities
(define sexp=7
(lambda (objl obj2)
(cond ((unit? objl) (unit? obj2))
((and (boolean? objl) (boolean? obj2)) (boolean=7 objl obj2))
((and (integer? objl) (integer? obj2)) (= objl obj2))
((and (symbol? objl) (symbol? obj2)) (sym=7 objl obj2))
((and (pair? objl) (pair? obj2))
(and (sexp=7 (car objl) (car obj2))
(sexp=7 (cdr objl) (cdr obj2))))

(else #£))))

Figure 6.9: A pattern matcher in FL, part 2.

226 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

single variable, and the identifier that names it is arbitrary. In the expression
(proc x (call x (proc x x))) there are two logically distinct variables, but

they happen to be named by the same identifier.
Sometimes it is useful to distinguish different occurrences of an identifier
or subexpression within an expression. In the expression

(call (proc x x) (proc x x))

there are four occurrences of the identifier x and two occurrences of the subex-
pression (proc x x). Inorder to refer to a particular occurrence, we can imagine
that each distinct identifier or expression has been numbered from left to right
starting with 1. Thus, we could view the above application as

(call (proc x! x?)! (proc x% x4)?),

where the superscripts distinguish the occurrences of an identifier or subexpres-
sion. When we say “the ith occurrence of x” we mean x°.

We shall say that the formal parameter I appearing in an FLK abstraction
(proc I E) is a binding occurrence of I and that the abstraction binds
1. An occurrence of an identifier in an FLK expression I is bound if it is
a binding occurrence or it occurs in the body of some abstraction that binds
I; otherwise, that occurrence of the identifier is said to be free. For exam-
ple, in (proc a (proc b (call a c))), the single occurrence of b and both
occurrences of a are bound, while the single occurrence of c is free. The
freeness or boundness of an identifier occurrence depends on the context in
which the identifier is viewed. Thus, in the previous example, the second oc-
currence of a is free in (call a c) and in (proc b (call a c)) but not in
(proc a (proc b (call a c))). It is possible in one expression to have some
occurrences of an identifier that are bound and other occurrences of the same
identifier that are free. In (call (proc a a) a) the first and second occur-
rences of a are bound, while the third occurrence is free.

An identifier (as opposed to an occurrence of an identifier) is said to be a free

identifier (likewise, bound) in an expression if at least one of its occurrences
is free (likewise, bound) in the expression. For instance, in the expression

(call b (proc a (proc b (call a c)))),

a and b are bound identifiers and b and c are free identifiers. Similarly, a variable
is said to be free (likewise, bound) in an expression if the identifier that names
it is free (likewise, bound). Note that an identifier may be both bound and free
in an expression, but a variable can only be one or the other. An expression
is closed if it contains no free identifiers (or, equivalently, no free variables).
Expressions with free variables often arise when considering subexpressions of a

6.3. VARIABLES AND SUBSTITUTION 227

given expression. For instance, in the subexpression (proc b (call b a)) of
the closed expression (proc a (proc b (call b a))), the identifier a names

a free variable.

Using definition by structural induction, it is straightforward to define func-
tions Freelds and Boundlds that map FLK expressions to sets of their free and
bound identifiers, respectively. These functions are presented in Figure 6.10.
Both functions have signature

Exp — P(Identifier)
where P (Identifier) is the power set (set of all subsets) of Identifier. For example,

Freelds[(call b (proc a (proc b (call a ¢))))] = {b,c}
Boundlds[(call b (proc a (proc b (call a c))))] = {ab}

One subtle note deserves mention. An [that appears within double brackets
on the left hand side of the definitions stands for a variable reference that is
an element of the syntactic domain Exp. On the other hand, an unbracketed I
on the right hand side of the definitions stands for an element of the syntactic
domain Identifier.

> Exercise 6.10 For each of the following FLK expressions:
e Indicate for every occurrence of an identifier whether it is bound or free.

e Determine the free identifiers and bound identifiers of the expression.

a. (proc x (call x y))

b. (call (proc z (proc x (call (call x y) z))) =z)

c. (call z (proc y (call (proc z (call x y)) z)))

d. (proc x (call (call (proc y (call (proc z (call x r)) y)) y) z)) <

6.3.2 General Properties of Variables

Throughout mathematical and computational notation, variables serve as syn-
tactic placeholders that range over some set of semantic entities. Variables are
manipulated in two different kinds of expressions:

1. A variable declaration introduces a new placeholder into an expression.

2. A variable reference uses a placeholder within an expression.

228

CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

Freelds
Freelds[L]
Freelds[I]

Freelds[(primop O E; ... E,)]

Freelds[(proc I E)]
Freelds[(call E; E3)]
Freelds[(if E; Es E3)]

Freelds[(pair E; E3)]
Freelds[(rec I E)]

BoundlIds
BoundIds[L]
BoundIds[I]

BoundIds[(primop O E; ... E,)]

BoundIds[(proc I E)]
Boundlds[(call E; E3)]
Boundlds[(if E; E; E3)]

Boundlds[(pair E; E3)]
BoundIds[(rec I E)]

Exp — P(Identifier)

{}

{1}

U Freelds[E;]

i=1

Freelds[E] — {I}
Freelds[E;] U Freelds[E3]

Freelds[E;|UFreelds[Ez]
UFreelds[Es]

Freelds[E;] U Freelds[Es]
Freelds|E] — {1}

Exp — P(Identifier)

{}

{}

|J BoundIds[E;]

i=1

{I} U BoundIds[E]
BoundIds[E;] U BoundIds[Es]

BoundIds[E;|UBoundIds[Ez]
UBoundIds[Es]

BoundIds[E;] U BoundIds[Es]
{I} U BoundlIds[E]

Figure 6.10: Definition of the free and bound identifiers of a FLK expression.

6.3. VARIABLES AND SUBSTITUTION 229

The region of an expression in which a particular variable may be referenced is
called the scope of that variable.

In standard notations, variables are typically represented by identifiers, and
declarations and references are distinguished in the format of expressions. For
example, compare how variables are declared and referenced in notations for
FLK, integration, summation, union, and logical quantification (in each case,
the declaring occurrence of the variable x has been boxed):

b n
Groc @ o [adm] Y o o @@ =g
“ [z]=1 [2]ea

Notations in which variables are represented by identifiers share the following
properties:

1. Modulo certain restrictions to be discussed shortly, it is possible to con-
sistently rename a variable within its scope without changing the meaning
of the entire expression. Thus, in each of the above notations, the x can
be changed to y without changing the meaning:

b n
(proc y y) / ydy > v Uy Wfly) =9
a y=1

yeEA

2. Within the scope S of a variable I, the declaration of a new variable
with the same name I creates a new scope S’ in which the outer variable
cannot be referenced. The region S’ is called a hole in the scope of S.
For example, any reference to within the empty box (O) in the following
examples would refer to the variable declared by the inner x, not the outer
T.

b x n x
(proc x (call x (proc x 0))) / T - </ a d;v) dx H < D)
a C 1

rz=1 \z=

U@ N D Ve ((f@) =g(@) A 3.0)

TCA zeB

6.3.3 Abstract Syntax DAGs and Stoy Diagrams

The chief structural feature of variables is that they permit sharing in an ex-
pression: the same variable introduced by a declaration can be used by many
variable reference occurrences. We have said before that syntactic expressions
can be viewed as abstract syntax trees, but since trees allow no sharing of sub-
structure, they are inadequate for illustrating the sharing nature of variables.

230 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

We need the more general directed acyclic graph (DAG) to faithfully show the

structure of an expression with variables.

As an example, consider the following FLK expression:*

(call (proc a (call a a)) (proc a (proc b a)))

In this expression, there are two distinct variables named a, and the variable
named by b is declared without being referenced. Figure 6.11 shows an abstract
syntax DAG corresponding to this expression. In the DAG, the three distinct
variables in the expression are represented by distinct nodes labeled variable.

application

abstraction

abstraction
body body

application abstraction

f or mal oper at or, oper and f or mal formal body
vari abl e- vari abl e- vari abl e vari abl e-
reference reference ref erence

.o

vari abl e

\j
vari abl e

Figure 6.11: Abstract syntax DAG for (call (proc a (call a a))
(proc a (proc b a)))

Since sharing is explicit in the structure of the DAG, no identifiers are neces-
sary in the DAG representation of the expression. The key reason variables are
traditionally represented with identifiers is that they allow DAGs to be encoded
within linear and tree-based notational frameworks. Unfortunately, encodings
of DAGs based on identifiers complicate reasoning about expressions because
of incidental properties of the identifiers. For example, the notion of a “hole
in the scope” introduced earlier is not inherent in the nature of variables, but
is a side effect of the fact that when variables are represented by identifiers, a
nested pair of variables can accidentally share the same name. We’ll see below
that identifiers are the major sore spot when defining notions of renaming and
substitution on FLK expressions.

4In the following discussion, we shall focus only on FLK expressions, but the same tech-
niques could be applied to any notation using variables.

6.3. VARIABLES AND SUBSTITUTION 231

Every closed expression can always be represented by a DAG with no identi-
fiers. However, expressions containing free variables pose a problem because they
contain references to a variable without also containing its declaration. Since
expressions with free variables are common, we’d like to handle them within
the DAG framework. The DAG representation must include the names of any
free identifiers because the names of free identifiers actually matter (for exam-
ple, the expression (proc b (call b a)) does not have the same meaning as
(proc b (call b c)) in every context). Figure 6.12 shows the DAG represen-
tation of (proc b (call b a)). The free variable is declared by a special free
variable node annotated with the name of the variable.

abstraction free-vari abl e-decl arati on

body name
application vari abl e a
f or mal oper at or, oper and
vari abl e- vari abl e-
ref erence reference
|
vari abl e vari abl e

Figure 6.12: Abstract syntax DAG for (proc b (call b a))

Abstract syntax DAGs take up a lot of real estate on the printed page, so we
shall use a more compact notation due to Joseph Stoy [Sto85]. Stoy’s notation
is a kind of wiring diagram for expressions in which the position corresponding
to a variable reference is connected by a wire to the position corresponding to
the variable declaration. For example, a Stoy diagram for the expression

(call (proc a (call a a)) (proc a (proc b (proc ¢ (call c a)))))
is
(call (proc £ (call I l)) (proc T (proc ® (proc I (call l ?))))).

We extend Stoy’s notation to handle free variables by simply leaving every free
variable reference where it occurs in the expression. Thus, the Stoy diagram for
(proc b (call a (call b a))) is:

(proc ® (call a (call @ a)))

232 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

Observe that all identifiers sharing the same name in a Stoy diagram must name
the same free variable.

6.3.4 Alpha-Equivalence

Since we really care about the implied DAG structure of an expression and not
the vagaries of particular choices of identifiers for variable names, it is natural
to equate FLK expressions that share the same DAG representation. We shall
use the notation

E; =4 Ep

(pronounced “F; is alpha-equivalent to F2”) to mean that E; and Fy designate
the same abstract syntax DAG. Thus,

(proc a (proc b (call b a))) =, (proc b (proc a (call a b)))

=, (proc one
(proc two (call two one)))

and
(proc b (call b a)) =, (proc ¢ (call c a))
but
(proc a (proc b (call b a))) #, (proc a (proc a (call a a)))
and

(proc b (call b a)) #, (proc b (call b ¢))

Since alpha-equivalence is an equivalence relation, it partitions FLK ex-
pressions into equivalence classes that share the same DAG. We shall generally
assume throughout the rest of our discussion on FLK that each FLK expression
serves as a representative of its equivalence class and that syntactic manipula-
tions on expressions are functions on these equivalence classes rather than on
individual expressions. For example, Freelds is a well-defined function not only
on FLK expressions but also on alpha-equivalence classes of FLK expressions
because

El ~a E2

implies
Freelds[E] = Freelds[E].
On the other hand, BoundIds is not a meaningful function on alpha-equivalence

classes because it depends on syntactic details of an expression that are not
represented in its DAG structure. Thus (proc a a) =,(proc b b), but

BoundIds[(proc a a)] = {a} #4 {b} = BoundIds[(proc b b)] .

6.3. VARIABLES AND SUBSTITUTION 233

6.3.5 Renaming and Variable Capture

Equipped with a deeper understanding of the structure of variables, we're ready
to consider the subtleties of renaming a variable introduced by an abstraction.
A correct variable renaming is one that preserves the alpha-equivalence class of
the expression — i.e., does not alter its abstract syntax DAG or Stoy diagram.
The naive approach of consistently renaming the declaration occurrence of the
variable and all its references is not always appropriate because of a situation
known as variable capture. There are two kinds of variable capture, both of
which will be illustrated in the following example.

Consider the expression (proc a (proc b (call a c))), whose Stoy dia-
gram is shown below:

(proc s (proc @ (call *c)))

Suppose we want to rename the variable named a in this expression. For almost
all possible identifiers, a simple consistent renaming will do. For example, re-
naming a to x produces the expression (proc x (proc b (call x c))) which
has the same Stoy diagram as the original.

Suppose, however, that we choose the identifier b as the new name for
a. Then the naive renaming method yields (proc b (proc b (call b c))),
whose Stoy diagram,

(proc @ (proc I (call l c)))

is not the same as that for the original expression. The inner binding occurrence
of b has created a hole in the scope of the outer binding occurrence of b in
which the outer b cannot be seen. Because an inner abstraction just happens to
bind the new name, all references to the new name within the body of the inner
abstraction are accidentally captured by that abstraction. We shall refer to this
situation as internal variable capture.

A slightly different problem is encountered if we choose c as the new name
for a. In that case, naive renaming yields (proc ¢ (proc b (call c c))),
whose Stoy diagram is

(proc ¢ (proc @ (call s ‘)))

The free identifier ¢ has accidentally been captured by the declaration occur-
rence of the new name. Here the declaration of the new name has captured
a free identifier in the body of the renamed abstraction; above, the internal
abstraction captured a reference to the renamed variable. Since the captured

234 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

variable is declared external to the renamed abstraction, we shall refer to this
second situation as external variable capture.

Internal and external variable capture are not unique to FLK. They can
occur in any naming system in which logically distinct variables can accidentally
be identified. As we shall see later, variable capture commonly rears its ugly
head in languages supporting dynamic scoping or macro expansion.

We would like it to be the case that such coincidental choices of identifiers
in renamings do not destroy the structural integrity of an FLK expression. One
way of doing this is to guarantee that each new variable name introduced by a
renaming appears nowhere else in the FLK expression. However, this approach
is overly restrictive and gives little insight into the true nature of the problem.
Below, we shall precisely define a general syntactic renaming operator that avoids
both forms of variable capture.

6.3.6 Substitution

Variable renaming is a special case of a more general syntactic operation on
FLK expressions called substitution. It is often desirable to substitute a given
expression for all free variable references of the variable named by a given iden-
tifier within another expression. For example, we might want to replace each
free a within

(call a (proc b (call (proc a (call a b)) a)))
by the application (call ¢ d) to yield
(call (call c d) (proc b (call (proc a (call a b)) (call c d))))

We use the notation [E/I] to denote a function that maps a given expression
into another expression in which E has been substituted for all free variable
references named by I. Thus, [E;/I|E2 denotes the result of substituting E; for
the free occurrences of I in E». Using this notation, the above example can be
expressed as:

[(call c d)/a](call a (proc b (call (proc a (call a b)) a)))
= (call (call c d) (proc b (call (proc a (call a b)) (call c d))))

A correct substitution is one which preserves the logical structure both of the
expression being substituted (E;) and the expression substituted into (Ez) —
except, of course, for the free variable being substituted for. Although substitu-
tion might seem like a straightforward idea, it is plagued with variable capture
subtleties similar to those that lurk in renaming. In fact, several well-known lo-
gicians gave incorrect definitions for substitution before a correct one was found.

6.3. VARIABLES AND SUBSTITUTION 235

As an example of a problematic situation, suppose that (call b d) rather
than (call ¢ d) were being substituted for a in the above example. Since the
expression being substituted into has the Stoy diagram

(call a (proc ‘ (call (proc T (call r ‘)) a))),

[(call b d)/a](call a (proc b (call (proc a (call a b)) a))) should have
the Stoy diagram

(call (call b d) (proc * (call (proc t (call r ‘)) (call b d)))).
However, a naive syntactic approach to substitution would yield the expression
(call (call b d) (proc b (call (proc a (call a b)) (call b d)))),

whose Stoy diagram,

(call (call b d) (proc * (call (proc t (call r ‘)) (call ‘d)))),

shows that variable capture violates the integrity of the free variable b within
the second occurrence of (call b d).

Figure 6.13 presents a method of substitution that avoids variable capture.
Substitution is defined by structural induction on the expression substituted
into. However, there is sometimes more than one clause per expression type be-
cause some expression types have subcases that depend on interactions between
the variable I,;s+ being replaced and variables within the expression substituted
into. For example, [E/Lsypst]lezp 1S E if Igps and Iy, are syntactically identical,
but is the original expression Ig, if Iy and Iy, are not the same. These
different subcases are expressed in Figure 6.13 by implicit pattern matching or

explicit restrictions.

As seen in Figure 6.13, most of the rules straightforwardly distribute the
substitution over the subexpressions of an expression. The tricky case is substi-
tuting into a variable declaration construct (proc or rec). For example, consider
the case for proc:

[Enew/]subst] (PI'OC Ibound Ebody))

In the case where I ;5 and Ipyy,q are the same, no substitutions can be per-
mitted inside the abstraction because Ip,,,q declares a variable that is distinct
from the one named by Iy, Without this restriction, we could derive results
like

[b/a](proc a (call a b)) = (proc b (call b b))
in which external variable capture invalidates the purported substitution.

When I and Ipyyng are distinct, the crucial situation to handle is where
Iypst appears free in Ep,g, (so a substitution will definitely take place) and

236

CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

[Enew/Lsub] L

[Enew / Tsub) Isub

[Enew/lsub]lempr
[Erew/ Isup] (primop O

E, ... E,)

[Enew/lsub](PrOC TIsuy Ebody)

[Ernew/ Lsup) (proc I Epody)

[Enew/jsub](call Erator Erand)
[Enew/-[sub](if EI EQ Eg)

[Enew/-[sub] (PaiI‘ E; E3)
[Enew/Lsuv] (rec Isup Epody)
[Enew/]sub] (rec I Ebody)

L
Enew
Iempra where Isub 7é Iempr

(primop 0 [Enew/lsub]El [Enew/lsub]En)

(proc ILsub Epody)
(PI'OC Ifresh [Enew/-[sub]([Ifresh/I]Ebody)) 5
where I, #I and

Itrest, {Isup YUFreelds[Epew]
UFreelds[Epoqy]

(call [Enew/Isub]Emtor [Enew/jsub]Emnd)
(if [Enew/-[sub]El

[Enew/Isub] E2

[Enew/-[sub]Ef})
(pair [Enew/Isub]El [Enew/-[sub]EQ)
(rec Isub Ebody)
(rec Iresh [Enew/Lsus)(Lfresh /D Evoay))
where Iz, #I and

Iiesh &{Lsub YUFreelds[Epey]
UFreelds[Epoqy]

Figure 6.13: The definition of substitution.

6.3. VARIABLES AND SUBSTITUTION 237

E,, contains a free reference to Ip,unq. This reference will be captured by the
bound variable of the abstraction unless we’re careful. A simple example of this
situation is:
[b/a](proc b (call b a)).

Here, the substituted expression b contains (in fact, is) a free reference to a
variable whose name happens to be the same as the name of the variable bound
by the abstraction. A naive substitution would yield (proc b (call b b)),
in which the outer variable named b has been accidentally captured by the
inner variable of the same name. To prevent this internal variable capture, it is
necessary to first consistently rename the bound variable of the abstraction with
an identifier that is not the same as Iy,55; and is free neither in E,.,, nor in Epoqy .
After this renaming, substitution can be performed on Ej,q, without threat of
variable capture. In our example, the bound variable b can be renamed to
c, say, yielding the alpha-equivalent abstraction (proc ¢ (call c¢ a)). Then
substitution can be performed on the body to yield the correct expression

(proc ¢ [b/al(call ¢ a)) = (proc c (call ¢ b)).

In the case where Iypst #Ipound, it is always correct to perform the described
renaming of the bound variable of the abstraction, but it is not always necessary.
If Iyupst is not free in Ejoqy, renaming is not required because no substitution
will be performed inside the abstraction anyway. And if Ip,,,q doesn’t appear in
E,cw, no internal variable capture can arise, and it is safe to directly substitute
into the body of the abstraction without a renaming step.

In the rule for substituting into an abstraction, it is necessary to choose an
identifier that is not the same as Iy, and is free neither in E,c, nor in Epyg,.
The notion of choosing an identifier that satisfies certain properties often arises
when manipulating syntactic expressions in which variables are represented by
identifiers. Such an identifier is said to be fresh. When describing a syntac-
tic manipulation, it is always necessary to specify any constraints involved in
choosing the fresh identifiers.

Keep in mind that all the complexity for renaming and substitution arises
from dealing with linear (in this case, textual) representations for declaration /ref-
erence relationships that are not linear or even tree-like. If FLK expressions were
represented instead as DAGs or Stoy diagrams, renaming would be unnecessary
and substitution would be straightforward.
> Exercise 6.11 Use the definition of substitution in Figure 6.13 to determine the
results of the following substitutions. Assume that fresh identifiers are taken from the

list vy, vg, Vg, ..., and that the first identifier from the list that satisfies the given
constraint is chosen as the fresh identifier.

a. [(call (call b ¢) d)/a](proc a (proc b (call (call c b) a)))
b. [(call (call b c¢) d)/b](proc a (proc b (call (call ¢ b) a)))

238 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

c. [(call (call b c) d)/c](proc a (proc b (call (call ¢ b) a)))
d. [(call (call b c) d)/d](proc a (proc b (call (call ¢ b) a)))

e. [(call (call b c) d)/b](proc a (proc b (call c a))) <

> Exercise 6.12 Consider the case for substituting into proc abstractions,

[Enew/]subst] (pI‘OC Tvound Ebody) s

where Iupst #lvound. Here Ipoung is consistently renamed to be a variable Ip.q, that is
not free in either Ey. or Epoqy and is not equal to Leyps:-

a. Provide an example of an incorrect substitution that would be permitted if the
restriction Ifyesp, EFreelds|Ene,] were lifted.

b. Provide an example of an incorrect substitution that would be permitted if the
restriction Ipesp, @Freelds[Epoay] were lifted.

c. Provide an example of an incorrect substitution that would be permitted if the
restriction Ifresh #lsupst Were lifted.

d. Would it be possible to consistently rename the free variables of E,e, (within
both Eyey and Epegy) instead of renaming Ipounqg? Explain your answer, using
examples where appropriate. <

> Exercise 6.13 Assuming that I; and I are distinct, and that I, ¢Freelds[FE;],
prove the following useful equivalence:

[E1/11)([B2 /1] Es) = [([E1/11]E2) [1)([E1 / 11] Es)
(Hint: Do the proof by induction on the height of Ej3.) <

> Exercise 6.14 The notion of simultaneous substitution is an extension to the
substitution function we have seen. A simultaneous substitution, [E; ... E,/I; ... I,],
is a function of a single expression that performs the substitutions [E;/I;] ...[En/I]
in parallel on that expression. It differs from a sequence of substitutions in that an
I; appearing in one of the E; is never substituted for. For example, simultaneous
substitution of Iy for I; and I; for I, in the expression (call I; Iz) swaps the two
identifiers:
[IQ,I]/I],IQ](C&].]. I; Ip) = (call Ip Iy)

whereas neither ordering of two single substitutions has this behavior:

[12/11]([.[1/12](Ca11 I; Ip)) = (call Ip Ip)

[IJ/IQ]([[Q/I1](C&11 11 Ig)) = (Call]1 11)

6.4. AN OPERATIONAL SEMANTICS FOR FLK 239

Write a formal definition of simultaneous substitution for FLK. <

> Exercise 6.15 Suppose that FL is extended with the following constructs for
manipulating tuples of elements:

(tuple E*): Non-strict constructor of a tuple with any number of ele-
ments.

(tuple-ref F i): Suppose i is a positive integer ¢ and F is a tuple ¢t. Return
the ith element of ¢ (assume 1-based indexing).

(tuple? E): Predicate determining if F is a tuple.

(tuple-length E): Returns the number of elements in the tuple.

Tuples provide an alternate way to desugar multi-abstractions and multi-applications.
Multi-applications can package arguments into a tuple that is unpackaged by a multi-
abstraction.

a. Provide tuple-based desugarings for multi-abstractions and multi-applications.
You may find substitution helpful. Explain any design choices that you make.

b. Discuss the advantages and disadvantages of the tuple-based desugaring versus
the desugaring based on currying. <

6.4 An Operational Semantics for FLK

6.4.1 An SOS for FLK

Figure 6.14 presents an SOS for FLK. In addition to the semantic domains of
FLK, the SOS uses the following domains:

e The ValueExp domain is a subset of Expprx consisting of expressions
that model the values manipulated by FLK programs. The notations
{(symbol D}, {(proc I E)}, {(pair E; Ez)}, and {(error I)} in-
dicate the set of all expressions that match the given pattern. The value
expressions include all the literals, as well as abstractions (representing
procedural values), pairings (representing pair values), and error expres-
sions.

e Each input to an FLK program is an s-expression value from the SExpVal
domain. This is a subset of ValueExp that excludes all proc and error
forms.

e The Answer domain models final answers in the execution of FLK pro-
grams. It is similar to ValueExp except that it replaces all proc expressions
by the procedure value token procval and replaces all pair expressions

240 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

Domains
V€ ValueExp = {#u} UBoollit UIntlit U {(symbol I)}
U{(proc I E)} U{(pair E; E3)} U{(error I,)}
SV € SExpVal = {#u}UBoollit U Intlit U { (symbol I)}
{(pair SV; SV}
I € Inputs = SExpVal*
A € Answer = {#u} UBoollit U Intlit U { (symbol D}
U{procval} U{pairval} U{(error I,.4)}
SOS

The FLK SOS has the form FLKSOS = (Expp.x,=, ValueExp, IF, OF), where:
= is a deterministic transition relation defined in Figures 6.15 and 6.16.

IF : Programprg X Inputs — Exp gk
=AN(f1k (I; ... LD Eyody), [SV1,...,SVk]> .
ifn =k then ([SV;/A:]71)Ebody

else (error wrong-number-of-args) fi

OF : ValueExp — Answer

=V . matching V
> (proc I E) | procval
> (pair E; Ep) | pairval
> else V endmatching

Figure 6.14: An SOS for FLK.

by the pair value token pairval. These tokens distinguish the types of
procedure and pair values, but the structure of these values is not observ-
able.

The configuration space for the FLK SOS consists of FLK expressions. The
input function IF maps an FLK program and a sequence of s-expression ar-
gument values to an initial configuration by substituting the arguments for the
formal parameter names in the body of the program. The final configurations of
the SOS are modeled by the ValueExp domain. The output function OF erases
the details of all procedure and pair values.

The SOS rewrite relation = is defined by the rewrite rules in Figures 6.15
and 6.16. Applications are handled by the [call-apply] and [call-operator] rules.
The [call-apply] rule makes use of the FLK substitution operator to evaluate the
application of an abstraction. The [call-operator] progress rule permits rewrites
on the operator. No rewrites are performed on the operand so these rules are
non-strict, like if and unlike primop.

6.4. AN OPERATIONAL SEMANTICS FOR FLK

241

(call (proc I E;) Ep) = [Eq/I|E;

FE; jEll
(call E; Ey) = (call E;' Ej)

(if #t E; Es) = E
(if #f E; E») = E,

E1:>E1/
(if E; Ey Eg)= (if Ez/ Ey, E3)

(rec I E)=[(rec I E)/IIE

E=E'
(primop O E) = (primop O E’)

E1:>E1/

(primop O E; Ez)= (primop O E;’ E»)

Ey= FEy !
(primop O V Eg) = (primop O V Ep’)

[call-apply]

[call-operator]

[if-true]
[if-false]

[if-test]

[rec]

[unary-arg]

[binary-arg-1]

[binary-arg-2]

Figure 6.15: FLK rewrite rules, part 1.

242 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

Strict languages would include progress rules for operands of procedure calls
(as FLK does for primitives), and these rules would reflect constraints on evalu-
ation order. However, even strict languages have non-strict conditionals to avoid
errors (e.g., division by zero) and infinite loops (the base case of a recursion, such
as the factorial of 0).

The semantics of recursion is especially simple in the SOS framework. It is
obtained by simply “unwinding” the recursion equation one level. Programmers
often follow the same approach when trying to hand-simulate the behavior of
recursive procedures.

The three progress rules [unary-arg], [binary-arg-1], and [binary-arg-2] suf-
fice for forcing the evaluation of arguments in a primitive application. The
metavariable V in rule [binary-arg-2] is used to express a constraint that the
first operand must be a value; thus the first argument must be fully evalu-
ated before the second argument is evaluated. These three rules are actually
instantiations of a single general rule to evaluate any number of arguments in
left-to-right order:

E,=F; !
(primop O V; ...Vi_; E; ...E,) [prim-arg]
= (primop O V; ...V,_; E;' ...E,)

where n can be any nonnegative integer (including 0) and i ranges between 0
and n. The notation is intended to indicate that the first i — 1 arguments have
all been fully evaluated, and the ith expression is in the process of evaluation.

A sampling of the remaining primitive operator rules are given in Figure 6.16.
These rules define the behavior of each primitive operator. The calculate func-
tion used in the [+] rule serves the same purpose as it did in the POsSTFIX
SOS.

Like the PosTF1x SOS, the FLK SOS models most errors with stuck states.
If the final configuration happens to be an error form, then this will be returned
as the outcome of the program. But if a configuration is stuck because it contains
a problematic subexpression such as (primop + 1 #t) or an error form, the
outcome of the program will be stuck. See Exercise 6.21 for an alternative
approach to handle errors in FLK.

6.4.2 Example

Figure 6.17 illustrates a sample proof-structured evaluation of the expression
(call (call (proc f (call f (primop + 4 1)))
(proc a (proc b (primop - b a))))
3)

6.4. AN OPERATIONAL SEMANTICS FOR FLK

243

e not: (primop not? #f)=#t

(primop not? #t) = #f

e left and right: (primop left (pair E; FE3)) = E;

(primop right (pair E; E2)) = Ey

e integer? (other predicates are defined similarly):
(primop integer? N) = #t

(primop integer? #u) = #f
(primop integer? B) = #f
(primop integer? (symbol I)) = #f
(primop integer? (proc I E)) = #f

(primop integer? (pair E; Ejp)) = #f

e and? (or? is defined similarly):
(primop and? #t #t) = #t

(primop and? #t #f) = #f
(primop and? #f #t) = #f

(primop and? #f #f) = #f

e / (rem is similar):

where Ny # 0

[not-1]

[not-2]

[left]

[right]

[integer?-integer]
[integer?-unit]
[integer?-boolean]
[integer?-symbol]
[integer7-abstraction]

[integer?-pair]

[and-true-true]
[and-true-false]
[and-false-true]

[and-false-false]

e + (other binary operators are similar, except for / and rem):
(primop + N; Ny) = (calculate + Ny Ny) [+]

(primop / N; Nj) = (calculate / N2 Ny), /]

Figure 6.16: FLK rewrite rules, part 2.

244 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

based on the above rewriting rules. Each rewriting step is annotated with a
justification that explains how the step follows from previous steps and a rewrite
rule.

A more condensed form of the evaluation in Figure 6.17 treats as a single
rewrite any axiom rewrite in conjunction with any number of rewrites implied by
progress rules. This gives rise to a linear sequence of rewrites, where the rewrite
arrow can be subscripted with the name of the axiom applied. The example
from the figure then becomes:

(call (call (proc f (call f (primop + 4 1)))
(proc a (proc b (primop - b a))))
3)
=[ca11-apply] (call (call (proc a (proc b (primop - b a)))
(primop + 4 1))
3)
= [cal1-apply] (call (proc b (primop - b (primop + 4 1)))
3)
=[cal1-apply] (Primop - 3 (primop + 4 1))
=+ (primop - 3 5)
=[] 2

> Exercise 6.16 Use the rewrite rules to show the evaluation of the following expres-
sions:

a. (primop left (pair 1 (primop not? 3)))
b. (primop left (primop right (primop right
(rec p (pair 1 (pair 2 p))))))

The first expression illustrates the non-strictness of pair while the second illustrates
the unwinding nature of rec. <

> Exercise 6.17 Since FLK is non-strict, it is not necessary for if to be a dis-
tinguished construct. Instead, if could be a unary primitive operator that returns a
(curried) binary function. That is, instead of being written (if E; Es Ej3), condi-
tionals could be expressed as

(call (call (primop if E;) E2) Ej3)
Give the rewrite rules for if as a unary primitive operator. <

> Exercise 6.18 Functional computation in a dynamically typed language can be
viewed as a bureaucracy where envelopes (values containing a type and other informa-
tion) are shuffled around by the interpreting agent that performs the computation.®
In many steps of the computation, envelopes are simply moved around without being

5Phil Agre introduced us to this point of view.

6.4. AN OPERATIONAL SEMANTICS FOR FLK

245

(call (proc f (call f (primop + 4 1)))
(proc a (proc b (primop - b a))))
= (call (proc a (proc b (primop - b a)))
(primop + 4 1))

(call (call (proc f (call f (primop + 4 1)))
(proc a (proc b (primop - b a))))
3)
= (call (call (proc a (proc b (primop - b a)))
(primop + 4 1))
3)

(call (proc a (proc b (primop - b a)))
(primop + 4 1))
= (proc b (primop - b (primop + 4 1)))

(call (call (proc a (proc b (primop - b a)))
(primop + 4 1))
3)
= (call (proc b (primop - b (primop + 4 1)))
3)

(call (proc b (primop - b (primop + 4 1)))
3)
= (primop - 3 (primop + 4 1))
(primop + 4 1) = 5
(primop - 3 (primop + 4 1)) = (primop - 3 5)
(primop - 3 5) = -2
(call (call (proc f (call f (primop + 4 1)))

(proc a (proc b (primop - b a))))
3)

1: call-apply

2: 1 & call-operator

3: call-apply

4: 3 & call-operator

5: call-apply
6: +
7: binary-arg-2

8: +

9:2&4&5&7&8

Figure 6.17: Example evaluation of an FLK expression.

246 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

opened. In the formation of a non-strict pair, for instance, two envelopes are simply
stuffed into a larger envelope without ever having their contents examined. During
other stages — a primitive addition, for instance — the contents (type and content
information) of envelopes must definitely be examined.

With this perspective in mind, for each FLK expression describe when the contents
of envelopes must be examined. In other words, which contexts demand the value of an
expression? <

> Exercise 6.19 Suppose we want to extend FL with a least construct. Given
a numeric predicate, least returns the least non-negative integer that satisfies the
predicate. For example,

(least (proc (x) (= x (*x x x)))) wp 0

(least (proc (a) (> (x a a) 10))) = 4

(least (proc (x) (< x 0))) > oo-loop {Looks, but no solution}
(least (proc (x) x)) —p» error:Non-bool-in-if-test

a. Must the argument to least always be an abstraction? If so, explain why; if not,
give a counterexample.

b. One way to add least is to extend the syntax of FLK to include (least E) as
a new expression type. Extend the operational semantics of FLK to handle the
least expression. Keep in mind that a SOS has five parts; make the appropriate
modifications to each of the parts.

Hint: In addition to adding (least FE) to the configuration space, it is also
desirable to add a configuration of the form (*least* E N). Configurations like
xleast* that are not valid as expressions in the language are often useful for
representing intermediate states of computations.

c. Alternately, least could be written as a user-defined procedure that is standardly
available in the body of a program. Show how to implement least with this
approach. <

> Exercise 6.20 In FLK, pair is a primitive construct built into the syntax. In a
non-strict language, though, there is no need for pair to be primitive.

a. One option is to include pair as a primitive primop operator. Implement this
change by modifying the operational semantics of FLK.

b. Is it possible to define pair as a user-defined procedure? How would you imple-

ment left, right, and pair? ? <

> Exercise 6.21 Like the PosTFIX SOS, the FL SOS uses stuck states to model
errors. For example, all of the following stuck states correspond to error situations:

6.4. AN OPERATIONAL SEMANTICS FOR FLK 247

a ; Unbound variable

(primop / 1 0) ; Division by O

(primop + 1 #t) ; Inappropriate argument type
(primop + 1 2 3) ; Inappropriate number of arguments
(call 1 2) ; Attempt to apply a non-procedure
(if (symbol nonbool) 2 3) ; Non-boolean test in an IF.

Rather than using stuck states to model errors, we can use the fact that ValueExp
includes the form (error I,,.) to explicit represent and propagate errors. For this
approach, the rewrite rules need to (1) convert stuck expressions to an appropriate error
form and (2) propagate error forms so that they eventually become final configurations.
For example, we could have the rule

(call N E) = (error non-procedural-rator) [integer-operator-error]

to express the fact that it is an error to use an integer in the operator position of an
application.

Make all necessary modifications and additions to the FLK rewrite rules in order
to handle the explicit introduction and propagation of error forms. Make sure that
errors propagate appropriately; e.g.,

(primop + 1 (primop / 1 0))
should rewrite to an error because it has a subexpression that rewrites to an error. <

> Exercise 6.22 After carefully studying the SOS for FLK, Paula Morwicz proclaims
that it is safe to use a naive substitution strategy (i.e., one that does not rename bound
variables) in the [call-apply] and [rec] rules as long as the original expression being
evaluated does not contain any unbound variables (i.e., free identifiers).

a. Show that Paula is right. That is, show that the name capture problems addressed
by the definition of substitution in Figure 6.13 cannot occur during the evaluation
of an FLK expression that has no unbound variables.

b. Give an example of an FLK expression containing an unbound variable that
evaluates to the wrong answer if the the naive substitution strategy is used.

c. Suppose that every FLK expression were alpha-renamed so that all variables had
distinct identifiers and no bound variable used the same identifier as any unbound
variable. Under these conditions, is it always safe to use the naive substitution
strategy? If so, explain; if not, give a counter-example. <

> Exercise 6.23 After reading up on the the lambda calculus, Sam Antix decides to
experiment with some new rewrite rules for the FL. SOS.

a. The first rule he tries is the so-called eta rule:

(proc I (E D)= E,

where I ¢ Freelds[E] [etal

248 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

Although this rule is reasonable in the lambda calculus, it greatly changes the
semantics of FLK. Demonstrate this fact by showing a FLK expression that can
evaluate to two different values along two different transition paths.

b. The eta rule can be made safe by restricting the form of E. Describe such a
restriction, and explain why the rule is safe.

c. After getting rid of the [eta] rule, Sam experiments with a rule that allows rewrites
within the body of an abstraction:

E=E’
(proc I E) = (proc I E')

[proc-body]

How does the addition of this rule change the semantics of FLK? For example,
does it make it possible for an expression to rewrite to two different values via
two different transition paths? Does it enable new kinds of transition paths? <

6.5 A Denotational Definition for FLK

In this section, we develop a denotational semantics for FLK. A complete deno-
tational semantics for FLK appears in Figures 6.18-6.22. The semantic algebras
for this semantics appear in Figure 6.18, and Figures 6.19 and 6.20 define auxil-
iary functions and values. These definitions provide the landscape that serves as
the backdrop for our future denotational definitions, as well as for the valuation
functions in Figures 6.21 and 6.22.

It is always best to begin a study of a denotational semantics with a careful
look at the semantic algebras. Here is what we can see by looking at the FLK
semantic algebras in Figure 6.18.

The values that can be expressed by an FLK expression are modeled by
the Fxpressible domain, which is a lifted sum of Value and Error. Errors, like
symbols, are modeled as identifiers.® Value contains unit, boolean, integer, and
symbol values, as well as pair and procedure values, which are defined recursively
in terms of Fxpressible. The bottom element of the Ezpressible domain represents
a non-terminating computation in FLK.

Whereas the SOS for FLK used substitution to model naming, the denota-
tional semantics uses environments as a kind of virtual substitution. When a
value is bound to an identifier, that binding is stored in the environment used to
evaluate expressions within the scope of that binding. Identifiers that represent

5We are being a little loose here. Program identifiers often exclude language key words, like
let. Such restrictions should not be applied to program data or errors.

6.5. A DENOTATIONAL DEFINITION FOR FLK 249

¢ € Computation = Fxpressible

0 € Denotable = Computation

p € Procedure = Denotable — Computation

B € Binding = (Denotable + Unbound) |

e € FEnvironment = Identifier — Binding
Unbound = {unbound}

x € Expressible = (Value + Error) |

v € Value = Unit + Bool + Int + Sym + Pair + Procedure
Unit = {unit}

i € Int = {..,-2-1,0,1,2,...}

b € Bool = {true, false}

y € Sym = Identifier

a € Pair = Computation x Computation
Error = Identifier

Figure 6.18: The semantic algebras for FLK.

variable references are looked up in the current environment. Environments map
identifiers to bindings, where Binding is a lifted sum of denotable values and the
trivial domain Unbound. The trivial element acts as an “unbound marker” that
indicates that an identifier is not bound in an environment.

The environment functions (Figure 6.19) have been updated to be consistent
with the Binding domain. In particular, there is now a distinction between
extend, which associates a name with a denotable in an environment, and bind,
which associates a name with a binding in an environment. The figure introduces
shorthand notation for these functions that will be used in future valuation
clauses.

There is no a priori reason why the class of entities that can be named in an
environment has to be the same as that denoted by arbitrary expressions. For
this reason, there is a separate semantic domain, Denotable, for the set of values
that can be associated with names in environments. There are many possible
relationships between Denotable and Expressible:

e Denotable may be the same as Fapressible. This is the case in FL.

e Denotable may be a superset of Fxpressible — some entities may be named
but not computed. For example, languages in which procedures are not
first-class typically have ways to name procedures (usually via a declara-
tion) even though procedures cannot be values of expressions.

e Denotable may be a subset of Ezpressible — some entities may be com-
puted, but not named. For example, in certain languages variables cannot

250 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

Environment operations:

empty-env : Environment
= A . (Unbound — Binding unbound)

lookup : Environment — Identifier — Binding
=Xel. (e I)

bind : Environment — Identifier — Binding — Environment
= Xel; 8.\ .if (same-identifier? I; I») then (3 else (lookup e Ip) fi
(bind e I (3) will be abbreviated [I :: 3]e; this notation associates to the right:
[Ig :: Byl[I1 = Ble =[1e : Bo]([I1 =2 By]e)

extend : Environment — Identifier — Denotable — Environment
= Xeld . (bind e I (Denotable — Binding 0))

(extend e I §) will be abbreviated [I : §]e; this notation associates to the right:
[Ig : 52][11 : 51]6 = [[2 : 52]([]1 : 51]6)

Figure 6.19: Auxiliary functions and values for FLK, Part II.

name values that represent errors and nontermination. We shall study this
example in detail when we discuss call-by-value semantics in Chapter 7.

e The relationship between Denotable and Fxpressible may be more complex.
Consider a language in which procedures are denotable but not express-
ible, and errors are expressible but not denotable. (FORTRAN is in this
category.)

Thus, the definitions of Denotable and FExpressible in the denotational semantics
of a given language contain some important information about high-level features
of the language. The availability of this kind of information is the reason why,
when reading a denotational semantics, it is advisable to first carefully study
domain equations and function signatures before delving into the details of the
valuation functions.

The meaning of an expression with respect to an environment depends on
the formulation of the meaning function used. To provide a level of abstraction,
we will define a new domain called Computation. The Computation domain
names the domain of meanings that we can get from evaluating an expression
in an environment:

& : Exp — Environment — Computation

6.5. A DENOTATIONAL DEFINITION FOR FLK 251

The Computation domain, with the helper functions in Figure 6.20 (described
more below), allows us to factor out some complex details and have compact
clauses in our valuation functions. In FLK, the benefit is largely that we can
factor out much of the error checking. When we extend FL, e.g., in order to add
state in Chapter 8, Computation will become more complex, but it will allow
the valuation functions to remain relatively simple.

The Computation, Denotable, and Value domains all serve as knobs that can
be tweaked to specify different languages. The Procedure domain’s argument
value must be denotable (otherwise the argument could not be named by a
formal parameter).

We assume that the Computation domain comes equipped with a set of helper
functions shown in Figure 6.20. val-to-comp treats a value as computation,
while err-to-comp treats an error as one. with-value is a generalized version
of the various functions we have already seen with this name. It unpackages
a computation into a value (if possible) and applies to this value a function
that returns another computation. In the case where the computation cannot
be coerced to a value, it is passed along unchanged. The other with- functions
(which can be written in terms of with-value), are similar, except that they may
also generate new error computations rather than just passing along old ones.

The valuation functions of Figures 6.21 and 6.22 are relatively compact,
thanks in large part to the Computation abstraction and the associated helper
functions. However, semantics written in this style can take some time to get
used to. It is helpful to keep in mind the signatures of all functions, as well as the
purposes of the various auxiliary functions. To see how much more complicated
the valuation clauses would be, compare the one-line if clause of Figure 6.21
with:

E[(if E; Es E3)] =
Ae . matching (E[E] e)

> (Value — Computation v) | matching v

> (Bool — Value b) |
if b then (£[E2] e) else (E[Es] e) fi

> else (err-to-comp non-bool-in-if-test)
endmatching

>else (E[E(] e)

endmatching

This sort of error checking would be repeated throughout the valuation clauses.

> Exercise 6.24 Recall that the integer division and remainder operators (/ and rem)
are different than other binary operators because they are ill-defined when the second
argument is 0. Write the valuation clause for P[/]. <

252 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

Usual operations on Bool: not, and, or
Usual operations on Int: +, -, *, /, ...
Equality operation on Identifier: same-identifier?

val-to-comp : Value — Computation = Value — Computation
err-to-comp : Error — Computation = Error — Computation
den-to-comp : Denotable — Computation =M\ . 4§
error-comp : Computation = (err-to-comp error)

with-value : Computation — (Value — Computation) — Computation
= Acf. matching ¢

> (Value — Computation v) | (f v)

> else ¢

endmatching

with-values : Computation®* — (Value™ — Computation) — Computation
= A\c*f. matching c*

> []Computation |] (f []Value)

> Cst - Crest™ | (with-value cy

(Avgst . (with-values crest™ (Avpest™ . (f (Vgst - Urest™)))))
endmatching

with-boolean-val : Value — (Bool — Computation) — Computation
= \v. matching v
> (Bool +— Value b) | (f b)
> else (err-to-comp not-a-boolean)
endmatching
Similar for with-unit-val, with-integer-val, with-symbol-val, with-pair-val.

with-boolean-comp : Computation — (Bool — Computation) — Computation
= Acf. (with-value ¢ (Av. (with-boolean-val v f)))
Similar for with-procedure-comp.

with-denotable : Binding — (Denotable — Computation) — Computation
=\3f . matching
> (Denotable — Binding §) | (f 0)
> (Unbound — Binding Unbound) | (err-to-comp unbound-var)
endmatching

Figure 6.20: Auxiliary functions and values for FLK, Part L.

6.5. A DENOTATIONAL DEFINITION FOR FLK 253

€ : Exp — Environment — Computation

E* : Exp* — Environment — Computation™

L : Lit — Value

P : Primop — Value® — Computation

B : Boollit — Bool

N : Intlit — Int

E[L] = Ae. (val-to-comp L[L])

E[I] =Xe. (with-denotable (lookup e I) Ad . (den-to-comp 0))

Ellproc I B)] =
e . (val-to-comp (Procedure — Value (A0 . (E[E] [I:d]e))))

E[(call E; Ep)] =Ae.(with-procedure-comp (E[E;] e¢) (Ap. (p (E[E2] e))))

E[(if E; Es E3)] =
e . (with-boolean-comp (E[E;] e) (Ab.if bthen (E[E2] e) else (E[Es] e) fi))

S[[(I'GC I E)]] =Je. (ﬁXComputation (AC . (EHE]] [I C]e)))

El(pair E; E»)] =Xe. (val-to-comp (Pair — Value {(E[E:] e), (E[E2] €))))
E[(primop O E¥)] =Xe. (with-values (EX[E*] e) (Av*. (P[O] v*)))
E[Cerror D] =Xe. (err-to-comp I)

(‘:*Iﬂ] =JXe. []Computation

EXEfst -« Erest™] =Xe. (E[Efst] €) . (EX[Erest™] €)

L[#u] = (Unit — Value unit)

L[B] = (Bool+ Value B[B])

L[N] = (Int — Value NN])

L[(symbol D] = (Sym — Value I)

B and N defined as usual.

Figure 6.21: Valuation functions for FLK, Part 1

254 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

Plnot?] =Av*. matching v*
> [V] Vaiwe | (With-boolean-val
v
Ab . (val-to-comp (Bool — Value (not b))))
> else (err-to-comp not?-wrong-number-of-args)
endmatching

Pleft] =Av*. matching v*
> [V vaie | (With-pair-val v Aejer . ¢;)
> else (err-to-comp left-wrong-number-of-args)
endmatching

Similarly for right

Plinteger?] =
Av* . matching v*

> (0] value | matching v
> (Int — Value 4) | (val-to-comp (Bool — Value true))
> else (val-to-comp (Bool — Value false))
endmatching

> else (err-to-comp integer?-wrong-number-of-args)

endmatching

Similarly for other predicates

Pl+] =Av*. matching v*
> [v; ve]vae | (with-integer v;
(Niy . (with-integer vg
(Mig . (val-to-comp
(Int — Value (+ iz i2)))))))
> else (err-to-comp +-wrong-number-of-args)
endmatching

Similarly for other binary operators, except / and rem, which give an error on a
second argument of 0.

Figure 6.22: Valuation functions for FLK, Part 11

6.5. A DENOTATIONAL DEFINITION FOR FLK 255

> Exercise 6.25 In FLK, error expressions take a manifest constant as the name of
the error. There are other possible error strategies. One is to have only a single error
value, which might simplify the semantics while making errors less helpful in practice.
Another approach is to allow the argument of error to be a computed value. If we alter
the syntax of FLK to support the form (error FE), then

a. Write the evaluation clause for (error E).

b. What is the meaning of an error expression whose argument results in an error?
<

> Exercise 6.26 Construct an operational semantics for FLK that uses explicit
environments rather than substitutions. [Hint: it is a good idea to introduce a closure
object that pairs a lambda expression with the environment it is evaluated in.] <

> Exercise 6.27 Write a denotational semantics for FL that does not depend on
its desugaring into FLK. That is, the valuation clauses should directly handle features
such as define, let, letrec, and procedures with multiple arguments. <

256 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

Chapter 7

Naming

A good name is rather to be chosen than great riches
— Proverbs 22:1

Naming is a central issue in programming language design. The fact that
programming languages use names to refer to various objects and processes is
at the heart of what makes them languages.

At the very least, a programming language must have a primitive set of names
(literals and standard identifiers) and a means of combining the names into com-
pound names (expressions). In a purely functional programming language, every
expression is a name for the value it computes. In FL, for instance, 9, (+ 4 5),
and ((lambda (a) (* a a)) (+ 1 2)) are just three different names for the
number nine. In non-functional languages, there are more complex relationships
between names and values that we shall explore later.

Expressions built merely out of primitives and a means of combination
quickly become complex and cumbersome. Any practical language must also
provide a means of abstraction for abbreviating a long name with a shorter one.
Programming languages typically use symbolic identifiers as abbreviations and
have binding constructs that specify the association between the abbreviation
and the entity for which it stands. FL has the binding constructs lambda, let,
letrec, and define; these are built on top of FLK’s binding constructs: proc
and rec. Using such constructs, it is possible to remove duplications to obtain
more concise, readable, and efficient expressions. For example, naming allows
us to transform the procedure:

257

258 CHAPTER 7. NAMING

(lambda (a b c)
(1ist (+ (- 0 b)
(sqrt (- (*x b b)
(x4 (*x ac)))))
(- (- 0Db)
(sqrt (- (*x b b)
(x4 (*x ac)))))

into the equivalent procedure:

(lambda (a b ¢)
(let ((discriminant (sqrt (- (* b b)
(x4 (xac))))
(-b (- 0 b)))
(list (+ -b discriminant)
(- -b discriminant))))

Naming seems like such a simple idea that it’s hard to imagine the subtleties
hidden therein. A sampling of naming facilities in modern programming lan-
guages reveals a surprising number of ways to think about names. Some of the
dimensions along which these facilities vary are:

e Denotable Values: What entities in a language can be named by global
variables? By local variables? By formal parameters of procedures? By
field names of a record?

o Parameter Passing Mechanisms: What is the relationship between the
actual arguments provided to a procedure call and the values named by
the formal parameters of the procedure?

e Scoping: How are new variables declared? Over what part of the program
text and its associated computation does a declaration extend? How are
references to a variable matched up with the associated declaration?

e Name Control: What mechanisms exist for structuring names to minimize
name clashes in large programs?

o Multiple Namespaces: Can an identifier refer to more than one variable
within a single expression?

e Name Capture: Does the language exhibit any name capture problems like
those that cropped up with naive substitution in FLK?

o Side Effects: Can the value associated with a name change over time?

7.1. PARAMETER PASSING 259

The goal of this chapter is to explore many of the above dimensions. Our
discussion of FL already introduced some of the basic concepts and terminology
of naming, e.g., scope, free and bound variables, name capture, substitution, and
environments. Here we give a fuller account of the issues involved in naming.
Along the way, we shall pay particular attention to the effects that choices in
naming design have on the expressive power of a language.

Certain naming issues (e.g., side effects, many parameter passing mecha-
nisms) are intertwined with other aspects of dynamic semantics that we will
cover later: state, control, data, nondeterminism, and concurrency. We defer
these topics until the necessary concepts have been introduced.

7.1 Parameter Passing

Procedure application is the inverse operation to procedural abstraction. An
abstraction packages formal parameters together with a body expression that
refers to them, while application unpackages the body and evaluates it in a con-
text where the formal parameters are associated with the arguments to the call.
There are numerous methods for associating the formal parameter names with
the arguments. These methods are called parameter passing mechanisms.
Here we shall focus on two such mechanisms:

e In the call-by-name (CBN) mechanism, a formal parameter names the
computation designated by an unevaluated argument expression. This
corresponds to the non-strict argument evaluation strategy exhibited by
FL in the previous chapter. CBN evolved out of the lambda calculus,
and variants of CBN have found their way into ALGOL 60 and various
functional programming languages (such as HASKELL and MIRANDA).

e In the call-by-value (CBV) mechanism, a formal parameter names the
value of an evaluated argument expression. This corresponds to the strict
argument evaluation strategy used by most modern languages (e.g., C,
PascAL, SCHEME, ML, SMALLTALK, POSTSCRIPT, etc.).

Later we shall explore additional parameter passing mechanisms (e.g., call-by-
denotation on page 275 and call-by-reference in Chapter 8).

7.1.1 Call-by-Name and Call-by-Value: The Operational View

Figure 7.1 summarizes the difference between CBN and CBYV in an operational
framework. Both mechanisms share the following progress rule for the operator
of a call expression, which is not shown in the figure:

260 CHAPTER 7. NAMING

(call (proc I E;) Ep)=[Es/I|E; [cbn-call]

Call-By-Name

E2:>E2/
(call V; Eg)= (call V; Ey")

[cbv-rand-progress]

(call (proc I E;) V)= [V/IE, [cbv-call]

Call-By-Value

Figure 7.1: Essential operational semantics of CBN and CBV parameter passing.

E; iEl/
(call E; Ej3)= (call E;’ Ej)

[rator-progress]

Under CBN, the entire operand expression (not just its value) is substituted
for the formal parameter of the abstraction. Figure 7.2 illustrates how this
substitution works in some particular examples. Notice that the number of
times the operand expression is evaluated under CBN depends on how many
times the formal parameter is used within the body. If the formal is never used,
the operand is never evaluated.

(call (proc x (primop * x x)) (primop + 2 3))
= (primop * (primop + 2 3) (primop + 2 3))
= (primop * 5 (primop + 2 3))

= (primop * 5 5)

= 25

(call (proc x 3) (primop / 1 0)) = 3

(call (proc x 3) (call (proc a (call a a))
(proc a (call a a)))) = 3

Figure 7.2: Under CBN, the entire operand expression is substituted for a formal
parameter.

In the CBV strategy, the operand of an application is first completely evalu-
ated, and then the resulting value is substituted for the formal parameter within

7.1. PARAMETER PASSING 261

the body of the abstraction. The [cbv-call] rule is only applicable when the
operand of the application is a value in the syntactic domain ValueExp of value
expressions. The [cbv-rand-progress| rule permits evaluation of the operand. To-
gether, these two rules force complete evaluation of the operand position before
substitution.

Figure 7.3 shows some examples of CBV evaluation. The first example shows
that in CBV, the operand expression is evaluated exactly once, regardless of how
many times the formal is needed within the evaluation of the abstraction body.
The other examples illustrate that CBV can yield errors or nontermination in
cases where CBN would return a value.

(call (proc x (primop * x x)) (primop + 2 3))
= (call (proc x (primop * x x)) 5)
= (primop * 5 5)
= 25

(call (proc x 3) (primop / 1 0)) {This stuck expression models
an error.}

(call (proc x 3) (call (proc a (call a a))
(proc a (call a a))))
= (call (proc x 3) (call (proc a (call a a))
(proc a (call a a))))
= ... {An infinite loop.}

Figure 7.3: Under CBV, argument expressions are evaluated before being sub-
stituted for formal parameters.

Each of the two mechanisms has benefits and drawbacks. The above exam-
ples showed that CBN can evaluate an operand expression multiple times when
the formal parameter is referenced more than once. This is less efficient than
CBV, which is guaranteed to evaluate the operand exactly once. On the other
hand, the CBV strategy of evaluating the operand exactly once may cause the
computation to hang even when the operand value is not required by the pro-
cedure body. This is the situation where the CBN strategy of evaluating the
operand at every parameter reference pays off; since there are no references, the
operand is never evaluated. As Joseph Stoy has noted, CBN means evaluating
the operand as many times as necessary, but sometimes this means no times at
all! In this case CBN is “infinitely” more efficient than CBV, because it produces
an answer when CBV does not.

The CBN mechanism has its roots in the lambda calculus, which is essentially
a pared down version of FL that supports only applications, abstractions, and

262 CHAPTER 7. NAMING

variable references. CBN corresponds to a leftmost, outermost reduction strat-
egy for the lambda calculus called normal order reduction. An important
feature of normal order reduction in the lambda calculus is that it is guaranteed
to find a normal form (i.e., value) for an expression if one exists. Furthermore,
if any other reduction strategy finds a normal form, it must find the same one
as the normal order strategy (modulo alpha equivalence).

The reduction strategy that corresponds to CBV, i.e., arguments must be
reduced to normal form before substitution for formals, is called applicative
order reduction.

We believe that a similar statement holds for FL:

FLK CBN/CBV Conjecture: If an FLK expression E = CBV

V, then E =CBN V', where V and V' are equivalent in some ap-
propriate sense.

The fuzziness of “some appropriate sense” is due to the fact that ValueExp is
different for the two mechanisms. In CBN, ValueExp includes pairs with arbi-
trary expression as parts, while in CBV, it includes only pairs with component
values. As of this writing, we are still fleshing out a formal proof of this conjec-
ture. But the intuition is clear: CBN terminates more often than CBV, and if
they both terminate, they must terminate with “equivalent” values.

From the theoretical perspective, CBN clearly seems superior to CBV. Then
why do so many languages use CBV and hardly any use CBN? As hinted above,
a pragmatic reason is that CBN implies certain implementation overheads. Per-
haps an even more important reason is that CBN and side-effects do not mix. As
we shall see in the next chapter, imperative programs using CBN are notoriously
hard to reason about. But here we shall focus only on the issue of overheads.

As a non-trivial example, let’s compare the CBN and CBV mechanisms on
the following call to an iterative factorial procedure written in FL:!

((rec fact-iter (lambda (n ans)
(if (=n 0)
ans
(fact-iter (- n 1) (* n ans)))))
3 1)

Transition sequences for the two parameter passing mechanisms are shown in
Figures 7.4 and 7.5. In the transition sequences, the abbreviation FACT-ITER
stands for the expression

"We use FL rather than FLK for this example because it would be too cumbersome to
express in FLK. We assume in the example an SOS in which FL expressions are appropriate
configurations. For instance, in this SOS, multi-argument applications are performed in a single
rewrite step.

7.1. PARAMETER PASSING 263

(rec fact-iter (lambda (n ans)
(if (=n 0)
ans
(fact-iter (- n 1) (* n ans)))))

while the abbreviation UNWOUND-FACT-ITER stands for the expression

(lambda (n ans)
(if (=n 0)
ans

(FACT-ITER (- n 1) (* n ans))))

(FACT-ITER 3 1)

X (UNWOUND-FACT-ITER 3 1)

(if (=3 0) 1 (FACT-ITER (- 3 1) (*x 3 1)))
(if #f 1 (FACT-ITER (- 3 1) (x 3 1)))
(FACT-ITER (- 3 1) (x 3 1)))
(UNWOUND-FACT-ITER (- 3 1) (* 3 1)))
(UNWOUND-FACT-ITER 2 (* 3 1)))
(UNWOUND-FACT-ITER 2 3)

(if (= 2 0) 3 (FACT-ITER (- 2 1) (x 2 3)))
(if #f 3 (FACT-ITER (- 2 1) (x 2 3)))
(FACT-ITER (- 2 1) (x 2 3))
(UNWOUND-FACT-ITER (- 2 1) (x 2 3))
(UNWOUND-FACT-ITER 1 (x 2 3))
(UNWOUND-FACT-ITER 1 6)

(if (= 1 0) 6 (FACT-ITER (- 1 1) (x 1 6)))
(if #f 6 (FACT-ITER (- 1 1) (x 1 86)))
(FACT-ITER (- 1 1) (x 1 6)))
(UNWOUND-FACT-ITER (- 1 1) (* 1 6)))
(UNWOUND-FACT-ITER 0 (x 1 6))
(UNWOUND-FACT-ITER 0 6)

(if (= 0 0) 6 (FACT-ITER (- 0 1) (x 0 6)))
6

S o e o e oo e o e Qo Qe o e o e e e e e e

Figure 7.4: CBV transition path computing the iterative factorial of 3.

As indicated by the figures, CBN can be much less efficient than CBV. There
are two important sources of overhead:

1. CBN often requires more time? than CBV in the case where an argument

2Here we assume that the time taken by an evaluation is related to the number of evaluation
steps in the operational semantics. This is often a reasonable assumption.

264 CHAPTER 7. NAMING

(FACT-ITER 3 1)

% (UNWOUND-FACT-ITER 3 1)

(if (= 3 0) 1 (FACT-ITER (- 3 1) (* 3 1)))

(if #f 1 (FACT-ITER (- 3 1) (x 3 1)))

(FACT-ITER (- 3 1) (* 3 1))

(UNWOUND-FACT-ITER (- 3 1) (* 3 1)))

(if (= (-31) 0) (* 31) (FACT-ITER (- (- 31) 1) (* (-3 1) (*x 3 1))
Gf (=20) (*x 31) (FACT-ITER (- (- 3 1) 1) (*x (-3 1) (x3 1))
(if #f (* 3 1) (FACT-ITER (- (- 3 1) 1) (x (- 3 1) (x 3 1))))
(FACT-ITER (- (- 3 1) 1) (¥ (- 3 1) (x 3 1))
(UNWOUND-FACT-ITER (- (- 3 1) 1) (x (- 3 1) (x 3 1)))

Gf = (- (=31 1) 0)

(* (-31) (x31)

(FACT-ITER (- (- (-3 1) 1) 1) (* (- (-3 1) 1) * (-3 1) (x31)))))
Gf (= (-21) 0

(x (-31) (*x31))

(FACT-ITER (- (- (-3 1) 1) 1) (x (- (-3 1) 1) (* (-3 1) (x3 1))
Gf (=1 0)

(x (-31) (*x31))

(FACT-ITER (- (- (-3 1) 1) 1) (x (- (-3 1) 1) (*x (-3 1) (x3 1))
(if #f

(* (-31) (x31)

(FACT-ITER (- (- (-3 1) 1) 1) (* (- (-3 1) 1) * (-3 1) (x31)))))
(FACT-ITER (- (- (-3 1) 1) 1) (*x (- (-3 1) 1) * (-3 1) (x3 1))
(UNWOUND-FACT-ITER (- (- (-3 1) 1) 1) (* (- (-3 1) 1) (x (-3 1) (*x3 1))
Gf = ¢ E3D 1O

(x (- (-31) 1) ¢ (-31) (x31))

(FACT-ITER (- (- (- (-3 1) 1) 1) 1) (* (- (- (-3 1) 1) 1) (*x (- (-3 1) 1) ¢ (-31) (*x3 1))
Gf = (21 1) 0

(- (=31 1) (*x (31 x31))

(FACT-ITER (- (- (- (=31 1) 1) 1) (* (- (- (=311 1) (31 1) (31 *31)NN
Gf (= (-11) 0)

G (- (=31 1) (*x (=31 x31))

(FACT-ITER (- (- (- (-3 1) 1) 1) 1)

G- GEE3) DY) GEGE3D 1) G 31 G311

B R R R

U=

Pelr e U

U=

U=

x
= (if (=0 0)

(x (- (-31)1) (*x (-31) (x31))

(FACT-ITER (- (- (- (-3 1) 1) 1) 1) (* (- (- (-3 1) 1) 1) (*x (- (-3 1) 1) (x (-31) (*x31))))))
£ Gf #t

(x (- (-31) 1) ¢ (-31) (x31))
(FACT-ITER (- (- (- (-3 1) 1) 1) 1) (* (- (- (-31) 1) 1) (x (- (-31)1) (x(-31) (x31))))

(- (=31 1) (x(-31) (*x31)))
k(=21 (x (-31 (*x31))

(x 1 (x (- 31) (x31)))

1 (x 2 (x 31)))

(x 1 (x 2 3))

(* 1 6)

R R

Figure 7.5: CBN transition path computing the factorial of 3.

7.1. PARAMETER PASSING 265

is used more than once in the body of an abstraction, because then the
same argument expression must be evaluated multiple times. For example,
in Figure 7.5, the value of (- 3 1) is calculated five times, compared to
only once in Figure 7.4.

2. CBN often requires more space than CBV because expressions whose values
are not currently needed may grow as their evaluations are deferred until
later. For example, the expression in the ans operand position of a call to
FACT-ITER grows by one multiplication with every recursive call.

In practice, there are techniques for ameliorating both of these sources of
overhead. The time inefficiency is typically finessed by memoization, a tech-
nique that evaluates an operand and caches its value the first time it is refer-
enced. Further references simply return the cached value rather than evaluating
the operand again. We shall bump into it again when we study lazy evaluation
in Chapter 8.

The space overhead is perhaps more insidious. It can be improved by graph-
based expression representations that share substructure, but this trick does not
stop the space consumed by operands for parameters like ans from growing in
size with every call. This problem, known as a dragging tail, is disturbing
because it destroys desirable space management properties for FL. The CBV
version of factorial requires only a constant amount of space to keep track of
control and state variables.? In contrast, the CBN version requires space for the
unevaluated state variables that grows linearly with the input to factorial. When
executing these kinds of programs on a machine with finite storage resources,
a CBN strategy is more likely to run out of space than a CBV strategy. A
technique called strictness analysis can improve CBN by modifying it to use
CBYV for operand evaluation when it is possible to prove that the operand will
be required at least once.

The various tricks for improving CBN make it much more palatable, but the
techniques still require overheads that some implementors find unacceptable.
For example, memoization implies that a flag must be tested at every variable
reference. Since variable references are rather common, the extra check is often
considered prohibitive without special hardware support.

Parameter passing mechanisms are used to describe not only procedure calls,
but also other constructs that bind names to values. For example, FL’s binding
constructs (lambda, let, letrec, and define) have an implicit method for as-
sociating names with values because they desugar into FLK’s abstractions and

3For simplicity, we ignore the fact that the larger numbers required for larger inputs to
factorial actually require more space.

266 CHAPTER 7. NAMING

applications. We shall assume (unless stated otherwise) that all binding con-
structs inherit their parameter passing mechanism from procedure calls. Thus,
(let ((a (/ 1 0))) 3) evaluates to 3 in a CBN language, but generates an
error in a CBV language.

> Exercise 7.1 In a CBV language, it is often useful to delay the evaluation of an
argument until a later time. This behavior can be specified with the pair of constructs
(lazy E) and (touch E). Informally, (lazy E) wraps E up without evaluating it,
while (touch E) unwraps F until it is no longer embedded in a lazy. On a non-lazy
value, touch acts as an identity. For example, in CBV FL:

(touch (+ 1 2)) -7 3
(touch (lazy (+ 1 2))) 1 3
(touch (lazy (lazy (+ 1 2)))) -1 3

(let ((a (lazy (+ 1 2)))
(b (lazy (/ 1 0))))

(touch a)) 7> 3

(let ((a (lazy (+ 1 2)))
(b (lazy (/ 1 0))))

(touch b)) 7+ error:divide-by-zero

a. Extend the operational semantics of FLK to handle lazy and touch. Recall that
an SOS has five parts; make whatever changes are necessary to each of the parts.

b. Can lazy and touch be implemented by syntactic sugar? If so, give the desug-
arings; if not, explain why.

¢. Show how to translate CBN FL into a CBV version of FL that is equipped with
lazy and touch. <

> Exercise 7.2 The desugaring rule for letrec specified in Section 6.2 was designed
for a CBN language. Does it still work in a CBV language? Explain, using concrete
example(s) to justify your answer.

<

> Exercise 7.3 Show by example that an FL expression that diverges under CBN
need not diverge under CBV. How does this fact relate to the CBN/CBV conjecture

made above? <

7.1. PARAMETER PASSING 267

7.1.2 Call-by-Name and Call-by-Value:
The Denotational View

The denotational descriptions of CBN and CBV FL semantics have an interest-
ing and important difference. This difference is found in the kinds of things that
a formal parameter can name. In CBN, a formal parameter can name a value, an
error, or a non-terminating computation. In short, a formal parameter in CBN
can name the unrestricted meaning of an FL expression. This makes sense, as
in CBN we conceptually pass an unevaluated expression as an actual parameter,
and we only evaluate an actual parameter when absolutely necessary. In CBN,
a formal parameter can name the arbitrary result of an FL expression. A CBV
FL semantics is substantially more restrictive than a CBN semantics. In CBV,
we can only pass values (e.g., integers, booleans, pairs, etc.) as actual parame-
ters, and thus formal parameters can only name values. As we shall describe in
detail below, the difference in the kinds of entities that can be named by formal
parameters is reflected in the definition of the Denotable domain.

Rather than giving the clauses of the valuation function £ in full for each
of the parameter passing mechanisms, we shall only describe clauses for those
constructs that are pertinent to parameter passing: variable references, proc,
and call. (The rec and pair clauses are also relevant, but we defer discussion of
them until later.) The valuation clause for proc is the same for both mechanisms:

Elproc I EY] =Xe. (val-to-comp (Procedure — Value (A6 . (E[E] [I: d]e))))

Figure 7.6 gives the denotational semantics for CBN versus CBV. The essen-
tial difference is that CBN environments name elements of Computation while
CBV environments can only name elements of Value. In FL,

Computation = Expressible = (Value + Error) |

so that CBN environments can name all expressible values (including error and
divergence), while CBV environments can only name “regular” values.
The CBN domain equation

6 € Denotable = Computation

indicates that a formal parameter can denote any computation, which in the case
of FL includes error and divergence. A CBN procedure can return an element
of Value even when it is passed one of these irregular values. Thus, call-by-name
procedures are not strict. Here’s an example of CBN (where e is an arbitrary
environment):

268 CHAPTER 7. NAMING

0 € Denotable = Computation
E[I] =Xe. (with-denotable (lookup e I) (Ad.4d))

El(call E; Ey)] =Xe. (with-procedure (E[E;] €) (Ap. (p (E[E2] e))))

Call-By-Name

0 € Denotable = Value
EI] =Xe. (with-denotable (lookup e I) (Ao . (val-to-comp 6)))

E[(call E; Ez)] =Xe. (with-procedure (E[E;] e)
(Ap . (with-value (E[E2] €) p)))

Call-By-Value

Figure 7.6: Essential denotational semantics of CBN and CBV parameter pass-
ing. For FLK, Computation = Fxpressible, but the CBN semantics will still be
valid later when Computation is updated to reflect extensions to FLK. Likewise,
the CBV semantics will still be valid when the Value domain is extended.

7.1. PARAMETER PASSING 269

(E](call (proc x 3) (primop / 1 0))] e)
= (with-procedure (E[(proc x 3)] ¢) (Ap. (p (E[(primop / 1 O0)] e))))
= (with-procedure (val-to-comp
(Procedurer— Value
(A5 . (E13] [x: 3]¢)))
(Ap . (p error)))
(X6 . (&]3] [x:0]e)) error)
= (&[3] [x: error]e)
= (val-to-comp (Int — Value 3))

The CBV domain equation

6 € Denotable = Value

indicates that identifiers may be bound to values such as integers, booleans,
symbols, procedures, and pairs, but may not be bound to objects denoting an
error or nontermination. The treatment of error and bottom is the only semantic
difference between CBV and CBN.

The CBYV clause for call uses with-value to guarantee that only elements of
the domain Value are passed to p. This accounts for the strict nature of CBV
evaluation. As an illustration of CBV, let’s once again consider the meaning of
the FLK expression (call (proc x 3) (primop / 1 0)):

(€](call (proc x 3) (primop / 1 0))] e)
(with-procedure (E[(proc x 3)] e)

(Ap . (with-value (E[(primop / 1 0)] €) p)))
(with-procedure (E[(proc x 3)] e) (Ap. (with-value error p)))
(with-procedure (E[(proc x 3)] e) (Ap. error))
(with-procedure (val-to-comp

(Procedure— Value

(Ad . (£[3] [x:d]e)))

(Ap . error))
= error

7.1.3 Discussion
7.1.3.1 Extensions

Numerous additional features may be layered on top of the above mechanisms
to yield further variations in parameter passing for functional languages. For
example, it is possible to pass parameters by keyword, to specify optional ar-
guments, or to describe formal parameters that are pattern-matched against
arguments that are compound data structures. While these are important ways
of capturing common patterns of usage, they are orthogonal to and less funda-
mental than the CBN vs. CBYV distinction. The introduction of side-effects, on

270 CHAPTER 7. NAMING

the other hand, will lead to fundamental variations of the above mechanisms.
We will explore these in Chapter 8.

It is possible to include more than one parameter passing mechanism within
a single language. This possibility is explored in Exercise 7.7.

7.1.3.2 Non-Strict vs. Strict Pairs

Data constructors (such as pair) are typically non-strict in a CBN language but
strict in a CBV language. Figure 7.7 summarizes the operational and denota-
tional differences between non-strict and strict pairs. In both perspectives, the
difference boils down to whether the components of pair values must themselves
be values. The figure omits the semantics of the left and right primitives,
which do not differ between the non-strict and strict versions.

7.1.3.3 Denotable vs. Passable Values vs. Component Values

We have assumed in our discussion that every entity that is nameable may be
passed as an argument or bundled into a pair. While this tends to be true
in (and is a major source of power for) functional languages, it is not true
in general. For example, while procedures are almost universally nameable,
there are many languages (e.g., FORTRAN, BASIC, PASCAL) in which procedures
cannot be passed as arguments, or can only be passed in a limited way. Similarly,
many languages do not permit data structure components to be procedures.
In order to give an accurate denotational description of such languages, it is
necessary to distinguish the class of nameable entities from those which may be
passed as arguments and those which can be components of data structures. We
could therefore introduce new domains, Passable and Component, that describe
these classes of values.

7.1.3.4 Semantic Derivation of Thunking

The denotational descriptions of parameter passing emphasize that CBN and
CBYV differ only in their treatment of error and nontermination. They also give
another perspective on simulating CBN in a CBV language. From a denotational
view, the essence of such a simulation in CBV FL is to find a way of naming error
and L computation- It is not possible to name these directly in a CBV language,
but it is always possible to name them indirectly, via procedures. For every
computation ¢, we can construct a procedural value that returns ¢ when called:

(val-to-comp (Procedure — Value (M6 . ¢)))

7.1. PARAMETER PASSING 271

Operational:
V € ValueExp = ...U{(pair E; E5)}
Non-Strict Pairs
V € ValueExp = ...U{(pair V; V2)}

E, = F; !
(pair E; E2) = (pair E;’ E2)

[pair-left-progress|

Eo= FEy !
(pair V; E2)= (pair V; E»’)

[pair-right-progress]

Strict Pairs

Denotational:

a € Pair = Computation x Computation

El(pair E; Ey)] =Xe. (val-to-comp (Pair — Value ((E[E:] e), (E[Ez2] e))))

Non-Strict Pairs

a € Pair = Value x Value

E(pair F; Ep)] =
e . (with-value (E[E] e)
(Avg . (with-value (E[E2] e)
(Avg . (val-to-comp (Pair — Value {v;,v2)))

Strict Pairs

Figure 7.7: Operational and denotational views of non-strict and strict pairs.

272 CHAPTER 7. NAMING

This means that we can effectively put any computation into an environment
by transforming it into the above form before it is bound to a name and then
perform the inverse transformation when the name is looked up. Since the
parameter 0 of the above form is ignored, the transform and its inverse are
equivalent to, respectively, creating a procedure of no arguments (a so-called
thunk) and calling that procedure on no arguments.

7.1.3.5 CBYV Versions of rec

In an operational semantics, rec is handled by the same rule regardless of
whether the language is CBN or CBV:
(rec I E)=[(rec I E)/I|E [rec]

Unforutnately, things are not so simple in a denotational semantics. In CBN,
where Denotable = Computation, the valuation clause for a CBN version of rec
is very pretty:

El(rec I B)] =Xe. fixcomputation(Ac. (E[E] [I: cle))

The fixed point defined by this clause is well-defined as long as Computation is
a pointed CPO. For this reason, we will always guarantee that Computation is
a pointed domain.

However, developing a valuation clause for rec in a CBV language is rather
tricky. In CBV, the corresponding version of the CBN clause is:

E[(xec I BY] =Xe. fixvawe(Av. (E[E] [I: v]e))

But since Denotable= Value is not a pointed domain, the fixed point is not well
defined, and the clause is nonsensical.

There are several ways of circumventing this impasse. Here we present two
approaches:

1. In (rec I E), we can limit E to a subset of expressions that are syntac-
tically guaranteed to be procedures. In CBV,

Proc = Value — Computation

is pointed (because Computation is always pointed), so it is always possible

to fix over Procedure. That is, suppose we modify the syntax of FLK as
follows:

Ea=...

| (rec Iar Apody) [Recursion]

A = (proc Ijorma Epody) [Abstraction]

7.1. PARAMETER PASSING 273

If we suppose that A is a valuation function of signature

Abstraction — FEnvironment — Procedure

then rec is definable as:
E[(rec I A)] =
e . (Value — Ezpressible
(Procedure — Value
(ﬁXProcedure

(Ap. ((A [A])(extend ;
(Value — Denotable
(Procedure — Value p))))))))

Unfortunately, the syntactic restriction results in a restriction of the ex-
pressive power of rec. It is no longer possible to specify recursions over
pairs or over procedures whose describing expression is not a manifest
proc. The following examples, though contrived, are indicative of useful
patterns that are disallowed by an approach that requires the body of a
rec to be a manifest abstraction in a CBV language:

(rec ones (pair 1 (lambda () ones)))

(rec fact
(let ((fact-of-0 1))
(lambda (f)
(lambda (n)
(if (=n 0)
fact-of-0
(x* n (fact (- n 1))))))))

2. An alternative is to make use of L pjnaing to compute fixed points. Here is
a version that works in the case of Computation = Expressible:

EII(I'QC 1 E)H =)e. (ﬁXComputation
(Ac. (E[E] [I :: (extract-value c)]e))

extract-value : Computation — Binding

= Ac. matching c
> (Value — Expressible v) | (Denotable — Binding v)
> (Error — Expressible error) |] L Binding
endmatching

extract-value coerces a computation into a binding. The resulting binding
is either an element of Denotable = Value, or it is L inging. (Recall that

274 CHAPTER 7. NAMING

matching is strict, so that extract-value maps L computation t0 L Bmdmg-)
By effectively naming a bottom element in the environment, this trick gives
a starting point for the fixed-point iteration. It would also be possible to
add a bottom element directly to the Denotable domain, but that would
not faithfully model the intuition behind CBV. The L pij,ging element helps
to clarify the difference between using bottom to solve a recursion equation
expressed by a rec and allowing bottom to be passed as an argument to
a procedure.

It is worth noting that the extract-value function works only for
Computation= Expressible and needs to be tweaked if the domain of com-
putations changes.

7.1.3.6 The Perils of Reading Denotational Descriptions
Operationally

The valuation clause for call in CBN illustrates the potential dangers of giving
operational interpretations to denotational definitions. If (p (E[E2] e)) were
read as if it were, for example, a LISP or SCHEME program fragment, it would
say something like: “First evaluate the expression Fy in the environment e
and then call p on the resulting value.” Unfortunately, this reading introduces
inappropriate notions of evaluation order and time (based on when the argument
is evaluated) that are inherited from the CBV nature of LISP or SCHEME. Such
a reading can cause confusion in the cases where E» denotes error or bottom;
the reader might (incorrectly) think that, as in Lisp, errors or bottom in an

argument would propagate to errors or bottom for the call.

Rather than reading £ as “evaluate” (in the operational sense), it is safer to
read it as “the meaning of.” Thus (p (E[E2] e)) means “Apply p to the meaning
of Es in the environment e.” Additionally, it is important to remember that
the application of a total function (as opposed to the application of a procedure
in a programming language) is well-defined as long as the arguments are in the
appropriate domains. In particular, the result is independent of any evaluation
strategy that might be associated with the metalanguage expressions used to
represent the application. For example, the term

Ay . 3) (Az . zx) (\x . xx))

denotes 3 even though a CBV-like strategy for equation rewriting would not find
this value.

In the case of (p (E[E2] e)), if the meaning of E is error or bottom, these
are simply handed to p, which is constructed by the clause for proc. The proc
clause shows that any such argument is simply associated with an identifier in

7.1. PARAMETER PASSING 275

the environment, while the variable reference clause indicates that this denotable
value is retrieved upon lookup without any ado.

It is natural to wonder at this point how error or nontermination in an argu-
ment can ever lead to error or nontermination for an application in a CBN lan-
guage. That is, if an argument is simply inserted into the environment upon call
and retrieved upon lookup, who ever actually ezamines the value denoted by the
argument? There are several spots in the denotational definition where informa-
tion about the values is required. For example, in the clause for [(call E; FEj)]
the value of F; is required to be the denotation of a procedure; the semantics
must check the value to ensure this is the case (such checks are hidden in the
abstraction with-procedure). Similarly, an if clause must not only check that
the test expression denotes a boolean, but also uses the boolean value in order to
determine which arm is denoted by the entire conditional construct. Handling
primitive operators in FLK is perhaps the most common case where details of
the values must be examined.

These facts imply that in any implementation of CBN FLK, the argument
expression Fy cannot be evaluated before the procedure p is invoked. For if Ey
initiated a nonterminating computation, p would never be invoked. The moral of
this discussion is that operational conclusions of this sort aren’t always obvious
from a denotational definition. Indeed, factoring out operational concerns is a
source of power for denotational semantics. It is not necessary to worry about
details like the practical implications of binding errors or nontermination in an
environment. Instead, the denotational approach helps us to focus on high-level
descriptions like: “The essential difference between CBN and CBYV is that the
former allows errors and nontermination to be named whereas the latter does
not.”

7.1.3.7 Call-by-Denotation

Sometimes a denotational semantics suggests alternative perspectives. A case
in point is call-by-denotation (CBD), a parameter passing mechanism that
is obtained by tweaking call-by-name semantics in a straightforward way (see
Figure 7.8). Whereas call-by-name determines the meaning of an argument
expression relative to the environment available at the point of call, call-by-
denotation instead determines the meaning of an argument expression relative

to the environment where the formal parameter is referenced.
In this case, the domain equation

0 € Denotable = FEnvironment — Computation

indicates that the nameable entities in the language are functions that map

276 CHAPTER 7. NAMING

6 € Denotable = Environment — Computation

EI] =Xe. (with-denotable (lookup e I) (Ad. (6 e)))

E[(call E; Ep)] =Xe. (with-procedure (E[E;] e) (Ap. (p E[E2])))

Call-By-Denotation

Figure 7.8: Essential semantics of call-by-denotation.

environments to computations. The call clause simply embeds the actual pa-
rameter in a function of this type. Variable references are handled by applying
the function associated with the variable to the environment in effect where the
variable is referenced.

CBD is not very useful but does model some of the name capture problems
associated with macro expansion. As a somewhat bizarre example of CBD,
consider the meaning of the FL expression

((let ((x 3))
(lambda (y) y))
x)

in an environment ey in which the identifier x is not bound. In both call-by-name
and call-by-value, the meaning of this expression is an error because the value
of (the outer) x is required but nowhere defined. In call-by-denotation, however,
the body of the identity procedure — i.e., the variable y — will eventually be
evaluated in an environment e; where x is bound to

(Denotable — Binding (Ae . (Value — Expressible (Int — Value 3))))
and y is bound to

(Denotable — Binding (Ae . (with-denotable (lookup e x) (Ad. (0 €)))))

(We leave the details of how this point is reached as an exercise.) At this point,
the denotation of y will be applied to e;, with the following result:

((Ae . (with-denotable (lookup e x) (Ad. (0 €)))) er)
= (with-denotable (lookup e; x) (A6 . (§ e1)))
= (with-denotable (Denotable — Binding
(Me . (Value — Ezpressible (Int— Value 3))))
(A . (6 1))
(M0 . (6 e1)) (Me.(Value — Expressible (Int — Value 3))))
= (Value — Expressible (Int— Value 3))

Thus, in a CBD semantics, the meaning of this expression is the number 3!

7.1. PARAMETER PASSING 277

The weird behavior of call-by-denotation in this example is due to a kind
of name capture. The evaluation of the outer x yields not what we would
normally think of as a value but an environment accessor that is eventually
applied to an environment with a binding for the inner x. Had the inner x been
named something other than x or y, no capture would have occurred, and the
expression would have denoted an error, as expected. But x is not the only
outer name which would cause trouble; if we replace the outer x by a reference
to y, the expression diverges! (Check it and see.) Because the semantics of call-
by-denotation are so convoluted, it is hardly surprising that this mechanism is
not used in any real programming language. (However, call-by-denotation does
exhibit some of the behavior of macro languages.)

Then what is our purpose in introducing so contrived a mechanism? First,
we wanted to emphasize that in a denotational semantics, names can be bound
to entities much more complex than simple values or expressible values. We
shall see many examples of this in the future. Second, we wanted to emphasize
that just because a mechanism has an elegant denotational description doesn’t
necessarily mean that it is of any use in real programming languages. Although
in some cases denotational descriptions do suggest powerful language constructs,
other extensions suggested by denotational semantics (like call-by-denotation)
turn out to be downright duds.

> Exercise 7.4 For each of the following FL expressions, use the denotational se-
mantics to give the meaning of the expression in CBN, CBV, and CBD. (Recall that
let and lambda inherit their semantics from proc.)

a. (let ((x 3)
y (/10
x)
b. (et ((x 7))

(let ((f (lambda (y) (+ x y))))
(let ((x 10))
£ X))

C. (let ((x 3))
((Qet ((y 190
(lambda (z) y))
x))

278 CHAPTER 7. NAMING

d. (let ((x 23))
(let ((x x))
x)) <

> Exercise 7.5

a. Write a single FL expression that has a different meaning in each of the three
parameter passing mechanisms. Give the meaning of your expression in each
mechanism.

b. Bud Lojack hopes to solve part a. above with an expression that evaluates to one
of the symbols call-by-name, call-by-value, or call-by-denotation depend-
ing on which parameter passing mechanism is being used. Kindly explain why
the expression that Bud desires does not exist. <

> Exercise 7.6
a. Can a CBN FL interpreter be written in CBV FL?
b. Can a CBV FL interpreter be written in CBN FL?

Justify your answers. <

> Exercise 7.7 In this exercise we explore combining call-by-name and call-by-value
in a single language.

Imagine a language NAVALNAVAL (NAme/VAlue Language) that is just like CBN
FLK except that (proc I E) has been replaced by the two constructs (vproc I E)
and (nproc I E). Both of these constructs act like proc in that they create single-
argument procedures. The only difference between them is that procedures created by
nproc pass parameters using CBN, while those created by vproc use CBV.

For example:

(call (nproc x 3) (primop / 1 0)) -z 3
(call (vproc x 3) (primop / 1 0)) —p error:divide-by-zero

a. Provide a denotational semantics for NAVAL (only give those domain equations
and valuation clause that differ from those for CBN FLK). Hint: In a simple
approach to this problem, by-name and by-value procedures can both be elements
of a single Procedure domain. What should Denotable be?

b. Just as it was convenient to extend FLK with the notion of multiple argument
procedures, it would be nice to extend NAVAL with a similar notion. Some
method must be chosen for specifying which parameters are by name and which
are by value. For example, parameters might default to the by-value mechanism,
but could be declared by-name with the token name, as illustrated below:

7.2. NAME CONTROL 279

(define unless
(lambda (test (name default) (name exception))
(if test exception default)))

(unless (=1 2) (+ 34) (/5 0)) —p [int7]

Give the rules for desugaring such a multiple-argument lambda construct into
NAVAL’s one-argument nproc and vproc.

c. We have seen how CBN can be simulated in a CBV language using thunks.
Formalize this transformation by showing how to translate NAVAL into CBV
FLK. <

> Exercise 7.8 Write a program that translates CBN FL into CBV FL. (Note that
a very similar program could be used to translate CBN FL into SCHEME.) <

> Exercise 7.9 Show that when Computation= Expressible, the CBV valuation clause
for rec denotes the same function as the CBN valuation clause for rec. <

> Exercise 7.10 Use both the operational and denotational rec semantics to compute
the values of the following expressions in both CBN and CBYV versions of FL:

a. (rec a 4)

b. (rec a (1 0))

c. (rec a a)

d. (rec a b)

e. (rec a (if #t 3 a))

[z}

(rec a (lambda (x) a))

(rec a (pair 1 a))

Foe

(rec a (pair (lambda (x) a)))
(let ((b 3)) (rec a b)) <d

—-

7.2 Name Control

The phrase “too much of a good thing” evokes images such as a child getting a
stomach ache after eating too much candy or the crew of the starship Enterprise
being swamped by the cute but prolific tribbles. The recent explosion in infor-
mation technology has added a new twist to this phrase. Information consumers,

280 CHAPTER 7. NAMING

such as television viewers, magazine subscribers, and readers of electronic mail,
now have rapid access to incredible stores of information. But these changes in
the information landscape have brought new problems, perhaps the most daunt-
ing of which is information overload: there is simply too much information to
weed through, to absorb, to remember.

The area of naming in programming languages harbors its own version of
the information overload problem. While names are an indispensable means of
abstraction, the abundance of names in even modestly sized programs can lead
to a host of complications.

From a cognitive point of view, more names can mean more learning, re-
membering, and model building for programmers. One of the simplest naming
strategies, a single global namespace (in which distinct variables are named by
distinct identifiers), is also one of the most nightmarish for program writers and
readers alike. This approach foists a tremendous amount of mental bookkeeping
on the programmer:

e Nonlocality of naming structure impairs readability because there are no
constraints on which names the user needs to search or remember in order
to understand a given fragment of code. At all times, the reader must
potentially be aware of the entire namespace. For this reason, a global
namespace is not scalable in a cognitive sense; large programs are much
harder to comprehend than shorter ones.

e The reader has to infer structural groupings intended by the writer but
not expressed due to the flatness of the namespace.

e Every time a new name is needed, the writer must find one that does not
clash with any names already in use.

In order to reduce such unreasonable cognitive demands, programming languages
typically provide mechanisms for reusing names and structuring the scope of
names. Even when these are not supported by the naming system, programmers
often develop naming conventions to simulate such mechanisms.

From an engineering point of view, more names can mean more complex
interactions between program parts. One of the chief methods of controlling
the complexity of large programs is to break them up into smaller units having
well-defined interfaces that separate the use of a unit from its implementation.
An interface specifies:

e the names defined external to the unit that are to be imported for use
within the implementation of the unit; and

7.2. NAME CONTROL 281

e the names defined internal to the unit that are to be exported for use
outside of the unit.

It is desirable to make such interfaces narrow — i.e., importing and exporting
few names — to limit dependencies among program parts. Wide interfaces give
rise to spaghetti-like dependencies among program units that are difficult for
a programmer to keep track of. And the complexities are only exacerbated in
the more common situation where a large program is developed in collaboration
with others. In this case, wider interfaces imply increased communication and
coordination between members of a programming team.

From this engineering perspective, a programming language should provide
mechanisms that facilitate the construction of narrow interfaces. The simple
approach of a single global namespace strikes out again because it allows every
name to be used everywhere throughout a program. A crucial ingredient for
narrow interfaces is some means of name hiding, whereby names purely local
to the implementation of a unit are effectively hidden from the rest of a program.

In this section, we shall investigate techniques for name control that ad-
dress the cognitive and engineering problems outlined above. Unlike our discus-
sion of names up to this point, these issues are largely orthogonal to the choice
of denotable values. Rather, they specify the relationship between patterns of
name usage and the logical structure of variables in the program.

7.2.1 Hierarchical Scoping: Static and Dynamic
Recall the following terms from our study of variables in FLK:

e A variable is an entity that names a value.

An identifier is a name for a variable. Distinct variables may be named
by the same identifier.

e A variable declaration is a construct that introduces a variable.

A variable reference is a construct that stands for the value of a variable.

The scope of a variable declaration is the portion of the program text over
which the declared variable may be referenced.

For example, in FL, variables are declared in 1lambda, letrec, and let expres-
sions. All variable references are written as unadorned identifiers.

For a given language, it may or may not be possible to determine the scope
of a given declaration without running the program. If the scope of a declaration
can always be determined from the abstract syntax tree of a program, the scope

282 CHAPTER 7. NAMING

of the declaration is said to be static or lexical. In this case, the variable
declaration associated with any variable reference is apparent from the lexical
structure of the program. If the scope of the declaration depends on details of
the run-time behavior of the program, the declaration is said to have dynamic
scope. A language in which all declarations have static (dynamic) scope is said
to be a statically (dynamically) scoped language.

Figure 7.9 summarizes the difference between static and dynamic scoping.
We explain these in turn.

p € Procedure = Denotable — Computation

Elproc I B)] =Xeproc - (val-to-comp
(Procedure — Value (A5 . (E[E] [I:6d]eproc))))

E[(call E; E3)] =Xecay . (with-procedure (E[E;] ecan) (Ap. (p (E[E2] €carr))))

Statically (Lexically) Scoped Procedures

p € Procedure = Denotable — Environment — Computation
Elproc I E)] = Aeproc - (val-to-comp
(Procedure — Value (Adecan . (E[E] [I: d]ecarr))))

E[(call E; E»)] =
Xecair - (with-procedure (E[E;] ecarr) (Ap. (p (E[E2] €cai) €cair)))

Dynamically Scoped Procedures

Figure 7.9: The essential semantics of statically and dynamically scoped CBN
procedures (CBV is analogous). In a statically (lexically) scoped procedure, free
identifiers appearing in a proc body are resolved relative to ey, the environ-
ment determined by the text enclosing the proc expression. In a dynamically
scoped procedure, free identifiers appearing in a proc body are resolved relative
to ecql, the environment determined by the dynamic chain of procedure calls in
which the procedure is being called.

7.2. NAME CONTROL 283

7.2.1.1 Static Scope

All of the languages we have studied so far (other than call-by-denotation FL)
have been statically scoped. In fact, all of these languages support a particular
discipline of static scoping known as block structure. In a block structured
language, declarations can be nested arbitrarily, and every variable reference
refers to the variable introduced by the nearest lexically enclosing variable dec-
laration of that identifier. The nearest lexically enclosing declaration is found
by starting at the identifier and walking up the abstract syntax tree until a
declaration introducing the identifier name is found.
As an example, consider the CBV FL expression
(let ((x 20))
((let ((increment-by-x (lambda (y) (+ x y)))
(double (lambda (x) (x x 2))))
(letrec ((x (cons 1 x)))
(lambda (z)
(cons (double (increment-by-x (double z)))

x))))
(- x 15)))

In this expression there are three distinct variables named x introduced by three
declarations:

1. (Qet ((x 20)) ...) declares x and binds it to the number 20.

2. The (lambda (x) (* x 2)) expression named by double declares x but
does not bind it; x will be bound on application of the procedural value
of this abstraction. (In fact, the binding of x may be different for every
distinct application of this procedure.)

3. (letrec ((x (coms 1 x))) ...) declares x and binds it to an infinite list
of 1s.

There are also five variable references involving x:

1. In (+ x y), x is a reference to the let-bound variable named x, so its
meaning in this context is 20. This means that increment-by-x is a
procedure that always adds 20 to its argument, regardless of the binding
for x in whatever environment it happens to be applied.

2. In (¥ x 2), x is a reference to the lambda-bound variable named x, whose
meaning will be determined at application time.

3. In (cons 1 x), x is a reference to the letrec-bound variable named x, so
its meaning is an infinite list of 1s.

284 CHAPTER 7. NAMING

4. In (cons (double (increment-by-x (double z))) x), x refers to the
variable introduced by the first lexically enclosing declaration of x, which
in this case is the letrec-bound variable. So here x is an infinite list of 1s
as well.

5. In (- x 15), x is a reference to the variable introduced by the first lexically
enclosing declaration of x, which in this case is the let-bound variable. So
here x means the number 20.

Putting together all of the above information, the value of the example expres-
sion is an infinite list whose first element is 60, and the rest of whose elements
are all 1.

Variables in a block structured language have a structure reminiscent of
variables in the lambda calculus.

As we noted before for FLK, when the scope of a declaration contains an-
other declaration of the same name, the inner declaration carves out a hole
in the scope of the outer one. The Stoy diagrams we used to represent the
structure of lambda terms could easily be adapted to show declaration/reference
relationships in any block structured language.

The essence of block structure is in the way environments are handled by
abstractions. Figure 7.9 shows the domains and valuation functions that are
crucial for block structure in CBN FLK. The clause for proc dictates that
the body of the abstraction will be evaluated with respect to the environment
in effect when the procedure was created. In particular, the environment in
which the procedure is called can have no effect on the meaning of names within
the abstraction body. This is clear from the domain definition for Procedure,
which simply maps denotable values to computations and ignores whatever the
current environment might be. Though the details of expressible and denotable
values might differ under other parameter passing mechanisms, the handling of
environments will have this form in any block structured language.

7.2.1.2 Dynamic Scope

SNOBOL4, APL, most early Lisp dialects, and many macro languages are
dynamically scoped. In each of these languages, a free variable in a procedure
(or macro) body gets its meaning from the environment at the point where
the procedure is called rather than the environment at the point where the
procedure is created. Thus, in these languages, it is not possible to determine a
unique declaration corresponding to a given free variable reference; the effective
declaration depends on where the procedure is called. It is therefore generally
impossible to determine the scope of a declaration simply by considering the

7.2. NAME CONTROL 285

abstract syntax tree of the program. Instead, the scope of a variable declaration
depends on the run-time tree of procedure calls.

Figure 7.9 also shows essential semantics of dynamic scoping for a CBN lan-
guage. The Procedure domain has been modified to indicate that procedures
take an extra argument: the dynamic environment (i.e., the call-time environ-
ment). In the valuation clause for proc, the body of the abstraction is evaluated
in the dynamic environment rather than the lexical one. The clause for call has
been modified to pass the current environment to the procedure being called.

As an example of static vs. dynamic scoping, consider the following expres-
sion in CBV FL:

(let ((a 1))
(let ((f (lambda (x) (primop + x a))))
(let ((a 20))
(£ 300))))

Informally, we can reason as follows. The procedure named f refers to a free
variable a. Under static scoping, this variable is bound to the value of a where the
procedure is defined (i.e., 1). Thus, the binding between a and 20 is irrelevant,
and the result of the call (£ 300) is 301. On the other hand, under dynamic
scoping, the free variable gets its value from whatever binding of a is dynamically
apparent. Inthe call (£ 300), the binding between a and 20 shadows the binding
between a and 1, so the value of the call is 320.

We can use the denotational definitions of scoping to formally analyze this
example. The example F L expression desugars into the following FLK program:

(call (proc a 5 Eproc:at
(call (pI'OC f 5 Eproc:f
(call (proc a (call £ 300)) ; Eproca20
20))
(proc x (primop + x a)))) 3 Eproc:z
1)

The four proc expressions have been commented with names that will be used
to abbreviate them. Figure 7.10 and 7.11 highlight the key steps for using the
denotational definitions to derive the value of the expression under static scoping
and dynamic scoping.

A more graphical perspective of these derivations appears in Figure 7.12.
Each derivation is summarized by an environment diagram that shows key
expressions along with the environments they are evaluated in. An environment
is represented by a chain of bindings that go up the page; this helps to clarify
the relationship between the different environments. The static scoping example
is depicted in Figure 7.12(a). The arrow from within the procedural value to the

286 CHAPTER 7. NAMING

STATIC SCOPING
El(call Eprociar D] eo
(with-procedure (E[Eproc:ar] €0) (Ap. (p (Int— Value 1))))

gll(call Eproc:f Eproc::v)]] €1
where e; =[a: (Int — Value 1)] eg

(with-procedure (E]Eproc:f] €1)
(Ap . (p (Procedure — Value (XS . (E[(primop + x a)] [x:4d]er))))))

5[[(0&11 Epmc;agg 20)]] €2
where eg = [f: (Procedure — Value
(A . (E](primop + x a)] [x:d]es)))]es
(with-procedure (E[Eproc:azo] €2) (Ap. (p (Int — Value 20))))

E[(call £ 300)] es
where es =[a: (Int — Value 20)]eg

(with-procedure (E[£f] es) (Ap. (p (Int— Value 300))))
(A . (E](primop + x a)] [x:d]es)) (Int+— Value 300))
E[(primop + x a)] [x: (Int — Value 300)]e;

E[(primop + x a)] [x: (Int— Value 300)][a: (Int — Value 1)]eg

= (Int — Value 301)

Figure 7.10: (call Eppc.q; 1) evaluation using static scoping

7.2. NAME CONTROL 287

DYNAMIC SCOPING
El(call Eprociar D] eo
(with-procedure (E[Eproc:a1] €0) (Ap. (p (Int+— Value 1) ep)))

5[[(ca11 Eproc:f Eproc::v)]] €1
where e; =[a: (Int — Value 1)]eg

(with-procedure (E]Eproc:f] €1)
(Ap. (p (Procedure — Value (Ade’. (E[(primop + x a)] [x:4d]e’)))
er))

S[[(call Epmc:agg 20)]] €2
where eg = [f: (Procedure — Value
(AMe’. (E](primop + x a)] [x:0]e’)))]es

(with-procedure (E[Eproc:azo] €2) (Ap. (p (Int— Value 20) eg)))

E[(call £ 300)] es
where es =[a: (Int — Value 20)]eg

(with-procedure (E[£f] es) (Ap. (p (Int+— Value 300) e3)))
(Mde’. (E](primop + x a)] [x:4d]e’)) (Int+— Value 300) es)
El(primop + x a)] [x: (Int+— Value 300)][a: (Int — Value 20)] ez

= (Int — Value 320)

Figure 7.11: (call Epppe:q; 1) evaluation using dynamic scoping

288 CHAPTER 7. NAMING

E[(call Eprpe:ar 1] €0

Sﬂ(call Epmc:f Ep""oc:a)):[l [a ([ntl—> Value 1)

S[[(Call Epmc:a20 20)]] [f
(A0 . E[(primop + x a)] [x:]

([ntl—> Value 20)

N

—]—> (Procedure — Value J
)

4_,

E[(call £ 300)] [a:

(a) Environment diagram for the sample expression under static scoping.

E[(call Eprpe:ar 1] €0

}b
B
|

S[[(Call Ep'f"OCZf EpT‘OC:I)]] [
S[[(Call Epmc:a20 20)]] [f:
[

([ntl—> Value 1)

(Procedure — Value

(MNe’ . E[(primop + x a)] [x:d]e’))

5[[(ca11 f 300)]] a: {—> (Int'—> Value 20)

(b) Environment diagram for the sample expression under dynamic scoping.

Figure 7.12: Environment diagrams illustrating the difference between statically
and dynamically scoped procedures.

7.2. NAME CONTROL 289

environment starting with [a : 1] emphasizes that a statically scoped procedure
“remembers” the environment in which it was created. This lexical environ-
ment is determined by the text lexically surrounding the proc expression that
gave rise to the procedure value.

The dynamic scoping example is depicted in Figure 7.12(b). Here, there is
no arrow emanating from the procedural value because the environment e’ in
which the body is evaluated will be the dynamic environment in effect when
the procedure is called. The dynamic environment is determined by the bindings
in the current branch of the tree of procedure calls made during the execution of
the program. In this example, it is constructed by the procedure calls associated
with the three nested let expressions.

Although the environment chains happen to be the same for these two exam-
ples, lexically scoped languages tend to give rise to shallow, bushy environment
diagrams, while dynamically scoped languages tend to give rise to deep thin ones
(see Exercise 7.13).

Dynamic scoping seems rather odd. Is it useful? Yes! Dynamic scope is
convenient for specifying the values of implicit parameters that are cumbersome
to list explicitly as formal parameters to procedures. For example, consider the
derivative procedure:

(define derivative
(lambda (f x)
(/ (- (£ (+ x epsilon))
(f x))

epsilon)))

Note that epsilon appears as a free variable in derivative. With dynamic
scoping, it is possible to dynamically specify the value of epsilon via any binding
construct. For example, the expression

(let ((epsilon 0.001))
(derivative (lambda (x) (* x x)) 5.0))

would evaluate (derivative (lambda (x) (* x x)) 5.0) in a context where
epsilon is bound to 0.001.

However, with lexical scoping, the variable epsilon must be defined at top
level, and, without using mutation, there is no way to temporarily change the
value of epsilon while the program is running. If we really want to abstract
over epsilon with lexical scoping, we must pass it to derivative as an explicit
argument:

290 CHAPTER 7. NAMING

(define derivative
(lamdba (f x epsilon)
(/ (= (£ (+ x epsilon))
(£ x))

epsilon)))

But then any procedure that uses derivative and wants to abstract over
epsilon must also include epsilon as a formal parameter. In the case of
derivative, this is only a small inconvenience. But in a system with a large
number of tweakable parameters, the desire for fine-grained specification of vari-
ables like epsilon can lead to an explosion in the number of formal parameters
throughout a program.

As an example along these lines, consider the huge parameter space of a
typical window system (colors, fonts, stippling patterns, line thicknesses, etc.).
It is untenable to specify each of these as a formal parameter to every window
routine. At the very least, all these parameters need to be bundled up into a
data structure that represents the graphics state. But then we still want a means
of executing window routines in a temporary graphics state in such a way that
the old graphics state is restored when the routines are done. Dynamic scoping
is one technique for achieving this effect; side-effects are another.

Another typical use of dynamic scope is to specify error handling routines
that are in effect during the execution of an expression. We shall see an example
of this in Chapter 9.

Although dynamic scoping is good for allowing the specification of implicit
parameters, it is seriously at odds with modularity, especially in a language that
has first-class procedure values. We explore this issue in the exercises.

> Exercise 7.11
a. Can a dynamically scoped FL interpreter be written in statically scoped FL?

b. Can a statically scoped FL interpreter be written in dynamically scoped FL? <

> Exercise 7.12 Write a single FL expression that exhibits a different behavior in
each of the four following scenarios:

a. statically scoped CBN FL

b. statically scoped CBV FL

c. dynamically scoped CBN FL

d. dynamically scoped CBV FL <

> Exercise 7.13 This problem considers a dynamically scoped variant of FL called
FLUID. The abstract syntax for FLUID is the same as that for FL except that the

7.2. NAME CONTROL 291

grammar for FLUID does not include any recursion constructs. That is, the FLUID
kernel does not contain the rec construct (rec I E); and FLUID does not contain
the letrec construct (letrec ((I E)*) E). The denotational semantics for FLUID
is the same for that as FL except for the changes specified in Figure 7.9.

a. For each of the expressions below, show the result of evaluating the expression
both in FL. and in FLUID. Refer to the denotational semantics as necessary to
reason about the evaluation process, but don’t get lost in a symbol manipulation
quagmire. You may find environment diagrams helpful for thinking about these
problems.

i. (let ((a 1))
(let ((f (lambda (a) (primop + a 20))))
(f a)))

ii. (let ((a 1))
(let ((£f (lambda (a b) (primop + a b))))
(f 20 300)))

iii. (let ((a 1))
(let ((a 20)
(b 300))
(primop + a b)))

iv. (let ((a 1))
(let ((f (lambda (b) (primop + a b))))
(f (let ((a (£ 20)))
(£ 300))))

v. (let ((a 1))
(let ((f (lambda (b) (primop + a b))))
(let ((g (lambda (a) (f a))))
(g (g 2)))))

b. In FLUID, the usual desugaring of multiple-argument abstractions into single
argument abstractions no longer behaves as expected. Explain what goes wrong
with the usual desugaring. (You do not need to describe how to fix the problem.)

c. In FLK, the factorial procedure is written as the expression:

292 CHAPTER 7. NAMING

(rec fact (proc n
(if (primop = n 0)
1
(primop * n (fact (primop - n 1))))))

FLUID has no recursion constructs, but none are needed to write recursive defi-
nitions.

i. Briefly explain why the above claim is true.
ii. Show the definition for factorial procedure in FLUID.
iii. Explain why your FLUID definition for factorial wouldn’t work in FL.

d. Consider the factorial procedure from part c. When using the denotational seman-
tics to determine the meaning of (call fact 3) in environment ey, the meaning
of (primop = n 0) is determined in four distinct environments. For both CBV
FL and for FLUID, draw an environment diagram that shows the relationship
between these four environments. <

> Exercise 7.14 Consider a version of FL called FLAT in which a procedure (a
lambda or kernel proc expression) is not allowed to have free identifiers. Can the
meaning of a FLAT expression differ under lexical and dynamic scope? If so, exhibit
such an expression; if not, explain why. <

> Exercise 7.15 Develop an operational semantics for CBV FL that uses explicit
environments instead of substitution. <

> Exercise 7.16 Develop an operational semantics for a dynamically scoped version
of CBV FL. 4

> Exercise 7.17 The static scope expressed in Figure 7.9 is typical of block structured
languages. However, other kinds of static scope are imaginable. For example, suppose
that egiopar is the top-level FL environment — the one that defines the meanings of all
of the standard library names (e.g., +, boolean?, cons, etc.). Then global scoping is
a static scoping mechanism in which free identifiers in a proc expression are resolved
relative to egiope rather than the environment at the time of procedure creation or at
the time of procedure call.

a. Write the valuation clauses for proc and call for a CBV variant of FL. with
global scoping.

b. Write a single FL expression whose value is a symbol (one of global,
block-structure, or dynamic) indicating the scoping mechanism under which it
is evaluated. <

7.2. NAME CONTROL 293

> Exercise 7.18 In this problem, we ask you to give a translation from dynamically
scoped, call-by-value FLK to PosTLISP, the language defined in Exercise 3.45. You are
only required to translate a subset of FLK, defined by the following grammar:

E = U| 1| (proc I E) | (call E; Eg) | (primop / E; Ejz)

Your translation should map every expression Ery i of the subset to a sequence QpostLisp

of PosTLISP commands such that:
Erik pepy U ifandonly if (Qpostrisp) Fosrisp Us
Eprx pegy error it and only if (QpostLisp) Fosirzsp €rror, and
Erik pegy oo—loop it and only it (QpostLisp) Fosiziap 00— loop,

where -5y~ means dynamically scoped, call-by-value FLK evaluation. <

> Exercise 7.19 Alyssa P. Hacker is asked by Analog Equipment Corporation to
change their version of FL to be dynamically scoped in response to customer demand.
Alyssa is asked to do this over a weekend, but she does not panic. Instead, she realizes
that by implementing just a few new primitives, the entire job can be accomplished
with clever desugaring.

More specifically, Alyssa added the following three new primitives:

o (Ynew): Creates a new, empty environment.

o (%extend ENV (symbol I) V): Returns a new environment equal to ENV,
except that [is bound to V.

e (Y%lookup ENV (symbol I)): Returns the value of identifier I in environment
ENV. It is is a fatal error if I is not bound in ENV .

In Alyssa’s desugaring, the *dynenv* variable is always bound to the current dy-
namic environment. For this problem, consider only single argument procedures and
calls. Here is Alyssa’s desugaring rule for call:

D[(call E; E)] = (call D[E;] *dynenvx D[Ez])

a. What is the desugaring rule for I (variable reference)?
b. What is the desugaring rule for (lambda (I) E)?
c. What is the desugaring rule for (let ((I; E;) ... (Up En)) Epogy)?

d. Do all identifiers have to be looked up in the dynamic environment? If not, state
what optimizations of the desugarings for identifiers and lambda are possible, and
when and how they could be accomplished.

e. Desugar the following expression in this dynamically scoped version of FL:

(lambda (g) (call g x))

294 CHAPTER 7. NAMING

7.2.2 Multiple Namespaces

Sometimes a single environment is not sufficient to model the naming features of
a programming language. Languages commonly support multiple namespaces
— i.e., several different contexts in which names are associated with values of
various sorts. For example, Figure 7.13 shows a piece of COMMON LISP code in
which the name x is used to name five different entities at the same time: an
exit point, a special (dynamic) variable, a lexical variable, a procedure, and a
tagbody tag.

(block x ; X1, name of exit point
(let ((x 2)) ; X9, declared to be
(declare (special x)) ; a special variable
(let ((x 3)) ; X3, normal lexical variable
(flet ((x (y) ; X4, names a procedure that
+xy)) ; refers to x3 in its body
(tagbody
X ; X5, a tagbody tag
(if > x 6) ; this x = x3 = 3
(go x) ; go to x5 if we get here
(return-from
X ; return from exit point xq
(locally (declare (special x))
; Make 2nd x special below
(x x) ; Apply procedure x4 to
)))))))) ; special x9
; The value of this expression is 5.

Figure 7.13: CoOMMON LISP code that uses multiple namespaces

There are two typical situations in which multiple namespaces are useful:

1. The language provides multiple scoping mechanisms. In this case, differ-
ent namespaces can be used for different scoping mechanims. COMMON
Lisp, for example, supports both lexical and dynamic scoping of variables;
variables are ordinarily scoped lexically, but those marked as special are
dynamically scoped.

2. Different namespaces are used to name different kinds of entities. For
example, exit points, tag labels, and procedures are in non-overlapping
namespaces in Common Lisp. Namespaces used this way are especially
useful for modeling values that are not first-class.

Of course, any language with multiple namespaces must provide methods

7.2. NAME CONTROL 295

for both binding names and accessing names within each namespace. For ex-
ample, consider the namespaces for exit points and tags in the Common Lisp
example above. block introduces a name into the exit point namespace, and
return-from accesses the exit point name, whereas tagbody introduces new tag
names into the namespace of tags, and go can refer to these tags.

Multiple namespaces are modeled in denotational semantics by using multi-
ple environments. For example, we could modify the semantics of FL to

e support both lexical and dynamic scoping;
e make procedures second-class objects.

These modifications are left as exercises.

> Exercise 7.20 DYNALEX Understanding the virtues of both lexical and dynamic
scoping, Sam Antix decides to design a language, DYNALEX, that supports both kinds
of scoping mechanisms. The kernel of DYNALEX is statically scoped CBV FLK, ex-
tended with the following extra constructs to support dynamic scoping;:

(dylambda (I4yn*) FEpody) is like lambda, but binds the names Igy,* in a dy-
namic environment rather than a static one.

(dyref D) looks up I in the dynamic environment rather than the lexical one.

The full DYNALEX language includes the usual FL sugar as well as the following sugar
for the dylet construct:

Dexp[(dylet (U; Ey) ... (n E)) Epoay)] =
((dylambda (I; ... I,) DexplBroay]) DesplBi] .- DexplEnl)

The following DYNALEX expression illustrates both dynamic and lexical scoping:

(let ((a 1) (b 20))
(let ((f (lambda () (+ a (dyref b)))))
(dylet ((a 300) (b 4000))
(f)))) DYNALEX 4001

a. Sketch a denotational semantics for DYNALEX that includes the the signature
of £, and the valuation clauses for the following constructs: I, proc, call, dyref,
and dylambda.

b. Explain why Sam chose to make the multi-argument dylambda abstraction a ker-
nel form rather than treating dylambda as sugar for a single argument abstraction
for dynamic variables.

c. Write a set of translation rules for translating the DYNALEX kernel into FLK.
<

296 CHAPTER 7. NAMING

7.2.3 Non-hierarchical Scope
7.2.3.1 Philosophy

The binding constructs we have seen so far are all hierarchical in nature. Each
construct establishes a parent-child relationship between an outer context in
which the declaration is not visible and an inner (body) context in which the
declaration is visible. In static scoping, the hierarchy is determined by the
abstract syntax tree, while in dynamic scoping, the hierarchy is determined
by the tree of procedure calls generated at run-time. In both these scoping
mechanisms, there is no natural way to communicate a declaration laterally
across the tree-structure imposed by the hierarchy.

For small programs, this is not ordinarily a problem, but when a large pro-
gram is broken into independent pieces, or modules, the constraint of hierarchy
can be a problem. Modules connect and communicate with each other via col-
lections of bindings; a module provides services by exporting a set of bindings
and makes use of other modules’ services by importing bindings from those other
modules. In a hierarchical language, the scope of a binding is a single region of
a program, so all the clients of a module must reside in the region where the
module’s bindings are in scope.

The traditional solution to the problem of communicating modules is to use
a global namespace. All exported bindings from all modules are defined in a
single environment, so all exported bindings are available to all modules. This
technique is certainly widespread, but it has some major drawbacks:

e In order to avoid accidental name collisions, every module must be aware
of all definitions made by all other modules, even those definitions that
are completely irrelevant.

e In practice, the dependencies among modules are often poorly documented,
making intermodule dependencies difficult to track.

A way for languages to overcome the hierarchical scoping of binding con-
structs is to provide a value with named subparts. For this purpose, we will
introduce a new module value that bundles up a set of bindings at one point in
a program and can communicate them to a point that is related neither lexi-
cally nor dynamically to the declarations of those bindings. Typically, a module
defines a set of named values, especially procedures, that provide a particular
function. For example, a matrix module might provide a set of matrix manipula-
tion procedures like matrix-invert and gaussian-elimination. The modules
described here are similar to PASCAL records and C structures.

7.2. NAME CONTROL 297

We will study modules here in the context of a record package for FL. (Chap-
ter 15 will explore a more complete module system.) Figure 7.14 lists new kernel
forms for records.

(record (I E)*) Create a record.

(select I E) Select field I from record E.

(override F; E») Append the named components of two records, giving prece-
dence to names in Fy.

(conceal (J*) E) Return a new record without specified fields.

Figure 7.14: Kernel record constructs.

record builds a data structure of name/value bindings. Values can be extracted
by name using the select construct. Two records can be combined into a new
record with override, which gives precedence to the bindings in the second
record argument. conceal returns a new record in which some bindings of the
original record have been removed. For example:

(define ml1 (record
(a (+ 2 3))
(square (lambda (x) (* x x)))))

(select aml) 1 5

((select square ml) (select a ml)) 1> 25
(select b m1) 4z errormno-such-record-field
(define m2 (record (a 7) (b 11)))

(select a (override ml m2)) -7 7

(select a (override ml (conceal (a) m2))) 7> 5

Notice that there is a design choice in the semantics of conceal: the language
designer must choose whether or not it is an error when conceal attempts to
hide a name that is not actually a field in the record.

Figure 7.15 shows some convenient sugar constructs for records. Like many
desugarings, these capture handy idioms programmers would invent on their
own. recordrec allows the fields of a record to be mutually recursive. This is
useful when records are used to construct separate program modules that contain
procedures. with-fields provides a lexical scope that binds the specified names
exported by a record, saving the programmer the tiresome task of writing select

298 CHAPTER 7. NAMING

(recordrec (I E)*) A record with mutually recursive bindings.

(with-fields (I*) F; E;) Bind the I* to the corresponding fields in the record
value F; and then evaluate Es.

(restrict (I*) E) Return a new record with only the specified fields.
The dual of conceal.

(rename ((Ly;q Inew)® E) Rename I,q fields to I, fields in E.

Figure 7.15: Record sugar constructs.

everywhere (or introducing the lets manually). Note that with-fields requires
the list of identifiers to be bound. This allows the bindings in this lexical scope
to be apparent,? which is necessary in a block structured language, and it also
allows the programmer to avoid introducing unnecessary names. restrict is
the natural dual to conceal, useful when exporting comparatively few names.
rename helps programmers avoid name conflicts.

The desugarings for these constructs appear in Figure 7.16. Just as with conceal,
the language designer must choose whether names not defined by a record gen-
erate errors. In a CBV language, the desugaring rules will generate an error
when the undefined name is selected.

D[(recordrec (I; E;) ... (I, E)))] =
(letrec ((I; D[E(] ... (I, D[E.])
(record (I; I;) ... I, 1,)))
D[(with-fields (I; ... I,) E; Ep)] =
(Let (Ufresh D[[EI]]))
(let ((I; (select Iy Ipesn)) ... (I, (select I, Ipesn)))
D[E:]))

D[(restrict (I; ... I,) BE)] =
(1et ((Ifresh D[[E]]))
(record (11 (SeleCt II Ifresh)) (In (select In Ifresh))))

D[(rename ((I; I;") ... (I, I,")) B)] =
(let (Upresn D[E]D)
(override (conceal (J; ... I,) Ifesn)
(record (I;’ (select I; Ipesn)) ... (I,' (select I, Ipesn))))

Figure 7.16: Desugarings for the record syntactic sugar.

4We will see in Chapters ?? and 15 how a statically typed language could deduce this
information.

~—

7.2. NAME CONTROL 299
7.2.3.2 Semantics

Figure 7.17 and 7.18 present a denotational semantics for records. Since both
records and environments associate names and values, it is natural to model
a record as an environment. You are encouraged to develop an operational
semantics for the record constructs.

v € Value = ...+ Record
r € Record = Environment

with-record : Computation — (Record — Computation) — Computation
Defined like with-boolean and with-procedure.

extend-env* : Environment — Identifier* — Denotable* — Environment
= Ael*0* . matching (I*, §*)
([, D1 e
B (L Irest™, 0.0rest™) | (extend (extend® e Irest™ Grest™) I 6)
> else (err-to-comp no-such-record-field)
endmatching

combine-env : Environment — Environment — Environment
=MAejez . AI. matching (lookup e; I)
(Denotable — Binding §) | (lookup e; I)
(Unbound — Binding unbound)| (lookup eg I)
endmatching

Figure 7.17: Domains and auxiliary functions for a denotational semantics of
the kernel record constructs in a CBV language.

7.2.3.3 Examples

Figure 7.19 presents two modules for arithmetic: one for integers and one for
rational numbers.

The gcd routine is used by the rats module to remove common factors from
the numerator and denominator. Note how recordrec (and not record) is
used to create a recursive scope in which the rat constructor is visible to other
procedures in the module. Here is a sample use of the two modules:

300 CHAPTER 7. NAMING

E[(record (I; E;) ... U, E))] e =
(with-values EX[[E; ... E]]
(Av* . (val-to-comp (Record — Value (extend® [I;...I,] v* empty-env)))))

E[(select I ED]e =
(with-record (E[E] e)
(Ar. (with-denotable (lookup (Record — Environment r) I)
(A0 . (den-to-comp 6))))

E[(override E; Eg)]e =
(with-record (E[Eq] e)
(Ary . (with-record (E[E2] e)
(Arg . (val-to-comp
(Record— Value
(combine-env (Record — Environment r2)
(Record — Environment 71))))))))

E[(conceal (I; ... I,) El]e =
(with-record (E[E] e)
(Ar. (val-to-comp
(Record— Value
(M. ifIe[l; ... L]
then (Unbound — Binding unbound)
else (Iookup (Record — Environment 1) I)

fi)))))

Figure 7.18: Valuation functions for the kernel record constructs in a CBV
language.

7.2. NAME CONTROL

301

(define ints (record (zero 0) (add +) (sub -) (mul *) (div quotient)
(neg (lambda (x) (- 0 x)))
(recip (lambda (x) (quotient 1 x)))
(eq =) (1t <) (gt >)))

(define gcd (lambda (a b) (if (= b 0)
a
(gcd b (rem a b)))))
(define rats
(recordrec
(rat (lambda (numer denom)
(let ((common (gcd numer denom)))
(pair (/ numer common) (/ denom common)))))
(numer car)
(denom cdr)
(zero (rat 0 1))
(add (lambda (r1 r2)

(rat (+ (x (numer r1) (denom r2)) (* (denom r1) (numer r2)))

(* (denom r1) (denom r2)))))
(sub (lambda (r1 r2) (add r1 (neg r2))))
(mul (lambda (r1 r2)
(rat (* (numer r1) (numer r2))
(* (denom r1) (denom r2)))))
(div (lambda (r1 r2) (mul r1 (recip r2))))
(neg (lambda (r) (rat (- O (numer r)) (denom r))))
(recip (lambda (r) (rat (denom r) (numer r))))
(eq (lambda (r1 r2)
(and (= (numer r1) (numer r2))
(= (denom r1) (denom r2)))))
(1t (lambda (r1 r2) (< (* (numer r1) (denom r2))
(* (denom rl) (number r2)))))
(gt (lambda (r1 r2) (1t r2 r1)))))

Figure 7.19: Two modules for arithmetic.

302 CHAPTER 7. NAMING

(define sum-of-squares
(lambda (mod)
(with-fields (add mul) mod
(lambda (a b)
(add (mul a a) (mul b b))))))

((sum-of-squares ints) 3 4) 7> 25

(with-fields (rat) rats
((sum-of-squares rats) (rat 1 3) (rat 1 4))) > (25,144)

As a meatier example of using these arithmetic modules, consider the ma-
trix module generator in Figure 7.20. In this example, matrices are represented
as lists of rows.” make-matrix-module takes a number n and an arithmetic
module a and constructs a new module that implements n X n matrices whose
components are manipulated by a. For example, if n is 3 and a is rats, then
make-matrix-module returns a module of 3 X 3 matrices over the rational num-
bers. The input module a must supply a zero constant and binary add and mul
procedures. The resulting module is a matrix module that also exports these
names as matrix operations. This means it is possible to use n x n matrices as
elements of another matrix. Figures 7.21-7.23 show some matrix examples that
run on a CBV FL interpreter:

7.3 Object-Oriented Programming

Object-oriented programming has emerged as an extremely popular program-
ming paradigm. Definitions of what constitutes object-oriented programming
vary, but they typically involve state-based entities called objects that commu-
nicate via messages. The behavior of an object is defined by its class, which
specifies the object’s state variables and its responses to messages. Classes and
objects can be organized into inheritance hierarchies that describe how the
behavior of one object can be inherited from other objects or classes. Although
we will not discuss issues of state until the next chapter, it is worthwhile to
introduce object-oriented programming here because most of the issues involved
in this paradigm are issues of naming, not issues of state.

We introduce a purely functional object-oriented kernel called HOOK (Hum-
ble Object-Oriented Kernel) and its associated full language, HOOPLA (Hum-
ble Object-Oriented Programming Language). Figure 7.24 presents an s-expression
grammar for HOOK. Figure 7.25 gives the syntax of the syntactic sugar; the

5In practice, we would import the list routines from their own list module.

7.3. OBJECT-ORIENTED PROGRAMMING 303

(define make-matrix-module
(lambda (n element-module)
(with-fields (elt-add elt-mul elt-zero)

(rename ((add elt-add) (mul elt-mul) (zero elt-zero))

element-module)
(conceal (map map2 reduce make-list)

(recordrec
(zero (make-list n (make-list n elt-zero)))

(add (lambda (ml1 m2)
(map2 (lambda (rowl row2) (map2 elt-add rowl row2))
ml
m2)))
(mul (lambda (ml1 m2)
(map (lambda (rowl)
(map (lambda (row2)
(reduce elt-add
elt-zero
(map2 elt-mul rowl row2)))

(transpose m2)))

m1)))
(transpose (lambda (m) (if (null? (car m))
nil
(cons (map car m)
(transpose (map cdr m))))))

(map (lambda (f 1st)
(if (null? 1st)
nil
(cons (f (car 1lst)) (map f (cdr 1st))))))

(map2 (lambda (f 1lstl 1st2)
(if (or (null? 1st1l) (null? 1st2))
nil
(cons (f (car 1lstl) (car 1st2))
(map2 f (cdr 1lstl) (cdr 1st2))))))

(reduce (lambda (binop identity 1st)
(if (null? 1st)
identity

(binop (car 1st)
(reduce binop identity (cdr 1st))))))

(make-list (lambda (n elt)
(if (=n 0)
nil
(cons elt (make-list (- n 1) elt))))))))))

Figure 7.20: A generator for NxN matrix modules.

304 CHAPTER 7. NAMING

(define 2x2-int-matrices (make-matrix-module 2 ints))

(define im1 ’((1 2) (3 4)))
(define im2 ’((2 3) (4 5)))

f1-CBV> ((select add 2x2-int-matrices) iml im2)
(list (1ist 3 5) (list 7 9))

£f1-CBV> ((select mul 2x2-int-matrices) iml im2)
(1ist (1ist 10 13) (list 22 29))

Figure 7.21: 2 x 2 matrices of integers.

(define 2x2-rat-matrices (make-matrix-module 2 rats))

(define rml1 (with-fields (rat) rats
(list (1list (rat 1 4) (rat 2 4))
(list (rat 3 4) (rat 4 4)))))

(define rm2 (with-fields (rat) rats
(1ist (1ist (rat 1 5) (rat 2 5))
(list (rat 3 5) (rat 4 5)))))

£f1-CBV> ((select add 2x2-rat-matrices) rml rm2)
(1ist (list (pair 9 20) (pair 9 10))
(1ist (pair 27 20) (pair 9 5)))

f1-CBV> ((select mul 2x2-rat-matrices) rml rm2)
(l1ist (list (pair 7 20) (pair 1 2))
(list (pair 3 4) (pair 11 10)))

Figure 7.22: 2 x 2 matrices of rationals.

7.3. OBJECT-ORIENTED PROGRAMMING 305

(define 2x2-matrices-of-2x2-int-matrices
(make-matrix-module 2 2x2-int-matrices))

(define im3 ’((3 4) (5 6)))
(define im4 ’((5 6) (7 8)))

(define imml1 (list (list iml im2) (list im3 im4)))
(define imm2 (list (list im2 im3) (list im4 im1)))

£f1-CBV> ((select add 2x2-matrices-of-2x2-int-matrices) imml imm?2)
(1ist (1ist (1list (1ist 3 5) (list 7 9))
(list (list 5 7) (list 9 11)))
(list (list (list 8 10) (1list 12 14))
(1ist (1list 6 8) (1list 10 12))))

£f1-CBV> ((select mul 2x2-matrices-of-2x2-int-matrices) imml imm?2)
(list (list (list (list 41 49) (1list 77 93))
(list (1list 24 32) (list 48 64)))
(list (1list (1list 89 107) (list 125 151))
(list (list 52 70) (list 76 102))))

Figure 7.23: 2 x 2 Matrices of matrices of integers.

desugarings themselves are defined in Figure 7.26.

Figure 7.27 contains some sample HOOPLA classes. For example, a point
is created by sending make to the point class. The resulting point responds to
the x, y, and move messages. The language does not support side-effects; move
does not change the existing point but creates a new one. Every method has as
its first formal parameter a self variable that names the object that originally
received the message. This self variable is crucial for getting inheritance to
work. The turtle class inherits behavior from both points and directions.
Figure 7.28 shows some examples of interacting with a HOOPLA interpreter.

7.3.1 Semantics of HOOK

The inheritance structure in HOOXK programs is reminiscent of records in FL.
In fact, the similarity is so great that we will define the semantics of HOOK
programs by compiling them into a version of the FL language extended with
records. The key to this transformation is that objects are represented as records
that bind message names to procedures that represent methods. A message
send is then handled by simply looking up the method/procedure in the receiver
record and applying it to the actual arguments.

306 CHAPTER 7. NAMING

E € Exp
M € Message = Identifier
I € Identifier
L € Lit = Intlit 4+ Boollit + . ..
E:=1 [Literal]
| I [Identifier]
| (method Mmessage (]self Iformal*) Ebody) [Slmple ObJeCt]
| (object-compose Eopj1 Eopjz) [Object Composition]
| (null-object) [Null Object]
| (send Mmessage Ereceiver Earg*) [Message Send]
Figure 7.24: The abstract syntax for HOOK.
P € Program
D € Def
P = (program Eyoqy Dges™) [Program|]
D ::= (define I,ume Fuoalue) [Definition]
E:=...
| (object Eopject™) Object]
| (class (Iinit*) Einstance*) Class]
| (Lambda (Lformar™) Ebody) Abstraction]

| et (Uname Buvatue)™) Epoay) [Local-Binding]

[

[

[

| (Brator Erana™) [Application]
[

| (1f Etest Econsequent Ealternative) [BI’&I’ICh]

Figure 7.25: The syntax of the HOOPLA language.

7.3. OBJECT-ORIENTED PROGRAMMING 307

D[(object)] = (null-object)
D[(object Efsy Erest™)] = (object-compose D[Ef:] D[(object Erest™])

D[[(class (Iinit*) Einst1 Einstn)]] =
(method make (Lignore Iinit™) D[(object Einst, ... Einst,)])
where Lignore @i, Freelds[Einst,]

D[[(lambda (Iformal*) Ebody)]] = (method call (Iignore Iformal*) D[[Ebody]])
where Lignore ¢Freelds[Epoqy]

D[[(Erator Erand*)]] = (send call DIIErator]] D[[Erand*]])
D[[(let ((Ivar Eﬂal)*) Ebody)]] :D[[((la-[nbda (Ivar*) Ebody) Eﬂal*)]]
D[(if Eiest Econ Eax)] = (send if-true D[Fiest]

D[(lambda O E.on)]
D[(lambda () Eu)])

Figure 7.26: Rules for desugaring HOOPLA into HOOK.

We formally define the transformation from HOOK code to CBV FL code
in terms of the compilation function 7 : Expyoor — Exppr. This function is
defined in Figure 7.29. To be complete, we also would need functions that map
HOOK programs to FL programs and HOOK definitions to FL definitions,
but since these are straightforward, we will leave them out.

The core of the compilation is the handling of methods, objects, and mes-
sage sends. A HOOK method construct is transformed into an FL record
construct with a single binding of the message name to a procedure that does
the work of the method. A HOOK object-compose construct compiles into an
FL override construct; the semantics of override are such that methods from
Eqpj1 will take precedence over methods from Eyyn. A HOOK message send
compiles to a procedure application in FL; the procedure is found by looking
up the message name in the record that represents the receiver.

The handling of literals (via 7 j;) is perhaps the trickiest part of the compi-
lation. HOOK literals stand not for simple values but for full-fledged message-
passing objects. A HOOK number object, for instance, must compile into an
FL record that has methods for all the numeric operations. In addition, such
a record must also be able to supply the unadorned version of the value it is
holding onto; this is the purpose of the binding involving I;,;. The identifier
I;; must be the same for all literal objects. Note that operations returning the

308 CHAPTER 7. NAMING

(define point
(class (init-x init-y)

(method x (self) init-x)

(method y (self) init-y)

(method move (self dx dy)

(object (send make point
(send + (send x self) dx)
(send + (send y self) dy))
self) ; Allows mixins

)))

(define direction
(class (init-angle)
(method angle (self) init-angle)
(method turn (self delta)
(object (send make direction
(send + (send angle self) delta))
self)) ; Allows mixins

))

(define turtle
(class (x y angle)
(method home (self)
(object (send make turtle x y angle)
self)) ; Allows mixins
(send make point x y)
(send make direction angle)))

(define color
(class (clr)
(method color (self) clr)
(method new-color (self new)
(object (send make color new)
self))))

(define colored-point
(class (x y col)
(send make point x y)
(send make color col)))

Figure 7.27: Sample HOOPLA classes.

7.3. OBJECT-ORIENTED PROGRAMMING 309

;33 Define a turtle T1

(define t1 (send make turtle 0 0 0))

(send x t1) mooprz 0 {This is the object 0}
(send y t1) HOOPLA® 0

(send angle t1) wopprz ©

;;; Define T2 as a rotated and translated version of T1.
(define t2 (send move (send turn ti1 45) 17 23))

(send x t2) “HOOPLA® 17

(send y t2) HOOPLA® 23

(send angle t2) wopprr 45)

;55 Note that Tl is unchanged. E.g.:
(send X tl) m’ 0

;33 Now define T3 as a version of T2 sent home.
(define t3 (send home t2))

(send X t3) m’ 0

(send y t3) m’ 0

(send angle t3) wooprx ©

Figure 7.28: Example interactions with a HOOPLA interpreter.

same kind of object being defined (e.g., +, *) return an extended version of self
rather than just a fresh instance of the object. This means that the returned
object retains all the behavior of the receiver that is not explicitly specified by
the definition.

Booleans, symbols, and whatever other literals or standard identifiers we
might support are handled like integers.

> Exercise 7.21 What is the value of the following HOOPLA expression?

(let ((obl (object (method value (self) 1)))
(ob2 (object (method value (self) 2)))
(ob3 (object (method value (self) 3)
(method evaluate (self) (send value self)))))
(send evaluate (object obl ob2 0b3))) <

> Exercise 7.22 Following the example for integer literals, show how boolean literals
in HOOK compile into FL. HOOK boolean objects handle the messages not?, and?,
or?, if-true, and if-false. <

310 CHAPTER 7. NAMING

T : Expyoox — Exppy,
T : Litnoox — Exppr,

T =I
T[L] =T 1+[L], where T j; is described below.

Tﬂ(methOd Mmessage (]self Iformal*) Ebody)]] =
(record (Mimessage (lambda (Iseir Itormar™) 7 [Ebody])))

T [(object-compose Eopj, Eop;,)] =(override T [Eoy;,] 7 [Eosj,])
7T [(null-object)] =(record)

T[[(send Mmessage Ereceiver Earg1 ~'~Ea7"gn)]] =
(let ((Ireceiver T[[Ereceiver]]))
((select Mmessage Ireceiver) Lreceiver T[[Eargl]] ---T[[Eargn]]))
where Leceiver € Ui Freelds[Eqrg,]

T 1it[N] =(letrec ((make-integer
(lambda (n)
(record
(Iint n)
(+ (lambda (self arg)
(override self
(make-integer
(primop + n (select Iy arg))))))
(* (lambda (self arg)
(override self
(make-integer
(primop * n (select [y arg))))))

2)))

(make-integer N))
where I;,; is the same for all integers but distinct from all other message names.

Similarly for other literals.

Figure 7.29: The rules for translating HOOK to FL.

7.3. OBJECT-ORIENTED PROGRAMMING 311

> Exercise 7.23 Anoop Hacker is confused about namespace issues in HOOPLA. In
the syntax of the full language, there are several binding constructs: class, lambda,
let, and method. The first three constructs all bind formal parameters; the last one
binds a message name and a name for self in addition to the formal parameters of the
method. You have volunteered to help Anoop answer the following questions. Carefully
study the definitions of HOOPLA to HOOK desugaring and HOOK to FL translation
to justify your answers. Give examples where appropriate.

a. How many distinct namespaces are there in HOOPLA?

b. Isit possible for a method formal parameter named x to be shadowed by a message
named x?

c. Isit possible for a message named x to be shadowed by a method formal parameter
named x?

d. Do the answers to parts b and c¢ change if the record in the translation for
object-compose becomes a recordrec instead? If so, how? <

> Exercise 7.24 Does HOOPLA’s 1lambda construct support currying? Explain. <

> Exercise 7.25 Paula Morwicz doesn’t like the fact that it’s always necessary to
explicitly name self within a HOOPLA method. She decides to implement a version
of HOOPLA called SELFISH in which a reserved word self is implicitly bound within
every method body. For example, in SELFISH the point class would be written as follows:

(define point
(class (init-x init-y)
(method x () init-x)
(method y () init-y)
(method move (dx dy)
(object (send make point
(send + (send x self) dx)
(send + (send y self) dy))
self) ; Allows mixins

)

In this example, the instances of self within the move method evaluate to the receiver
of the move message. Because self is a reserved word in SELFISH, it is illegal to use it
as a formal parameter to a method.

a. Describe what modifications would have to be made to the following in order to
specify the semantics of SELFISH:
i. The HOOK grammar.
ii. The HOOPLA to HOOK desugarer.
iii. The HOOK to FL translator.

312 CHAPTER 7. NAMING

b. Unfortunately, SELFISH doesn’t always give the behavior Paula expects. For
example, she makes a simple modification to the definition of the point class:

(define point
(class (init-x init-y)
(method x () init-x)
(method y () init-y)
(method move (dx dy)
(let ((new-x (send + (send x self) dx))
(new-y (send + (send y self) dy)))
(object (method x () new-x)
(method y () new-y)
self)
))))

After this change, turtle objects (which are implemented in terms of points) no
longer work as expected. Explain what has gone wrong.

c. Show how to get Paula’s new point definition to work as expected. You can add
new code, but not remove any. You may perform alpha-renaming where necessary.

d. Which do you think is better: the explicit self approach of HOOPLA or the
implicit self approach of SELFISH? Explain your answer. <

Chapter 8

State

Man’s yesterday may ne’er be like his morrow;
Nought may endure but Mutability

— Mutability, st. 4, Percy Bysshe Shelley

I woke up one morning and looked around the room. Something
wasn’t right. I realized that someone had broken in the night before
and replaced everything in my apartment with an exact replica. [
couldn’t believe it...I got my roommate and showed him. I said, “Look
at this — everything’s been replaced with an exact replica!” He said,
“Do I know you?”

— Steven Wright

8.1 What is State?

8.1.1 Time, State, Identity, and Change

We naturally view the world around us in terms of objects. Each object is
characterized by a set of attributes that can vary with time. The state of an
object is the set of particular attributes it has at a given point in time. For
example, the state of a box of chocolates includes its size, shape, color, location,
whether its lid is on or off, and the number, types, and positions of the chocolates
inside.

Every object has a unique, time-independent attribute that distinguishes it
from other objects: its identity. The notion of identity is at the very heart of

313

314 CHAPTER 8. STATE

objectness, for it formalizes the intuition that objects exist over extents of time
rather than just at instants of time. Identity allows us to say that an object
at one point in time is the “same” as that at another point, regardless of any
changes of state that may have taken place in between. It also gives us a way of
saying that two objects with otherwise indistinguishable states are “different.”

Consider our box of chocolates again. If we open the lid, the state of the
box has changed, but we still consider it to be the same box of chocolates. Even
after we eat all the goodies inside, we think that the box has become empty, not
that we have a different box of chocolates.

On the other hand, suppose we leave an unopened box of chocolates on the
kitchen table one day and find an unopened box there the next day. We are
likely to assume that it’s the same box. However, a housemate might later
confess to consuming the entire original box in a fit of the munchies, but then
buying a replacement box after feeling pangs of guilt. In light of this confession,
we concede that the box on the table is not the same as the one we bought, even
though, from our perspective, its state is indistinguishable from that of the box
we left there the day before.

How could we monitor similar situations in the future without the help of
explicit confessions? Before placing an unopened box of chocolates on the table
we could alter the box in some irreversible way. The next day we could check
if the box on the table had the same alteration. If the box on the table the
next day does not exhibit the alteration, we are sure that the new box is not
the same as the original. If it does have the alteration, we aren’t 100% sure
(our housemate might have diabolically copied our alteration, or a new box by
chance might exhibit the same alteration), but there is reasonable evidence that
the box is in fact the same one we left the previous day.

This example emphasizes that the notions of time, state, identity, and change
are all inextricably intertwined.! The purpose of this chapter is to see how these
notions are expressed in a computational framework. We shall see that state and
its friends provide new ways to decompose problems but can greatly complicate
reasoning about programs.

8.1.2 FL Does Not Support State

Computing with time-varying state-based entities is an extremely popular pro-
gramming paradigm, both in traditional imperative languages, such as FOR-
TRAN, COBOL, PASCAL, C, and ADAas well as in object-oriented languages
like SMALLTALK, C+-+, C#, and JAVA. We shall call such languages stateful.

'For a further discussion of this philosophical point in a computational framework, see
Chapter 3 of [ASS96].

8.1. WHAT IS STATE? 315

One reason that stateful languages are so popular is that they resonate with the
experience that many programmers have in interacting with objects that change
over time in the world. At the opposite side of the spectrum are stateless
languages like the so-called purely functional programming languages such as
HASKELL and MIRANDA. Mostly functional languages are those, like CoM-
MON Lisp, SCHEME, and ML, that add stateful features on top of a stateless
function-oriented core.

The FL language we have studied thus far is a stateless language — it provides
no support for expressing computational objects with identity and state. In par-
ticular, neither variables nor data structures (pairs) may exhibit time-dependent
behavior. To underscore this point, we will show the difficulties encountered in
modeling a classic example of state — bank accounts — within FL. The goal is to
implement the following bank account procedures in FL:

e (make-account amount): Creates an account with amount as the initial
balance.

e (balance account): Returns the balance in account.

e (deposit! amount account): If amount is non-negative, increases the
balance of account by amount and returns the symbol succeeded. If
amount is negative, leaves the balance unchanged and returns the sym-
bol failed.

e (withdraw! amount account): If amount is less than or equal to the bal-
ance of account, decreases the balance of account by amount, and returns
the symbol succeeded. If amount is negative or is greater than the balance
of account, leaves the balance unchanged and returns the symbol failed.

We adopt the convention that names of procedures that change the state of an
object (such as deposit! and withdraw!) end in the ‘!’ character (pronounced
“bang”).

Note that the specifications of deposit! and withdraw! indicate not only
what value the procedures return (in both cases, one of the symbols succeeded
or failed) but also what effect the procedure has on the state of the account
(increasing or decreasing the balance). Even make-account has the effect of
updating the banking system to include a new account. Such changes in state are
referred to as side effects or mutations. In programming languages supporting
state, the specification of a procedure includes both its return value and its side
effects.?

2This is true for languages like SCHEME and C in which procedure calls are expressions —

316 CHAPTER 8. STATE

It turns out that it is impossible to write a set of FL procedures that
satisfy the above specifications. We will demonstrate this fact by studying a
nullary (i.e., zero-argument) procedure test-deposit! that performs the fol-
lowing steps in order:

e create an account acct with a balance of 100;

e determine the balance bal of acct;

deposit 17 dollars into acct;

determine the new balance bal’ of acct;

e return the difference bal ’ — bal.

In a stateful language, (test-deposit!) should return 17. However, we can
show that in FL test-deposit! must return 0!

If we try to write test-deposit! in FL, we immediately run into a stumbling
block. The specified actions are clearly ordered by time, but FL provides no
explicit construct for specifying that expressions should be evaluated in any
particular order. To get around this problem, we assume the existence of a
construct (begin E; FE») that evaluates F; before F». Since all FL expressions
must return a value, we dictate that the value returned by a begin expression is
the value of Fy. The formal semantics of begin are specified by the operational
rewrite rules and the denotational valuation clause in Figure 8.1.

Operational Semantics

(begin V E)=F [begin-return]

E,=F; !
(begin E; Ej3) = (begin E;’ F3)

[begin-progress]

Denotational Semantics

E[(begin E; Ep)] =Ae.(with-value (E[E;] e) (Av.(E[E2] ¢)))

Figure 8.1: Operational and denotational semantics of begin.

Using begin, we can write test-deposit! in FL as follows:

constructs that appear in value-accepting contexts. But in many languages, procedure calls
are commands — constructs that do not produce values but are executed for effect only. In
such languages, procedure specifications do not describe a return value.

8.1. WHAT IS STATE? 317

(define test-deposit!
(lambda ()
(let ((acct (make-account 100)))
(let ((old (balance acct)))
(begin (deposit! 17 acct)
(- (balance acct) 0ld))))))

The abstraction can be translated into FLK as follows:

(proc ignore
(call (proc acct
(call (proc old
(begin (call (call deposit! 17) acct)
(primop - (call balance acct) old)))
(call balance acct)))

(call make-account 100)))
We can now use our semantics frameworks to show that the FLK call
(call test-deposit! #u)

must evaluate to 0 regardless of how deposit! is defined. We will assume a
CBN version of FLK; since termination is not an issue here, the result will be
the same for CBV.

An operational trace of (call test-deposit! #u) appears in Figure 8.2.
Note the three copies of the expression (call make-account 100) generated
by substitution. In FL’s operational semantics, an expression representing a
data structure for all intents and purposes s the data structure. Since the
second operand of deposit! and the operand of the two calls of balance are
syntactically distinct copies of the make-account expression, any operations
performed by deposit! can’t possibly affect the operands of the balance calls.
If we make the assumption that

(call balance (call make-account 100)) = 100

(this would seem to be required of any reasonable bank account implementation),
then the trace shows that (test-deposit!) indeed evaluates to 0.

Denotational semantics offers another perspective on this example. Recall
that FL’s valuation function £ maps expressions and environments to expressible
values. If an environment econer+ 1S specified, then a given expression must
always denote the same meaning relative to e.ontest because £ is a mathematical
function. Suppose that e; is an environment in which acct is bound to a
representation of an account with a balance of b dollars (b need not be 100).
Then the following must be true:

(€] (call balance acct)] e;) = b

Now consider the meaning of the following expression F.,. with respect to e;:

318 CHAPTER 8. STATE

(call (proc ignore
(call (proc acct
(call (proc old
(begin (call (call deposit! 17) acct)
(primop - (call balance acct) old)))
(call balance acct)))
(call make-account 100)))
#u)
= (call (proc acct
(call (proc old
(begin (call (call deposit! 17) acct)
(primop - (call balance acct) old)))
(call balance acct)))
(call make-account 100))
= (call (proc old
(begin (call (call deposit! 17) (call make-account 100))
(primop - (call balance (call make-account 100))
0ld)))
(call balance (call make-account 100)))
= (begin (call (call deposit! 17) (call make-account 100))
(primop -
(call balance (call make-account 100))
(call balance (call make-account 100))))

= (primop -
(call balance (call make-account 100))
(call balance (call make-account 100)))
= (primop - 100 100)
= 0

Figure 8.2: Operational trace showing that (call test-deposit! #u) evalu-
ates to 0.

8.1. WHAT IS STATE? 319

E.pre = (call (proc old
(begin (call (call deposit! 17) acct)
(primop - (call balance acct) old)))
(call balance acct))

This expression contains two occurrences of (call balance acct) that are eval-
uated in environments containing the same binding for acct. So both of these
occurrences denote the same number b. But then the meaning of old is clearly
b, so the meaning of

(primop - (call balance acct) old)

must be 0. Thus, we have shown that F.,. denotes 0, regardless of which
account is denoted by acct. So (test-deposit!) must also denote 0.

In both the operational and denotational analyses, the fundamental insight
is that (test-deposit!) returns the difference of two occurrences of the expres-
sion (call balance acct), and these must necessarily have the same value. A
language in which distinct occurrences of any expression always have the same
meaning within a given naming context is said to be referentially transpar-
ent. Of course, the notion of “naming context” needs to be fully specified.
Intuitively, two occurrences of an expression are in the same naming context if
they share the same Stoy diagram — i.e., if every occurrence of a free identifier in
one refers to the same binding occurrence as the corresponding identifier in the
other. Stateless languages, such as our mini-language FL and the real language
HASKELL, are referentially transparent, while stateful languages are not.

Referential transparency is a property that we frequently use in mathematical
reasoning in the form of “substituting equals for equals.” But it is seriously at
odds with the notions of state and time. State is predicated on the idea that
observable properties of an object can change. But if we make the reasonable
assumption that a property of an object can be accessed by applying a single-
argument procedure to that object (as in (balance acct) above), referential
transparency dictates that all occurrences of such an expression within a given
environment must denote the same value. Thus, the observable properties of
an object cannot change. And if changes to the state of objects cannot be
observed, how meaningful is it to talk about one action happening before or
after another? We shall have more to say about referential transparency and
state in Section 8.2.5.

Finally, suppose we actually try to write the definition of deposit! in FL.
What kind of difficulties do we run into? Below is a skeleton for such a procedure:

320 CHAPTER 8. STATE

(define deposit!
(lambda (amount account)
(if (< amount 0)
’failed
(begin EIncreaseBalance
’succeeded))))

The body of deposit! returns the right value (one of the symbols failed or
succeeded). But how do we write Ep,creaseBalance ! By the same reasoning used
above, no FL expression can possibly alter the state of the account. Obviously,
we are missing something. Shortly, we will introduce constructs that allow us
to fill in the blanks here, and we will explore how the semantics of FL needs to
be changed to accommodate their introduction.

But before we do that, consider the following. Since FL is a universal lan-
guage, it is capable of expressing any computation. So surely examples such as
the bank account scenario must be expressible within FL, albeit not necessarily
in a way that corresponds to our intuitions about the physical world. Next, we’ll
examine some ways in which state can be simulated in FL. The purpose of this
exploration is to give us insight into the nature of state. Later, we will be able
to apply what we learn to the semantics for our modified dialect of FL.

8.1.3 Simulating State In FL
8.1.3.1 TIteration

The simulation of state in FL is exemplified by the handling of iteration. An
iteration is a computation that characterizes the state of a system in terms of
the values of a set of variables known as its state variables. The value of each
state variable in an iteration at time ¢ is a function of the values of the state
variables at time t — 1.

As an example of an iteration, consider the problem of reversing the order
of cards in a deck of playing cards. A natural solution is to use two piles, called
old and new, where old is initially the original deck and new is an empty pile.
Then, one by one, cards can be moved from the old pile to the new pile until the
old pile is empty. At this point, the new pile contains the reversed deck of cards.
In this example the state variables are the (ordered) contents of the old and new
piles. These two variables completely characterize the state of the system. If a
person performing the reversal for some reason had to leave before completing
the task, someone else could take over as long as it was apparent which was the
old pile and which was the new.

It is straightforward to express iterations in FL. For example, the above

8.1. WHAT IS STATE? 321

technique can be applied to list reversal as follows:

(define reverse
(lambda (1st)
(letrec ((iterate
(lambda (old-pile new-pile)
(if (null? old-pile)
new-pile
(iterate (cdr old-pile)
(cons (car old-pile) new-pile)))))))

(iterate 1st ())))

In this case, the state variables are the arguments old-pile and new-pile to
the internal procedure iterate. For example, here is a trace of the reversal of a
three-element list (where REVERSE and ITERATE stand for the appropriate
expressions):

(REVERSE (1ist 1 2 3))

= (ITERATE (1ist 1 2 3) (list))
= (ITERATE (list 2 3) (list 1))
= (ITERATE (list 3) (list 2 1))
= (ITERATE (list) (list 32 1))

= (list 3 2 1)

The above example suggests a general approach for expressing iterations in
FL. State variables simply become the arguments to an iterating procedure, and
updating the state variables is expressed by calling the iterating procedure on
values computed from the previous values of the state variables.

Note carefully how an iteration manages to circumvent the constraints of
referential transparency to represent state and time. The state at any point in
time is represented by the values of formal parameter names associated with a
particular application of the iterating procedure. In the list reversal example,
the state variables correspond to the formal parameters old-pile and new-pile.
The value of a particular variable named old-pile or new-pile never changes.
However, each application of the iterate procedure effectively creates new vari-
ables that happen to be named by these same identifiers. So for each point in
time ¢, there are distinct variables old-pile; and new-pile;. State is encoded
not as the changing value of a variable, but rather as the values of a sequence
of immutable variables.

Events in time are ordered by the only means available for ordering in a
stateless language: data dependency. If the value of F; is needed to compute Es,
then E» is said to have a data dependency on E;. In the list reversal example,
since old-pile; is equal to (cdr old-pile;_;), it has a data dependency on

322 CHAPTER 8. STATE

old-pile;_;; new-pile; is dependent on both old-pile;_; and new-pile; ;.
Data dependencies can be interpreted as a kind of time: if Fy depends on the
result of Fy;, it is natural to view the evaluation of F; as happening before the
evaluation of Fs.

8.1.3.2 Single-Threaded Data Flow

Iteration is an instance of a general technique for simulating state in a stateless
language. State can always be simulated by adding state variables both as
arguments and return values to every procedure in a program whose body either
accesses or changes the state variables. The state of the program upon entering
a procedure is encoded in the values of the state variable arguments, and the
state of the program upon exiting a procedure is encoded in the values of the
state variables returned as results. Because state is based on a notion of linearly-
ordered time, we must guarantee that the data dependencies among the state
variables form a linear chain. State variables satisfying this constraint are said
to be passed through the program in a single-threaded fashion.

From this perspective, the problem with the bank account procedures is that
the state of the system is not appropriately threaded through calls to these pro-
cedures. Suppose the state of the banking system is modeled by an entity called
a bank-state. Then we can simulate state with the bank account procedures by
extending each procedure to accept an additional bank-state argument and to
return a pair of its usual return value and a (potentially updated) bank-state.

Suppose that every bank account bears a unique account number. Then we
can represent a bank-state as a list of account-number /current-balance pairs. For
example, the bank-state [(1729, 200),(6821,17)] indicates that account 1729
has a current balance of 200 dollars and account 6821 has a current balance
of 17 dollars. We will allow the same account number to appear more than
once in a bank-state; in this case, the leftmost pair with a given account num-
ber indicates the current balance of that account. For example, in bank-state
[(6821,52),(1729,200),(6821, 17)], account 6821 has 52 dollars.

Here is an implementation of the deposit! procedure in this approach:

(define deposit!
(lambda (amount account bank-state)
(if (< amount 0)
(pair ’failed bank-state)
(let ((old&bankl (balance account bank-state)))
(let ((old (left old&bankl))
(bankl (right old&bank1)))
(pair ’succeeded

(cons (pair account (+ old amount)) bank1)))))))

8.1. WHAT IS STATE? 323

We assume that accounts are represented by their account numbers and that
balance has been similarly modified to accept and return a bank-state. When
it succeeds, deposit! creates a new bank state by prepending a new account-
number/current-balance pair to the old one. A bank-state can be threaded
through make-account?, balance, and withdraw! in a similar fashion.

The test-deposit! procedure can also be modified to take a bank-state and
thread it through each of the bank account operations:

(define test-deposit!
(lambda (bank)
(let ((acct&bankl (make-account 100 bank)))
(let ((acct (left acct&bankl))
(bankl (right acct&bankl)))
(let ((old&bank2 (balance acct bankl)))
(let ((old (left old&bank2))
(bank2 (right old&bank2)))
(let ((sym&bank3 (deposit! 17 acct bank2)))
(let ((sym (left sym&bank3))
(bank3 (right sym&bank3)))
(let ((new&bank4 (balance acct bank3)))
(let ((new (left new&bank4))
(bank4 (right new&bank4)))
(pair (- new old)

bank4)))))))))))

Given any initial bank-state, the new version of test-deposit! will return a
pair of 17 (the desired result) and an updated bank-state.

> Exercise 8.1 Provide definitions of make-account, balance, and withdraw! in
which a bank-state is single-threaded through each procedure. <

> Exercise 8.2 It is only necessary to single-thread a store through procedures that
may update the store. For procedures that only access the store without updating it, it
is sufficient to pass the store as an argument; such a procedure need not return a store
as its result. An example of such a procedure is balance, which reads the balance of a
bank account but does not write it.

e Write a version of balance that takes an account and a bank-state and returns
only the balance of the account.

e Modify the state-simulating definitions of deposit! and test-deposit! to use

Smake-account must also create a new, previously unused account number. Asking the
caller to specify the number is an option, but it is better to include the next available account
number as part of the bank state. If we don’t care about wasting computational resources, we
can compute a fresh account number from the current bank-state representation by adding 1
to the largest account number in the bank.

324 CHAPTER 8. STATE

the new version of balance. <

8.1.3.3 Monadic Style

The bank-state threading details make the test-deposit! code hard to read,
but some well-chosen abstractions can significantly increase readability. It helps
to have a with-pair procedure that decomposes a pair into its component parts
and passes these to a receiver procedure that names them:
(define with-pair
(lambda (pair receiver)
(receiver (left pair) (right pair))))

Using with-pair, test-deposit! can be simplified as follows:

(define test-deposit!
(lambda (bank)
(with-pair (make-account 100 bank)
(lambda (acct bankl)
(with-pair (balance acct bankl)
(lambda (old bank2)
(with-pair (deposit! 17 acct bank2)
(lambda (sym bank3)
(with-pair (balance acct bank3)
(lambda (new bank4)

(pair (- new old) bank4)))))))))))

Readability can be increased even further by hiding the threading of the
bank-state altogether. Suppose that we define an action as any procedure that
takes a bank-state and returns a pair of a value and a bank-state. In order
to perform an action, we apply the action to a bank-state, which returns a
value/bank-state pair. Such actions can be glued together by the after proce-
dure in Figure 8.3, which takes a first action and a procedure that maps the value
from performing the first action to a second action and returns a single action
that performs the first action followed by the second. The figure also contains
a return procedure that converts a value into an action and curried versions of
make-account, balance, and deposit! that return actions when supplied with
their non-bank-state arguments. With these abstractions, the test-deposit!
procedure can be composed using four occurrences of after and one return
(Figure 8.4).

This final version of test-deposit! illustrates a technique for threading
state through a program that is known as monadic style. This style is based
on gluing together state-threading components like the bank account actions in

8.1. WHAT IS STATE?

325

(define after
(lambda (action receiver)
(lambda (bank)
(with-pair (action bank)
(lambda (val bank1)
((receiver val) bank1))))))

(define return
(lambda (val)
(lambda (bank) (pair val bank))))

(define *make-account
(lambda (amount)

(lambda (bank) (make-account amount bank))))

(define *deposit!
(lambda (amount acct)

(lambda (bank) (deposit! amount acct bank))))

(define *balance
(lambda (acct)

(lambda (bank) (balance acct bank))))

Figure 8.3: Procedures supporting a monadic style of threading bank-states

through a program.

(define test-deposit!
(after (*make-account 100)
(lambda (acct)
(after (x*balance acct)

(lambda (o0ld)

(after (*deposit! 17 acct)

(lambda (sym)
(after (*balance acct)
(lambda (new)

(return (- new 01d)))))))))))

Figure 8.4: A version of test-deposit! written in monadic style.

326 CHAPTER 8. STATE

a way that hides the details of the “plumbing.” We have already seen monadic
style in the denotational semantics of FL in Section 6.5. There, the Compu-
tation domain and functions like with-value are used to hide the messy details
of propagating errors. In Section 8.2.4, we will extend the Computation do-
main to include a threaded store. By changing the meanings of a few functions
like with-value, it is possible to thread the state through the semantics without
changing many of the existing valuation functions. This illustrates the power of
the monadic style.

In stateless languages, monadic style is commonly used to express stateful
computations. The awkwardness of using a combiner like after can be avoided
by syntactic sugar. For example, HASKELL supports a “do notation” in which
the bank account testing function can be written as:

testDeposit =
do a <- makeAccount 100
bl <- balance a
deposit 17 a
b2 <- balance a

return (b2-bl)

As we shall see, this notation is not far from the way that stateful computations
are expressed in stateful languages.

The name “monadic style” is derived from an algebraic structure, the monad,
that captures the essence of manipulating state-threading components. For more
information on monads and how monadic style can be used to express stateful
computations in stateless languages like HASKELL, see [Wad95] and [JW93].

8.1.4 Imperative Programming

The bank account example demonstrates how it is possible to simulate state
within a stateless language. However, even in monadic style, such simulations
can be cumbersome. An alternative strategy is to develop a language paradigm
that abstracts over the notion of state in such a way that the details of single-
threading are automatically managed by the language. This is the essence of
the imperative programming paradigm. In the imperative paradigm, all
program state is conceptually bundled into a single entity called a store that
is implicitly single-threaded through the program execution. Elements of the
store are addressed by locations, unique identifiers that serve as unchanging
names for time-dependent values. In the bank account example, bank-states
correspond to stores and account numbers correspond to locations.

The advantage of the imperative programming paradigm is that programs
can be shorter and more modular when the details of single-threading are im-

8.2. MUTABLE DATA: FL! 327

plicitly handled by the language. However, implicit single-threading has a down
side: making explicit state variables implicit destroys referential transparency
and thus makes programs harder to reason about.

The rest of this chapter explores how to model languages that exhibit state.
We will see that the notions of store, location, and single-threading crop up in
both operational and denotational descriptions of stateful languages.

8.2 Mutable Data: FL!

8.2.1 Mutable Cells

A one-slot cons is called a cell,

A two-slot cons makes pairs as well.
But I would bet a coin of bronze
There isn’t any three-slot cons.

— Guy L. Steele, Jr.

Data structures whose components can change over time are said to be mu-
table. The simplest kind of mutable data is the mutable cell, a data structure
characterized by a single time-dependent value called its content. A mutable
cell corresponds to a one-slot cons cell in SCHEME or a pointer variable in lan-
guages like C and PAsSCAL. We will study mutable data in the context of FL!,
a version of FL that supports mutable cells. We will use CBV as the default
evaluation strategy for FL! because, as we shall see later, it makes more sense
than CBN in languages that support mutation.

We begin by extending CBV FLK with features for supporting mutable cells.
The modified kernel, FLK!, has the following syntax:

Errr = ... [FLK expressions]
| (cell E.ontent) [Cel]]
| (begin Esequentl EsequentQ) [Begln]
O € Primopprgr = Primopp; i U{cell-ref, cell-set!, cell=7, cell?}

Here is an informal description of the extensions:

e (cell FE) returnsanew mutable cell whose initial content is the value of F.
We shall write cells as id:val, where id is a number that uniquely identifies
the cell, and val is the content of the cell. In the following example, the
expression allocates a cell with id number 1729 and content 3:

(cell (+ 1 2)) FLET 1729: 3

328 CHAPTER 8. STATE

e (primop cell-ref E) fetches the content of the cell computed by E. If
the value of E is not a cell, this expression yields an error.

(primop cell-ref (cell (+ 1 2))) wrgp 3
(primop cell-ref (+ 1 2)) gy error:mnot-a-cell

e (primop cell-set! FE; Fj) stores the value of Fy in the cell computed
by E;. If the value of F; is not a cell, this expression yields an error.
Since every FLK! expression must return a value, we shall arbitrarily
specify that the value returned by a cell assignment expression is the unit
value.

(primop cell-set! (cell (+ 1 2)) 4) —wypp unit

o (primop cell=? E; Ej) returns true if E; and Ej evaluate to the same
cell and falseif they evaluate to different cells. If at least one of E; or Ey
is not a cell, the expression yields an error.

(let ((c1l (cell 1))
(c2 (cell 1))
(let ((c3 cl1))
(l1ist (primop cell=?7 cl cl)
(primop cell=7 cl c2)
(primop cell=? ci ¢3)))) gy ltrue, false, true]

e (primop cell? E) returns true if E evaluates to a cell and falseif it eval-
uates to some other value.

(pair (primop cell? 0) (primop cell? (cell 0))) wrgrr (false, true)

o (begin FE; FEj) first evaluates F;, then evaluates E», and then returns
the value of E». The value of E; is discarded.
(call (proc c
(begin (primop cell-set! c 4)
(primop cell-ref c)))
(cell (+ 1 2)))

FLK! 4

FL! is built on top of the kernel provided by FLK!. It has the same syntax
as FL except that it includes the cell construct and a version of begin that
can have an arbitrary number of sequents.

Eppy = ... [FL expressions]
| (cell E) [Cell]
| (begin FEgsequent™) [Begin]

8.2. MUTABLE DATA: FL! 329

The extended begin construct is defined by the following desugarings:
Dexp[(begin)] = #u

Dexp[(begin E)] = Dexp[E]

Dexpﬂ(begin E; Eyp Erest*)]] =
(begin Dexp[E:] Dexpl(begin Eg Ereat™])

This is the first time we’'ve seen a sugar construct that has the same phrase
tag as a kernel construct. This situation is common in practice. Of course,
the desugaring for such a construct must guarantee that the general sugar form
rewrites to the more restricted kernel form.

Like other primitive operator names, cell-ref and cell-set! are standard
identifiers in FL!, where, respectively, they stand for procedures that access the
content of a cell and change the content of a cell. Because these names are
verbose, we will also introduce shorter synonyms in the standard environment:
the name ~ is a synonym for cell-ref, and := is a synonym for cell-set!.

8.2.2 Examples of Imperative Programming

The imperative programming paradigm is characterized by the use of side effects
to perform computations. Because it is equipped with mutable cells, FL! sup-
ports the imperative paradigm. In this section, we present a few FL! programs
that illustrate the imperative programming style.

8.2.2.1 Factorial

Here is an imperative version of an iterative factorial procedure written in FL!:

(define factorial
(lambda (n)
(let ((num (cell n))
(ans (cell 1)))
(letrec ((loop
(lambda ()
(if (= (cell-ref num) 0)
(cell-ref ans)
(begin
(cell-set! ans (x (cell-ref num)
(cell-ref ans)))
(cell-set! num (- (cell-ref num) 1))
(Loop))))))

(Loop)))))

330 CHAPTER 8. STATE

num and ans are cells that serve as the state variables of the iteration. The
nullary loop procedure corresponds to a while loop in traditional imperative
languages. On each round through the loop, the contents of the state vari-
ables are updated appropriately. The loop terminates when the content of num
becomes zero.

It is instructive to compare the imperative version to a purely functional
version:

(define factorial

(lambda (n)
(letrec ((loop (lambda (num ans)
(if (= num 0)
ans

(loop (- num 1) (* num ans))))))
(Loop n 1))))

In the functional version, every call to 1oop creates a new pair of variables named
num and ans. In contrast, the imperative version shares one num and one ans
variable across all the calls to 1oop. The correctness of the imperative version de-
pends crucially on the order of the assignment expressions (cell-set! ans ...)
and (cell-set! num ...). If these expressions are swapped, then the impera-
tive factorial no longer computes the right answer. This bug is due purely to
the time-based nature of the imperative paradigm; the functional version does
not exhibit the potential for this bug since all expressions have time-independent
values. This illustrates one of the dangers of imperative programming: since
many dependencies are implicit rather than explicit, subtle bugs are more likely,
and they are harder to locate.

8.2.2.2 Bank Accounts

Using mutable cells, it is straightforward to implement the bank account scenario
introduced in Section 8.1.2 and examined further in Section 8.1.3.

(define make-account
(lambda (amount)
(if (< amount 0)
’failed

(cell amount))))

(define balance
(lambda (account) (cell-ref account)))

8.2. MUTABLE DATA: FL! 331

(define deposit!
(lambda (amount account)
(if (< amount 0)

’failed

(begin
(cell-set! account (+ amount (cell-ref account)))
’succeeded))))

(define withdraw!
(lambda (amount account)
(let ((bal (cell-ref account)))
(if (or (< amount 0) (> amount bal))

’failed

(begin
(cell-set! account (- bal amount))
’succeeded)))))

Each account is represented by a distinct cell, and the bank account operations
examine and change the content of this cell. Figure 8.5 shows the transcript of
an interpreter session testing bank account objects.

(define a (make-account 100))
(define b (make-account 100))

(balance a) w100
(balance b) w100

(deposit! 17 b) —7p 'succeeded

(balance a) —+rp 100
(balance b) +r 117

(deposit! 23 a) w7p 'succeeded
(deposit! -23 b) wrp 'failed
(withdraw! 120 a) wpp 'succeeded
(withdraw! 120 b) wzp 'failed

(balance a) —w7p 3
(balance b) w7 117

Figure 8.5: Sample interactions with bank account objects.

While it is natural to represent accounts directly as cells, it is also somewhat
insecure to do so. Every account should maintain the invariant that the balance

332 CHAPTER 8. STATE

never slips below zero. But if an account is just a cell, then it is possible to
violate this invariant by using cell-set! to directly store a negative number
into an account. In general, it is wise to package up mutable data in a way that
guarantees that important invariants cannot be violated (either accidentally or
maliciously) by some other part of a software system.

First-class procedures provide an elegant means of encapsulating state so
that it can only be manipulated in constrained ways. Figure 8.6 presents an
alternate implementation in which bank accounts are represented as procedures
that dispatch a message. The advantage to this approach is that the procedure
provides a security wall for accessing and updating the account balance. In
particular, the alternate implementation guarantees that the balance can never
fall below zero.

8.2.2.3 Pattern Matching Revisited

The pattern matcher presented in Section 6.2.4.3 passes a dictionary through
the computation in a single-threaded fashion. This means that the time-based
sequence of dictionary values can alternately be represented as the changing
content of a mutable cell. Figure 8.7 presents an imperative version of the
match-sexp procedure that is based on this idea. (Procedures not defined in
the figure are assumed to be the same as before.)

The match-with-dict procedure from Section 6.2.4.3 has been replaced by
the internal match! procedure. Rather than taking a dictionary as its third ar-
gument, match! implicitly takes the current value of dict-cell as its argument.
The failed-flag cell is used to simplify the handling of unsuccessful pattern
matches.

8.2.3 An Operational Semantics for FLK!

In order to model the state exhibited by FLK!, we will use the notions of a
location and a store introduced above. A location is a unique identifier for a
mutable entity, and a store is a structure that associates each location with its
value at a particular point in time. There are many ways to represent locations
and stores. In our operational treatment, we will represent locations as numeric
literals and stores as a sequence of location/value pairs:

L € Location = Nat
S € Store = Assignment*
Z € Assignment = Location x ValueExp

We will assume the existence of a partial function get that finds the first
value associated with a location in a store:

8.2. MUTABLE DATA: FL!

333

(define make-account
(lambda (amount)
(if (< amount 0)
’failed
(let ((account (cell amount)))
(lambda (message)
(cond ((sym=7 message ’balance)
(cell-ref account))
((sym=7 message ’deposit!)
(lambda (amount)
(if (< amount 0)
’failed
(begin
(cell-set! account
(+ amount (cell-ref account)))
’succeeded))))
((sym=7 message ’withdraw!)
(lambda (amount)
(let ((bal (cell-ref account)))
(if (or (< amount 0) (> amount bal))

’failed

(begin
(cell-set! account (- bal amount))
’succeeded)))))))))))

(define balance (lambda (account) (account ’balance))

(define deposit!
(lambda (amount account) ((account ’deposit!) amount)))

(define withdraw!
(lambda (amount account) ((account ’withdraw!) amount)))

Figure 8.6: A message passing implementation of bank accounts.

334 CHAPTER 8. STATE

;55 Imperative version of the MATCH-SEXP program. Procedures not defined
;;; here are the same as before.
(define match-sexp
(lambda (pat sexp)
(let ((dict-cell (cell (dict-empty)))
(failed-flag (cell #£f)))
(letrec ((match!
;3 MATCH! sets FAILED-FLAG true upon failure, and
;3 updates the content of the DICT-CELL otherwise.
;3 It always returns unit.
(lambda (pat sexp)
(cond
((failed-flag?) #u)
((null? pat)
(if (null? sexp)
#u
(fail!)))
((null? sexp) (faill))
((pattern-constant? pat)
(if (sexp=7 pat sexp) #u (faill)))
((pattern-variable? pat)
(dict-bind! (pattern-variable-name pat) sexp))
(else
(begin (match! (car pat) (car sexp))
(match! (cdr pat) (cdr sexp)))))))

(failed-flag? (lambda () (cell-ref failed-flag)))
(fail! (lambda () (cell-set! failed-flag #t)))

(dict-bind!
(lambda (sym sexp)
(let ((new-dict (dict-bind
pat sexp (cell-ref dict-cell))))
(if (failed? new-dict)
(faill)
(cell-set! dict-cell new-dict))))))
(begin
(match! pat sexp)
(if (cell-ref failed-flag)
’failed
(cell-ref dict-cell)))))))

Figure 8.7: Version of match-sexp written in an imperative style.

8.2. MUTABLE DATA: FL! 335

get : Location — Store — ValueExp
(get L (L, V) .S) =V
(get Ly (Lg, V) . S) =(get L; S), where L; #Lg

The FLK! SOS uses the syntactic domain E,,;;.q €MixedExp, which has a
grammar isomorphic to FLK! except for the addition of a (xcell* L) construct

that is used to represent cell values:
Eived = ... [FLK! expressions]
| (xcell* L) [Cell Value]
The *cell* construct may not appear in a user program. ValueExp is the same

as that for CBV FLK except that it also contains cell values:

V € ValueExp = LitU{(proc I E)}
U{(pair V; Va)} U{(*cellx L)}

An operational semantics for FLK! is specified by
(CFrLi1,= , FCrriy, IFpri1, OF prrEc1),

where the rewrite rules defining = are specified later and

CFrrrgy = MixedExp x Store
FCrrxy = ValueExp x Store
IFprxr = ME.(E,[] assignment)
OF prrr = XNV, S). (output V)

(output L) L
(output (proc I E))
(output (pair V; Vp)) = (pair (output Vi) (output Vz))
)

(output (*cell* L)) = cell.

= procedure

The first component (code component) of an FLK! configuration is a mixed
expression that serves the same role as an entire FLK configuration. An FLK!
configuration has an additional state component: a store that models the cur-
rent mapping of locations to value expressions. A computation begins with the
initial expression and an empty store, [] Assignment, and runs until the code com-
ponent becomes a value (or the configuration becomes stuck). At this point, an
approximation to the final value is returned as the result of the original FLK!
expression.

The core rewrite rules for the FLK! semantics appear in Figure 8.8. The
cell construct and the primitive operators cell-ref and cell-set! are the
only constructs that directly manipulate the store. The [cell-alloc| axiom allo-
cates a new location, Ly, which does not appear in the store, and extends the

336

CHAPTER 8. STATE

(E,S)=(E',S’")
((cell E),S)= ((cell E"),S’)

[cell-progress]

<(cell V),S>=><(*Cell* Lfresh)a(<LfTesh7 V) . S)>7

where Lyeq, is a location that does not appear in S. [cell-alloc]
((primop cell-ref (*cellx L)),S)=(V,5),

where (get L S) =V [eell-ref]

((primop cell-set! (*cellx L) V), S)= (#u, (L, V) . S) [cell-set!]

((primop cell=? (*cellx L) (xcellx L)), S)= (#t,S5) [cell="7-true]

((primop cell=? (*cellx L;) (xcellx Ly)),S)= (#f,S),
where L1 ;é LQ

[cell="-false]

((primop cell? (xcellx L)), S)= (#t,S) [cell?-true]

((primop cell? V), S)=- (#f,5),

2.
where V # (*cell* L) [cell?-false]

<E1,S>:> <E1 I,S/>

((begin E; E»),S)= ((begin E;’ E»),S’) [begin-first)]
(begin V E),5)= (E,S) begin-rest
(
(B,S)y=(E',S")
((rec 1 B),S)= ((xrec I EN,S) [rec-body]
((rec T V),8)={([(xec I V)/N|V,S) [cbv-rec]

Figure 8.8: Core rewrite rules for FLK!.

8.2. MUTABLE DATA: FL! 337

store with a new binding between Ly,.g, and the given value. The result of this
operation is a *cell* value that maintains an index into the store. The [cell-
ref] rule uses get to extract the binding at the location specified by the *cellx
value. Even though get is only a partial function, a cell-ref expression can
never get stuck because every location appearing in a *cell* value must appear
in the store. The [cell-set!] rule returns a unit value but also prepends a new
location/value pair to the store to reflect the assignment.

We have chosen to represent stores as explicit sequences of bindings, but
other representations are certainly possible (e.g., representing stores as functions
that map locations to values). In our approach, the number of bindings in a
store is equal to the number of allocations and assignments performed by the
program. An implementation based on such a strategy would be disastrously
inefficient: the size of the store would grow throughout the computation, and cell
references would take time linear in the size of the growing store. But our goal
here is to give a simple semantics for stores, not to implement them efficiently.
Any reasonable implementation of FLK! would represent stores in a way that
takes advantage of the state-based nature of addressable memory in physical
computers.

Of the remaining rules in Figure 8.8, the begin rules are straightforward,
but the rec rules deserve some explanation. Handling rec is a bit tricky in the
presence of side effects. The basic problem is illustrated by the following FL!
example:

(let ((counter (cell 0)))
(begin ((rec fact
(begin (cell-set! counter
(+ (cell-ref counter) 1))

(lambda (n)
(if (=n 0)
1

(x n (fact (- n 1)))))))
5)

(cell-ref counter)))

Here the value computed by the rec expression is a factorial procedure. But
we’re not so much interested in the value of the rec as we are in the value of the
counter cell at the end of the expression. This value tells us how many times
counter is incremented during the evaluation of the rec expression. Presumably,
the content of counter should be 1. However, if the CBN rule

((rec I E),S)=([(xrec I E)/I|E,S) [chbn-rec]

were used, then the value of the above expression would be 6 because the begin

338 CHAPTER 8. STATE

expression that is the body of the rec would be copied in each unwinding and
would be evaluated six times.

To avoid this behavior, the [cbv-rec| rule only unwinds the rec when the
body is a value. The [rec-body] rule takes care of rewriting the body of the rec
into a member of ValueExp. This means that any side effects encountered during
the evaluation of the rec body are performed only once. In a CBV semantics,
the rewriting of the rec body will only terminate in a non-stuck state when all
uses of the formal parameter introduced by rec that appear in the body are
“shielded” from immediate evaluation by a proc.

The rest of the rules for FLK! appear in Figure 8.9. These rules never
actually examine or update the store. Rather, they just specify the “plumbing”
that passes the store through the computation in a single-threaded fashion. This
guarantees that any changes made by cell or cell-set! are visible to later
uses of cell-ref. Except for the additional shuffling of the store component,
these rules are the same as those for CBV FLK. The [FLK-prim] rule says
that the behavior of primitive applications from FLK (as specified by = prk)
is inherited by FLK! (as specified by =), where the store is unaffected by all
such applications.

As a simple example of the FLK! SOS, consider the operational evaluation
of the expression (call FEp,,. (cell 3)) where E, ., is:

(proc ¢
(begin (primop cell-set! c
(primop + 1
(primop cell-ref c)))
(primop cell-ref c)))

Figure 8.10 shows the transition sequence associated with this expression. Note
how the cell value (xcell* 0) serves as an unchanging index into the time-
dependent store.

> Exercise 8.3 The begin construct need not be primitive in FLK!. A desugaring of
begin into other FLK! constructs must take advantage of the fact that the only notion
of time in FL has to do with data dependency. That is, the only thing that forces an
expression to be evaluated is that its value is used in the evaluation of another expression.
This suggests the following desugaring for begin into other FLK! expressions.

Dexp[(begin E; Ez)] = (call (proc (ignore) Dexp[E2]) DexplE1])
where ILignore ¢Freelds[Ez].
a. The desugaring for begin given above uses constructs only from FLK, which
does not support state. Is it possible to determine whether begin actually works

as advertised (i.e., evaluates E; before E») in a language that does not support
state? Explain your answer, using examples where appropriate.

8.2. MUTABLE DATA: FL!

339

((call (proc I E) V),8)=([V/IE,S)

(E{,S)=(E;',S")
((call E; E2),S)=((call E;’ E),S’)

(Bg, Sy=(E2',S")
((call (proc I E;) E3),S)
=((call (proc I E;) Ez"),S’)

<E1,S>:><E1 I,S/>

(if E; E; E3),S)= ((if E,” E; E3),S5)
((if #t E; E2),S) = (F;,S)
((if #f E; E2),S) = (E2,S)

(Eleft, S) = (Eiegt ', S')

<Erighta S> = <Eright I7 SI>

((pair Eleft Eright)a S> = ((pair Eleft ! Em‘ght)7 Sl>

(E,S)=(E',S")

<(Pail‘ Vleft Eright)a S> = <(Pail“ Vleft Eright /)) Sl>

((primop O E),S)= ((primop O E’),S’)

(E1,8)=(E;',S")

(Ez,S)= (E»',S")

((primop O E; E),S)= ((primop O E;’ Ej),S5)

(primOP OFLK V*) = FLK Vresult

((primop O V; Ep),S)= ((primop O V; E»"),S’)

[cbv-call]

[rator-progress|

[rand-progress]

[test-progress]

[if-true]

[if-false]

[left-progress]

[right-progress]

[unary-arg]

[binary-argl|

[binary-arg2)

((primop Oprx V*),S8) = (Viesur,S),

where Oppx €Primoprrii — {cell-ref,cell-set!, and cell?}

[FLK-prim)

Figure 8.9: FLK! rewrite rules for single-threading the store.

340

CHAPTER 8. STATE

((call Epye (cell 3)),[])

= ((call Ep (*cellx 0)),[(0,3)])

= ((begin (primop cell-set!
(*cell* 0)
(primop + 1

(primop cell-ref
(xcellx 0))))
(primop cell-ref
(*cellx 0))),
10.3))

= ((begin (primop cell-set!
(*cell* 0)
(primop + 1 3))
(primop cell-ref
(xcell* 0))),
[(0,3)])

= ((begin (primop cell-set!
(*cell* 0)
4)
(primop cell-ref
(*cellx 0))),
[(0,3)])

= ((begin #u
(primop cell-ref
(xcell* 0))),
[(0,4)])

= ((primop cell-ref
(xcellx 0)),

[{0,4)])
= (4,[(0,4)])

[rand-progress & cell-alloc]
[cbv-call]

[begin-first, 2x binary-arg2, cell-ref]

[begin-first, binary-arg2, FLK-prim)

[begin-first & cell-set!]

[begin-rest)

[cell-ref]

Figure 8.10: Operational evaluation of a sample FLK! expression.

8.2. MUTABLE DATA: FL! 341

b. Explain why the above desugaring would not work for a CBN version of FL!.

c. Write a desugaring for begin in CBV FLK! that does not require any condition
involving the free variables of E; or Es. (Hint: use thunks!)

d. Is it possible to write a desugaring for begin that works in both CBV and CBN
FLK! ? If so, give the desugaring; if not, explain why not. <

> Exercise 8.4 The introduction of side effects can complicate reasoning about
programs. For example, program transformations that are safe in FL aren’t necessarily
safe in FL!.

e List three transforms that are safe in FL but not in FL!. Provide counter-
examples to demonstrate why they are not safe in FL!.

e List three transforms that are safe in both FL and FL!.

e Consider transforms that do not mention any of the new features of FLK!. Are
there any such transforms that are safe in FL! but not in FL? If so, exhibit such
a transform. If not, explain. <

8.2.4 A Denotational Semantics for FLK!

Now we’ll study the semantics of FLK! from the denotational perspective. As
in the operational approach, notions of location and store will be used to model
state. The notion of computation will be modified so that stores flow through
a computation in a single-threaded fashion. The power of the computation ab-
straction will be illustrated by the fact that only those constructs that explicitly
refer to the store need new valuation clauses; other constructs are described by
their (unmodified) FLK valuation clauses.

8.2.4.1 Stores

The denotational treatment of stores and locations is summarized in Figure 8.11.

Here locations are represented as natural numbers and stores are represented
as functions that map locations to elements of the Assignment domain. Stores
do not map locations directly to values because it is necessary to encode the
fact that not all locations have values assigned to them. The distinguished
element unassigned in the lifted sum domain Assignment is used to indicate
that a location is unassigned. unassigned serves the same purpose for stores
that unbound serves for environments.

The domain Storable of storable entities varies from language to language.
In FLK!, which is a CBV language, Storable = Value, but a CBN version of

342 CHAPTER 8. STATE

s € Store = Location — Assignment

l € Location = Nat

a € Assignment = (Storable + Unassigned) |

o € Storable = language dependent ;Value in CBV
Unassigned = {unassigned}

same-location? : Location — Location — Bool = Aljls . (I; =Nat l2)
next-location : Location — Location = \l. (I +nqt 1)

empty-store : Store = Al. (Unassigned — Assignment unassigned)
fetch : Location — Store — Assignment = MAls . (s 1)
assign : Location — Storable — Store — Store
=MAjos. Mg . if (same-location? l; lp)
then (Storable — Assignment o)
else (fetch lp s)
fi

fresh-loc : Store — Location = As. (first-fresh s 0)

first-fresh : Store — Location — Location

= Asl. matching (fetch [s)
> (Unassigned — Assignment unassigned) | 1
> else (first-fresh s (next-location 1))
endmatching

Figure 8.11: Denotational treatment of stores.

8.2. MUTABLE DATA: FL! 343

FLK! would have Storable = Computation. In both CBV and CBN FLK!, it
happens that Storable = Denotable, but this need not be the case in general. For
example, in PASCAL, procedures can be named and (with certain restrictions)
be passed as arguments, but they may not be assigned to variables or stored as
the components of data structures.

There are several auxiliary functions for manipulating stores. fetch and
assign are functions on stores that are reminiscent of lookup and extend on
environments. The purpose of fresh-loc is to return an unassigned location
from the given store. Since locations are natural numbers, one way of doing this
is by scanning the store starting with location 0 and incrementing the location
until an unassigned location is found. We assume an unbounded store, so that
fresh-loc never fails to return a fresh location. To model a bounded store (which
would be more realistic), fresh-loc could potentially return an indication that
the attempt to find a fresh location failed.

8.2.4.2 Computations

Previously, a computation was just an expressible value. But in the presence of
state, a computation needs to embody the single-threaded nature of stores. The
following domain definition captures this idea:

¢ € Computation = Store — (Expressible x Store)

Here, a computation accepts an initial store and returns two entities:
e The expressible value computed by the computation.

e A final store that reflects all the allocations and assignments performed by
the computation.

When composing two computations, single-threadedness can be achieved by sup-
plying the final store of the first computation as the initial store of the second.

It is not difficult to show that the new Computation domain is pointed. This
means that it is possible to find fixed points over computations, as required in
the semantics of rec.

Recall that numerous auxiliary functions must be defined as part of the
computation abstraction. Figure 8.12 shows the definitions of these functions
for the store-based version of Computation. val-to-comp injects a value into a
computation by injecting it into an expressible value and passing a store around
it unchanged. Similarly, error-comp passes a store around an error expressible

value.
The main means of gluing computations together is with-value. It takes a
computation ¢; and a function f that maps a value to a computation cs and

344 CHAPTER 8. STATE

¢ € Computation = Store — (Expressible x Store)
expr-to-comp : Expressible — Computation =Xx. As. (z,s)
val-to-comp : Value — Computation = A\v. (expr-to-comp (Value — Ezpressible v))
err-to-comp : Error — Computation = AI. (expr-to-comp (Error — Ezpressible I))
error-comp : Computation = (err-to-comp error)
with-value : Computation — (Value — Computation) — Computation
=Acf . As; . matching (¢ s;)
> {(Value — Expressible v),s2) | (f v s2)
> ((Error — Egpressible error), sg) | (error-comp sz)
endmatching
with-values, with-boolean, with-procedure, etc. can be written in terms of with-value.
check-location : Value — (Location — Computation) — Computation
= Auf . matching v
> (Location — Value 1) | (f 1)
> else error-comp

endmatching

check-boolean, check-procedure, etc. are similar.

Figure 8.12: Store-based implementation of the computation abstraction.

8.2. MUTABLE DATA: FL! 345

returns the computation that results from composing c¢; and cs. Like the action-
combining after procedure in Section 8.1.3.3, the main purpose of with-value
is to support the monadic style of threading state by handling the “plumbing”
between computations: the value argument to f is the (non-error) expressible
value produced by c¢; and the initial store of ¢y is the final store of c¢;. In
the case where c¢; produces an error rather than a value, f is ignored and the
resulting computation is equivalent to c¢;. It is instructive to unwind the type

of f:

! Value — Computation = Value — Store — (Expressible x Store)
This makes it clear that f can be viewed as a function that maps two (curried)
arguments (a value and store) to two (paired) results (an expressible value and
store).

Other with- functions, like with-values, with-procedure, with-boolean can be
written in the same style as with-value. There is a parallel collection of check-
functions that differ from the with- functions only in that their initial argument
is a value rather than a computation.

In the presence of state, there are a few more auxiliary functions involv-
ing computations that are especially handy. These are defined in Figure 8.13.
allocating allocates a location for a storable value and passes it (and the up-

allocating : Storable — (Location — Computation) — Computation
=Xof . As. (f (fresh-loc s) (assign (fresh-loc s) o s))

fetching : Location — (Storable — Computation) — Computation
=Alf . As. matching (fetch [s)

> (Storable — Assignment o) | (f o s)

> else (error-comp s)

endmatching

update : Location — Storable — Computation
=M\o . As. {(Value — Expressible (Unit — Value unit)), (assign | o s))

sequence : Computation — Computation — Computation
=Acycg . (with-value ¢; (A\v. cg))

Figure 8.13: Auxiliary functions for store-based computations.

dated store) to a computation-producing function. fetching finds the storable
value at a location and passes it (and the unchanged store) to a computation-
producing function. update takes a location and storable value and returns a
unit-producing computation whose final store includes an assignment between
the location and value. sequence glues two computations together by supplying

346 CHAPTER 8. STATE

the final store of the first as the initial store of the second; the expressible value
produced by the first is ignored.

Reasoning about computations directly in terms of the auxiliary functions
can be very tedious. Figure 8.14 presents a number of high-level equalities that
greatly facilitate reasoning about computations. We leave the proofs of these

1. (with-value (val-to-comp v) f)=(f v)
2. (with-value ¢ (A . (val-to-comp v)))=c¢

3. (with-procedure (val-to-comp (Procedure — Value p)) f)=(f p)
Similarly for with-boolean, with-integer, etc.

4. (with-value (with-value ¢ f) g) = (with-value ¢ (M . (with-value (f v) g)))

5. (with-value (check-location v f) g¢)
= (check-location v (M . (with-value (f 1) g)))
similarly for check-boolean, check-integer

6. (with-value (allocating o f) g) = (allocating o (Al . (with-value (f 1) g)))
7. (with-value (fetching l f) g) = (fetching | (Ao . (with-value (f o) g)))

8. (with-value (update l o) f)
= (sequence (update | o) (f (Unit+— Value unit)))

9. (with-value (sequence cl ¢2) f) =(sequence ¢l (with-value ¢2 f))

Figure 8.14: Useful equalities on computations. It is assumed that newly intro-
duced variables do not conflict with free identifiers elsewhere in the expression.

equalities as exercises for the reader. We require the first four equalities in
Figure 8.14 to be true of any notion of computation that we introduce, and
equalities 59 to be true of any notion of computation that supports state.

8.2.4.3 Valuation Clauses

The denotational specification of FLK! is summarized in Figure 8.15. The
Value domain has been extended with locations, which represent cell values.
Since FLK! is a CBV language, both Denotable and Storable equal Value. As
always, &£ has the signature Exp — Environment — Computation. There are two
semantic functions for primitives. Pk is the version for FLK!, while Pprg
is the version inherited from FLK.

With the help of the auxiliary functions, the valuation clauses are surprisingly
compact. In fact, only one clause (rec) explicitly mentions the store! begin
sequences two computations. cell allocates a location for its content and returns

8.2. MUTABLE DATA: FL! 347

¢ € Computation = Store — (Expressible x Store)

v € Value = Unit + Bool + Int + Sym + Pair + Procedure+ Location
0 € Denotable = Value

o € Storable = Value

p € Procedure = Denotable — Computation

& : Exp — Environment — Computation
Prri : Primop — Value* — Ezpressible
Prri : Primop — Value* — Computation

El(begin E; E)] =Xe. (sequence (E[E;] e) (E[E2] e))

El(cell Y]
=Xe. (with-value (E[E] e)
(Av . (allocating v (Al . (val-to-comp (Location — Value 1))))))

Prriicell-ref] =A[v] . (check-location v (Al. (fetching | (Av. (val-to-comp v)))))
Prrri[cell-set!] =Avs,ve] . (check-location v; (Al. (update [vg)))

PFLKgﬂcellf?ﬂ =
Aoy, vz] . (check-location vy
(M\l; . (check-location vg
(Al . (val-to-comp (Bool — Value (I; = 12)))))))

Prrii[cell?] =A[v] . matching v
> (Location — Value 1) | (val-to-comp (Bool — Value true))
> else (val-to-comp (Bool — Value false))
endmatching

Prrri[O] ; O €Primop — {cell-ref, cell-set!, cell?}
=\v*. (expr-to-comp (Prri[O] v*))

El(xec I BY] =Xe. fixcomputation (Ac. As. E[E] [I :: (extract-value ¢ s)]e s)

extract-value : Computation — Store — Binding

= Acs. matching (¢ s)
> < (Value — Ezpressible v), s’ > | (Denotable — Binding v)
> < (Error — Ezpressible error), s’ > | L Binding
endmatching

Figure 8.15: Essential valuation clauses for FLK!. Clauses not shown here
inherit their definition from FLK.

348 CHAPTER 8. STATE

the location as its resulting value. cell-ref fetches the value of a location and
returns it, while cell-set! updates a location to contain a new value. cell?
simply checks the tag on a value. Other primitives are handled by passing them
off to Prrk and converting the result into a computation. This works because
none of the primitives inherited from FLK has any effect on the store.

The only really tricky clause is the one for rec. The valuation clause pre-
sented here is a variant of the CBV version presented in Section 7.1.3. The only
difference is that it is necessary to supply extract-value with the current store
in order to coerce the computation into a binding.

And that’s it! By the magic of the monadic style, all the other valuation
clauses are inherited unchanged from the denotational definition of CBV FLK.
For example, the clause for call is still:

E[(call E; E9)] =
e . (with-procedure (E[E;] e) (Ap. (with-value (E[E2] e) p)))

The valuation clauses are very concise, but their level of abstraction can make
them difficult to understand. To get a better feel for the valuation clauses, it can
be helpful to strip away the abstractions by “in-lining” the auxiliary functions.
For example, here is a version of the call clause without any auxiliary functions:

E[(call E; E»)] =
Aesp . matching (E[E;] e sp)

> ((Value — Ezpressible (Procedure — Value p)), s1) |
matching (E[Ez] e s1)
> {(Value — Ezpressible v),52) | (p v s2)
> ((Error — Ezpressible error), sg) | ((Error — Expressible error), sg)
endmatching

> ((Value — Ezpressible v), 1) | ((Error — Expressible error), sy)

> ((Error — Ezpressible error),s;) | ((Error — Expressible error), sy)

endmatching

The single-threaded nature of the store that is implicit in the original clause is
explicit in the expanded clause. Evaluating F; in e with sy yields an expressible
value (call it z7) and a store s;. If the z; is a procedure value p, Fy is evaluated
in e with s; to yield a second expressible value (call it zp) and another store,
sa. If zo is a value v, then p, whose signature is

Value — Store — (Expressible x Store)

is applied to the value and the store. In error situations (z; is not a procedure
or xp is not a value), expressible error values are propagated along with the
updated store.

You may find it helpful to perform this sort of expansion on other valuation
clauses. After you have done several, you may start to appreciate the purpose

8.2. MUTABLE DATA: FL! 349

of the auxiliary functions! As usual, it is also instructive to make sure that all
of the valuation clauses type check.

8.2.5 Referential Transparency, Interference, and Purity

We noted earlier (page 319) that stateless languages like FL are referentially
transparent. Referential transparency is an important property when reason-

ing about programs, especially when analyzing and transforming programs.
For example, consider the following program transformations:

T1: (+ Ea Ea) — (x 2 Ea)
T2: (+ Ey EC) — (+ E. Eb)

Under what conditions are such transformations safe, i.e., guaranteed to pre-
serve the meaning of a program?*

In a referentially transparent language like FL, these two transformations
are always safe. In T1, F, always has the same value no matter how many
times it is evaluated. In T2, reordering Fj, and E. cannot change their values
because they are still in the same naming context as before.

However, in a stateful language like FL!, neither of these transformations is
always safe. For example, in T1, suppose that F, increments a counter in ad-
dition to returning a result. Then (+ E, FE,) will increment the counter twice,
but (x 2 E,;) will only increment it once. In T2, suppose that E}; increments a
counter whose value is returned by E.. Then swapping EF; and E. changes the
value returned by E.. The problem in these cases is that expressions can depend
on the implicit store threaded through their evaluation, so it is generally not safe
to replace them by a value or change their relative positions. In particular, an
expression can depend on the store by:

e allocating a location in the store (which includes initialization in our se-
mantics),

e reading the value stored at a location, or
e writing a value into a location.

Nevertheless, there are still many situations in which the transformations are
safe, even in a stateful language. Let us say that an expression E; interferes
with E» when E; allocates or writes a store location that is read and/or written
by Eo. Then T1 is safe as long as F, does not interfere with itself or the rest

4For the purposes of this discussion, we choose to treat all errors and divergence as obser-
vationally equivalent. That is, we do not care if a transformation changes the error signaled
by a program or changes an error-signaling program to a diverging one (or vice versa).

350 CHAPTER 8. STATE

of the program and T2 is safe as long as Fj or E. do not interfere with each
other. Classical compiler optimizations like code motion, common subexpression
elimination, and dead code removal require reasoning about the interference
between expressions.

A particularly simple form of non-interference involves expressions that do
not depend on the store at all. An expression is pure when it does not allocate,
read, or write any store locations. A pure expression does not interfere with
any other expression, and so it can be treated as if it were in a referentially
transparent language. For instance, it is safe to replace a pure expression by
an expression having the same value or to move a pure expression to a different
position in the same naming context.

Neither interference nor purity is a computable property. However, there
are conservative approximations to these properties that are computable. For
example, a common syntactic technique for approximating purity is to observe
the following in a language with cells:

e variable references and abstractions (lambda expressions) do not depend
on the store and so are syntactically pure;

e conditionals, 1let expressions, pair expressions, and primitive applications
(except those involving cell primitives) are syntactically pure if all their
subexpressions are syntactically pure;

e all other expressions, including primitive applications of cell primitives and
procedure applications, are assumed to be impure.

Expressions that are pure by these rules are called syntactic values. We shall
use this notion later in our discussion of polymorphic types, type reconstruction,
and abstract types (Chapters 7?7 and 15). Chapter 16 will present a more flexible
mechanism for statically determining the side effects (and therefore interference
properties) an expression may have.

> Exercise 8.5 Show that the store-based definition of Computation is pointed. <

> Exercise 8.6

a. Prove that the first four equalities in Figure 8.14 hold when
Computation = Expressible.

b. Prove that all nine equalities in Figure 8.14 hold when
Computation = Store — (FExpressible x Store). <

> Exercise 8.7

8.2. MUTABLE DATA: FL! 351

a. What is the value of (rec a a) under the call-by-value denotational semantics
for FLK in the previous chapter?

b. What is the value of (rec a a) under the operational semantics for FLK!?
c. What is the value of (rec a a) under the denotational semantics for FLK!?

d. Explain any discrepancy in your answers to the first three parts of this question.
<

> Exercise 8.8 The FL! language definition includes a simple immutable data struc-

ture called the pair. In this problem, we introduce a mutable pair. Mutable pairs

are a simple kind of mutable structure similar to the mutable records found in many

imperative languages. (See Section 10.1.4 for a discussion of mutable data structures.)
Suppose the FLK! language is extended in the following way:

E o= ...
| (mpair E; E.) | (mfst Enp) | (msnd Enp)
| (set-mfst! Enp E)) | (set-msnd! Enp Er)

The new constructs have the following informal semantics:

e (mpair FE; E,) creates a new mutable pair value with two fields called mfst and
msnd. The values of E; and E,. are stored in the mfst and msnd fields, respectively.

o If F,,, evaluates to a mutable pair, then (mfst E,,,) returns the content of the
mfst field of the pair. Otherwise, mfst produces an error. Similarly for msnd.

o If £, evaluates to a mutable pair, then (set-mfst! FE,,, E;) mutates the
mutable pair so that the mfst field contains the value of E;. If E,,, evaluates
to anything else, or if evaluating F; gives an error, then set-mfst! generates an
error. Similarly for set-msnd!.

For example, here are some expressions involving mutable pairs:

(let ((foo (mpair 1 2)))
(begin
(set-mfst! foo 6)
(+ (mfst foo) (msnd foo)))) —p 8
(let ((bar (mpair 8 (mpair 4 3))))
(begin
(set-mfst! bar (msnd bar))
(set-msnd! (msnd bar) (mfst (mfst bar)))
(+ (mfst (msnd bar)) (msnd (msnd bar))))) — 8

eval

a. Extend the denotational semantics of FLK! to handle mpair, mfst, msnd, set-mfst!,
and set-msnd!.

i. Describe any additions or modifications you make to the semantic domains
of FLK!.

352 CHAPTER 8. STATE

ii. Give valuation clauses for the five constructs. (You should not have to
modify any of the existing valuation clauses.)

iii. Define any auxiliary functions necessary for your valuation clauses.

b. Consider the following potential desugaring for mpair, mfst, and set-mfst!
(msnd and set-msnd! would be handled similarly):

D[(mpair E; E,;)] = (pair (cell D[E;]) (cell D[E.]))
D[(mfst Enp)] = (cell-ref (left D[Enp]))

D[(set-mfst! En, E)] = (cell-set! (left D[E.,]) D[E])

Is this desugaring consistent with the semantics of mutable pairs? If it is, explain
why; if not, show an expression whose meaning differs under this desugaring. <

> Exercise 8.9 A common problem when working with state is data consistency.
For example, consider a database application that manages the accounts of a bank.
Transferring an amount of money between two accounts implies subtracting the amount
from the first account and adding it to the second one. If we transfer money only between
accounts of the same bank, the total amount of money present in all the accounts should
remain the same. However, if something bad occurs between the subtraction and the
addition (e.g., a system crash), a certain amount might simply vanish! To prevent this,
in database programming, all modifications to the database are required to occur within
a transaction.

Intuitively, a transaction is a series of modifications to a database that become
permanent only when the transaction is successfully terminated (the technical term is
committed). If the user decides to abort (i.e., cancel) the transaction, or the system
crashes before the transaction is committed, all the modifications are “undone.”

Abe Stract, president and CEO of Intrusive Databases, Inc., decides to add trans-
actions to FL!. In Abe’s language, the store will act as the database: queries of the
database are cell-refs, and modifications are performed by cell-set!. It is an error
to perform a cell-set! when there is no active transaction.

Abe extends the grammar of FLK! by the following clauses:

E:=... [As before]
| (begin-transaction!) [Begin Transaction]
| (commit!) [Commit Transaction]
[

| (abort!) Abort Transaction]

The informal semantics of transactions are:

e (begin-transaction!) begins a transaction. The transaction continues until
either a commit! or an abort! is encountered — it is an error if the program
ends and a transaction has not been ended or aborted.

e (commit!) successfully terminates the current transaction. It is an error if no
transaction is in progress.

8.2. MUTABLE DATA: FL! 353

e (abort!) ends the current transaction and undoes all of its modifications. It is
an error if no transaction is in progress.

Like cell-set!, the three transaction operations all return unit.

Transactions may be nested, in which case abort! and commit! only end the current
(innermost) transaction. An abort! of a transaction undoes the modifications of the
transaction including modifications made by nested transactions.

Here is how Abe might write a transfer between two bank accounts (represented as
cells) using transactions:
(define transfer
(lambda (from to amount)
(begin (begin-transaction!)
(cell-set! from (- (cell-ref from) amount))
(cell-set! to (+ (cell-ref to) amount))
(if (< (cell-ref from) 0)
(begin (abort!)
’failed)
(begin (commit!)
’succeeded)))))

Here are more examples of the behavior of transactions; we assume the expressions
are evaluated in order.

(define cell-1 (cell 0))
(define cell-2 (cell 10))

(define inc!
(lambda (a-cell) (cell-set! a-cell (+ (cell-ref a-cell) 1))))

(define current-state
(lambda ()
(list (cell-ref cell-1) (cell-ref cell-2))))

(current-state) —¢p [0, 10]

(begin (begin-transaction!)

(inc! cell-1)

(commit!)

(current-state)) —xp [1,10]
(begin (begin-transaction!)

(inc! cell-2)

(abort!)

(current-state)) —+rp [1,10]

354 CHAPTER 8. STATE

(begin (begin-transaction!)
(inc! cell-1)
(begin (begin-transaction!)
(inc! cell-2)
(abort!))
(commit!)
(current-state)) —+rp [2,10]
(begin (begin-transaction!)
(inc! cell-1)
(begin (begin-transaction!)
(inc! cell-2)
(commit!)) ;; End inner transaction,
(abort!) ;; but abort! outer transaction.
(current-state)) —=rp [2,10]

(begin (begin-transaction!) ;3 commit! returns #u
(inc! cell-2)
(commit!)) —rp unit

(current-state) —+rp [2,12]

Abe also points out some programs that generate errors (each interacts with the
database in a completely independent session):

(begin-transaction!) 4 error : transaction — not — terminated

(commit!) LT €rror : no — current — transaction

(let ((a-cell (cell 0)))
(begin (cell-set! a-cell 5)

(cell-ref a-cell))) —gp error : not — in — a — transaction

(let ((a-cell (cell 0)))
(begin (begin-transaction!)
(cell-set! a-cell 5)
(commit!)
(cell-set! a-cell 7) ;3 commit! ends transaction,
;3 so invalid modification
(cell-ref a-cell))) —pp error:not —in — a — transaction

a. Extend the operational semantics of FLK! (Section 8.2.3) to handle transactions:

i. Define the configurations, the set of final configurations, the input function,
and the output function.

ii. Provide transition rules for begin-transaction!, commit!, abort!, and
cell-set!

b. Modify the denotational semantics of FLK! to handle transactions.

i. Give the necessary additions or modifications to the semantic domains of
FLK!.

8.2. MUTABLE DATA: FL! 355

ii. Some auxiliary functions used by the FLK! denotational semantics might
need to be modified (e.g., as a result of the changes in the semantic domains).
Give their new definitions.

ili. Write the valuation clauses for the three new constructs. <

> Exercise 8.10 Clark Smarter of the Photocopy Research Center has developed a
new backtracking construct for FLK! called try:

E = ...
| (try E; E») [Backtracking]

The informal semantics of (try E; FEj) is as follows: First E; is evaluated, and if
E; returns true, then try ignores Ep and returns true. If E; evaluates to false, then
the side effects of E; are discarded, and the value of try is the value of E». If the value
of F; is neither true nor false, then the try expression yields an error. try is thus an
elementary backtracking construct. It allows the exploration of one alternative, and, if
that does not work, restores the initial state and tries a second alternative.

Here’s an example of a program that uses try:

(let ((balance (cell 200)))
(let ((withdraw (lambda (n)
(begin (cell-set! balance
(- (cell-ref balance) n))
(> (cell-ref balance) 0)))))
; First try to withdraw 250; if that fails, withdraw 10 from
; the original balance.
(begin (try (withdraw 250)
(withdraw 10))
(cell-ref balance))))
+ 190

Clark knows the pitfalls of informal semantics. When writing up the documenta-
tion for try, he decides to give an operational and denotational semantics for his new
construct.

a. First Clark tries to find an operational semantics for try:

i. In attempting to give an operational semantics for try, Clark realizes that
he must extend the configuration space CF, so he adds a new intermediate
expression to E. Describe the new intermediate form and its purpose. (Hint:
you may want to think about the next part before answering this one.)

ii. Provide all of the rewrite rules which are necessary to handle the try con-
struct.

b. Next Clark wants to find a denotational semantics for try. Help Clark by writing
the valuation clause that handles the try expression.

c. Clark shows his operational and denotational semantics definitions of try to lan-
guage implementor Hardy Ware. Hardy says, “These semantic definitions are all
well and good, but implementing try efficiently is going to be tough.”

356 CHAPTER 8. STATE

i. Explain what Hardy means by describing what difficulties would be encoun-
tered in implementing try efficiently on physical computers where state-
based memory devices implement the binding of locations to values.

ii. Sketch a strategy for implementing try that does not require making a copy
of the entire store. <

8.3 Mutable Variables: FLAVAR!

In FLK!, the only entity that can change over time is the contents of a muta-
ble cell. So-called “variables” are actually constants whose value cannot change
during the execution of a program. While mutable cells are sufficient for imple-
menting any state-based program, they are not always convenient to use. Here
we explore a variant of FLK! called FLAVAR! in which every variable becomes
a mutable entity. We will also revisit the issue of parameter-passing in the con-
text of state by examining four parameter-passing mechanisms for FLAVAR!.

8.3.1 Mutable Variables

In FL!, it can be difficult to modify a program to make a previously constant
quantity mutable. For example, suppose an FLK program binds the variable
addresses to a list of names and addresses. Since both variables and pairs
are immutable in FL!, the meaning of addresses cannot change during the
execution of the program. Suppose that we later decide to modify the program
so that it dynamically updates the address list. Then it is necessary to rebind
addresses to a mutable cell whose contents is a list. Furthermore, we must
find all references to addresses in the existing program and replace them by
(cell-ref addresses).’

Most programming languages offer a more convenient way of making such
changes: mutable variables. A variable is mutable if the value it is bound to
can change over time. The variables of FL. and FL! are somewhat misnamed,
because their values can’t vary over time; rather, they are names for constants.
In contrast, variables in languages like SCHEME, C, PASCAL, and FORTRAN can
have their values changed by assignment during the execution of the program.
In these languages, modifying the address program would not require finding
and updating all references to addresses, because all variables are assignable
by default. On the other hand, programs in these languages can be tougher
to reason about because it can be hard to determine which variables change

5We shall see in Section 17.7 that compilers often perform a program transformation like
this called assignment conversion.

8.3. MUTABLE VARIABLES: FLAVAR! 357

over time and which do not. This situation can be improved if the languages
provide a mechanism for declaring that certain named entities are immutable
(e.g., constant declarations).

We have two motivations for studying mutable variables:

e Many real languages support mutable variables.

e Mutable variables shift the way we think about naming. In languages
with mutable variables, names do not denote values, but instead denote
locations in the store at which values are stored.

8.3.2 FLAVAR!

We will study mutable variables in FLAVARY!, a dialect of FL! that supports
assignments to variables. The syntax of FLAVAR! (and its kernel, FLAVARK!)
is the same as that for FL! (and its kernel, FLK!) except for the addition of a
SCHEME-like set! construct:
ErpAvARK) 5= ... [FLK! Expressions]
| (set! I E) [Assignment]

Informally, (set! I FE) assigns the value of the expression F to the variable
named by I. For example,

(let ((a 3))
(begin (set! a 4)

a)) Fravamr 4

Note the differences between the cell assignment operator, cell-set!, and
the variable assignment construct, set!. The former changes the value of a first-
class data value (a cell), while the latter changes the value of a variable (which
is not a first-class value). In (cell-set! E; E»), E; can be any expression
that evaluates to a cell, while in (set! I FE), Iis constrained to be an identifier
visible in the current scope. Mutable cells and mutable variables are orthogonal
language features. FLAVAR! contains both.

The semantics of FLAVARK! is based on the denotational semantics of
FLK! presented in the previous section. We will only note the ways in which the
semantics for FLAVARK! differs from that for FLK!. Some of the differences
are highlighted in Figure 8.16. The key feature of FLAVARK! is that variables,
like mutable cells, are represented as locations in the store. This means that
locations are the only entity in the language that can be named; i.e., Denotable =
Location. The association between a name I and a value v that is represented by
a single environment binding in FL! is represented by two bindings in FLAVAR/!:

358 CHAPTER 8. STATE

6 € Denotable = Location
o € Storable = depends on parameter passing mechanism

val-to-storable : Value — Storable = depends on parameter passing mechanism
E[I] = depends on parameter passing mechanism

E[(call E; E2)] = depends on parameter passing mechanism

E[(set! I E)] =Xe. (with-value (E[E] e)

(M. (with-denotable (lookup e I)
(Al. (update 1 (val-to-storable v))))))

Figure 8.16: Semantics of mutable variables. The definitions of Storable,
val-to-storable, and the valuation clauses for I and call depend on the pa-
rameter passing mechanism.

an environment binding between a name I and a location [, and an assignment
between [and v. The indirection through [allows the value associated with the
name to be changed. The details of how the locations are allocated, how they
are looked up, and what values may legally be stored in them are determined
by the parameter passing mechanism of the language. We shall discuss several
mechanisms shortly.

The other interesting aspect of the FLAVAR! semantics is the valuation
clause for set!. In (set! I E), Fis evaluated and stored in the location named
by I. The auxiliary function val-to-storable, which depends on the definition of
Storable, is needed to inject the value into the Storable domain. Note that in the
expression (set! a a), the left and right occurrences of a are treated differently.
A location is found for the left occurrence, but the value stored at that location
is found for the right occurrence. For this reason, the location is called the L-
value (left value) of the variable, and the value stored at that location is called
the R-value (right value) of the variable. Determining the R-value associated
with an L-value is called dereferencing the variable. The notions of L-value
and R-value can be extended to expressions. Variables can be viewed as cells in
which dereferencing corresponds to automatically performing a cell-ref upon
every variable reference, and (set! I FE) performs a cell-set! of the L-value
of I to the R-~value of FE.

8.3. MUTABLE VARIABLES: FLAVAR! 359

8.3.3 Parameter Passing Mechanisms for FLAVAR!

Parameter passing mechanisms for languages with mutable variables are deter-
mined by the domain Storable, the function val-to-storable, and the valuation
clauses for call and [I. Figures 8.17 and 8.18 summarize four parameter passing
mechanisms for FLAVAR!. These are explained in the following sections.

o € Storable = Value
val-to-storable= Av . v
El(call E; E3)] =Xe. (with-procedure (E[E;] e)
(Ap . (with-value (E[E2] e)
(M. (allocating v p)))))
E[I] =Xe. (with-denotable (lookup e I) (Al. (fetching I val-to-comp)))

Call-by-Value

o € Storable = Computation

val-to-storable = val-to-comp

El(call E; E»)] =Xe. (with-procedure (E[E;] e)
(Ap . (allocating (E[E2] e) p)))

E[I] =Xe. (with-denotable (lookup e I) (Al. (fetching I (Ac. c))))

Call-by-Name

Figure 8.17: Parameter passing mechanisms in FLAVARY!, part 1.

8.3.3.1 Call-by-value

The CBV mechanism for FLAVAR! is similar to CBV for FL and FLK! except
that a procedure call allocates a new location for the argument value and passes
this location (rather than the value) to the procedure. Since the meaning of an
identifier is a location and not a value, every variable reference requires both
a lookup in the environment (to find the location) and a fetch from the store
(to dereference the location). In CBV, only elements of the domain Value are
storable. For example:

360 CHAPTER 8. STATE

o € Storable = Memo
mm € Memo = Computation + Value

val-to-storable= \v . (Value — Memo v)

E[(call E; Ep)] =Xe. (with-procedure (E[E;] e)
(Ap . (allocating (Computation — Memo (E[E2] €)) p)))

E[I] =Xe. (with-denotable (lookup e I)
(A\l. (fetching [
(Amm . matching mm
> (Computation — Memo c)
| (with-value ¢
(M. (sequence (update [(Value — Memo v))
(val-to-comp v))))

> (Value — Memo v) | (val-to-comp v)
endmatching))))

Call-by-Need (Lazy Evaluation)

o € Storable = Value

& : Exp — Environment — Computation
LY : Exp — Environment — Computation

val-to-storable= A\v . v

El(call E; Ey)] =Xe. (with-procedure (E[E;] e)
(Ap . (with-location (LV[Ez] €) p)))

E[I] =Xe. (with-denotable (lookup e I) (Al. (fetching I val-to-comp)))
LV[I] =Xe. (with-denotable (lookup e I) (Al. (val-to-comp (Location — Value 1))))
LY[Eother] ; where Eoper is not I

=MXe. (with-value (E[Eother] €)
(M. (allocating v (Al. (val-to-comp (Location — Value [)))))

Call-by-Reference

Figure 8.18: Parameter passing mechanisms in FLAVARY!, part II.

8.3. MUTABLE VARIABLES: FLAVAR! 361

(let ((a 0)
(f (lambda (x) (+ x x))))
(f (begin (set! a (+ a 1)) a))) wpvFravanr 2

((lambda (x) 3) (/ 1 0)) =gy —Fravapr €r7or

8.3.3.2 Call-by-name

CBN in FLAVAR! is similar to CBN in FL, except that here it is Storable
(not Denotable) that equals Computation. The call clause indicates that the
computation of the argument expression (not its value) is stored at a newly
allocated location. In FLAVAR!, computations are functions that accept a
store, so the current store is supplied to a computation every time the variable
that names it is referenced. If the computation performs a side effect, this
side effect will be performed every time the variable is looked up. Consider the
following example:

(let ((a 0)
(f (lambda (x) (+ x x))))

(f (begin (set! a (+ a 1)) a))) CBN FLAVART 3

In the example, calling £ binds x to a location that holds the computation
(E[(begin (set! a (+ a 1)) a)] es), where e; is an environment with bind-
ings for a and f£. Each variable reference to x within the procedure body (+ x x)
performs this computation with the current store. So the left reference to x in-
crements a and returns 1, while the right reference to x increments a again
and returns 2. This behavior illustrates the perils of mixing state with CBN
parameter passing.

As in FL, certain computations in FLAVAR/! correspond to errors or non-
termination. Because such computations are nameable in CBN (by an indirec-
tion through the store), procedures can be non-strict:

((lambda (x) 3) (/ 1 0)) =gy Fravam” ©

8.3.3.3 Call-by-need (Lazy Evaluation)

The presence of state in FLAVAR! suggests a parameter passing mechanism
based on the memoization trick introduced in the FL interpreter. That is,
a formal parameter name can be bound to a location that originally stores
the computation of the argument expression. The first time the parameter
is referenced, the computation is performed, but the resulting value is cached
at the location and is used on every subsequent reference. Thus, the argument
expression is evaluated at most once and is never evaluated at all if the parameter

362 CHAPTER 8. STATE

is never referenced. This mechanism is called call-by-need or lazy evaluation.
Because the acronym CBN is already taken, we will abbreviate call-by-need as
CBL (call-by-lazy).

Call-by-need can exhibit the desirable behavior of both CBV and CBN:

(let ((a 0)
(f (lambda (x) (+ x x))))
(f (begin (set! a (+ a 1)) a))) wprFravan” 2

((lambda (x) 3) (/ 1 0)) —pr—Fravamr &

However, because side effects in argument expressions are performed at the time
of lookup rather than at the time of call, CBL can exhibit different behavior
from CBV. For example, consider the following expression:

(let ((a 0))
(let ((f (lambda (x)
(begin (set! a 17)
+ xx)))))
(f (begin (set! a (+ a 1)) a))))

Under CBYV, the call to £ first increments a and then binds x to a location holding
1. The assignment of 17 to a does not affect x, so the result is 2. However,
under CBL, the call to £ binds x to a location that holds the computation of
(begin (set! a (+ a 1)) a). This computation is not performed until the
first reference of x, which occurs after a has been set to 17. So CBL returns 36
for this expression.

8.3.3.4 Call-by-reference

So far, all the parameter passing mechanisms we have discussed allocate a new
location for every argument. But in the case where the argument expression is a
variable reference, there is already a location associated with the variable. This
suggests a mechanism that uses the existing location rather than allocating a
new one. Such a mechanism is termed call-by-reference (CBR). FORTRAN
and PAscAL and are examples of languages that support CBR.

In CBR, there is the question of what to do with an argument that is not
a manifest identifier. For example, in the application (test (+ 1 2)), the
value of (+ 1 2) has no associated location. Languages handle this situation
in different ways. In PASCAL, it is an error to supply anything but an identifier
as a CBR argument. In FORTRAN, however, a new location will be allocated
for any argument that is not a manifest identifier. The semantics in Figure 8.18
takes this latter approach. In fact, this is the only mechanism for creating

8.3. MUTABLE VARIABLES: FLAVAR! 363

new variables in CBR FLAVAR!. This is a somewhat unrealistic aspect of
our language; real CBR languages have special declarations for introducing new
variables.

The denotational semantics for CBR models the special handling of variable
arguments by providing two valuation functions for expressions: £ and £V. LV
finds the L-value of an expression, while £ finds the R-value of an expression.
For an expression that is an identifier, £) returns the location of that identifier.
For any other expression, £V allocates a new location for the R-value of the ex-
pression and returns this location. The key feature of the CBR semantics is that
LV (rather than &) is used to evaluate the operand of a procedure application.

In FLAVAR!/!, procedure calls are expressions that return results, but in
many imperative languages, procedure calls are commands that do not return
results. In such languages, CBR is useful as a means of extracting a result from
a procedure call. One (or more) arguments to a procedure can be a variable
that the procedure uses to communicate the result(s) back to the caller. Here is
an example of this idiom in CBR FLAVAR!:

(let ((a 0)
(double (lambda (in out)
(set! out (+ in in)))))
(begin
;3 A is O here.
(double 17 a)
;; Now A is 34.

(+a 1)) eprFravars 39

The double procedure takes a numeric argument (in) and variable (out) for
returning the result of doubling in. In the example, the variable a is used to
communicate the result of the doubling operation back to the point of call.

One characteristic of CBR (or any paradigm that allows mutable entities
to be passed as arguments) is that two different names may refer to the same
location. This situation is known as aliasing. Consider the following example:

(let ((x 1))
(let ((test (lambda (a)

(begin
(set! x 20)
(+ a x)))))

(test x))) oprrFravarr 40

Within the call (test x), both x and a are aliases for the same location, so the
assignment to x changes a. Aliasing is often considered undesirable because it
complicates reasoning about programs.

364 CHAPTER 8. STATE

CBR is similar to passing a mutable cell as an argument to a procedure. The
difference is that variables are more restricted than cells. A mutable cell is a
first-class value: it may be named, passed as an argument to a procedure, re-
turned as a result from a procedure, and stored in any data structure, including
another cell. On the other hand, while a variable may be named by an identifier
and passed as an argument to a procedure, it cannot be returned as a result
from a procedure, and it cannot be stored in a data structure (including another
variable). Unlike cells, therefore, variables are not first-class values. Although
this restricts the expressive power of variables, it permits variables to be imple-
mented more efficiently than cells. A variable may be allocated on a stack, while
cells generally must be allocated from a garbage-collected heap. We will have
much more to say about tradeoffs between expressiveness and efficiency when
we study pragmatic issues later on.

> Exercise 8.11

a. Give a translation of call-by-value FLAVARK! into call-by-value FLK!. You do
not need to translate rec.

b. Give a translation of call-by-reference FLAVARK! into call-by-value FLK!. You
do not need to translate rec. <

Chapter 9

Control

I shall be telling this with a sigh
Somewhere ages and ages hence:

Two roads diverged in a wood, and I —
I took the one less traveled by,

And that has made all the difference.

— The Road Not Taken, st. 4, Robert Frost

“Did he ever return, no he never returned
And his fate is still unlearned”

— MTA, performed by the Kingston Trio,
written by Bess Hawes & Jacqueline Steiner

9.1 Motivation: Control Contexts and Continuations

So far, we have studied two different kinds of contexts important in the evalua-
tion of programming language expressions:

e A naming context that determines the meaning of free variable names
within an expression.

e A state context that specifies the time-dependent behavior of mutable
entities.

365

366 CHAPTER 9. CONTROL

By objectifying both of these contexts as mathematical entities — environments
and stores — the denotational approach provides significant leverage for us to
investigate the space of language features that depend on these contexts. In the
case of naming, environments help us to understand issues like parameter pass-
ing, scoping, and inheritance. In the case of state, stores help us to understand
issues involving mutable variables and data structures.

There is a third major context that is still missing from our toolbox: a
control context. Informally, control describes the path taken by a programmer’s
eyes and fingertips when hand-simulating the code in a listing. For example,
when simulating a while or for loop in an imperative language, it is often
necessary to refocus attention on the beginning of the loop after the end of
the loop code is reached. Conditional expressions and procedure calls are other
simple examples of control constructs that we have seen.

What does it mean for expressions to have a control contert? As an example,
consider the following FL! expression:

(let ((square (lambda (x) (* x x))))
(+ (square 5) (¥ (+ 1 2) (square 5))))

There are two different occurrences of the (square 5) expression. What is the
difference between them? Both are evaluated in the same environment and the
same store, so they are guaranteed to yield the same value. What distinguishes
them is how their value is used by the rest of the program. Reading from left
to right, the first (square 5) returns 25 to a process that is collecting the first
of two arguments to the procedural value of +. The second (square 5) yields
its result to a process that is collecting the second of two arguments to the
procedural value of *; this, in turn, is a subtask of the process that is collecting
the second of two arguments to +, which itself is a subtask of the process that
is waiting for the answer to the entire let expression. What distinguishes the
occurrences of (square 5) is their control context: the part of the computation
that remains to be done after the expression is evaluated.

The denotational descriptions we have employed so far have not explicitly
represented the notion of “the rest of the computation.” A denotational seman-
tics without an explicit control model is said to be a direct semantics. A direct
semantics for a programming language cannot deal elegantly with interruptions
of the normal flow of control of a program. As long as valuation clauses are
recursive in the obvious way, the flow of control in the clauses has no choice but
to follow the structure of the program’s parse tree.

A simple example of the limitation of direct semantics can be seen in its
clumsy handling of error conditions in the languages that we have already en-
countered. An error is detected in one part of the semantics, and every other

9.1. MOTIVATION: CONTROL CONTEXTS AND CONTINUATIONS 367

part of the semantics must be able to cope with the possibility that some subex-
pression has produced an error instead of a normal result. This approach to error
checking does not capture the intuition that a computation encountering an er-
ror immediately aborts without further processing. Abstractions like with-value
help to hide this error checking, but they do not remove it. Indeed, interpreters
based on the direct semantics of FL. and its variants expend considerable effort
performing such checks.

More generally, a direct semantics cannot easily explain constructs that in-
terrupt the “normal” flow of control:

e non-local exits as provided by C’s break and continue or COMMON LISP’s
throw and catch.

e unrestricted jumps permitted in numerous languages via goto.

e sophisticated exception handling as seen in CLU, ML, CoOMMON LiSP,
DYLAN, and JAVA.

e coroutines such as iterators in CLU and communicating sequential pro-
cesses in many languages, notably occAm and even JAvA (JCSP).

o backtracking, which is used to model nondeterminism, e.g., to search a tree
of possibilities, as in PROLOG and other logic programming languages.

In each of these cases, a program phrase does not simply return some value
and/or an updated store, but instead bypasses the control context that invoked
it and transfers control to some other place in the program.

The notion of continuation addresses this problem and provides a math-
ematical model of such transfers of control. A continuation is an entity that
explicitly represents the “rest” of some computation. In implementation terms,
it corresponds to the part of the machine state that comprises the current config-
uration of the runtime stack, together with a return address that specifies what
code to run when the current computation returns a value. The continuation
corresponding to the textually subsequent code in a program is usually referred
to as the normal continuation. Many control constructs achieve their effect
by substituting some other continuation for the normal one.

This chapter shows how continuations simplify the descriptions of the lan-
guages we have studied so far and allow the modeling of advanced control fea-
tures in these languages. Be forewarned that control constructs are notoriously
hard to think about. Even though many of the formal descriptions of control
constructs are surprisingly concise, this does not imply that they are propor-
tionately easier to understand. The often convoluted nature of control can lead

368 CHAPTER 9. CONTROL

the reader into mental gymnastics that are likely to leave the brain a little bit
sore at first. Luckily, with sufficient practice, the concepts can begin to seem
natural.

To help build up some intuitions about continuations, we will first discuss
how to achieve some sophisticated control behavior using only first class proce-
dures. Then we will be better prepared to understand the use of continuations
in denotational definitions.

9.2 Using Procedures to Model Control

We said before that continuations represent the rest of a computation. In a func-
tional language, the continuation for an expression E is “waiting for” the value
of E. Tt is therefore natural to think of continuations in a functional language
as being procedures of one argument. For example, in the FL expression

(let ((square (lambda (x) (* x x))))
(+ (square 5) (x (+ 1 2) (square 5))))

the continuation of the first (square 5) might be thought of as
(lambda (v1) (+ v1 (x (+ 1 2) (square 5))))
and the continuation for the second (square 5) might be thought of as

(lambda (v2) (+ 25 (* 3 v2)))

The above approximations indicate that operands to an FL application are
evaluated in left-to-right order. When the first call to square is being evaluated,
the second argument to + is the unevaluated (* (+ 1 2) (square 5)). But by
the time the second call to square is evaluated, the first (square 5) has been
evaluated to 25 and the (+ 1 2) argument has been evaluated to 3.

Even in languages that do not support mutation, continuations require a
computation to be viewed in a purely sequential way; some expressions are
evaluated “before” other expressions. In fact, it is really control, not state, that
must be linearly threaded through a sequential computation. State is just a piece
of information carried along by the control in its linear walk. This separation of
control and state makes it easier to think about sophisticated control constructs
like backtracking, where a computation may revert to a previous state even
though it is progressing in time.

First-class procedures are powerful enough to implement some fancy control
behavior. In this section, we show how first-class procedures can be used to
implement procedures returning multiple values, non-local exits, and coroutines.

9.2. USING PROCEDURES TO MODEL CONTROL 369

9.2.1 Multiple-value Returns

It is often useful for a procedure to return more than one result. A classic
example of the utility of multiple-value returns concerns integer division and
remainder. Languages often provide two primitives for these operations even
though the same algorithm computes both. It would make more sense to have
a single operation that returns two values.

As another example, suppose that we want to write an FL program that,
given a binary tree with integers as leaves, computes both the depth and the
sum of the leaves in the tree and returns their product. One approach is to apply
two different procedures to the tree and combine the results as in Figure 9.1.
Notice that depth*sum; requires two walks over the given tree.

(define depth*sum;
(lambda (tr)
(letrec ((depth (lambda (tree)
(if (leaf? tree)
0
(+ 1 (max (depth (tree-left tree))
(depth (tree-right tree)))))))
(sum (lambda (tree)
(if (leaf? tree)
tree
(+ (sum (tree-left tree))
(sum (tree-right tree)))))))
(* (depth tr) (sum tr)))))

Figure 9.1: The first version of depth*sum performs two tree traversals.

A procedure that returns multiple values allows one to perform the compu-
tation in a single tree walk. A simple method of doing this is to return a pair at
each node of the tree as in Figure 9.2. However, the bundling and unbundling
of values makes this approach to multiple values messy and hard to read.

An alternate approach to returning multiple values is to use first-class pro-
cedures. If procedure M is supposed to return multiple values, we can modify it
to take an extra argument R!, called the receiver. The receiver is a procedure
that expects the multiple values as its arguments and will combine them into
some result. M returns its results by calling R on them. We have already seen
numerous examples of this strategy in metalanguage functions and interpreter
procedures (e.g., with- functions have this form). Figure 9.3 shows how to apply
this idea to our example.

!By convention, the extra argument usually comes last.

370 CHAPTER 9. CONTROL

(define depth*sumgp
(lambda (tr)
(letrec ((inner
(lambda (tree)
(if (leaf? tree)
(cons 0 tree)
(let ((depth&suml (inner (tree-left tree)))
(depth&sum2 (inner (tree-right tree))))
(cons (+ 1 (max (car depth&suml)
(car depth&sum2)))
(+ (cdr depth&suml) (cdr depth&sum2))))))))
(let ((depth&sum (inner tr)))
(* (car depth&sum) (cdr depth&sum))))))

Figure 9.2: The second version of depth*sum uses pairs to return multiple values.

(define depth*sumg
(lambda (tr)
(letrec ((inner
(lambda (tree receiver)
(if (leaf? tree)
(receiver 0 tree)
(inner
(tree-left tree)
(lambda (depthl suml)
(inner (tree-right tree)
(lambda (depth2 sum?2)
(receiver (+ 1 (max depthl depth2))
(+ suml sum2))))))))))

(inner tr *))))

Figure 9.3: The third version of depth*sum passes multiple values to procedural
continuations.

9.2. USING PROCEDURES TO MODEL CONTROL 371

This style of code can be difficult to read. The receiver argument to the
inner procedure acts as a continuation encoding what computation needs to
be performed on the two values that inner “returns.” For example, the call
(inner tr =) starts off the process by applying inner to the tree tr with a
receiver * that will take the two results and return their product.

Even though the receiver is an argument, it is typical to ignore its argu-
ment status and view it as a different entity when reading a call like inner. So
(inner FE; (lambda (I; I») FE»)) can be read as “Call inner on E; and ap-
ply the procedure (lambda (I; I») E2) to the results” or “Evaluate F» in an
environment where I; and I» are bound to the two results of applying inner to
E;.” Note that these readings treat inner as a procedure of one argument that
returns two results, not a procedure of two arguments. Viewing continuation
argument(s) as different entities from other arguments is important for getting
a better working understanding of them.

Unlike the other two approaches, using a receiver forces us to choose a par-
ticular order for examining the branches of the binary tree. The main advantage
of a receiver is that it allows the multiple returned values to be named using the
standard naming construct, lambda. It is not necessary to invent a new syntax

for naming intermediate values: lambda suffices.
As a concrete example, consider the following application of depth*sumg:

(depth*sumg > ((5 7) (11 (13 17))))

An operational trace of the evaluation of this expression appears in Figures 9.4
and 9.5. Here, a tree node is represented by a list of the left and right subtrees,
while a leaf is represented by an integer. Note how the continuation argument
to inner acts like a stack that keeps track of the pending operations.

9.2.2 Non-local Exits

A continuation represents all the pending operations that are waiting to be done
after the current operation. When continuations are implicit, the computation
can only terminate successfully when all of the pending operations have been
done. Yet we sometimes want a computation buried deep in pending opera-
tions to terminate immediately with a result or at least circumvent a number of
pending operations. We can achieve these so-called non-local exits by using
explicit procedure objects representing continuations.

For example, consider the task of multiplying a list of numbers. Figure 9.6
shows the natural recursive solution to this problem. E.g.,

(product-of-1list; (list 2 4 8)) —— 64

eval

372 CHAPTER 9. CONTROL

(depthxsumg ((5 7) (11 (13 17))))
= (inner ((5 7) (11 (13 17))) =)
= (inner (5 7) (lambda (d1 s1)
(inner (11 (13 17)) (lambda (d2 s2)
(* (+ 1 (max d1 d2))
(+ s1 s2))))))
= (inner 5 (lambda (d3 s3)
(inner 7 (lambda (d4 s4)
((lambda (d1 s1)
(inner (11 (13 17))
(lambda (d2 s2)
(x (+ 1 (max d1 d2)) (+ sl s2)))))
(+ 1 (max d3 d4))
(+ 83 s4))))))
= (inner 7 (lambda (d4 s4)
((lambda (d1 s1)
(inner (11 (13 17)) (lambda (d2 s2)
(x (+ 1 (max d1 d2))
(+ s1 82)))))
(+ 1 (max 0 d4))
(+ 5 s84))))
= ((lambda (d1 si1)
(inner (11 (13 17)) (lambda (d2 s2)
(* (+ 1 (max d1 d2)) (+ s1 s2)))))
(+ 1 (max 0 0))
(+57))
= (inner (11 (13 17)) (lambda (d2 s2)
(x (+ 1 (max 1 d2)) (+ 12 s2))))
= (inner 11 (lambda (d5 sb5)
(inner (13 17) (lambda (d6 s6)
((lambda (42 s2)
(x (+ 1 (max 1 d2)) (+ 12 s2)))
(+ 1 (max d5 d6))
(+ 85 86))))))

Figure 9.4: Stylized operational trace of a procedural implementation of
multiple-value return, part 1.

9.2. USING PROCEDURES TO MODEL CONTROL 373

= (inner (13 17) (lambda (d6 s6)
((lambda (d2 s2)
(¢ (+ 1 (max 1 d2)) (+ 12 s2)))
(+ 1 (max 0 d6))
(+ 11 s6))))
= (inner 13 (lambda (d7 s7)
(inner 17 (lambda (d8 s8)
((lambda (d6 s6)
((lambda (d2 s2)
(x (+ 1 (max 1 d2)) (+ 12 s2)))
(+ 1 (max 0 d6))
(+ 11 s6)))
(+ 1 (max d7 d8))
(+ s7 s8))))))
= (inner 17 (lambda (d8 s8)
((lambda (d6 s6)
((lambda (d2 s2)
(* (+1 (max 1 d2)) (+ 12 s2)))
(+ 1 (max 0 d6))
(+ 11 s6)))
(+ 1 (max 0 d8))
(+ 13 88))))))
= ((lambda (d6 s6)
((lambda (d2 s2)
(* (+ 1 (max 1 d2)) (+ 12 s2)))
(+ 1 (max 0 d6))
(+ 11 s6)))
(+ 1 (max 0 0))
(+ 13 171
= ((lambda (d2 s2)
(* (+ 1 (max 1 d2)) (+ 12 s2)))
(+ 1 (max 0 1))
(+ 11 30))
= (x (+ 1 (max 1 2))
(+ 12 41))
= 159

Figure 9.5: Stylized operational trace of a procedural implementation of
multiple-value return, part 2.

374 CHAPTER 9. CONTROL

(define product-of-list;
(lambda (nums)
(if (null? nums)
1
(* (car nums) (product-of-list; (cdr nums))))))

Figure 9.6: A first cut at the product of a list.

Figure 9.7 shows a continuized version of product-of-1ist ;. The behavior
is exactly the same; we have just made the continuations explicit. For an empty
list, product-of-1list; continues with the value 1. For a non-empty list, we
compute the product of the tail of the list passing along a new continuation
that passes the product of the list tail and the current element to the current
continuation.

(define product-of-listy
(lambda (nums cont)
(if (null? nums)
(cont 1)
(product-of-listy (cdr nums)
(lambda (v)
(cont (* v (car nums))))))))

Figure 9.7: A continuized procedure for computing the product of a list.

Notice that product-of-list; and product-of-listy dutifully multiply
all the elements of the list even if it contains a zero element. This is a waste
since the answer is known to be 0 the moment a 0 is encountered. There is no
need to look at any other list elements or to perform any more multiplications.
product-of-listy in Figure 9.8 performs this optimization.

To accomplish a non-local exit, product-of-1listg distinguishes the con-
tinuation passed to the initial call from continuations generated by recursive
calls. The escape continuation is kept in final-cont. The local recursive pro-
cedure prod behaves like product-of-1isty except that it jumps immediately
to final-cont upon encountering a 0, thus avoiding unnecessary recursive calls
by-passing all pending multiplications.

As a more complicated example, consider the pattern matching program for
FL presented in Section 6.2.4.3. The core of the program is the match-with-dict
procedure in Figure 9.9, where we have unraveled the failure abstractions to
make the present discussion more concrete.

As written, match-with-dict performs a left-to-right depth-first walk simul-

9.2. USING PROCEDURES TO MODEL CONTROL 375

(define product-of-listg
(lambda (nums final-cont)
(letrec ((prod
(lambda (nums normal-cont)
(if (null? nums)
(normal-cont 1)
(let ((thisnum (car nums)))
(if (= thisnum 0)
(final-cont 0)
(prod (cdr nums)
(lambda (val)
(normal-cont
(* val thisnum))))))))))

(prod nums final-cont))))

Figure 9.8: Computing the product of list, exiting as soon as the answer is
apparent.

(define match-sexp
(lambda (pat sexp)
(match-with-dict pat sexp (dict-empty))))

(define match-with-dict
(lambda (pat sexp dict)
(cond ((eq? dict ’x*failedx) ; Propagate failures
>kfailedx*)
((null? pat)
(if (null? sexp)

dict ; Pat and sexp both ended
‘xfailed*)) ; Pat ended but sexp didn’t
((null? sexp) ’*failedx) ; Sexp ended but pat didn’t

((pattern-constant? pat)
(if (sym=7 pat sexp) dict ’*failedx))
((pattern-variable? pat)
(dict-bind (pattern-variable-name pat) sexp dict))
(else (match-with-dict (cdr pat)
(cdr sexp)
(match-with-dict (car pat)
(car sexp)

dict))))))

Figure 9.9: Core of the pattern matching program.

376 CHAPTER 9. CONTROL

taneously over the pat and sexp trees. It carries along a dictionary representing
bindings for variables that have already been matched. Failure is represented in
a rather ad hoc manner by replacing the dictionary with the symbol *failedx.
Since failure may occur deep in the tree where many pending matches are waiting
to be performed, each call of match-with-dict must check for and propagate
failure tokens that appear as the dictionary argument.

It would be more desirable to handle failures by by-passing all the pending ac-
tivations and simply returning the symbol *failed* as the value of match-sexp.
This effect can be achieved by passing two extra arguments to match-with-dict:
a success continuation and a failure continuation. A success continuation is a
procedure of one argument, a dictionary, that continues a thus-far successful
match with the given dictionary. A failure continuation is a procedure of no argu-
ments that effectively returns *failed* for the initial call to match-with-dict.
It is necessary to package up both continuations so that the program has the
option of ignoring one. This strategy is implemented in Figure 9.10. Note
in the final clause of the cond, match-inner works from the outside in while
match-with-dict works from the inside out. This explains why the calls to car
and cdr appear differently in the two programs, even though both walk the tree
in a left-to-right depth-first manner.

In the modified version of the pattern matcher, the interface to match-sexp
would be cleaner if it took success and failure continuations as well. Then we
could more easily specify the behavior we want in these cases.

(define match-sexp
(lambda (pat sexp succeed fail)
(match-inner pat sexp (dict-empty) succeed fail)))

(match-sexp ’((?7 a) (? a)) ’(x x)
(lambda (dict) #t)
(lambda () #f))

FIr true

(match-sexp ’((?7 a) (? a)) ’(x y)
(lambda (dict) #t)
(lambda () #f£))

1 false
> Exercise 9.1

a. Modify the code in product-of-listg to return an error symbol if there is a
non-integer element in the list.

b. Suppose the final continuation of product-of-lists must receive an integer
value. How would you handle errors? Rewrite product-of-listgs to incorpo-

9.2. USING PROCEDURES TO MODEL CONTROL

377

(define match-sexp
(lambda (pat sexp)
(match-inner pat
sexp
(dict-empty)
(lambda (dict) dict)
(lambda () ’xfailed*))))

(define match-inner
(lambda (pat sexp dict succeed fail)
(cond ((null? pat)
(if (null? sexp)

((pattern-constant? pat)
(if (sym=?7 pat sexp)
(succeed dict)
(fail)))
((pattern-variable? pat)
(succeed
(dict-bind (pattern-variable-name pat) sexp dict)))
(else (match-inner (car pat)
(car sexp)
dict
(lambda (car-dict)
(match-inner (cdr pat)
(cdr sexp)
car—dict
succeed
fail))

fail)))))

(succeed dict) ; Pat and sexp both ended
(fail))) ; Pat ended but sexp didn’t
((null? sexp) (fail)) ; Sexp ended but pat didn’t

Figure 9.10: A version of the pattern matcher that uses success and failure

continuations.

378 CHAPTER 9. CONTROL

rate your changes and show a sample call. <

9.2.3 Coroutines

Coroutining is a situation in which control jumps back and forth between con-
ceptually independent processes. The most common version is producer /consum-
er coroutines, where a consumer process transfers control to a producer process
when it wants the next value generated by the producer, and the producer re-
turns control to the consumer along with the value. The standard example of
this kind of coroutine is a compiler front end in which a parser requests tokens
from the lexical scanner.

Here, we will show how simple producer/consumer coroutines can be imple-
mented by using first-class procedures to represent control. The stream notion
we will see in Chapter 10 (beginning on page 431) is an alternate technique for
implementing such coroutines.

We represent a producer as a procedure that takes a consumer as its argu-
ment and hands that consumer the requested value along with the next producer.
We represent a consumer as a procedure that takes a value and producer, and
either returns or calls the producer on the next consumer.

For example, suppose (count-from n) makes a producer which generates
the (conceptually infinite) increasing sequence of integers beginning with n, and
(add-first m) makes a consumer that adds up the first m elements of the pro-
ducer it’s attached to. Then ((count-from 3) (add-first 5)) should return
the sum of the integers from 3 to 7, inclusive. This example,coded in FL, is in
Figure 9.11.

9.3 A Standard Semantics of FL!

To handle state in our semantics, we took the idiom of single-threading a store
through a computation and made it part of the computational model. Similarly,
we will handle control in our semantics by embedding in our computational
model the idiom of passing continuations through a computation. The strategy
of capturing common programming idioms in a semantic framework — or any
language — is a powerful idea that lies at the foundation of programming lan-
guage design. Indeed, languages can be considered expressive to the extent that
they relieve the programmer of managing the details of common programming
idioms.

Together, environments, stores, and continuations are sufficiently powerful
to model most programming languages. As noted earlier, a semantics that uses

9.3. A STANDARD SEMANTICS OF FL! 379

(define (count-from num)
(letrec ((new-producer
(lambda (n)
(lambda (consumer)
(consumer n (new-producer (+ n 1)))))))
(new-producer num)))

(define (add-first count)
(letrec ((new-consumer
(lambda (c)
(lambda (value next-producer)
(if (=c 0)
0
(+ value (next-producer
(new-consumer (- ¢ 1)))))))))
(new-consumer count)))

;; Add up the 5 consecutive integers starting at 3
((count-from 3) (add-first 5)) w1 25

Figure 9.11: An example producer/consumer example.

only environments and stores is called a direct semantics. A semantics that
adds continuations to a direct semantics is called a standard semantics, since
most denotational definitions are written in this style. A standard semantics
also implies particular conventions about the signatures of valuation functions.
One advantage of standard semantics is that following a set of conventions sim-
plifies the comparison of different programming languages defined by standard
semantics. We already saw this kind of advantage when we studied parameter
passing and scoping. Comparing different approaches was facilitated by the fact
that the styles of the denotational definitions we were comparing were similar.
Now that we’ve built up some intuitions about continuations, it’s time to
model continuations explicitly in our denotational definitions. Figures 9.12-9.14
present the standard semantics for FLK!. The definition given in the figures
is just an alternate way to write the same semantics that we gave before. In
fact, there are mechanical transformations that could transform the denotational
definition from the previous chapter into the definition in Figures 9.12-9.14.2
We introduce a standard semantics for FLK! because it is a much more
powerful tool for studying control features than the direct semantics. In fact,

2Section 17.9 presents a mechanical transformation of FLAVAR! programs into continua-
tion passing style.

380 CHAPTER 9. CONTROL

v € Cmdcont = Store — Answer
k € Expcont = Value — Cmdcont
j € Explistcont = Value* — Cmdcont

Answer = language dependent ; Typically Fxpressible
p € Procedure = Denotable — FExpcont — Cmdcont
z € Expressible = (Value + Error) | ; As before
v € Value = language dependent
y € Error = Sym ; Modified

New auxiliaries:
top-level-cont : Expcont
=Av. As. (Value — Ezpressible v) ; Assume Answer = Expressible

error-cont : Error — Cmdcont
= M. As. (Error— Ezpressible I) ; Assume Answer = Expressible

test-boolean : (Bool — Cmdcont) — Ezpcont
= Af . (Av. matching v
> (Bool — Value b) | (f b)
> else (error-cont non-boolean)
endmatching)
Similarly for:
test-procedure : (Procedure — Cmdcont) — Expcont
test-location : (Location — Cmdcont) — Expcont
etc.

ensure-bound : Binding — Ezpcont — Cmdcont
= M\0k. matching

> (Denotable — Binding v) | (k v) ; Assume CBV
> (Unbound — Binding unbound) | (error-cont unbound-variable)
endmatching

Similarly for:

ensure-assigned : Assignment — Expcont — Cmdcont

ensure-value : Expressible — Expcont — Cmdcont

Figure 9.12: Semantic algebras for standard semantics of FLK!.

9.3. A STANDARD SEMANTICS OF FL! 381

TL:Exp — Answer ; Assume Answer = Expressible

& . Exp — Environment — Expcont — Cmdcont

E* . Exp* — FEnvironment — Explistcont — Cmdcont

L :Lit — Value ; Defined as usual

Y : Symlit — Sym ; Y €Symlit are symbolic literals

TL[E] = (E[E] empty-env top-level-cont empty-store)

E[L] =Xek. (k L[L])

E[I] =Xek. (ensure-bound (lookup e I) k)

E[(proc I ED] =Xek; . (k; (Procedure — Value (ANokg . (E[E] [I: d)e k2))))

El(call E; Ey)]
=Xek. (E[E;] e (test-procedure (Ap. (E[Ez2] e (Av. (p v k))))))

Aek. (E[E:] e (test-boolean (Ab.if b then (E[Ez] e k) else (E[Es] e k) fi)))

E[(pair E; E2)]
=Xek. (E[E1] e (Avs . (E[E2] e (Avg . (k (Pair— Value (v1,v2)))))))

E[(cell E)] =Xek. (E[E] e (Avs. (k (Location — Value (fresh-loc s))
(assign (fresh-loc s) v s))))

El(begin E; Es)] =Aek. (E[E:] e (Mignore - (E[E2] € k)))
El(primop O E*)] =Aek. (EX[E*] e (\v*. (Prrii[O] v* k)))
ElCerror D] = ek . (error-cont I)

EXIN =Xej- (G [vatue)

EXEfrst - Erest™] =Xej. (E[Efrst] € (Av. (E¥[Erest] € (Av*. (j v . v¥)))))

Figure 9.13: Valuation clauses for standard semantics of FLK!, Part I.

382 CHAPTER 9. CONTROL

Prri : Primop — Value* — Expcont — Cmdcont
Prri : Primop — Value* — Expressible ; Defined as usual

Prrii[cell-ref]
= A[v]ks. ((test-location (Als". ((ensure-assigned (fetch | s’') k) s)))
v 8)

Prrii[cell-set!]
= Auvy, velks . ((test-location (Als'. (k (Unit— Value unit) (assign | vg s'))))
vy)

PFLK![[OFLK]] Z)\U*k. (ensure—value (PFLK[[OFLK]] U*)]C)
where Oprx €Primop — {cell-ref, cell-set!}

Figure 9.14: Valuation clauses for standard semantics of FLK!, Part II.

the area of control is the big payoff for our investment in denotational semantics;
many control constructs that have succinct denotational descriptions are difficult
to describe in an operational framework.

The standard semantics for FLK! differs from the direct semantics for FLK!
in the following ways:

e The FExpressible domain has been replaced by the Answer domain. In a
standard semantics, the Answer domain is used to represent the “final”
value of a program. Not all standard semantics actually return a value
for an expression. For example, the initial continuation might be an in-
terpreter’s read-eval-print loop, which never returns. In this case, the
behavior of the program could be modeled as a mapping from a sequence
of input s-expressions to a sequence of output s-expressions. Nevertheless,
in the particular case of FLK!, Answer is the same as Ezpressible.

e The standard semantics introduces two continuation domains, Fxpcont and
Cmdcont:

k € FExpcont = FExpressible — Cmdcont
~v € Cmdcont = Store — Answer

Ezpcont is the domain of expression continuations; Cmdcont is the domain
of command continuations. These types of continuations reflect a common
distinction in programming languages between commands and expres-
sions. An expression yields a value in addition to any modifications it

9.3. A STANDARD SEMANTICS OF FL! 383

might make to the store. The example languages in this book are expres-
ston languages because all program constructs are expressions that return
a value. Many languages, e.g., PASCAL, have syntactically distinct expres-
sions and commands as well as contexts that require one or the other.?

A command, on the other hand, is executed for its effect(s) and does not
produce a meaningful value. Program output is the classic example of a
command: writeln in PAScAL, for example, prints its arguments as a
line of output on the standard output device. Variable assignment is also
naturally thought of as a command. In FLAVAR/!, set! expressions re-
turn the uninteresting value #u simply because they are required to return
something, but the reason to execute an assignment is to modify the store.
Sequencing using begin is a natural command context: it exists to enforce
an order of state transformations.

Since expressions return a value and modify the store, the continuation for
an expression expects both the value and store produced by that expres-
sion. A command continuation expects only a store. Note that because
Cmdcont = Store — Answer, we can also view Ezpcont as:

k € Expcont = Expressible — Store — Answer

That is, we can think of an expression continuation as taking an expressible
value and returning a command continuation; or we may think of it as
taking an expressible value and a store and returning an answer. Which
perspective is more fruitful depends on the situation.

e The signature of £ has been modified:

& : Exp — Environment — Expcont — Cmdcont

Recall that since Cmdcont= Store — Answer we can also view £ as:

& : Exp — Environment — Expcont — Store — Answer

That is, £ takes a syntactic expression and representations of the naming
(Environment), control (Ezpcont), and state (Store) contexts, and finds
the meaning of the expression (an answer) with respect to these contexts.

3Tt is possible to coerce an expression to a command by ignoring its return value. This is
what FL does with all but the final subexpression in a begin.

384

CHAPTER 9. CONTROL

An expression of the form
(E[E] e (Av. O))

can be read as “Find the value of F in e and name the result v in O.”

Since evaluating an expression requires a store in FLK!, why doesn’t a
store appear in the above expression? The reason is that the order of
arguments to £ has been chosen to take the store as its final argument,
rather than the continuation. This argument order is one of the conven-
tions of a standard semantics; it is used because it hides the store when it
is threaded through an expression untouched. In essence, Cmdcont fulfills
the role that the Computation domain did when we introduced state into
FL. To specify that an expression takes in one store, say sy, and returns
another, s;, we write:
(E[E] e (Avs; . O) sg)

(Observe the explicit store parameters in the denotations for constructs
involving cells.)

The definition of the Procedure domain is changed to take an expression
continuation:

p € Procedure = Denotable — FExpcont — Cmdcont
Again, we can also view this definition as:

p € Procedure = Denotable — FExpcont — Store — Answer

The Procedure domain in the standard semantics differs from the Procedure
domain in the direct semantics in that procedures take an additional argu-
ment from the Ezpcont domain. Intuitively, this argument is the “return
address” that a procedure returns to when it returns a value.

The new test-xxx auxiliary functions are used to convert continuations
expecting arguments of type xxx into expression continuations. Like the
with-xxx functions from previous semantics, the test-xxx functions hide
details of error generation. However, unlike the with-xxx functions, the
test-xxx functions do not propagate errors.

Even though FL! does not have any advanced control features (we’ll add

quite a few in the remainder of this chapter), the standard semantics still has an
advantage over a direct semantics: the modelling of errors. A valuation clause
in a standard semantics generates an error by ignoring the current continuation
and directly returning an error. See, for example, the valuation clause for error.
This captures the intuition that an error immediately aborts the computation.

9.3. A STANDARD SEMANTICS OF FL! 385

The standard semantics valuation clauses in Figures 9.13 and 9.14 do not
employ the computation abstraction that we have been using in our denotational
definitions. We presented them in a concrete manner to help build intuitions
about continuations. However, it is not difficult to recast standard semantics
into the computation framework. Figures 9.15 and 9.16 show an implementation
of the computation abstraction that defines Computation as Expcont — Store
— Expressible. (We assume that Answer is Expressible, but we could readily
redefine Answer to be another domain.) With this implementation of the com-
putation abstraction, the FLK! valuation clauses from the previous chapter still
hold, except for a minor tweak in the handling of CBV rec:

E[(rec I B)]
= Xe. fiXxcomputation (Ac. Mksg . (E[E] [I:: (extract-value ¢ sg)le k sp))

extract-value : Computation — Store — Binding

= Acsp . matching (¢ (Avs. (Value — Expressible v)) $g)
> (Value — Ezpressible v) | (Denotable — Binding v)
> (Error — Expressible y) | L Binding
endmatching

There are two important changes in the valuation clause for rec:

e extract-value must account for the fact that the Answer domain is Fx-
pressible rather than Ezpressible x Store.

e The new £ function requires a continuation argument, which we use to
hijack the value used in the binding for I. Notice that this continuation is
rather like the top level continuation in Figure 9.12.

Figure 9.17 introduces two continuation-specific auxiliary functions along
with their associated reasoning laws. Since no FLK! construct does anything
interesting with a continuation, these auxiliaries would not appear in valuation
clauses for FLK!. However, they will be useful when we extend FLK! with
advanced control features.

> Exercise 9.2 Imperative Languages Inc. was impressed with the simplicity and
power of FL!. Noticing that it lacks a looping construct and not willing to support a
product not in consonance with the company’s programming language philosophy, the
company calls Ben Bitdiddle to extend the language. Instead of a myriad of different
constructs (e.g. for, while, do-while, etc.) Ben designs a single loop expression that
embodies all forms of looping. The syntax of FLK! was extended as follows:

E:=... [As before]
| (Loop E) [Evaluate E repeatedly]
| (break E) [End lexically enclosing loop with value of E]
| (continue) [Restart evaluation of enclosing loop expression]

386 CHAPTER 9. CONTROL

¢ € Computation = FEzxpcont — Store — FExpressible
k € Expcont = Value — Store — Ezxpressible

z € Expressible = (Value + Error) | ; As before
v € Value = language dependent
y € Error = Sym ; Modified

expr-to-comp : Ezpressible — Computation

=)\z. matching z
> (Value — Expressible v) | (val-to-comp v)
> (Brror — Ezpressible y) | (err-to-comp y)
endmatching

val-to-comp : Value — Computation = v. \k. (k v)
err-to-comp : Error — Computation =AXI. Aks. (Error — Ezpressible I)

with-value : Computation — (Value — Computation) — Computation
=Xef . Ak, (¢ (M. (f v k)
with-values, with-boolean, with-procedure, etc. can be written in terms of with-value.

check-location : Value — (Location — Computation) — Computation
= \vf . matching v
> (Location — Value 1) | (f 1)
> else (err-to-comp non-location)
endmatching
check-boolean, check-procedure, etc. are similar.

Figure 9.15: Continuation-based computation abstraction, Part I.

9.3. A STANDARD SEMANTICS OF FL! 387

State-based auxiliaries:

allocating : Storable — (Location — Computation) — Computation
=Xof . Mks. (f (fresh-loc s) k (assign (fresh-loc s) o s))

fetching : Location — (Storable — Computation) — Computation
=MAlf . Aks. matching (fetch [s)
> (Storable — Assignment o) | (f o k)
> else ((err-to-comp unassigned-location) k s)
endmatching

update : Location — Storable — Computation
=Mo . Aks. (k (Value — Expressible (Unit — Value unit)) (assign [o s))

sequence : Computation — Computation — Computation
=Acycg . (with-value ¢; (A\v.cg)) ; Unchanged from before

Figure 9.16: Continuation-based computation abstraction, Part II.

New auxiliary functions for control:

capturing-cont : (Exzpcont — Computation) — Computation

=M. Xk ((f k) k)

install-cont : Expcont — Computation — Computation
=/\knewc. /\kold . (C knew)

New Reasoning Laws:

(with-value (install-cont k ¢) f) = (install-cont k c)

(with-value (capturing-cont f) g¢) = (capturing-cont (\k. (with-value (f k) ¢)))
where k is not free in f or g.

(capturing-cont (A\k . (install-cont k ¢))) =c
where k is not free in c.

Figure 9.17: Continuation-specific auxiliary functions on computations.

388 CHAPTER 9. CONTROL

Here’s the informal semantics of the new constructs:
a. (loop E): Evaluates F (the “looping expression”) repeatedly forever.

b. (break E): Ends the nearest lexically enclosing loop, which then returns the
value of F.

c. (continue): Restarts the evaluation of the looping expression for the nearest
lexically enclosing loop.

It is an error to evaluate either a break or a continue expression outside a lexically
enclosing loop expression.
Here’s an example of Ben’s looping constructs in action:

; Ben’s iterative factorial procedure
(lambda (n)
(let ((fact 1))
(loop
(if (=n 0)
(break fact)
(begin
(set! fact (x fact n))
(set! n (- n 1))))))

In addition to extending the language, Ben has been asked to extend its standard
denotational semantics. It is here that Ben has subcontracted you.

a. Give the new signature of the meaning function &£.

b. Give the meaning function clauses for (lLoop E), (break FE), and (continue).
<

> Exercise 9.3 Ben Bitdiddle is very excited about the power of the standard se-
mantics to describe complicated flows of control. Wanting to practice more with this
wonderful tool, he started churning out a lot of FL! extensions (not all of them useful).
Most recently, Ben added a construct (self FE) in order to allow a procedure to call
itself, without using rec or letrec. Ben modified the FLK! grammar as follows:

E := ... existing FLK! constructs ...
| (self E)

Informally, (self E) recursively calls the current procedure with an actual argu-
ment that is the result of evaluating E. Here is a small example:

(let ((fact (lambda (n) (if (=n 0) 1 (x n (self (- n 1)))))))
(fact 4)) —p 24

When (self FE) is used outside a procedure, it causes the program to terminate
immediately with a value that is the result of evaluating E.

Ben started describing the formal semantics of (self E) by modifying the signature
of the meaning function £ as follows:

9.3. A STANDARD SEMANTICS OF FL! 389

€ : Exp — Environment — SelfProc — Fxpcont — Cmdcont
where SelfProc = Procedure

In spite of his enthusiasm, Ben is still inexperienced with standard semantics. It is
your task to help him specify the formal semantics of the self construct.

a. Give the revised definition of the top level meaning function 7 L[E].
b. Give the meaning function clause for (call E; FEj3), (self E) and (proc I E).
c. Prove that (self (self 1)) evaluates to (Value — Ezpressible (Int+— Value 1)).

d. Prove that (proc x (self 1)) evaluates to a procedure that, no matter what
input it is called with, loops forever. <

> Exercise 9.4 Ben Bitdiddle is now working in a major research university where he’s
investigating a new approach to programming based on coroutines. Of course, he bases
his research on FLK! and its standard semantics. He adds the following expressions to
the FLK! grammar:

E ::= ...| (coroutine (I E;) E3)| (yield E)

The meaning of the expression (coroutine (I E;) Ey) is simply Es, unless Fo
performs a (yield Ej3). If Ey performs a (yield Ej3), then the value of the corou-
tine expression is simply F;, except that I is bound to F3. However, if F; per-
forms a (yield E;), then control transfers back to Ejy, with the value of the origi-
nal (yield Es) — the point where control was originally transferred to E; — being
replaced by ;. Thus, yield transfers control back and forth between the two expres-
sions, passing a value between them. A (yield FE) in one expression transfers control
to the other expression; that expression resumes at the point of its last yield, whose
value is set to E.

The following example coroutine expressions may help to make things clear. The
underline mark shows the active expression; the series of dots ------ shows a yield
expression that has already yielded control to the other expression.

(coroutine (x 1) 2)

= 2

(coroutine (x 1) (yield 2))
= (coroutine (x 1) ------)
= 1

(coroutine (x x) (yield 2))
= (coroutine (x x) - ----)
= (coroutine (x 2) ------)

= 2

390 CHAPTER 9. CONTROL

(coroutine (x (yield (+ 1 x))) (yield 2))
= (coroutine (x (yield (+ 1 x))))
= (coroutine (x (yield (+ 1 2))) ------)
= (coroutine (x (yield 3)) ------)

= (coroutine (x ------) 3)

= 3

(coroutine (x (yield (+ 1 x))) (+ 2 (yield 3)))
= (coroutine (x (yield (+ 1 x))) (+ 2 -----. D)
= (coroutine (x (yield (+ 1 3))) (+ 2 -----. D)
= (coroutine (x (yield 4)) (+ 2 --.--.)

= (coroutine (x ------) (+ 2 4))

= 0

As one of Ben’s students, your job is to write the denotational semantics for FLK!
+ coroutines. Ben has already revised the domain equations to include both normal
and yield continuations, as follows:

k € Normal-Cont = FExpcont
y € Yield-Cont = FEzxpcont
Ezpcont = Value — Cmdcont
Cmdcont = Yield-Cont — Store — Ezxpressible
p € Procedure = Denotable — Normal-Cont — Cmdcont

He’s also changed the signature of the £ meaning function so that every expression
is evaluated with both a normal and a yield continuation:

& : Exp — Environment — Normal-Cont — Cmdcont
= Exp — Environment — Normal-Cont — Yield-Cont — Store — FExpressible

He didn’t get that far when defining &£, but he did give you the meaning function
clause for (if E; E, FE3g) for reference.

Xeky. (E[E:] e
(test-boolean (Ab.if b then (E[E2] e k)
else (E[Es] e k)))
y)
. Give the meaning function clause for L, given the new domains.

a
b. Give the meaning function clause for (yield E).

. Give the meaning function clause for (coroutine (I E;) E»).

[oFENNe)

. Compute the meaning of (yield (yield 3)) according to your semantics. <

> Exercise 9.5 Alyssa P. Hacker thinks coroutines (see Section 9.2.3) make programs
too hard to reason about. She suggests a simplified version of coroutines: the pro-
ducer/consumer paradigm. Informally, a producer generates values one at a time, and

9.3. A STANDARD SEMANTICS OF FL! 391

the values are used by a consumer in the order they are produced. Alyssa modifies the
FLK! grammar as follows:

E = ... normal FLK! constructs ...
| (producer Iyicia Epody)
| (consume Eproducer Tourrent Ebody)

The informal semantics of these two newly added constructs are:

o (producer Iyiq FEpoay) creates a new kind of first-class object called a producer.
When a producer is invoked (by consume) the identifier I ;¢4 is bound to a yield-
ing procedure. Calling Iyiciq in Epoqy With a value passes control and the yielded
value to the consumer. When the consumer is done processing the value, the Iy;ciq
procedure returns #u to the producer. The value of Ey.qy is the value returned
by the producer when there are no more values to yield.

o (consume Eproducer lcurrent Ebody) invokes the producer that Eproqucer evaluates
to (it is an error if Eproducer doesn’t evaluate to a producer). Whenever the
producer yields a value, Icyrrent is bound to that value and Eyoqy is evaluated. The
result of evaluating Fyoqy is then discarded, and control returns to the producer.
The result returned by consume is the result returned by the producer.

For example, up-to is a procedure that takes an integer n as an argument, and
returns a producer that yields the integers from 1 up to and including n.

(define up-to
(lambda (n)
(producer emit
(letrec ((loop (lambda(i)
(if (> i n)
#f
(begin (emit i)
(loop (+ i DININN
(Loop 1)))))

The sum procedure adds all the numbers yielded by a given producer:

(define sum
(lambda (prod)
(let ((ans (cell 0)))
(begin
(consume prod n (cell-set! ans (+ n (cell-ref ans))))
(cell-ref ans)))))
For example, sum can be used to add up the values produced by the producer (up-to 5):
(sum (up-to 5)) — 33

eval

Note that when a producer does not yield additional values and returns a normal
value v, execution of the invoking consume form is terminated and v is returned.

(consume (up-to 5) i 7) ——p false

392 CHAPTER 9. CONTROL

Assume in the following questions that FL! is desugared in the usual way to FLK!.

a. Alyssa wants to update the standard semantics of FLK! in order to specify the
formal semantics of the newly introduced constructs. Alyssa starts by creating a
new domain for producers, and adds it to the value domain:

v € Value = Unit + Bool + ... + Procedure + Producer
q € Producer = Procedure — FExpcont — Cmdcont

Alyssa’s valuation clause for the consume construct is as follows:

5[[(consume Eproducer Icurrent Ebody)]] =
)\eknormal . (gIIEproducer]] €
(test-producer
(Aq . (q ()‘inelded kafter—yield .
(5 IIEbody]] [Icurrent : inelded]e
(Av. (kafter—yietd (Unit — Value unit)))))
knormal))))

test-producer : (Producer — Cmdcont) — Expcont =
Af . (Av. matching v
> (Producer — Value q) | (f q)
> else error-cont
endmatching)

Write the evaluation clause for the producer construct.

b. Alyssa also decides to specify the behavior of producer and consume in terms of
their operational semantics. She starts with the SOS semantics for FLK! from
Section 8.2.3.

State the modifications to the SOS semantics of FLK! that are necessary to
handle producer and consumer, including any relevant rules.

c. Ben Bitdiddle discovers how to desugar Alyssa’s constructs into normal FL! con-
structs. Ben’s desugaring for producer is

D(producer Iyicig Eyody) = (lambda (Iyicid) Epody)

Write a corresponding desugaring for consume. <

> Exercise 9.6 Sam Antics is aggressively using the standard semantics to define the
meaning of some really non-standard FL! constructs. Most recently, he extended FL!
with some special constructs for POP (i.e., “Politically Oriented Programming”). He
extended the FLK! grammar as follows:

E = ... existing FLK! constructs ...
| (elect Eppes Eup)
| (reelect)
| (impeach)

9.3. A STANDARD SEMANTICS OF FL! 393

Here’s the informal semantics of the newly introduced constructs:

o (elect Eppes Eyp) evaluates to the value of Epes unless (impeach) is evaluated
in Epres, in which case it evaluates to the value of E,,. It is possible to have
nested elect constructs.

o If (reelect) is evaluated inside the E,..; part of a (elect Ep.s E,p,) construct,
it goes back to the beginning of the elect construct. Otherwise, it signals an
erTor.

o If (impeach) is evaluated within the E,,.; part of a (elect Ep.s F,,) construct,
it causes the elect expression to evaluate to E,,. Otherwise, it signals an error.

Here’s a small example that Sam plans to use in his advertising campaign for the
FL! 2000 Presidential Edition (TM):

(let ((scandals (cell 0)))
(elect (if (< (cell-ref scandals) 5)
(begin (cell-set! scandals
(+ (cell-ref scandals) 1))
(reelect))
(impeach))
(x (cell-ref scandals) 2)))

eval 10

You are hired by Sam Antix to modify the standard denotational semantics of FLK!
in order to define the formal semantics of the newly introduced constructs. Sam has
already added the following semantic domains:

r € Prescont = Cmdcont
1 € Vpcont = Cmdcont

He also changed the signature of the meaning function:

£ : Exp — Environment — Prescont — Vpcont — Expcont — Cmdcont

a. Give the definition of the top level meaning function 7 L[E].

b. Give the meaning function clauses for £[(elect Eppes Eup)], (reelect), and
(impeach).

c. Use the meaning functions you defined to compute 7L[(elect (reelect 1))].
<

> Exercise 9.7 This problem requires you to modify the standard denotational se-
mantics for FLK!.

Sam Antics is working on a new language with hot new features that will appeal to
government customers. He was going to base his language on Caffeine from Moon

394 CHAPTER 9. CONTROL

Microsystems, but negotiations broke down. He has therefore decided to extend FLK!
and has hired you, a top FLK! consultant, to assist with modifying the language to
support these new features. The new language is called FLK#, part of Sam Antics’ new
.GOV platform. The big feature of FLK# is user tracking and quotas in the store. An
important customer observed that government users tended to use the store carelessly,
resulting in expensive memory upgrades. To improve the situation, the FLK# store will
maintain a per-user quota. The Standard Semantics of FLK! are changed as follows:

w € UserlD = Int

q € Quota = UserlD — Int

gamma € Cmdcont = UserlD — Quota — Store — Answer

UserID is just an integer. 0 is reserved for the case when no one is logged in. Quota is a
function that when given a UserID returns the number of cells remaining in the user’s
quota. The quota starts at 100 cells. Cmdcont, the command continuation, takes the
currently logged in user ID, the current quota, and the current store to yield an answer.
Plus, FLK# adds the following commands:
E:a= ... [Classic FLK! expressions]
| (Login! w) [Log in user w]
| (Logout!) [Log out current user]

(login!'w) — logs in the user associated with the identifier; returns the identifier (re-
turns an error if a user is already logged in or if the UserID is 0)

(logout!) — logs the current user out; returns the last user’s identifier (returns an
error if there is no user logged in)

(check-quota) — returns the amount of quota remaining

The definition of £](check-quota)] is:
E[(check-quota)] =
Xekwq. if w =20
then (error-cont no-user-logged-in w q)
else (k (Int — Value (¢ w)) w ¢) fi

a. Write the meaning function clause for £[(login! E)].
b. Write the meaning function clause for £[(logout!)].

c. Give the definition of £[(cell E)]. Remember you cannot create a cell unless
you are logged in.

d. Naturally, Sam Antics wants to embed some “trap doors” into the .GOV platform
to enable him to “learn more about his customers.” One of these trap doors is the
undocumented (raise-quota! n) command, which adds n cells to the quota of
the current user and returns 0. Give the definition of £[(raise-quota! E)]. <

9.4. NON-LOCAL EXITS 395

9.4 Non-local Exits

A denotational semantics equipped with continuations is especially useful for
modelling advanced control features of programming languages. One such fea-
ture is a non-local exit, a mechanism that aborts a pending computation by
forcing control to jump to a specified place in the program.

To study non-local exits, we extend FLK! with two new constructs:

E == ... | (Qabel Iyipt Erody) | (Gump Eetript Ebody)
The informal semantics of these constructs is as follows:

o (label Ii4ypt Epogy) evaluates Ejpogy in an environment where the name
Iotr1_p¢ is bound to the control point that receives the value of the label
expression.

o (jump Eiy ¢t Epoay) returns the value of Eyyqy to the control point that
is the value of E.4y_pi. If Ectpy ¢ does not evaluate to a control point, jump
generates an error.

(+ 1 (label exit (* 2 (- 3 (/ 4 1))))) 57p —!I
(+ 1 (label exit (¥ 2 (- 3 (/ 4 (jump exit 5)))))) zp 6

(+ 1 (label exit
(* 2 (- 3 (/4 (jump exit (+ 5 (jump exit 6)))))))) wzp 7

(+ 1 (label exitl
(* 2 (label exit2 (- 3 (/ 4 (+ (jump exit2 5)
(jump exitl 6)))))))) wpp 11

Figure 9.18: Some examples using label and jump.

Figure 9.18 shows some simple examples using label and jump. The first
example illustrates that the value of (label I FE) is the value of E if E per-
forms no jumps. In the second example, (jump exit 5) aborts the pending
(x 2 (- 3 (/4 0))) computation and returns 5 as the value of the label
expression. The third example demonstrates that a pending jump can itself be
aborted by a jump within one of its subexpressions. In the final example, the left-
to-right evaluation of call subexpressions causes 5 to be returned as the value
of (label exit2 ...). If call subexpressions were evaluated in right-to-left
order, the result of the final example would be 7.

396 CHAPTER 9. CONTROL

In practice, non-local exits are a convenient means of communicating in-
formation between two points of a program separated by pending operations
without performing any of the pending operations. For instance, here is yet
another version of a recursive procedure for computing the product of a list of
numbers (see Section 9.2.2):

(define (prod-list a-list)
(label return
(letrec ((prod (lambda (1lst)
(cond ((null? 1st) 1)
((= 0 (car 1st)) (jump return 0))
(else (* (car 1lst)
(prod (cdr 1st))))))))
(prod a-list))))

Upon encountering a 0 in the list, the internal prod procedure uses jump
to immediately return O as the result of a call to prod-list. Any pending
multiplications generated by recursive calls to prod are flushed.

The semantics for label and jump appear in Figure 9.19. Control points are
modelled as expression continuations that are treated as first-class values. The
valuation clauses for label and jump are presented in two styles: the traditional
style of standard semantics, and a style based on the computation abstraction.
label redefines its continuation k as a control point value and evaluates Epqy
in the environment e extended with a binding between .4, and the control
point value. jump ignores its default continuation and instead evaluates Ejqy
with the continuation determined by Etpq_p¢.

Note that label refers to its continuation twice: it both names it and uses
it as the continuation of FEpy.q,. (This is easier to see in the standard style
than in the computation style.) This means that a value can be returned from
a label expression in two ways: (1) by normal evaluation of Ep.q, (without
any jumps) and (2) by using jump with a control point that is extracted from
the environment. In contrast, jump does not refer to its continuation at all.
This means that a jump expression can never return! So it is meaningless to
ask what the value of a jump expression is. Similarly, expressions containing
jump expressions may also have no value. This is the first time we have seen
expressions without values in a dialect of FL.

Like all other values in FL!, control point values are first-class: they can be
named, passed as arguments, returned as results, and stored in data structures
(pairs, cells). An interesting consequence of this fact is that it is possible to
return to the same control point more than once. Consider the following FL!
expression:

9.4. NON-LOCAL EXITS 397

Abstract Syntax:

E:=... [As before]
| (label Iname Ebody) [Label]
| (jump Econtrolfpoint E’ual) [Jump]

Semantic Domains:

ControlPoint = Expcont
v € Value = ... 4+ ControlPoint

test-control-point : (ControlPoint — Cmdcont) — Expcont

Valuation functions (standard version):

5[[(1abe1 Ictrl_pt Ebody)]]
=Xek. (E[Evody] [Letript : (ControlPoint — Value k)]e k)

5[[(Jump Ectrl_pt E’ual)]]
= Xekignore - (E[Eectript] € (test-control-point (Mkctri_pt - (E[Evat] € ketript))))

Valuation functions (computation version):
S[[(label Ictrl_pt Ebody)]]
= Xe. (capturing-cont (Ak. (E[Evody] [Letript = (ControlPoint — Value k)]e)))

S[[(Jump Ectrl_pt Eﬂal)]]
= Ae. (with-control-point
(EﬂEctrl_pt]] 6) (/\kctrl_pt . (install—cont kctrl_pt (EHEval]] 6))))

Figure 9.19: The semantics of label and jump in FLK!.

398 CHAPTER 9. CONTROL

(let ((c (cell ’later)))
(let ((n (label bind-n
(begin (cell-set! c bind-n)
1))
(if (> n 17)
n

(jump (cell-ref ¢) (* 2 n))))) —wp 32

Here, bind-n names the control point that: (1) accepts a value, (2) binds the
value to n, and (3) evaluates the if expression. This control point is stashed
away in the cell ¢ for later use, and then a 1 is returned to the normal flow
of control. Since this value for n is less than 17, the jump is performed, which
returns the value of 2 to the same bind-n control point. This causes n to be
rebound to 2 and the if expression to be evaluated a second time. Continuing
in this manner, the expression behaves like a loop that successively binds n to
the values 1, 2, 4, 8, 16, and 32. The final result is 32 because that is the first
power of two that is greater than 17.

A similar trick can be used to phrase an imperative version of an iterative
factorial procedure in terms of label and jump:

(define factorial
(lambda (n)
(let ((loop (cell ’later))
(num (cell n))
(ans (cell 1)))
(begin
(label top (cell-set! loop (lambda ()
(jump top ’ignore))))
(if (= (cell-ref num) 0)
(cell-ref ans)
(begin
(cell-set! ans (* (cell-ref num) (cell-ref ans)))
(cell-set! num (- (cell-ref num) 1))

((cell-ref 1loop))))))))

It turns out that mutation is not necessary for exhibiting this sort of looping
behavior via label and jump (see Exercise 9.9).

The above examples of first-class continuations (i.e., control points) are
rather contrived. However, in languages that support them (such as SCHEME
and some dialects of ML), first-class continuations provide a powerful mech-
anism by which programmers can implement advanced control features. For
instance, coroutines, backtracking, and multi-threading can all be implemented
in terms of first-class continuations. But any control abstraction mechanism

9.4. NON-LOCAL EXITS 399

this powerful can easily lead to programs that are virtually impossible to under-
stand. After all, it turns the notion of goto-less programming on its head by
making goto labels first-class values! Thus, great restraint should be exercised
when using first-class continuations.

In SCHEME, first-class continuations are made accessible by the standard pro-
cedure call-with-current-continuation, which we will abbreviate as cwcc
(another common abbreviation is call/cc.) This procedure can be written in
terms of label and jump as follows:

(define (cwcc proc)
(label here

(proc (lambda (val) (jump here val)))))

The proc argument is a unary procedure that is applied to an escape proce-
dure that, when called, will return a result from the call to cwcc. Here is a
version of prod-list written in terms of cwcc.

(define (prod-list a-list)
(cwcce
(lambda (return)
(letrec ((prod (lambda (1lst)
(cond ((null? 1st) 1)
((= 0 (car 1st)) (return 0))
(else (* (car 1lst)
(prod (cdr 1st))))))))
(prod a-list)))))

The advantage of cwcc as an interface to capturing continuations is that it does
not require extending a language with any new special forms. The binding per-
formed by label is instead handled by the usual binding mechanism (lambda),
and a jump is encoded as a procedure call.

Some languages put restrictions on capturable continuations that make them
easier to reason about and to implement. For example, the DYLAN language
provides a (bind-exit (I) FE) form that is similar to (cwcc (lambda (I) E))
except that the lifetime of the escape procedure is limited by the lifetime of the
bind-exit form. The catch and throw constructs of COMMON LISP are similar
to label and jump except that throw jumps to a named control point declared
by a dynamically enclosing catch. Dynamically declared control points are a
good mechanism for exception handling, which is our next topic of study.

>> Exercise 9.8 What are the values of the following expressions? (Assume prod-list
is defined as above.)

a. (prod-list ’(2 3 4))
b. (prod-list ’(2 0 yow!))

400 CHAPTER 9. CONTROL

c. (prod-list ’(yow! 0 2))

d. (let ((twice (lambda (f x) (f (f x)))))
(let ((f (label bind-f (lambda (new-f)
(jump bind-f new-£)))))
((f twice) (+ 1) 0)))

e. (jump (label a a) (label b b)) <

> Exercise 9.9 It is possible to implement loops with label and jump without using
mutation. As an example, here is a template for an iterative factorial procedure in FL
+ {label, jump} (recall that FL does not support mutation):

(define (factorial n)
(let ((triple Elpipe))

(let ((loop (first triple))
(num (second triple))
(acc (third triple)))

(if (= num 0)

acc
(Loop (list loop (- num 1) (¥ acc num)))))))

(Assume that first, second, and third are the appropriate list accessing procedures.)
Using label and jump, write an expression Ej.pe such that factorial behaves as
advertised. 4

> Exercise 9.10 Chris Krenshall? is dissatisfied with FLK!+-{1abel,jump}. He’s never
sure where his thread of control will end up! Therefore, Chris would like you to give
him some control over his control points. Chris wants to have applets — syntactically
distinguished regions of code across which control points cannot be used. Here are the
proposed FLK! extensions:

E == ... | (applet I E) | (label [E) | (jump E; E3z)

Informally, the label and jump constructs work as described above: label estab-
lishes first class control points and jump transfers control to them. However, there is
one important difference, related to the applet construct: it is only legal to jump to
control points created by the current applet, which is determined by the identifier of
the nearest lexically enclosing applet.

For example, the following program is legal and evaluates to 0.

4Recall the C. Krenshall Program for eliminating concurrency from government program-
ming contracts.

9.4. NON-LOCAL EXITS 401

(applet hot
(let ((p (applet cool
(proc x
(label cool-return
(+ (if (= x 1)

(jump cool-return 0)
x)

733))))

(p D)) ozp 0

eval

On the other hand, the following program should signal an error:

(applet hot
(let ((p (proc x
(label hot-return
(applet cool
(+ (if =x 1)
(jump hot-return 0)
x)
73))))

(p 1))) 5z error

In this problem you will modify the standard semantics for FLK! to specify the seman-
tics of the applet, label, and jump constructs.

a. Suppose we define an ControlPoint domain and modify the Value domain accord-
ingly:
q € ControlPoint = Applet x Expcont
a € Applet = Identifier
v € Value = ControlPoint+ ...

Modify the signature of £ as necessary to support applets.

b. Give a new definition for top-level. In your semantics, use the special applet
identifer global-applet € Applet no applet has been defined for a label or jump.

c. Give the meaning function clause for (applet I E).
d. Give the meaning function clause for (label I F).

e. Give the meaning function clause for (jump E; E»). <

> Exercise 9.11 This exercise explores the semantics of cwcec in more detail:

a. We have shown that cwcc can be written in terms of label and jump. Show how
label and jump can be desugared in a language that provides cwcc.

b. Write a standard style valuation clause for the cwcc primitive.

c. Write a computation style valuation clause for the cwcc primitive. <

402 CHAPTER 9. CONTROL

9.5 Exception Handling

A common reason to alter the usual flow of control in a program is to respond to
exceptional conditions. For example, upon encountering a divide-by-zero error,
the caller of the division procedure may want the computation to proceed with
a large number rather than terminate with an error. Dynamically responding
to exceptional conditions is known as exception handling.

One strategy for exception handling is for every procedure to return values
that are tagged with a return code that indicates whether the procedure is
returning normally or in some exceptional way. The caller can then test for the
return code and handle the situation accordingly. Although popular, the return
code technique is unsatisfactory in many ways. For one, it effectively requires
every call to a procedure to explicitly test for all return codes the procedure could
potentially generate. By treating normal and exceptional returns in the same
fashion, return codes fail to capture the notion that exceptions are generally
perceived as rare events compared to normal returns. In addition, return codes
provide a very limited way in which to respond to exceptional conditions. All
responsibility for dealing with the condition resides in the caller; in particular,
the point at which the condition was generated has been lost.

An alternate way to view exceptional conditions is that procedures can raise
(or signal) an exception as an alternative to returning a value. The immediate
caller may then handle the exception, or it might decline to handle the exception
and instead allow other callers in the current call chain to handle the exception.
There are two basic strategies for handling the exception:

1. In termination semantics, the handler receives control from the signaler
of the exception and keeps it. This is the approach taken by ML’s raise
and handle, COMMON LISP’s throw and catch, and CLU’s signal and
except when.

2. In resumption semantics, the handler receives control from the signaler
of the exception but later passes control back to the computation that
raised the exception. Operating system traps usually follow this model.

Some languages (such as CLU) require the caller to explicitly resignal user
exceptions to propagate them up the call chain. In other languages, unhandled
exceptions propagate up the call chain until an appropriate handler is found.
In these languages, programs are implicitly wrapped in a default handler that
handles otherwise uncaught exceptions.

As a concrete example of exception handling, we extend FLK! to accommo-
date a rudimentary resumption-style exception facility:

9.5. EXCEPTION HANDLING 403
E == ... | (raise Iegcept Fuvat) | (trap legeept Ehandier Ebody)
The informal semantics of these constructs is as follows:

o (raise Ilepeept Fyqr) Traises an exception named Iegpeept With argument E,q.

o (trap Ilescept Ehandier Erody) evaluates Eyoq, in such a way that if a raise
of Iopeept is encountered during the evaluation of Ej.g,, the value of the
raise form is the result of applying the handler procedure computed
by Ehandier to the argument supplied by the raise. If there is more than
one handler with the same name, the one associated with the nearest
dynamically enclosing trap is used. The value of the trap form is the
value returned by Epqy. If Epgnaier does not designate a procedure, trap
generates an error.

As an example of exception handling, consider an FL! add procedure that
normally returns the sum of its two arguments, but raises a non-integer ex-
ception if one of its arguments is not an integer:

(define add
(lambda (x y)
(let ((check-integer
(lambda (a)
(if (integer? a) a (raise non-integer a)))))
(+ (check-integer x) (check-integer y)))))

(Even better, we could change the semantics of the + primitive to raise exceptions
rather than generate errors.) Now suppose we use add within a procedure that
sums the elements of a list:

(define sum-list
(lambda (1st)
(if (null? 1st)
0
(add (car 1st) (sum-list (cdr 1st))))))

(sum-list (1 2 3)) wpp 6

If we call sum-1ist on a list containing non-integer elements, we can use trap
to specify how these elements should be handled. For example, here is a handler
that treats false as 0, true as 1, and all symbols as 10; elements that are not
booleans or symbols abort with an error:

404 CHAPTER 9. CONTROL

(define simple-handler
(lambda (x)
(cond ((boolean? x) (if x 1 0))
((symbol? x) 10)
(else (error not-boolean-or-symbol)))))

(trap non-integer simple-handler
(sum-1ist ’(5 yes #t))) — 16

eval

(trap non-integer simple-handler
(sum-1list > (5 (yes no) #t))) ——p error: not — boolean — or — symbol

We will assume that exceptions not handled by any dynamically enclosing traps
are converted into errors by a default top-level exception handler; e.g.:

(sum-list ’(5 #t yes)) —-p error:mnon — integer

While the informal semantics for raise and trap given above may seem
like an adequate specification, it harbors some ambiguities. For example, what
should be the result of the following program?

(trap a (lambda (x) (+ 4000 x))
(trap b (lambda (x) (+ 300 (raise a (+ x 4))))
(trap a (lambda (x) (+ 20 x))
(+ 1 (raise b 2)))))

The raise of b invokes a handler that raises the exception a. But which of the
two a handlers should be used?

Once again, formal semantics comes to the rescue. In fact, because complex
control constructs can easily befuddle our intuitions, we look more than ever to
the guidance of formal semantics. Standard semantics is an excellent tool for
precisely wiring down the meaning of complex control constructs like raise and
trap.

Our approach is to treat trap as a binding construct that associates an
exception name with an exception handler in a dynamic environment. An ex-
ception handler is just a procedure. raise looks up the handler associated with
the given exception name in the current dynamic environment and applies the
resulting procedure to the argument of raise.

To express these extensions formally, we will modify the standard semantics
of FLK!. Figures 9.20 and 9.21 summarize the changes needed to accommo-
date raise and trap. Exception handlers are represented as procedure values
that are named in a special environment, Handler-Env. Augmenting compu-

tations with this handler environment treats them as dynamic (as opposed to
lexical) environments. That is, the domain Procedure, which is Denotable —

9.5. EXCEPTION HANDLING

405

¢ € Computation = Handler-Env — FExpcont — Cmdcont
w € Handler-Env = Identifier — Procedure
p € Procedure = Denotable — Computation ; As usual

New auxiliaries for handler environments:

extend-handlers : Handler — Env — lIdentifier — Procedure — Handler — Env
=X wl;p. My . if (same-identifier? I; I) then p else (w Iz) fi

get-handler : Handler — Env — Identifier — Procedure =Awl. (w I)

default-handlers : Handler — Env =X . Ap . (err-to-comp I)

New computation auxiliaries:

extending-handlers : Identifier — Procedure — Computation — Computation
=Apc. Aw. (¢ (extend-handlers w I p))

getting-handler : Identifier — (Procedure — Computation) — Computation
=Af . dw. (f (get-handler w I) w)

Modifications to other computation auxiliaries:

val-to-comp : Value — Computation = v. Awk. (k v)
err-to-comp : Error — Computation =X . Awks . (Error — Expressible I)

with-value : Computation — (Value — Computation) — Computation
=Acf . k. (c w (M. (f v wk)))

Other computation auxiliaries similarly pass around handler environments.

Figure 9.20: Semantics of raise and trap, Part I.

406 CHAPTER 9. CONTROL

Valuation functions (standard version):

5[[(trap Iexcept Ehandler Ebody)]]
= \ewk . (SﬂEhandler]]
e w (test-procedure
(Ap. (E]Ebody] € (extend-handlers w Iegeept p) k))))

g[[(raise Iexcept Ebody)]]
=Xewk. (E[Epody] € w (Av. ((get-handler w Iegcept) v w k)))

Valuation functions (computation version):

Eﬂ(trap Iezcept Ehandier Ebody)]]
= Xe. (with-procedure (E[Enandier] €)
(Ap . (extending-handlers Iogcept P (E[Epody] €))))

S[[(raise]emcept Ebody)]]
= Xe. (with-value (E[Epoay] €) (Av. (getting-handler Iczcept (Ap. (p v)))))

Figure 9.21: Semantics of raise and trap, Part II.

Computation, is equivalent to the following:

Procedure = Value — Handler — Env — FExpcont — Store — Expressible

The auxiliaries extend-handlers, get-handler, and default-handlers are versions
of extend, lookup, and empty-env for Handler-Env. The auxiliaries extending-
handlers and getting-handler capture manipulations of the Handler-Env com-
ponent of the computation in an abstract way. If the computation abstractions
are used, it is not necessary to modify any of the valuation clauses from the
semantics of FLK!. However, valuation clauses written in the standard style
would have to be modified to pass along an extra w argument.

The valuation clauses for trap and raise are presented in both the standard
style and the computation style. trap simply extends the dynamic handler
environment with a new binding and evaluates FEj.4, with respect to this new
environment. raise invokes the dynamically bound handler on the value of
Eyoqy. Note that default-handlers initially binds every exception name to a
handler that converts an exception into an error. A handler procedure is called
with the dynamic handler environment in effect at the point of the raise. This
gives rise to the following behavior:

9.5. EXCEPTION HANDLING 407

(trap a (lambda (x) (+ 4000 x))
(trap b (lambda (x) (+ 300 (raise a (+ x 4))))
(trap a (lambda (x) (+ 20 x))
(+ 1 (raise b 2))))) w7p 527

(trap a (lambda (x) (* x 10))
(+ 1 (raise a (+ 2 (raise a 4))))) wp 421

Exception handling is an excellent example of the utility of dynamic scoping.
Suppose trap were to bind I.zcept in a lexical environment rather than a dynamic
one. Then raise could only be handled by lexically apparent handlers. It would
be impossible to specify handlers for a procedure on a per call basis.

Termination semantics for exception handlers can be simulated by using
label and jump in conjunction with raise and trap. For example, suppose we
want a call to sum-1list to abort its computation and return 0 if the list contains
a non-integer. This can be expressed as follows:

(label exit
(trap non-integer (lambda (x) (jump exit 0))
(sum-1list > (5 yes #t)))) —w7p 0

Here the handler procedure forces the computation to abort to the exit point

when the symbol yes is encountered.
An alternative to using label and jump in situations like these is to develop
a new kind of handler clause:

(handle Iexcept Ehandler Ebody)

Like trap, handle dynamically binds /¢zcep: to the handler computed by Ejandier-
But unlike trap handlers, when a handle handler is invoked by raise, it uses
the dynamic environment and continuation of the handle expression rather than
the raise expression. For example:

(handle a (lambda (x) (+ 4000 x))
(handle b (lambda (x) (+ 300 (raise a (+ x 4))))
(handle a (lambda (x) (+ 20 x))
(+ 1 (raise b 2))))) & 4006

(handle a (lambda (x) (* x 10))
(+ 1 (raise a (+ 2 (raise a 4))))) wp 40

We leave the semantics of handle as an exercise (raise need not be changed).

> Exercise 9.12 Sam Antix decides to add the new handle exception handling
primitive to FL! + {raise, trap}. He adds alters the grammar of FL! 4+ {raise, trap}:

(handle]emcept Ehandler Ebody)

408 CHAPTER 9. CONTROL

As we described above, Sam’s new expression is similar to

(traP Iezcept Ehandler Ebody)-

Both expressions evaluate Epqndier to a handler procedure and dynamically install
the procedure as a handler for exception Iegceps- Then the body expression Eyoqy is
evaluated. If Ejoqy returns normally, then the installed handler is removed, and the
value returned is the value of Epoqy .

However, if the evaluation of Ejy.q, reaches an expression

(raise Ilegeept B,

then E is evaluated and the handler procedure is applied to the resulting value. With
trap, this application is evaluated at the point of the raise expression. But with
handle, the application is evaluated at the point of the handle expression. In partic-
ular, both the dynamic environment and continuation are inherited from the handle
expression, not the raise expression.

Here is another example besides the one given above:

(handle a (lambda (x) (* x 10))
(+ 1 (raise a (+ 2 (raise a 4))))) —p 40

a. Extend the denotational semantics of call-by-value FLK! + {raise, trap} with
a meaning function clause for handle (the meaning function clause for raise
doesn’t need to be changed).

b. Give a desugaring of handle into FL! + {raise, trap, label, jump}. <

> Exercise 9.13 Ben Bitdiddle, whose company is fighting for survival in the com-
petitive FL! market, has an idea for getting ahead of the competition: adding recursive
exception handlers! He wants to ext