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Abstract

We present formal specification and verification of a robot moving
in a complex network, using temporal sequence learning to avoid obsta-
cles. Our aim is to demonstrate the benefit of using a formal approach to
analyse such a system, as a complementary approach to simulation. We
describe first a classical closed-loop simulation of the system and com-
pare this approach to one in which the system is analysed using formal
verification. We show that the formal verification has some advantages
over classical simulation and finds deficiencies our classical simulation did
not identify. Specifically we present a formal specification of the system,
defined in the Promela modelling language, and show how the associated
model is verified using the SPIN model checker. We then introduce an
abstract model which is suitable for verifying the same properties, but for
any environment with obstacles under a given set of assumptions. We out-
line how we can prove that our abstraction is sound: any property that
holds for the abstracted model will hold in the original (unabstracted)
model.

1 Introduction

Simulation is commonly used to investigate closed-loop systems. Here, we focus
on biologically inspired closed-loop systems where an agent interacts with its
environment (Walter, 1953; Braitenberg, 1984; Verschure and Pfeifer, 1992).
The loop here is established as a result of the agent responding to signals from
its sensors by generating motor actions which in turn change the agent’s sensor
inputs. More recently simulation has been used to analyse closed-loop systems
in which the response of an agent changes with time due to learning from the
environment (Verschure and Voegtlin, 1998; Kulvicius et al., 2010). This adds a
new layer of complexity where the dynamics of the closed-loop will change and
an initially stable system might become unstable over time.

Simulation is a relatively inexpensive method for determining the behaviour
of a system. Even single experiments are informative and, by applying statistical
methods to a series of experiments, inferences can be drawn concerning overall
trends in behaviour. However, simulation alone is not sufficient to determine
properties of the form: in all cases property P holds, or it is never true that
property Q holds.

1



Formal methods have two major benefits when applied to this type of system.
First, formal specification of the system requires precision in system description
(e.g. in the rules determining an agent’s response to a particular signal), so
avoiding redundancy and inconsistency. Second, verification of a system can
allow us to prove properties that hold for any run of the system (i.e. that
should hold for any experiment).

Formal methods have been used to analyse agent-based systems (Hilaire
et al., 2000, 2004; Da Silva and De Lucena, 2004; Wooldridge et al., 2004;
D’Inverno et al., 2004; Fisher, 2005). These approaches involve new formal
techniques for theoretical agent-based systems. In contrast, in this paper we
apply an appropriate automatic formal technique to a real system that has pre-
viously been analysed using classical closed-loop simulation. We do this in order
to accurately compare the two approaches, and demonstrate the effectiveness of
the application of formal methods in this domain.

Model checking is even more important for agents that learn because most
learning rules are inherently unstable (Oja, 1982; Miller, 1996), especially at
high learning rates. There is always the risk that weights grow endlessly and
eventually render the resulting system dysfunctional. Model checking can guar-
antee that, under a given learning rate, the system will always learn successfully.

In this paper, we describe two formal models of a closed-loop system in
which an agent’s behaviour adapts via temporal sequence learning (Sutton and
Barto, 1987; Porr and Wörgötter, 2006). Our first model is obtained from a
fairly low level description of a particular environment. The second, which we
refer to as the Abstract model, is obtained from a higher level representation
of a set of environments. The second model is more instructive, but requires
expert knowledge to construct. We give a brief overview of how we would prove
that the Abstract model is sound, in that it preserves properties that hold for
the underlying set of environments.

Our models are obtained from specifications defined in the model specifi-
cation language Promela, and verified using the model checker SPIN. For the
remainder of the paper we will focus on the experiments described in Kulvicius
et al. (2010) as an example of temporal sequence learning. We describe how
we have reproduced the experiments using classical closed-loop simulation, and
compare this classical approach to that using formal verification.

Our models are defined for a simplified environment/set of environments.
The purpose of this paper is to provide a proof of concept for the approach. In
Section 7 we describe how to generate models for more complex scenarios (i.e.
with a fixed boundary, with additional robots, more closely-packed obstacles
etc.).

2 The system

In this paper we show how model checking can be used to verify properties
of a system that has previously been analysed using simulation. The system
we focus on is that described in Kulvicius et al. (2010) in which simulation
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Figure 1: Generic closed-loop data flow with learning. A) sensor setup of
the robot consisting of proximal and distal sensors, B1) Reflex behaviour,
B2) proactive behaviour, C) circuit diagram of the robot and its environment
(SP=setpoint, X is a multiplication operation changing the weight ωd, Σ is the
summation operation, d/dt the derivative and hp, hd lowpass filters).

is used to investigate how learning is affected by an environment and by the
perception of the learning agent. The ability of a robot to successfully navigate
its environment is used to assess its learning algorithm and sensor configuration.

We first describe how the robot learns to move towards or away from objects.
This is achieved by using the difference between the signals received from the
left and right sensors which can be interpreted as error signals (Braitenberg,
1984). At any time an error signal x is generated of the form:

x = sensor left − sensor right (1)

where sensor left and sensor right denote the signals from the left and right sensors
respectively. The error is then used to generate the steering angle v, where v =
ωx, for some constant ω. The polarity of ω determines whether the behaviour is
classed as attraction or avoidance (Walter, 1953). The steering then influences
the sensor inputs of the robot and we have formed a closed loop.

After having introduced the general concept of behaviour based robotics we
now formalise the agent, the environment and the closed loop formed by this
setup. We have two loops, as shown in Fig. 1C, because we have two pairs of
sensors passing signals to the robot. One pair of sensors reacts to close range
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impacts and are referred to as proximal sensors, with associated signals xp.
The other sensor pair react to more distant events and are referred to as distal
sensors, with associated signals xd. If the robot collides with an obstacle, there
is an impact on the proximal sensor, which may be preceded by an impact on a
distal sensor. This situation is referred to as a delay in the environment. This
can happen at any time while the robot interacts with the environment and can
be modelled as a stochastic process. It should be noted that this principle is not
limited to avoidance but can also be used to learn attraction behaviour (Porr
and Wörgötter, 2006). However here we focus on avoidance behaviour and how
this is learned.

We introduce learning with the goal to avoid triggering the proximal sensors
by using information from the distal sensors. In order to learn to utilize the
distal sensor information we employ sequence learning which works on the basis
that different sensors react at different times to the presence of an obstacle,
causing a sequence of reactions. Fig. 1A shows the pairs of proximal and distal
sensors at the front of the robot. Note that, in our simulation, the proximal
and distal sensors are in fact collinear, i.e. the right proximal and distal sensors
both point in same direction (and so on). For ease of viewing in Fig. 1A this
is not the case. Note that although the sensors are collinear, there is no dual
contact (i.e. with both sensors) at the places where the sensors overlap. The
distal sensor is non-responsive to contact over the overlapping sections.

The proximal signals cause a reactive behaviour which is predefined (or “ge-
netic”) and guarantees success (Fig. 1B1). Specifically, when the proximal sensor
is hit directly by an obstacle, the robot will behave in such a way as to ensure
that it moves away from the obstacle (i.e. escapes). Fig. 1C shows the formal-
isation of the learning system indicated by the box “agent” which contains a
summation node

∑
which sums the lowpass (hp, hd) filtered input signals xp

and xd where xp and xd are determined from the signals from the corresponding
sensor pairs (see Eq. 1). The filtered input signals up and ud and the angular
response v after an impact to either sensor are determined via equations 2, 3
and 5.

up = xp ∗ hp (2)

ud = xd ∗ hd (3)

where ∗ is the convolution operation and hp, hd are lowpass filters which are
defined in discrete time as:

h(n) =
1

b
ean sin(bn)↔ H(z) =

1

(z − ep)(z − ep∗)
(4)

The real and imaginary parts of p are defined as a = real(p) = −πf/Q and
b = imag(p) =

√
(2πf)2 − a2 respectively. Q = 0.51 and f = 0.1 are identical

for both hp and hd which results in a smoothing of the input over at least ten
time-steps.

These smoothed distal and proximal signals are then summed to form the
steering angle:

v = ωpup + ωdud (5)
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Figure 2: Impact signal correlation with the help of lowpass filters. A) the input
signals from both the distal and proximal sensors which are τ temporal units
apart. B) the lowpass filtered signals up, ud and the derivative of the proximal
signal u̇p.

The distal weight ωd is set to zero at the start of the experiment so that
only the reactive (predefined) loop via signal xp and ωp is active. This loop is
set in such a way that the behaviour when touching an obstacle is successful
(proximal reflex). However, such behaviour is sub-optimal because the proximal
sensor signal xp first has to be triggered which might be dangerous or even lethal
for the agent. The task of learning is to use the distal sensors (with signal xd) so
that the agent can react earlier. Learning adjusts the weight ωd in a way that the
agent successfully performs this pro-active behaviour by using the loop via signal
xd. The learning we employ here is ICO learning (Input Correlation Learning,
Porr and Wörgötter 2006) which utilises lowpass filters to create correlations
between distal and proximal events (see Fig. 1C). Lowpass responses (Eq. 2,3)
smear out the signals and create a temporal overlap between the proximal and
distal signals which can then be correlated by our learning rule to adjust the
predictive behaviour:

ω̇d = λu̇pud (6)

The derivative of the low pass filtered proximal signal up is used to create a
phase lead which is equivalent to shifting its peak to an earlier moment in time
so that a correlation can be performed at the moment the proximal input has
been triggered. This is illustrated in Fig. 2 which shows the signals from the
distal and proximal sensors. Signals are represented as simple pulses in Fig. 2A
and lowpass filtered signals in in Fig. 2B. It can be seen that the smearing out of
the signals is necessary to achieve a correlation. Learning stops if up is constant
which is the case when the proximal sensor is no longer triggered. A sequence
of impacts consisting of at least one impact on a distal sensor followed by an
impact on a proximal sensor causes an increase in the response (by a factor λ
known as the learning rate). See Porr and Wörgötter (2006) for a more detailed
elaboration of differential Hebbian learning.
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While in Kulvicius et al. (2010) the main objective was to measure the
performance of the robot, here we will concentrate on the performance of the
closed loop which can be benchmarked in different ways, using the proximal
sensor input xp and the weight ωd (the proactive weight). For model checking,
satisfaction of the following properties would indicate correct behaviour of the
robot:

1. The sensor input xp of the proximal sensor will eventually stay zero, indi-
cating that the agent is only using its distal sensors.

2. The weight ωd will eventually become constant, indicating that the agent
has finished learning.

Note that the two properties are shown by simulation to be true in most
cases. However, one simulation leads to a counter-intuitive result. This is
discussed further in Section 3.1. In Section 5.2 we show how formal verification
showed us that this seemingly incorrect result was due to premature termination
of the simulation run.

Fig. 1B1 and Fig. 1B2 show two example behaviours before learning and
after learning respectively. The behaviour shows a typical transformation from
a purely reflexive behaviour to proactive behaviour. The agent begins with
a zig-zag movement by reacting to the collisions (Fig. 1B1) then progresses to
smoother trajectories when it learns to respond to its distal antennae (Fig. 1B2).
This behaviour is generated by the growth of the weight ωd which represents
the loop via the distal sensors. After successful learning the proximal antennae
will no longer be triggered which causes the weight ωd to stabilise.

Our goal is to verify the properties above using model checking. In Section
5 we describe how the system is specified in Promela. In Section 5.2 we show
how these properties can be expressed in Linear Time temporal Logic (LTL)
(Pnueli, 1981) and describe the process of verification. We demonstrate that
the LTL properties are satisfied for (our model of) the system.

3 Preliminaries

3.1 Simulation environment

In order to recreate the simulation results of Kulvicius et al. (2010), we created
our own simulation environment, using classical closed-loop simulation tools
and ICO learning. In Section 8 we compare this approach with that using
formal verification. We focus our modelling on how learning is affected by the
complexity of environment. Note that the purpose of this paper is to present a
proof of concept, i.e. that of using model checking combined with abstraction
to verify properties of this type of environment. We have simplified our models,
via a set of assumptions, in order to clarify our exposition. In Section 7 we
indicate how our models could be extended to incorporate more realistic, or
complex, scenarios.
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Figure 3: Example of the simulation set-up.

We restricted the definition of environmental complexity to be a measure
of the minimum spacing between obstacles (i.e. a more complex environment
implies a smaller minimum space between obstacles). This makes our models
simpler. Environment boundaries are removed –when a robot reaches the edge
of the environment it simply emerges again at the opposite point on the environ-
ment edge. This simplification is unlike the situation in Kulvicius et al. (2010),
but agrees with the set-up for our verifications, with which we are comparing
results. Removing the boundaries also helps us to abstract our model in Section
6. Fig. 3 represents the geometry of the simulated environment.

In our behaviour-based simulation environment the robot is positioned at
coordinates rx(t), ry(t) and moves in a grid of pixels. At every time-step the
robot moves forward one pixel at angle θ (from North):

rx(t) = rx(t− 1) + cos(θ) (7)

ry(t) = ry(t− 1) + sin(θ) (8)

where rx, ry and any derived coordinates for the sensor signals are stored as
floating point values. The coordinates are rounded to integer values when used
to determine whether a collision has occurred (for example), but their floating
point values are retained for future calculations. The steering angle v is added to
θ every time-step. I.e. θ(t+1) = θ+v. Obstacles are coded as non-zero values in
the grid. The sensor signals xd and xp are generated by probing the pixel values
along the left and right antenna coordinates and calculating their differences
(see Eq. 1). The resulting differences for the proximal and distal sensors are
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then fed into first order low pass filters (see Eq. 2 and Eq. 3) and then summed
to generate the new steering angle (see Eq. 5). Learning is implemented using
Eq. 6. The simulation environment is implemented in MATLAB (MATLAB,
2010).

Various simulations were run using this system. The results of some of these
simulations are plotted in Fig. 4. For each simulation the agent is positioned
in the centre of the environment, facing a varying number of degrees clockwise
from North.

The graphs in Fig. 4 plot the total number of impacts on the distal and
proximal antennae over time, for a range of starting directions (i.e. the angle
from North faced by the robot). Note that the weight development follows
exactly the curve for the accumulated proximal events (scaled using λ). This is
due to the fact that (in our simplified system) the weight increases every time
the proximal sensor is been triggered.

In the graphs the distal and proximal values are initially close together, as
the system cannot yet avoid using its proximal signals. As the agent learns to
use its distal antennae the distal and proximal total impacts begin to diverge.
This is an indication that the agent is avoiding colliding with its proximal anten-
nae by learning avoidance behaviour. Eventually, the proximal total stays con-
stant, indicating that the agent is no longer colliding. This is because the robot
eventually finds a path between the obstacles and, after reaching the bound-
ary, emerges along the same path. This causes continuous collision-avoiding
behaviour and is both desired and expected.

The simulation where the agent begins facing 58◦ from North (Fig. 4F)
appears to be an exceptional case. In this graph the proximal value continues
to rise. We will consider this case in detail in Section 5.2.

3.2 Model Checking vs Simulation

In this paper we demonstrate how model checking can be used to verify proper-
ties of a system comprised of a robot moving in an environment. The environ-
ment we use is identical to that used for simulation, as described in Section 3.1,
so that we can compare the two approaches. Our system is simple, and subject
to a number of assumptions. Indeed either approach requires assumptions to
be made. The important issue is that the same assumptions are made in all
cases, so that a fair comparison can be made. Our goal here is to illustrate the
technique rather than to present a comprehensive suite of models. We explain
how our approach can be extended to other environments, or to situations in-
volving more robots, or a rigid boundary wall in Section 7. We illustrate the
relationship between classical closed-loop simulation and our approach in Fig. 5.

Model checking involves analysis of a state-space (a graphical representation
of all possible states reached by the system, and the transitions between them).
While in the classical simulation we could implement all variables as floating
point (given analytical expressions of the entire environment), in model checking
we need to discretise variables so that we can set up our state space. Generally
the granularity of any discretisation of a robot simulation is determined by the
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Figure 4: Simulation runs for a range of starting directions.A) 0◦, B) 15◦, C)
30◦, D) 40◦, E) 50◦, F) 58◦, G) 58◦ – with extended running time.
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Figure 5: Comparison of approaches
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signal to noise ratio of the sensors of the real robot and imperfections of its
actuators (Graña, 2007; Tronsco et al., 2007; Chesi, 2009). This holds true for
both classical simulation and model checking.

Simulation is equivalent to examining individual paths through a state-space.
Exhaustive simulation (to cover all eventualities) is either very time-consuming
or impossible. Model checking allows us to examine all possible paths, and to
precisely express the property of interest (rather than relying on observation of
simulation output). As illustrated in Fig. 5, a single simulation is equivalent to
a single path in our model. Often a simulation run is actually equivalent to a
prefix of a path in our mode (consisting of the first N states of the path, for
some finite number N). A simulation is necessarily terminated at some point,
whereas verification involves exploring all paths until either there are no further
states, or until a cycle is detected.

Both simulation and model checking involve a degree of abstraction. The
user of the technique must decide which aspect of the system to represent in
their simulation/model. Our initial model (the Explicit model) is deliberately
abstracted to the same degree as the simulation setup, so no additional infor-
mation is lost. It is therefore straightforward to infer that we are modelling the
same thing in each case. The power of model checking in this case is that, as de-
scribed above, we can formally define a property and automatically check every
path. Note that in the single robot model there are few decision points in our
model (and so there are few paths), but in general a state-space contains many
paths. For example if there were multiple robots, the ordering of steps taken by
the different robots would lead to different paths, with different outcomes.

Having demonstrated the power of model checking with our Explicit model,
we introduce a further model, the Abstract model, which is a far more compact
model, which not only merges symmetrically equivalent views (from the robot’s
perspective), but combines several equivalent environments into the same model.
There are two major benefits to this type of abstraction. The Abstract specifi-
cation is a much neater representation than the Explicit specification, e.g. fewer
individual transitions need to be considered. In addition, results of verification
hold for all environments considered in the single model, which avoids the neces-
sity of repeating the same experiments for similar, but different, environments.
A drawback of the approach is that it requires expert knowledge of the system
(e.g. intimate prior experience with the Explicit model). In addition, it differs
so greatly from the physical system (and the simulation environment) that com-
plex mathematical proof is required to ensure that the abstraction is sound, i.e.
that it preserves the properties in question.

A comparison of model checking and closed-loop simulation, applied to this
system, is presented in Section 8.

3.3 Formal Definitions

In order to be able to reason about our models, we need formal semantics. We
define a Kripke structure (Kripke, 1963) as the formal model of our system. Note
that for model checking we do not need to be aware of the underlying semantics
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(indeed, the model checker represents the system as a Büchi automaton (Büchi,
1960) - see Section 4). However, to prove that our Abstract model preserves
LTL (Linear Time temporal Logic) properties (in Section 6.1) we will reason
about the underlying Kripke structures of our Promela programs.

Definition Let AP be a set of atomic propositions. A Kripke structure over
AP is a tupleM = (S, s0, R, L) where S is a finite set of states, s0 is the initial
state, R ⊆ S × S is a transition relation and L : S → 2AP is a function that
labels each state with the set of atomic propositions true in that state. We
assume that the transition is total, that is, for all s ∈ S there is some s′ ∈ S
such that (s, s′) ∈ R.

A path in M is a sequence of states π = s0, s1, . . . such that for all i, 0 ≤ i,
(si, si+1) ∈ R.

When AP is a set of propositions defined over a set of variables X (e.g.
AP = {(x == 4), (y + z <= 3)}, we say that M is a Kripke structure over X.

The logic CTL∗ is defined as a set of state formulas (i.e. properties that
hold from a given state), and a set of path formulas (i.e. properties that hold
along a given path) which are defined inductively below. The quantifiers A and
E are used to denote for all paths, and for some path respectively (where, if ¬
denotes negation, for path property φ, Eφ = ¬A¬φ). In addition, X (nexttime)
denotes in the next state, and 〈〉 and [] represent the standard eventually and
always operators (used to indicate that a proposition is true for every state in
a path, or true at some state in a path respectively). The binary operator ∪
denotes until, where p ∪ q states that proposition p is true in the current state
and continues to be true until a state is reached at which proposition q is true
(and such a state will eventually be reached). Note that 〈〉φ = true ∪ φ and
[]φ = ¬〈〉¬φ.

Let AP be a finite set of propositions. Then, if ∧ and ∨ denote the usual
and and or respectively,

• for all p ∈ AP , p is a state formula

• if φ and ψ are state formulas, then so are ¬φ, φ ∧ ψ and φ ∨ ψ

• if φ is a path formula, then Aφ and Eφ are state formulas

• any state formula φ is also a path formula

• if φ and ψ are path formulas, then so are ¬φ, φ∧ψ and φ∨ψ, Xφ, φ∪ψ,
〈〉φ and []f .

The logic LTL (Pnueli, 1981) is obtained by restricting the set of (CTL∗)
formulas to those of the form Aφ, where φ does not contain A or E. When
referring to an LTL formula, one generally omits the A operator and instead
interprets the formula φ as “for all paths φ”.

For a model M, if the LTL formula φ holds at a state s ∈ S then we write
M, s |= φ (or simply s |= φ when the identity of the model is clear from the
context).
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Property Common name Description
p→ q if p is true at a state then q is true at that state
[]p invariance p is true at every state
〈〉q q is true eventually

p ∪ q
q will eventually be true. p will be true at
the initial state and will remain true until q
becomes true

p→ 〈〉q response
if p is true at a state then q will be true either
at that state or at a later state in the path

Table 1: Common LTL properties

Assuming that p, q and r are propositions, some common LTL properties
are given in Table 1. In each case, the common name for the property is given,
if such a name exists. Note that we omit the criterion for every path in the
description of the properties, as this is implied for all LTL properties. (E.g. []p
should be read as “for every path p holds at every state”). More examples of
common LTL property patterns can be found in Dwyer et al. (1998).

3.4 Büchi automata and LTL

One of the most efficient algorithms for model checking LTL properties is the
automata-theoretic approach (see Section 4.1). Although we will not describe
the algorithms in detail, we provide a little background theory here.

Definition A finite state automaton (FSA) A is a tuple A = (S, s0, L, T, F )
where:

1. S is a non-empty, finite set of states

2. s0 ∈ S is an initial state

3. L is a finite set of labels

4. T ⊆ S × L× S is a set of transitions, and

5. F ⊆ S is a set of final states.

A run of A is an ordered, possibly infinite, sequence of transitions

(s0, l0, s1), (s1, l1, s2), . . .

where si ∈ S and li ∈ L for all i > 0. An accepting run of A is a finite run in
which the final transition (sn−1, ln−1, sn) has the property that sn ∈ F .

In order to reason about infinite runs of an automaton, alternative notions
of acceptance, e.g. Büchi acceptance, are required. We say that an infinite run
(of an FSA) is an accepting ω-run (i.e. it satisfies Büchi acceptance) if and only
if some state in F is visited infinitely often in the run. A Büchi automaton is
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an FSA defined over infinite runs (together with the associated notion of Büchi
acceptance).

Every LTL formula can be represented as a Büchi automaton. See, for
example Wolper et al. (1983), Vardi and Wolper (1994), and references therein.

4 Model checking

Errors in system design are often not detected until the final testing stage when
they are expensive to correct. Model checking (Clarke and Emerson, 1981;
Clarke et al., 1986, 1999) is a popular method that helps to find errors quickly
by building small logical models of a system which can be automatically checked.

Verification of a concurrent system design by temporal logic model checking
involves first specifying the behaviour of the system at an appropriate level
of abstraction. The specification P is described using a high level formalism
(often similar to a programming language), from which an associated finite
state model, M(P), representing the system is derived. A requirement of the
system is specified as a temporal logic property, φ.

A software tool called a model checker then exhaustively searches the finite
state model M(P), checking whether φ is true for the model. In LTL model
checking, this involves checking that φ holds for all paths of the model. If φ
does not hold for some path, an error trace or counter-example is reported.
Manual examination of this counter-example by the system designer can reveal
that P does not adequately specify the behaviour of the system, that φ does
not accurately describe the given requirement, or that there is an error in the
design. In this case, either P, φ, or the system design (and thus also P and
possibly φ) must be modified, and re-checked. This process is repeated until
the model checker reports that φ holds in every initial state of M(P), in which
case we say M(P) satisfies φ, written M(P) |= φ.

Assuming that the specification and temporal properties have been con-
structed with care, successful verification by model checking increases confidence
in the system design, which can then be refined towards an implementation.

4.1 LTL model checking

The model checking problem for LTL can be restated as: “given M and φ,
does there exist a path of M that does not satisfy φ?” One approach to LTL
model checking is the automata-theoretic approach (Lichtenstein and Pnueli,
1985; Vardi and Wolper, 1986).

In order to verify an LTL property φ, a model checker must show that all
paths of a model M satisfy φ (alternatively, find a counterexample, namely a
path which does not satisfy φ). To do this, an automaton A representing the
reachable states of M is constructed, together with an automaton B¬φ which
accepts all paths for which ¬φ holds. The asynchronous product of the two
automata, A′ is constructed. In practice A′ is usually constructed implicitly, by
letting A and B¬φ take alternate steps. Whenever a transition is executed in A,
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T0:init accept_all

true
true

!p

accept_init

!q

A

B

Figure 6: Example Büchi automata: A) []p, B) 〈〉q

the propositions in φ are evaluated to determine which transitions are enabled in
B¬φ. If a path in A does not satisfy φ, the automaton B¬φ may execute a trace
along a path in which it repeatedly visits an acceptance state. This is known
as an accepting run (of A′) and signifies an error. If there are no accepting
runs, the property holds and M |= φ. Generally to prove LTL properties, a
depth-first search is used. As the search progresses, all states visited are stored
(in a reduced form) in a hash array (or heap), and states along the current path
are pushed on to the stack. If an error path is found, a counter-example can be
produced from the contents of the stack.

In Fig. 6 we give Büchi automata for LTL properties []p (p is true at every
state) and 〈〉q (q is true eventually). Note any path of an automaton A has
associated paths in the Büchi automaton. For example, consider the Büchi
automaton of Fig. 6A. If π is a path in A for which p becomes false at some
state s say, it would be possible to loop around the state labelled T0:init

until s is reached, then make a transition to the (acceptance) state labelled
accept all. The infinite continuation of π would result in infinite looping
around the acceptance state in the Büchi automaton. Thus π would be accepted.
Similarly, a path π′ in A for which q is never true would be accepted by the
Büchi automaton of Fig. 6B. Note that the names of the states are not significant
(although an acceptance state is generally prefixed with the term accept). The
Büchi automaton in this example was generated using SPIN.

When we use model checking to prove properties of a system, the underlying
automata are constructed by the model checker itself. The user must supply a
specification of the system that is recognisable as a true representation of the
system and the translation to automata is unseen. In Section 4.2 we introduce
Promela, the specification language for the model checker SPIN.
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4.2 Promela and Spin

The model checker SPIN (Holzmann, 2004) allows one to reason about speci-
fications written in the model specification language Promela. SPIN has been
used to trace logical errors in distributed systems designs, such as operating sys-
tems (Cattel, 1994; Kumar and Li, 2002), computer networks (Yuen and Tjioe,
2001), railway signalling systems (Cimatti et al., 1997), wireless sensor network
communication protocols (Sharma et al., 2009) and industrial robot systems
(Weissman et al., 2011).

Promela is an imperative style specification language designed for the de-
scription of network protocols. A user of SPIN does not see the Büchi automata
associated with their Promela specification. The Promela specification is a clear
and understandable representation of the system to be modelled. Indeed, since
Promela syntax is close to C-code, a Promela specification is often very close to
the implementation of the system to be modelled. Underlying semantics allow a
Promela specification, and an LTL property to be converted into their respective
automata and combined as described in Section 4.1. The specification can be
relatively short, whereas the associated Büchi automata can contain thousands
(or indeed millions) of states. It is not, therefore, feasible to construct the Büchi
automata by hand.

In general, a Promela specification consists of a series of global variables,
channel declarations and proctype (process template) declarations. Individual
processes can be defined as instances of parameterised proctypes. A special
process –the init process– can also be declared. This process will contain
any array initialisations, for example, as well as run statements to initiate pro-
cess instantiation. If no such initialisations are required, and processes are not
parameterised, the init process can be omitted and processes declared to be
immediately active, via the active keyword. Properties are either specified
using assert statements embedded in the body of a proctype (to check for
unexpected reception, for example), an additional monitor process (to check
global invariance properties), or via LTL properties. We do not give details
of Promela syntax here, but illustrate the structure of a Promela program and
some common constructs by way of our example system in Appendix B. LTL
properties that are to be checked for the system are defined in terms of Promela
within a construct known as a never claim. A never claim can be thought of
as a Promela encoding of a Büchi automaton representing the negation of the
property to be checked.

SPIN creates a finite state automaton for each process defined in a Promela
specification. It then constructs the asynchronous product, A, of these automata
and a Büchi automaton ¬B corresponding to any never claim defined. As
described in Section 4.1, in practice A and ¬B are executed in alternate steps
– the propositions in ¬B being evaluated with respect to the current values of
the variables in A. Automaton A can be thought of as a graph in which the
nodes are states of the system and in which there is an edge between nodes s1
and s2 if at state s1 some process can execute a statement (make a transition)
which results in an update from state s1 to state s2.
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The system that we are modelling here is not concurrent: there is just a
single robot moving in an environment. However our model does involve non-
deterministic choice. When a head-on collision occurs the robot moves to the
left, or right of the obstacle. When the collision occurs at the furthest point on
the shell from the center of the robot, i.e. at a point equidistant from the anten-
nae, the direction of movement is chosen non-deterministically. SPIN allows us
to check every path through a model for counter-examples (i.e. paths that vio-
late a given property), without having to manually construct a set of test cases.
This includes infinite (looping) behaviour, which cannot possibly be checked
using simulation alone. Future work (see Section 7) will involve us adding addi-
tional robots. This will be a simple case of adding further instantiations of the
robot process template.

In our model it is important that the movement of the robot in its envi-
ronment is represented as accurately as possible. Due to the limitations of the
Promela language this precision is not possible with Promela alone. However,
it is possible to embed C code within a Promela specification. Note that the
calculations performed in the C code are visible to the Promela specification,
and the values of variables contained therein used to determine transitions in
the automata. However, we can choose that some variables used for interme-
diate calculations that are not relevant (i.e. do not influence transitions) are
not visible, i.e. do not form part of each state. In Appendix A we describe how
embedded C code is used in our Promela specification.

5 The Promela Specification (Explicit Model)

In this paper we describe two Promela specifications, the Explicit specification,
a specification which describes a low-level representation of the system for a par-
ticular environment, and the Abstract specification, which allows us to capture
all paths of a robot in any environment (with some restrictions). The associ-
ated models are the Explicit model and the Abstract model. Fig. 5 illustrates the
relationship between our models and the relationship between simulation and
model checking.

Note that the Explicit specification is so low level that it closely resembles
simulation code. This is an advantage: it is easy to convince system designers
that our specification (and hence the resulting model) is correct. Verification of
the underlying model is more powerful than simulation alone, but is restricted
to proving properties for a single environment. In addition the state-space
associated with such an unabstracted model can be prohibitively large. (This is
not true in our case, but applies to systems with a high level of concurrency and
non-determinism.) The Abstract specification is much further removed from the
simulation code, and requires expert knowledge to construct. The benefit of the
Abstract model is that we can verify properties for any environment (under the
given assumptions) and memory and time requirements are much smaller (than
the combined requirements for all environments). However mathematical proof
is required to show that the Abstract model does, indeed, capture the behaviour
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Figure 7: Robot Setup A) Distance from centre of robot to far edge of obstacle,
B) lengths of antenna and obstacle, C) diameter of robot.

of a single robot in any suitable environment.
In this section we describe the Explicit specification.

5.1 Assumptions

We assume that the environment, the robot and the obstacles are all circular
(see Fig. 7). The robot setup is illustrated in Fig.7. The length of an antenna is
60 units and the angle between the antennae is 60◦. The diameter of the robot is
40 units (see Fig. 7C), and the diameter of an obstacle is 20 units (see Fig. 7B).
The environment has diameter at least 100 units – the radius of the robot plus
the length of an antenna plus the diameter of an obstacle – (see Fig. 7A).

We assume that the complexity of the environment is such that at most one
obstacle can touch any part of the robot at any time. We denote the minimum
allowable distance between obstacles as δ0.

An environment is a circular region, represented by a set of polar co-ordinates
C = {(r, θ) : 0 ≤ r ≤ ρ, 0 ≤ θ < 360}, where ρ is the radius of the environment
and angles are measured clockwise from North. We use polar coordinates to
represent the environment and the current position of the robot and the obsta-
cles. This allows us to store the angular information of the system (without
having to recalculate this from Cartesian coordinates at every point) and so
determine the robot’s new position when moving at an angle that is not parallel
to either Cartesian axis. The use of polar coordinates also allows us to represent
the turning angles of the agent to an accuracy of one degree, a level of accuracy
that we deemed acceptable.

The robot is initially placed in the centre of the environment, facing a given
direction. Since the robot is the only moving obstacle in the environment, the
state of the system reflects the position of the robot, the direction it is moving,
and (by implication) at what point (if any) an obstacle touches either of the
sensors. We do not include the robot’s motors or external wheels in the model.

The precise location of the robot as it moves around an environment is
calculated using C-code embedded within our Promela specification. At each
time step the new direction of the robot is calculated from the signals received
from the sensors. We simply calculate the position of any obstacle touching
the sensors to infer this information. As well as deciding the new direction of
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the robot, the angular response to a sensor impact will be incremented by a
fixed amount (the learning rate) if a collision occurs at the proximal sensor,
after a collision has occurred at a distal sensor. If a head-on collision occurs the
robot moves to the left, or right of the obstacle. When the collision occurs at the
furthest point on the shell from the center of the robot, i.e. at a point equidistant
from the antennae, the direction of movement is chosen non-deterministically.

As in the simulated environment, we ignore the presence of any boundary
wall. When a robot reaches the perimeter of the environment it is simply relo-
cated to the opposite edge of the perimeter. This is achieved via a WRAP function
that reflects the position of the robot about a ray, r2, that runs through the
pole (centre of the environment) and is perpendicular to the ray r1 that runs
through the position p of the robot at the angle that the robot is facing. The
new position of the robot is p′ where p and p′ are at the same distance from the
two points of intersection of r1 with the perimeter of the environment. Note
the robot continues to face in the same direction. Fig. 8 illustrates the effect of
the WRAP function when the new position of the robot is simply diametrically
opposite to the old position, and when it is not. Our particular implementa-
tion of the movement of the robot at the boundary reflects the implementation
in the closed-loop simulation which, in both cases, was chosen to simplify our
description and the introduction of our approach. Other implementations are
possible, as discussed in Section 7.
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Figure 8: Examples of the WRAP function
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We include some sample Promela code in Appendix B.

5.2 Verification results for the Explicit model

Our initial experiments with SPIN involved attempting to reproduce the results
of the simulations of Fig. 4. In particular, we were interested in the results
of the simulation where the agent initially faces 58◦ from North (Fig. 4). As
observed in Section 3.1, in this case the learning weight (ωd) continues to rise,
apparently indefinitely. This continual rise is counter-intuitive. We examined
this case using model checking. Our specification was for a robot initially facing
due North, and the environment adapted appropriately. Using SPIN we verified
that the system should always stabilise (this is in fact Property 2 below, details
of the verification of this property are described below). Analysing this incon-
sistency in more detail, we suggested the simulation of Fig. 4A should simply
be run for longer. The results of this extended simulation are shown in Fig. 4G.
Running the extended simulation shows that the proximal value does eventually
stabilise, indicating that learning has ceased and successful avoidance behaviour
has been achieved. Note that this illustrates an advantage of model checking
over simulation. Whereas in simulation the user decides when to stop waiting
for stabilisation to occur, the model checker automatically checks all possible
outcomes. The model checking process does not terminate until all possible
paths have been explored, however unlikely they may be. This is illustrated in
Fig. 5: a simulation run maps to a prefix of a path in the state-space.

We now give details of how we verified both of the properties identified in Section
2, namely:

1. The sensor input xp of the proximal sensor will eventually stay zero, indi-
cating that the agent is using only its distal sensors.

2. The weight ωd will eventually become constant, indicating that the agent
has finished learning.

Our models are defined separately for each learning rate λ and environment
(i.e. location of obstacles). Using this model we can not verify properties for
any environment, we must construct a different model (via a different Promela
specification) for every environment. We fix our learning rate to 1, and verify
our properties for an example set of environments.

Environments E1 - E6 are shown in Fig. 9. These environments have obsta-
cles placed at random, at a minimum distance of δ0 from each other (see Section
5.1). Note that the positioning of the obstacles is further restricted by the WRAP

function (see Table. 4) in two ways. First, when an obstacle is randomly placed
its minimum distance from other obstacles must take into account the wrapping
of the environment. Second, obstacles cannot be placed so close to the perimeter
that the WRAP function could cause the robot to wrap directly into it.

The experiments were conducted on a 2.5 GHz dual core Pentium E5200n
processor with 3.2Gb of available memory, running UBUNTU (9.04) and SPIN
6.0.1.
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21



Environment Property Max ωd Stored states max search depth time (sec)
E1 1A 1 273664 547323 2.19

2A 273734 547323 2.26
E2 1A 1 150562 300979 1.03

2A 150492 300979 1.04
E3 1A 0 670 1339 0.00

2A 670 1339 0.00
E4 1A 0 77034 154067 0.16

2A 77034 154067 0.28
E5 1A 1 218326 436647 1.36

2A 218372 436647 1.73
E6 1A 1 61256 122507 0.28

2A 61434 122507 0.52

Table 2: Verification results for the Explicit model

To prove property 1, we used the LTL formula 〈〉[]p (in all paths p is even-
tually true) where p is defined to be the proposition, ((sig 6= 6)&&(sig 6= −6)).
Note that sig and PrevSig are the variables we use in our Promela specification
to denote the current signal from the sensors and the previous signal from the
sensors respectively. The latter has default value 0, and is reset to this value
when a proximal signal is received.

Attempts to verify this property using SPIN proved the property to be false.
Examination of a counter-example trace showed that it was indeed always pos-
sible to have an impact on a proximal sensor, even when learning had ceased.
This happens when the robot approaches an obstacle head on, and the obsta-
cle impacts without the distal sensor touching the obstacle. This situation was
missed during simulation. Of course, on another day, a different simulation may
have exposed this possibility. The benefit of model checking here is that it never
misses an error path although, of course, it is the definition of the property being
checked that determines what an error path is.

Since learning only occurs when an impact on the proximal sensor follows
an impact on the distal sensor, we can rephrase the property to eliminate this
rare behaviour. The new property (Property 1A) is 〈〉[](!p →!q) (eventually p
is always true, unless q is false), where p is defined as above, and q is defined
to be ((prevSig > −6)&&(prevSig < 6)). This property is shown to be true for
our set of example environments (see Table 2 for verification results). Note that
the Stored states column gives an indication of the size of the underlying state
graph. As the graph is explored (during any verification), states are generated
on-the-fly from the transitions indicated in the Promela specification. When a
new state is encountered, it is stored (in the state-space). When a previously
visited state is encountered, the search backtracks. The max search depth is the
length of the longest path that is explored during search, and time denotes the
time (in seconds) taken for verification.

To prove property 2, in each case we performed initial experiments to find
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the maximum value of ωd, call this value Max. These experiments involved
choosing an initial (high) value of Max and checking a further LTL property
[]ωd < Max. When the property is proved true, Max is decremented and the
process repeated, until the property is shown to be false, in which case Max is
fixed to the last value for which the property was shown to be true. We checked
a slightly modified version of Property 2, namely Property 2A, to verify that
MAX is eventually reached, but never exceeded. This is verified using the
following LTL property: (〈〉(omegaD == MAX))&&([]omegaD <= MAX).
This property was shown to be true for our set of example environments (see
Table 2).

6 The Abstract specification

The Promela specification described in Section 5 models the physical world
explicitly. I.e. it represents an explicit environment and an explicit robot. In
this section we describe an Abstract specification, in which the environment is
abstracted to a much smaller area, known as the cone of influence surrounding
the robot. Rather than move the robot around an Explicit environment, at any
state we consider only the position of any obstacle within this cone of influence,
and its position relative to the robot. Depending on any impact made to the
sensors of the robot at a given state, the next state is calculated. In this case
rather than the robot move, the robot stays fixed in its original position (at
the origin) and any obstacle moves relative to the robot. The advantage of
this specification over the Explicit specification is that the model represents a
robot moving in any environment with distance between obstacles at least δ0
(as defined in Section 5.1). The relationship between our models, and between
simulation and our models is illustrated in Fig. 5.

As well as the usual benefits of model checking, the Abstract model allows
further benefits over simulation, in that it allows us to analyse a set of envi-
ronments in a single verification. Of course we need to define assumptions on
our environment (in the same way that we would need to define restrictions on
a simulation environment). The environments represented by a single abstract
model must all be equivalent in some way. In our case this equivalence is deter-
mined by the minimal distance between obstacles, it could of course be defined
differently. In Section 7 we describe how the Abstract model could be extended
to more complex scenarios (e.g. a range of distances between obstacles).

To see how the Abstract model represents multiple environments, consider
Fig. 10. For a given position of the robot, several environments look identical
from the robot’s perspective (i.e. within its cone of influence). Our abstraction
merges these symmetrically equivalent cases. In our case, only one obstacle can
appear within the cone of influence, and equivalent cases are determined by
the distance and angle of any obstacle from the antennae. If there were more
obstacles symmetry would still exist between different scenarios (see Section
7). Note that our abstraction also merges situations in which the robot is in
different positions, but its view within its cone of influence is the same. This is
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Figure 10: Abstraction of environments to a single representation. From a given
position of the robot, several environments look identical. Shown are states in
six differerent environments which correspond to the same state in the abstract
model.

not illustrated in Fig. 10.
From a state in which there is an obstacle in the cone of influence, the

next state is calculated in the same way as it is for the Explicit specification.
However, if there is no obstacle within the cone of influence, i.e. the robot is
in free space, non-deterministic choice determines the position (if any) of an
obstacle appearing at the front of the cone of influence in the next state.

We refer to the model (i.e. Kripke structure) associated with the Abstract
specification as the Abstract model. In Section 6.1 we give an outline proof to
show that, for any suitable environment E, any LTL property satisfied by the
Abstract model is satisfied by any Explicit model with a suitable environment.

We give outline code for the Abstract specification in Appendix C.

6.1 Justification for the Abstract model

We need to show that, for a given learning rate λ, by verifying an LTL property
for the Abstract model, with learning rate λ we can infer that φ holds for all
Explicit models with learning rate λ. In this section we use the term model to
denote the underlying Kripke structure (see Definition 3.3) associated with a
Promela specification.

Our justification is based on the concept of simulation between two Kripke
structuresM andM′. A simulation relation R between the sets of states ofM
andM′ is a set of pairs of states, (s, s′) where s and s′ are states ofM andM′
respectively, and where any transition in M is matched to a transition in M′.
Formally: for any transition (s, s1) inM, if (s, s′) ∈ R then there is a transition
(s′, s′1) in M′ where (s1, s

′
1) ∈ R.

We say that M′ simulates M if there is a simulation R between the sets of
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Figure 11: Simulation relation between models

states and the initial states of M and M′ are in the relation. For example, in
Figure 11, a simulation relation is given by

R = {(s0, s′0), (s1, s
′
1), (s2, s

′
2), (s3, s

′
3), (s4, s

′
2), (s5, s

′
3), (s6, s

′
7), (s7, s

′
7)}

For every path inM there is a corresponding path inM′, in this case we say
that a path π inM is matched to a corresponding path π′ inM′. Note that, in
Figure 11, paths A and B in M are both matched to path A′ in M′ and path
C in M is matched to path B′ in M′. Crucially, several paths in M can be
matched to a single path inM′, and not all paths inM′ need to be matched to
paths in M. Any LTL property that holds for (all paths in) M′ holds for (all
paths in) M.

LetM andM′ denote an Explicit model and the Abstract model, for a given
learning rate λ. It is possible to prove that there is a simulation relation between
the Explicit model (i.e. for an example environment) and the Abstract model.
Similarly, every path in the Abstract model is mapped to a path in some Explicit
model. It follows that if an LTL property φ holds for the Abstract model, for
a given learning rate λ, it will hold for every path in every Explicit model with
learning rate λ. Thus φ holds for every Explicit model with learning rate λ.

It is beyond the scope of this paper to give a full proof that there is a
simulation relation for every explicit model. However, we describe the general
technique, indicating how paths are matched. We have used this approach in
previous work (Miller et al., 2007).

The Explicit and Abstract Promela specifications are written in a way that
can easily be translated into a form known as Guarded Command Form. The
robot process in each case is defined using a single repeating loop in which every
statement consists of an atomic step containing a guard followed by an update
(or command). Thus every statement in the Promela specification corresponds
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Property Max ωd Stored states (×105) max search depth time (sec)
1A 6 121413 28881 0.32
2A 118129 28881 0.26

Table 3: Verification results for the Abstract model

to a transition in the associated model. This allows us to easily match states
and transitions in an Explicit model to corresponding states and transitions in
the Abstract model (and vice versa).

For example, in each model, in the initial state the robot is at the origin
and facing due North, so the initial states can clearly be matched. For any
environment, at any state the response of the robot is determined by the position
of the nearest obstacle with respect to its cone of influence. If, in the Explicit
model, the robot is in a state at which no obstacle is in this cone, then this state
is matched to one in the Abstract model in which the robot is in free space. If an
obstacle touches a sensor in the Explicit model then this state can be matched
to one in the Abstract model in which an obstacle touches the same area of the
antenna.

Any transition in the Explicit model involves a change in the position of
the nearest obstacle relative to the robot. This transition can be matched to
a transition in the Abstract model in which the position of an obstacle moves
likewise, relative to the robot.

6.2 Verification results for the Abstract model

In this case there is only one verification required for each property. The learning
rate is again assumed to be 1. Results are given in Table 3.

7 Model Enhancements

The environments and robot behaviour that were represented in both our sim-
ulation setup and Promela specifications (with their associated models) were
deliberately chosen to be simple. Whether creating a computer-based closed-
loop simulation, or a Promela specification, it is necessary to make assumptions
about the system that we are modelling. In either case we can not have limitless
possibilities about the number of obstacles, or their shape. In addition we have
to decide a priori whether to consider a fixed boundary, and, if so, the nature of
the boundary. The purpose of this paper was to demonstrate the effectiveness
of model checking (as a complementary approach to simulation), not to con-
sider all possible environments or robot behaviour. In this section we discuss
how we could adapt our models to consider more complex scenarios. Note that,
in all cases modifications are made to the Promela specification (and SPIN will
produce the underlying models in each case).

In each of the cases below, we assume that only the specified modification is
to be implemented. Clearly we could combine the modifications in any way we

26



like, but we only consider one at a time here, to make our explanation simpler.
For each modification we first consider how the Explicit Promela specification
would be adapted. The Explicit specification would be modified in much the
same way as the simulation code would be modified. The corresponding Ab-
stract specification would, in all cases, require more detailed consideration.

When considering a new model we always start by using an Explicit model
that is close to implementation level, and abstract from there (removing unnec-
essary variables, for example). Creating, what we refer to as an Abstract model,
requires experience of the Explicit model so as to guage what the equivalence
classes are. For example, in the Abstract model considered in this paper, the
equivalence classes correspond to the possible positions of a single obstacle in
the cone of influence.

In each of the modifications listed below we indicate the corresponding equiv-
alence class. Note that proof of soundness would involve proving that every state
in a corresponding Explicit model would map to an equivalence class represen-
tative (and so to a state in the Abstract model). We do not include all possible
extensions here, just indicate a few that could be implemented very easily.

• Inclusion of Environment Boundaries Boundaries can easily be in-
cluded in our Explicit model. In this case the boundary would be incor-
porated as a set of unreachable coordinates. The robot would respond
to a signal from its sensors resulting from a collision with a boundary in
the same way as it would a collision with an obstacle. Depending on the
shape of the boundary, (and assuming a single obstacle) the equivalence
classes in the Abstract model would correspond to the possible positions
of a single obstacle and a segment of boundary in the cone of influence.

• Arbitrary/Dynamic Boundaries Any Explicit model would assume
that a boundary was fixed. However, there is plenty of scope for allowing
arbitrary boundary shapes, or dynamic boundaries in our Abstract model,
provided of course that we assume (as we would do for simulation) that
the possible types of boundary belong to a finite set. The equivalence
classes in this case would be as for the previous example, but the number
of possible different types of segment of visible boundary in the cone of
influence would increase.

• Increased Complexity This would mean allowing for there to be more
than one obstacle within the cone of influence at any time. The Explicit
specification could be modified to accommodate this very easily (the array
containing the positions of the obstacles would simply have to be altered).
Assuming that there are at most N obstacles within the cone of influence
at any time, the equivalence classes (and hence the states in the Abstract
model) correspond to the possible positions of up to N obstacles within
the cone of influence.

• Additional Robots Our Explicit Promela model involves a process def-
inition of a robot, and a single instantiation of that process. Adding
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additional robots would simply involve instantiating multiple robot pro-
cesses (either with learning, or not). Our Abstract model concerns the
view of a single robot. Any additional robots would be viewed as dynamic
obstacles. The behaviour of other robots (whether learning or not), would
only be relevant within the cone of influence (e.g. all possible movements
of the other robot after a collision need to be considered).

• Alternative Learning Algorithm Both of our Promela specifications
can be adapted very easily to accommodate an alternative learning algo-
rithm. This would involve altering our C-code functions determining the
progress of the robot from any state after a collision. We could use our
models to compare the consequences of different algorithms.

• Dynamic Obstacles/Different Obstacles By defining obstacles as pro-
cesses, they could be defined as dynamic, either following a prescribed
path, or following a non-deterministic path. Similarly, obstacles could be
defined to have a variety of shapes and sizes, provided they can be defined
and constrained before modelling. In the Abstract model, it would make
no difference to make obstacles dynamic – the assumption of a maximum
number of obstacles within the cone of influence would be sufficient. Dif-
ferent shapes and sizes of obstacle in the Abstract model would require a
minimal revision of the code (again requiring the different possibilities to
be defined a priori).

• Measuring explicit time It is not possible to represent explicit time
(for example to measure the amount of time between events) using SPIN

alone, although the temporal ordering of events is clearly representable.
When there is only one robot, there is a correlation between the number
of global transitions between events, and the time between the events. It
would therefore be able to give a (discrete) representation of time using
SPIN in this case. However, concurrent events are executed sequentially by
SPIN, and so, when there is more than one component (i.e. robot) there
is no such correlation. In order to prove quantitative properties, such as
time between events, or the probability of an event, a more specialised
model checker, such the timed model checker Uppaal (Larsen et al., 1997)
or the probabilistic model checker Prism (Hinton et al., 2006) would be
required.

8 Comparison of classical closed-loop simulation
and model checking

New strategies had to be developed to translate the behaviour-based approach
into a form suitable for model checking. For simulation we used an existing
framework to easily calculate the position of obstacles on the sensors, the new
direction of the robot etc. In comparison, the Promela model was rather cum-
bersome, in that we had to construct a number of C functions, in addition to
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just using pure Promela. However, we were able to adapt the code for (the
simulated) robot behaviour. In order to simplify the Promela model we kept C
functions used for calculation hidden from the user (in included files). These
functions can be reused in future models.

The advantage of the model-checking approach was that we could simply
specify LTL properties to define behaviour that was expected for all paths for
our model. I.e. we did not have to run an exhaustive set of simulations to
verify behaviour – the model checker would find any error path if it existed.
In addition, our Abstract model allowed us to check certain properties for all
possible environments: if there were any distribution of obstacles for which one
of our properties did not hold, the model checker would find it. Having the
capacity to examine error trails allowed us to not only debug our models, but
to identify the pathological case in which one of the initial properties did not
hold (i.e. the situation in which the robot hit an obstacle head on, without it
first making contact with a distal sensor). This allowed us to strengthen the
property to ignore this unusual case.

In addition, model checking allows us to identify deficiencies before, during
and after learning. That the robot cannot see obstacles which are hitting it
head on is clearly a deficiency of its sensor distribution. While simple to spot
in our example, more complex sensor motor setups will make it much more
difficult to identify deficiencies which might occur only rarely. However unlikely,
if these cases could cause damage to the robot or a deterioration its performance
(say) then they need to be tackled appropriately. Model checking can help here
(alongside classical simulation) to identify these problems in the design phase
of a robot and will lead ultimately to a more reliable system.

The main drawback of the model checking approach is that it requires expert
knowledge, both to construct a Promela specification with just the right level of
abstraction, and to develop LTL properties to capture identified error behaviour.
While the level of mathematical expertise required for our Explicit model is high,
an even greater degree of theoretical knowledge is essential for the Abstract
model.

9 Related work

When model checking is used in the context of autonomous agents it has been
traditionally used to verify successful communications between agents in multi-
agent systems (Dekhtyar et al., 2003; Konur et al., 2012). A number of methods
for formally specifying multi-agent systems, with a view to prototyping and/or
verification have been proposed (Hilaire et al., 2000, 2004; Da Silva and De
Lucena, 2004; Wooldridge et al., 2004; D’Inverno et al., 2004). This is a nat-
ural use of model checking which was primarily designed for communication
protocol analysis. Formal aspects of multi-agent systems are the subject of
an annual workshop - Formal Aspects of multi-agent systems (see, for exam-
ple, (Dunin-Kȩplicz and Verbrugge, 2004), and (Dunin-Kȩplicz and Verbrugge,
2009)). Approaches tend to focus on protocol verification, the formalisation of
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goals, and plans and knowledge-based agents.
Model checking has also been used to test the success of single agents, for

example whether a dynamical system can generate a trajectory navigating from
a starting position to a specific target (Fainekos et al., 2009), or if agents always
perform a given task without errors (Webster et al., 2011; Molnar and Veres,
2009; Ingrand and Py, 2002; Lerda et al., 2008). However, none of these ap-
proaches involve agents with learning. Indeed, learning is only considered in the
context of model checking when it is used as a way to enhance model checking
algorithms (Leucker, 2007; Mao et al., 2011).

Fisher (2005) uses a temporal logic framework to specify behaviour of indi-
vidual agents as well as systems of agents. Refinement is used to reason about
behaviour, as well as verification via logical deduction. The framework is ex-
tended to include the concepts of knowledge and belief, but learning is not
considered. Model checking has been used in Bordini et al. (2006) in which
agents are specified in the logic-based agent-oriented programming language
AgentSpeak and the specification of the system is automatically converted into
Promela or Java, for verification with SPIN or the Java Pathfinder tool (Visser
et al., 2000). This approach does not consider agent learning, nor does it model
collision avoidance or use Abstraction as we do.

To our knowledge we are the first to introduce biologically inspired agent
learning into the model checking paradigm. This has been achieved by di-
rectly using Promela and SPIN. The implemented ICO learning determines the
robot’s reflex (in the specification) and model checking allows us to check if the
generated model is successful under all possible conditions. This substantially
extends the application domain of model checking to systems which can inform
the development of future models or optimise agent learning algorithms. We
have presented a preliminary abstract describing the model checking aspects of
our work in (Kirwan and Miller, 2011).

10 Conclusions and Future Work

Model checking is a powerful tool that allows us to check temporal properties of
a (model of a) system. In this paper we have shown how the SPIN model checker
can be used to verify properties of a system that has previously been analysed
using simulation. The system, consisting of a robot navigating around an en-
vironment using learning to avoid obstacles, serves as an instructive example
for the technique of model checking and its use within this context. We have
described our Promela model and how we verified some example LTL properties
for it. The original properties that were assumed to hold for the system were
found to be insufficient. We therefore strengthened our properties so that any
error reported would accurately reflect the kind of behaviour we were interested
in. Our abstracted model is a powerful one: it allows us to prove properties for
any environment for which no two obstacles can interfere with the sensors at
any time. This model removes the need to run multiple verifications to check a
property (i.e. one per environment).
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The learning algorithm implemented in both the simulation environment and
the Promela specification is a simplified version of temporal sequence learning. It
would be straightforward to adapt both of these to implement alternative learn-
ing algorithms and provide a platform for comparison purposes. Our Promela
specifications could easily be converted to Prism (the specification language of
the probabilistic model checker Prism) (Hinton et al., 2006), e.g. using the
Prism2Promela tool (Power and Miller, 2008). Prism would be an ideal tool for
analysing probabilistic learning algorithms.

Our work has demonstrated the feasibility and value of using model checking
in the context of a robot navigating around a set of obstacles in an environment.
The setup cost, in terms of the transfer of knowledge between engineers and
computer scientists, creation of the formal specification and development of the
temporal properties has been high. However, all of the C functions, template
specifications and temporal properties can be reused (or adapted) for more
complex systems, i.e. systems involving more robots and/or alternative learning
algorithms.

Future work involves the development of a software system to automatically
create a Promela specification for a system of robots in an environment, given
the number of robots, the location (or number) of obstacles, and the learning
algorithms used.
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Appendix A: The use of Embedded C-code in our
Promela specification

In our model it is important that the movement of the robot in its environment is
represented as accurately as possible. Due to the limitations of the Promela lan-
guage this precision is not possible with Promela alone. However, it is possible
to embed C code within a Promela specification. The primary reason for this is
to provide support for programs already written in C with minimal translation
into Promela (Holzmann, 2004), not for use in hand-written Promela specifi-
cations. However, in our case, the increased accuracy afforded by the use of
mathematical functions available using C outweighed the increased complexity
resulting from its use.

Another advantage of using embedded C code is that variables that are
declared solely in the C code do not need to be considered as part of the state-
space (although it is possible to include them as state variables if necessary)
when generating the model. This is a significant advantage in terms of state-
space tractability. For example, variables used for intermediate calculations that
are not relevant (i.e. do not influence transitions) can be ignored.

We embed our C code using functions that can be called in the main Promela
specification. Our C macro functions are declared in a separate file which is
included from within the Promela specification. Each function can be stored as
an individual file to be tested and debugged separately from the main model.
Several of these functions are used in both of our models.

The use of embedded C code does have some drawbacks. Simulations are
more cumbersome and the generation of meaningful counterexamples is a more
complicated process. Also, any C code variables that affect the value of Promela
variables must be tracked during a verification. The Promela c track primitive
allows us to do this. Each c track declaration refers to the memory location
and size of a C variable to be tracked, as seen in Fig. 12. The use of this
primitive allows the associated variables to be tracked during verification, so
allowing for the normal verification of properties. It is important to note that
even if an embedded variable does not directly affect a Promela variable, it may
affect it indirectly so will still need to be tracked.

To illustrate, we include below one of our embedded C code functions,
namely the (MOVE FORWARD) function which determines the new position of the
robot from a given state.

#define MOVE_FORWARD() { \

/*Declare Locals*/ \

if (now.relDist > 30) { \

long double oZ, nZ, fZ, lOrg, hOrg, lNew, hNew, lFin, hFin = 0; \

int oFR, oFU, nFR, nFU = 0; \

\

oZ = fmodl(enviA, (long double)90); \

if ((enviA == 90) || (enviA ==270)) {lOrg = enviD; hOrg = 0; } \

else if ((enviA == 0) || (enviA == 180)) {lOrg = 0; hOrg = enviD; } \
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else { \

if ((enviA <=90) || ((enviA >=180)&&(enviA<=270))) { \

lOrg = (sin(oZ*DEG))*enviD; \

hOrg = (cos(oZ*DEG))*enviD; \

} else { \

hOrg = (sin(oZ*DEG))*enviD; \

lOrg = (cos(oZ*DEG))*enviD; \

} \

} \

\

nZ = fmod(roboA, 90.00); \

if ((roboA == 90) || (roboA ==270)) {lNew = moveDist; hNew = 0; } \

else if ((roboA == 0) || (roboA == 180)) {lNew = 0; hNew = moveDist; } \

else { \

if ((roboA<90) || ((roboA>180)&&(roboA<270))) { \

lNew = (sin(nZ*DEG))*moveDist; \

hNew = (cos(nZ*DEG))*moveDist; \

} else { \

hNew = (sin(nZ*DEG))*moveDist; \

lNew = (cos(nZ*DEG))*moveDist; \

} \

} \

\

if ((enviA<180)&&(roboA>180) || (enviA>180)&&(roboA<180))

{ lFin = fabs(lOrg - lNew);} \

else { lFin = lOrg + lNew;} \

if ( (((enviA<90)||(enviA>270))&&((roboA>90)&&(roboA<270))) || \

(((enviA>90)&&(enviA<270))&&((roboA<90)||(roboA>270))) ) { \

hFin = fabs(hOrg - hNew); \

} else { hFin = hOrg + hNew; } \

if ((hFin!=0)&&(lFin!=0)) { fZ = (atan(hFin/lFin)*(180/PI)); } \

else { fZ = 0;} \

enviD = sqrt((lFin*lFin)+(hFin*hFin)); \

\

if ((enviA >=0) && (enviA <90)) { oFR = 1; oFU = 1;} \

else if ((enviA >= 90) && (enviA <180)) { oFR = 1; oFU = 0;} \

else if ((enviA >= 180) && (enviA <270)) { oFR = 0; oFU = 0;} \

else if ((enviA >= 270) && (enviA <360)) { oFR = 0; oFU = 1;} \

else { oFR = 0; oFU = 0;} \

nFR = oFR; \

nFU = oFU; \

if ((oFR==1) && (oFU==1)) { \

if ((roboA>=180) && (roboA<360) && (lNew > lOrg)) { nFR = 0;} \

if ((roboA>=90) && (roboA<270) && (hNew > hOrg)) { nFU = 0;} \

} \

else if ((oFR==1) && (oFU==0)) { \
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if ((roboA>=180) && (roboA<360) && (lNew > lOrg)) { nFR = 0;} \

if ( (((roboA>=270)&&(roboA<360))||((roboA>=0)&&(roboA<90)))&& (hNew>hOrg))

{ nFU=1;} \

} \

else if ((oFR==0) && (oFU==0)) { \

if ((roboA>=0) && (roboA<180) && (lNew > lOrg)) { nFR = 1;} \

if ( (((roboA>=270)&&(roboA<360))||((roboA>=0)&&(roboA<90)))&& (hNew>hOrg))

{ nFU=1;} \

} \

else if ((oFR==0) && (oFU==1)) { \

if ((roboA>=0) && (roboA<180) && (lNew > lOrg)) { nFR = 1;} \

if ((roboA>=90) && (roboA<270) && (hNew > hOrg)) { nFU = 0;} \

} \

\

/*Many catches for when movement is along/opposing axis line\

or when both facing and polar angles are the same.*/ \

if (roboA==enviA) { enviA = roboA;} \

else if ((roboA==180)&&(enviA==0)&&(hNew>hOrg)) {enviA = 180;} \

else if ((roboA==180)&&(enviA==0)&&(hNew < hOrg)) {enviA = 0;} \

else if ((roboA==180)&&(enviA==0)&&(hNew == hOrg)) {enviA = 0;} \

else if ((roboA==0)&&(enviA==180)&&(hNew>hOrg)) {enviA = 0;} \

else if ((roboA==0)&&(enviA==180)&&(hNew < hOrg)) {enviA = 180;} \

else if ((roboA==0)&&(enviA==180)&&(hNew == hOrg)) {enviA = 0;} \

else if ((roboA==90)&&(enviA==270)&&(lNew>lOrg)) {enviA = 90;} \

else if ((roboA==90)&&(enviA==270)&&(lNew < lOrg)) {enviA = 270;} \

else if ((roboA==90)&&(enviA==270)&&(lNew == lOrg)) {enviA = 0;} \

else if ((roboA==270)&&(enviA==90)&&(lNew>lOrg)) {enviA = 270;} \

else if ((roboA==270)&&(enviA==90)&&(lNew < lOrg)) {enviA = 90;} \

else if ((roboA==270)&&(enviA==90)&&(lNew == lOrg)) {enviA = 0;} \

else if ((nFR==1)&&(nFU==1)) { enviA = 90 - fZ;} \

else if ((nFR==1)&&(nFU==0)) { enviA = 90 + fZ;} \

else if ((nFR==0)&&(nFU==0)) { enviA = 270 - fZ;} \

else if ((nFR==0)&&(nFU==1)) { enviA = 270 + fZ;} \

if (enviA>=360) {now.enviAng = 0;} \

else {now.enviAng = ((int)(2*enviA)) - ((int)enviA);} \

enviD = ((int)(2*enviD)) - ((int)enviD); \

\

if ((enviD>=200) && (now.doWrap==0)) { \

enviD = 200; \

now.doWrap=1; \

} \

now.enviDist = (int)enviD; \

} \

};
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Appendix B: Some example Promela code

Some sample code

Fig. 12 shows a Promela specification in which the learning rate is 1 and there
are 2 obstacles.

Note that exMoInLines.txt is an included file that contains a number of
C-like macros and inline functions. An inline function in Promela is similar
to a macro and is simply a segment of replacement text for a symbolic name
(which may have parameters). The body of the inline function is pasted into the
body of a proctype definition at each point that it is called. An inline function
can not return a value, but may change the value of any variable referred to
within the inline function. The purpose of each of the functions contained in
exMoInLines.txt is described in Table 4.

Note that we do not include details of all of these inline functions here,
although all of our code is available from the authors. Some of the functions
(e.g. MOVE FORWARD and RESPOND TO OB BY TURNING) require mathematical cal-
culations that are beyond the scope of Promela. Therefore, to perform these
calculations we use C code embedded within the Promela specification. To illus-
trate how this is achieved, we provide the definition of the MOVE FORWARD below,
and the associated embedded C code in Appendix B.

Returning to the outline Promela specification given in Fig. 12. After the
inclusion of the inline function file, a constant OBMAX, indicating the number
of obstacles, is declared. There follows a typedef definition, by which a type,
namely PolarCoord, consisting of two integers d (denoting distance from the
origin) and a (denoting angular distance – clockwise from North). Some c Track

(see Appendix B) and global variables are then defined.
The robot and init proctypes are then declared. The robot proctype

declaration contains a main do...od loop. The do...od loop contains two
choices which are repeated indefinitely. At each invocation, variable doWrap is
evaluated. This variable indicates whether the robot is close to the perimeter of
the environment. If the variable has value 1 then the robot will be relocated from
it’s current position to a position at an equal distance from the perimeter on
the other side of the environment. The new position is determined via the WRAP

function, see Table 4, and is described in more detail in the text of the paper.
Otherwise the SCAN APPROACHING OBS function checks to see if an obstacle has
hit any of the sensors and updates the value of variable sig. If sig has value 0
then no antenna sensor has been hit. A negative signal indicates that the left
antenna has been hit, and a positive signal indicates that the right antenna has
been hit. If the value is −6 or 6 then a proximal sensor has been hit. If neither
of the antennae has been hit (and there has been no direct hit) then the robot
will simply move forward in its current direction. If an antenna has been hit,
or there has been a head-on collision, the robot will respond accordingly before
moving forward in the new direction. In all cases, if the robot has reached the
perimeter of the environment, the doWrap variable is set to 1. The do..od loop
is then repeated.
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/*Explicit Model: Using Functions (Macros)*/

c_decl { #include <math.h> }

#include "exMoInLines.txt"

#define OBMAX 2

/*Define a polar coordinate to be a distance and angle from origin (pole)*/

/*(Pole: centre of the environment. Polar axis: vertical line directed north.)*/

typedef polarCoord {int d; int a};

/*Setting the C_Track variables*/

/*C_track statements keep track of our C globals.*/

c_track"&x" "sizeof(double)"

/*...etc*/

/*Array of obstacles in the fixed environment*/

polarCoord arrObs[OBMAX];

/*Robot is initialized in the centre of the environment*/

int roboAng, enviDist, enviAng, omegaD, sig, prevSig =0;

byte doWrap, headOn = 0;

proctype robot() {

do

:: (doWrap==0) -> d_step{ SCAN_APPROACHING_OBS();

RESPOND();

MOVE_ROBOT();

HEAD_ON();

};

:: (doWrap==1) -> d_step{ WRAP() };

od;

};

init {

d_step{

/* Set up the polar coordinates of the obstacles - fixed for model */

arrObs[0].d = 45; arrObs[0].a = 350;

arrObs[1].d = 154; arrObs[1].a = 83;

};

atomic{ run robot()};

};

Figure 12: Promela code for the Explicit model
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Name Purpose

SCAN APPROACHING OBS

scans the area in front of the robot for obsta-
cles. This area is restricted to distance and an-
gle at which an obstacle may interact with the
robot. Uses function GET OB REL TO ROBOT.

GET OB REL TO ROBOT
calculates the centre of an obstacle relative to
the centre of the robot.

RESPOND
updates the signal from the robot’s anten-
nas then calls the RESPOND TO OB BY TURNING

function.

RESPOND TO OB BY TURNING

turns the robot in response to the signals from
its antennas. If the signal indicates proximal
reaction then the LEARN function is called. If
the obstacle is touching the robot then the
CRASH function is called.

LEARN causes the robot to learn, i.e. increments ωd.

CRASH

evaluates the movement of the robot after it
has collided with an obstacle. If collision is
head-on then the HEAD ON function is called.
Otherwise a proximal turning response occurs.

HEAD ON

evaluates the movement the robot after it has
collided head-on with an obstacle. Eventually
results in a proximal turning response.

MOVE ROBOT
moves the robot forward, in the direction of its
current orientation. Calls the MOVE FORWARD

function.

MOVE FORWARD

calculates the new position of the robot after
moving forward. If the robot has reached the
perimeter of the environment, sets a variable
(doWrap) to 1.

WRAP

wraps the position of the robot to the other
side of the environment, using the point at
which the robot approaches the perimeter of
the environment and the orientation of the
robot as it approaches.

Table 4: Inline functions
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The init process contains the initialisation of the arrObs array of obstacles,
and the initiation of the robot process.

Learning occurs during the RESPOND TO OB BY TURNING function. For learn-
ing to occur there needs to be a temporal overlap between the proximal and
distal antenna signals. We test for this overlap using the prevSig variable. The
test works by checking if whenever there is a proximal signal (sig= ±6) there
was previously a distal signal (0 < |prevSig| < 6). If so, the learning weight ωd
is incremented by the learning rate λ, which is 1 in this model.

The WRAP function is defined in the paper, and illustrated in Fig. 8.

The Move Forward function

Full code for the MOVE FORWARD function is given in Appendix B. The MOVE FORWARD

function calculates the new position of the robot after one time step, given the
current direction of movement of the robot (relative to a ray pointing due North
from the centre of the robot), roboA, and the robot’s current position a (coor-
dinates enviD and enviA). The new position of the robot is b. The coordinates
of b, relative to a are ROBOMOVE and roboA, where ROBOMOVE is a constant, set
to 1 in this example. Fig. 13A illustrates this situation.

The coordinates of b, relative to the origin are then calculated. These are
represented by enviD′ and enviA′ in Fig. 13B. The coordinates of the robot are
updated to these values.

Appendix C: The abstract specification in Promela

We give outline code for the abstract specification in Fig. 14. As before we
include a file containing inline functions and C macros.
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Figure 13: (a) Movement of the robot after one time step. (b) New position
relative to origin.
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/*Abstract Model: Using Functions (Macros)*/

c_decl { #include <math.h> }

#include "absInlines.txt"

int obDist = 90;

int obAng = 11;

int omegaD = 0;

byte freeSpace = 1;

byte pLearn = 0;

active proctype moving()

{

do

:: ((obDist > 30) && (freeSpace == 0)) ->

d_step{RESPOND_TO_OB_BY_TURNING();};

d_step{MOVE_FORWARD();};

d_step{LEARN();};

:: ((obDist < 30) || (freeSpace == 1)) ->

atomic{GENERATE_NEW_OB();};

od;

}

Figure 14: Promela code for the Abstract model
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