
DIMENSIONAL INSPECTION PLANNING

FOR COORDINATE MEASURING MACHINES

by

Steven Nadav Spitz

A Dissertation Presented to the

FACULTY OF THE GRADUATE SCHOOL

UNIVERSITY OF SOUTHERN CALIFORNIA

In Partial Ful�llment of the

Requirements for the Degree

DOCTOR OF PHILOSOPHY

(Computer Science)

August 1999

Copyright 1999 Steven Nadav Spitz

To Diane, my parents, and my teachers.

ii

Acknowledgments

I am deeply grateful to Professor Aristides Requicha for his guidance and super-

vision during my studies. His extensive background in programmable automation

and keen mind were invaluable sources throughout this work. I would like to thank

Ari for always being accessible and for demonstrating a strong work ethic.

I would also like to thank Professor Ari Rappoport for introducing me to geo-

metric modeling and computer graphics. Ari believed in my abilities while I was an

undergraduate at Hebrew University, and encouraged me to pursue my studies.

Thanks to all past and present members of the programmable automation labo-

ratory at USC, and the members of the laboratory for molecular robotics next door.

Special thanks go to Cenk Gazen for sharing his passion for mathematics, comput-

ing, and playing tennis, and Kusum Shori for her invaluable help with administrative

duties.

Finally, I would like to thank all my family and friends for their encouragement

and support. My wife has been a constant source of love and inspiration. Thanks

for carrying me through this, Diane, and making sure that I have my weekends o�.

iii

Contents

ii

Acknowledgments iii

List Of Tables vii

List Of Figures viii

Abstract x

1 Introduction 1

1.1 Overview : 1
1.2 Related Work : 3
1.3 Contributions of this Dissertation : 7
1.4 Outline : 8

2 Accessibility Analysis 9

2.1 Introduction : 9
2.2 Related Work : 10

2.2.1 Accessibility Analysis : 10
2.2.2 Cubic Maps : 11

2.3 Tip Accessibility : 11
2.4 Straight Probes : 12

2.4.1 Half-line Probes : 13
2.4.2 Grown Half-lines : 15
2.4.3 Ram Accessibility : 17
2.4.4 Surface Accessibility : 20
2.4.5 Path Accessibility : 23

2.5 Bent Probes : 23
2.5.1 First Component Accessibility : : : : : : : : : : : : : : : : : : 25
2.5.2 Second Component Accessibility : : : : : : : : : : : : : : : : : 26
2.5.3 First Component Accessibility Revisited : : : : : : : : : : : : 28

2.6 Summary and Conclusions : 29

iv

3 High-Level Planning 33

3.1 Introduction : 33
3.2 Problem Statement : 34

3.2.1 Input (CMM and Toleranced Part) : : : : : : : : : : : : : : : 34
3.2.2 Measurement Graph and Measurements : : : : : : : : : : : : 34
3.2.3 Output (HLIP-tree) : 36

3.3 Planning by Constraint Satisfaction : : : : : : : : : : : : : : : : : : : 39
3.3.1 Variables (Measurements) : 39
3.3.2 Constraints (Approachability) : : : : : : : : : : : : : : : : : : 39
3.3.3 Existence of Solutions : 40
3.3.4 Constructing Plans from CSP Solutions : : : : : : : : : : : : : 40
3.3.5 Representing Domains : 41

3.4 Plan Quality and Same Constraints : : : : : : : : : : : : : : : : : : : 43
3.4.1 A Constraint Hierarchy for Plan E�ciency : : : : : : : : : : : 45
3.4.2 A Constraint Hierarchy for Plan Accuracy : : : : : : : : : : : 46
3.4.3 E�cient Plans of High Accuracy : : : : : : : : : : : : : : : : : 48

3.5 Hierarchical Constraint Satisfaction : : : : : : : : : : : : : : : : : : : 49
3.5.1 Clustering Up the Measurement Graph : : : : : : : : : : : : : 50
3.5.2 Measurement Sub-Graph Extraction : : : : : : : : : : : : : : 51
3.5.3 Main Constraint Satisfaction Algorithm : : : : : : : : : : : : 52
3.5.4 First Example : 54
3.5.5 Second Example : 57
3.5.6 Clustering Algorithm : 58

3.6 Closing Loose Ends : 60
3.6.1 Preferences for Setups, Probes and Orientations : : : : : : : : 60
3.6.2 Replacement of Datum Features by Mating Surfaces : : : : : : 63
3.6.3 Segmentation and Point Sampling : : : : : : : : : : : : : : : : 66

4 Planner Architecture 69

4.1 Main Algorithm : 69
4.1.1 Knowledge Base Initialization : : : : : : : : : : : : : : : : : : 70
4.1.2 Testing Existence of a Solution : : : : : : : : : : : : : : : : : 71
4.1.3 Plan Validation : 71
4.1.4 Incremental Knowledge Acquisition : : : : : : : : : : : : : : : 72

4.2 Speed-Ups : 73
4.2.1 Controller : 73
4.2.2 Caching Information : 75

4.3 Points of Failure : 75
4.3.1 Correct Termination : 76
4.3.2 Empty D0

1
Cone : 76

4.3.3 Fixtures and Other Obstacles : : : : : : : : : : : : : : : : : : 77
4.3.4 Discrete Direction Cones : 77
4.3.5 Numerical Precision : 79

v

4.4 Simulation and User Interaction : 79
4.5 Implementation and Results : 80

4.5.1 Toy Parts : 80
4.5.2 Real-World Parts : 83
4.5.3 Run-time Results : 89

4.6 Conclusions : 92

5 Path Planning 93

5.1 Introduction : 93
5.2 Related Work : 95

5.2.1 General Path Planning : 95
5.2.2 CMM Path Planning : 97

5.3 General Method : 99
5.3.1 Roadmap Construction : 100
5.3.2 Optimal Tour Extraction : 101
5.3.3 Example : 102

5.4 CMM Heuristics : 103
5.4.1 The Domain : 104
5.4.2 Local Planner : 105
5.4.3 Enhancement Step : 108

5.5 Implementation and Results : 108
5.6 The Localization Problem : 111
5.7 Conclusions : 113

6 Conclusions 115

6.1 Summary : 115
6.2 Contributions : 116
6.3 Limitations and Future Work : 117

Reference List 119

vi

List Of Tables

4.1 The input parts : 84
4.2 The number of probes and preferred setups : : : : : : : : : : : : : : : 84
4.3 The measurement graphs : 84
4.4 Run-time results (�xed head) : 90
4.5 Run-time results (orientable head) : 90
4.6 Accessibility analysis results (�xed head) : : : : : : : : : : : : : : : : 91
4.7 Accessibility analysis results (orientable head) : : : : : : : : : : : : : 91

5.1 Path planning run-time results : 111

vii

List Of Figures

1.1 A typical coordinate measuring machine : : : : : : : : : : : : : : : : 2
1.2 Proposed inspection planner : 2

2.1 The o�set point : 12
2.2 A straight probe and some possible abstractions : : : : : : : : : : : : 12
2.3 The GAC of point p with respect to obstacle X : : : : : : : : : : : : 13
2.4 Experimental results { GAC : 14
2.5 Growing a solid : 17
2.6 The GAC for the ram component of a straight probe : : : : : : : : : 18
2.7 The viewing volume for truncated half-lines (d;1) and (0; d) : : : : : 19
2.8 The variety of GACs for straight probe abstractions : : : : : : : : : : 21
2.9 Setup planning with a straight probe : : : : : : : : : : : : : : : : : : 23
2.10 A bent probe and a possible abstraction : : : : : : : : : : : : : : : : 24
2.11 Computing D

1
and a portion of D

2
: : : : : : : : : : : : : : : : : : : 25

2.12 A point that is accessible but not approachable by a bent probe : : : : 27
2.13 Computing D0

1
� D

1
that corresponds to ~v

2
: : : : : : : : : : : : : : 28

2.14 Experimental results { D
1
and D0

1
: 30

3.1 Example input to the inspection planner : : : : : : : : : : : : : : : : 35
3.2 The measurement graph : 35
3.3 The simpli�ed measurement graph : : : : : : : : : : : : : : : : : : : 36
3.4 A HLIP-tree : 37
3.5 A trivial HLIP-tree : 40
3.6 Representing the domain of a measurement : : : : : : : : : : : : : : : 41
3.7 The allowable values for the measurements in Figure 3.1 : : : : : : : 42
3.8 A HLIP-tree representing e�cient plans : : : : : : : : : : : : : : : : : 46
3.9 A HLIP-tree representing plans of high accuracy : : : : : : : : : : : : 47
3.10 A HLIP-tree representing e�cient plans of high accuracy : : : : : : : 49
3.11 The clustering operation : 49
3.12 Clustering up a measurement graph : : : : : : : : : : : : : : : : : : : 51
3.13 Sub-graphs and measurement sub-graphs : : : : : : : : : : : : : : : : 51
3.14 Measurement sub-graph extraction : : : : : : : : : : : : : : : : : : : 51
3.15 Probe selection depends on setup selection : : : : : : : : : : : : : : : 54
3.16 Example domains (CMM has a �xed head) : : : : : : : : : : : : : : : 54

viii

3.17 Clustering the setup orientations : 55
3.18 Clustering the probes : 55
3.19 The measurement sub-graph for each (s,p) con�guration : : : : : : : 56
3.20 The resulting HLIP-tree : 56
3.21 Clustering the setup orientations di�erently : : : : : : : : : : : : : : 57
3.22 Clustering (a) setup orientations, and (b) probes : : : : : : : : : : : : 58
3.23 Cluster selection based on a weight function : : : : : : : : : : : : : : 61
3.24 A single unstable setup vs. two preferred setups : : : : : : : : : : : : 62
3.25 Representing the domain of a datum that is placed on the table : : : 64
3.26 Valid probe orientations for inspecting the table : : : : : : : : : : : : 64
3.27 The measurement sub-graph for a setup that places a datum on the

table : 65
3.28 Segmentation examples : 66
3.29 The measurement graph with fpoints sampled from each face : : : : : 67

4.1 Domains of neighboring fpoints : 74
4.2 Problems with discrete direction cones : : : : : : : : : : : : : : : : : 77
4.3 Adding preferred directions : 78
4.4 A simulation snapshot : 80
4.5 HLIP for F2 (�xed head) : 82
4.6 HLIP for F3 (�xed head) : 82
4.7 HLIP for F3 (orientable head) : 82
4.8 HLIP for F4 (orientable head) : 82
4.9 HLIP for swiss-block (�xed head) : 83
4.10 HLIP for swiss-sphere (orientable head) : : : : : : : : : : : : : : : : : 83
4.11 HLIP for PolySqrTa (�xed head) : 85
4.12 HLIP for PolySqrTa (orientable head) : : : : : : : : : : : : : : : : : : 86
4.13 HLIP for cami2 (�xed head) : 87
4.14 HLIP for cami2 (orientable head) : 87
4.15 HLIP for nclosurT (�xed head) : 88
4.16 HLIP for nclosurT (orientable head) : : : : : : : : : : : : : : : : : : 88
4.17 Inspecting a face that is resting on the table : : : : : : : : : : : : : : 89

5.1 A multiple-goals path planning problem : : : : : : : : : : : : : : : : 94
5.2 A 2-D illustration of the path planning algorithm : : : : : : : : : : : 103
5.3 The approach/retract path : 104
5.4 Plans generated by the local planner : : : : : : : : : : : : : : : : : : 105
5.5 The swept ram and probe : 107
5.6 An example part (left) and a section (right) : : : : : : : : : : : : : : 109
5.7 Path planning with 30 measurement points : : : : : : : : : : : : : : : 110
5.8 Path planning with 100 measurement points : : : : : : : : : : : : : : 110

ix

Abstract

This thesis documents the development of a fully automated dimensional inspec-

tion planner for coordinate measuring machines (CMMs). CMMs are very precise

Cartesian robots equipped with tactile probes. Given a solid model of a manufac-

tured part, the goal of dimensional inspection is to determine if the part meets its

design speci�cations. The planner �rst generates a high-level plan that speci�es how

to setup the part on the CMM table, which probes to use and how to orient them,

and which measurements to perform. This plan is then expanded to include detailed

path plans and ultimately a program for driving the CMM.

The planner has been implemented and includes an accessibility analysis module,

a high-level planner, a plan validator (through collision detection), a simulator, and

a path planner. We tested the planner on real-world mechanical parts and it is

su�ciently fast for practical applications.

The accessibility analysis module provides a suite of algorithms to compute global

accessibility cones (GACs). GACs are sets of directions along which a probe can

contact given points on an object's surface, and are used by the planner to deter-

mine part setups and probe orientations. The GAC algorithms make use of widely

available computer graphics hardware, and are very e�cient and robust.

The high-level planner generates plans by solving a constraint satisfaction prob-

lem (CSP), where hierarchical constraints de�ne the requirements of good plans.

Plans are extracted using e�cient clustering techniques. High-level planning by

clustering and without backtracking is a novel approach.

The path planner �nds an e�cient and collision-free path for the CMM to in-

spect a set of points. We use a roadmap method to connect the points through

simple paths. Then, we �nd an e�cient tour of the roadmap by solving a travel-

ing salesperson problem. The path planner easily integrates CMM heuristics and is

probabilistically complete.

x

Chapter 1

Introduction

1.1 Overview

A Coordinate Measuring Machine (CMM) (Figure 1.1) is essentially a very precise

Cartesian robot equipped with a tactile probe, and used as a 3-D digitizer [5]. The

probe, under computer control, touches a sequence of points in the surface of a phys-

ical object to be measured, and the CMM produces a stream of x, y, z coordinates

of the contact points. The coordinate stream is interpreted by algorithms that sup-

port applications such as reverse engineering, quality control, and process control.

In quality and process control, the goal is to decide if a manufactured object meets

its design speci�cations. This task is called dimensional inspection, and amounts to

comparing the measurements obtained by a CMM with a solid model of the object.

The model de�nes not only the solid's nominal or ideal geometry, but also the tol-

erances or acceptable deviations from the ideal [3]. The inspection results are used

to accept or reject workpieces (quality control), and also to adjust the parameters

of the manufacturing processes (process control).

Currently, computer-controlled CMMs are programmed by tedious o�-line sim-

ulation or through teaching techniques [51]. This dissertation focuses on automatic

planning and programming of dimensional inspection tasks with CMMs. Given a

solid model of an object, including tolerances, and a speci�cation of the task (typ-

ically as a set of features to be inspected), the goal is to generate a high-level plan

for the task, and then to expand this plan into a complete program for driving the

CMM and inspecting the object (see Figure 1.2). The high-level plan speci�es how

to setup the part on the CMM table, which probes to use and how to orient them,

1

Figure 1.1: A typical coordinate measuring machine

CMM Model &
Part Model

CAD

High-Level Planner

Low-Level Planner

DMIS Program

Path Plan

Compiler

CMM

Part Setups
Probe Changes
Measurements

Sequence of Operations

Figure 1.2: Proposed inspection planner

2

and which surface features to measure with each setup, probe and probe orientation.

The �nal program contains speci�c probe paths and points to be contacted by the

probe tip, and is interpretable by the CMM controller through DMIS code [12, 77].

(DMIS is a national standard for CMM control.)

There are many challenges in building a fully automated inspection planner.

First, one must reason about the geometry of the product to determine which op-

erations can be performed. Then this information must be combined to form good

inspection plans. In this dissertation we describe the components of a planner and

show how they are combined into a system capable of dealing with real-world me-

chanical parts.

1.2 Related Work

Planning is a classic problem in arti�cial intelligence (AI) [68]. The focus of the

AI community has been largely on STRIPS-like domains or extensions of them [1].

These problems have discrete domains and are typically combinatorially hard, i.e.,

feasible plans are di�cult to �nd. On the other hand, in manufacturing operations

planning all the possible operations are precomputed and the problem is to �nd a

good plan as opposed to any plan [58]. Basically, the problem is partitioned into

two parts: (1) geometric reasoning to extract all possible operations, and (2) an

optimization problem to generate a good plan.

Plan merging [20] and planning by rewriting [2] are techniques that tackle a

generalization of the machining optimization problem. Both methods assume that

an initial low-quality plan can be generated cheaply. For example, every problem

in the blocks-world domain [1] can be solved trivially in two steps: �rst unstack all

the block onto the table and then build the goal towers from the bottom up. Once

an initial plan is generated, then graph rewriting techniques are used to (locally)

optimize the plan. The fact that the blocks-world problem can be solved trivially is

not a contradiction to the fact that the original problem is combinatorially hard. In

the original problem we did not have the meta-knowledge that is needed to generate

these plans.

We solve the inspection planning problem using a two step procedure that is sim-

ilar to manufacturing operations planning [58] | we compute all possible operations

3

and then construct a good plan through clustering techniques. One main di�erence

is that the machining domain becomes discrete at the process plan level (i.e., during

the second, or optimization step), whereas the inspection planning problem remains

continuous. Constructing good plans through clustering techniques can be viewed

as plan merging in continuous space.

Other research groups have designed inspection planning systems, which will be

reviewed in the remainder of this section. We will see that each system concentrates

on solving a di�erent aspect of the problem, but none has produced a fully automated

planner. For di�erent perspectives on the literature, the reader is referred to two

survey papers [16, 39].

One of the earliest publications was written by Hopp and Lau at the National

Bureau of Standards [26, 27]. It is not clear from the papers if the system was ever

implemented. Nevertheless they made an important contribution by carefully stating

the problem and pointing out that AI techniques may be a promising approach to

its solution. They de�ned a hierarchical planning scheme that has been used in

much of the following work. The hierarchy is composed of tolerances, features,

surfaces, probing points, paths, machine motions and servo commands. The scope

of inspection (i.e., which tolerances to inspect) and part setups are determined in the

tolerances level. Measurable surfaces are determined at the surface level, and help

in sensor planning. After nominal points are selected on the measurable surfaces, a

probe path is generated using collision avoidance algorithms. Finally, the plans are

translated into machine motions and then into servo commands.

The earliest implemented CMM planner was developed by ElMaraghy and Gu at

McMaster University [17]. Their system was a rule-based expert system for turned

parts, which are essentially 2-D. They were able to develop rules for simple acces-

sibility analysis. For example, a straight probe cannot access a hole that is below

another one of smaller diameter. They also developed rules that �lter out features

that should be inspected with non-CMM devices. The algorithm does not deal with

optimization issues and follows a simple logic: select a part setup, select a probe and

�nd all accessible features, repeat the process for the next available probe until all

features are inspected, otherwise change the setup and repeat for the features that

were not inspected yet. It is clear that the plan generated with this method can be

far from optimal. Furthermore the search may take a long time if the setups are

4

not selected intelligently. The papers do not specify how setups are selected. The

system also su�ers from a problem that is common to most expert systems: there

are always exceptions to the available rules, causing the system to fail or the set of

rules to become large and unmanageable.

Brown and Gyorog developed IPPEX [7, 8], which is an enhancement of the

EPS-1 project [62]. The system is knowledge-based and uses a hierarchical planning

strategy similar to that described by Hopp and Lau [26, 27]. Most of the e�ort in

this project involved the development of the system architecture and a convenient

user interface that allows manual intervention. Many of the speci�ed modules were

not implemented, thus inhibiting full automation.

APM is an inspection planning system developed by work funded by the De-

partment of Energy [34]. It is a partially automatic system that uses rule-based

methods to alleviate the burden involved in the planning. The rules were developed

from a series of interviews with inspection experts and are limited to a small num-

ber of tolerance types. The published description does not go into implementation

details. The authors conclude that \of great concern is the possibility that a suf-

�cient robust rule base cannot be built to handle the large variety of (inspection

planning) tasks...". This statement applies equally well to the expert systems de-

scribed previously. Nevertheless rule-based expert systems can play an important

role in speci�c inspection planning tasks, such as eliminating non-CMM operations

as in the McMaster system [17].

Another inspection planning system was developed by Merat and Radack at Case

Western Reserve University as part of a rapid design system [54, 55]. The planner

uses a feature-based CAD model of the part, and exploits design information in a

bottom-up fashion. Every feature is issued an inspection plan fragment (IPF) that

is used to �nd a list of suitable inspection points. These fragments are combined to

generate an inspection path for the CMM. The power of this approach stems from

the fact that IPFs are determined locally. Each feature has a macro that generates

the appropriate IPF based on feature parameters. The weakness, however, is that

global interaction between features may invalidate otherwise suitable IPFs. The

authors attempt to deal with interactions by generating IPFs surface by surface.

However, their papers do not describe how they detect interacting features and how

they generate inspection plans for them.

5

Spyridi and Requicha describe an inspection planning system developed at the

University of Southern California [75, 76, 72]. They use a two-level hierarchical

planning strategy. The high-level planner determines the part setups, the probes

and the probe orientations for the surface features to be inspected. The low-level

planner re�nes the plan by selecting measurement points and creating the CMM

path plan. Spyridi and Requicha focus on high-level planning and use a least-

commitment planning strategy and a problem-space architecture to search the space

of incomplete inspection plans. They take a novel approach in de�ning incomplete

inspection plans as special trees that enforce constraints, called same constraints, to

control the e�ciency and accuracy of the resulting plan. Operators on these trees

re�ne the inspection plan by performing computations at di�erent levels of cost.

These operators transform one tree to another and are used to search plan space.

Accessibility analysis plays a crucial role in the system. Global accessibility cones,

which consist of the set of directions from which an abstract straight probe can

inspect a surface feature, are computed by geometric algorithms. Part setups are

computed by clustering these direction cones to �nd a minimum number of setups

that su�ce to inspect the part. Features may be replaced in certain cases by the

CMM table or �xture surfaces. The system has several limitations. First, it is not

clear how same constraints can be applied automatically - the problem can quickly

become over constrained. Second, the system relies on Minkowski operations for

accessibility analysis. These require polyhedral approximations and tend to be slow.

Third, the implemented system's control structure involved human intervention, and

could only be tested with very simple parts. The work reported in this thesis is based

on Spyridi and Requicha's planner, but extends it non-trivially and uses much more

e�cient algorithms.

Gu and Chan developed an inspection planner at the University of Saskatchewan,

Saskatoon [23]. Their system is divided into a high-level inspection process planner

(IPRP) and a low-level inspection path planner (IPAP). The IPRP uses a �xed hi-

erarchy of tasks: initial plan generation of possible part setups, accessibility analysis

of features by speci�c probes in speci�c setups, selection of part setup and probes,

and sequencing of features to be inspected. Their system seems to be limited to

straight probes and a small number of possible setups - the 6 major axes of the

6

part's coordinate system. These restrictions enable the system to search over the

range of setups and probes.

Other systems have been developed that concentrate primarily on the low-level

path planning problem. Probably the most noticeable is the hierarchical planner

at Ohio State University [41, 52, 87]. The published descriptions give very little

detail on how setups and probes are selected. They concentrate on the details of

path panning for inspection of free-form surfaces. Work related to path planning is

reviewed in Chapter 5.

It should be noted that computer vision inspection systems have been developing

in parallel to CMMs [61, 50, 85, 79]. Accessibility analysis for straight probes is very

similar to the visibility problem [59], which is crucial for visual inspection. Work

related to accessibility is covered in Chapter 2.

1.3 Contributions of this Dissertation

In this work we develop a completely automated inspection planner. The number of

assumptions regarding the toleranced product are kept to a minimum. For example,

the planner can handle parts with free-form surfaces. The only assumption is that

the part surface can be approximated by a mesh, which is a standard facility in

most modern geometric modelers [70]. We make no assumptions on the size of the

product or the corresponding CMM. Currently, our implementation is limited to

straight and bent probes (i.e., CMMs with �xed head or orientable heads), but the

general architecture can handle other probes, e.g., star probes.

To the best of our knowledge, this is the �rst fully automated inspection planner.

The planner generates the part setups, selects the probes to be used, decides on

the probes' orientations, selects measurement points and computes a path plan.

Other planners make simplifying assumptions, such as a prede�ned set of setups.

Our planner allows the input of preferred setups, which can be used to guide the

planner, but are not necessary for the planner to work. These preferred setups

can be generated automatically through external agents, such as a stability analysis

module.

We provide a simulator that is used to visualize the inspection plan and edit

it if necessary before re-planning. We are aware of the limitations of a completely

7

automatic system and allow editing tools, so that the operator can guide the planner

if the automatically computed plans are judged unsatisfactory. The planner comes

with a plan validator (collision detector) to ensure that the generated plans are

correct.

We make a clear formulation of high-level inspection plans as solutions to a con-

straint satisfaction problem (CSP), and describe a clustering method for extracting

plans of high quality. A plan is valid if all the measurement points are approachable.

We approximate approachability through accessibility analysis and provide e�cient

algorithms to compute accessibility for CMM probes. (Approachability and acces-

sibility are de�ned formally in Chapter 2.) The algorithms are simple and e�cient,

and exploit standard computer graphics hardware.

Finally, we provide a general framework for solving the path planning problem.

The idea is to build a roadmap of feasible paths between every pair of measurement

points, and then extract a short path by solving the traveling salesman problem

on this roadmap. The path planner exploits the typically dense distribution of

measurement points, which implies that it is easy to construct a connected roadmap.

1.4 Outline

In Chapter 2 we introduce accessibility analysis as a tool for computing tentative

setup and probe orientations. We provide practical algorithms that make use of

standard computer graphics hardware. Chapter 3 formulates the high-level inspec-

tion planning problem as a constraint satisfaction problem. This chapter concludes

with an algorithm that generates high-level inspection plans of good quality as-

suming that the domains of the variables in the CSP are known. However, this

knowledge is typically incomplete, because it involves expensive geometric compu-

tations. Therefore, Chapter 4 describes the planner architecture used to generate

plans with incomplete knowledge. A prototype implementation and experimental

result are described. Finally, Chapter 5 discusses the path planning module, which

re�nes a high-level plan into a low-level plan. We conclude the dissertation with a

discussion of contributions and future work.

8

Chapter 2

Accessibility Analysis

2.1 Introduction

Reasoning about space is crucial for planning and programming of tasks executed by

robots and other computer-controlled machinery. Accessibility analysis is a spatial

reasoning activity that seeks to determine the directions along which a tool or probe

can contact a given portion of a solid object's surface. For concreteness, this chap-

ter discusses accessibility in the context of automatic inspection with Coordinate

Measuring Machines (CMMs), but the concepts and algorithms are applicable to

many other problems such as tool planning for assembly [82, 83], sensor placement

for vision [50, 79], numerically controlled machining [10, 25], and so on.

Exact and complete algorithms for accessibility analysis in the domain of curved

objects are either unknown or impractically slow. We present in this chapter several

accessibility algorithms that make a variety of approximations and trade speed of ex-

ecution for accuracy or correctness. Some of the approximations are pessimistic, i.e.,

they may miss correct solutions, typically as a result of discretizations. Other ap-

proximations are optimistic and may sometimes produce incorrect solutions. (These

will eventually be rejected when the plan is tested.) The algorithms described here

have been implemented and tested on real-world mechanical parts, and have been

incorporated in our inspection planner (see following chapters).

The remainder of the chapter is organized as follows. First, related work is briey

reviewed. Next, we discuss accessibility for the tips of probes. Then accessibility for

the case in which probes are straight, i.e., aligned with the CMM's ram. Then we

9

consider bent probes, which consist of two non-aligned components. A �nal section

summarizes the chapter and draws conclusions.

2.2 Related Work

2.2.1 Accessibility Analysis

Spyridi and Requicha introduced the notion of accessibility analysis as a tool for high-

level inspection planning for CMMs [72, 73, 74]. Their implementation computed

exact global accessibility cones (GACs, de�ned below) for planar faces of polyhedral

parts using Minkowski operations. Sets of directions, called direction cones, were

represented as 2-D boundaries on the unit sphere and GACs were computed by

projecting elements of the Minkowski sum onto the sphere. Their algorithm proved

to be impractical for complex parts with curved surfaces.

Other researchers computed GACs at single points, thus eliminating the need of

computing Minkowski sums. This is the approach that we take as well. Lim and

Menq used a ray casting technique with an emphasis on parts with free-form sur-

faces [41]. Limaiem and ElMaraghy developed a method to compute GACs that used

standard operations on solids [42, 43]. A similar technique was independently devel-

oped by Jackman and Park [28]. Medeiros et al. use visibility maps, which provide

a representation for non-homogeneous direction cones [36, 89, 90]. All of the above

methods are too slow for practical inspection planning, where many accessibility

cones must be computed for complex objects.

Accessibility analysis is related to work in other �elds. The visibility problem is a

generalization of the global accessibility problem, because directions of accessibility

correspond to points of visibility at in�nity [59, 60, 15]. Sensor placement in visual

inspection systems is related to the problem of straight probe accessibility [50, 78, 79].

Other �elds which require accessibility analysis for high-level task planning include

assembly planning [82, 83] and numerically-controlled machining [10, 25, 30, 80, 84].

We are not aware of previous work involving accessibility analysis of bent probes

as introduced in Section 2.5. The theoretical foundations for bent probe accessibility

appear in [72], and a rigorous mathematical analysis of accessibility in [71].

10

2.2.2 Cubic Maps

We use a cubic mapping of the unit sphere to represent direction cones, i.e., subsets

of the unit sphere. This technique has been used in other areas of computer graph-

ics, such as radiosity, shadow computations and reections. This is not surprising,

because global accessibility is strongly related to global visibility, as noted above.

Environment (or reection) maps ([19], pg. 758-759) are a generalization of the

direction-cone map presented here. The environment map holds color images, while

the direction-cone map holds bitmaps. The light-bu�er ([19], pg. 783) is another

cubic map that is used to partition the space visible to a light source. The hemi-cube

structure ([19], pg. 795-799) is used to determine visibility between surface patches

and calculate their contribution to the radiosity equation. Unlike our direction-

cone mapping, the hemi-cube is not aligned with the world coordinate system. It is

aligned with each patch, and therefore is not suitable for Boolean operations between

direction cones.

Shadow maps ([19], pg. 752) are depth images of a scene as viewed from a light

source. These are used to compute the space that is visible to a light source in

order to apply global shading. This is not a cubic map, but the technique used in

the two-pass z-bu�er shading algorithm ([19], pg. 752) is similar to our method of

extracting the �rst-component directions of a bent probe (Section 2.5.3).

2.3 Tip Accessibility

A CMM has a touch-trigger (or tactile) probe with a spherical tip. We de�ne the

origin of the probe to be the center of the tip. The CMM measures the spatial

coordinates of the tip's center when the tip comes in contact with an obstacle. We

say that a point p is accessible to a tip with respect to an obstacle X if the tip

does not penetrate X when its origin is placed at p. With CMMs, the obstacle X

is normally the workpiece to be inspected. (Fixturing devices and other obstacles

are ignored here, because they are not relevant to accessibility analysis in the early

stages of inspection planning.)

Testing tip accessibility is a simple matter of placing the tip at p and checking

for collisions with the obstacle. Notice that if p is the point to be measured on the

11

P’

X

P

Figure 2.1: The o�set point

(a) (b) (c)

ram

tip

stylus

Figure 2.2: A straight probe and some possible abstractions

surface of the workpiece, then placing the center of the tip at p will cause the probe

to penetrate the part. Instead, we perform accessibility analysis for the o�set point

p0 = p+ r~n (see Figure 2.1), where r is the radius of the tip and ~n is the normal to

the surface at p. (We assume that p is not singular, because it is not wise to measure

a singular point with a tactile probe.) For the remaining of this chapter, we ignore

these issues and assume that p is the o�set point to be accessed by the center of the

tip.

We assume that the CMM has a small number of probes, therefore testing the

accessibility of each tip at each point is reasonable. See [56] for an alternative

approach.

2.4 Straight Probes

A straight probe (Figure 2.2a) is attached to the CMM ram (Figure 1.1), which

is much longer than the probe and aligned with its axis. In the remainder of this

12

X

GAC

P

Figure 2.3: The GAC of point p with respect to obstacle X

dissertation we refer to the whole ram/probe assembly as a straight probe and assume

in this case that the CMM has a �xed head, such as the Renishaw PH6 [64]. In

general, the straight probe can be any tool, not necessarily a CMM probe, that

can be considered symmetric about an axis for the purpose of accessibility analysis.

Examples of such tools are drills, screw drivers and laser range �nders.

On the axis of the tool we de�ne a point that is the origin of the tool. Accessibility

analysis for a point p with respect to an obstacle X seeks to determine the directions

of the tool axis such that the tool does not penetrate X when the tool's origin is

placed at p.

In this section we investigate the accessibility of a point by several straight probe

abstractions. Then we generalize to the accessibility of surfaces and briey outline

how to apply the results to setup planning for dimensional inspection with CMMs.

2.4.1 Half-line Probes

Consider a straight probe abstracted by a half-line that is the main axis of the probe

(see Figure 2.2b). This is an optimistic abstraction of the probe, because it ignores

the fact that the probe has volume, but it captures the fact that the CMM ram

is typically very long. Furthermore, it is simplistic enough to give rise to e�cient

algorithms.

We say that a point p in the presence of obstacle X is accessible if the endpoint

of a half-line can be placed at p while not penetrating X. The direction of such a

half-line is called an accessible direction. The set of all accessible directions is called

the global accessibility cone (GAC) of point p with respect to obstacle X, and is

denoted by GAC(X; fpg).
Figure 2.3 illustrates the global accessibility cone of a point p with respect to an

obstacle X. GAC(X; fpg) is the highlighted portion of the unit sphere centered at p.

13

(a) (b)

Figure 2.4: Experimental results { GAC

It is easy to verify that the GAC complement is the projection of X onto the sphere.

This forms the basis for our algorithm to compute the GAC of a point: project the

obstacle onto a sphere centered at p and take the complement.

The global accessibility cone is computed in the same fashion as environment

maps [19]. The obstacle (i.e., environment) is projected onto the faces of a cube

centered at p. The cube is aligned with the world coordinate system, and each face

is a bitmap. The algorithm �rst sets all the bits of the cube to 1, then renders the

obstacle as 0s in order to delete the projected obstacle from the direction cone. The

remaining directions are the desired complement set that form the GAC.

The cubic map is used as a non-uniform partition of the unit sphere. There is

a one-to-one mapping between directions and unit vectors in 3-D space, therefore

the cubic map is a discrete representation for a set of directions or a direction cone.

The mapping between a direction and a bit on the cube involves selecting the ap-

propriate face of the cube, projecting the unit vector (i.e., direction) onto the face,

and normalizing the result to bitmap coordinates. The direction falls on the face of

the cube that lies on the axis of the largest coordinate of the (x; y; z) unit vector,

with the sign of this coordinate used to distinguish between the two opposing faces.

14

Figure 2.4a shows the result of running our algorithm on a real-world mechanical

part, which was modeled in ACIS [70]. The GAC is projected onto a sphere that is

centered about the point of interest (in the center of the �gure). As a preprocessing

step, the ACIS faceter produced the mesh that was used to render the mechanical

part. This mesh is a collection of convex polygons that were not optimized for

rendering other than being placed in an OpenGL display list. The mechanical part

contains 103 faces (including curved surfaces) and the mesh contains 1980 polygons.

The code executed on a Sun ULTRA 1 with Creator 3D graphics hardware, Solaris

2.1 and 128 MB of memory. Direction cones were represented by six 32�32 bitmaps,

for a total of 6144 directions at a cost of 768 bytes. The running time for the

algorithm was 0.08 seconds. Not surprisingly, most of the load was on the graphics

hardware.

The complexity of the algorithm described above depends solely on the time

to render the obstacles. The obstacle X may be rendered many times to compute

GACs at di�erent points, so it is wise to optimize the mesh used to display X. For

example, one can use triangle strips [69].

2.4.2 Grown Half-lines

In the previous section we abstracted a straight probe by a half-line. Here we

generalize this to a half-line that is grown by a radius r (see Figure 2.2c). An object

grown by a radius r includes all the points that are at a distance no greater than

r from another point in the object [67]. It also equals the Minkowski sum of the

object and a ball of radius r. Thus, a grown half-line is a semi-in�nite cylinder

with a hemi-sphere over the base. This leads to a straight probe abstraction that

can serve as an envelope for the volume of a probe, and therefore is a pessimistic

approximation.

It is easy to verify that a half-line grown by a radius r penetrates an obstacle

X i� the non-grown half-line penetrates X " r, where X " r denotes X grown by

r. (This is a well known result in robot motion planning [37].) In other words,

GAC(X " r; fpg) describes the directions from which a point p is accessible by a

half-line grown by r.

15

A straightforward algorithm to compute GAC(X " r; fpg) is to compute the

grown obstacle X and to apply the algorithm presented previously in Section 2.4.1.

Unfortunately, computing the solid model of a grown object is an expensive and

non-trivial task that is prone to precision errors [67] and produces curved objects

even when the input is polyhedral. If the accessibility algorithm is to be applied

many times and for a small set of given radii, then it may be wise to compute the

grown solids as a preprocessing step.

We choose an alternative approach in which we implicitly compute the grown

obstacle, X " r, as it is rendered. The main observation is that only the silhouette

of the obstacle is needed as it is projected onto the cubic map. Therefore, we render

a superset of the boundary of the grown object that is also a subset of the grown

object itself. The naive approach is to render each vertex of the mesh as a ball

of radius r, each edge as a cylinder of radius r, and to o�set each polygon by a

distance r along the normal. This algorithm is correct and can be optimized by not

rendering concave edges, which will not be part of the grown obstacle's boundary.

A more drastic optimization can be applied, if the mesh is partitioned into face

sets, each corresponding to a face of the original solid model. Then a facial mesh is

represented by an array of nodes and an array of polygons. Each node corresponds

to a point on the face and the normal to the face at this point. Each polygon is

represented as a list of nodes. To o�set a facial mesh, �rst we o�set the nodes by

translating each point along its normal, and then we render the polygons at these

o�set nodes. The gain is that the edges and vertices that are internal to a facial

mesh do not need to be rendered as grown entities. The only vertices and edges of

the mesh that are rendered are those which fall on actual edges of the solid model

(see Figure 2.5).

The spheres and cylinders are rendered as quad strips [69] of very low resolution

to maximize rendering speed. The cylinders contain 6 faces with no tops or bottoms,

because they are \capped" by spheres on either end. The spheres are composed of 3

stacks of 6 slices each (latitude and longitude, respectively). Our results show that

these approximations are adequate for practical problems. Finer approximations

can be used for more accurate results. The running time to compute the GAC of

Figure 2.4b is 1.3 seconds.

16

(a) mesh (b) grown nodes (c) grown edges

(d) nodes and edges (e) convex edges (f) o�set faces

Figure 2.5: Growing a solid

2.4.3 Ram Accessibility

The straight probe abstractions introduced so far have constant thickness. In

practice, the CMM ram is considerably fatter than the probe stylus. An improved

probe abstraction will take this fact into account as shown in Figure 2.2a. In this

case, the probe is modeled by two components, two dilated half-lines that are aligned

with each other, one to model the ram and the other to model the stylus. Notice

that in order for such a probe to access a point both the ram and the stylus must be

able to access it. In other words, the GAC of such an abstraction is the intersection

of the GACs of each component of the probe. In this section we focus on the ram

component.

We model the ram by a truncated half-line (d;1) that is grown by a radius r

(Figure 2.6a). A truncated half-line (d;1) includes all the points on the half-line at

a distance no less than d from the origin. Using similar arguments as in the previous

sections, the GAC for a ram with respect to an obstacle X is identical to the GAC

of the ram shrunken by r with respect to X " r. The shrunken ram is precisely the

17

X
P

ram

d

r

P

GAC

P

(a) (b) (c)

Figure 2.6: The GAC for the ram component of a straight probe

truncated half-line (d;1) (Figure 2.6b). We already know how to render X " r,
therefore we reduced the problem to computing the GAC for a truncated half-line.

It is clear from Figure 2.6b that the GAC of a truncated half-line (d;1) is the

GAC of a half-line but with a di�erent obstacle. The idea is to remove the irrelevant

region from the obstacle. A truncated half-line (d;1) positioned at p cannot collide

with any portion of the obstacle that is at a distance closer than d from p. In other

words, the ball of radius d that is centered at p can be removed from the obstacle.

The GAC with respect to the new obstacle corresponds to the GAC of the truncated

half-line (Figure 2.6c).

Calculating the GAC of a truncated half-line (d;1) then entails subtracting a

ball centered at p from the obstacle and using our algorithm for regular GACs. How-

ever, computing the solid di�erence between an obstacle and a ball is an expensive

computation that we wish to avoid. In addition, we do not have a solid model of the

grown obstacle itself (see previous section). Consequently, we choose an alternative

approach in which we use clipping operations to approximate the solid di�erence.

The clipping is performed during the projection of the obstacle within the GAC al-

gorithm, by introducing a read-only depth-bu�er that is initialized with a spherical

surface of radius d. This is the portion of the sphere that is visible through each face

of the cubic mapping (the depth values are symmetrical for each face). If the depth-

bu�er is enabled with a \greater-than" comparison, then the clipping operation will

approximate the subtraction of a ball of radius d, as needed.

Notice that, in general, the clipping operation is an operation between surfaces

and not a Boolean operation between solids [66]. In our case, we position the far

18

d

fn d
Z Z

d=frn

r

P P

Figure 2.7: The viewing volume for truncated half-lines (d;1) and (0; d)

clipping plane beyond the obstacle. This ensures that the projection of the solid

di�erence is correct, because a truncated half-line (d;1) positioned at p intersects

X i� it intersects the boundary of X. Therefore, the point of intersection is rendered

along with the boundary of X and it is not clipped, because it is within the viewing

frustum and not closer than d to the viewer.

The quality of the approximation depends on the depth-bu�er precision. To

maximize the precision of the depth-bu�er, the distance between the far clipping

plane and the near clipping plane should be minimized. Therefore, the far clipping

plane should be a tight bound on the obstacle | we use the diameter of the bounding

box as a reasonable bound. The near clipping plane is set to a distance of d=
p
3, so

that the near face of the viewing frustum is contained in the ball of radius d.

Figure 2.7 shows the viewing volume through a single face of a cube centered

at p. The size of the cube is irrelevant, since the result is projected onto the face.

The near and far clipping planes are z = n and z = f , respectively. The viewing

volume is bound by the clipping planes and is shaded in the �gure. The lighter

shade corresponds to the volume clipped by the depth-bu�er, which is initialized to

be the sphere of radius d centered at p. The left hand side of the �gure is the desired

viewing volume for a truncated half-line (d;1). The far clipping plane is assumed

to be beyond the obstacle. It is easy to see that the near clipping plane must satisfy

n = d=
p
3.

19

The complexity of the algorithm is identical to the regular GAC algorithm with

the addition of depth-bu�er comparisons and the overhead of initializing the depth

bu�er with a spherical surface. The depth-bu�er comparisons are performed in

hardware and should have negligible run-time overhead. Notice that the depth-

bu�er is read-only, thus it needs to be initialized only once. In addition, the same

depth bu�er may be used for all probes that have a stylus of length d. Therefore,

the cost of initializing the depth-bu�er may be amortized over many direction cones.

Our results show that the cost of computing the GAC for a truncated half-line

is identical to the cost of computing a regular GAC. The cost of initializing the

depth-bu�er is negligible, because the bu�er is relatively small (32� 32 bits).

To review, Figure 2.8 illustrates the GACs computed with our system for a simple

\L" shaped obstacle. The left column shows the GACs for the original obstacle, and

the right column shows the GACs with respect to the obstacle grown by a constant

radius. Figure 2.8(c') shows the GAC for a truncated half-line (d;1) with respect

to a grown obstacle, which is precisely the GAC for a ram. The last row of this

�gure illustrates the GACs for truncated half-lines (0; d), which will be introduced

in Section 2.5.1.

To aid visualization, the 3-D cones have been rendered with transparent material.

For example, the GAC in Figure 2.8b has 3 shades of gray. The lightest shade of

gray is on the bottom of the cone. This portion includes the directions that go out

of the page and downward. The top potion of the cone is darker, because it includes

both outward directions and inward directions. In other words, two surfaces overlap.

They are both rendered, because the cone is transparent. The intermediate shade

of gray (in the nearly rectangular region) only includes directions that go into the

page and away from the protrusion on the obstacle.

2.4.4 Surface Accessibility

Up to this point we have discussed the accessibility of a single point. Now, we

extend the notion of accessibility to arbitrary regions of the workspace, which we

call features. For dimensional inspection, these are normally surface features on the

boundary of a workpiece. The goal is to �nd the set of directions from which a

straight probe can access all the points of a feature.

20

regular obstacle grown obstacle

(a) (a')

h
al
f-
li
n
e

(b) (b')

tr
u
n
ca
te
d
(d
;1
)

(c) (c')

tr
u
n
ca
te
d
(0
;d
)

(d) (d')

Figure 2.8: The variety of GACs for straight probe abstractions

21

The global accessibility cone of a feature F with respect to an obstacle X is

denoted by GAC(X;F), and corresponds to the directions from which all the points

in F can be accessed by a half-line. Clearly, this cone is the intersection of the GACs

for all the points in F . Notice that GAC(X; fpg) is a special case | the GAC of a

feature containing a single point p.

Exact GACs for planar surfaces and polyhedral obstacles can be computed using

Minkowski operations [71]. Algorithms for Minkowski operations are expensive, do

not scale well, and are not available for curved surfaces. We choose an alternative

approach in which we sample a few points from F and compute the intersection

of the GACs at these points. This approximation is especially suitable for CMMs,

which are normally restricted to inspect discrete points. In addition, computing the

intersection of direction cones represented by cubic maps is an e�cient and trivial

operation on bitmaps. The approximation is optimistic because it is a lower bound

on the intersection of the in�nite number of GACs for all the points of the feature.

Notice that the direction of the straight probe corresponds to the direction of

the CMM ram with respect to the workpiece. Therefore, we can use this direction

to represent the orientation of the workpiece setup on the CMM table. Computing

the GAC for a feature translates to �nding the set of setup orientations from which

the entire feature can be inspected. If the GAC of a feature is empty, then this

feature cannot be inspected in a single setup orientation. (In this case the feature

is segmented into sub-features or a di�erent probe is used.)

For dimensional inspection planning, computing the GACs for all surface features

that need to be inspected may be the �rst step of a high-level planner. Clustering

these GACs can produce a minimumnumber of workpiece setup orientations. This is

a very important characteristic, since each setup change is usually a time-consuming

manual operation. There are other considerations for setup planning, which will be

covered in Chapter 3.

Figure 2.9 shows the usefulness of accessibility analysis for spatial reasoning.

In this example, we computed the GACs of all the faces of the workpiece. The

cones where partitioned into three clusters, each cluster composed of cones whose

intersection is not empty. A direction was chosen from each cluster. The result is

that each face can be accessed from at least one of these directions. The directions

22

Figure 2.9: Setup planning with a straight probe

of the probes and the faces on the part are color coordinated (or in di�erent shades

of gray) to illustrate which faces a probe can access.

2.4.5 Path Accessibility

When the CMM inspects a point, the probe normally traverses a short path, which

we call an approach/retract path. This path is along a line segment that is normal

to the point of contact and is proportional in length to the size of the tip. The

probe will approach the point in a slow motion along this path and then retract.

The idea is to minimize crashes at high speed and to maximize the accuracy of the

measurement.

The goal is to �nd the set of directions from which a probe can access all the

points along the approach/retract path, so that the entire path (minus the endpoint)

is collision free. Notice that the path can be viewed as a feature in the system, thus all

the arguments from the previous section hold true. Since the approach/retract path

is typically short relative to the size of the workpiece, it is reasonable to approximate

this path by its two end points. Again, this is an optimistic approximation.

2.5 Bent Probes

Orientable probes, such as the Renishaw PH9, are more expensive than straight

probes, but much more versatile, and are used often in CMM inspection. The probe

can be oriented in digital steps under computer control. We consider the whole

ram/probe assembly as forming a bent probe, which is not necessarily aligned with

23

ram

tip

stylus

(b)(a)

rotary joint

tip

2nd component

1st component
d

Figure 2.10: A bent probe and a possible abstraction

the ram. A bent probe is a linked chain of two components that are connected at a

2 degrees-of-freedom rotary joint.

We model the probe by a 2-component abstraction as in Figure 2.10b. The �rst

component is a truncated half-line (0; d) straight probe abstraction, which includes

all the points of a half-line at a distance no greater than d from the origin. The

center of the tip of the bent probe coincides with the tip of the �rst component.

The second component is a half-line or straight probe abstraction with endpoint at

a distance d along the axis of the �rst component. This endpoint corresponds to the

probe's rotary joint.

For the rest of this section we assume that a bent probe has no volume, i.e., it is

modeled by (truncated) half-lines. Similar generalizations, such as grown half-lines,

can be introduced very easily in the manner of Section 2.4.2. Additionally, one can

generalize the bent probe concept to more than 2 components, but we will not do

so here.

The length of the �rst component, d, is a constant. Therefore, we can describe

the con�guration of a bent probe by using a pair of directions | one for each

component of the probe. The result is that a GAC for a bent probe is a 4-D cone.

Fortunately, applications normally need the second component directions rather than

the entire 4-D cone. For example, as with straight probes, the directions of the

second component are used to �nd a minimal number of orientations for setting up

the workpiece on the machine table.

The remainder of this section is outlined as follows: Section 2.5.1 introduces the

GAC for the �rst component of a bent probe, Section 2.5.2 shows how to compute

24

X

0
d

dD1

0

X

q

0

F
GAC

(a) (b) (c)

Figure 2.11: Computing D
1
and a portion of D

2

the GAC for the second component of a bent probe, and Section 2.5.3 shows how to

compute the �rst component accessibility given a direction of the second component.

2.5.1 First Component Accessibility

The �rst component of a bent probe is a truncated half-line (0; d). This is the

complement of the ram abstraction that was introduced in Section 2.4.3. Assume

that the point of interest is p and the obstacle is X. Then, using arguments similar

to those of Section 2.4.3, the GAC for the �rst component is a regular GAC after

the irrelevant parts of the obstacle have been removed. In this case the obstacle is

intersected with the ball of radius d centered at p (see Figure 2.11a-b). We denote

the GAC of the �rst component of a bent probe by D
1
(X; fpg). It is assumed that

d is known, therefore, for clarity, it is omitted from D
1
.

Notice that D
1
is exactly the set of accessible directions for the �rst component

of a bent probe when the second component is ignored. This means that given a

direction in D
1
(X; fpg), then a truncated half-line (0; d) that is oriented along this

direction and with an endpoint at p will not penetrate X. However, D
1
is only

an upper bound on the accessible directions of the �rst component when the whole

probe is taken into account, because it is not guaranteed that an accessible second

component direction exists for every direction selected from D
1
.

The algorithm to compute D
1
uses a spherical surface in the depth bu�er to

approximate the intersection of the obstacle with a ball of radius d. This is similar

to the algorithm used to compute the ram GAC for a truncated half-line (d;1)

25

but now the depth-bu�er acts as a far clipping surface (see right hand side of Fig-

ure 2.7). If the depth-bu�er is enabled with a \less-than" comparison, then the

clipping operation will approximate the intersection of a ball, as needed.

Again, the quality of the approximation depends on the depth-bu�er precision,

therefore the distance between the far clipping plane and the near clipping plane

should be minimized. We assume that the studied point is accessible to the probe's

tip (see Section 2.3). Therefore it must be at a distance of at least r from the

obstacle, where r is the radius of the tip. The near clipping plane is then set to a

distance of r=
p
3, which is the furthest it can be and still have the viewing volume

include all the points that are outside of the tip (see right hand side of Figure 2.7).

The far clipping plane is placed at a distance d, which is a tight bound on the ball

of radius d.

The clipping operation is only an approximation of the Boolean intersection

between the obstacle and the ball. However, since the near clipping plane does

not intersect the obstacle (based on the assumption that the tip does not penetrate

the obstacle), then we argue that the projection of the clipped obstacle is correct.

Section 2.4.3 gives a similar argument using the far clipping plane.

The complexity of computing D
1
, i.e., the GAC of a truncated half-line (0; d),

is identical to the complexity of computing the GAC of a truncated probe (d;1),

which is the abstraction of a shrunken ram (see Section 2.4.3). Our experiments

con�rm this fact and show that the cost of computing D
1
is nearly identical to the

cost of computing a regular GAC. Figure 2.8d illustrates the D
1
cone with respect to

a simple obstacle. Notice that the GAC in Figure 2.8b is the intersection of the cones

in Figure 2.8c and Figure 2.8d. This illustrates the fact that an accessible direction

of the probe as a whole must be a common accessible direction of its components.

2.5.2 Second Component Accessibility

When the �rst component takes every possible orientation in D
1
, the articulation

point between the �rst and second components traverses a locus which is the projec-

tion of D
1
on a sphere of radius d that is centered at p. Without loss of generality

we assume that p is the origin, and we denote this locus by dD
1
, since it is also the

result of scaling D
1
by a factor of d.

26

P

Figure 2.12: A point that is accessible but not approachable by a bent probe

If we succeed in placing the second component such that the articulation point

lies in dD
1
, it is clear that the �rst component can be placed with its tip at the

origin without collisions. In other words, if the second component can access some

point of dD
1
, then the entire probe can access the origin. The converse is also true

and therefore the origin is accessible i� the second component accesses some point

of dD
1
(see Figure 2.11).

The set of directions for which the second component can access at least one

point of dD
1
is called the weak GAC of the feature dD

1
. In general, the weak

global accessibility cone of a feature F with respect to an obstacle X, is denoted by

WGAC(X;F), and corresponds to the directions from which at least one point in

F can be accessed by a half-line (notice the analogy to weak visibility [59]). While

the GAC of a feature is the intersection of the GACs of all the points in the feature,

the WGAC of a feature is the corresponding union.

We denote the GAC of the second component as D
2
. Then D

2
(X; fpg) =

WGAC(X;F), where the feature F is D
1
(X; fpg) scaled by d about the point p.

To compute D
2
we sample points on F and take the union of the GACs at these

points. This is a lower bound on the real D
2
, so it is a pessimistic approximation.

Figure 2.11c shows F when p is the origin, and illustrates the GAC of a point q

sampled on F . This GAC will be a part of the union that forms D
2
.

Notice that the accessibility of a point by a bent probe is weaker than the concept

of approachability. The fact that a bent probe can access a point does not guarantee

that there exists a collision-free path for the probe to reach the point. (This happens

to be true with straight probe abstractions.) Figure 2.12 shows an example of a point

that is accessible, but not approachable by a bent probe with the given obstacle.

Computing the approachable directions for the second component of a bent probe

27

0

X

d

eye

dD1

not obstructed by X
portion of dD1 that’s

v2

v2

Figure 2.13: Computing D0

1
� D

1
that corresponds to ~v

2

is a problem that can be as hard as the FindPath problem [37]. We use accessibility

instead of approachability, because of the e�cient algorithms that are available. A

generate-and-test planner, as described in the introduction, will have to verify the

approachability condition with a path planner or a simulator. Our experiments on

real-world mechanical parts show that failures of this kind occur infrequently.

2.5.3 First Component Accessibility Revisited

We have shown how to compute the GAC of the �rst component, D
1
, and from this

the GAC of the second component, D
2
. The D

2
cones are used to compute setup

orientations from which points are accessible to the bent probe. Once a setup is

selected, we wish to compute the directions from which the �rst component of the

probe can access a point.

Given a direction of the second component, ~v
2
2 D

2
, what are the corresponding

directions of the �rst component for the bent probe to access a point p? Without

loss of generality we assume that p is the origin, then the articulation point must lie

in dD
1
. Hence, for each ~v

2
2 D

2
we are looking for the directions ~v

1
2 D

1
, such that

the second component oriented along ~v
2
and with endpoint at d~v

1
does not collide

with X. Spyridi [72] observed that these directions correspond to the points on dD
1

that are not obstructed by X in the orthographic projection of dD
1
onto a plane

perpendicular to ~v
2
. Figure 2.13 illustrates this fact. The projection lines in the

�gure correspond to possible placements for the second component.

28

We use this observation in our algorithm to compute the subset D0

1
� D

1
that

corresponds to ~v
2
. The viewing parameters for the orthographic projection are de-

picted in Figure 2.13. We use a parallel projection with direction ~v
2
and a view port

large enough to enclose the projection of the ball of radius d, which is a superset of

dD
1
. To check if a point on dD

1
is obstructed by the obstacle X we use the depth-

bu�er in a process that is similar to the two-pass z-bu�er shading algorithm [19].

First, we render X into the depth-bu�er. Next, we check if a point is obstructed by

X by transforming it to the viewing coordinates and comparing its depth value with

the value in the depth-bu�er. It is not obstructed by X i� its depth value in the ap-

propriate depth-bu�er location is closer to the viewer. Note that D
1
is represented

by bitmaps on the faces of a cube and therefore dD
1
is also discretized. This is

another approximation used by the algorithm. To maximize depth-bu�er precision,

the distance between the near and far clipping planes should be minimized, while

still enclosing the obstacle.

The top of Figure 2.14 illustrates the result of computing D
1
. The length of the

probe, d, is equal to the radius of the sphere used to represent the cone. It took 0.07

seconds to compute D
1
. The bottom of the �gure shows the accessible directions for

the �rst component of a bent probe, D0

1
, given that the second component is normal

to the �gure. Notice that these directions are exactly those that are not obstructed

by the obstacle in the given view (some of the obstructed direction are inside a

slot). It took 0.07 seconds to compute D0

1
. The inaccuracies in the cone are due to

aliasing e�ects from the use of the same low resolution frame bu�er (32�32 bits) as
with the GAC algorithm and the limited precision available with the depth-bu�er.

In addition, Figure 2.14 is illustrated with a perspective projection rather than an

orthographic projection, which is used to compute the obstructed directions.

2.6 Summary and Conclusions

This chapter describes simple and e�cient algorithms that exploit computer graphics

hardware to compute accessibility information for applications in spatial reasoning.

Our approach is an unconventional application of graphics hardware. We approx-

imate spherical projections using perspective projections, and we use clipping and

the depth-bu�er to approximate the intersection and the di�erence of a solid with a

29

D
1

D0

1

Figure 2.14: Experimental results { D
1
and D0

1

30

sphere. The depth-bu�er is also used to compute the articulation points (between

the �rst and second components of a bent probe) that are not obstructed by an

obstacle under an orthographic projection.

The algorithms have been implemented and tested. The empirical results are

satisfactory for practical applications with parts of realistic complexity. In the fol-

lowing chapters we will show how to integrate these algorithms into a dimensional

inspection planner for CMMs.

Dimensional inspection planners and other spatial reasoning systems must solve

complex geometric problems. Exact algorithms for solving these problems often are

unavailable, or they are too expensive for real-life applications. Therefore, approx-

imations are unavoidable. Fortunately, the solution spaces of practical planning

problems are often large, and optimality (which is usually unattainable with the

limited computational resources available) is not required, although the resulting

plans must not be grossly suboptimal.

Pessimistic approximations may discard good solutions but they ensure that

those found are correct. Optimistic approximations, on the other hand, may include

incorrect solutions. And certain approximations may both miss correct solutions

and include incorrect ones. The trade-o�s between computational complexity and

the correctness and quality of the solutions are di�cult to assess. It is important

to understand that geometric algorithms used in spatial reasoning are not a goal

unto themselves. They are meant to be used within a planning framework. Thus,

although geometric algorithms that use optimistic approximations may produce in-

valid results, these can be excluded if a planner includes a veri�cation step. If a

veri�er fails, the plan must be discarded, and backtracking is needed. Backtracking

itself is an expensive proposition, and failures must not occur often.

The algorithms described here use a variety of abstractions and approximations

to control the complexity of the computations. A non-exhaustive list of these ap-

proximations follows.

� Approachability is approximated by accessibility, which is more tractable. Ac-

cessibility implies approachability for straight probes, but not for general bent

probes, and therefore the approximation is optimistic.

31

� The CMM is abstracted as a ram/probe assembly. This ignores possible colli-

sions caused by the remainder of the CMM, and therefore it is optimistic.

� The ram and the probe are further abstracted as grown half-lines. This is a

pessimistic approximation if the actual probe is enclosed by the abstraction.

� The GAC of a feature is computed by sampling points from the feature. This

leads to an optimistic approximation of the GAC. However, if the inspection

planner �rst selects the sampling points (see Chapter 3) and these are used in

the GAC computation, then no approximation is involved.

� The quality of the results depends on the number of pixels of the screens (faces

of a cube) used to represent the direction cones. The resolution is a parameter

of the algorithm, but higher resolution implies increased computation.

32

Chapter 3

High-Level Planning

3.1 Introduction

High-level inspection planning involves spatial reasoning, to determine how to orient

the part on the CMM, which probes to use, how to orient the probes, and what

measurements to perform.

Previous inspection planners are either incomplete [7, 72, 75, 76] or only solve

the problem partially, because of the simplifying assumptions used. A common

simpli�cation is that the part setup orientation is predetermined [33, 87] or is selected

from a handful of orientations [14, 23]. Other systems make simplifying assumptions

about the toleranced part | they assume turned parts [17] or parts with a limited

set of machining features [54]. In addition, current inspection planners lack coherent

de�nitions for plan quality.

In our work, we develop a general theory for the existence of a high-level inspec-

tion plan and the requirements for a plan of high quality. The inspection planning

problem is mapped into a constraint satisfaction problem (CSP) (Section 3.3) and

hierarchical constraints are de�ned to reect the requirements for a plan of high

quality (Section 3.4). A solution to the CSP is a plan, hence a plan exists i� there

is a solution to the CSP. We show how to extract approximate solutions to the CSP

using e�cient clustering methods (Section 3.5).

The planning scheme that we propose is also attractive from a software engi-

neering point of view. We decompose the problem into knowledge acquisition and

plan extraction. Knowledge acquisition involves the computation of domains for the

variables in the CSP, and plan extraction involves �nding a solution to the CSP.

33

This is a bottom-up approach that is similar to the feature-based inspection planner

[54], but is not limited to speci�c features. The planner architecture is the topic of

Chapter 4.

3.2 Problem Statement

In this chapter we focus on the high-level inspection planning task (see Figure 1.2).

Given the model of a speci�c CMM and the model of a part with design tolerances,

we wish to produce a high-level inspection plan (HLIP). The HLIP speci�es how to

setup the part on the CMM, which probes to use, how to orient the probes, and the

surface features that are to be measured at these con�gurations.

3.2.1 Input (CMM and Toleranced Part)

The �rst input to the inspection planner is a model of a speci�c CMM. This

model consists of the table, ram, and a list of probes that can be attached to the

ram (see Figure 3.1a). In our work, we assume that the probes are attached to the

ram through a �xed head (e.g., Renishaw PH6) or an orientable head (e.g., Renishaw

PH9) [64]. The whole ram/probe assembly corresponds to straight probes or bent

probes, respectively, which were introduced in Chapter 2.

The second input to the planner is a model of the toleranced part. This model

contains the nominal geometry of the part (Figure 3.1b) with attached attributes

that describe the design tolerances. We use a feature-based tolerancing scheme,

illustrated in Figure 3.1c.

3.2.2 Measurement Graph and Measurements

The relationships between the entities that de�ne the design tolerances of a part

form a measurement graph (see Figure 3.2). For now, we do not distinguish between

regular features and datum features, but see Section 3.6.2 for special cases.

Each directed path from the root to a face in the measurement graph is called a

measurement. For example, (T1,F5,4) is a measurement in Figure 3.2. This triplet

can be interpreted as \inspect face 4 as a component of feature F5 to check tolerance

34

p1 p2

1

2

3

4

5

6
7

8

9

12

11

10

(a) CMM probes (b) part model

Feature Description Faces

F1 top 1, 5, 9

F2 left 12

F3 right 10

F4 bottom 11

F5 large-slot 2, 4

F6 small-slot 6, 8

Datums Description Ftrs

D1 top F1

Tolerance Description Ftr/Dtm

T1 perpendicularity F5, D1

T2 perpendicularity F6, D1

(c) design tolerances

Figure 3.1: Example input to the inspection planner

PART

T1 T2

F1 F5 F6

1 5 9 2 4 6 8

tolerances

faces

features

Figure 3.2: The measurement graph

35

PART

T1 T2

F1 F5 F6

Figure 3.3: The simpli�ed measurement graph

T1". We will see that the context (i.e., feature, tolerance) in which a face is measured

is important.

We use a wild card notation to de�ne certain groups of measurements. For

example, in Figure 3.2, (T2,F1,*) denotes the three measurements: (T2,F1,1),

(T2,F1,5), and (T2,F1,9). This is an example of a same-pre�x measurement

group. The measurement group (*,*,*) denotes all the measurements. The depth

of a same-pre�x measurement group is de�ned to be the length of the pre�x. Hence,

(*,*,*) is of depth 0, and (T2,F1,*) is of depth 2. Symmetrically, we de�ne

same-su�x measurement groups. The same-su�x groups of depth 1 are of par-

ticular importance, because they denote all the measurements that are associated

with a speci�c face. For example, (*,*,5) includes measurements (T1,F1,5) and

(T2,F1,5).

To avoid unnecessary complexity in the remainder of this chapter, we remove

the faces from the tolerance speci�cation. Therefore, the measurement graph is now

composed of 3 levels, as in Figure 3.3, and measurements are composed of tolerance-

feature pairs.

3.2.3 Output (HLIP-tree)

The output of the high-level inspection planner is a HLIP. We represent a collection

of HLIPs using a tree structure of depth 5, called a HLIP-tree. The nodes at depth

1 represent part setups, at depth 2 probes, at depth 3 probe orientations, at depth

4 features, and at depth 5 measurements. Equivalently, one can interpret the nodes

as arguments to the following operators:

� change-setup | change the setup of the part on the CMM table, including

�xtures and clamps.

36

setups

probes

features

measurements

probe orientations

F5 F6

o1

p2

(T2,F1) (T1,F5) (T2,F6)(T1,F1)

F1

o1

p1

s1

root

Figure 3.4: A HLIP-tree

� change-probe| change the probe that is attached to the CMM ram.

� change-orien | change the orientation of the probe relative to the CMM.

This operator does not apply to CMMs with �xed heads.

� inspect-ftr | inspect a feature by physically moving the CMM ram and

sampling points on the surface. The actual path plan for the CMM ram are

low-level details to be discussed in Chapter 5.

� record-meas| records that a speci�c measurement has been performed. This

is a book-keeping mechanism that keeps track of which measurements have

been accomplished.

The �rst 4 operators change the physical state of the machine, while the last

operator is a book-keeping mechanism that does not a�ect the execution of the plan.

Notice that the inspection of a single feature may accomplish several measurements.

Typically, if a feature F is inspected, then measurements (*,F) are accomplished.

Figure 3.4 illustrates a HLIP-tree for the input of Figure 3.1, where s1 is the

setup that is depicted in Figure 3.1b, the probes are indexed as in Figure 3.1a, and

the probe orientation o1 is the vertical orientation in which the probe is aligned with

the ram. Notice that the inspect-ftr operator is really an inspect-face operator

if the original measurement graph is used.

37

The HLIP-tree is a representation for a family of linear plans, which correspond

to a depth-�rst traversal of the tree. For example, using a depth-�rst left-to-right

traversal of the tree in Figure 3.4, we produce the following linear plan:

1) change-setup(s1)

2) change-probe(p1)

3) change-orien(o1)

4) inspect-ftr(F1)

5) record-meas(T1,F1)

6) record-meas(T2,F1)

7) inspect-ftr(F5)

8) preform-meas(T1,F5)

9) change-probe(p2)

10) change-orien(o1)

11) inspect-ftr(F6)

12) record-meas(T2,F6)

Other plans are produced by changing the order in which nodes at the same level

are visited. This representation for plans was chosen to reect plan quality consid-

erations, as explained in Section 3.4 below. Linearizing a HLIP-tree is considered

low-level planning and is the topic of Chapter 5. Notice that additional operators

are needed for a complete plan, for example, an operator that translates the CMM

ram is needed to inspect a feature. However, these are also considered low-level

details that will come into e�ect in Chapter 5.

A HLIP is valid if it is physically feasible to inspect all the features (i.e., perform

the inspect-ftr operators) under the speci�ed setup, probe, and probe orienta-

tion. In other words, each feature must be approachable by the CMM in the given

con�guration (see Figure 2.12). Furthermore, a measurement can only be recorded

after an appropriate feature has been inspected. The goal of the HLIP is to perform

all the measurements at hand (plan quality is discussed in Section 3.4).

38

3.3 Planning by Constraint Satisfaction

A constraint satisfaction problem (CSP) is formally a set of variables and a set of

constraints [35, 68]. A solution to a CSP is an assignment of values to the variables

that do not violate any constraints. In this section we �rst formulate the high-level

inspection planning problem as a CSP and then show how to construct a HLIP-tree

to represent solutions.

3.3.1 Variables (Measurements)

The variables in our CSP are the measurements to be performed as speci�ed by

the measurement graph. The domain of values that a measurement can have is

the set of all tuples of the form (s,p,o), where s is a setup, p is a probe, and

o is a probe orientation. The idea is that when we assign a tuple (s,p,o) to a

measurement M=(T,F), then we wish to perform measurement M when the part is in

setup s using probe p at orientation o. In other words, we wish to inspect feature F

in this con�guration, and record that measurement M has been accomplished.

3.3.2 Constraints (Approachability)

To obtain valid HLIPs we need a unary constraint, which speci�es the allowable

subset of the domain that can be assigned to each variable. In our case, the variables

must satisfy the unary approachability constraint. A tuple (s,p,o) satis�es the

unary approachability constraint for a measurement M=(T,F) if the feature F can be

inspected in setup s with probe p at orientation o (so that the measurement M can

be performed). Ensuring approachability is not trivial, but practical approximation

techniques exist (e.g., accessibility analysis).

Binary constraints between two variables specify the allowable subset of the cross-

product of the two domains. Such constraints are not needed to ensure valid plans,

but will be introduced in Section 3.4 to generate plans of high-quality.

39

root

F6

(T2,F6)(T1,F1)

F1

o1

p1

o1

p1 p1

o1 o1

p2

s1 s1 s1 s1

F1 F5

(T2,F1) (T1,F5)

Figure 3.5: A trivial HLIP-tree

3.3.3 Existence of Solutions

The CSP we de�ned is trivial, in the sense that there are only unary constraints.

Therefore, a solution exists i� we can assign a value to each variable independently of

the rest. In other words, a solution exists i� all the allowable subsets of the domains

(after applying the unary approachability constraint) are non-empty.

If a solution exists, then we simply assign an arbitrary value to each variable from

the allowable subset of its domain. However, computing this subset is non-trivial,

and the topic of Chapter 4.

3.3.4 Constructing Plans from CSP Solutions

A solution to the CSP is trivially converted into a non-optimized HLIP-tree, as

depicted in the example of Figure 3.5. These trees can be optimized by merging

common nodes [20], to produce HLIP-trees as in Figure 3.4. In our case, the merging

process is a simple matter of lexicographically ordering the values assigned to the

variables. Notice, however, that since the assignment to each variable is independent

of others, then the merged plan may still be of poor quality.

40

domain

fixed orientable

p1 p2 p3 p2p1 p3

D2

D1

D D D

D1 D1

D2 D2

probes

setup orientations

probe orientations

head type

Figure 3.6: Representing the domain of a measurement

3.3.5 Representing Domains

In Section 3.3.1, we de�ned the domain of values that a measurement can have as the

set of all tuples of the form (s,p,o), where s is a setup, p is a probe, and o is a probe

orientation. Notice that the unary approachability constraint is a purely geometric

constraint, which only depends on the feature speci�ed by the measurement and

nothing more (datums are an exception, and the topic of Section 3.6.2). In other

words, each measurement in a same-su�x measurement group of depth 1 (or greater)

will have an identical allowable subset of the domain. For this reason, it makes

sense to store the domain of variables per feature instead of storing the domains per

measurements. This obviously saves storage space but also time of computation,

because the unary constraints are not applied for each measurement.

In the spirit of Chapter 2, the representation for the domain of variables depends

on the type of ram head in use. For �xed heads (e.g., Renishaw PH6), we called the

whole ram/probe assembly a straight probe, and for orientable heads (e.g., Renishaw

PH9), we called the whole ram/probe assembly a bent probe. Figure 3.6 illustrates

the domain representation. For �xed heads, we store a single direction cone that

speci�es the valid setup orientations for each probe in use. For orientable heads, we

store a pair of direction cones that correspond to valid probe orientations and setup

orientations, respectively.

41

fixed

F5

p1

fixed

F6

p2

fixed

p2p1

F1

Figure 3.7: The allowable values for the measurements in Figure 3.1

Accessibility analysis is used to approximate the unary approachability constraint

in a computationally practical manner. For straight probes, the valid setup orien-

tations are approximated by the global accessibility cone (see Section 2.4). For

bent probes, the probe orientations and setup orientations relative to the part are

approximated by the (D
1
;D

2
) pair of direction cones (see Section 2.5).

Notice that the direction cones are stored for each probe. This is necessary,

because each probe may produce di�erent accessibility cones. The advantage of this

scheme is that better probe approximations can be used during accessibility analysis.

The number of available probes is typically small, so the additional complexity is

not large. In addition, if a probe is found unsuitable for inspecting a speci�c feature

(e.g., during tip accessibility analysis (see Section 2.3) or if one of the direction cones

is empty), then it can be pruned from the domain.

Figure 3.7 illustrates the allowable values for measurements in the example of

Figure 3.1. For simplicity, we assume that the CMM has a �xed head. Notice that

each slot can only be inspected with a single probe | probe p1 is too large for slot

F6 and probe p2 is too short for slot F5. In addition, each slot can be inspected

from a single setup orientation (the one illustrated in Figure 3.1), while the datum

F1 can be inspected from a hemi-sphere of setup orientations.

A domain object should support the following methods (we assume that the

CMM head type, i.e., �xed or orientable, is known in advance):

� Compute all possible setup orientations. This is the union of all the direction

cones that correspond to setup orientations.

42

� Given a setup orientation, compute all possible probes. If the setup orientation

is taken from the set of all possible orientations as computed above, then the

set of possible probes is non-empty.

� Given a setup orientation and a probe, compute all possible probe orientations.

This method is only relevant to orientable heads (i.e., bent probes). In this

case, we locate theD
1
cone for the given probe and computeD0

1
for the speci�ed

setup orientation (see Section 2.5.3 for details). If the setup orientation and

probe are taken from the sets computed above and (D
1
;D

2
) are computed as

in Section 2.5, then the D0

1
cone is non-empty (see [71] for detailed proof).

A value can be assigned to each variable that has a non-empty domain. The value

is computed in the following manner. First, compute all possible setup orientations

and select one. Then, compute all possible probes for the speci�c setup orientation

and select one. Finally, if the head is orientable, then compute D0

1
for the speci�c

probe and setup orientation, and select a probe orientation. Since the computed

sets are always non-empty, we are guaranteed not to fail.

3.4 Plan Quality and Same Constraints

The previous section showed how the inspection planning problem can be encoded as

a CSP. However, a plan that satis�es only the approachability constraint is not likely

to be of high quality. This section focuses on plan quality. The goal is to encode the

requirements for a good plan as hierarchical constraints, so that a solution to the

hierarchical CSP is a HLIP of high quality.

The quality of an inspection plan is largely determined by three factors:

� E�ciency in terms of the time it takes to execute the plan. We wish to

maximize e�ciency in order to minimize the time it takes to execute the plan.

� Accuracy in terms of the errors involved during the inspection of a tolerance.

We wish to obtain satisfactory accuracy (not necessarily maximum accuracy)

in order to verify that the features are within the tolerances speci�ed by the

designer.

� Cost in terms of the hardware equipment used (e.g., expensive probes).

43

The cost of probes can be encoded as preferences and will be discussed in Sec-

tion 3.6.1. In this section we emphasize the �rst two factors | e�ciency and accu-

racy of high-level inspection plans. We believe that a precise analysis of the cost (in

terms of e�ciency and accuracy) of each high-level operator, is not practical. In-

stead, we use a more qualitative analysis. The most expensive operation is a change

of setup, which typically is a time-consuming, manual procedure. Setup changes

also are the major cause of positional uncertainties. Changes of probe are the next

most expensive and inaccurate operations. Probe orientation is the least expensive

and inaccurate. This is the reason for the hierarchy in the HLIP-tree. Inspecting a

feature takes time and has a �nite accuracy, but these factors are constant from the

point-of-view of high-level plans.

Spyridi and Requicha introduced same constraints to address plan quality issues

[72, 75, 76]. A group of measurements under the same-setup constraint must be

performed under the same setup in the �nal plan. A group of measurements under

the same-probe constraint must be performed with the same probe and setup. Fi-

nally, a group of measurements under the same-orien constraint must be performed

under the same setup, probe and probe orientation. In terms of HLIP-trees, the

same-setup constraint applied to a group of measurements implies that these mea-

surements have a common setup ancestor in the HLIP-tree (assuming that the tree

has been merged as in Section 3.3.4). Similarly, the same-probe constraint implies

a common probe ancestor, and the same-orien constraint implies a common probe

orientation ancestor. We use the wild card notation, such as same-setup(T,*), to

denote that the same-setup constraint is applied to all measurements in the (T,*)

same-pre�x measurement group.

Applying same constraints, however, can quickly over-constrain the CSP. For

example, it may not be possible to perform all the measurements of the same tol-

erance under the same setup. However, a solution can still be found by minimizing

the amount of constraints that are violated. This is the idea behind soft constraints,

or over-constrained systems [29]. To ensure that the most important constraints are

less likely to be violated, we apply all the same constraints in a hierarchical manner

and form a constraint hierarchy [4].

It is convenient to view the same constraints as binary constraints. A same

constraint that is applied to a group of measurements, such as same-setup(T,*),

44

is a set of binary constraints between every pair of measurements in (T,*). Then,

even if same-setup(T,*) cannot be satis�ed as a whole, we still wish to minimize

the number of implied binary constraints that are violated.

In the remainder of this section we describe three constraint hierarchies. The

�rst speci�es e�cient plans, the second speci�es plans of high accuracy, and the

third is a combination of the two. Extracting solutions to the third CSP is the topic

of Section 3.5.

3.4.1 A Constraint Hierarchy for Plan E�ciency

We make the assumption that changing the setup is much more time consuming

then changing the probe, which is much more time consuming then changing the

probe orientation. Therefore, we obtain the following constraint hierarchy:

H0 { approachability(T,F) : forall tolerance T, feature F }

H1 { same-setup(*,*) }

H2 { same-probe(*,*) }

H3 { same-orien(*,*) }

H0 are the required constraints in the system. We require the unary approacha-

bility constraint, otherwise we are not guaranteed that solutions will be valid HLIPs.

The remainder of the constraints are soft constraints. A solution to the hierarchical

CSP should satisfy the required constraints H0 and minimize the number of violated

soft constraints in a lexicographical order, i.e., a solution should violate the least

amount of H1, and then the least amount of H2, and so forth. (In the constraint

hierarchy theory, this is called the locally-predicate-better valuation of a solution [4].)

The most restrictive constraint is H3, i.e., same-orien for all measurements. This

implies that all measurements are to be performed under the same con�guration of

setup, probe and probe orientation. Obviously this is the ideal but it is rarely

satis�ed in practice.

Notice that by de�nition if H3 is satis�ed then so are H2 and H1. It therefore seems

redundant to specify these two additional constraints in the hierarchy. However, this

is precisely what we want, because if H3 cannot be satis�ed, then perhaps H2 can

be, and so forth.

45

root

s1

F5

o1

F6

o1

p2p1

(*,F1) (*,F5) (*,F6)

F1

Figure 3.8: A HLIP-tree representing e�cient plans

Figure 3.8 illustrates a solution to the hierarchical CSP given above. This HLIP-

tree is identical to the one in Figure 3.4 except that the leaves are speci�ed as same-

su�x measurement groups of depth 1. This was done to illustrate the fact that when

a feature is inspected, then all measurements associated with it can be performed,

i.e., same-orien(*,F) is always satis�ed. In e�ect, we automatically minimize the

number of inspect-ftr operators in the HLIP, because there is exactly one of each

feature in the tree. In the following section, we will see that there are cases when a

feature is inspected more than once to obtain plans of higher accuracy.

3.4.2 A Constraint Hierarchy for Plan Accuracy

The constraint hierarchy for plan accuracy is de�ned as:

H0 { approachability(T,F) : forall tolerance T, feature F }

H1 { same-setup(T,*) : forall tolerance T }

H2 { same-probe(T,*) : forall tolerance T }

H3 { same-orien(T,*) : forall tolerance T }

This is very similar to the constraint hierarchy for plan e�ciency given in the

previous section. For accuracy we are concerned with minimizing the errors when

performing a group of measurements under each tolerance, as opposed to minimizing

the number of global operators.

46

root

o1 o1

p2p1

F6

(T2,F1) (T2,F6)

F1F5

(T1,F1) (T1,F5)

F1

s1 s2

Figure 3.9: A HLIP-tree representing plans of high accuracy

Figure 3.9 illustrates a solution to the constraint hierarchy. In this example we

assume that the CMM has an orientable head and that s2 is the setup that has

the part resting on face number 12 (see Figure 3.1). This is not an e�cient plan,

because two setups are used and feature F1 is inspected twice. However, it is an

accurate plan (by our de�nition), because all the measurements under each tolerance

are performed with the same setup, probe and probe orientation, i.e., (T1,*) and

(T2,*) each have a common orientation ancestor in the HLIP-tree. In other words,

none of the constraints are violated.

For completeness, we supply the constraint hierarchy for the non-simpli�ed mea-

surement graph that contains faces as well (see Figure 3.2):

H0 { approachability(T,F,C) : tolerance T, feature F, face C }

H1 { same-setup(T,F,*) : forall tolerance T, feature F }

H2 { same-setup(T,*,*) : forall tolerance T }

H3 { same-probe(T,F,*) : forall tolerance T, feature F }

H4 { same-probe(T,*,*) : forall tolerance T }

H5 { same-orien(T,F,*) : forall tolerance T, feature F }

H6 { same-orien(T,*,*) : forall tolerance T }

The idea is that if a feature can be inspected with minimal errors, then this gets

precedence over the entire tolerance.

47

3.4.3 E�cient Plans of High Accuracy

In this section we wish to combine plan accuracy and plan e�ciency and de�ne a

constraint hierarchy that will produce good plans. Both constraint hierarchies that

were de�ned are not satisfactory on their own. We have shown that not every accu-

rate plan is an e�cient plan. The reverse is also true. For example, the e�cient plan

of Figure 3.8 violates the same-orien(T2,*) and same-probe(T2,*) constraints in

the constraint hierarchy for plan accuracy.

For inspection we are much more concerned with the accuracy of the plan than

the e�ciency of the plan as long as the generated plan is practical. Generating a

plan that does not produce accurate results will be useless in the inspection process.

We propose to interleave the constraint hierarchies giving precedence to accuracy

and obtain the following hierarchy:

H0 { approachability(T,F) : forall tolerance T, feature F }

H1 { same-setup(T,*) : forall tolerance T }

H2 { same-setup(*,*) }

H3 { same-probe(T,*) : forall tolerance T }

H4 { same-probe(*,*) }

H5 { same-orien(T,*) : forall tolerance T }

H6 { same-orien(*,*) }

Figure 3.10 illustrates a solution to this hierarchical CSP. The constraints, spec-

i�ed in H2, H4, and H6, eliminate solutions that are not e�cient. For example, the

HLIP-tree in Figure 3.9 is not a solution in this case, because H2 is violated.

Notice that if changing the orientation of a probe does not introduce serious

positional uncertainties into the system (with respect to the tolerances that are to

be inspected), then the same-orien constraints may produce far from optimal plans

at no gain of practical accuracy. Therefore, in this case, H5 should be eliminated.

It is important to have the exibility to modify the constraint hierarchy to suit the

needs of the speci�c problem.

48

root

s1

o1 o1

p2p1

F6

(T2,F1) (T2,F6)

F1F5

(T1,F1) (T1,F5)

F1

Figure 3.10: A HLIP-tree representing e�cient plans of high accuracy

C

A B

E

D

BA C

C

D E

A B

A B C D E

D E

Figure 3.11: The clustering operation

3.5 Hierarchical Constraint Satisfaction

We propose a greedy method that exploits the structure of the hierarchical CSP to

�nd approximate solutions to the problem. The method uses clustering techniques,

which can be applied directly to the domains of measurements.

This section is outlined as follows. First we de�ne a valid clustering operation,

the process of clustering up the measurement graph, and measurement sub-graph

extraction. Then we describe the main constraint satisfaction algorithm, and solve

two example problems. We conclude with an e�cient algorithm that performs a

valid clustering operation.

49

3.5.1 Clustering Up the Measurement Graph

Let f!ig be a collection of sets. (In our application the !i are subsets of the domains

of the CSP variables.) A cluster C is a collection of ! sets whose intersection is non-

empty. A cluster C = f!
1
; : : : ; !kg has an underlying set �, which is the non-empty

intersection of its constituent sets, i.e., � = \k
i=1!i. Given the !i's we construct a

set of clusters Cj such that:

1. Each !i belongs to one and only one Cj.

2. The underlying sets of the clusters are pairwise disjoint, i.e., �i \ �j = ; for
all i 6= j.

We call the process of partitioning the !i's into clusters (property 1) a clustering

operation. If property 2 is satis�ed, then we call it a valid clustering operation. An

algorithm that performs a valid clustering operation is given in Section 3.5.6.

The clusters that result from a valid clustering operation cannot be merged into

larger clusters. If we attempted to merge two clusters, Ci and Cj, the result would

be a collection of ! sets with empty intersection because �i \ �j = ;, and therefore

not a cluster.

Figure 3.11 illustrates the successive application of clustering operations. Given

the sets A{E shown on the right, they can be clustered to yield fA;Bg, fCg and
fD;Eg, which satisfy property 1 but not property 2, because fA;Bg and fCg can
be merged into fA;B;Cg. Now, we consider the underlying sets of these clusters,

A\B, C and D\E, and apply a valid clustering operation. In the graph on the left

in the �gure, we represent a cluster by its underlying set plus links to the cluster's

constituent sets.

Clustering up the measurement graph is a bottom-up process of assigning a set

of clusters to each node of the graph. Leaf nodes are assigned a set containing a

single primitive cluster itself composed of a single set. If the children of a non-leaf

node have been assigned sets of clusters, then we consider the underlying sets of all

the clusters involved and apply a valid clustering operation to them. The result is

assigned to the parent node. The clusters assigned to the root node, PART, are called

top clusters.

50

F1:{A} F2:{B} F3:{C} F4:{D} F5:{E}

T1:{A B}

PART:{A B C, D E}

T2:{A C} T3:{A, D E}

Figure 3.12: Clustering up a measurement graph

F1 F5 F6

T1 T2

PART

F1

T1 T2

PART

F5 F6

T1 T2

PART

F5

T1 T2

PART

F1 F5 F6

T1 T2

(a) (b) (c) (d) (e)

Figure 3.13: Sub-graphs and measurement sub-graphs

Figure 3.12 shows an example of clustering up a measurement graph, assuming

the same original sets of Figure 3.11. The arcs in the measurement graph are drawn

with solid lines, while the clusters' links are drawn with dashed lines.

3.5.2 Measurement Sub-Graph Extraction

A measurement sub-graph is a sub-graph of the measurement graph that has the

structure of a measurement graph of lower complexity. For example, Figure 3.13

shows 5 sub-graphs for the measurement graph (a), shown on the left. However,

only (a), (b), and (c), are measurement sub-graphs. The two on the right do not

have the appropriate structure: (d) has a tolerance node with no children, and (e)

has no root node.

PART PART

F3F2F1

T1 T2 T3 T3

F5F4

(D E)(A B C)

Figure 3.14: Measurement sub-graph extraction

51

As a result of clustering up the measurement graph the root node is assigned a set

of top clusters, as shown in Figure 3.12. Notice that each top cluster corresponds

to a measurement sub-graph. (Each cluster link has a corresponding arc in the

measurement graph.) Figure 3.14 shows the two sub-graphs that correspond to the

top clusters in Figure 3.12.

Measurement sub-graph extraction is the process of generating the measurement

sub-graph that corresponds to a particular top cluster. By traversing the links

through the descendents of a top cluster, it is easy to identify the arcs and nodes

that are included in the measurement sub-graph. This is the core of a measurement

sub-graph extraction algorithm.

3.5.3 Main Constraint Satisfaction Algorithm

In this section we describe the hierarchical constraint satisfaction algorithm. We

wish to solve the CSP given in Section 3.4.3. The input is a measurement graph

and the domains of variables stored at the leaves of the graph. The domain includes

the set of allowable (s,p,o) tuples (see Section 3.3.5). It is assumed that the unary

approachability constraint is already computed for each domain, but the algorithm

will work with under-constrained domains as well. If the approachability constraint

is approximated, then a veri�cation step is needed (see Chapter 4). Notice that all

the domains must be non-empty, otherwise there is no solution to the CSP. If all

the domains are non-empty, then there exists a solution and our algorithm will �nd

one, but it may be sub-optimal.

The main algorithm extracts a HLIP-tree from the measurement graph as follows:

1. First, assign to each leaf node a set containing a single primitive cluster that

represents the allowable setup orientations for inspecting this face. Next, clus-

ter up the measurement graph, and for each top cluster, Cs, do the following:

2. Select a setup s 2 Cs, and extract the measurement sub-graph that corresponds

to Cs. Assign to each leaf node a set containing a single primitive cluster that

represents the allowable probes under setup s. Cluster up the measurement

sub-graph, and for each top cluster, Cs;p, do the following:

52

3. Select a probe p 2 Cs;p, and extract the measurement sub-graph that corre-

sponds to Cs;p. If the CMM has a �xed head, then we are done. Otherwise,

assign to each leaf node a set containing a single primitive cluster that repre-

sents the allowable probe orientations under setup s and probe p. Cluster up

the measurement sub-graph, and for each top cluster, Cs;p;o do the following:

select an orientation o 2 Cs;p;o, and extract the measurement sub-graph that

corresponds to Cs;p;o.

Each (s,p,o) tuple generated by the algorithm represents a branch in the HLIP-

tree. Under each branch we have a measurement sub-graph that corresponds to

Cs;p;o. A leaf in this measurement sub-graph corresponds to a feature, F, that is to

be inspected in con�guration (s,p,o). The same-su�x measurement group (*,F)

corresponds to the measurements that are accomplished when the feature is in-

spected.

The end of Section 3.3.5 explains how to create the primitive clusters that are

assigned to the leaf nodes. In particular, how to extract from the domain of a

variable: (1) the allowable setup orientations, (2) the allowable probes under a

given setup, and (3) the allowable probe orientations under a given setup and probe.

It is easy to see the symmetry in the algorithm. After clustering up the mea-

surement graph we select the con�gurations (either setups, probes, or probe orien-

tations). Setups are selected to optimize H1 and H2, then probes are selected to op-

timize H3 and H4, and so forth. In each case, the measurement graph is decomposed

into sub-graphs. The resulting HLIP-tree will have disjoint sets of measurements

under each probe orientation. The sets are disjoint, because as a result of cluster-

ing up the measurement graph each measurement corresponds to one and only one

branch in a single top cluster. (This is derived from the fact that each leaf is assigned

a set with a single primitive cluster, and from the properties of a valid clustering

operation.)

This algorithm generates an approximate (i.e., sub-optimal) solution, because

each con�guration is selected independently of the following ones. For example,

we select a minimum set of setups, but a di�erent minimum set may be better in

the sense that fewer probes may be needed. Figure 3.15 shows two possible setups,

but the setup on the left requires two probes to inspect the highlighted features.

53

Figure 3.15: Probe selection depends on setup selection

F1 F2 F3 F4 F5

p1 p2 p1 p2 p1 p1 p2 p1

Figure 3.16: Example domains (CMM has a �xed head)

(The large probe is too big for the small feature, and the small probe cannot access

the large feature under the setup illustrated on the left.) The setup on the right

is better, because the small probe can inspect both features. Unfortunately, our

algorithm clusters the setups without regard to the probes, so the setup on the left

is just as likely to be selected as the setup on the right. Setup preferences can be

used to avoid such situations (see Section 3.6.1).

In addition, we cluster up the measurement graph in a greedy fashion, and do

not guarantee to �nd the minimum number of top clusters (see Section 3.5.6).

3.5.4 First Example

In this section, we trace the constraint satisfaction algorithm for a toy problem.

For simplicity, we assume that the CMM head is �xed (in this case we do not

have to compute probe orientations explicitly, since they are the same as the setup

orientations), and two probes are available, p1 and p2. In addition, we do not provide

54

F1 F2 F3 F4 F5

T1 T2

PART

Figure 3.17: Clustering the setup orientations

F1 F2 F3

T1 T2

PART

F5

PART

T2

F4F1
{{p1,p2}}

(s1) (s2)

{{p1,p2}} {{p1}} {{p1}}

{{p1}}{{p1}}

{{p1}} {{p2}, {p1}}

{{p2}} {{p1}}

{{p2},{p1}}

Figure 3.18: Clustering the probes

the geometry of the part or probes. All we need are the domains of the variables,

Figure 3.16, and the measurement graph, Figure 3.17. The domains include the 2-D

GACs for each feature with respect to each probe. A missing probe (in the domains

of F3 and F5) implies that the respective GAC is empty.

Step 1 in the algorithm clusters the setup orientations, i.e., GACs. Each leaf node

F is assigned a set with a single primitive cluster. This cluster represents the union

of the GACs in the domain stored in F. Next, we cluster up the measurement graph

as shown in in Figure 3.17. Two top clusters are formed. We select one setup from

each, say s1 (up direction) and s2 (down direction), and extract the corresponding

measurement sub-graphs. The sub-graphs appear in Figure 3.18.

In the next step, for each measurement sub-graph, we cluster sets of probes.

Again, each leaf node F is assigned a set with a single primitive cluster. This time,

the cluster represents the set of probes that can access F under the given setup

orientation s. To compute the set of probes, we classify s against the GAC under

55

F1 F2 F3

T1 T2

PART

F5 F4F1

T2

PART

T2

PART

(s1,p1) (s2,p2) (s2,p1)

Figure 3.19: The measurement sub-graph for each (s,p) con�guration

F5F3F2F1

(T1,F1) (T1,F2) (T1,F3) (T2,F5)

p2

F1

(T2,F1)

p1

F4

(T2,F4)

s2

p1

s1

root

Figure 3.20: The resulting HLIP-tree

each probe p in the domain stored in F. If s is a member of the GAC under p, then

p can access F under setup orientation s. For example, s2 is not a member of the

GAC under p1 in the domain stored in F1. Therefore, the primitive cluster in the

set assigned to F1 in the measurement sub-graph that corresponds to s2 (on the

right of Figure 3.18) is fp2g, and does not include p1.

We cluster the probes up the measurement sub-graphs, as in Figure 3.18. The

graph on the left has a single top cluster, while the graph on the right has two

top clusters. Again, we select a single probe from each top cluster, and extract the

sub-graphs that are shown in Figure 3.19.

We assume that the CMM head is �xed, so we are done with the main algorithm.

We arrange the results in the form of a HLIP-tree as shown in Figure 3.20. Each

(s,p) pair that was generated is a branch in the HLIP-tree. The measurement

sub-graphs in Figure 3.19 appear under each branch, but in a di�erent format.

56

F1 F2 F3 F4 F5

T1 T2

PART

Figure 3.21: Clustering the setup orientations di�erently

First, we enumerate the leaves of the sub-graphs, i.e., the features F that are to

be inspected under con�guration (s,p). Then we enumerate the measurements

that are accomplished when the feature is inspected, i.e., (*,F) with respect to the

sub-graph.

Notice, that the generated HLIP-tree in this example is not the most e�cient,

because feature F1 is inspected twice. It is the most accurate in the terms we de�ned

in Section 3.4.2. However, in this example, there is no real accuracy gained by

inspecting F1 twice if the tolerance T2 cannot be inspected entirely under the same

setup. A better clustering of the setups would have produced the desired result.

Speci�cally, if the set of clusters assigned to T2 were as depicted in Figure 3.21 as

opposed to the clusters in Figure 3.17. The result depends on the implementation

of the valid clustering operation, which is discussed in Section 3.5.6.

3.5.5 Second Example

Now, we trace the algorithm for the example introduced at the beginning of this

chapter. The input is given in Figure 3.1. To avoid unnecessary complexity, we

assume that the CMM head is �xed and we use the simpli�ed measurement graph

of Figure 3.3

The domains of the measurements are illustrated in Figure 3.7. The clustering

of the setup orientations is shown in Figure 3.22a. The clustering is trivial, and pro-

duces a single top cluster. We select a setup orientation, s1, from the top cluster and

extract the corresponding measurement sub-graph. In this case, the sub-graph is the

entire graph. Next, we cluster the probes, as shown in Figure 3.22b. The result has

57

(b)(a)

F1

T1 T2

F5 F6

PART

F1

T1 T2

F5 F6

PART

{{p1,p2}} {{p1}} {{p2}}

{{p1}} {{p2}}

{{p1}, {p2}}

Figure 3.22: Clustering (a) setup orientations, and (b) probes

two top clusters. We select one probe from each, and decompose the measurement

graph into two sub-graphs (as illustrated by the dashed lines in Figure 3.22b).

In this example, we assume that the CMM has a �xed head, and therefore do

not select probe orientations. The result HLIP-tree, illustrated in Figure 3.10, is the

desired solution to the constraint hierarchy.

3.5.6 Clustering Algorithm

We conclude this section with an algorithm that performs a valid clustering opera-

tion, as de�ned in Section 3.5.1. Notice that a valid clustering operation does not

necessarily produce a minimum number of clusters. The minimum clustering prob-

lem has been shown to be NP-hard [72]. We propose an algorithm that e�ciently

produces a set of clusters that may not be minimal in size, but is close to minimal

in practice.

The following pseudo-code performs a valid clustering operation on a collection

of sets W = f!ig. The result is a set of clusters A = fCjg.
 denotes a set that

contains all the sets in W . If the !i denote direction cones (i.e., setup orientations

or probe orientation), then
 is a complete direction cone. If the !i denote sets of

probes, then
 is the set of all possible probes.

1. A ;

2. Shu�e W (optional)

3. While W 6= ; do the following:

(a) C ; /* the new cluster to be */

(b) �
 /* the underlying set of C */

58

(c) For each ! 2 W do the following:

i. �0 � \ !
ii. if �0 6= ; then do the following:

A. W W n f!g
B. C C [f!g
C. � �0

(d) A A[fCg

The main loop (line 3) constructs clusters from the sets in W and inserts them

into the collection of clusters, A. The inner loop (line 3c) incrementally constructs

C from the remaining sets ! in W . As long as the intersection � \ ! is not empty,

C [f!g is a cluster, so we safely add ! to C and remove it from W . It is clear that

each !i inW is inserted into one and only one Cj inA, so the algorithm is a clustering

operation (property 1 in Section 3.5.1). In addition, the greedy construction of a

clusterC guarantees that the underlying set � does not intersect any of the remaining

sets ! in W . This implies property 2, i.e., �i \ �j = ; for all i 6= j, so the algorithm

is a valid clustering operation.

Consider again the sets A{E shown on the right of Figure 3.11. If the order of the

input isW = fA;D;B;E;Cg, then the algorithm will �rst produce cluster fA;B;Cg
followed by fD;Eg, and then terminate. The result is a minimumnumber of clusters.

However, if the input sequence is W = fC;D;A;B;Eg, then the algorithm will

generate the set A = ffC;Dg; fA;Bg; fEgg, which is not a minimum number of

clusters. As you see, the clustering algorithm is sensitive to the order of the input.

For this reason we provide an optional step to shu�e W in line 2. In this way we

provide a chance to obtain a set of clusters of minimal size (but see Section 4.2 for

the drawbacks of using non-determinism).

The clustering algorithm is greedy in the way we construct the next cluster C,

but it is not greedy in the usual sense. That is, the algorithm does not select at each

iteration a cluster C with the most number of !i. If it did, then the output would

not depend on the order of the input. In any case, such a scheme would be more

time consuming, and as far as we know does not guarantee better results.

In the worst-case, the algorithm performs O(n2) intersections, where n is the size

of the input set, W . This is clear, because the main loop may traverse n times if

59

only one ! is removed from W at each iteration. This will happen if all the sets in

W are disjoint, i.e., !i \ !j = ; for all i 6= j. It is obvious that at least one ! is

removed at each iteration, because of the way � is initialized in line 3b.

In the best-case, all the elements of W have a common intersection. Then W is

a cluster in itself, and a valid clustering operation has to produce A = fWg. In this
case the algorithm iterates through the main loop once and performs a total of n

intersections in the inner loop. In practice, we expect the number of clusters in the

result, A, to be bound by some �xed number. Therefore, for practical purposes the

algorithm performs a linear number of intersections.

3.6 Closing Loose Ends

In the process of developing our inspection planning theory we have over-simpli�ed

certain details. This section covers three important issues that should be considered

during the high-level planning process and have been integrated into our planner:

preferences (for setups, probes, and probe orientations), replacement of datum fea-

tures by mating surfaces, and feature segmentation.

3.6.1 Preferences for Setups, Probes and Orientations

In our de�nition of good plans (see Section 3.4.3) we assume that setup changes are

more expensive (and more error prone) than probe changes, which are more expen-

sive than orientation changes. We explained why this is a reasonable assumption.

However, by this de�nition, all setups have the same cost, all probes have the same

cost, and all probe orientations have the same cost. This assumption may be true

for probe orientations, but it is not true for probes that have varying costs, and it

is not true for setups | some setups are preferred for the ease of �xturing, stability

and other considerations.

Ranking probes by their cost is trivial. Identifying preferred setups is not the

focus of this dissertation. Preferred setups can be identi�ed by an external agent,

such as a stability analysis module or a human operator. In our planner, we assume

that prioritized lists of preferred setups and probes are available. The challenge is to

integrate these preferences into the hierarchical constraint satisfaction algorithm of

60

1 1

1

1

0

0 0 0

0

0

0

0

(a) GAC of face 1

0

0

0

0

0

1

0

1

0

1

0

1

(b) GAC of face 2

{a} {a}

{a,b}

{b} {b}

{b}

{a}

{}

{}

{}

{}

{}

(c) item buffer

1

2

01

1

1

1 1

0

0

0

0

(d) cardinality of clusters

0.0

0.0 0.0

0.0

0.0

0.00.0

0.0

0.5

0.5

0.51.0

(e) first weights

0.0

0.0

0.00.0

0.0

0.0

0.0 0.0

0.0

0.5

0.5

2.0

(f) first result

0.00.0

0.0

0.0

0.0 0.0

0.0

0.0

0.5

1.0

1.0

0.25

(g) second weights

0.0

0.0

0.0

0.0 0.0

0.0

0.0

0.01.0

1.0

0.00.5

(h) second result

Figure 3.23: Cluster selection based on a weight function

Section 3.5. For the remainder of this section we focus on setup preferences. Probe

and probe orientation preferences are handled in an analogous manner.

The simplest way to integrate the setup preferences is during the setup selection

(step 2 in the algorithm). Instead of selecting an arbitrary setup from each top

cluster, setups are selected based on their priority. This is the approach we took,

but it has its drawbacks. Notice that the setup selection occurs after clustering up

the measurement graph. Therefore, preferred setups can get lost in the clustering

process, which knows nothing about them.

Spyridi [72] proposed that preferences be integrated into the clustering process

before the selection is done. The idea is to ensure that the preferences are not

violated by the clustering process. In particular, she proposed that the greedy

clustering algorithm (Section 3.5.1) select clusters that maximize a weight function

that depends on the size of the cluster and the setups that it includes. Notice that

this is only a heuristic (the minimum clustering problem is still NP-hard), and there

may be better ways to do this.

In our planner, we represent direction cones with cubic maps (Section 2.4.1).

Therefore, it makes sense to use an item bu�er [19] to compute all possible clusters

for a set of direction cones. The idea is to have each pixel store (an ID of or

61

1

2

F1

PART

T1

F1

1 2

PART

T1

F1

1 2

Figure 3.24: A single unstable setup vs. two preferred setups

reference to) the cluster that includes all the cones with the corresponding pixel

set to 1. Then, the best cluster can be evaluated as a function of its size and the

weights of the setup orientations in the underlying set. For simplicity, we consider

the function that is the product of the cluster size and the weight assigned to the

underlying pixel. Figure 3.23 gives a concrete example. Let (a) and (b) be the cubic

mappings of 2-D direction cones. The item bu�er for these is given in (c). The size

of the clusters is shown in (d). The weights assigned to the setup orientations is

given in (e), where 1.0 is a strong preference and 0.0 is a weak preference. The result

of pair-wise multiplication of the elements in (d) and (e) is shown in (f). The best

cluster in this example is fa; bg, which has a weight of 2.0. Similarly, the result of

multiplying (d) and (g) is shown in (h), and there is a tie between two best clusters,

fag and fbg, each having the weight of 1.0.

Notice that the weights can produce very di�erent inspection plans. For example,

Figure 3.24 illustrates a part with a single feature to be inspected, F1 (the union

of faces 1 and 2). For simplicity, we consider a half-line probe, and the trivial

measurement graph shown in the �gure. The GACs of the highlighted faces are

attached to the leaf nodes. Notice that they correspond to the cubic mappings in

Figure 3.23 (a) and (b). Therefore, clustering up the measurement graph with the

weights speci�ed in (e) will produce the left clustering in Figure 3.24, while the

weights in (g) will produce the right clustering. In the former case, the clustering

algorithm generates a single top cluster with a single setup that has the round face

on the table. This is clearly not a desirable setup unless a suitable �xture is available.

The latter case, gives considerable weight to two setups | one with the bottom face

resting on the table and the other with the top face resting on the table. The result

62

has two top clusters each containing one of the preferred setups. In this case, feature

F1 is not inspected in a single setup, but no �xtures are needed to hold the part.

Without �xturing information, the planner cannot determine which inspection plan

is better. It is important to have the exibility to modify the weights as needed.

Notice that the clustering operation is no longer valid. For example, the under-

lying sets in the top clusters on the right side of Figure 3.24 are no longer disjoint.

We could force the clustering operation to be valid by removing common, but un-

desirable directions. A similar technique can be used to guide our planner, which

does not use a weight function: by removing undesirable directions we can avoid

undesirable clusters.

3.6.2 Replacement of Datum Features by Mating Surfaces

Datum features are de�ned as ideal surfaces that are associated in a speci�c manner

with physical part features [3]. For example, a planar datum is \tangent" to the

corresponding part surface. This implies that we can inspect a planar datum surface

by placing the physical surface against the CMM table and inspecting the table. This

observation generalizes to other datum surfaces that mate with �xturing surfaces.

In our planner, we have integrated the possibility of placing planar datum features

on the CMM table. To do so, we have modi�ed the domain representation for

measurements of datums and the measurement sub-graph extraction algorithm. The

original domain representation includes all the con�gurations from which a feature

can be inspected (Section 3.3.5). When a datum is placed on the table, we inspect

the table and not the datum feature. Therefore, the con�gurations from which the

table can be inspected, for a given datum feature, are stored in a separate domain

structure. The domain of the datum is then the union of the original domain and

the special domain just de�ned.

Figure 3.25 illustrates the domain representation when the datum is placed on

the CMM table. There is a unique setup orientation, and we assume that the table

is large enough, so that all the probes can inspect it. For �xed heads we do not need

to store the probe orientations, since the probe must be aligned with the CMM ram.

For indexable heads we limit the possible probe orientations, so that the ram does

not penetrate the table. The possible probe orientations depends on the length of

63

p2p1 p3

D1 D1

all probes

probe orientations

unique setup

D1

s

Figure 3.25: Representing the domain of a datum that is placed on the table

L

2θ

Rθ

s
o

D1RAM

TABLE

Figure 3.26: Valid probe orientations for inspecting the table

64

F1 F2

3 41 2

T1

3

1

4

PART

2

3 4

Table

T1

F1 F2

3 4

PART

Table

Figure 3.27: The measurement sub-graph for a setup that places a datum on the
table

the probe, L, and the radius of the ram, R | the dot product between the direction

of the ram, s, and the direction of the probe, o, should not exceedR=L (Figure 3.26).

In the constraint satisfaction algorithm we assign primitive clusters to the leaf

nodes before clustering up the measurement graph. If a leaf node corresponds to

a datum, then the original domain is considered combined with the new domain.

In this manner, the setup that places a datum on the table is united with other

possible setups. After clustering up the measurement graph, the setup that places

the datum on the table may be selected from a top cluster. If this is the case,

then care is taken during measurement sub-graph extraction. The measurement

sub-graph should reect the fact that the datum feature itself is not to be inspected,

rather the table that it is resting on. This is accomplished by replacing the datum's

children by a symbolic face that represents the CMM table. For example, the left

side of Figure 3.27 illustrates a simple measurement graph, where F1 is a planar

datum that can be placed on the table. If after clustering setups we select the setup

that places the datum on the table, then the measurement graph is transformed to

the one on the right of the �gure.

Notice that datums are replaceable by the table in a speci�c context. For exam-

ple, a datum has to be measured directly in order to inspect a atness tolerance.

In this case we treat the datum as a regular feature. If the same feature has to be

65

Figure 3.28: Segmentation examples

treated in two di�erent ways, the easiest solution is to instantiate the feature twice

in the measurement graph.

3.6.3 Segmentation and Point Sampling

This section addresses the problem of measurements that cannot satisfy the unary

approachability constraint. This implies that there is no solution to the CSP, but

does this really mean that no suitable inspection plan exists? The answer is no,

because we have inadvertently over-constrained the problem. For example, in some

cases a feature is not approachable as a whole, but individual segments of the fea-

ture are. The process of segmenting a feature into sub-features is called feature

segmentation, and is a known problem in high-level inspection planning [72].

Figure 3.28 shows examples of features that are not approachable as a whole.

The simplest example is a spherical surface feature. A sphere has an empty GAC

and has to be approached from at least two directions, as shown on the right hand

side of Figure 3.28. On the left we show a feature that requires both of the probes

shown.

Notice that some features have no approachable points. Others may have a strict

subset of points that are approachable. Actually, this is the typical case for pockets

and slots that have \hard to reach" corners. Therefore, even if we do segment a

feature into in�nitely small patches, some may not be approachable. We need some

criteria for selecting a suitable candidate set of patches that can be inspected to

66

T2 tolerances

F2

32

F1

faces1

PART

a b c d e f g h i fpoints

features

T1

e

f

d g

h

i

3

1

2

Figure 3.29: The measurement graph with fpoints sampled from each face

measure the feature as a whole, or to determine that no such candidate set exists,

which implies that the feature cannot be inspected and no inspection plan exists.

Instead of using in�nitely small patches, we can approximate them by points on

the surface of the feature. This has several advantages: our accessibility analysis

algorithms are most e�cient for single points, and CMMs typically inspect discrete

points on the surface. The candidate set of points on the feature can be the actual

points to be inspected by the CMM (or a superset of them).

Measurement point selection is a branch of research in itself [11, 88, 39] and

not the focus of this thesis. Previous researchers have attempted to separate the

measurement-point selection from high-level planning and apply it as low-level re-

�nement of the high-level plan [72]. This makes the problems of feature segmentation

and high-level plan validation more di�cult to solve.

In our scheme, we propose to sample points on each face, and to use them to rep-

resent the surface. We call such points fpoints. For each fpoint we store its position

on the face and the normal to the surface. The measurement graph is augmented by

an extra level of detail as in Figure 3.29, and the domains of measurements are now

stored per fpoint in the system. Similarly, an inspect-fpnt operator replaces the

inspect-face operator. All the algorithms remain the same with an extra layer of

complexity. There is one exception in that fpoints are �ltered before the clustering

process, because we only need a candidate set of fpoints. Speci�cally, we �lter out

fpoints that do not have a large set of possible probes in their domains. Without

67

this �ltering process, a poorly selected fpoint, such as one located near a tight cor-

ner of a slot, will have strong inuence on the outcome of the clustering process.

In an extreme case, the domain associated with an fpoint may be empty, and the

point should de�nitely be �ltered out. The idea of �ltering out fpoints is similar to

�ltering out noise in a system (see Section 4.1.1 for details).

Currently, we sample points uniformly over the surface of the feature. In practice,

the distribution may depend on the geometry of the surface, or even on how the

feature was manufactured. More general techniques for measurement point selection

can be integrated into the planner, but this is not the focus of this dissertation.

68

Chapter 4

Planner Architecture

4.1 Main Algorithm

So far we have mapped the inspection planning problem to a CSP and showed how to

extract good plans in the form of a HLIP-tree. In a sense, we decomposed the prob-

lem into knowledge acquisition and plan extraction. Knowledge acquisition involves

the computation of domains for the variables in the CSP, i.e., satisfying the unary

approachability constraint through accessibility analysis (Chapter 2). Plan extrac-

tion involves �nding a solution to the CSP, i.e., hierarchical constraint satisfaction

through clustering techniques (Chapter 3).

A naive planner can compute all the domains and then extract a HLIP-tree.

This design is especially suitable to a highly parallel architecture, since each domain

can be computed independently of the others. Unfortunately, it is not practical to

compute the domains precisely. Instead we use approximations, such as accessibility

analysis, and represent the domains with discrete direction cones. These approxima-

tions typically are optimistic, and therefore the planner needs a veri�cation step to

validate the plans. If the plan is invalid, then better approximations must be used.

In practice, knowledge acquisition involves expensive geometric computations,

and parallel processing is not widely available. Furthermore, plan extraction is

relatively cheap and can be performed multiple times with incomplete knowledge.

Therefore, knowledge is acquired incrementally when needed, through lazy evalua-

tion. Our planner follows the generate-and-test paradigm. The idea is to extract

a plan and verify it. If the veri�cation step fails, then incrementally acquire more

69

knowledge and repeat the process. Such a planner is complete if the knowledge

acquisition is optimistic and converges to the true domains.

The main algorithm is outlined below:

1. Initialize knowledge base.

2. Loop forever or until resources expire (e.g., time limit):

(a) If no solution exists, then report failure and stop.

(b) Extract a plan.

(c) If the plan is valid, then report success and done.

(d) Perform incremental knowledge acquisition.

The following sub-sections describe the various steps in the algorithm excluding

plan extraction, which was the topic of Section 3.5. The remainder of this chapter

discusses possible speed-ups, points of failure and the simulator used in our system.

We conclude with experimental results and a discussion.

4.1.1 Knowledge Base Initialization

The knowledge base stores the input to the planner | a model of the CMM and

a model of the part. This is global knowledge that remains constant throughout

the planning process. A preprocessing step extracts relevant information from this

input. This includes the measurement graph and other global knowledge, such as

preferred setups and probes.

The measurement graph is initialized from the tolerance speci�cation that comes

with the part. An additional step �lters out tolerances and features that are not

appropriate for CMM inspection, such as threaded features. This is a rule-based

system that uses purely symbolic reasoning. The user is noti�ed about the entities

that cannot be inspected. Before proceeding, the user has the option to edit the

measurement graph.

Local knowledge is stored per face or at the leaf nodes of the measurement graph.

Each face that is to be inspected is sampled by a set of fpoints (see Section 3.6.3),

and at each fpoint we store the domain of allowable values (see Section 3.3.5). The

70

domains are initialized to contain all possible (s,p,o) con�gurations (i.e., setups,

probes, and probe orientations). This is the most optimistic approximation possible,

but the idea is to incrementally constrain the domains as needed (see Section 4.1.4).

To avoid starting from a completely unconstrained system, we chose a relatively

cheap constraint to apply during the initialization step. We perform tip accessibility

analysis (see Section 2.3) for all the fpoints in the system. Tip accessibility provides

a reliable and e�cient mechanism for sensor planning. For example, it prunes large

probes from the domains of narrow slots. In addition, poorly selected fpoints are

�ltered out at this stage. These are fpoints that are accessible to a small number of

tips relative to other fpoints in the same face. The idea is to eliminate fpoints that

are close to corners and other obstacles.

4.1.2 Testing Existence of a Solution

For each face to be inspected, we check that there is a candidate set of fpoints that

have a non-empty domain. As described in Section 3.6.3, the candidate set must

meet the criteria of a measurement point selection strategy [11, 88, 39], which is out

of the scope of this dissertation. We require that a minimum number of fpoints be

uniformly distributed over the face.

4.1.3 Plan Validation

The validation step veri�es that the HLIP-tree represents a family of plans that are

feasible in practice. In particular, each fpoint that is inspected must be approachable.

In this section, we focus on the geometric problem of approachability.

We call each (s,p,o,f) branch in the HLIP-tree a primitive inspection plan

(PIP). We say that a PIP (s,p,o,f) is valid, if fpoint f is approachable when the

part is in setup s using probe p at orientation o. A HLIP-tree is valid if all the

PIPs in the tree are valid. The approachability constraint guarantees that a valid

high-level plan can be re�ned to a low-level plan (see Chapter 5).

Testing approachability for arbitrary probes is as hard as the regular path plan-

ning problem. Instead, we test for accessibility, which can be done e�ciently through

collision detection. Recall that any approachable PIP is also accessible. The reverse

is not always true, but our experiments show that it is rare to encounter such cases.

71

In any event, PIPs that are accessible but not approachable will be detected during

path planning (see Chapter 5).

Notice that we test the accessibility of the entire approach/retract path of an

fpoint (see Section 2.4.5). We compute the sweep of the ram/probe assembly along

this path and then test for collisions with the part. The ram and probe are ab-

stracted by grown lines (i.e., cylinders that are \capped" by spheres), so the sweep

calculations are trivial.

The veri�cation step returns all the invalid PIPs in the HLIP-tree. If no in-

valid PIPs are found, then the high-level plan is considered potentially valid, and

is expanded by the low-level planner (which may fail, since we do not guarantee

approachability at the high-level stage).

4.1.4 Incremental Knowledge Acquisition

The veri�cation step returns a set of invalid PIPs. We make sure that these PIPs

are not encountered again by excluding them from the knowledge base. Speci�cally,

if a PIP (s,p,o,f) is invalid then (s,p,o) is removed from the domain attached to

fpoint f. For straight probes this amounts to removing the direction s from the setup

orientations, D, associated with probe p (see Figure 3.6). For bent probes we do

not represent the (s,o) pairs explicitly (through a 4-D cone), so we cannot exclude

(s,o) without losing possibly valid con�gurations. To alleviate this problem, with

each domain we store the last setup s, probe p andD0

1
, that was computed during the

plan extraction. Then, the orientation o is removed from D0

1
. If D0

1
becomes empty,

then s is removed from the D
2
direction cone under p. (We will see in Section 4.2

that storing D0

1
also o�ers considerable speed-ups during plan extraction.)

After removing the invalid PIPs, we constrain the domains through accessibility

analysis. We have a variety of accessibility analysis algorithms that can be applied

with successively better approximations at higher computational cost. For example,

half-line abstractions vs. grown half-line abstractions, and accessibility of a single

fpoint vs. accessibility of an entire approach/retract path. Originally, our planner

applied these algorithms successively, but we soon discovered that the best approxi-

mations were performed anyway. This was due to the fact that the clustering process

caused the top clusters to be typically small and on the boundaries of its descendant

72

clusters. Therefore, directions were chosen from these boundaries, which were often

accessible directions for half-line abstractions but not for grown half-lines.

For straight probes we compute the intersection of 4 GACs | one GAC for the

stylus abstraction (a grown half-line), one GAC for the ram abstraction (a grown

truncated half-line), each of these computed both at the point of contact and at the

retraction point (i.e., at 2 points on the approach/retract path).

Computing D
2
for bent probes is expensive and depends on the number of points

sampled from the D
1
cone. Our experiments show that most often D

2
is nearly

complete (i.e., it contains almost all possible setup orientations). Due to this fact,

we �rst compute the D
1
cones and postpone the computation of D

2
. Associated

with each domain is a counter that stores the number of times the domain was

constrained. This counter is used to decide when to apply each constraint. If the

counter reaches a speci�ed limit, then the domain is marked as empty and can be

edited by the user.

For bent probes we compute the intersection of twoD
1
cones the �rst time around

| one at the point of contact and the other at the retraction point. We use the

stylus abstraction of a grown truncated half-line. The next time an invalid PIP from

the same domain is encountered, we compute the D
2
cones.

Notice that the invalid PIP (s,p,o,f) contains a speci�c probe p. Therefore,

we can compute the accessibility cones for the speci�c probe in the domain (see

Figure 3.6). However, our experiments showed that we are better o� computing the

cones for all the probes in the domain. This is another tradeo� between the higher

computational cost and the quality of the approximation.

4.2 Speed-Ups

4.2.1 Controller

The key to successfully generate inspection plans within a reasonable amount of

time is to acquire the cheapest knowledge that provides the most constraints on the

system. This implies ranking the invalid PIPs and the possible accessibility analysis

algorithms. A controller would be needed to schedule the knowledge acquisition

based on available resources. We did not attempt to design a sophisticated controller

73

Figure 4.1: Domains of neighboring fpoints

in this dissertation. Instead we chose a very simple one that is discussed below.

Again, we point out that knowledge acquisition can be performed in parallel, so in

theory all the domains can be constrained at once.

Our controller simply constrains the domain of the �rst invalid PIP encountered

during the veri�cation step. This introduces two speed-ups. First, the veri�cation

step can abort when the �rst invalid PIP is found. Second, once you constrain the

domain at one fpoint, then you typically do not need to constrain the domains of

neighboring fpoints, i.e., fpoints that belong to the same face. The idea is that the

domains of neighboring fpoints are the �rst to be clustered up the measurement

graph (see Section 3.5.1), and typically belong to a single cluster. The underlying

set represents the intersection of the domains, so by constraining the domain of one

fpoint we are implicitly constraining the domains of neighboring fpoints.

For example, Figure 4.1 shows a part with a single slot. Four fpoints are sampled

from the bottom of the slot. For sake of illustration, the probe is a half-line and the

domain is a single direction cone that represents possible setup orientations. The

GAC is computed for the two extremal fpoints. (In the �gure, the GACs are centered

at the fpoints.) The domains of the two internal fpoints are not constrained, and

remain complete direction cones. The result of clustering these direction cones is a

set of directions from which all the fpoints are accessible, and not just the original

two. Of course, this is an ideal example, but it occurs frequently in practice.

74

4.2.2 Caching Information

Other gains in computational speed are obtained from caching information. As we

mentioned in Section 4.1.4, each domain (for a bent probe) stores the last setup

s, probe p and orientations D0

1
that are encountered during the plan extraction

algorithm. If s and p are encountered again, then D0

1
is restored from memory,

otherwise it is computed using the algorithm in Section 2.5.3.

Under the assumption that the generated plans are similar after each iteration,

then this cache saves us the time to compute each D0

1
, which can be expensive. This

assumption is a type of coherence, because we do not expect a change in a single

domain to have a drastic e�ects on the entire plan. We will strengthen this argument

with our experimental results (Section 4.5). One way to strengthen coherence is by

using deterministic algorithms. We mentioned in Section 3.5.1 that randomness

could be added to the clustering algorithm. Unfortunately, this has the e�ect of

worsening the coherence assumption.

If the coherence assumption is wrong, then the planner will spend a lot of time

recomputing the D0

1
cones during the plan extraction algorithm. A sophisticated

controller (see previous section) should detect this problem and constrain more do-

mains at each iteration of the main algorithm. In such, we increase the chance of

extracting a valid plan, and decrease the number of times a plan is extracted. Our

controller cannot handle such load balancing, but in our experience the coherence

assumption holds in real-world parts.

In our implementation, the last s, p, and D0

1
are cached per fpoint. Therefore,

they will get over-written if the fpoint is inspected more than once in the generated

HLIP-tree. A solution is to store the cache per measurement, or to store a list of

cached con�gurations at each fpoint.

A similar caching mechanism can be used to speed up plan validation. We store

the valid PIPs under the assumption that memory access is cheaper than collision

detection.

4.3 Points of Failure

This section covers potential failures in the planner and how they are dealt with.

75

4.3.1 Correct Termination

First, there is the correct termination of the planner that occurs if no solution exists,

i.e., if there is (at least) a face that cannot be inspected. In this case, the user must

decide if a di�erent CMM (or a di�erent set of probes) can do the task and run the

planner again. Alternatively, the user can edit the measurement graph and inspect

the face by other means. The last resort is to modify the design of the part.

4.3.2 Empty D0

1 Cone

We should never encounter a failure during hierarchical constraint satisfaction for

straight probes (Section 3.5). There is the possibility, however, that we will en-

counter an empty D0

1
cone during the extraction of a HLIP for bent probes. This

can happen at step 3 of the algorithm (Section 3.5.3). After we select a setup s

and probe p, we extract the measurement sub-graph that corresponds to Cs;p and

assign to each leaf node a set containing a single primitive cluster that represents

the allowable probe orientations, D0

1
. D0

1
can be empty for several reasons:

1. The domain stored at this leaf node has not been constrained at all, therefore

any setup can be chosen. In particular, a setup from which the feature at this

node is not accessible, i.e., D0

1
is empty.

2. D
1
has been computed, but the computation of D

2
has been postponed (see

Section 4.1.4). The previous argument holds here too, because the setup ori-

entation is selected from D
2
.

3. The introduction of obstacles, such as the CMM table and other �xtures,

occurs after the setup is selected. These obstacles are considered during the

computation of D0

1
, but not during the computation of D

2
.

4. There may be precision errors and aliasing e�ects due to the discrete represen-

tation of direction cones (see Section 2.5.3).

If an empty D0

1
is encountered, then we select a probe orientation from D

1
. This

way we make sure that the plan extraction procedure always returns a HLIP-tree.

In addition, we exclude the o�ending setup orientation, s, from the D
2
cone under

76

F1 F2
X

GAC(X,F2)GAC(X,F1)

Figure 4.2: Problems with discrete direction cones

probe p. This is basically a mechanism for removing invalid PIPs from the domain

of a bent probe, so that the o�ending setup is not encountered again.

4.3.3 Fixtures and Other Obstacles

In general, our accessibility analysis algorithms assume no obstacles besides the part.

An exception is the algorithm for D0

1
for which we already have a determined setup,

so �xturing elements (e.g., the CMM table) can be taken into account. We assume

that for a given setup orientation we always rest the part on the table. This leads

to fpoints that are approachable if the part is \oating in space", but not when it

is resting on the table.

The HLIP extractor still works correctly, but less e�ciently. The veri�cation

step will detect the invalid PIPs, delete them from the appropriate domains, and

another plan will be generated. By deleting the invalid PIPs we guarantee never to

generate the same invalid plan.

In practice these cases are rare. To avoid them, it is wise to to use setup pref-

erences with complete �xturing information. Then, setups where the part is not

resting directly on the table can be speci�ed. Alternatively, one may limit the do-

mains of problematic faces that can be resting on the table, e.g., by eliminating the

o�ending setup.

4.3.4 Discrete Direction Cones

Other points of failure are in the form of sub-optimal solutions. These typically occur

due to problems with the discrete representation of direction cones. A simple case is

illustrated in Figure 4.2. The GACs of opposing faces of the cube are complementary

hemi-spheres. The vertical (up) direction falls precisely between 2 pixels (4 pixels in

77

(b) (c)(a)

Figure 4.3: Adding preferred directions

3-D) on the top face of the cubic representation of the direction cone. This leads to

2 problems. First, directions are selected from the center of the pixels (as illustrated

by the arrows in the �gure), and therefore the vertical direction cannot be selected.

Second, the intersection of the two GACs is empty, and the opposing faces cannot be

inspected in a single setup (with a straight probe) or with a single probe orientation

(with a bent probe).

Notice that using a �ner resolution in the representation does not solve these

problems. A possible solution is to jiggle the part's coordinate system slightly in the

hope that the desired orientations do not fall between pixels. Another is to grow

the computed cones on the topology of the cube (this can be done e�ciently using

digital image processing techniques [19]). The result of growing the cones is that

their intersection will no longer be empty and a single setup can be chosen to inspect

both faces. The problem with this approach is that it is overly optimistic and we

are still left with the problem that the exact vertical direction will not be selected.

We chose a solution that solves these problems through preferred setups and

orientations. The idea is to add to the computed cones the preferred directions that

lie on the closure of the cone, i.e., that intersect the grown cone. These preferred

orientations could be computed from knowledge about the features being inspected.

For example, we know that a hole is likely to be accessible from its axial direction.

In the example in Figure 4.2, the vertical orientation falls between 2 pixels. Each

direction maps to one and only one pixel. In particular, directions that fall between

two pixels map to only one of them. Lets assume that they map to the pixel on

their left, so the vertical orientation belongs to the GAC on the left, but not to

the GAC on the right. If the vertical orientation is speci�ed as a preferred setup

orientation, it will be added to the GAC on the right. In particular, this GAC will

have an additional lit pixel. Figure 4.3 (a) and (b) show the result of adding the

vertical direction to the left and right GACs of Figure 4.2, respectively. The added

78

pixel is marked with an x. The intersection of the two cones is shown in Figure 4.3

(c). Since the vertical orientation is a preferred direction it will be selected because

it maps to this pixel, even though it does not go through the center.

4.3.5 Numerical Precision

The �nal problem that can be encountered is numerical precision. In accessibility

analysis we are limited by the precision of the depth-bu�er. This was discussed in

Section 2.4.3. The collision detection package can also encounter numerical prob-

lems. Speci�cally, if the probe tip is very small, then the stylus is placed very close to

the point of contact. If the distance is smaller than a numerical tolerance, a collision

will be detected. This problem is handled by scaling the part appropriately.

4.4 Simulation and User Interaction

The simulator is used to view the inspection plan through a graphical interface.

The HLIP-tree is �rst linearized by a depth-�rst traversal of the tree. Then, the

user can step through the plan by advancing to the next operator. The user can

determine the granularity of the simulation by selecting the type of the operator.

For example, if the user selects the inspect-fpnt operator, then the simulation will

advance in small steps. However, if the user selects the change-setup operator,

then the simulation will advance in large steps.

When the user iterates under the inspect-fpnt operator type, there is the op-

tion to view the domain associate with the fpoint. This domain is rendered as a

transparent direction cone that is superimposed over the ram and probe. The GAC,

D
1
, and D0

1
cones are centered about the tip and scaled by the length of the probe.

The D
2
cone is centered about the origin of the ram. Figure 4.4 shows the GAC

superimposed over a straight probe.

The simulator has minimal facilities for editing the knowledge base. The user

can edit the domains of fpoints or completely remove undesirable fpoints from the

measurement graph. In the following section we will show how these facilities are

used to repair sub-optimal plans.

79

Figure 4.4: A simulation snapshot

4.5 Implementation and Results

The planner is written in C++ and executes on a Sun ULTRA 1 workstation. For

collision detection we use RAPID [21], which models obstacles as \polygonal soups".

Therefore, as with accessibility analysis, we assume that the part and CMM are ap-

proximated by polyhedra. The parts are modeled with the ACIS geometric modeler

[70], which provides a reliable mesh generator that is used to render the parts and

provides the polygons for RAPID.

4.5.1 Toy Parts

Figures 4.5{4.10 illustrate HLIPs generated for toy parts.

Figure 4.5 has an inspection plan for the F2 part, which is a 3-D generalization of

the 2-D example that was used throughout Chapter 3 (see Figure 3.1). Our planner

produces the desired plan as illustrated in Figure 3.10. Notice that the top face is

inspected twice | once with each probe under each tolerance. The vertical setup

was speci�ed as a preferred setup, so that the part lays at on the table.

Figure 4.6 and Figure 4.7 illustrate the inspection of a part that is similar to F2.

Here are two holes of identical diameter and depth that di�er in their orientation.

80

Using a CMM with a �xed head (Figure 4.6), the planner computes the setups in

which each hole can be inspected. Again, the top face is inspected twice | once

in each setup. Using an orientable head (Figure 4.7), the part is inspected under a

single probe and setup, but with two di�erent probe orientations.

Figure 4.8 is another part that is similar to F2. This time the holes are per-

pendicular to each other and to the top face. They also have di�erent diameters

and depths. The result is that each is inspected by a di�erent probe at a di�erent

orientation. Notice that the small probe cannot inspect the top face at the same

orientation that it inspects the hole.

Below is the textual output of the plan illustrated in Figure 4.8. Five fpoints

are sampled from each face. Notice that only 3 fpoints are inspected in the small

hole, because the other two are �ltered out during the knowledge base initialization

step. Read \record-meas 1 2 3 15" as: record measurement of fpoint 15 that sits

on face 3 that is part of feature 2 in tolerance 1. The indices are absolute values,

e.g., feature 2 identi�es a speci�c feature and not the second feature in tolerance

1. All the indices (including the probes) start from 0. The setup is denoted by the

orientation (i.e., direction or unit vector) of the ram with respect to the part (in

the part coordinate system). The probe orientation is denoted by a direction in the

CMM coordinate system.

01) change-setup 0 0 1

02) change-probe 0

03) change-orien -0.57 -0.57 0.59

04) inspect-fpnt 20

05) record-meas 0 0 4 20

06) inspect-fpnt 21

07) record-meas 0 0 4 21

08) inspect-fpnt 22

09) record-meas 0 0 4 22

10) inspect-fpnt 23

11) record-meas 0 0 4 23

12) inspect-fpnt 24

13) record-meas 0 0 4 24

14) change-orien -0.15 -0.98 -0.09

15) inspect-fpnt 5

16) record-meas 0 1 1 5

17) inspect-fpnt 6

18) record-meas 0 1 1 6

19) inspect-fpnt 9

20) record-meas 0 1 1 9

21) change-probe 1

22) change-orien 0.99 0.03 0.09

23) inspect-fpnt 15

24) record-meas 1 2 3 15

25) inspect-fpnt 16

26) record-meas 1 2 3 16

27) inspect-fpnt 17

28) record-meas 1 2 3 17

29) inspect-fpnt 18

30) record-meas 1 2 3 18

31) inspect-fpnt 19

32) record-meas 1 2 3 19

33) inspect-fpnt 20

34) record-meas 1 0 4 20

35) inspect-fpnt 21

36) record-meas 1 0 4 21

37) inspect-fpnt 22

38) record-meas 1 0 4 22

39) inspect-fpnt 23

40) record-meas 1 0 4 23

41) inspect-fpnt 24

42) record-meas 1 0 4 24

The last two toy parts illustrate extreme cases. The �rst, called \swiss-block",

is a block with 10� 10 holes. The second, called \swiss-sphere", is a sphere with 20

holes. In both cases, the measurement graph contains a single tolerance for all the

81

p1 p1 p2 p2

Figure 4.5: HLIP for F2 (�xed head)

s1 s1 s2 s2

Figure 4.6: HLIP for F3 (�xed head)

o1 o1 o2 o2

Figure 4.7: HLIP for F3 (orientable head)

p1-o1 p1-o2 p2 p2

Figure 4.8: HLIP for F4 (orientable head)

82

Figure 4.9: HLIP for swiss-block (�xed head)

Figure 4.10: HLIP for swiss-sphere (orientable head)

holes, and the CMM has a single probe (that can �t into all the holes). As expected,

the block is inspected in a single setup by a straight probe (Figure 4.9). On the

other hand, the sphere cannot be inspected in a single setup by a straight probe. A

di�erent setup is needed for each hole. Using a bent probe, the sphere is inspected

in two di�erent setups | one of which is illustrated in Figure 4.10 (not all probe

orientations are shown).

4.5.2 Real-World Parts

Three real-world parts, called PolySqrTa, cami2, and nclosurT, were used to test

the planner. Figures 4.11{4.16 illustrate the inspection plans that were generated

for these parts. All the setups and probes that appear in the HLIPs are illustrated

in these �gures, but only a selection of the probe orientations is shown. The HLIPs

for a CMM with a �xed head are illustrated completely.

83

faces fpnts/face nodes edges polys
swiss-block 106 6 4808 4812 10012
swiss-sphere 41 7 1260 974 2515
PolySqrTa 25 5 48 72 96
cami2 24 7 408 423 832

nclosurT 103 6 978 1064 1980

Table 4.1: The input parts

probes setups
swiss-block 1 1
swiss-sphere 1 2
PolySqrTa 3 1
cami2 2 8/0

nclosurT 2 6

Table 4.2: The number of probes and preferred setups

tols ftrs rdtms faces fpnts
swiss-block 1 100 0 100 600
swiss-sphere 1 20 0 20 114
PolySqrTa 12 16 1 24 114
cami2 10 13 1 15 96

nclosurT 12 31 0 50 274

Table 4.3: The measurement graphs

84

p1 p1 p1

p2 p2 p2

Figure 4.11: HLIP for PolySqrTa (�xed head)

Tables 4.1{4.3 show the complexity of the input models. Table 4.1 holds the size

of the geometric model in terms of the number of faces and the number of fpoints

that were sampled from each face. In addition it gives an idea of the complexity

of the mesh that is used to render the part during accessibility analysis and the

number of polygons that are used during collision detection. Table 4.2 gives the

number of probes used in each experiment and the number of preferred setups that

were speci�ed. Finally, Table 4.3 shows the size of the measurement graph after

the knowledge base has been initialized (some fpoints have already been �ltered

out at this point). Notice that the complexity of the measurement graph depends

also on the arcs connecting tolerances to features and so forth, but we only supply

the number of nodes in the graph. Speci�cally, the number of tolerances, features,

datums that can rest on the table (rdtms), faces, and fpoints.

The results show that PolySqrTa can be inspected in a single setup. If the CMM

has an orientable head, then a single probe (the smallest of the 3 that were supplied

to the planner) can be used to inspect the entire part (Figure 4.12). Two probes are

needed to inspect the part with a �xed head. A long probe is needed to reach low

85

p2-o1 p2-o2 p2-o2

Figure 4.12: HLIP for PolySqrTa (orientable head)

points, such as the one in the top center image of Figure 4.11. Unfortunately, this

probe is too thick to inspect the narrow slots, and therefore at least two probes are

needed. Notice that the datum that is resting on the table is not inspected directly

| we inspect the table instead. For accuracy reasons, the table is inspected with

each probe, as illustrated on the left of Figure 4.11.

The cami2 part is inspected with a single probe. If the CMM has an orientable

head, then the entire part can be inspected with a single setup as illustrated in

Figure 4.14. This plan was generated without any explicit setup preferences. The

setup was selected so as to place the primary datum on the table. Using a �xed head

the CMM must inspect the part with at least 5 setups, as shown in Figure 4.13.

Originally, we ran the planner without any preferred setups, but the result was that

some of the setups were unstable. So we supplied 8 preferred setups | 6 for the

main axes and 2 along the orientation of the large hole. The result was a plan with

6 setups | one of which was not speci�ed by our preferences. After editing the plan

in the simulator, an o�ending fpoint was found. This fpoint was very close to the

one illustrated in the bottom center image of Figure 4.13, but could not be inspected

in this orientation. Therefore, we deleted this fpoint from the measurement graph

and ran the planner again. This time the desired plan was obtained, which has only

5 setups.

Figure 4.15 illustrates the HLIP generated for the nclosurT part when the CMM

has a �xed head. Three setups are needed to inspect the part. Notice that the

third setup is needed to inspect both features on the bottom left of the �gure.

Unfortunately, this is not a very stable setup. The user has three options: (1) obtain

86

s1 s2 s3

s4 s5

Figure 4.13: HLIP for cami2 (�xed head)

o1 o2 o3

Figure 4.14: HLIP for cami2 (orientable head)

87

s1-p1 s1-p2 s2-p2

s3-p1 s3-p1 s3-p2

Figure 4.15: HLIP for nclosurT (�xed head)

p1-o1 p1-o2 p1-o3

p1-o4 p1-o5 p2-o4

Figure 4.16: HLIP for nclosurT (orientable head)

88

Figure 4.17: Inspecting a face that is resting on the table

a longer probe that can inspect both features in a stable setup; (2) force the planner

to extract a plan with more than 3 setups, by editing the domains of measurements

or by applying a weight function to the clustering process (see Section 3.6.1); and (3)

use an orientable head. The latter choice produces an inspection plan with a single

setup that is illustrated in Figure 4.16. This plan su�ers from one abnormality that

is shown in the top right image. Figure 4.17 is a magni�cation of this image without

the CMM table. Notice that the probe is inspecting a face that is resting on the

table, so the tip of the probe penetrates the table! We explain in Section 4.3.3 that

these problems arise from the fact that accessibility analysis ignores all obstacles

but the part itself. We chose not to test for collisions between the tip and the

table, because these plans may be reasonable in some sense. For example, with

the nclosurT part, it is reasonable to elevate the part by placing it on a block.

Such �xturing information can be integrated with the preferred setups, but was not

implemented with our planner.

4.5.3 Run-time Results

Table 4.4 shows the run-time results for the planner when the CMM has a �xed

head. The �rst column shows the number of iterations the planner performed

through the generate-and-test loop. The last column shows the total amount of

time (in seconds) that the planner executed. The middle columns give the average

89

iter sol? extract valid? KA total
swiss-block 1 0.00 0.22 37.00 { 37.22
swiss-sphere 53 0.00 0.15 0.17 4.45 249.10
PolySqrTa 4 0.00 0.05 1.15 1.46 9.22
cami2 36 0.00 0.05 0.47 4.30 169.35

nclosurT 61 0.00 0.14 0.56 7.90 516.89

Table 4.4: Run-time results (�xed head)

iter sol? extract valid? KA total
swiss-sphere 98 0.00 19.70 1.15 5.12 2540.89
PolySqrTa 41 0.00 0.13 0.52 0.79 58.53
cami2 32 0.00 2.51 0.27 2.18 156.75

nclosurT 120 0.00 0.66 0.51 6.08 863.23

Table 4.5: Run-time results (orientable head)

time (in seconds) that was spent at each step of the algorithm: checking if a solution

exists, extracting a plan, validating the plan, and acquiring knowledge. Table 4.5

shows the results for a CMM with an orientable head.

It is easy to see that the time spent checking if a solution exists is negligible.

Also, the time spent validating the plan is amortized over the entire planning pro-

cess, which shows that the coherence assumption typically holds (see Section 4.2.2).

The swiss-block and PolySqrTa in Table 4.4 have long validation times on average,

because the plan is produced in very few iterations. The swiss-sphere in Table 4.5

has relatively long validation time on average, because the coherence assumption

does not hold. This can also be seen from the average time to extract a plan to

inspect the swiss-sphere with an orientable head. At each iteration the planner gen-

erates a plan with a single setup. This setup keeps changing from one iteration to

the next, hence the coherence assumption is violated. Only in a later stage does the

planner compute some D
2
cones and realize that the part cannot be inspected in a

single setup.

The time spent performing accessibility analysis in general outweighs the time

spent performing the other steps in the algorithm. A better controller, other than

�nding the �rst invalid PIP and constraining the domain associated with it, may

90

GAC

itr prbs sec/prb %KA
swiss-block 0 { { {
swiss-sphere 52 1.00 4.45 100.00
PolySqrTa 3 3.00 0.49 100.00
cami2 33 2.00 2.28 100.00

nclosurT 60 1.87 4.23 100.00

Table 4.6: Accessibility analysis results (�xed head)

D
1

D
2

itr prbs sec/prb %KA itr prbs sec/prb %KA
swiss-sphere 68 1.00 2.02 27.58 18 1.00 20.00 72.42
PolySqrTa 34 2.21 0.26 61.20 5 1.40 1.12 38.80
cami2 31 2.00 1.09 100.00 0 { { 0.00

nclosurT 89 1.81 2.07 46.17 14 1.64 15.37 53.83

Table 4.7: Accessibility analysis results (orientable head)

improve these results. We believe that the main contributions of these results are to

show that the planner actually works and is very robust given very little assumptions

about the input.

Finally, Tables 4.6 and 4.7 give a breakdown of the time spent during knowledge

acquisition. For straight probes, we spend most of of the time computing GACs.

For bent probes, part of the time is spent computingD
1
cones and the other is spent

computing D
2
cones. Each table shows the number of iterations spent computing

each cone, the average number of probes in the constrained domain, the time (in

seconds) spent computing the cones per probe in the domain, and the percentage of

time spent computing these cones during knowledge acquisition. For example, on

average we spend 4.23 seconds per probe computing GACs for the nclosurT part.

Remember that we actually compute 4 GACS for grown half-lines (see Section 4.1.4),

therefore we spend an average of 1.06 seconds computing each GAC, which is a little

less than the result of Section 2.4.2.

91

Up to 10 directions were sampled from the D
1
cones in order to compute the D

2

cones. Table 4.7 shows clearly that it is very expensive to compute the D
2
cones.

4.6 Conclusions

We have developed a framework for generating inspection plans of high quality

through the use of a constraint hierarchy. In doing so, we have decomposed the

problem into knowledge acquisition and plan generation. The former is an expensive

procedure that involves geometric computations, hence it is performed incrementally.

By operating incrementally, it is often possible to produce a good plan without

performing all the geometric computations. Plan generation is a relatively cheap

procedure that involves solving the CSP using clustering techniques. The clustering

approach produces satisfactory plans rapidly. Formulating and solving the problem

by true optimization seems infeasible. It would require precise knowledge of the

costs (in time and accuracy) of changing setups, probes and probe orientations, and

would involve searching over continuous domains of orientations.

The generate-and-test approach is e�ective, because the generation step is rela-

tively \smart". It takes into account the approachability constraints. When these

constraints are (approximately) satis�ed, the generated plan is highly likely to suc-

ceed. If a plan fails the veri�cation step, information is fed back to the generator.

The planner has been implemented and tested on real-world mechanical parts

and is su�ciently fast for practical applications.

92

Chapter 5

Path Planning

5.1 Introduction

The focus of this chapter is on the re�nement of a HLIP-tree into a low-level in-

spection plan (LLIP). A low-level plan is a sequence of operators, which include

the high-level operators (change-setup, change-probe, etc.) and an additional

low-level operator, move-cmm-ram. The re�nement process entails linearizing the

HLIP-tree into a suitable HLIP, and insertion of move-cmm-ram operators to specify

a path plan for the CMM. HLIP-tree linearization involves a depth-�rst traversal

of the tree (see Section 3.2.3). Any depth-�rst traversal produces HLIPs of similar

quality, however the order of traversal is crucial for path planning, especially the

order in which the inspect-fpnt sub-trees are visited. Therefore, the linearization

process is not entirely independent of path planning.

In this chapter, we concentrate on the path planning problem for a part in a

given setup using a speci�c probe in a speci�c orientation. That is, we ignore the

linearization of the entire HLIP-tree and focus on the fpoints in a single sub-tree.

The goal is to �nd an e�cient and collision-free path for the CMM to inspect them

all. This involves both path planning for collision avoidance, and sequencing the

points to minimize the length of the path, which is a variation of the traveling

salesperson problem (TSP) [13, 38, 63].

In addition, the LLIP includes a workpiece localization process after each setup is

performed. The localization problem is the problem of determining the relationship

between the part and CMM coordinate systems. The localization problem is treated

separately from the path planning problem and is discussed in Section 5.6.

93

(a) obstacle and goals (b) sub-optimal tour

(c) roadmap (d) optimal tour

Figure 5.1: A multiple-goals path planning problem

Previous work on path planning for CMMs has concentrated on sub-problems,

such as path planning between two points [44, 45, 49], sequencing the measurement

points without regard to obstacles and collisions [11, 46], and path planning for a

speci�c class of probes that are aligned with the CMM ram (i.e., straight probes)

[23, 81]. Other work has focused on heuristics for CMM path planning [18, 33, 41,

86, 88] and feature-based path planning [54], which are incomplete solutions.

Sequencing the measurement points before path planning has the following draw-

backs. First, it may produce sub-optimal tours, because the points are sequenced

with respect to a distance function that ignores the obstacles. The second draw-

back is that path planning between two successive points may be very di�cult.

Figure 5.1a is a 2-D example of a multiple-goals path planning problem (de�ned in

Section 5.3). Figure 5.1b illustrates an optimal tour of these goals without regard

to the obstacle. The dashed arrows are the collision-free paths that are needed to

complete the tour. Notice that in general it is not trivial to plan these paths, and

that the generated plan is far from optimal.

94

In our scheme, we take advantage of the typically dense distribution of measure-

ment points on the boundary of the part. Thus we expect a measurement point to

have local neighbors that can be connected through simple paths. That is, a local

planner, such as one that connects two neighboring points with a line-segment, will

be very e�cient and very likely to succeed. The idea is to create a roadmap of

free-space [37] in the spirit of the probabilistic roadmap planner [31, 32], where the

measurement points are nodes in the network. Once all the measurement points are

in a single connected component of the roadmap, then a tour of the points is found

by solving the appropriate TSP. Figure 5.1c illustrates the roadmap for the 2-D

example, and Figure 5.1d is the optimal tour. Notice that we have the additional

complexity of constructing the roadmap, but the local path planner used to connect

nodes in the network is e�cient and simple.

This chapter makes several contributions. The proposed path planner is practical

and complete. In particular, the method is independent of the underlying geometry

of the CMM probes and obstacles, therefore it can be easily integrated into di�erent

inspection planning systems. In fact, the method is a general framework for solving

the multiple-goals path planning problem. The path planner is fast and incorporates

heuristics without loss of completeness. Finally, standard TSP solvers can be used

to �nd optimal paths in the generated roadmap.

The remainder of the chapter is organized as follows. First, we discuss related

work. Next, we describe a general method for solving the multiple-goals path plan-

ning problem. Then we describe the heuristics that are used to drive the CMM

path planner. Finally, we present our implementation and experimental results. Be-

fore concluding this chapter, we briey discuss the localization problem and how it

relates to CMMs.

5.2 Related Work

5.2.1 General Path Planning

Robot path planning has been studied intensively over the past two decades [24, 37].

The classic path planning problem is to �nd a collision free path for a robot to get

from an initial state to a goal state within a world of static obstacles. There are

95

many variations of the problem, such as obstacles in motion or �nding an optimal

path for the robot.

The con�guration space (C-space) is a mathematical representation for the path

planning problem [47, 48]. All possible con�gurations of the robot are mapped to

points in C-space. The free-space is the subset of C-space that contains all the

valid con�gurations of the robot, i.e., the con�gurations in which the robot does not

collide with any obstacles. Each obstacle is mapped to a subset of C-space, called

a C-space obstacle, which includes all the con�gurations in which the robot collides

with the obstacle.

The following is a categorization of di�erent approaches to path planning. Each

is a general method for solving the problem that may be practical for a speci�c

domain. Much depends on the speci�c problem, the resources available and the

expectations from the resulting path.

� Roadmaps are graphs that are embedded in free-space | nodes are valid

con�gurations and arcs are collision-free paths. Finding a solution path in-

volves connecting the robot's initial and goal con�gurations to the graph and

then searching the graph for a path between these connections. A variety of

roadmap techniques have been developed including visibility-graphs [48], re-

traction graphs (i.e., skeletal maps, such as Voronoi diagrams), freeway graphs

[6], and silhouette methods [9]. The freeway method is a heuristic technique

that works well in low dimensions with scattered environments (e.g., for mo-

bile robots). The other roadmaps are expensive to compute. Our work is

derived from the probabilistic roadmap planner [31, 32] that will be described

in Section 5.3.

� Cell decomposition of free-space is another graph embedding. This time

the nodes are the cells, with adjacent cells (implicitly) connected by an arc. A

path from the robot's initial con�guration to the goal con�guration is produced

from a channel of cells connecting the two con�gurations [37].

� Potential �eld methods use a potential function over free-space to guide the

robot from the initial con�guration to the goal con�guration [37]. Obstacles

repel the robot, while the goal con�guration attracts it. The robot typically

96

follows the gradient of the potential function to get closer to the goal. Local

potential functions are largely a�ected by local obstacles, hence these planners

often get stuck in local minimums and are incomplete. However they tend to

be very fast and there are techniques to escape local minimums (e.g., simulated

annealing or random walk).

5.2.2 CMM Path Planning

Walker and Wallis describe an inspection planning system that performs path plan-

ning for a CMM with a probe that is aligned with the ram axis (i.e., a straight

probe) [81]. Generating a path between the probing points involves ordering the

points and then connecting them. They observe that the ordering of the points is a

variation of TSP, and propose a greedy method that orders the points hierarchically:

�rst by the feature that they belong to and then by choosing the next point that is

closest using the natural distance metric. Generating a path between two probing

points is done via a straight line segment. If this path collides with the part then

two mid points are added: one above the current point and the other above the next

point, both at a height that is safely above the part. This path is feasible, because

the probe is abstracted by a cylinder, which gives it the property that it can safely

approach points along its axis. They suggest improving this scheme by a heuristic

that traverses the boundary of the part to �nd a shorter path, which resembles a

greedy visibility-graph method [37, 47, 48].

Gu and Chan report on another system that performs path planning for straight

probes [23]. Their method is very similar to Walker and Wallis' method, except in

the manner that paths are tested for feasibility. Gu and Chan compute the volume

swept by the probe and check for interference with the part, while Walker and

Wallis compute the C-space obstacle and perform line classi�cation. It was cheaper

for Walker and Wallis to compute the C-space obstacle, because they used a CSG

representation [65], which implies that null-object detection is expensive, but line

classi�cation is cheap. Walker and Wallis do not detail in their paper how they grow

the CSG model, which is a non-trivial problem [67]. From the �gures in their paper

[81], they do not grow the model correctly.

97

Khoshnevis and Yeh describe a CMM inspection planner [33]. Unlike the systems

above, they assume that the probe is orientable, i.e., it is not necessarily aligned with

the ram axis. They contribute two ideas: �rst they reduce the 3-D path planning

problem into a 2-D one, then they use 2D accessibility analysis to generate path

plans. The reduction is performed by slicing the part model with planes that are

parallel to the ram and planning a path within each slice. The paths are then

connected using slices from planes that are perpendicular to the �rst ones. The main

problem with this scheme is that the planner is incomplete and largely depends on

the orientation of the slicing planes.

Yau and Menq describe path planning for dimensional inspection [86, 88]. They

perform path planning in a hierarchical manner: �nd a path for the tip, verify the

path for the stylus and then for the ram. The initial path is a line segment connecting

the two probing points. If collisions are detected, then correction routines are called

based on heuristic rules to modify the path. The rules work in common situations,

but otherwise the planner is incomplete. Lim and Menq [41] expand on this work

by performing global accessibility analysis before path planning (Yau and Menq

just perform local accessibility analysis). This accessibility information is used to

cluster probe directions and perform path planning on single directions. The initial

default path between two probing points is modi�ed by adding approach paths to

the probing points. These paths are in the direction of the probe orientation, hence

minimizing the volume swept by the probe.

Some e�ort has been applied to �nd an optimal path for a CMM between two

measurement points [49, 44, 45]. The general problem of �nding the optimal path

between two con�gurations has been solved using the visibility-graph algorithm [37,

47, 48]. Lu, Ni and Wu propose an octree representation for the part in order to

simplify the computation of the C-space obstacle [49]. Limaiem and ElMaraghy

use a cell decomposition of C-space and then Dijkstra's shortest path algorithm to

�nd the optimal path [44]. Lin and Murugappan abstract the CMM probe as a

point and use ray shooting techniques to �nd the path [45]. We feel that �nding

the optimal path between two arbitrary points has been solved in the general case

and is not critical for CMM path planning, which needs to address multiple points.

Most measurement points have close neighbors, therefore the path between them is

typically trivial and can be resolved by a local planner.

98

Cho and Kim concentrate on measurement point selection and sequencing for

inspection of sculptured surfaces [11]. In particular, they investigate results of se-

quencing the points using several greedy algorithms and subdivision algorithms for

approximating the TSP. Collision avoidance is not the focus of their work. Simi-

lar work on measurement point sequencing is documented by Lin and Chen [46].

Merat and Radack exploit a feature-based system to prede�ne measurement points

and paths as part of the feature de�nition [54]. The system lacks the capability to

automatically repair plans that are infeasible due to interacting features.

5.3 General Method

The CMM path planning problem can be generalized as a multiple-goals path plan-

ning problem, which is an instance of a shortest path problem [57]. Given a robot,

a set of obstacles, and a set of goal con�gurations, the problem is to �nd a shortest

tour of the goal con�gurations, or notify that no such tour exists. We de�ne a tour

to be a closed and collision-free path that visits each goal at least once. Optimality

is not clearly de�ned in the general case [57], but for CMMs we wish to minimize

the length of the path.

The multiple-goals path planning problem is the join of two classic problems:

path planning and network optimization. Unlike standard network optimization

problems, however, the structure of the given graph is not explicitly given, but is

implied in the structure of the underlying C-space. In particular, it is not known

a-priori if a path exists between two con�gurations, let alone what the shortest path

is.

It is easy to see that a solution to the multiple-goals path planning problem

exists i� all the goal con�gurations are in a single (path) connected component of

free-space. The optimal solution, if one exists, is a tour of the goal con�gurations,

where the path between successive goals is the shortest (otherwise we can obtain a

shorter tour by replacing this path with the shorter one). This simple observation

leads to a naive algorithm that solves the multiple-goals path planning problem.

First, construct a network where the nodes are the goal con�gurations, and each pair

of nodes is connected by an edge that represents an optimal path. Then, extract

an optimal tour by solving the TSP. Unfortunately, this is not a very practical

99

approach, because not only is �nding an optimal path between two con�gurations

NP-hard [37], but TSP is NP-hard as well [13, 38, 63].

In this section, we present a practical path planner. The planner is practical in

the sense that it will most often �nd a solution (if one exists) in a reasonable amount

time, and this solution will be near optimal. The planner is probabilistically complete,

i.e., it will �nd a solution if left to run long enough. If the computational resources

are available, then the planner can incrementally return plans that converge to an

optimal solution. The planner can be implemented once for a variety of robots, and

is exible enough to allow the integration of domain knowledge that is speci�c to

each robot.

Our proposed planner is based on the probabilistic roadmap planner (PRM)

[31, 32] and works in two steps: (1) construct a roadmap that includes the goal

con�gurations in a single connected component (or decide that they cannot be placed

in a single component, hence no solution exists), and (2) extract an optimal tour

from the roadmap (here optimality is with respect to the roadmap).

5.3.1 Roadmap Construction

The roadmap is an undirected graph G(V;E) that captures the connectivity of free-

space [37]. The nodes, V , correspond to con�gurations in free-space, while the edges,

E, are collision-free paths. Each edge is assigned a weight that is equivalent to the

length of its path.

The elementary operation in our planner is the incremental insertion of nodes

into the roadmap. This is identical to the procedure used in PRM and is as follows:

PROCEDURE Insert(Node v, Roadmap G(V,E))

if v is not in free-space then:

return failure.

otherwise:

let U be the neighborhood of v in V.

add node v to V.

for every u in U do:

call local planner to find a path between u and v.

if a path is found then:

100

let L be the length of the path.

add edge {u,v} to E with weight L.

The neighborhood of a node is de�ned as the nodes that are nearest to it in the

roadmap. The local planner should be an e�cient path planner, but not necessarily

a very powerful one (i.e., it can fail to �nd a path even if one exists). The planner

should most often succeed in �nding paths between nodes that are relatively close

to each other, i.e., neighboring nodes. A simple local planner is one that tests paths

that are line-segments in the con�guration space [31, 32].

Finally, we construct the roadmap in the following manner:

1. Initialization Step: Create an empty roadmap and insert the goal con�gu-

rations.

2. Enhancement Step: Incrementally insert random nodes (or nodes selected

with domain speci�c knowledge) into the roadmap until all the goal con�gura-

tions are in a single connected component of the roadmap (or determine that

they cannot be all connected, hence no solution exists).

The algorithm for constructing the roadmap is identical to its PRM counterpart

[31, 32], except that we make sure to include the goal con�gurations. Using similar

arguments as with PRM, it is clear that the planner will capture the connectivity of

free-space if the algorithm is run inde�nitely, hence it is probabilistically complete.

Domain knowledge is incorporated via the local planner and the enhancement

step. These are heuristics that can greatly speedup the roadmap construction. We

cover CMM heuristics in Section 5.4.

5.3.2 Optimal Tour Extraction

The constructed roadmap has the goal con�gurations all in one connected compo-

nent, hence it is clear that there exists a path (in the roadmap) that traverses all of

them. This is not a tour of the roadmap, because the roadmap contains superuous

nodes that were added during the enhancement step | these nodes do not need

to be traversed by the path. In addition, the path is optimal with respect to the

roadmap, hence it may not be the optimal path in reality. If the path is far from

101

optimal, then the roadmap can be incrementally re�ned (by the enhancement step)

to better capture the structure of the free-space. However, since TSP is NP-hard,

its solution is approximated anyway.

A shortest path is found in a two step process:

1. Preprocessing Step: This is an optional step that involves preprocessing the

roadmap to meet the requirements of the speci�c TSP algorithm in use.

2. Solve TSP: Solve the problem by applying a TSP algorithm to the roadmap.

The optional preprocessing step augments the roadmap into one that is more

suitable for classic TSP solvers. Classic solvers typically assume the input in the

form of a distance matrix, i.e., a complete directed graph with weights assigned to

each edge. Our roadmap is inappropriate for the following reasons: (1) it contains

superuous nodes, (2) it is not a complete graph, and (3) it does not ful�ll the

triangle inequality. The triangle inequality is highly desirable, because then there

are TSP algorithms that will �nd an approximate solution within a constant ratio

from the optimal one [13, 38, 63].

Fortunately, the roadmap may be augmented in polynomial time. We create a

new roadmap that contains only the goal con�gurations. Then for every pair of nodes

in the new graph, we create an edge that is the shortest path in the original roadmap.

The all-pairs shortest-path problem is of polynomial complexity [13]. Note, that if

memory requirements are tight, then just the length of the shortest path is needed,

because the path itself can be extracted from the original roadmap. (If the local

planner is deterministic, then the paths need not be stored in the roadmap either

[31, 32].)

5.3.3 Example

Figure 5.2 illustrates the planning algorithm on a simple 2-D example. We as-

sume that the neighborhood of a point consists of those points that are within a

predetermined distance. The local planner that is used in this example connects

neighboring points with line-segments. If the line-segment is a collision-free path,

then the local planner returns it, otherwise it fails. The initialization step produces

the roadmap in Figure 5.2a. Free-con�gurations are added randomly until the goal

102

(a) Roadmap initialization (b) Roadmap enhancement

(c) TSP preprocessing (d) TSP solution

Figure 5.2: A 2-D illustration of the path planning algorithm

con�gurations are in a single connected component as in Figure 5.2b. Goal con�gu-

rations are marked as circles and random nodes are marked as squares. Notice that

the roadmap as a whole is not connected, because of the disconnected component

in the bottom left corner. The TSP preprocessing step removes the nodes that were

added in the enhancement step and produces the roadmap illustrated in Figure 5.2c.

Notice that the new edges may be more complex than line-segments, and some of

the paths overlap. The result is a connected roadmap on which we apply a standard

TSP algorithm to produce the path illustrated in Figure 5.2d.

5.4 CMM Heuristics

In this section we cover the various elements of the multiple-goals path planning

problem with respect to CMMs. We introduce domain speci�c heuristics that guide

the local path planner and the enhancement step in the general algorithm.

103

p’

q

p

Figure 5.3: The approach/retract path

5.4.1 The Domain

The robot is a CMM. This is a holonomic robot where the ram has 3-dof for trans-

lations in the X, Y , and Z directions. Velocity and other motion constraints are

insigni�cant in our problem. We assume that a speci�c probe is �xed to the ram in

a predetermined orientation, therefore the C-space is 3-D.

We also assume that the probe is a touch-trigger probe that contains a single

spherical tip. The idea is to limit the number of positions from which a probe can

measure a point. If the point is a non-singular point on a surface, then a spherical

tip is in contact with this point in at most one position. A probe with multiple tips

(e.g., a star probe [5]) often can contact a point with more than one tip. This adds

another level of complexity to the problem, and is not discussed here.

The obstacles in our domain are the part that is being inspected, the CMM table

and the �xturing elements. The position of the part on the table is determined by

the part setup.

The input to the path planner is a list of fpoints, which are the children of a

probe orientation node in the HLIP-tree. For each fpoint, the setup, probe and

probe orientation are known, and therefore there is a unique pose in which the

speci�ed tip's center coincides with the point.

104

(a) (b) (c)

Figure 5.4: Plans generated by the local planner

Recall that if p is the point to be measured on the surface of the workpiece, then

placing the center of the tip at p will cause the probe to penetrate the part (see

Figure 5.3). Instead, we place it at the o�set point p0 = p+ r~n, where r is the radius

of the tip and ~n is the normal to the surface at p. (We assume that p is not singular,

because it is not wise to measure a singular point with a tactile probe.)

It is common to have an approach/retract path for every measurement point [11,

88]. The idea is to minimize errors and possible crashes, when the probe approaches

a measurement point. For maximum accuracy, the approach direction should be

normal to the surface at this point. To minimize crashes and increase accuracy, the

approach is done at low velocity. (Remember that the manufactured part is never

perfect.) The high-level planner veri�es the approach/retract path, q ! p0 ! q, for

each fpoint p that is to be inspected (see Figure 5.3), therefore this is not repeated

by the path planner. Instead, we plan a path between the retraction points, q, and

trivially insert the approach/retract path into the �nal plan.

5.4.2 Local Planner

The local planner is an e�cient path planner, but not necessarily complete. We

expect it to most often succeed in �nding paths between nodes that are relatively

close to each other. We use a generate-and-test planning paradigm | generate a

path between two nodes and test for collisions. If the planner fails to �nd a simple

path, then more complex ones are tried before the planner returns failure.

The geometry of the CMM ram and probe suggests simple paths that are likely

to be collision-free. They are listed in order of complexity:

1. Translate along the line-segment that connects the two nodes (Figure 5.4a).

105

2. Translate along the axis of the probe, then translate along a line-segment

parallel to the one above, and �nally translate back along the axis of the probe

(Figure 5.4b).

3. Translate along the axis of the probe, then translate along the axis of the

ram. Next, translate along a line-segment that is parallel to the �rst. Finally,

translate back along the ram axis, and then back along the axis of the probe

(Figure 5.4c).

The distance of translation along the axis of the probe or ram depends on the

position of the obstacles. Simple collision checks, such as the heuristics suggested by

Yau and Menq [86, 88], can be used to generate these paths. Notice that for straight

probes the last two paths coincide and are similar to those generated in [23, 81].

If two neighboring fpoints share a common face and the planner fails to �nd a

simple collision-free path between them, then 2-D path planning can be employed.

Assuming that the entire face is accessible to the CMM in the given con�guration

and the face is connected, then a collision-free path exists between the two points

along the surface of the face. Such a planner is hard to implement and was not

attempted by us. We feel that the whole principle of the roadmap method is to

keep the local planner simple and e�cient. (An alternative to 2-D path planning is

suggested by the enhancement step in the following section.)

We described heuristics for generating simple paths for the CMM. Testing these

paths for collisions can be performed in object space or C-space. Computing the

C-space is an expensive procedure, so we chose to work in object space. Computing

the sweep of the ram and probe abstractions is trivial, when they are abstracted by

cylinders and spheres. Furthermore, the exact boundary of the sweep is not needed

for collision detection | we need a superset of the boundary that is contained in the

sweep. Therefore, each component of the ram and probe is swept independently.

Figure 5.5 illustrates the result of sweeping a ram and probe along simple paths:

(a) stationary, no path, (b) line segment between two neighboring points, (c) ap-

proach/retract path, and (d) translation along the axis of the probe. The snapshots

for this �gure were taken from the inspection plan simulator.

106

(a) (b)

(c) (d)

Figure 5.5: The swept ram and probe

107

5.4.3 Enhancement Step

The roadmap is constructed in two phases. During the initialization step the goal

con�gurations (i.e., measurement points) are inserted into the roadmap. If all the

measurement points are in a single connected component of the roadmap, then

a tour of the points exists. Otherwise, we enter the enhancement step in which

additional nodes are incrementally inserted into the roadmap in the hope of merging

the disconnected components.

Again, several strategies for selecting additional nodes are available. We list

them below:

1. If two fpoints on a common face are disconnected in the roadmap, then select

additional points along the surface of the face. The idea is that the face is

typically accessible and connected, so we expect a dense sample of points on

the face to be in a single component of the roadmap.

2. Select points that are translations of the fpoints along the axis of the probe

and/or ram. These points have a high likelihood of being in free-space and

further away from the obstacles. Therefore, we expect it to be easier to connect

such points through a local planner.

3. Select points at random in the spirit of PRM.

Notice that the �rst two strategies are CMM heuristics, whereas the last one is

a general technique. It is easy to see a similarity between the heuristics introduced

here and the ones used with the local planner. There is a tradeo� between the

local planner and the enhancement step | a powerful local planner is typically less

e�cient, but then less enhancement steps are needed. Since 2-D path planning is

hard to implement and would degrade the performance of the local planner, it makes

sense to sample points from faces as suggested above.

5.5 Implementation and Results

The planner has been implemented in C++ on a Sun ULTRA 1 with Creator 3D

graphics hardware, Solaris 2.5 and 128 MB of memory. We use RAPID for collision

108

Figure 5.6: An example part (left) and a section (right)

detection [21]. RAPID models obstacles as polygonal soups, therefore we assume

that the part and CMM are approximated by polyhedra. For conservative approx-

imations the ram and probe are grown slightly. This also ensures that the probe

does not get too close to the part during the inspection process (remember that the

approach/retract path is veri�ed independently, so the probe should not come in

contact with the part during path planning).

The path planner successfully generated plans for the real-world parts that were

introduced in Section 4.5.2. It would be futile to illustrate these plans in the text.

Instead, we use a toy part that can be projected conveniently into 2-D. Figure 5.6

shows the part. The section on the right reveals a planar face with an H-shaped

barrier. The CMM cannot reach the bottom of the face directly, except through

a narrow opening on the left hand side. This is a non-trivial 2-D path planning

problem that is embedded in 3-D.

Figures 5.7 and 5.8 show the initial roadmap and path plan for 30 and 100 goals,

respectively. Some of the criss-cross in the path plan is due to the fact that the robot

must backtrack from the dead-end in the bottom-right of the H-shaped obstacle.

Notice that the initial roadmap with 30 goals is disconnected, which is remedied

through the enhancement step. We see that in some sense the path planning problem

is easier (i.e., the chance of failure is smaller) the denser the goals are. Table 5.1

109

(a) initial roadmap (b) TSP solution

Figure 5.7: Path planning with 30 measurement points

(a) initial roadmap (b) TSP solution

Figure 5.8: Path planning with 100 measurement points

110

initialization enhancement TSP total
goals sec # added sec sec sec

30 5.13 73 7.33 0.50 12.96
100 22.15 0 0.00 2.33 24.48

Table 5.1: Path planning run-time results

shows the run-time results of these two experiments. During the enhancement step of

the roadmap with 30 goals, 73 nodes were added at random before the measurement

points were in a single connected component. The large number is due to the fact

that the random nodes need to fall on very narrow areas of free-space. We did not

implement the selection of points along the surface of the face, which would have

greatly reduced the number of added nodes.

Solving the TSP was not the focus of this research. The problem has been well

studied and powerful algorithms are available [38, 63]. We preprocess the roadmap

using an all-pairs shortest-path algorithm and then solve the TSP using the closest-

point heuristic [13]. The closest-point heuristic guarantees that the obtained tour is

no longer than twice the optimal. In practice, better algorithms are available. Also,

since inspection planning is performed o�-line, then a lot of resources can be spent

to obtain near optimal (or even optimal) solutions.

5.6 The Localization Problem

The multiple-goals path planning problem assumes a perfectly known workspace

environment. In particular, we assume to know the relationship between the part

and CMM coordinate systems. Without knowing this relationship, a measured point

would be di�erent from the target one, and there would be a high risk of probe

crashes. Relating the part and CMM coordinate systems is known as the workpiece

localization problem [22, 40, 53]. This problem occurs every time the part is setup

on the CMM table, unless care is taken to �xture the part in a known position and

orientation.

Traditionally, datums are inspected �rst to establish a reference frame for the

part [23, 53]. This is known as the 3-2-1 approach, and is typically limited to planar

111

datums that are orthogonal to each other. First, 3 points are measured from the

�rst datum to establish a plane, then 2 points are measured from the second datum

to establish a second plane that is perpendicular to the �rst, �nally a single point is

measured from the last datum that is perpendicular to the �rst two.

Modern techniques solve the localization problem for parts with arbitrary sur-

faces [22, 40, 53]. The idea is to measure points on the part and then �t them to

the model using iterative techniques, such as least-squares.

All the methods above use an initial set of measurements to solve the localiza-

tion problem. However, they do not address the problem of obtaining the initial

measurements. This is the familiar chicken-and-egg problem. On the one hand, we

cannot use the CMM to measure the points without �rst establishing the location

of the part. On the other hand, we cannot establish the location of the part without

these measurements. To solve this problem we assume one of the following:

� The part is positioned with care on the CMM, so that the desired setup is

near perfect. This can be accomplished with dedicated �xtures and other

tools. Then the CMM can perform measurements with a high con�dence on

the location of the part.

� The initial measurements are retrieved manually, e.g., by physically guiding

the CMM or using a hand-held stylus [51]. Then the relationship between the

part and CMM coordinate system can be determined using one of the above

techniques.

� Other sensors are used to determine the location of the part in a safe manner.

Particularly useful are non-contact sensors, such as cameras and laser range

�nders.

If the part has pronounced planar datums, then it makes sense to measure these

surfaces, e.g., using the 3-2-1 approach. In this case, the path planner should order

the points on the datums before the points on the rest of the part. That is, the TSP

problem should be solved separately for the points on the datums and for the rest

of the points in the roadmap.

Notice that with the iterative techniques, the more measurement points the more

accurately the localization problem is solved [22, 40, 53]. Due to this fact, it makes

112

sense to incrementally solve the problem as more points are measured. This obser-

vation is useful to the program that interprets the measured data and drives the

CMM, but is not part of the planning problem.

5.7 Conclusions

In this chapter we presented a general framework for solving the multiple-goals path

planning problem. The method extends the probabilistic roadmap planner to include

the multiple-goals as part of the network, and then extracts an optimal tour (of the

roadmap) by solving the underlying traveling salesperson problem. The planner has

been implemented successfully for CMM path planning, which is a non-trivial 3-D

path planning domain for real-world applications.

The following items summarize the characteristics of the proposed approach that

make it suitable for practical applications:

1. General Framework: The planner provides a mechanism of solving the

multiple-goals path planning problem for arbitrary robots. Therefore, the main

algorithm can be implemented once for a variety of domains.

2. Domain Heuristics: Domain speci�c knowledge can be integrated into the

planner (through the local planner and roadmap enhancement step) without

loss of probabilistic completeness.

3. Collision Detection: The con�guration space does not need to be computed

explicitly in order to construct the roadmap.

4. Incremental Construction: The roadmap may be enhanced incrementally

to obtain better solutions.

5. TSP Solvers: Standard TSP algorithms can be used to �nd near optimal

tours in the constructed roadmap.

113

6. Visualization: The roadmap can be visualized by a user (at least when the

con�guration space is of low dimension), which can aid in analyzing the plan-

ning problem. For example, if the planner fails to connect the goal con�gura-

tions in a reasonable amount of time, then a user may view the roadmap and

decide if it can be connected, or that no solution exists.

114

Chapter 6

Conclusions

6.1 Summary

This dissertation focuses on dimensional inspection planning for CMMs. Given a

solid model of an object, including dimensioning and tolerancing information, and

a model of a CMM, the goal of inspection planning is to generate a program. The

program should drive the CMM through the inspection of a manufactured part. The

inspection process should be e�cient and provide enough data to determine if the

part conforms to the solid model or not.

Initially, our planner generates a high-level inspection plan (HLIP), which spec-

i�es how to setup the part on the CMM table, which probes to use and how to

orient them, and which measurements to perform with each setup, probe and probe

orientation. The HLIP is then expanded into a complete program for driving the

CMM to inspect the object. Chapters 2{4 discuss the high-level planner from the

basic tool of accessibility analysis to the overall system architecture. Chapter 5 is

dedicated to CMM path planning, which is used to re�ne the HLIP into a low-level

inspection plan (LLIP). The LLIP includes a complete path plan for the CMM.

Accessibility analysis is a spatial reasoning activity that seeks to determine the

directions along which a tool or probe can contact a given portion of a solid object's

surface. These sets of directions are called direction cones. We provide a suite of

algorithms to compute global accessibility cones for a variety of probe abstractions.

The high-level inspection planning problem is mapped into a constraint satis-

faction problem (CSP), where the variables are the measurements to be performed.

Each variable has a domain of allowable values that is represented by a collection of

115

direction cones and additional information, such as applicable probes. Accessibility

analysis is used to constrain the domains appropriately.

Hierarchical constraints are de�ned to reect the requirements for a plan of

high quality. We show how to extract approximate solutions to the CSP using

e�cient clustering methods. We also include other considerations such as setup

preferences, placement of datums on the CMM table, and segmentation of surface

features through point sampling.

We decompose the high-level planning problem into knowledge acquisition and

plan extraction. Knowledge acquisition involves the computation of domains for

the variables in the CSP through the use of accessibility analysis. Plan extraction

involves hierarchical constraint satisfaction through clustering techniques.

The system architecture is designed to postpone expensive geometric computa-

tions. Knowledge is acquired incrementally when needed, through lazy evaluation.

Plans are extracted with incomplete knowledge, but are then veri�ed with a val-

idator. If the veri�cation step fails, we incrementally acquire more knowledge and

repeat the process.

If a valid HLIP is found, it is re�ned to a LLIP through path planning. The

path planner linearizes the HLIP, while generating e�cient paths through the mea-

surement points. The path planner uses a roadmap method to connect the points

through simple paths. It then makes use of existing TSP algorithms to �nd an

e�cient tour of the points in the roadmap.

6.2 Contributions

We supply a complete set of algorithms to compute global accessibility cones for

straight and bent probes. The algorithms make use of computer graphics hardware,

and therefore are very robust and e�cient. Probes may be approximated realistically

as a combination of grown half-lines.

We map the high-level inspection planning problem to a CSP. The result is a

general theory for the existence of a HLIP and the requirements for a plan of high

quality. Plans are extracted from the CSP using e�cient clustering algorithms.

The planner architecture is novel and no backtracking is involved. By operating

incrementally, it is often possible to produce a good plan without performing all

116

the geometric computations. The generate-and-test approach is e�ective, because

the generation step is relatively smart. It takes into account the approachability

constraints. When these constraints are (approximately) satis�ed, the generated

plan is highly likely to succeed.

We provide the �rst (probabilistically) complete path planner for CMMs. The

planner is practical in the sense that CMM heuristics are easily integrated. Further-

more, existing TSP algorithms are used to �nd e�cient paths.

The inspection planner has been implemented and includes an accessibility anal-

ysis module, a high-level planner, a plan validator (through collision detection), a

simulator, and a path planner. We tested the planner on real-world mechanical parts

and it is su�ciently fast for practical applications.

6.3 Limitations and Future Work

The accessibility analysis algorithms use a variety of abstractions and approxima-

tions that work very well in practice. One exception is the computation of D
2

(Section 2.5.2). This algorithm samples a set of points from a surface and computes

the GAC at each point. This is an expensive process, unless a coarse sample is used.

In practice, we postpone the computation of D
2
, and avoid computing it in many

cases. However, sometimes it is necessary to compute D
2
, and an e�cient algorithm

would be useful. Unfortunately, we are not aware of such an algorithm.

The inspection planner is limited to CMMs with straight probes or bent probes.

The theory of accessibility should be extended to star probes, that have several styli

and tips. In addition, the planning problem could be extended to include additional

sensors, such as laser range �nders and cameras.

The high-level planner includes a mechanism for specifying setup preferences.

Currently, we assume that prioritized lists of preferred setups are available a-priori.

In the future, we should provide this information automatically through external

agents, such as a stability analysis module and a �xturing module.

In our planner, we use a very simple clustering algorithm to extract HLIPs.

The algorithm is greedy and does not consider preferences of setups and probes.

Alternative algorithms, such as the one proposed in Section 3.6.1, may produce

117

better results. These algorithms need to be tested and compared empirically for

e�ciency, quality of results, and the exibility provided to the user.

The system architecture is limited in two ways. First, the generate-and-test con-

troller is very simplistic. The controller extracts a HLIP, �nds the �rst invalid PIP

(if one exists), constrains its domain, and repeats the process. A more sophisticated

controller would balance the load between knowledge acquisition and plan extrac-

tion. Alternatively, one can use a parallel architecture to constrain the domains of

variables in unison.

The second limitation is with human computer interaction. Our research focuses

on a fully automated system. Therefore, we put little emphasis on the user interface.

A real system should allow an operator to guide the planner in an intuitive and

interactive process.

The goal of this work is to develop a fully automated dimensional inspection

planner for CMMs. The planner has been implemented in a lab setting and tested

with a simulator. Before pursuing a commercial planner it is necessary to execute

the inspection plans on real CMMs and assess their performance against human

generated plans. The performance criteria should include both planning time and

plan quality.

118

Reference List

[1] J. Allen, J. Hendler, and A. Tate, editors. Readings in Planning. Morgan
Kaufmann, 1990.

[2] J. L. Ambite and C. A. Knoblock. Planning by rewriting: E�ciently generating
high-quality plans. In Proceedings of the Fourteenth National Conference on

Arti�cial Intelligence, Providence, RI, 1997.

[3] ANSI. Dimensioning and tolerancing. American National Standard ANSI
Y14.5M-1982, The American Society of Mechanical Engineers, United Engi-
neering Center, 345 East 47 Street, New York, N.Y. 10017, February 1982.

[4] A. Borning, B. Freeman-Benson, and M. Wilson. Constraint hierarchies. In
M. Jampel, E. Freuder, and M. Maher, editors, Over-Constrained Systems,
number 1106 in LNCS, pages 23{62. Springer, August 1996.

[5] J. A. Bosch, editor. Coordinate measuring machines and systems. M. Dekker,
New York, 1995.

[6] R. A. Brooks. Solving the �nd-path problem by good representation of free
space. IEEE Trans. Syst. Man Cybern., pages 190{197, 1983.

[7] C. W. Brown. IPPEX: An automated planning system for dimensional in-
spection. Manufacturing Systems, 20(2):189{207, 1991. Proceedings of CIRP
seminar in Computer Aided Process Planning, Enschede, Holland, June 11-12,
1990.

[8] C. W. Brown and D. A. Gyorog. Generative inspection process planner for
integrated production. In P. H. Cohen and S. B. Joshi, editors, Advances in

Integrated Product Design and Manufacturing, PED-Vol. 47, pages 151{162.
ASME, New York, 1990. Proceedings of ASME, Winter Annual Mtg., Dallas,
TX, November 25-30, 1990.

[9] J. Canny. The Complexity of Robot Motion Planning. ACM { MIT Press
Doctoral Dissertation Award Series. MIT Press, Cambridge, MA, 1987.

[10] L.-L. Chen, S.-Y. Chou, and T. C. Woo. Separating and intersecting spherical
polygons: Computing machinability on three-, four-, and �ve-axis numerically

119

controlled machines. ACM Transactions on Graphics, 12(4):305{326, October
1993.

[11] M. W. Cho and K. Kim. New inspection planning strategy for sculptured sur-
faces using coordinate measuring machine. International Journal of Production
Research, 33(2):427{444, 1995.

[12] Computer Aided Manufacturing { International. Dimensional Measuring In-

terface Speci�cation Version 2.0. CAM-I, Inc., April 1988.

[13] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
The MIT Press, Cambridge, Mass., 1990.

[14] M. J. Corrigal and R. Bell. Probe and component set-up planning for co-
ordinate measuring machines. International Journal of Computer Integrated

Manufacturing, 4(1):34{44, 1991.

[15] D. Dobkin and S. Teller. Computer graphics. In Jacob E. Goodman and
Joseph O'Rourke, editors, Handbook of Discrete and Computational Geometry,
chapter 42, pages 779{796. CRC Press LLC, Boca Raton, FL, 1997.

[16] H. A. Elmaraghy and W. H. Elmaraghy. Computer-aided inspection planning
(CAIP). In J. J. Shah, M. Mantyla, and D. S. Nau, editors, Advances In Feature

Based Manufacturing, pages 363{396. Elsevier Science B. V., 1994.

[17] H. A. ElMaraghy and P. H. Gu. Expert system for inspection planning. Annals
of the CIRP, 36, January 1987.

[18] K.-C. Fan and M. C. Leu. Intelligent planning of CAD-directed inspection for
coordinate measuring machines. Computer Integrated Manufacturing Systems,
11(1-2):43{51, 1998.

[19] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics:

Principles and Practice. Addison-Wesley, Reading, MA, 1990.

[20] D. E. Foulser, M. Li, and Q. Yang. Theory and algorithms for plan merging.
Arti�cial Intelligence, 57(2-3):143{181, October 1992.

[21] S. Gottschalk, M. C. Lin, and D. Manocha. OBB-Tree: A hierarchical struc-
ture for rapid interference detection. In Holly Rushmeier, editor, SIGGRAPH
96 Conference Proceedings, Annual Conference Series, pages 171{180. ACM
SIGGRAPH, Addison Wesley, August 1996.

[22] J. B. Gou, Y. X. Chu, and Z. X. Li. On the symmetrical localization problem.
IEEE Transactions on Robotics and Automation, 14(4):533{540, August 1998.

120

[23] P. Gu and K. Chan. Generative inspection process and probe path planning for
coordinate measuring machines. Journal of Manufacturing Systems, 15(4):240{
255, 1996.

[24] K. Gupta and A. P. Del Pobil, editors. Practical Motion Planning in Robotics.
John Wiley and Sons Ltd, Ba�ns Lane, Chichester, West Sussex, PO19 1UD,
England, 1998.

[25] P. Gupta, R. Janardan, J. Majhi, and T. Woo. E�cient geometric algorithms
for workpiece orientation in 4- and 5-axis NC machining. Computer-Aided De-

sign, 28(8):577{587, 1996.

[26] T. H. Hopp. CAD-directed inspection. Annals of the CIRP, 33, 1984.

[27] T. H. Hopp and K. Lau. A hierarchical model-based control system for inspec-
tion. Special Technical Testing Publication 862, American Society for Testing
and Materials, 1916 Race Street, Philadelphia, PA 19103, 1985.

[28] J. Jackman and D.-K. Park. Probe orientation for coordinate measuring ma-
chine systems using design models. Robotics and Computer-Integrated Manu-

facturing, 14:229{236, 1998.

[29] M. Jampel, E. Freuder, and M. Maher, editors. Over-Constrained Systems.
Number 1106 in LNCS. Springer, August 1996.

[30] R. Janardan and T. Woo. Manufacturing processes. In Jacob E. Goodman and
Joseph O'Rourke, editors, Handbook of Discrete and Computational Geometry,
chapter 46, pages 851{862. CRC Press LLC, Boca Raton, FL, 1997.

[31] L. Kavraki, P. �Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic
roadmaps for path planning in high dimensional con�guration spaces. IEEE

Transactions on Robotics and Automation, 12:566{580, 1996.

[32] L. E. Kavraki. Random Networks in Con�guration Space for Fast Path Plan-

ning. PhD thesis, Stanford University, Department of Computer Science, Stan-
ford University, 1995.

[33] B. Khoshnevis and Z. Yeh. An automatic measurement planning system for co-
ordinate measuring machines. Manufacturing Review, 6(3):221{227, September
1993.

[34] E. J. Klages and R. M. Wilson. APM: An automated inspection programming
system. International Journal of Computer Integrated Manufacturing, 7(6):365{
374, Nov-Dec 1994.

[35] V. Kumar. Algorithms for constraint-satisfaction problems: A survey. AI Mag-

azine, 13(1):32{44, Spring 1992.

121

[36] S. Kweon and D. J. Medeiros. Part orientations for CMM inspection using
dimensioned visibility maps. Computer-Aided Design, 30(9):741{749, 1998.

[37] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston,
1991.

[38] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, editors.
The Traveling Salesman Problem. Wiley, New York, NY, 1985.

[39] D. I. Legge. Integration of design and inspection systems: A literature review.
International Journal of Production Research, 34(5):1221{1241, May 1996.

[40] Z. X. Li, J. Gou, and Y. Chu. Geometric algorithms for workpiece localiza-
tion. IEEE Transactions on Robotics and Automation, 14(6):864{878, Decem-
ber 1998.

[41] C. P. Lim and C. H. Menq. CMM feature accessibility and path generation.
Robotics and Computer Integrated Manufacturing, 32(3):597{618, 1994.

[42] A. Limaiem and H. A. ElMaraghy. A general method for accessibility analysis.
In Proceedings of the 1997 IEEE International Conference on Robotics and

Automation, pages 2346{2351, Albuquerque, New Mexico, April 1997.

[43] A. Limaiem and H. A. ElMaraghy. A general method for analysing the acces-
sibility of features using concentric spherical shells. The International Journal

of Advanced Manufacturing Technology, 13:101{108, 1997.

[44] A. Limaiem and H. A. ElMaraghy. Automatic path plannning for coordinate
measuring machines. In Proceedings of the 1998 IEEE International Conference

on Robotics and Automation, pages 887{892, Leuven, Belgium, May 1998.

[45] Y.-J. Lin and P. Murugappan. A new algorithm for CAD-directed CMM dimen-
sional inspection. In Proceedings of the 1998 IEEE International Conference on

Robotics and Automation, pages 893{898, Leuven, Belgium, May 1998.

[46] Z.-C. Lin and C.-C. Chen. Measuring-sequence planning by the nearest neigh-
bour method and the re�nement method. The International Journal of Ad-

vanced Manufacturing Technology, 13:271{281, 1997.

[47] T. Lozano-P�erez. Spatial planning: A con�guration space approach. IEEE

Transactions on Computers, 32(2):108{120, February 1983.

[48] T. Lozano-P�erez and M. A. Wesley. An algorithm for planning collision-free
paths among polyhedral obstacles. Communications of the ACM, 22:560{570,
1979.

122

[49] E. Lu, J. Ni, and S. M. Wu. An algorithm for the generation of an optimum
CMM inspection path. Journal of Dynamic Systems Measurement and Control:

Transactions of the ASME, 116:396{404, September 1994.

[50] A. D. Marshall and R. R. Martin. Automatic inspection of three-dimensional
geometric features. ASME Concurrent Engineering, 59:53{67, 1992.

[51] D. J. Medeiros, Thomas G., Ratkus A. B., and D. Cannon. O�-line program-
ming of coordinate measuring machines using a hand-held stylus. Journal of

Manufacturing Systems, 13(6):401{411, 1994.

[52] C. H. Menq and H. T. Yau. An intelligent, computer-integrated and self-
sustained environment for automated dimensional inspection of manufactured
parts. In NSF Design and Manufacturing Systems Conference, Austin, TX,
pages 865{872, January 9-11 1991.

[53] C.-H. Menq, H.-T. Yau, and G.-Y. Lai. Automated precision measurement of
surface pro�le in CAD-directed inspection. IEEE Transactions on Robotics and

Automation, 8(2):268{278, April 1992.

[54] F. L. Merat and G. M. Radack. Automatic inspection planning within a feature-
based CAD system. Robotics and Computer-Integrated Manufacturing, 9(1):61{
69, 1992.

[55] F. L. Merat, K. Roumina, S. M. Ruegsegger, and R. B. Delvalle. Automated
process planning for quality control inspection. U. S. Patent #5465221, Novem-
ber 1995.

[56] G. Miller. E�cient algorithms for local and global accessibility shading. In
Andrew Glassner, editor, Proceedings of SIGGRAPH '94 (Orlando, Florida,

July 24{29, 1994), Computer Graphics Proceedings, Annual Conference Series,
pages 319{326. ACM SIGGRAPH, ACM Press, July 1994. ISBN 0-89791-667-0.

[57] J. Mitchell. Shortest paths and networks. In Jacob E. Goodman and Joseph
O'Rourke, editors, Handbook of Discrete and Computational Geometry, chap-
ter 24, pages 445{466. CRC Press LLC, Boca Raton, FL, 1997.

[58] D. S. Nau, S. K. Gupta, and W. C. Regli. AI planning versus manufacturing-
operation planning: A case study. In Proceedings of the Fourteenth Interna-

tional Joint Conference on Arti�cial Intelligence, pages 1010{1015, Seattle, WA,
1994.

[59] J. O'Rourke. Art Gallery Theorems and Algorithms. Oxford University Press,
New York, 1987.

123

[60] J. O'Rourke. Visibility. In Jacob E. Goodman and Joseph O'Rourke, editors,
Handbook of Discrete and Computational Geometry, chapter 25, pages 467{480.
CRC Press LLC, Boca Raton, FL, 1997.

[61] H. D. Park and O. R. Mitchell. CAD based planning and execution of in-
spection. In Proceedings of the 1988 IEEE Computer Society Conference of

Computer Vision and Pattern Recognition, pages 858{863, 1988.

[62] M. D. Reimann and J. Sarkis. Design for automating the inspection of man-
ufacturing parts. Computer Integrated Manufacturing Systems, 7(4):269{278,
November 1994.

[63] G. Reinelt. The traveling salesman: Computational solutions for TSP applica-
tions. Lecture Notes in Computer Science, 840, 1994.

[64] Renishaw Inc., 623 Cooper Court, Schaumburg, Illinois 60173. Renishaw Prod-

uct Catalog, Issue 3, 1996.

[65] A. A. G. Requicha. Representations for rigid solids: theory, methods and sys-
tems. ACM Computing Surveys, 12(4):437{464, December 1980.

[66] J. R. Rossignac, A. Megahed, and B.-O. Schneider. Interactive inspection of
solids: Cross-sections and interferences. In Edwin E. Catmull, editor, Computer

Graphics (SIGGRAPH '92 Proceedings), volume 26, pages 353{360, July 1992.

[67] J. R. Rossignac and A. A. G. Requicha. O�setting operations in solid modelling.
Computer Aided Geometric Design, 3(2):129{148, August 1986.

[68] S. Russell and P. Norvig. Arti�cal Intelligence: A Modern Approach,. Prentice-
Hall, Englewood Cli�s, NJ, ISBN 0-13-103805-2, 912 pp., 1995.

[69] M. Segal and K. Akeley. The OpenGL graphics system: A speci�cation (version
1.1). Technical report, Silicon Graphics, Inc., 1997.

[70] Spatial Technology, Inc., 2425 55th Street, Suite 100, Boulder, Colorado 80301-
5704. ACIS 3D Toolkit: Technical Overview, August 1997.

[71] S. N. Spitz, A. J. Spyridi, and A. A. G. Requicha. Accessibility analysis for
planning of dimensional inspection with coordinate measuring machines. IRIS
Technical Report IRIS-98-360, Institute for Robotics and Intelligent Systems,
University of Southern California, March 1998.

[72] A. J. Spyridi. Automatic Generation of High Level Inspection Plans for Co-

ordinate Measuring Machines. PhD thesis, University of Southern California,
Department of Computer Science, August 1994.

124

[73] A. J. Spyridi and A. A. G. Requicha. Accessibility analysis for the automatic
inspection of mechanical parts by coordinate measuring machines. In Proceed-

ings of the IEEE International Conference on Robotics and Automation, pages
1284{1289, Cincinnati, Ohio, May 1990.

[74] A. J. Spyridi and A. A. G. Requicha. Accessibility analysis for polyhedral ob-
jects. In S. G. Tzafestas, editor, Engineering Systems with Intelligence: Con-

cepts, Tools and Applications, pages 317{324. Dordrecht, Holland: Kluwer Aca-
demic Publishers, Inc., 1991.

[75] A. J. Spyridi and A. A. G. Requicha. Automatic planning for dimensional
inspection. Manufacturing Review, 6(4):314{319, December 1993.

[76] A. J. Spyridi and A. A. G. Requicha. Automatic programming of coordinate
measuring machines. In Proceedings of the IEEE International Conference on

Robotics and Automation, pages 1107{1112, San Diego, California, May 1994.

[77] X. Q. Tang and B. J. Davies. Integration of inspection planning system and
CMM via DMIS. International Journal of Advanced Manufacturing Technolo-

gies, 10:422{426, 1995.

[78] K. Tarabanis, R. Y. Tsai, and A. Kaul. Computing occlusion-free viewpoints.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(3):279{
292, March 1996.

[79] E. Trucco, M. Umasuthan, A. Wallace, and V. Roberto. Model-based planning
of optimal sensor placements for inspection. IEEE Transactions on Robotics

and Automation, 13(2):182{193, April 1997.

[80] A. Vafaeesefa and H. A. ElMaraghy. Accessibility analysis in 5-axis machining of
sculptured surfaces. In Proceedings of the 1998 IEEE International Conference

on Robotics and Automation, pages 2464{2469, Leuven, Belgium, May 1998.

[81] I. Walker and A. F. Wallis. Applications of 3-D solid modelling to coordinate
measuring inspection. International Journal of Machine Tools and Manufac-

ture, 32(1/2):195{201, 1992.

[82] R. H. Wilson. On Geometric Assembly Planning. PhD thesis, Stanford Univer-
sity, Department of Computer Science, 1992.

[83] R. H. Wilson. Geometric reasoning about assembly tools. Arti�cial Intelligence,
98(1-2):237{279, January 1998.

[84] T. C. Woo. Visibility maps and spherical algorithms. Computer-Aided Design,
26(1):6{16, January 1994.

125

[85] C. C. Yang and M. Marefat. Object-oriented concepts and mechanisms for
feature-based computer-integrated inspection. Advances In Engineering Soft-

ware, 20(2-3):157{179, 1994.

[86] H.-T. Yau and C.-H. Menq. Path planning for automated dimensional inspec-
tion using coordinate measuring machines. In Proceedings of the IEEE Inter-

national Conference on Robotics and Automation, volume 3, pages 1934{1939,
Sacramento, California, April 1991.

[87] H. T. Yau and C. H. Menq. An automated dimensional inspection environement
for manufactured parts using coordinate measuring machines. International

Journal for Production Research, 30(7):1517{1536, 1992.

[88] H.-T. Yau and C.-H. Menq. Automated CMM path planning for dimensional
inspection of dies and molds having complex surfaces. International Journal of
Machine Tools and Manufacture, 35(6):861{876, 1995.

[89] C. W. Ziemian and D. J. Medeiros. Automated feature accessibility algorithm
for inspection on a coordinate measuring machine. International Journal of

Production Research, 35(10):2839{2856, 1997.

[90] C. W. Ziemian and D. J. Medeiros. Automating probe selection and part setup
planning for inspection on a coordinate measuring machine. International Jour-
nal of Computer Integrated Manufacturing, 11(5):448{460, 1998.

126

