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Abstract—In this paper, we present a new method to analyze
the throughput and delay of the selective-repeat (SR) automatic
repeat-request (ARQ) protocol. Previous work on SR ARQ has
concentrated on reliable feedback or two-state Markovian feed-
back errors. We solve a wider class of problems by characterizing
both the forward and reverse channels by general hidden Markov
models (HMMs). The moment-generating function (MGF) tech-
nique is used to find throughput and delay. To calculate the MGF,
we construct matrix signal-flow graphs for the hidden Markov
process. This procedure can be useful for a variety of other HMM
problems, and is of interest by itself. Practical issues such as
erasure errors and timeouts are included in our analyses, which
are verified by extensive simulations.

Index Terms—Automatic repeat-request (ARQ), delay,
hidden Markov model (HMM), selective-repeat (SR) protocol,
throughput.

I. INTRODUCTION

AUTOMATIC repeat-request (ARQ) protocols are widely
used in communication networks. In this paper, we an-

alyze the throughput and delay of selective-repeat (SR) ARQ
under very general conditions on the forward and reverse
channels.

The SR ARQ has been previously analyzed under certain
conditions. In particular, it is known that when the average
packet-failure probability is , the throughput of the SR ARQ
is . This simple answer is independent of channel dy-
namics, but is valid only when feedback is reliable [1]. When
the feedback is unreliable, the analysis becomes complicated.
Several works have modeled the feedback errors by random er-
rors [2] or a simple two-state Markov process [3]–[5]. To date,
SR ARQ has not been analyzed under more elaborate channel
models.

This paper analyzes SR ARQ under unreliable feedback,
using a general hidden Markov characterization for both the
forward and reverse channels. Due to the generality of this ap-
proach, the extension of previous results from two-state Markov
feedback to finite-state Markov feedback is also implied in our
work.

In many practical scenarios, the channel state is not the
same as the channel observation, leading to the hidden Markov

Paper approved by R. Schober, the Editor for Detection, Equalization, and
MIMO of the IEEE Communications Society. Manuscript received July 5, 2005;
revised February 6, 2006 and April 26, 2006. This paper was presented in part
at the Asilomar Conference on Circuits, Systems, and Computers, 2005.

The authors are with the Department of Electrical Engineering, The
University of Texas at Dallas, Richardson, TX 75083-0688 USA (e-mail:
kxa025000@utdallas.edu; aria@utdallas.edu).

Digital Object Identifier 10.1109/TCOMM.2006.885092

model (HMM).1 In HMM, the channel quality is described by
a (hidden) state that determines the error probability of the
channel. In many cases, HMM is more accurate than the simple
Markov model; for example, the HMM is better than simple
Markov models in describing packet communication over the
fading wireless channel [6]–[8]. In this paper, we use HMM
models as overall first-order approximations for the behavior
of ARQ packet communication channels, including the effects
of the transmission medium (e.g., a wireless channel, or other
physical layer channel) as well as coding and other effects
present in-between the ARQ transmitter and receiver.

We use the moment-generating function (MGF) approach,
and for calculation, we employ the flow-graph technique of
Mason, which has been used for ARQ analysis in [1], [3], and
[9]. However, the flow-graph methods in the existing litera-
ture cannot conveniently solve the multistate Markov or the
hidden Markov problem. We construct, for the hidden Markov
processes, an extension of Mason graphs with matrix-valued
link labels. Flow graphs with matrix labels, called matrix
signal-flow graphs (MSFGs), were introduced in 1957 for the
purpose of multiterminal circuit analysis [10].

We use the MSFG to calculate the MGFs of two important
random variables: transmission time (how many times a packet
must be transmitted) and delay. From the generating functions,
the average throughput and delay can be computed. We consider
several practically important issues, e.g., we model feedback
errors as erasures instead of simple “bit reversal.” Even though
the bit-reversal model would make the analysis simpler, it is not
practical, since common usage of a cyclic redundancy check
(CRC) means that despite losses, acknowledgement (ACK) and
negative ACK (NACK) are not mistaken for one another. We
also analyze the effect of timeout policies on throughput and
delay.

To summarize, the contribution and novelty of this paper is as
follows. This paper generalizes the analysis of SR ARQ using
hidden Markov modeling. We note that although Go-Back-N
ARQ has been analyzed under HMM and bit-reversal feedback
errors [11], SR ARQ analysis has been available only under
much simpler models. We construct MSFGs for HMM to make
the SR analysis tractable; our construction can be used for other
HMM problems, as well. The analysis in the following aug-
ments the methods of [11] by characterizing erasure errors and
including the effect of timeout.

II. CHANNEL MODEL

At time , the status of each transmission, denoted by ,
is a Bernoulli random variable taking values in ,

1The Markov model is, trivially, a special case of the HMM.
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where value 0 denotes an error-free frame, and 1 means the
frame is erroneous. The probability of error is denoted with ,
which is a function of channel condition. This channel condi-
tion is modeled by a multistate Markov process , with states

and probability transition matrix . Each state
gives rise to a different error probability . We de-

note the set of all such probabilities . The
process , which is driven by the Markov process , is called
a hidden Markov process, and is characterized by the quartet

.
For the purposes of our analysis, it is useful to define the joint

probabilities of channel state and observation at time , given the
channel state at time

which we can collect into a new matrix of transition probabili-
ties . Similarly, we can define another matrix
of transition probabilities . The entries
in matrices and are state-transition probabilities when
viewed jointly with (conditional) channel observations. Note
that . The HMM can now be characterized by

, which is useful for the purposes of analysis.
Now consider a two-way channel whose for-

ward link and reverse link
are mutually independent. The

composite channel states are , the
Cartesian product of forward and reverse states. The combined
observation set is ,
where, for example, means both forward and
reverse channels are good, while means the reverse
channel is erroneous. For , the joint probability of
the combined observation and the composite state at time ,
given the composite state at time , is

Or, in compact notation, , where
denotes the Kronecker product of matrices. The proba-

bility matrices for other observations can be found in the
same way. Finally, the composite channel is characterized by

, where ,
, and each of the observation prob-

ability matrices is described by a Kronecker product, i.e,
for (see also [12]).

III. ANALYSIS OF SR ARQ

In this section, we calculate the throughput and delay of SR
ARQ in channels described in the previous section. We assume
erasure errors in the reverse channel, i.e., an ACK cannot be
decoded as a NACK, and vice versa.

A. Protocol Description

SR ARQ allows the receiver to accept frames out of order.
The out-of-order frames will be stored in a buffer, sorted, and
passed to higher layers in the correct order. For the purposes of
this analysis, we disregard buffer overflows. The feedback con-
sists of ACKs and NACKs for error-free frames and erroneous
frames, respectively. The round-trip time is , i.e., it takes
time slots between transmission of a frame and receipt of its
feedback (ACK or NACK).

At the transmitter, a timeout mechanism is used to prevent
deadlock. When a frame is (re)transmitted, the timeout associ-
ated with this frame is set to . If the timeout expires and no
acknowledgment is received, the frame will be retransmitted.
Clearly, the timeout has to be greater than or equal to the round-
trip time .

We assume ACK/NACK will include the information about
all correctly received frames. So the frame whose ACK is lost
will be acknowledged by subsequent ACKs/NACKs. If the suc-
ceeding ACKs/NACKs are successfully received before timer
expiration, the frame will not be retransmitted. When a frame is
lost and its NACK is received, the frame will be retransmitted
immediately. If the NACK is also lost, the frame will be retrans-
mitted after the timer expires.

In practice, ACK and NACK do not update the transmitter
about the status of any previous frames. A frame whose ACK is
lost has to always be retransmitted. We observe that the timeout
has negligible effect on the throughput, but it increases the delay,
so to minimize the delay, the timeout should be as small as pos-
sible . The performance of SR variations are compared
in the next section.

B. MSFGs

A signal-flow graph [13] is a diagram of directed branches
connecting a set of nodes. The graph also represents a system
of equations. The nodes are variables in the equations and the
branch labels, also known as branch transmissions, represent
relationships among the variables. To simplify the flow graphs,
there are three basic equivalences known as parallel, series, and
self-loop. A thorough discussion of signal-flow graphs can be
found in [14].

Scalar-flow graphs have been used to find the MGF of trans-
mission and delay times in throughput and delay analysis, re-
spectively [1], [3], [9]. The transmission time is defined as
the number of frames being transmitted per a successful frame,
while the delay time is defined as the time from when a
frame is first transmitted to when its ACK is received. Both
transmission and delay times are discrete random variables with
positive integer outcomes. Using the MGF, the expected values
can be calculated and the throughput is the reciprocal of the
transmission time.
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Fig. 1. Matrix flow graph for throughput analysis of SR protocol in reliable
feedback.

We briefly review the basic technique for building our flow
graphs. The graph nodes correspond to the states of the trans-
mitter. One input node (I) represents the start of transmission,
and one output node (O) represents correct reception of ac-
knowledgment. Other nodes represent intermediate states. As
events in the network unfold, the transmitter goes from one state
to the other. Each state transition is accompanied with a certain
value for , the random variable of interest, and a probability ,
which together appear in the branch gain . The input–output
gain of the entire graph is, thus, a polynomial in , whose coef-
ficients are the probabilities of corresponding values of . This
polynomial is equivalent to , the MGF for .

Scalar-flow graphs are useful for two-state Markov channels,
but for multistate models and HMMs, the flow graphs become
prohibitively complicated. To streamline the analysis, we pro-
pose labeling the branches with observation probability ma-
trices. Flow graphs with matrix branch transmissions and vector
node values are called MSFGs. In this method, the matrix gain
of the graph is calculated using the usual basic operations, then
the desired MGF is calculated by pre- and postmultiplications of
row and column vectors, respectively, as shown in the following.

To demonstrate the MSFG methodology, we compute the
throughput of SR ARQ in HMM with noiseless feedback. Let

and , respectively, be the success and error probability
matrices of an HMM. is the state transi-
tion-probability matrix. Let be the round-trip time, so that an
acknowledgment will be received time slots after a frame
is sent.

Fig. 1 shows the matrix flow graph for SR ARQ, assuming
error-free feedback. In this figure, node I represents transmis-
sion of a new frame. Node A represents receipt of a feedback.
The feedback can either be an ACK (transition to node O) or a
NACK (transition to node B). At node O, an ACK is received
and the frame will exit the system. At node B, the lost frame will
be retransmitted, so the loop between node A and B represents
retransmission of the erroneous frame until it is correctly re-
ceived. Using basic node reduction, the matrix-generating func-
tion of transmission time will be

where is the identity matrix. Let be the probability vector
of transmitting a new frame. In this simple case, ,

where is the stationary vector of . The stationary vector
can be found by solving the following system of equations:

(1)

where is a column vector of ones. Let be the frame-error
rate. In this scenario, we have and .
The generating function can be calculated by left- and right-
multiplying the matrix-generating function with the input row
vector and the column vector of ones

(2)

The average transmission time can be found by evaluating
the derivative of at . Substituting and taking the
derivative, we get

where we have used the following identity for a square ma-
trix :

Throughput is the reciprocal of the average transmission time,
thus . The throughput of SR ARQ under
HMM is, therefore, similar to the well-known previous results
in -order Markov channels [1].

C. Performance Evaluation in Unreliable Feedback

For calculating the throughput, consider the composite
channel . For simplicity, we define

So is the probability matrix of error in the forward
channel, and is the probability matrix of success in the
reverse channel.

The flow graph in Fig. 2 describes the operation of SR ARQ,
where the timeout greater than the round-trip time .
Node I represents that a new frame is transmitted. After sending
the new frame, its feedback will be received time slots
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Fig. 2. Simplified matrix-flow graph for throughput analysis of SR protocol in
unreliable feedback with T > k.

later. This state is represented by node A. There are now three
possibilities.

First, if the feedback is an error-free ACK (with probability
), or if it is an erroneous ACK but an error-free ACK/NACK

is received before timer expiration (with probability
), the system will transit to state O and the

frame will be removed from the system.
Second, if the feedback is an erroneous ACK and the timer ex-

pires before receiving any error-free ACKs/NACKs, the system
will transit to state C, the frame will be retransmitted, and the
timeout will be reset. The frame will then be acknowledged
when a succeeding ACK/NACK is correctly received. Other-
wise, the frame will be retransmitted again (the self-loop at
state C).

Finally, if the feedback is a error-free NACK (with proba-
bility ) or an erroneous NACK and the timer expires (with
probability ), the system goes to state B, where the lost
frame will be retransmitted, so that the loop between states A
and B represents retransmission of the erroneous frame until
it is correctly received. The matrix-generating function (the
input–output relationship) is

In the special case of , the matrix-generating function
is simplified to

As mentioned earlier, to calculate the desired MGF, one
also needs a vector probability; in this case, , the probability
vector of transmitting a new frame. This is achieved by solving
a system of equations involving several vector probabilities,
which are derived as follows.

Referring to Fig. 2, a frame will be transmitted only at states
I, B, and C, which represent, respectively, transmission of a new

Fig. 3. Finite-state machine to derive the probability vector of transmitting a
new frame.

Fig. 4. Matrix-flow graph for delay analysis of SR protocol in unreliable feed-
back.

frame, retransmission of an erroneous frame, and retransmission
of a frame that was correctly received, but its timer expires. We
can simplify the graph by setting to consist of only these
nodes, as shown in Fig. 3. Let , , and be the proba-
bility vectors of states , , and , respectively. These proba-
bility vectors can be found by solving the following system of
equations:

(3)

where the last equation comes from the fact that the transmitter
always has a frame to transmit, and is the stationary vector of
the state-transition matrix. Solving for from the system (3),
the generating function of transmission time can be derived
by (2). The throughput can, therefore, be computed by

We now proceed with delay analysis. The matrix-flow graph
for delay analysis is shown in Fig. 4. Nodes I, A, B, and O
represent the same states as in the throughput analysis. The
transmitter receives a feedback at node A. There are four possi-
bilities, an error-free ACK (transition to state O), an erroneous
ACK (transition to state C), an error-free NACK (transition
to state B), and an erroneous NACK (transition to state G).
Node G represents the case where a NACK is lost and the
transmitter is waiting for timeout, and node C represents that
an ACK is lost and the frame will be acknowledged by a sub-
sequent ACK/NACK. The self-loop at node C represent the
delay from losing subsequent ACKs/NACKs. When a NACK
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Fig. 5. Throughput �, and delay D, versus block-error rate �, in Markov errors for r = 0:3 and k = 5.

is lost, the corresponding frame cannot be retransmitted im-
mediately, but it will be retransmitted after the timer expires,
which involves a delay (transition from node G to node B).
Using basic manipulations, the matrix-generating function of
delay will be

The generating function of delay can be computed as

where can be also computed from the system (3). Finally, the
average delay will be the derivative of at

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, numerical results are computed for the chan-
nels with two states (good and bad). Let the state-transition ma-
trix be

where the first row and column corresponds to the good state
, and the second row and column to the bad state . From

the transition matrix, the stationary probability vector can be
found using (1). The probability of block error can be com-
puted from the stationary vector and the probability of error in
each state ( and ). We will, therefore, use , , and
as parameters of the forward channel. Note that represents
the average error burst. We assume that the reverse channel has
the same parameters as the forward channel.

The two-state Markov channel is a special case of HMM,
where and equal 0 and 1, respectively. The throughput
and delay of the SR protocol in the Markov channel is shown
in Fig. 5. As expected, when the timer is increased, both
throughput and delay are higher. The throughput is upper
bounded by as ; naturally, there is no such
bound for delay.

The analytical and simulation results agree for the
throughput. Simulation and analysis also agree for delay,
except for a small difference in the case where the block-error
rates are high. The difference comes from the fact that a re-
transmitted frame might need to wait in the retransmission
queue. A frame will be retransmitted if its NACK is received
or its timer expires, but there is a possibility (especially when
the block-error rates are high) that a NACK is received for a
frame at the same time that another frame’s timer expires. In
this case, one frame will be retransmitted, and the other frame
will wait in the queue.

To show that this was the only source of discrepancy, we
analyzed the SR protocol without NACK. When an erroneous
frame is received, feedback is sent to update the transmitter
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Fig. 6. Throughput �, and delay D, versus block-error rate �, in Markov errors without NACK for r = 0:3 and k = 5.

Fig. 7. Throughput �, and delay D, versus timeout T , in Markov errors for � = 0:3 and k = 5, and in HMM for � = 0:3, " = 0:07, " = 0:7, and k = 5.

about the receiver status. In this scenario, a frame is retrans-
mitted only because of timer expiration, so two frames cannot
experience timeout at the same time (this is the source of
the aforementioned discrepancy). We derive the expected
throughput and delay in the same manner as before. Fig. 6
shows that now, analytical and simulation results agree per-
fectly. Note the throughput of SR with and without NACK is
almost the same. Similar behavior is also observed in hidden
Markov channels, but in the interest of brevity, the details are
omitted.

We analyze the effect of timeout on the SR performance. The
plots of the throughput and delay versus timeout are shown in
Fig. 7. The plots compare the SR performance in both Markov
and hidden Markov channels. With noiseless feedback, the error
burst will not effect the SR throughput, a fact that has been re-
ported in [1]. We see that the higher the error burst, the lower
the SR throughput in noisy feedback. We also notice that the

throughput in HMM is less sensitive to parameter , compared
with the Markov channel. Moreover, the throughput approaches
the bound faster in HMM than in the Markov channel. Also note
that delay increases almost linearly with timeout. So timeout
should be configured such that throughput is maximized, while
maintaining acceptable delay.

Fig. 8 compares two SR variations. In method SR , the
feedback includes information about all successfully received
frames, while the extra information is excluded in method SR .
For brevity, we omit the flow graphs and analysis of the indi-
vidual variations, and only mention that the same technique that
was developed earlier in the paper was used for their analysis.

We observe that method SR has higher throughput and lower
delay. Also, the throughput of SR is less sensitive to the value
of timeout, compared with SR ; however, the delay of SR is
more sensitive. Similar results are obtained in hidden Markov
channels, but are omitted for the sake of brevity.
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Fig. 8. Throughput �, and delay D, versus block-error rate �, in Markov errors for r = 0:1 and k = 5.

V. CONCLUSION

This paper analyzes the performance of SR ARQ by a gener-
alization of Mason’s graphs that allows matrix branch weights.
We find the MGF of transmission and delay time, and the av-
erage throughput and delay are calculated using the MGF. We
apply this technique to the case of noiseless feedback, as well
as noisy feedback, and demonstrate the application with exam-
ples. This technique can be applied to any finite-state HMM,
and might be useful in analysis of other protocols in HMMs.
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