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Generalized Smoothing Spline Functions for Operators.

by Marie-Jeanne Munteanu (%)

1. Introduction.

The notion of univariate smoeothing splines was introduced in the
polynomial case by I. J. Schoenberg [12]. An important abstract
generalization was later given by M. Atteia [2] [3]. P. M. Anselone
and P. J. Laurent have studied a construction method for these functions,
{11, [6]. Smoothing splines for the case of twe wvariables have been
considered by G. M. Nielson in [8B].

The purpose of this note 1Is to generalize spline smoothing functions
in analogy with the recent generalization introduced by A. Sard for
spline interpeolating functions [10].

The proof of the existence and unicity of such a function will be
analogous to the proof given by M, Atceia [3] in the case of smoothing
spline funections for functionals.

Using Sard's method, we shall establish the property of best
approximation of the spline functions. Finally, we improve the error

estimate using an idea of J. Melnguet [7] and A. Sard [11].

{#) The author has been supported by the Air Force Office of Scientific
Research. The results of this paper are taken from the author's doctoral
dissertation, written at the University of Louvaln under the direction of
Professor J. Meinguet.



A final practical example will be given to illustrate the utilicy

of smocthing splines for operators.

2. Existence and unieity.

Let X, Z, Zl,...,zm be Hilbert spaces, and let G be a continuous

linear operator on ¥ into Z. We wish to approximate Gx, ® ¢ E, using m
. . o1 . A i . .
experimental observations h_I e 27 which represent Px, F being a continuous
. i .o L \
linear operator on x Into 27, 1 < 1 <« m. The elements hi e 27, given
- 1
experimentally, are approximations of the elements F x.

Let U be a continuous, linear and surjective operator from X onte a

Hilbert space ¥.

. 1 s
Denote by i the Cartesian product of the spaces 2 ,....Zm. Define
an operator V on ¥ into 8 as follows:
1 _2 I
Vx = [F¥,F¥,...,Fx] (1)

Introducing the Cartesian product 2% = ¥ x 2, we define the operateor

L from X into Z° by
Lx = [Ux, Vx]. (2)

h ] = &, we put hY = [0, Bl & ZD, where 0O

For each h = [h], hz,..., -

denotes the origin of ¥.



Following the ideas expressed in [2], [3], [6]. we furnish z% with

the guadratic norm

'.|[}rn‘-zl’22’”-’zm]§5 o = |}T| -&r +

(3)

where o 1s a positive parameter at our disposal.

We call a "smoothing spline for operators' any element s € X which

minimizes the functional
" 1 2
$(x) = [[Ux][, +o|[vx-n|{] . (4)

Then we have by definition

[lLs - 1%} |7, = win| [Lx-®] % (5)

& xe¥ Z
i
We define W = {x £ X: Fx=0, 1 < 1 < m} and denote by M the
orthogenal complement of N. We introduce the following hypotheses:
17, ker U — M, ker UIN = 0;

2”. The ranges of Fi, 1 =<1 <m, are closed;

3 . There exists a constant B < =, such that

x| [ Fhxet |2
1

< B2[]ux| |* + p I, xeX - 6)

m
2 T
!
L

i
Then the cperator L has the following properties:

a) L is bounded and hence continuous. Indeed, taking account of the

2
norm introduced In £° one has

Hax] 12 < (]]ul]g + o

Z i

I -4

. ) 2
Isl*lllzlﬂllxllx : (7)

1



b) L maps X bijectively onto y" = LX. This is an immediate Cconsequence

of 1°.
c) LE is a closed linear subspace of z°. This follows from the hypoth=

eais 2% and from the assumption that U is surjective.

d) L = is continuous. (The hypothesis 3° assures the existence and
the continuity of l“l}.

The element n c z° being given, we denote by p the orthogonal
projection of b’ onto the subspace LE. The orthogonality is relative to
the scalar product induced by the norm {3). The projection exists uniquely.

Then we have

ls =p and s =1L "p {83

and we can Infer the existence and unicity of the smoothing spline defined

above,

3. The property of best approximation. Eatimation of the error.

Suppose that one wishes to approximate Gx, x € X by means of a

linear combination of the form
Gx= } Eh (9)
where E- is a continuous linear map from Z* into Z. We will call

Eihi an admisgsible approximation if the EL are chosen In such a manner

k149

i

that the operator

ir ]
R=G~- } EF (10)



admits a representation of the form
R = QU, (11)

where  is an linear continucus operator on ¥ into X.

The necessary and sufficient conditlion for existence of the
representation (11) fs the inclusion Ker U < Ker R {Sard's quotient
theorem [9]}

Denote by ;gjthe set of admissible approximations. From (9), (10},
{11} we Infer the existence of a continuous operator QI from ZD into Z

such that

I .
Rx=Gx- | Eh =0 (x - h%y. (12)

We will say that Abx = E"h, £ A is an optimal approxzimation of

. i | 1. .
Gx, if the operators E, 1= 1,m are such that ||Ql|_ is minimal,

Theorem. The operator AUX = Gs (8 being the smoothing spline defined
previously) minimizes the norm |§Ql:| among all the admissible operators,

and we have the following estimation.

1R[] < &%]fex - 1| ? (13)
where
K = inf |Q || = 1inf sup !ER_x|§ = sup |:R?x|| = ||QGI? {14)
A e 4 1 Aeft xe X 1 x £ X 1 1.
| lLx-h°] | =1 | [Lx-h°]|=1

Proof: Put

RTX m Gx - 2% = Gx - Gs = Qi{Lx - ho) {15)



Then we see that

R;x = R;{x - 3). {16)
Introduce on X the norm
[xl] = Hux[1Z 40 7 |75 - i)}, (17)
x =1 ph

and deslgnate hy.x.. the space X endowed with this norm. We have

the fellowing inegquality

[1RSx | < 62 [x]]* (18)
+
or
i|RTxi_’2= '|R${x-s;}||2«i }c*?|i:.c-s.;|2~J (19)
where o o
’ R x| Ry (x-8) ||
= Sup _._;, |.x-.-1.|-? e SUP‘ _'_I?__E_r_’ ..... . (Eﬁ}
O#xeX * x,8:X +
x—g5¥0
Since {17) can be written
|1x]! = ||ix - n9|] (21)
" 79
we see that o
[
K = Sup e S e e e . {22}
X E X ||Lx—hol|ﬁn
O#Lx-hCc 27 -

from which we deduce (18).



Returning to formulas (20) and (21), we see that

Z

(23)

!|Ri(x—s]|: ||Ri(x-s}||
K= swp —m ~ sup e =
x,8 £ X X8HL g8,x £ X |§Lx—h0—{L5—hﬂ)||
x-3 # 0 x. O#L(x-s8)e Z° z°
| IRY (x-5) | |
= sup  ——— = [[a | ¥O|| < |[QS]]

x,8 £ X | |L{x-8)]]
DAL (x-8)eZ" z°

By iEQi | ¥D|| on signifies the norm of the operator Qi restricted to

the subspace LX.

Starting now from the definition of the norm, we prove the inverse

| |Ex-n"-(Ls-b") | | o

inequality
o ||RTK|| ||RT{R_5]|E
Sl < sup —F—— = s
® e X ||LX—hD’| x £ F ||X*s||
O0#L{x-5)eZ0 Ofx-se %

O4L (x-8 Y 20

But since

|lLx - h° - (Ls - h”)||zo < | |Lx - h0||?u

we deduce that o ||

oyy . "Rl{xfﬁ) )

| | Ql[ 1 l b]_l_,I_‘l -----|--_...}.é._5.| S - 1":..-
% e f

ﬂ#x~5t'£

L E]
Hix-n"|]
Z



From (22) and (25) we conclude that K = Ih':l‘lE . Finally for all admissible
A we have
| 1R x] | | [RDx{ | | IR] (x=5) |
|Q1|| =  sup D —— Sup =~ —eesset—e——— = 3up —
x & k |]Lx—h §| X E & ||Lx—hD!| x ¢ & |;L{xus}|§
Lx-h°#0 7% Lx-h"#0 2% Lix-s)#0 z°

whence

k= [[e]l] = taf |lo

A E:-".ll".rh'

| (27)

We can seek to improve the estimation of the error given inm {13) by

following the idea exploited by Meinguetr [7] for the case of functionals

(see also for example [&], [5]).
For this we introduce the set D X

D=1{x¢e X: ||Lx - hn|'£D < a}

and

GD = {Gx: % ¢ DI.

(28)

(29)

The set GD is closed, convex and has center Gs, s belng the smoothing

spline studied above. Let Ls be the projection of hY on LX. Then we

have the following estimation

(2¢



RS < 112112 fux - v} |2 = flis - 601121 < [[Q911%1a® - Ilis - )]
Z Z
Indeed from {14) and (23} we deduce
| | . 2
RSx] |2 = R Gemsd [ 12 = (10511 Jx - b° - (s - h”illzo ,
and because of the equalities
] 0 ) iu}l 1 [} 2 e o \
[[Lx = h = {Ls - h )| = {|Lx - h°|| -Ls = h, L{x-s)) 0
z z° e v eV Z
~(ix - 1%, s = %) = | |ix - 8|2 - |[Ls - 8°1?
", L ZU | ZG = ZD 3

there results finally the estimation (30).

4. Example.

We ahall describe a2 category of preblems to which the smcothing splines
for operators can be applied.

Suppose that we have a partial differential equation with boundary
conditions. With the help of an analogue computer or otherwise one can
often obtain some approximations of the solution at several particular
points

® =K, . u{xi,y} = Uk(F}: 121 ¢« Nl

Denote by u(x,v) the exact solution of the boundary walue problem.

Similarly, for particular values of v, v = ¥ » We can obtain

uflx

sYk} = uk{x}! l .<.:. k‘ l N

2
GJ'

(30)
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Suppose that we wish to compute approximately u{xi, Fj] or s

uging the given experimental information,
Consider as G the operator
G: 1.;{}(,:;.?}---;*u(:-cj_,r yj}

QT

ﬁu(xi,yj?

Gi ulx,y)_,
ax

Choosing in a convenlent way the spaces X, Y, Z, Zl, and fixing the
operator U related to the given practical problem (see the example given

by Sard for interpolating spline [10]}, we can obtain in principle an approximation

of ul(x., v.), or dulx,v.) , which is optimal in the sense made precise above.
1 3 — 11

ax
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