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Abstract

This paper addresses the application of distributed con-
straint optimization problems (DCOPs) to large-scale dy-
namic environments. We introduce a decomposition of
DCOP into a graphical game and investigate the evolu-
tion of various stochastic and deterministic algorithms. We
also develop techniques that allow for coordinated negotia-
tion while maintaining distributed control of variables. We
prove monotonicity properties of certain approaches and
detail arguments about equilibrium sets that offer insight
into the tradeoffs involved in leveraging efficiency and so-
lution quality. The algorithms and ideas were tested and
illustrated on several graph coloring domains.

1 Introduction

A distributed constraint optimization problem (DCOP)
[7, 11] is a useful formalism in settings where distributed
agents, each with control of some variables, attempt to op-
timize a global objective function characterized as the ag-
gregation of distributed constraint utility functions. DCOP
can be applied to many multiagent domains, including sen-
sor nets, distributed spacecraft, disaster rescue simulations,
and software personal assistant agents. For example, sen-
sor agents may need to choose appropriate scanning re-
gions to optimize targets tracked over the entire network
or personal assistant agents may need to schedule multi-
ple meetings in order to maximize the value of their users’
time. As the scale of these domains become large, current
complete algorithms incur immense computation costs. A
large network of personal assistant agents for instance,
would require DCOP global optimization over hundreds of
agents and thousands of variables, which is currently very
expensive. On the other hand, if we let each agent or vari-
able react on the basis of its local knowledge of neighbors
and constraints, we create a system that removes the ne-
cessity for tree-based communication structures, scales up
very easily and is far more robust to dynamic environments.

Recognizing the importance of local search algorithms,
researchers initially introduced DBA[12] and DSA[1] for
Distributed CSPs, which were later extended to DCOPs
[13]. We refer to these as algorithms without coordination
or 1-coordinatedalgorithms. While detailed experimental
analyses of such algorithms on DCOPs is available[13], we
still lack theoretical tools that allow us to understand the
evolution and performance of such algorithms on arbitrary
DCOP problems. Our fundamental contribution in this pa-
per is the decomposition of a DCOP into an equivalent
graphical game. Current literature on graphical games con-
siders general reward functions [3, 10] not necessarily tied
to an underlying DCOP setting. This decomposition pro-
vides a framework for analysis of 1-coordinated algorithms
and furthermore suggests an evolution tok-coordinatedal-
gorithms, where a collection ofk agents coordinate their
actions in a single negotiation round.

The paper is organized as follows. In Section 2, we
present a formal model of the DCOP framework. In Sec-
tion 3, we introduce a decomposition of the DCOP into
a game, where the players are the variables whose utili-
ties are aggregates of their outgoing constraint utilities. We
prove that the optimal solution of the DCOP is a Nash equi-
librium in an appropriate game. In Section 4, two algo-
rithms that consider only unilateral modifications of values
are presented. We prove monotonicity properties of one
approach and discuss its significance. In Section 5, we de-
vise two extensions to the unilateral algorithms that support
coordinated actions and prove the monotonicity of one of
the extensions, which indicates justification for improved
solution quality. In Section 6, we discuss experiments and
results and we conclude in Section 7.

2 DCOP: Distributed Constraint Optimiza-
tion

We begin with a formal representation of a distributed
constraint optimization problem and an exposition to our



notational structure. LetV ≡ {vi}
N
i=1 denote a set of vari-

ables, each of which can take a valuevi = xi ∈ Xi ,
i ∈ N ≡ {1, . . .N}. Here, Xi will be a domain of finite
cardinality∀i ∈ N . Interpreting each variable as a node
in a graph, let the symmetric matrixE characterize a set
of edges between variables/nodes such thatEi j = E ji = 1
if an edge exists betweenvi and v j and Ei j = E ji = 0,
otherwise (Eii = 0 ∀i). For each pair (i, j) such that
Ei j = 1, let Ui j (xi , x j) = U ji (x j , xi) represent a reward ob-
tained whenvi = xi and v j = x j . We can interpret this
as a utility generated on the edge betweenvi andv j , con-
tingent simultaneously on the values of both variables and
hence referred to as aconstraint. The global or team util-
ity U(x) is the sum of the rewards on all the edges when
the variables choose values according to the assignment
x ∈ X ≡ X1 × · · · × XN. Thus, the goal is to choose
an assignment,x∗ ∈ X, of values to variables such that
x∗ ∈ arg maxx∈X U(x) = arg maxx∈X

∑
i, j:Ei j=1 Ui j (xi , x j)

wherexi is the i-th variable’s value under an assignment
vector x ∈ X. This constraintoptimizationproblem com-
pletely characterized by (X,E,U), whereU is the collec-
tion of constraint utility functions, becomesdistributedin
nature when control of the variables is partitioned among
a set of autonomous agents. For the rest of this paper, we
make the simplifying assumption that there areN agents,
each in control of a single variable.

3 DCOP Games

Various complete algorithms [7] have been developed to
solve a given DCOP. Though heuristics that significantly
speed up convergence have been developed [6], the com-
plexity is still prohibitive in large-scale domains. The tree-
based communication structures are not robust to dynamics
in problem structure. Finding a solution to a slightly modi-
fied problem requires a complete rerun which is expensive
and may never terminate if the time-scale of the dynamics
are faster than the time-scale of the complete algorithm.

Thus, we focus on non-hierarchical variable update
strategies based on local information consisting of neigh-
bors’ values and constraint utility functions on outgoing
edges. We remove the need to establish a parent-child re-
lationship between nodes. Essentially, we are creating a
game where the players are the variables, the actions are
the choices of values and the information state is the con-
text consisting of neighbor’s values. The key design fac-
tor is how the local utility functions are constructed from
the constraint utility functions. We present a particular de-
composition of the DCOP (or equivalently a construction
of local utility functions) below.

Let v j be called aneighborof vi if Ei j = 1 and letNi ≡

{ j : j ∈ N ,Ei j = 1} be the indexes of all neighbors of

the i-th variable. Let us definex−i ≡ [x j1 · · · x jKi
], hereby

referred to as acontext, be a tuple which captures the values
assigned to theKi ≡ |Ni | neighboring variables of thei-
th variable, i.e. v jk = x jk where∪Ki

k=1 jk = Ni . We now
define a local utility for thei-th agent (or equivalently thei-
th variable) as:ui(xi ; x−i) ≡

∑
j∈Ni

Ui j (xi , x j).We now have
a DCOP game defined by (X,E,u) whereu is a collection
of local utility functions.

A Nash equilibriumassignment is a tuple of values
x̂ ∈ X where no agent can improve its local utility by
unilaterally changing its value given its current context:
x̂i ∈ arg maxxi∈Xi ui(xi ; x̂−i), ∀i ∈ N . Given a DCOP game
(X,E,u), let XNE ⊆ X be the subset of the assignment
space which captures all Nash equilibrium assignments:
XNE ≡ {x̂ ∈ X : x̂i ∈ arg maxxi∈Xi ui(xi ; x̂−i), ∀i ∈ N}.

Proposition 1 The assignment x∗ which optimizes the
DCOP characterized by(X,E,U) is also a Nash equilib-
rium with respect to the graphical game(X,E,u).

Proof. Let us assume thatx∗ optimizes the DCOP
(X,E,U) yet is not a Nash equilibrium assignment. Then,
some agenti can improve its local utility byε by altering
the value of its variable. However, becausei’s utility is
made up of the sum ofUi j (xi , x j) for all its neighborsj, if
i’s utility improves byε, then the utility ofi’s neighbors,
as a group, must also increase byε, for a net increase of
2ε for the whole system, leading to a higher overall utility
than the optimal solutionx∗, which is a contradiction.�

Because we are optimizing over a finite set, we are guar-
anteed to have an assignment that yields a maximum. By
the previous proposition, an assignment that yields a maxi-
mum is also a Nash equilibrium, thus, we are guaranteed
the existence of a pure-strategy Nash equilibrium. This
claim cannot be made for any arbitrary graphical game
[3, 10]. Though it has been shown to exist in conges-
tion games without unconditional independencies [9, 8],
we have shown that the games derived from DCOPs have
this property in a setting with unconditional independen-
cies. The mapping to and from the underlying distributed
constraint optimization problem yields additional structure.
If there were only two variables, the agents controlling
each variable would be coupled by the fact that they would
receive identical payoffs from their constraint. In a gen-
eral graph, DCOP-derived local utility functions reflect the
amalgamation of multiple such couplings which reflects an
inherent benefit to cooperation.

4 Algorithms without Coordination

Given this game-theoretic framework, how will agents’
choices for values of their variables evolve over time? In



a purely selfish environment, agents might be tempted to
always react to the current context with the action that op-
timizes their local utility, but this behavior can lead to an
unstable system [5]. Imposing structure on the dynamics
of updating values can lead to stability and to improved
rates of convergence [4]. We begin with algorithms that
only consider unilateral actions by agents in a given con-
text. The first is the MGM (Maximum Gain Message)
Algorithm which is a modification of DBA (Distributed
Breakout Algorithm) [12] focused solely on gain message
passing. MGM is not a novel algorithm, but simply the
name we use to describe DBA without the changes on con-
straint costs that DBA uses to break out of local minima.
We note that DBA itself cannot be applied to a truly dis-
tributed system, as it requires global knowledge of solution
quality. The second is DSA (Distributed Stochastic Algo-
rithm) [1], which is a homogeneous stationary randomized
algorithm. Our analysis will focus on synchronous appli-
cations of these algorithms.

Let us define aroundas the duration to execute one run
of a particular algorithm. This run could involve multiple
broadcasts ofmessages. Every time a messaging phase oc-
curs in a round, we will count that as onecycleand cycles
will be our performance metric for speed, as is common in
DCOP literature. Letx(n) ∈ X denote the assignments at
the beginning of then-th round. We assume that every al-
gorithm will broadcast its current value to all its neighbors
at the beginning of the round taking up one cycle. Once
agents are aware of their current contexts, they will go
through a process as determined by the specific algorithm
to decide which of them will be able to modify their value.
Let M(n) ⊆ N denote the set of agents allowed to modify
the values in then-th round. For MGM, each agent broad-
casts a gain message to all its neighbors that represents the
maximum change in its local utility if it is allowed to act
under the current context. An agent is then allowed to act
if its gain message is larger than all the gain messages it
receives from all its neighbors (ties can be broken through
variable ordering or another method). For DSA, each agent
generates a random number from a uniform distribution on
[0,1] and acts if that number is less than some thresholdp.
We note that MGM has a cost of two cycles per round while
DSA only has a cost of one cycle per round. Through our
game-theoretic framework, we are able to prove the follow-
ing monotonicity property of MGM.

Proposition 2 When applying MGM, the global utility
U(x(n)) is strictly increasing with respect to the round (n)
until x(n) ∈ XNE.

Proof. Later in the paper, we provide a mathematically rig-
orous proof of the monotonicity of a new algorithm, MGM-
2, which encompasses MGM, so here we provide a brief
proof description.

In MGM, if the i-th variable is allowed to modify its
value in a particular round, then its gain is higher than all
its neighbors’ gains. Consequently, all its neighbors would
have received a gain message higher than their own and
thus, would not modify their values in that round.

From the proof of Proposition 1, because thei-th vari-
able’s utility is made up of the sum ofUi j (xi , x j) for all its
neighborsj, if i’s utility improves byε, then the utility of
i’s neighbors, as a group, must also increase byε. Since
no two neighbors can move simultaneously, the global util-
ity U(x(n)) is strictly increasing. And, since global utility
cannot be higher than the optimal solution (meaning it can-
not increase forever), MGM must reach a point at which no
variable can realize a gain> 0. Thus, MGM yields mono-
tonically increasing global utility until equilibrium.�

Why is monotonicity important? In anytime do-
mains where communication may be halted arbitrarily and
existing strategies must be executed, randomized algo-
rithms risk being terminated at highly undesirable assign-
ments. Given a starting condition with a minimum accept-
able global utility, monotonic algorithms guarantee lower
bounds on performance in anytime environments. Consider
the following example.

Example 1 The Traffic Light Game. Consider two
variables, both of which can take on the values red or
green, with a constraint that takes on utilities as fol-
lows: U(red, red) = 0,U(red,green) = U(green, red) =
1,U(green,green) = −1000. Turning this DCOP into a
game would require the agent for each variable to take
the utility of the single constraint as its local utility. If
(red, red) is the initial condition, each agent would choose
to alter its value to green if given the opportunity to move.
If both agents are allowed to alter their value in the same
round, we would end up in the adverse state(green,green).
When using DSA, there is always a positive probability for
any time horizon that(green,green) will be the resulting
assignment.

In domains such as independent path planning of trajec-
tories for UAVs or rovers, in environments where commu-
nication channels are unstable, bad assignments could lead
to crashes whose costs preclude the use of methods with-
out guarantees. This is illustrated in Figure 1 which dis-
plays sample trajectories for MGM and DSA with identical
starting conditions for a high-stakes scenario described in
Section 6. The performance of both MGM and DSA with
respect to a various graph coloring problems are investi-
gated and discussed in Section 6.



Figure 1: Sample Trajectories of MGM and DSA for a
High-Stakes Scenario

5 Algorithms with Coordination

When applying algorithms without coordination, the
evolution of the assignments will terminate at a Nash equi-
librium point within the setXNE described earlier. One
method to improve the solution quality is for agents to co-
ordinate actions with their neighbors. This allows the evo-
lution to follow a richer space of trajectories and alters the
set of terminal assignments. In this section we introduce
two 2-coordinatedalgorithms, where agents can coordi-
nate actions with one other agent. Let us refer to the set
of terminal states of the class of2-coordinatedalgorithms
as X2E, i.e. neither a unilateral nor a bilateral modifica-
tion of values will increase sum of all constraint utilities
connected to the acting agent(s) ifx ∈ X2E. Clearly the
terminal states of a coordinated algorithm will depend on
what metric the coordinating agents will use to determine
if a particular joint action is acceptable or not. In a team
setting (and in our analysis), a joint action that increases
the sum of the utilities of the acting agents is considered
acceptable, even if a single agent may see a loss in utility.
This would be true in a purely selfish environment as well,
if agents could compensate each other for possible losses
in utility. An alternative choice would be to make a joint
action acceptable only if both agents see utility gains. We
consider the former notion of an acceptable joint action and
define the terminal states as follows:

X2E =

{
x̂ : (x̂i , x̂ j) = arg max

(xi ,x j )

{
ui(xi ; µ−i(x j , x̂−i j ))

+u j(x j ; µ− j(xi , x̂− ji ))
}
, ∀i, j ∈ N , i , j

}
wherex−i j is a tuple consisting of all values of variables ex-
cept thei-th and j-th variable, andµ−i(x j , x− ji ) is a function
that converts its arguments into an appropriate vector of the
form of x−i described earlier, i.e.µ−i takes values from the
variables indexed by{ j}∪

{
N \{i∪ j}

}
to a vector composed

of the variables indexed byN−i .

Proposition 3 For a given DCOP(X,E,U) and its equiv-
alent game(X,E,u), we have X2E ⊆ XNE.

Proof. We show this by proving the contrapositive.
Supposex < XNE. Then, there exists a variablei such
that ui(x̂i ; x−i) > ui(xi ; x−i) for some ˆxi , xi . This further
implies that there exists some variablej ∈ Ni , for which
Ui j (x̂i , x j) > Ui j (xi , x j). We then haveui(x̂i ; µ−i(x j , x−i j )) >
ui(xi ; µ−i(x j , x−i j )) and u j(x j ; µ− j(x̂i , x− ji )) >
u j(x j ; µ− j(xi , x−i j )) which implies thatx < X2E. �

Essentially, we are saying that a unilateral move which
improves the utility of a single agent must improve the con-
straint utility of at least one link which further implies that
the local utility of another agent must also increase given
that the rest of its context remains the same. The interest-
ing phenomenon is that our definition ofX2E above is suf-
ficient to capture unilateral and bilateral deviations within
the context of bilateral deviations. This is due to the under-
lying DCOP structure and not true for a general game.

It has been proposed that coordinated actions be
achieved by forming coalitions among variables. In [2],
each coalition was represented by amanagerwho made
the assignment decisions for all variables within the coali-
tion. These methods inherently undermine the distributed
nature of the decision-making by essentially replacing mul-
tiple variables with a single variable in the graph. It is not
possible in all situations for this to occur because utility
function information and the ability to communicate with
the necessary neighbors may not be transferable (due to
infeasibility or preference). We introduce two algorithms
that allow for coordination while maintaining the underly-
ing distributed decision making process and the same con-
straint graph: MGM-2 (Maximum Gain Message-2) and
SCA-2 (Stochastic Coordination Algorithm-2).

Both MGM-2 and SCA-2 begin a round with agents
broadcasting their current values. The first step in both al-
gorithms is to decide which subset of agents are allowed to
makeoffers. We resolve this by randomization, as each
agent generates a random number uniformly from [0,1]
and becomes anofferer if the random number is below a
thresholdq. If an agent is an offerer, it cannot accept of-
fers from other agents. All agents who are not offerers are
receivers. Each offerer will choose a neighbor at random
(uniformly) and send it an offer message consisting of all
coordinated moves between the offerer and receiver that
will yield a gain in local utility to the offerer under the cur-
rent context. The offer message will contain both the sug-
gested values for each player and the offerer’s local utility
gain for each value pair. Each receiver will then calculate
the global utility gain for each value pair in the offer mes-
sage by adding the offerer’s local utility gain to its own
utility change under the new context and subtracting the
difference in the link between the two so it is not counted
twice. If the maximum global gain over all offered value
pairs is positive, the receiver will send anacceptmessage



to the offerer with the appropriate value pair, causing both
offerer and receiver to be committed. Otherwise, it sends a
rejectmessage to the offerer, and neither one is committed.

At this point, the algorithms diverge. For SCA-2, any
agent who is not committed and can make a local utility
gain with a unilateral move generates a random number
uniformly from [0,1] and considers themselves to beac-
tive if the number is under a thresholdp. At the end of
the round, all committed agents change their values to the
committed offer and all active agents change their values
according to their unilateral best response. Thus, SCA-2
requires three cycles (value, offer, accept/reject) per round.
In MGM-2 (after the offers and replies are settled), each
agent sends a gain message to all its neighbors. Uncommit-
ted agents send their best local utility gain for a unilateral
move. Committed agents send the global gain for their co-
ordinated move. Uncommitted agents follow the same pro-
cedure as in MGM, where they modify their value if their
gain message was larger than all the gain messages they
received. Committed agents send their partners ago mes-
sage if all the gain messages they received were less than
the calculated global gain for the coordinated move and
send ano-gomessage, otherwise. A committed agent will
only modify its value if it receives a go message from its
partner. We note that MGM-2 requires five cycles (value,
offer, accept/reject, gain, go/no-go) per round. Given the
excess cost of MGM-2, why would one choose to apply it?
We can show that MGM-2 is monotonic in global utility.

Proposition 4 When applying MGM-2, the global utility
U(x(n)) is strictly increasing with respect to the round (n)
until x(n) ∈ X2E.

Proof. We begin by introducing some notation. At the end
of then-th round, letC(n) ⊂ N denote the set of agents who
are committed,M(n) ⊂ N denote the set of uncommitted
agents who are active, andS(n) ≡ {C(n)∪M(n)}C ⊂ N denote
the uncommitted agents who are inactive. Letp(i) ∈ C(n)

denote the partner of a committed agenti ∈ C(n). The
global utility can then be expressed as:

U
(
x(n+1)

)
=
∑

i, j:Ei j=1

Ui j

(
x(n+1)

i , x(n+1)
j

)
=

∑
i, j:i∈C(n),

j∈C(n),Ei j=1

Ui j

(
x(n+1)

i , x(n+1)
j

)
+
∑

i, j:i∈C(n),
j∈S(n),Ei j=1

Ui j

(
x(n+1)

i , x(n+1)
j

)
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∑
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(
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j

)
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.

The first equality is by definition. The second equality par-
titions the indexes into update class, eliminating cross in-
dexes ofM(n) with anything other thanS(n). In the third
equality, we simplify the summations involving committed
agents using expressions for partners and neighbors, we
insert a zero value term in parenthesis, and transform the
summations involving active agents into local utilities. In
the fourth equality, we modify the round index for the in-
active agents. In the fifth, we transform the summations in-
volving committed agents into local utilities. The inequal-
ity is due to the fact that the global utility on the links of the
committed partners and the local utility of the active agents
must increase due to the positive gain messages. The key is



that by settingj = p(i) in the second and third summations,
we recover the gain message of the committed teams. Note
the subtraction of the utility gain on the link between part-
ners to avoid double counting. The final equality comes by
reversing the transformation to yield the previous round’s
global utility. Thus, MGM-2 yields monotonically increas-
ing global utility until equilibrium is reached.�

Example 2 Meeting Scheduling. Consider two agents
trying to schedule a meeting at either 7am or 1pm with
the constraint utility as follows: U(7,7) = 1,U(7,1) =
U(1,7) = −100,U(1,1) = 10. If the agents started at
(7,7), no 1-coordinated algorithm would be able to reach
a global optimum, while 2-coordinated algorithms would.

A 2-coordinated algorithm solves the problem because
both agents together can see all possible solutions. How-
ever, it is not obvious that a 2-coordinated algorithm always
yields a better solution than a 1-coordinated algorithm. In
fact, there are DCOPs and initial conditions for which a
1-coordinated algorithm yields a better solution than a 2-
coordinated algorithm, since we cannot predict each algo-
rithm’s exact trajectory. However, the above proposition
gives us some confidence that 2-coordinated algorithms
will perform better on average due to the following:

Corollary 1 For every initial condition x0 ∈ XNE \ X2E,
MGM-2 yields a better solution than either MGM or DSA.

Proof. Sincex0 ∈ XNE, neither MGM nor DSA will move
and the solution quality will be that obtained at the assign-
mentx0. However, sincex0 < X2E, MGM-2 will continue
to evolve fromx0 until it reaches an assignment inX2E. Be-
cause MGM-2 is monotonic in global utility, any solution
it reaches inX2E will have a higher global utility thanx0. �

Thus, MGM-2 dominates DSA and MGM for initial
conditions inXNE \ X2E and is identical to DSA and MGM
on X2E (as neither algorithm will evolve from there). The
unknown is the behavior onX \ XNE. It is difficult to ana-
lyze this space because one cannot pinpoint the trajectories
due to the probabilistic nature of their evolution. If we as-
sume that iterations beginning inX\XNE are taken to points
in XNE in a relatively uniform manner on average with all
algorithms, then we might surmise that the dominance of
MGM-2 should yield a better solution quality. The per-
formance of MGM-2 and SCA-2 in several domains are
investigated and discussed in Section 6.

6 Experiments

We considered three different domains for our experi-
ments. The first was a graph-coloring scenario in which a

cost of one is incurred if two neighbors choose the same
color, and no cost is incurred otherwise. Real-world prob-
lems involving sensor networks, in which it may be unde-
sirable for neighboring sensors to be observing the same lo-
cation, are commonly mapped to this type of problem. The
second was a DCOP in which every combination of values
on a constraint between two neighbors was assigned a ran-
dom reward chosen uniformly from{1, . . . ,10}. In both do-
mains, we considered 10 randomly generated graphs with
40 variables, three values per variable, and 120 constraints.
For each graph, we ran 100 runs of each algorithm, with a
random start state. The third domain simulates a scenario
in which miscoordination is very costly. In this high-stakes
environment, agents negotiate over the use of resources,
and if two agents decide to use the same resource, the result
could be catastrophic. Such an example might be a set of
unmanned aerial vehicles (UAVs) negotiating over sections
of airspace, or rovers negotiating over sections of terrain.
Here, if two neighbors take the same value, a large penalty
(-1000) is incurred; otherwise they obtain a reward chosen
uniformly from {10, . . . ,100}. Because miscoordination is
costly, we introduced asafe(zero) value for all agents. An
agent with this value is not using any resource. If two
neighbors choose zero, neither a reward nor a penalty is
obtained. In this scenario, a randomized start state would
be a poor choice, especially for an anytime algorithm, as it
would likely contain many large penalties. So, rather than
using randomized start states, all agents started with zero.
To induce agents to move, so that 1-coordinated algorithms
would not be useless, a reward of one was introduced for
the case where one agent has the zero value, and its neigh-
bor has a nonzero value. In this domain, we also performed
100 runs on each of 10 randomly generated graphs with
forty variables and 120 constraints, but due to the addition
of the safe value, the agents here had four possible values.

For each of the three domains, we ran: MGM, DSA with
p ∈ {.1, .3, .5, .7, .9}, MGM-2 with q ∈ {.1, .3, .5, .7, .9} and
SCA-2 with all combinations of the above values ofp and
q (whereq is the probability of being an offerer andp is
the probability of an uncommited agent acting). Each table
shows an average of 100 runs on 10 randomly generated
examples with some selected values ofp andq. We used
communication cycles as the metric for our experiments, as
is common in the DCOP literature, since it is assumed that
communication is the speed bottleneck. However, as we
move from 1- to 2-coordinated algorithms, the computa-
tional cost each agenti must incur can increase by a factor
of as much as

∑
j |X j | as the agent can now consider the

combination of its and all its neighbors’ moves. However,
in the 2-coordinated algorithms we present, each agent ran-
domly picks a single neighborj to coordinate with, and so
its computation is increased by a factor of only|X j |. Al-



Figure 2: Performance comparison of MGM and DSA

though each run was for 256 cycles, most of the graphs
display a cropped view, to show the important phenomena.

Figure 2 compares MGM and DSA for severalp values.
For graph coloring, MGM is dominated, first by DSA with
p = .5, and then by DSA withp = .9. For the random-
ized DCOP, MGM is completely dominated by DSA with
p = .9. MGM does better in the high-stakes scenario as all
DSA algorithms have negative solution quality (not shown
in the graph) for the first few cycles, because at the begin-
ning of a run, almost every agent wants to move. Asp in-
creases, more agents act simultaneously, and so many pairs
of neighbors choose the same value, causing large penal-
ties. Thus, these results show that the nature of the con-
straint utility function makes a fundamental difference in
which algorithm dominates. Results from the high-stakes
scenario contrast with [13] and show that DSA is not nec-
essarily the algorithm of choice vs. DBA in all domains.

Figure 3 shows a comparison between MGM and
MGM-2, for several values ofq. In all domains, MGM-
2 eventually reaches a higher solution quality after about
30 cycles, despite the algorithms’ initial slowness. The
stair-like shape of the MGM-2 curves is due to the fact that
agents are changing values only once out of every five cy-
cles, due to the cycles used in communication. Of the three
values ofq shown in the graphs, MGM-2 rises fastest when
q = .5, but eventually reaches its highest average solution
quality whenq = .9, for all three domains. We note that, in
the high-stakes domain, the solution quality is positive at

Figure 3: Performance comparison of MGM and MGM-2

every cycle, due to the monotonic property of both MGM
and MGM-2. Thus, these experiments clearly verify the
monotonicity of MGM and MGM-2, and also show that
MGM-2 reaches a higher solution quality as expected.

Figure 4 shows a comparison between DSA and SCA-2,
for p = .9 and several values ofq. DSA starts out faster, but
SCA-2 eventually overtakes it. The result of the effect of
q on SCA-2 appears inconclusive. Although SCA-2 with
q = .9 does not achieve a solution quality above zero for
the first 65 cycles, it eventually achieves a solution quality
comparable to SCA with lower values ofq.

We also note that the phase transition mentioned in [13]
(where DSA’s performance degrades forp > .8) is not
replicated in our results. In fact, our solution quality gets
better asp > .8, though with slower convergence.

7 Summary

Key contributions of this paper include: (i) decompo-
sition of a DCOP into an equivalent graphical game, (ii)
proof of monotonicity for MGM, a 1-coordinated algo-
rithm, (ii) development of 2-coordinated algorithms that
maintain distributed control of variables, (iii) proof of
monotonicity of MGM-2, and (iv) experimental verifica-
tion and discovery when applying these algorithms to a va-
riety of problems. The key theoretical idea is that breaking
a DCOP down to a game can lead to algorithms where we



Figure 4: Performance comparison of DSA and SCA-2

can guarantee strict improvement in solution quality over
time, which is critical in anytime application in high-stakes
environments. Also important is the idea ofk-coordinated
algorithms leading to progressively nested sets of equilib-
ria, which yield both a higher average solution quality and
a higher likelihood of obtaining a globally optimal solu-
tion. Through experiments, we show that randomized al-
gorithms though very efficient are not always ideal. Initial
results imply that the nature of the constraint utility func-
tion makes a fundamental difference in the solution struc-
ture rather than the graph structure. Future work will entail
development ofk-coordinated algorithms and deeper anal-
ysis of stochastic schemes to obtain analytic reasoning for
choosing particular update rates. Also, it would be inter-
esting to see if heterogeneous dynamic randomized algo-
rithms can reduce convergence rates. Finally, we plan to
apply our work to larger examples to more closely approx-
imate real-world conditions.
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