Algorithmic Game Theory

Over the last few years, there has been explosive growth in the research done at the in-
terface of computer science, game theory, and economic theory, largely motivated by the
emergence of the Internet. Algorithmic Game Theory develops the central ideas and results
of this new and exciting area.

More than 40 of the top researchers in this field have written chapters whose topics
range from the foundations to the state of the art. This book contains an extensive treatment
of algorithms for equilibria in games and markets, computational auctions and mechanism
design, and the “price of anarchy,” as well as applications in networks, peer-to-peer systems,
security, information markets, and more.

This book will be of interest to students, researchers, and practitioners in theoretical
computer science, economics, networking, artificial intelligence, operations research, and
discrete mathematics.

Noam Nisan is a Professor in the Department of Computer Science at The Hebrew Univer-
sity of Jerusalem. His other books include Communication Complexity.

Tim Roughgarden is an Assistant Professor in the Department of Computer Science at
Stanford University. His other books include Selfish Routing and the Price of Anarchy.

Eva Tardos is a Professor in the Department of Computer Science at Cornell University.
Her other books include Algorithm Design.

Vijay V. Vazirani is a Professor in the College of Computing at the Georgia Institute of
Technology. His other books include Approximation Algorithms.

Algorithmic Game Theory

Edited by
Noam Nisan

Hebrew University of Jerusalem

Tim Roughgarden

Stanford University

Eva Tardos

Cornell University

Vijay V. Vazirani

Georgia Institute of Technology

7l CAMBRIDGE
&) UNIVERSITY PRESS

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sdo Paulo, Delhi

Cambridge University Press
32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org
Information on this title: www.cambridge.org/9780521872829

© Noam Nisan, Tim Roughgarden, Eva Tardos, Vijay V. Vazirani 2007

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without

the written permission of Cambridge University Press.

First published 2007
Printed in the United States of America
A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication Data

Algorithmic game theory / edited by Noam Nisan. . . [et al.]; foreword
by Christos Papadimitriou.
p. cm.
Includes index.
ISBN-13: 978-0-521-87282-9 (hardback)
ISBN-10: 0-521-87282-0 (hardback)
1. Game theory. 2. Algorithms. I. Nisan, Noam. II Title.
QA269.A43 2007
519.3-dc22 2007014231

ISBN 978-0-521-87282-9 hardback

Cambridge University Press has no responsibility for

the persistence or accuracy of URLS for external or
third-party Internet Web sites referred to in this publication
and does not guarantee that any content on such

Web sites is, or will remain, accurate or appropriate.

Contents

Foreword page xiii
Preface Xvii
Contributors XIiX

I Computing in Games

1 Basic Solution Concepts and Computational Issues 3
Eva Tardos and Vijay V. Vazirani
1.1 Games, Old and New 3
1.2 Games, Strategies, Costs, and Payoffs 9
1.3 Basic Solution Concepts 10
1.4 Finding Equilibria and Learning in Games 16
1.5 Refinement of Nash: Games with Turns and Subgame Perfect Equilibrium 18
1.6 Nash Equilibrium without Full Information: Bayesian Games 20
1.7 Cooperative Games 20
1.8 Markets and Their Algorithmic Issues 22
Acknowledgments 26
Bibliography 26
Exercises 26

2 The Complexity of Finding Nash Equilibria 29
Christos H. Papadimitriou
2.1 Introduction 29
2.2 Is the NasH Equilibrium Problem NP-Complete? 31
2.3 The Lemke-Howson Algorithm 33
2.4 The Class PPAD 36
2.5 Succinct Representations of Games 39
2.6 The Reduction 41
2.7 Correlated Equilibria 45
2.8 Concluding Remarks 49
Acknowledgment 50
Bibliography 50

vi

CONTENTS

3 Equilibrium Computation for Two-Player Games in Strategic
and Extensive Form
Bernhard von Stengel

3.1 Introduction
3.2 Bimatrix Games and the Best Response Condition
3.3 Equilibria via Labeled Polytopes
3.4 The Lemke—Howson Algorithm
3.5 Integer Pivoting
3.6 Degenerate Games
3.7 Extensive Games and Their Strategic Form
3.8 Subgame Perfect Equilibria
3.9 Reduced Strategic Form
3.10 The Sequence Form
3.11 Computing Equilibria with the Sequence Form
3.12 Further Reading
3.13 Discussion and Open Problems
Bibliography
Exercises

4 Learning, Regret Minimization, and Equilibria
Avrim Blum and Yishay Mansour

4.1 Introduction
4.2 Model and Preliminaries
4.3 External Regret Minimization
4.4 Regret Minimization and Game Theory
4.5 Generic Reduction from External to Swap Regret
4.6 The Partial Information Model
4.7 On Convergence of Regret-Minimizing Strategies to Nash
Equilibrium in Routing Games
4.8 Notes
Bibliography
Exercises

S Combinatorial Algorithms for Market Equilibria
Vijay V. Vazirani

51
5.2
53
54
5.5
5.6
5.7
5.8
5.9
5.10
511
5.12
513

Introduction

Fisher’s Linear Case and the Eisenberg—Gale Convex Program
Checking If Given Prices Are Equilibrium Prices
Two Crucial Ingredients of the Algorithm

The Primal-Dual Schema in the Enhanced Setting
Tight Sets and the Invariant

Balanced Flows

The Main Algorithm

Finding Tight Sets

Running Time of the Algorithm

The Linear Case of the Arrow—Debreu Model

An Auction-Based Algorithm

Resource Allocation Markets

53

53
54
57
61
63
65
66
68
69
70
73
75
75
76
71

79

79
81
82
88
92
94

96
99
99
101

103

103
105
108
109
109
111
111
115
117
118
121
122
124

5.14
5.15

CONTENTS

Algorithm for Single-Source Multiple-Sink Markets
Discussion and Open Problems

Bibliography
Exercises

Computation of Market Equilibria by Convex Programming

Bruno Codenotti and Kasturi Varadarajan

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Introduction

Fisher Model with Homogeneous Consumers
Exchange Economies Satisfying WGS
Specific Utility Functions

Limitations

Models with Production

Bibliographic Notes

Bibliography
Exercises

Graphical Games
Michael Kearns

7.1
7.2
7.3
7.4
7.5
7.6
7.7

Introduction

Preliminaries

Computing Nash Equilibria in Tree Graphical Games
Graphical Games and Correlated Equilibria
Graphical Exchange Economies

Open Problems and Future Research

Bibliographic Notes

Acknowledgments
Bibliography

Cryptography and Game Theory
Yevgeniy Dodis and Tal Rabin

8.1 Cryptographic Notions and Settings
8.2 Game Theory Notions and Settings
8.3 Contrasting MPC and Games
8.4 Cryptographic Influences on Game Theory
8.5 Game Theoretic Influences on Cryptography
8.6 Conclusions
8.7 Notes
Acknowledgments
Bibliography

Introduction to Mechanism Design (for Computer Scientists)

II Algorithmic Mechanism Design

Noam Nisan

9.1
9.2
9.3
94

Introduction

Social Choice

Mechanisms with Money
Implementation in Dominant Strategies

vii

126
131
132
133

135

135
141
142
148
150
152
155
156
158

159

159
161
164
169
176
177
177
179
179

181

181
187
189
191
197
202
203
204
204

209

209
211
216
222

viii

10

11

12

13

CONTENTS

9.5 Characterizations of Incentive Compatible Mechanisms
9.6 Bayesian—Nash Implementation
9.7 Further Models
9.8 Notes
Acknowledgments
Bibliography

Mechanism Design without Money

James Schummer and Rakesh V. Vohra

10.1 Introduction

10.2 Single-Peaked Preferences over Policies
10.3 House Allocation Problem

10.4 Stable Matchings

10.5 Future Directions

10.6 Notes and References

Bibliography

Exercises

Combinatorial Auctions

Liad Blumrosen and Noam Nisan

11.1 Introduction

11.2 The Single-Minded Case

11.3 Walrasian Equilibrium and the LP Relaxation
11.4 Bidding Languages

11.5 Tterative Auctions: The Query Model
11.6 Communication Complexity

11.7 Ascending Auctions

11.8 Bibliographic Notes
Acknowledgments

Bibliography

Exercises

Computationally Efficient Approximation Mechanisms
Ron Lavi

12.1 Introduction

12.2 Single-Dimensional Domains: Job Scheduling

12.3 Multidimensional Domains: Combinatorial Auctions
12.4 Impossibilities of Dominant Strategy Implementability
12.5 Alternative Solution Concepts

12.6 Bibliographic Notes

Bibliography

Exercises

Profit Maximization in Mechanism Design

Jason D. Hartline and Anna R. Karlin

13.1 Introduction

13.2 Bayesian Optimal Mechanism Design

13.3 Prior-Free Approximations to the Optimal Mechanism
13.4 Prior-Free Optimal Mechanism Design

225
233
238
239
240
241

243

243
244
253
255
262
263
264
264

267

267
270
275
279
283
287
289
295
296
296
298

301

301
303
310
317
321
327
327
328

331

331
335
339
344

14

15

16

17

CONTENTS

13.5 Frugality

13.6 Conclusions and Other Research Directions
13.7 Notes

Bibliography

Exercises

Distributed Algorithmic Mechanism Design

Joan Feigenbaum, Michael Schapira, and Scott Shenker
14.1 Introduction

14.2 Two Examples of DAMD

14.3 Interdomain Routing

14.4 Conclusion and Open Problems

14.5 Notes

Acknowledgments

Bibliography

Exercises

Cost Sharing

Kamal Jain and Mohammad Mahdian

15.1 Cooperative Games and Cost Sharing

15.2 Core of Cost-Sharing Games

15.3 Group-Strategyproof Mechanisms and Cross-Monotonic
Cost-Sharing Schemes

15.4 Cost Sharing via the Primal-Dual Schema

15.5 Limitations of Cross-Monotonic Cost-Sharing Schemes

15.6 The Shapley Value and the Nash Bargaining Solution

15.7 Conclusion

15.8 Notes

Acknowledgments

Bibliography

Exercises

Online Mechanisms

David C. Parkes

16.1 Introduction

16.2 Dynamic Environments and Online MD
16.3 Single-Valued Online Domains

16.4 Bayesian Implementation in Online Domains
16.5 Conclusions

16.6 Notes

Acknowledgments

Bibliography

Exercises

III Quantifying the Inefficiency of Equilibria

Introduction to the Inefficiency of Equilibria
Tim Roughgarden and Eva Tardos
17.1 Introduction

ix

350
354
357
358
360

363

363
366
370
379
380
381
381
383

385

385
387

391
394
400
402
405
406
408
408
410

411

411
413
417
431
435
436
437
437
439

443

443

18

19

20

21

CONTENTS

17.2 Fundamental Network Examples

17.3 Inefficiency of Equilibria as a Design Metric
17.4 Notes

Bibliography

Exercises

Routing Games

Tim Roughgarden

18.1 Introduction

18.2 Models and Examples

18.3 Existence, Uniqueness, and Potential Functions
18.4 The Price of Anarchy of Selfish Routing

18.5 Reducing the Price of Anarchy

18.6 Notes

Bibliography

Exercises

Network Formation Games and the Potential Function Method
Eva Tardos and Tom Wexler

19.1 Introduction

19.2 The Local Connection Game

19.3 Potential Games and a Global Connection Game

19.4 Facility Location

19.5 Notes

Acknowledgments

Bibliography

Exercises

Selfish Load Balancing

Berthold Vicking

20.1 Introduction

20.2 Pure Equilibria for Identical Machines

20.3 Pure Equilibria for Uniformly Related Machines
20.4 Mixed Equilibria on Identical Machines

20.5 Mixed Equilibria on Uniformly Related Machines
20.6 Summary and Discussion

20.7 Bibliographic Notes

Bibliography

Exercises

The Price of Anarchy and the Design of Scalable Resource
Allocation Mechanisms

Ramesh Johari

21.1 Introduction

21.2 The Proportional Allocation Mechanism

21.3 A Characterization Theorem

21.4 The Vickrey—Clarke—Groves Approach

21.5 Chapter Summary and Further Directions

446
454
456
457
459

461

461
462
468
472
478
480
483
484

487

487
489
494
502
506
511
511
513

517

517
522
524
529
533
537
538
540
542

543

543
544
551
559
564

22

23

24

25

CONTENTS

21.6 Notes
Bibliography
Exercises

IV Additional Topics

Incentives and Pricing in Communications Networks
Asuman Ozdaglar and R. Srikant

22.1 Large Networks — Competitive Models

22.2 Pricing and Resource Allocation — Game Theoretic Models
22.3 Alternative Pricing and Incentive Approaches
Bibliography

Incentives in Peer-to-Peer Systems
Moshe Babaioff, John Chuang, and Michal Feldman
23.1 Introduction

23.2 The p2p File-Sharing Game

23.3 Reputation

23.4 A Barter-Based System: BitTorrent
23.5 Currency

23.6 Hidden Actions in p2p Systems
23.7 Conclusion

23.8 Bibliographic Notes

Bibliography

Exercises

Cascading Behavior in Networks: Algorithmic and Economic Issues
Jon Kleinberg

24.1 Introduction

24.2 A First Model: Networked Coordination Games

24.3 More General Models of Social Contagion

24.4 Finding Influential Sets of Nodes

24.5 Empirical Studies of Cascades in Online Data

24.6 Notes and Further Reading

Bibliography

Exercises

Incentives and Information Security

Ross Anderson, Tyler Moore, Shishir Nagaraja, and Andy Ozment
25.1 Introduction

25.2 Misaligned Incentives

25.3 Informational Asymmetries

25.4 The Economics of Censorship Resistance

25.5 Complex Networks and Topology

25.6 Conclusion

25.7 Notes

Bibliography

xi

565
566
567

571

572
578
587
590

593

593
594
596
600
601
602
608
608
609
610

613

613
614
618
622
627
630
631
632

633

633
634
636
640
643
646
647
648

xii

CONTENTS

26 Computational Aspects of Prediction Markets
David M. Pennock and Rahul Sami

26.1
26.2
26.3
264
26.5
26.6
26.7

Introduction: What Is a Prediction Market?
Background

Combinatorial Prediction Markets
Automated Market Makers

Distributed Computation through Markets
Open Questions

Bibliographic Notes

Acknowledgments
Bibliography
Exercises

27 Manipulation-Resistant Reputation Systems
Eric Friedman, Paul Resnick, and Rahul Sami

271
27.2
27.3
274
27.5
27.6
27.7

Introduction: Why Are Reputation Systems Important?
The Effect of Reputations

Whitewashing

Eliciting Effort and Honest Feedback

Reputations Based on Transitive Trust

Conclusion and Extensions

Bibliographic Notes

Bibliography
Exercises

28 Sponsored Search Auctions
Sébastien Lahaie, David M. Pennock, Amin Saberi, and Rakesh V. Vohra

28.1
28.2
28.3
284
28.5
28.6

Introduction

Existing Models and Mechanisms
A Static Model

Dynamic Aspects

Open Questions

Bibliographic Notes

Bibliography
Exercises

29 Computational Evolutionary Game Theory
Siddharth Suri

29.1
29.2
29.3
294
29.5
29.6

Evolutionary Game Theory

The Computational Complexity of Evolutionarily Stable Strategies
Evolutionary Dynamics Applied to Selfish Routing

Evolutionary Game Theory over Graphs

Future Work

Notes

Acknowledgments
Bibliography
Exercises

Index

651

651
652
657
662
665
670
671
672
672
674

677

677
680
682
683
689
693
694
695
696

699

699
701
702
707
711
712
713
715

717

717
720
723
728
733
733
734
734
735

737

Foreword

As the Second World War was coming to its end, John von Neumann, arguably the
foremost mathematician of that time, was busy initiating two intellectual currents that
would shape the rest of the twentieth century: game theory and algorithms. In 1944 (16
years after the minmax theorem) he published, with Oscar Morgenstern, his Games
and Economic Behavior, thus founding not only game theory but also utility theory and
microeconomics. Two years later he wrote his draft report on the EDVAC, inaugurating
the era of the digital computer and its software and its algorithms. Von Neumann wrote
in 1952 the first paper in which a polynomial algorithm was hailed as a meaningful
advance. And, he was the recipient, shortly before his early death four years later, of
Godel’s letter in which the P vs. NP question was first discussed.

Could von Neumann have anticipated that his twin creations would converge half
a century later? He was certainly far ahead of his contemporaries in his conception
of computation as something dynamic, ubiquitous, and enmeshed in society, almost
organic — witness his self-reproducing automata, his fault-tolerant network design, and
his prediction that computing technology will advance in lock-step with the economy
(for which he had already postulated exponential growth in his 1937 Vienna Colloquium
paper). But I doubt that von Neumann could have dreamed anything close to the Internet,
the ubiquitous and quintessentially organic computational artifact that emerged after
the end of the Cold War (a war, incidentally, of which von Neumann was an early
soldier and possible casualty, and that was, fortunately, fought mostly with game
theory and decided by technological superiority — essentially by algorithms — instead
of the thermonuclear devices that were von Neumann'’s parting gift to humanity).

The Internet turned the tables on students of both markets and computation. It
transformed, informed, and accelerated markets, while creating new and theretofore
unimaginable kinds of markets —in addition to being itself, in important ways, a market.
Algorithms became the natural environment and default platform of strategic decision
making. On the other hand, the Internet was the first computational artifact that was not
created by a single entity (engineer, design team, or company), but emerged from the
strategic interaction of many. Computer scientists were for the first time faced with an
object that they had to feel with the same bewildered awe with which economists have

xiii

xiv FOREWORD

always approached the market. And, quite predictably, they turned to game theory for
inspiration — in the words of Scott Shenker, a pioneer of this way of thinking who has
contributed to this volume, “the Internet is an equilibrium, we just have to identify the
game.” A fascinating fusion of ideas from both fields — game theory and algorithms —
came into being and was used productively in the effort to illuminate the mysteries of
the Internet. It has come to be called algorithmic game theory.

The chapters of this book, a snapshot of algorithmic game theory at the approximate
age of ten written by a galaxy of its leading researchers, succeed brilliantly, I think, in
capturing the field’s excitement, breadth, accomplishment, and promise. The first few
chapters recount the ways in which the new field has come to grips with perhaps the
most fundamental cultural incongruity between algorithms and game theory: the latter
predicts the agents’ equilibrium behavior typically with no regard to the ways in which
such a state will be reached — a consideration that would be a computer scientist’s
foremost concern. Hence, algorithms for computing equilibria (Nash and correlated
equilibria in games, price equilibria for markets) have been one of algorithmic game
theory’s earliest research goals. This body of work has become a valuable contribu-
tion to the debate in economics about the validity of behavior predictions: Efficient
computability has emerged as a very desirable feature of such predictions, while com-
putational intractability sheds a shadow of implausibility on a proposed equilibrium
concept. Computational models that reflect the realities of the market and the Internet
better than the von Neumann machine are of course at a premium — there are chapters
in this book on learning algorithms as well as on distributed algorithmic mechanism
design.

The algorithmic nature of mechanism design is even more immediate: This elegant
and well-developed subarea of game theory deals with the design of games, with players
who have unknown and private utilities, such that at the equilibrium of the designed
game the designer’s goals are attained independently of the agents’ utilities (auctions
are an important example here). This is obviously a computational problem, and in
fact some of the classical results in this area had been subtly algorithmic, albeit with
little regard to complexity considerations. Explicitly algorithmic work on mechanism
design has, in recent years, transformed the field, especially in the case of auctions
and cost sharing (for example, how to recover the cost of an Internet service from
customers who value the service by amounts known only to them) and has become the
arena of especially intense and productive cross-fertilization between game theory and
algorithms; these problems and accomplishments are recounted in the book’s second
part.

The third part of the book is dedicated to a line of investigation that has come
to be called “the price of anarchy.” Selfish rational agents reach an equilibrium. The
question arises: exactly how inefficient is this equilibrium in comparison to an idealized
situation in which the agents would strive to collaborate selflessly with the common
goal of minimizing total cost? The ratio of these quantities (the cost of an equilibrium
over the optimum cost) has been estimated successfully in various Internet-related
setups, and it is often found that “anarchy” is not nearly as expensive as one might have
feared. For example, in one celebrated case related to routing with linear delays and
explained in the “routing games” chapter, the overhead of anarchy is at most 33% over
the optimum solution — in the context of the Internet such a ratio is rather insignificant

FOREWORD XV

and quickly absorbed by its rapid growth. Viewed in the context of the historical
development of research in algorithms, this line of investigation could be called “the
third compromise.” The realization that optimization problems are intractable led us to
approximation algorithms; the unavailability of information about the future, or the lack
of coordination between distributed decision makers, brought us online algorithms; the
price of anarchy is the result of one further obstacle: now the distributed decision makers
have different objective functions. Incidentally, it is rather surprising that economists
had not studied this aspect of strategic behavior before the advent of the Internet. One
explanation may be that, for economists, the ideal optimum was never an available
option; in contrast, computer scientists are still looking back with nostalgia to the
good old days when artifacts and processes could be optimized exactly. Finally, the
chapters on “additional topics” that conclude the book (e.g., on peer-to-peer systems
and information markets) amply demonstrate the young area’s impressive breadth,
reach, diversity, and scope.

Books — a glorious human tradition apparently spared by the advent of the Internet —
have a way of marking and focusing a field, of accelerating its development. Seven
years after the publication of The Theory of Games, Nash was proving his theorem on
the existence of equilibria; only time will tell how this volume will sway the path of
algorithmic game theory.

Paris, February 2007 Christos H. Papadimitriou

Preface

This book covers an area that straddles two fields, algorithms and game theory, and
has applications in several others, including networking and artificial intelligence. Its
text is pitched at a beginning graduate student in computer science — we hope that this
makes the book accessible to readers across a wide range of areas.

We started this project with the belief that the time was ripe for a book that clearly
develops some of the central ideas and results of algorithmic game theory — a book that
can be used as a textbook for the variety of courses that were already being offered
at many universities. We felt that the only way to produce a book of such breadth in
a reasonable amount of time was to invite many experts from this area to contribute
chapters to a comprehensive volume on the topic.

This book is partitioned into four parts: the first three parts are devoted to core areas,
while the fourth covers a range of topics mostly focusing on applications. Chapter 1
serves as a preliminary chapter and it introduces basic game-theoretic definitions that
are used throughout the book. The first chapters of Parts IT and III provide introductions
and preliminaries for the respective parts. The other chapters are largely independent
of one another. The authors were requested to focus on a few results highlighting
the main issues and techniques, rather than provide comprehensive surveys. Most
of the chapters conclude with exercises suitable for classroom use and also identify
promising directions for further research. We hope these features give the book the feel
of a textbook and make it suitable for a wide range of courses.

You can view the entire book online at
www.cambridge.org/us/9780521872829
username: agtluser
password: camb2agt

Many people’s efforts went into producing this book within a year and a half
of its first conception. First and foremost, we thank the authors for their dedi-
cation and timeliness in writing their own chapters and for providing important

xvii

xviii PREFACE

feedback on preliminary drafts of other chapters. Thanks to Christos Papadimitriou
for his inspiring Foreword. We gratefully acknowledge the efforts of outside review-
ers: Elliot Anshelevich, Nikhil Devanur, Matthew Jackson, Vahab Mirrokni, Herve
Moulin, Neil Olver, Adrian Vetta, and several anonymous referees. Thanks to Cindy
Robinson for her invaluable help with correcting the galley proofs. Finally, a big
thanks to Lauren Cowles for her stellar advice throughout the production of this
volume.

Noam Nisan

Tim Roughgarden
Eva Tardos

Vijay V. Vazirani

Contributors

Ross Anderson
Computer Laboratory
University of Cambridge

Moshe Babaioff
School of Information
University of California, Berkeley

Avrim Blum
Department of Computer Science
Carnegie Mellon University

Liad Blumrosen
Microsoft Research
Silicon Valley

John Chuang
School of Information
University of California, Berkeley

Bruno Codenotti
Istituto di Informatica e
Telematica, Consiglio
Nazionale delle Ricerche

Yevgeniy Dodis

Department of Computer Science
Courant Institute of Mathematical
Sciences, New York University

Joan Feigenbaum
Computer Science Department
Yale University

Michal Feldman

School of Business Administration

and the Center for the Study of Rationality
Hebrew University of Jerusalem

Eric Friedman

School of Operations Research
and Information Engineering
Cornell University

Jason D. Hartline
Microsoft Research
Silicon Valley

Kamal Jain
Microsoft Research
Redmond

Ramesh Johari

Department of Management Science
and Engineering

Stanford University

Anna R. Karlin

Department of Computer Science
and Engineering

University of Washington

Xix

XX

Michael Kearns
Department of Computer
and Information Science
University of Pennsylvania

Jon Kleinberg
Department of Computer Science
Cornell University

Sébastien Lahaie
School of Engineering
and Applied Sciences
Harvard University

Ron Lavi

Faculty of Industrial Engineering
and Management, The Technion
Israel Institute of Technology

Mohammad Mahdian
Yahoo! Research
Silicon Valley

Yishay Mansour
School of Computer Science
Tel Aviv University

Tyler Moore
Computer Laboratory
University of Cambridge

Shishir Nagaraja
Computer Laboratory
University of Cambridge

Noam Nisan

School of Computer Science
and Engineering

Hebrew University of Jerusalem

Asuman Ozdaglar
Department of Electrical
Engineering and Computer
Science, MIT

Andy Ozment
Computer Laboratory
University of Cambridge

CONTRIBUTORS

Christos H. Papadimitriou
Computer Science Division
University of California, Berkeley

David C. Parkes
School of Engineering
and Applied Sciences
Harvard University

David M. Pennock
Yahoo! Research
New York

Tal Rabin
T. J. Watson Research Center
IBM

Paul Resnick
School of Information
University of Michigan

Tim Roughgarden
Department of Computer Science
Stanford University

Amin Saberi

Department of Management
Science and Engineering
Stanford University

Rahul Sami
School of Information
University of Michigan

Michael Schapira
School of Computer Science
and Engineering

The Hebrew University of Jerusalem

James Schummer

M.E.D.S.

Kellogg School of Management
Northwestern University

CONTRIBUTORS xxi

Scott Shenker
EECS Department
University of California, Berkeley

R. Srikant

Department of Electrical and Computer
Engineering and Coordinated Science
Laboratory, University of Illinois at
Urbana-Champaign

Siddharth Suri
Department of Computer Science
Cornell University

Eva Tardos
Department of Computer Science
Cornell University

Kasturi Varadarajan
Department of Computer Science
University of Iowa

Vijay V. Vazirani
College of Computing
Georgia Institute of Technology

Berthold Vocking
Department of Computer Science
RWTH Aachen University

Rakesh V. Vohra

M.E.D.S.

Kellogg School of Management
Northwestern University

Bernhard von Stengel
Department of Mathematics
London School of Economics

Tom Wexler
Department of Computer Science
Cornell University

PART ONE

Computing in Games

CHAPTER 1

Basic Solution Concepts and
Computational Issues

Eva Tardos and Vijay V. Vazirani

Abstract

We consider some classical games and show how they can arise in the context of the Internet. We also
introduce some of the basic solution concepts of game theory for studying such games, and some
computational issues that arise for these concepts.

1.1 Games, Old and New

The Foreword talks about the usefulness of game theory in situations arising on the
Internet. We start the present chapter by giving some classical games and showing
how they can arise in the context of the Internet. At first, we appeal to the reader’s
intuitive notion of a “game”; this notion is formally defined in Section 1.2. For a more
in-depth discussion of game theory we refer the readers to books on game theory such
as Fudenberg and Tirole (1991), Mas-Colell, Whinston, and Green (1995), or Osborne
and Rubinstein (1994).

1.1.1 The Prisoner’s Dilemma

Game theory aims to model situations in which multiple participants interact or affect
each other’s outcomes. We start by describing what is perhaps the most well-known
and well-studied game.

Example 1.1 (Prisoners’ dilemma) Two prisoners are on trial for a crime and
each one faces a choice of confessing to the crime or remaining silent. If they
both remain silent, the authorities will not be able to prove charges against them
and they will both serve a short prison term, say 2 years, for minor offenses. If
only one of them confesses, his term will be reduced to 1 year and he will be used
as a witness against the other, who in turn will get a sentence of 5 years. Finally

3

4 BASIC SOLUTION CONCEPTS AND COMPUTATIONAL ISSUES

if they both confess, they both will get a small break for cooperating with the
authorities and will have to serve prison sentences of 4 years each (rather than 5).

Clearly, there are four total outcomes depending on the choices made by each
of the two prisoners. We can succinctly summarize the costs incurred in these
four outcomes via the following two-by-two matrix.

P2
Pl Confess Silent
4 5
Confess
4 1
1 2
Silent
5 2

Each of the two prisoners “P1” and “P2” has two possible strategies (choices)
to “confess” or to remain “silent.” The two strategies of prisoner P1 correspond to
the two rows and the two strategies of prisoner P2 correspond to the two columns
of the matrix. The entries of the matrix are the costs incurred by the players in
each situation (left entry for the row player and the right entry for the column
player). Such a matrix is called a cost matrix because it contains the cost incurred
by the players for each choice of their strategies.

The only stable solution in this game is that both prisoners confess; in each
of the other three cases, at least one of the players can switch from “silent” to
“confess” and improve his own payoff. On the other hand, a much better outcome
for both players happens when neither of them confesses. However, this is not
a stable solution — even if it is carefully planned out — since each of the players
would be tempted to defect and thereby serve less time.

The situation modeled by the Prisoner’s Dilemma arises naturally in a lot of different
situations; we give below an ISP routing context.

Example 1.2 (ISP routing game) Consider Internet Service Providers (ISPs)
that need to send traffic to each other. In routing traffic that originates in one ISP
with destination in a different ISP, the routing choice made by the originating ISP
also affects the load at the destination ISP. We will see here how this situation
gives rise to exactly the Prisoner’s dilemma described above.

Consider two ISPs (Internet Service Providers), as depicted in Figure 1.1, each
having its own separate network. The two networks can exchange traffic via two
transit points, called peering points, which we will call C and S.

In the figure we also have two origin—destination pairs s; and #; each crossing
between the domains. Suppose that ISP 1 needs to send traffic from point s; in his
own domain to point #; in 2nd ISP’s domain. ISP 1 has two choices for sending its
traffic, corresponding to the two peering points. ISPs typically behave selfishly
and try to minimize their own costs, and send traffic to the closest peering point,

GAMES, OLD AND NEW 5

Figure 1.1. The ISP routing problem.

as the ISP with the destination node must route the traffic, no matter where it
enters its domain. Peering point C is closer, using this peering point ISP 1 incurs
a cost of 1 unit (in sending traffic along 1 edge), whereas if it uses the farther
peering point S, it incurs a cost of 2.

Note that the farther peering point S is more directly on route to the destination
11, and hence routing through S results in shorter overall path. The length of the
path through C is 4 while through S is 2, as the destination is very close to S.

The situation described for ISP 1 routing traffic from s; to #; is in a way
analogous to a prisoner’s choices in the Prisoner’s Dilemma: there are two choices,
one is better from a selfish perspective (“confess” or route through peering point
(), but hurts the other player. To make our routing game identical to the Prisoner’s
Dilemma, assume that symmetrically the 2nd ISP needs to send traffic from point
s> in his domain to point #, in the 1st ISP’s domain. The two choices of the
two ISPs lead to a game with cost matrix identical to the matrix above with C
corresponding to “confess” and S corresponding to remaining “silent.”

1.1.2 The Tragedy of the Commons

In this book we will be most concerned with situations where many participants interact,
and such situations are naturally modeled by games that involve many players: there
are thousands of ISPs, and many millions of traffic streams to be routed. We will give
two examples of such games, first a multiplayer version of the Prisoner’s Dilemma
that we will phrase in terms of a pollution game. Then we will discuss the well-known
game of Tragedy of the Commons.

Example 1.3 (Pollution game) This game is the extension of Prisoner’s
Dilemma to the case of many players. The issues modeled by this game arise
in many contexts; here we will discuss it in the context of pollution control. As-
sume that there are n countries in this game. For a simple model of this situation,
assume that each country faces the choice of either passing legislation to control
pollution or not. Assume that pollution control has a cost of 3 for the country, but
each country that pollutes adds 1 to the cost of all countries (in terms of added

6 BASIC SOLUTION CONCEPTS AND COMPUTATIONAL ISSUES

health costs, etc.). The cost of controlling pollution (which is 3) is considerably
larger than the cost of 1 a country pays for being socially irresponsible.

Suppose that k countries choose not to control pollution. Clearly, the cost
incurred by each of these countries is k. On the other hand, the cost incurred by
the remaining n — k countries is k + 3 each, since they have to pay the added
cost for their own pollution control. The only stable solution is the one in which
no country controls pollution, having a cost of n for each country. In contrast,
if they all had controlled pollution, the cost would have been only 3 for each
country.

The games we have seen so far share the feature that there is a unique optimal
“selfish” strategy for each player, independent of what other players do. No matter
what strategy the opponent plays, each player is better off playing his or her selfish
strategy. Next, we will see a game where the players’ optimal selfish strategies depend
on what the other players play.

Example 1.4 (Tragedy of the commons) We will describe this game in the
context of sharing bandwidth. Suppose that n players each would like to have part
of a shared resource. For example, each player wants to send information along
a shared channel of known maximum capacity, say 1. In this game each player
will have an infinite set of strategies, player i’s strategy is to send x; units of flow
along the channel for some value x; € [0, 1].

Assume that each player would like to have a large fraction of the bandwidth,
but assume also that the quality of the channel deteriorates with the total bandwidth
used. We will describe this game by a simple model, using a benefit or payoff
function for each set of strategies. If the total bandwidth) _ ; x; exceeds the channel
capacity, no player gets any benefit. If) ;Xj < 1 then the value for player i is
x;i(1 =3, x;). This models exactly the kind of trade-off we had in mind: the
benefit for a player deteriorates as the total assigned bandwidth increases, but it
increases with his own share (up to a point).

To understand what stable strategies are for a player, let us concentrate on player
i, and assume that t =) j2ixj <1 flow is sent by all other players. Now player i
faces a simple optimization problem for selecting his flow amount: sending x flow
results in a benefit of x(1 — ¢ — x). Using elementary calculus, we get that the optimal
solution for player i is x = (1 — ¢)/2. A set of strategies is stable if all players are
playing their optimal selfish strategy, given the strategies of all other players. For this
case, this means that x; = (1 — }_,_; x;)/2 for all i, which has a unique solution in
xi =1/(n+ 1) foralli.

Why is this solution a tragedy? The total value of the solution is extremely low.
The value for player i is x;(1 — Z#i xj))=1/(n+ 1)%, and the sum of the values
over all payers is then n/(n + 1)*> ~ 1/n. In contrast, if the total bandwidth used is
> _; x; = 1/2 then the total value is 1/4, approximately n/4 times bigger. In this game
the n users sharing the common resource overuse it so that the total value of the shared
resource decreases quite dramatically. The pollution game above has a similar effect,

GAMES, OLD AND NEW 7

where the common resource of the environment is overused by the n players increasing
the cost from 3 to n for each players.

1.1.3 Coordination Games

In our next example, there will be multiple outcomes that can be stable. This game is
an example of a so-called “coordination game.” A simple coordination game involves
two players choosing between two options, wanting to choose the same.

Example 1.5 (Battle of the sexes) Consider that two players, a boy and a girl,
are deciding on how to spend their evening. They both consider two possibilities:
going to a baseball game or going to a softball game. The boy prefers baseball and
the girl prefers softball, but they both would like to spend the evening together
rather than separately. Here we express the players’ preferences again via payoffs
(benefits) as follows.

Boy
Girl B S
6 1
B
5 1
2 5
S
2 6

Clearly, the two solutions where the two players choose different games are
not stable — in each case, either of the two players can improve their payoff by
switching their action. On the other hand, the two remaining options, both attend-
ing the same game, whether it is softball or baseball, are both stable solutions; the
girl prefers the first and the boy prefers the second.

Coordination games also arise naturally in many contexts. Here we give an example
of a coordination game in the context of routing to avoid congestion. The good outcomes
in the Battle of the Sexes were to attend the same game. In contrast, in the routing game,
good outcomes will require routing on different paths to avoid congestion. Hence, this
will be an “anticoordination” game.

Example 1.6 (Routing congestion game) Suppose that two traffic streams ori-
ginate at proxy node O, and need to be routed to the rest of the network, as
shown in Figure 1.2. Suppose that node O is connected to the rest of the network
via connection points A and B, where A is a little closer than B. However, both
connection points get easily congested, so sending both streams through the same
connection point causes extra delay. Good outcomes in this game will be for the
two players to “coordinate” and send their traffic through different connection
points.

8 BASIC SOLUTION CONCEPTS AND COMPUTATIONAL ISSUES

Traffic 1
A B
Traffic 2
5 2
A
5 1
1 6
B
2 6

Figure 1.2. Routing to avoid congestion and the corresponding cost matrix.

We model this situation via a game with the two streams as players. Each
player has two available strategies — routing through A or routing through
B — leading to four total possibilities. The matrix of Figure 1.2 expresses the
costs to the players in terms of delays depending on their routing choices.

1.1.4 Randomized (Mixed) Strategies

In the games we considered so far, there were outcomes that were stable in the sense
that none of players would want to individually deviate from such an outcome. Not all
games have such stable solutions, as illustrated by the following example.

Example 1.7 (Matching pennies) Two payers, each having a penny, are asked
to choose from among two strategies — heads (H) and tails (7). The row player
wins if the two pennies match, while the column player wins if they do not match,
as shown by the following payoff matrix, where 1 indicates win and —1 indicated
loss.

One can view this game as a variant of the routing congestion game in which the
column player is interested in getting good service, hence would like the two players to
choose different routes, while the row player is interested only in disrupting the column
player’s service by trying to choose the same route. It is easy to see that this game has

GAMES, STRATEGIES, COSTS, AND PAYOFFS 9

no stable solution. Instead, it seems best for the players to randomize in order to thwart
the strategy of the other player.

1.2 Games, Strategies, Costs, and Payoffs

We have given examples of games and discussed costs, payoffs, and strategies in an
informal way. Next we will define such a game more formally. The games we considered
above were all one-shot simultaneous move games, in that all players simultaneously
chose an action from their set of possible strategies.

1.2.1 Defining a Simultaneous Move Game

Formally, such a game consists of a set n of players, {1, 2, ..., n}. Each player i has his
own set of possible strategies, say S;. To play the game, each player i selects a strategy
s; € S;. We will use s = (s1, .. ., $,) to denote the vector of strategies selected by the
players and S = Xx;S; to denote the set of all possible ways in which players can pick
strategies.

The vector of strategies s € S selected by the players determine the outcome for
each player; in general, the outcome will be different for different players. To specify
the game, we need to give, for each player, a preference ordering on these outcomes by
giving a complete, transitive, reflexive binary relation on the set of all strategy vectors
S; given two elements of S, the relation for player i says which of these two outcomes
i weakly prefers; we say that i weakly prefers S| to S, if i either prefers S; to S, or
considers them as equally good outcomes. For example, in the matching pennies game
the row player prefers strategy vectors in which the two pennies match and the column
player prefers those in which the pennies do not match.

The simplest way to specify preferences is by assigning, for each player, a value to
each outcome. In some games it will be natural to think of the values as the payoffs to
players and in others as the costs incurred by players. We will denote these functions
by u; : S — Rand ¢; : § — R, respectively. Clearly, costs and payoffs can be used
interchangeably, since u;(s) = —c;(s).

If we had defined, for each player i, u; to be simply a function of s;, the strategy
chosen by player i, rather than s, the strategies chosen by all n players, then we would
have obtained n independent optimization problems. Observe the crucial difference
between this and a game — in a game, the payoff of each player depends not only on
his own strategy but also on the strategies chosen by all other players.

1.2.2 Standard Form Games and Compactly Represented Games

To develop an algorithmic theory of games, we need to discuss how a game is specified.
One option is to explicitly list all possible strategies, and the preferences or utilities
of all players. Expressing games in this form with a cost or utility function is called
the standard form or matrix form of a game. It is very convenient to define games in
this way when there are only 2 players and the players have only a few strategies. We

10 BASIC SOLUTION CONCEPTS AND COMPUTATIONAL ISSUES

have used this form in the previous section for defining the Prisoner’s Dilemma and
the Battle of the Sexes.

However, for most games we want to consider, this explicit representation is expo-
nential sized in the natural description of the game (possibly bigger or even infinite).
Most games we want to consider have many players, e.g., the many traffic streams or
the many ISPs controlling such streams. (In fact, in Part III of this book, we will even
encounter games with infinitely many players, modeling the limiting behavior as the
number of players gets very large.) For an example, consider the pollution game from
Subsection 1.1.2, where we have n players, each with two possible strategies. There
are 2" possible strategy vectors, so the explicit representation of the game requires
assigning values to each of these 2" strategies. The size of the input needed to describe
the game is much smaller than 2", and so this explicit representation is exponentially
larger than the description of the game.

Another reason that explicit representation of the payoffs can be exponentially large
is that players can have exponentially many strategies in the natural size of the game.
This happens in routing games, since the strategy space of each player consists of all
possible paths from source to destination in the network. In the version of the Tragedy
of the Commons, we discussed in Section 1.1.2 players have infinite strategy sets, since
any bandwidth x € [0, 1] is a possible strategy.

Such exponential (and superexponential) descriptions can sometimes be avoided. For
example, the payoff may depend on the number of players selecting a given strategy,
rather than the exact subset (as was the case for the pollution game). The routing
congestion game discussed in Chapter 18 provides another example, where the cost
of a chosen path depends on the total traffic routed on each edge of the path. Another
possibility for compact representation is when the payoff of a player may depend on
the strategies chosen by only a few other players, not all participants. Games with such
locality properties are discussed in detail in Chapter 7.

1.3 Basic Solution Concepts

In this section we will introduce basic solution concepts that can be used to study the
kinds of games we described in the previous section. In particular, we will formalize
the notion of stability that we informally used in discussing solutions to some of the
games.

1.3.1 Dominant Strategy Solution

The Prisoner’s Dilemma and the Pollution Game share a very special property: in each
of these games, each player has a unique best strategy, independent of the strategies
played by the other players. We say that a game has a dominant strategy solution if it
has this property.

More formally, for a strategy vector s € S we use s; to denote the strategy played by
player i and s_; to denote the (n — 1)-dimensional vector of the strategies played by all
other players. Recall that we used u;(s) to denote the utility incurred by player i. We
will also use the notation u;(s;, s—;) when it is more convenient. Using this notation,

BASIC SOLUTION CONCEPTS 11

a strategy vector s € S is a dominant strategy solution, if for each player i, and each
alternate strategy vector s’ € S, we have that

u[(sia S/_l) 2 ui(S;7 S/_i)'

It is important to notice that a dominant strategy solution may not give an opti-
mal payoff to any of the players. This was the case in both the Prisoner’s Dilemma
and the Pollution Game, where it is possible to improve the payoffs of all players
simultaneously.

Having a single dominant strategy for each player is an extremely stringent require-
ment for a game and very few games satisfy it. On the other hand, mechanism design,
the topic of Part II of this book, aims to design games that have dominant strategy so-
lutions, and where this solution leads to a desirable outcome (either socially desirable,
or desirable for the mechanism designer). We illustrate this, using the simple example
of Vickrey auction.

1.3.2 Vickrey Auction: Designing Games with Dominant
Strategy Solutions

Perhaps the most common situation in which we need to design a game is an auction.
Suppose that we are faced with designing an auction to sell a valuable painting. To
model this situation as a game, assume that each player (bidder) i has a value v; for
the painting. His value or payoff for not winning it is 0, and his payoff for winning it
at a price of p is v; — p. The strategy of each player is simply his bid. What is a good
mechanism (or game) for selling this painting? Here we are considering single-shot
games, so assume that each player is asked to state his bid for the painting in a sealed
envelope, and we will decide who to award the painting to and for what price, based
on the bids in the envelopes.

Perhaps the most straightforward auction would be to award the painting to the
highest bidder and charge him his bid. This game does not have a dominant strategy
solution. A player’s best strategy (bid) depends on what he knows or assumes about the
strategies of the other players. Deciding what value to bid seems like a hard problem,
and may result in unpredictable behavior. See Section 1.6 for more discussion of a
possible solution concept for this game.

Vickrey’s mechanism, called second price auction, avoids these bidding problems.
As before, the painting is awarded to the bidder with highest bid; however, the amount
he is required to pay is the value of the second highest bid. This second price auction
has the remarkable property that each player’s dominant strategy is to report his true
value as bid, independent of the strategies of the rest of the players! Observe that even
if his true value happens to be very high, he is in no danger of overpaying if he reports
it — if he wins, he will pay no more than the second highest bid.

Let us observe two more properties of the Vickrey auction. First, it leads to the
desirable outcome of the painting being awarded to the bidder who values it most.
Indeed, the larger goal of mechanism design is often to design mechanisms in which
the selfish behavior of players leads to such a socially optimal outcome. For example,
when the government auctions off goods, such as the wireless spectrum auctions, their

12 BASIC SOLUTION CONCEPTS AND COMPUTATIONAL ISSUES

goal is typically not to make as large a profit as possible, but rather to get the spectrum
in the hands of companies that have the best technology to offer to customers.

Another nice feature of a dominant strategy game, such as Vickrey auction, is
that it is extremely simple for the players to play such a game, since each player’s
optimal strategy is independent of other players’ choices. In fact, one can implement
all dominant strategy games by simply asking all players for their valuation functions
and letting the game designer “play” the game for them. This is called the revelation
principle (see Chapter 9). (In this book, we will not consider the complex issue of how
players arrive at their own valuation function.) Unfortunately, in many contexts the
valuation function of a player can be very complex and direct revelation may lead to
extensive, maybe even exponential, communication (see Chapter 11). Another problem
with direct revelation mechanisms is that they assume the presence of a central trusted
party. Chapter 8 shows how cryptographic techniques can help a group of players
implement such a mechanism or game without a trusted party.

1.3.3 Pure Strategy Nash Equilibrium

Since games rarely possess dominant strategy solutions, we need to seek a less stringent
and more widely applicable solution concept. A desirable game-theoretic solution is
one in which individual players act in accordance with their incentives, maximizing
their own payoff. This idea is best captured by the notion of a Nash equilibrium, which,
despite its shortcomings (mentioned below), has emerged as the central solution concept
in game theory, with extremely diverse applications. The Nash equilibrium captures
the notion of a stable solution, discussed in Section 1.1 and used in the Tragedy of the
Commons and the Battle of the Sexes — a solution from which no single player can
individually improve his or her welfare by deviating.

A strategy vector s € S is said to be a Nash equilibrium if for all players i and each
alternate strategy s, € S;, we have that

ui(si, s—i) > ui(s), s_;).

In other words, no player i can change his chosen strategy from s; to s; and thereby
improve his payoff, assuming that all other players stick to the strategies they have
chosen in s. Observe that such a solution is self-enforcing in the sense that once the
players are playing such a solution, it is in every player’s best interest to stick to his or
her strategy.

Clearly, a dominant strategy solution is a Nash equilibrium. Moreover, if the solution
is strictly dominating (i.e., switching to it always strictly improves the outcome), it is
also the unique Nash equilibrium. However, Nash equilibria may not be unique. For
example, coordination games have multiple equilibria.

We already know that Nash equilibria may not be optimal for the players, since dom-
inant strategy solutions are Nash equilibria. For games with multiple Nash equilibria,
different equilibria can have (widely) different payoffs for the players. For example, by
a small change to the payoff matrix, we can modify the Battle of the Sexes game so that
it still has two stable solutions (the ones in which both players go to the same activity);
however, both players derive a much higher utility from one of these solutions. In

BASIC SOLUTION CONCEPTS 13

Part III of this book we will look more carefully at the quality of the best and worst
equilibria in different games.

The existence of multiple Nash equilibria makes this solution concept less convinc-
ing as a prediction of what players will do: which equilibrium should we expect them
to play? And with independent play, how will they know which equilibrium they are
supposed to coordinate on? But at least a Nash equilibrium is stable — once proposed,
the players do not want to individually deviate.

1.3.4 Mixed Strategy Nash Equilibria

The Nash equilibria we have considered so far are called pure strategy equilibria, since
each player deterministically plays his chosen strategy. As illustrated by the Matching
Pennies game, a game need not possess any pure strategy Nash equilibria. However, if
in the matching pennies game, the players are allowed to randomize and each player
picks each of his two strategies with probability 1/2, then we obtain a stable solution
in a sense. The reason is that the expected payoff of each player now is 0 and neither
player can improve on this by choosing a different randomization.

When players select strategies at random, we need to understand how they evaluate
the random outcome. Would a player prefer a choice that leads to a small positive utility
with high probability, but with a small probability leads to a large negative utility? Or,
is it better to have a small loss with high probability, and a large gain with small
probability? For the notion of mixed Nash equilibrium, we will assume that players are
risk-neutral; that is, they act to maximize the expected payoff.

To define such randomized strategies formally, let us enhance the choices of players
so each one can pick a probability distribution over his set of possible strategies; such a
choice is called a mixed strategy. We assume that players independently select strategies
using the probability distribution. The independent random choices of players leads
to a probability distribution of strategy vectors s. Nash (1951) proved that under this
extension, every game with a finite number of players, each having a finite set of
strategies, has a Nash equilibrium.

Theorem 1.8 Any game with a finite set of players and finite set of strategies
has a Nash equilibrium of mixed strategies.

This theorem will be further discussed and proved for the two player case in Chapter 2.
An important special case of 2 player games is zero-sum games, games in which the
gain of one player is exactly the loss of the other player. Nash equilibria for these
games will be further discussed in Section 1.4.

1.3.5 Games with No Nash Equilibria

Both assumptions in the theorem about the finite set of players and finite strategy sets
are important: games with an infinite number of players, or games with a finite number
of players who have access to an infinite strategy set may not have Nash equilibria. A
simple example of this arises in the following pricing game.

14 BASIC SOLUTION CONCEPTS AND COMPUTATIONAL ISSUES

Buyer A

Seller 1
Buyer B

Seller 2
Buyer C

Figure 1.3. Sellers 1 and 2 are selling identical products to buyers A, B, and C.

Example 1.9 (Pricing game) Suppose two players sell a product to three pos-
sible buyers, as shown in Figure 1.3. Each buyer wants to buy one unit of the
product.

Buyers A and C have access to one seller only, namely 1 and 2, respectively.
However, buyer B can buy the product from any of the two sellers. All three
buyers have a budget of 1, or have maximum value 1 for the item, i.e., will not
buy the product if the price is above 1. The sellers play a pricing game — they
each name a price p; in the interval [0, 1]. Buyers A and C buy from sellers 1
and 2, respectively. On the other hand, B buys from the cheaper seller. To fully
specify the game, we have to set a rule for breaking ties. Let us say that if both
sellers have the same price, B buys from seller 1. For simplicity, we assume no
production costs, so the income of a seller is the sum of the prices at which they
sold goods.

Now, one strategy for each seller is to set a price of p; = 1, and guarantee an
income of 1 from the buyer who does not have a choice. Alternatively, they can
also try to compete for buyer B. However, by the rules of this game they are not
allowed to price-discriminate; i.e., they cannot sell the product to the two buyers
at different prices. In this game, each player has uncountably many available
strategies, i.e., all numbers in the interval [0, 1]. It turns out that this game does
not have a Nash equilibrium, even if players are allowed to use mixed strategies.

To see that no pure strategy equilibrium exists, note that if p; > 1/2, player 2
will slightly undercut the price, setitat 1/2 < p, < p;, and have income of more
than 1, and then in turn player 1 will undercut player 2, etc. So we cannot have
p1 > 1/2 in an equilibrium. If p; < 1/2, the unique best response for player 2
is to set pp = 1. But then player 1 will increase his price, so p; < 1/2 also does
not lead to an equilibrium. It is a bit harder to argue that there is also no mixed
strategy equilibrium in this game.

1.3.6 Correlated Equilibrium

A further relaxation of the Nash equilibrium notion was introduced by Aumann (1959),
called correlated equilibrium. The following simple example nicely illustrates this
notion.

Example 1.10 (Traffic light) The game we consider is when two players drive
up to the same intersection at the same time. If both attempt to cross, the result

BASIC SOLUTION CONCEPTS 15

is a fatal traffic accident. The game can be modeled by a payoff matrix where
crossing successfully has a payoff of 1, not crossing pays 0, while an accident
costs —100.

| Cross Stop
-100 0
Cross
-100 1
1 0
Stop
0 0

This game has three Nash equilibria: two correspond to letting only one
car cross, the third is a mixed equilibrium where both players cross with an
extremely small probability € = 1/101, and with €2 probability they crash.
The first two equilibria have a payoff of 1. The last one is more fair, but
has low expected payoff (=0.0001), and also has a positive chance of a car
crash.

In a Nash equilibrium, players choose their strategies independently. In con-
trast, in a correlated equilibrium a coordinator can choose strategies for both
players; however, the chosen strategies have to be stable: we require that the
each player find it in his or her interest to follow the recommended strat-
egy. For example, in a correlated equilibrium the coordinator can randomly let
one of the two players cross with any probability. The player who is told to
stop has O payoff, but he knows that attempting to cross will cause a traffic
accident.

Correlated equilibria will be discussed in detail in Section 2.7. Formally, this notion
assumes an external correlation device, such as a trusted game coordinator, or some
other physical source. A correlated equilibrium is a probability distribution over strategy
vectors s € x;S;. Let p(s) denote the probability of strategy vector s, where we will
also use the notation p(s) = p(s;, s—;) when talking about a player i. The distribution
is a correlated equilibrium if for all players i and all strategies s;, s; € S;, we have the
inequality

Z p(siy s_pui(si, s—;) > Z p(si, s—)ui(s;, s—;).

S_i S—i

In words, if player i receives a suggested strategy s;, the expected profit of the player
cannot be increased by switching to a different strategy s/ € S;. Nash equilibria are
special cases of correlated equilibria, where the distribution over S is the product of
independent distributions for each player. However, correlation allows a richer set of
equilibria as we will see in Section 2.7.

16 BASIC SOLUTION CONCEPTS AND COMPUTATIONAL ISSUES
1.4 Finding Equilibria and Learning in Games

In this section we consider two closely related issues: how easy is it to find an equi-
librium, and does “natural game play” lead the players to an equilibrium? Ideally, a
perfect solution concept is one which is computationally easy to find, and also easy to
find by players playing independently.

1.4.1 Complexity of Finding Equilibria

The complexity of finding Nash and correlated equilibria will be discussed in detail in
Chapters 2 and 3. Here we give a short overview. We then discuss two-player zero-sum
games in more detail and show that for such games a Nash equilibrium can be found
efficiently using linear programming. It turns out that even general two-player games
have a character different from that of games with three or more players. For example,
two-player games where payoffs are rational numbers always admit a solution with
rational probabilities, and this is not true for games with three or more players. Games
with two players will be discussed in greater detail in Chapter 3.

We will discuss the complexity of finding Nash equilibrium in Chapter 2. NP-
completeness, the “standard” way of establishing intractability of individual problems,
does not seem to be the right tool for studying the complexity of Nash equilibria.
Instead, we will use PPAD-completeness (see Chapter 2 for the definition). The problem
of finding a Nash equilibrium is PPAD-complete even for two-player games in standard
form.

In contrast, we will see in Section 2.7 that correlated equilibria are computationally
easier. Correlated equilibria form a convex set and hence can be found in polynomial
time for games defined explicitly via their payoff matrices, and finding a correlated
equilibrium is polynomially solvable even in many compactly represented games.
However, finding an “optimal” correlated equilibrium is computationally hard in many
natural classes of compactly represented games.

1.4.2 Two-Person Zero-Sum Games

Here we consider two-player zero-sum games in more detail. A two-player game is a
zero-sum game if the sum of the payoffs of the two players is zero for any choice of
strategies. For such games it is enough to give the payoffs of the row player. Let A be
the matrix of these payoffs, representing the winnings of the row player and the loss of
the column player.

Recall from Theorem 1.8 that a Nash equilibrium of mixed strategies always exists.
We will use this fact to show that an equilibrium can be found using linear programming.
Consider a pair of probability distributions p* and ¢* for the row and column players
that form a Nash equilibrium. The expected value paid by the column player to the row
player can be expressed as v* = p*Aqg* (if we think of p* as a row vector and ¢* as a
column vector).

A Nash equilibrium has the property that even if the players know the strategies
played by the other players (the probability distribution they are using), they cannot
be better off by deviating. With this in mind, consider a strategy p for the row player.
The expected payoffs for different strategies of the column player will be pA. Once

FINDING EQUILIBRIA AND LEARNING IN GAMES 17

p is known, the column player will want to minimize his loss, and play strategies that
correspond to the minimum entries in p A. So the best publicly announced strategy for
the row player is to maximize this minimum value. This best public strategy can be
found by solving the following linear program:

v, = maxuv

>0

p =
ZP:‘ =1
(pA); > vforall j,

where we use (pA); to denote the jth entry of the vector pA. The optimum value v,
is the row player’s maximum safe value, the maximum value he or she can guarantee
to win by playing a mixed strategy p that will be known to the column player.

How does v, and the Nash value v* compare? Clearly v, < v*, since the row player,
can guarantee to win v,, so must win at least this much in any equilibrium. On the other
hand, an equilibrium is a strategy that is stable even if known to the opponent, so it
must be the case that the column player is in fact selecting the columns with minimum
value p*A, so we must have v* < v,, and hence v, = v*.

Similarly, we can set up the analogous linear program to get the value v, the column
player’s minimum safe value, the minimum loss the column player can guarantee by
playing a mixed strategy ¢ that will be known to the row player:

V. = minv
>0

q=
2 4=
J
(Ag); < v foralli.

where we use (Aq); to denote the ith entry of the vector Ag. We can argue that v* = v,
also holds. Hence we get that v, = v,, the row players’ maximum guaranteed win is
the same as the column players’ minimum guaranteed loss. This will imply that the
optimal solutions to this pair of linear programs form a Nash equilibrium.

Theorem 1.11 Optimum solutions for the above pair of linear programs give
probability distributions that form a Nash equilibrium of the two-person zero-sum
game.

PROOF Let p and g denote optimum solutions to the two linear programs. We
argued above that v, = v,. If the players play this pair of strategies, then the row
player cannot increase his win, as the column player is guaranteed by his strategy
not to lose more than v,. Similarly, the column player cannot decrease his loss, as
the row player is guaranteed to win v, by his strategy. So the pair of strategies is
at equilibrium. O

Readers more familiar with linear programming will notice that the two linear
programs above are duals of each other. We established that v, = v, using the existence

18 BASIC SOLUTION CONCEPTS AND COMPUTATIONAL ISSUES

of a Nash equilibrium from Theorem 1.8. Linear programming duality also implies
that the two values v, and v, are equal. Once we know the values are equal, the proof
of Theorem 1.4.2 shows that the optimal solutions form a Nash equilibrium, so linear
programming duality yields a proof that a Nash equilibrium exists in the special case
of zero-sum two-person games.

1.4.3 Best Response and Learning in Games

It would be desirable for a solution concept to satisfy a stronger condition than simply
being polynomial computable: it should be the case that natural game playing strategies
quickly lead players to either find the equilibrium or at least converge to an equilibrium
in the limit.

Maybe the most natural “game playing” strategy is the following “best response.”
Consider a strategy vector s, and a player i. Using the strategy vector s player i gets
the value or utility u;(s). Changing the strategy s; to some other strategy s; € S; the
player can change his utility to u;(s;, s_;), assuming that all other players stick to their
strategies in s_;. We say that a change from strategy s; to s; is an improving response
for player i if u;(s!, s_;) > u;(s) and best response if 5| maximizes the players’ utility
maxyes, u;(s;, s—;). Playing a game by repeatedly allowing some player to make an
improving or a best response move is perhaps the most natural game play.

In some games, such as the Prisoner’s Dilemma or the Coordination Game, this
dynamic leads the players to a Nash equilibrium in a few steps. In the Tragedy of
the Commons the players will not reach the equilibrium in a finite number of steps,
but the strategy vector will converge to the equilibrium. In other games, the play may
cycle, and not converge. A simple example is matching pennies, where the payers will
cycle through the 4 possible strategy vectors if they alternate making best response
moves. While this game play does not find a pure equilibrium (as none exists) in some
sense we can still say that best response converges to the equilibrium: the average
payoff for the two players converges to 0, which is the payoff at equilibrium; and even
the frequencies at which the 4 possible strategy vectors are played converge to the
probabilities in equilibrium (1/4 each).

Results about the outcome of such game playing strategies will be discussed in
Chapter 4. We will see that best response behavior is not strong enough to guarantee
convergence in most games. Instead, we will consider improving response type “learn-
ing” strategies that react to the frequencies played so far, rather than just to the current
game play. We will show that in the special case of 2-player zero-sum games such
natural game playing does converge to a Nash equilibrium. In general, even learning
strategies do not converge to Nash equilibria, instead they converge to the larger region
of correlated equilibria.

1.5 Refinement of Nash: Games with Turns and Subgame
Perfect Equilibrium

Nash equilibria has become the central solution concept in game theory, despite its
shortcomings, such as the existence of multiple equilibria. Since the emergence of this

REFINEMENT OF NASH 19

concept in the 1950s, there have been many refinements considered that address the
selection of the “right” equilibrium concept. Here we will consider one such refinement
for games with turns.

Many games have multiple turns of moves. Card games or board games all have
turns, but games modeling many economic situations also have this form: a service
provider sets up a basic service (turn 1) and then users decide to use the service or
decide not to (turn 2).

How does Nash equilibrium extend to games with turns? We can reduce such games
to simultaneous move games by having each player select a “full strategy” up front,
rather than having them select moves one at a time. By a “full strategy” we mean a
strategy for each turn, as a function of the state of the game. One issue with such
strategies is that they tend to become rather large: a full strategy for chess would state
the next move for any possible sequence of previous moves. This is a huge set in the
natural description of the game in terms of the rules of chess. Games with turns is
another example of a compactly represented game. We will see more on how to work
with this type of compactly represented games in Chapter 3.

Here our focus is to point out that in this context the notion of Nash equilibrium
seems a bit weak. To see why, consider the following simple game.

Example 1.12 (Ultimatum game) Assume that a seller S is trying to sell a good
to buyer B. Assume that the interaction has two steps: first seller S offers a price
p, and then buyer B reacts to the price. We assume the seller has no value for the
good, his payoff is p if the sale occurs, and 0 otherwise. The buyer has a value
v for the good, so his payoff is v — p if he buys, and O if he does not. Here we
are considering a full information game in which seller S is aware of the buyer’s
value v, and hence we expect that the seller offers price p just under v, and the
buyer buys. (Ignore for now the issue of what happens if the price is exactly v.)
This game allows the first player to lead, and collect (almost) all the profit.
This game is known as the ultimatum game when two players S and B need to
divide up v amount of money. The game allows the first player S to make an
“ultimatum” (in the form of a price in our context) on how to divide up the money.

To think about this game as a one-shot simultaneous move game, we need to think
of the buyer’s strategy as a function or the offered price. A natural strategy is to “buy if
the price is under v.” This is indeed an equilibrium of the game, but the game has many
other equilibria. The buyer can also have the strategy that he will buy only if the price
p is at most some smaller value m < v. This seems bad at first (why leave the v — p
profit on the table if the price is in the range m < p < v), but assuming that the buyer
uses this alternate strategy, the seller’s best move is to offer price p = m, as otherwise
he makes no profit. This pair of strategies is also a Nash equilibrium for any value m.

The notion of subgame perfect equilibrium formalizes the idea that the alternate
buyer strategy of buying only at p < m is unnatural. By thinking of the game as a
simultaneous move game, the difference between the two players in terms of the order
of moves, is diminished. The notion of subgame perfect Nash equilibrium has been
introduced to strengthen the concept of Nash, and make the order of turns part of the
definition. The idea is to require that the strategy played is Nash, even after any prefix

20 BASIC SOLUTION CONCEPTS AND COMPUTATIONAL ISSUES

of the game is already played. We will see more about subgame perfect equilibrium as
well as games with turns in Chapters 3 and 19.

1.6 Nash Equilibrium without Full Information:
Bayesian Games

So far we talked about equilibrium concepts in full information games, where all play-
ers know the utilities and strategies of all other players. When players have limited
information, we need to consider strategies that are only based on the available informa-
tion, and find the best strategy for the player, given all his or her available information.
Such games will be discussed in more detail in Section 9.6.

One source of limited information can come from not knowing properties and
preferences of other players, and hence not knowing what strategies they will select.
It is easiest to understand this issue by considering a game of cards, such as bridge. In
such a game the players have information about the probability distribution of the other
players’ cards, but do not know exactly what cards they have. A similar information
model can also be used to model many other situations. We illustrate this by the
Bayesian first price auction game.

Example 1.13 (Bayesian First Price Auction) Recall the first price auction:
all players state a bid, and the winner is the player with maximum bid, and has
to pay his bid value as the price. What are optimal strategies for players in this
auction? If the valuations of all players are common knowledge, then the player
with maximum valuation would state the second valuation as his bid, and win the
auction at the same (or slightly bigger) price as in the second price auction. But
how should players bid if they do not know all other players’ valuations? Naturally,
their bids will now depend on their beliefs about the values and knowledge of all
other players.

Here we consider the simple setup where players get their valuations from in-
dependent probability distributions, and these distributions are public knowledge.
How should player i bid knowing his own valuation v;, and the distribution of
the valuation of the other players? Such games are referred to as Bayesian games,
and are discussed in Section 9.6. For example, it is shown there that the unique
Nash equilibrium in the case when player valuations come from independent and
identical distributions is a nice analog of the second price auction: player i, whose
own valuation is v;, should bid the expected second valuation conditioned on v;
being the maximum valuation.

1.7 Cooperative Games

The games we talked about so far are all non-cooperative games — we assumed that
individual players act selfishly, deviate alone from a proposed solution, if it is in their
interest, and do not themselves coordinate their moves in groups. Cooperative game
theory is concerned with situations when groups of players coordinate their actions.

COOPERATIVE GAMES 21

First, in Section 1.7.1 we define the concept of strong Nash equilibrium, a notion
extending the Nash equilibrium concept to cooperative situations.

Then we consider games with transferable utility, i.e., games where a player with
increased utility has the ability to compensate some other player with decreased utility.
When considering games with transferable utility the main concern is to develop
solution concepts for formalizing fair ways of sharing a value or dividing up a cost in a
cooperative environment. There have been many different notions of fairness proposed.
In Section 1.7.2 we will briefly review two of them. We refer the reader to Chapter 15
for a more in-depth discussion of these two and other concepts.

1.7.1 Strong Nash Equilibrium

The closest notion from cooperative game theory to our discussion thus far is the
concept of strong Nash equilibrium introduced by Aumann (1974). Consider a game
and a proposed solution, a strategy for each player. In a cooperative game we assume
that some group A of players can change their strategies jointly, assuming that they all
benefit. Here we are assuming that the game has nontransferable utility, which means
that in order for a coalition to be happy, we need to make sure that the utility of each
member is increasing (or at least is not decreasing).

We say that a vector of strategies forms a strong Nash equilibrium if no subset A
of players has a way to simultaneously change their strategies, improving each of the
participant’s welfare. More formally, for a strategy vector s and a set of players A let
s denote the vector of strategies of the players in A and let s_4 denote the vector of
strategies of the players not in A. We will also use u;(s4, s_4) for the utility for player
i in the strategy s. We say that in a strategy vector s a subset A of players has a joint
deviation if there are alternate strategies s; € S; for i € A forming a vector s’;, such
that u;(s) < u;(s);,s_4) forall i € A, and for at least one player in A the inequality is
strict. A strategy vector s is strong Nash if no subset A has a joint deviation.

The concept of strong Nash is very appealing, for strong Nash equilibria have a
very strong reinforcing property. One problem with this concept is that very few games
have such equilibria. A nice example of a game with strong Nash equilibria is the
game version of the stable marriage problem where boys and girls form pairs based
on preference lists for the other sex. For a proposed matching, the natural notion of
deviation for this game is a pair deviating (a couple who prefer each other to their
current partners). This game will be reviewed in detail in Chapter 10. Chapter 19
considers network formation games, and will discuss another class of games where
coalitions of size 2 (pairs) are the natural units causing instability of a solution.

1.7.2 Fair Division and Costsharing: Transferable Utility Games

When utility is transferable, we can think of the game as dividing some value or sharing
a cost between a set of players. The goal of this branch of game theory is to understand
what is a fair way to divide value or cost between a set of participants. We assume that
there is a set N of n participants, or players, and each subset A of players is associated
with a cost c(A) (or value v(A)). We think of c¢(A) as a cost associated with serving
the group A of players, so c¢(N) is the cost of serving all N players. The problem is to

22 BASIC SOLUTION CONCEPTS AND COMPUTATIONAL ISSUES

divide this cost ¢(N) among the n players in a “fair” way. (In case of dividing a value
v(A), we think of v(A) as the value that the set A can generate by itself.)

A cost-sharing for the total cost ¢(N) is a set of cost-shares x; for each player
i € N. We assume that cost-sharing needs to be budget balanced; i.e., we require that
Y iy Xi = c(N). One of the key solution concepts in this area is that of a core. We say
that the cost-sharing is in the core if no subset of players would decrease their shares
by breaking away from the whole set. More formally, we say that the cost-share vector
cisinthe coreif), , x; < c(A) for all sets A. A violation of this inequality precisely
corresponds to a set A of players who can benefit by breaking away.

Given a notion of fair sharing, such as the core, there are a number of important
questions one can ask. Given a cost function ¢, we want to know whether there is a
cost-sharing x that is in the core. In Chapter 15 we will see that there are nice ways
of characterizing problems that have a nonempty core. We will also be concerned with
the complexity of finding a cost-sharing in the core, and deciding whether the core is
nonempty. The computational complexity of determining whether the core is empty has
been extensively studied for many fundamental games. If the core is empty or finding
a solution in the core is an intractable problem, one can consider a relaxed version of
this notion in which subsets of players secede only if they make substantial gains over
being in the whole set N. We will discuss these ideas in Chapter 15.

Here we briefly review a very different proposal for what is a “fair” way to share
cost, the Shapley value. One advantage of the Shapley value is that it always exists.
However, it may not be in the core, even for games that have nonempty core.

Example 1.14 (Shapley Value) Shapley value is based on evaluating the
marginal cost of each player. If we order the player set N as 1, ..., n and use the
notation that N; = {1, ..., i} then the marginal cost of playeri is c(N;) — c¢(N;—_1).
Of course, this marginal cost depends on the order the players are considered.
The Shapley value assigns cost-share x; to player i that is the expected value of
this marginal cost over a random order of the players.

In Chapter 15 we will show that the Shapley value can be characterized as the unique
cost-sharing scheme satisfying a number of different sets of axioms.

1.8 Markets and Their Algorithmic Issues

Some of the most crucial regulatory functions within a capitalistic economy, such as
ensuring stability, efficiency, and fairness, are relegated to pricing mechanisms, with
very little intervention. It is for this reason that general equilibrium theory, which
studied equilibrium pricing, occupied a central place within mathematical economics.

From our viewpoint, a shortcoming of this theory is that it is mostly a nonalgo-
rithmic theory. With the emergence of numerous new markets on the Internet and the
availability of massive computational power for running these markets in a centralized
or distributed manner, there is a need for a new, inherently algorithmic theory of mar-
ket equilibria. Such algorithms can also help understand the repercussions to existing

MARKETS AND THEIR ALGORITHMIC ISSUES 23

prices, production, and consumption caused by technological advances, introduction
of new goods, or changes to the tax structure. Chapters 5 and 6 summarize recent work
along these lines.

Central to ensuring stability of prices is that there be parity between the demand and
supply of goods. When there is only one good in the market, such an equilibrium price
is easy to determine — it is simply the price at which the demand and supply curves
intersect. If the price deviates from the equilibrium price, either demand exceeds
supply or vice versa, and the resulting market forces tend to push the price back to the
equilibrium point. Perhaps the most celebrated result in general equilibrium theory,
due to Arrow and Debreu (1954), shows the existence of equilibrium prices in a very
general model of the economy with multiple goods and agents.

It turns out that equilibria for several fundamental market models can be captured
as optimal solutions to certain nonlinear convex programs. As a result, two algorithmic
approaches present themselves — combinatorial algorithms for solving these convex
programs and convex programming based approaches. These are covered in Chapters
5 and 6, respectively.

1.8.1 An Algorithm for a Simple Market

In this section, we will give a gist of the models and algorithms studied using a very
simple market model. Consider a market consisting of a set A of divisible goods and a
set B of buyers. We are specified for each buyer i, the amount m; € Z* of money she
possesses, and for each good j, the amount a; € Z* of this good. Each buyer i has
access to only a subset, say S; € A of the goods. She is indifferent between goods in
S;, but is interested in maximizing the total amount of goods obtained. An example of
such a situation is when identical goods are sold in different markets and each buyer has
access to only a subset of the markets; such a model is studied in Chapter 7. Without
loss of generality we may assume that m; # 0, a; # 0, for each buyer i, S; # @, and
for each good j, there is a buyer i such that j € ;.

Once the prices py, ..., p, of the goods are fixed, a buyer i is only interested in the
cheapest goods in S;, say S, C ;. Any allocation of goods from S that exhausts her
money will constitute her optimal basket of goods at these prices.

Prices are said to be market clearing or equilibrium prices if there is a way to assign
to each buyer an optimal basket of goods so that there is no surplus or deficiency of any
of the goods i.e., demand equals supply. It turns out that equilibrium prices are unique
for this market; see Chapter 5 for a proof in a more general setting.

We will need the following notations and definitions. Define a bipartite graph G =
(A, B, E) on vertex sets A and B as shown on Figure 1.4. The edge (j, i) connects a
good j to a buyer i such that j € S;. Because of the assumptions made, each vertex in
G has non zero degree. For § € A of goods, let a(S) denote the total amount of goods
in S,ie., a(s) = ZjeS a;. Forasubset T C B of buyers, let m(T) =) _,_; m; denote
the total money possessed by buyers in 7'.

The algorithm given below is iterative and always assigns uniform prices to all
goods currently under consideration. For a set S of goods, let I'(S) denote the set of
buyers who are interested in goods in S; ['(S) ={i € B | S; NS # 0}. This is the

24 BASIC SOLUTION CONCEPTS AND COMPUTATIONAL ISSUES

Buyer 1
Good 1
Buyer 2
Good 2
Buyer 3

Figure 1.4. The graph C on the left and the corresponding max-flow network N.

neighborhood of § in G. We say that a uniform price x is feasible if
VS C A, x-a(S) <m(I'(S)),

i.e., the total cost of § is at most the total money possessed by buyers interested in
goods in S. With respect to a feasible x, we will say thatset S € A is tightif x - a(S) =
m(I"(S)). The importance of feasibility is established by the following lemma.

Lemma 1.15 A uniform price of x on all goods is feasible if and only if all
goods can be sold in such a way that each buyer gets goods that she is interested
in.

PROOF One direction is straightforward. If there is a subset S € A such that
x - a(S) > m(I'(S)) then goods in S cannot all be sold at price x since buyers
interested in these goods simply do not have enough money.

To prove the other direction, we will use network N (see Figure 1.4) obtained
from the bipartite graph G for computing allocations of goods to buyers. Direct
the edges of G from A to B and assign a capacity of infinity to all these edges.
Introduce source vertex s and a directed edge from s to each vertex j € A with
a capacity of x - a;. Introduce sink vertex ¢ and a directed edge from each vertex
i € B tot with a capacity of m;.

Clearly, a way of selling all goods corresponds to a feasible flow in N that
saturates all edges going out of s. We will show that if x is feasible, then such
a flow exists in N. By the max-flow min-cut theorem, if no such flow exists,
then the minimum cut must have capacity smaller than x - a(A). Let S be the
set of goods on the s-side of a minimum cut. Since edges (j, i) for goods j € §
have infinite capacity, ['(S) must also be on the s-side of this cut. Therefore, the
capacity of this cut is at least x - a(A — S) + m(I'(S)). If this is less than x - a(A)
then x - a(S) > m(I'(S)), thereby contradicting the feasibility of x. O

If with respect to a feasible x, a set § is tight, then on selling all goods in S, the
money of buyers in I'(S) will be fully spent. Therefore, x constitutes market clearing
prices for goods in S. The idea is to look for such a set S, allocate goods in S to I'(S),
and recurse on the remaining goods and buyers.

The algorithm starts with x = 0, which is clearly feasible, and raises x continuously,
always maintaining its feasibility. It stops when a nonempty set goes tight. Let x* be

MARKETS AND THEIR ALGORITHMIC ISSUES 25

the smallest value of x at which this happens and let $* be the maximal tight set (it is
easy to see that S* must be unique).

We need to give procedures for finding x* and $*. Observe that x* is the largest value
of x at which (s, A U B Ut) remains a min-cut in N. Therefore, x* can be computed
via a binary search. After computing x*, compute the set of nodes that can reach ¢ in
the residual graph of this flow. This set, say W, is the ¢-side of the (unique) maximal
min-cut in N at x = x*. Then, §* = A — W, the set of goods on the s side of this cut.

At prices x*, buyers in I'($*) will have no surplus money left and increasing x any
more will lead to infeasibility. At this point, the algorithm fixes the prices of goods
in S* at x*. It computes a max-flow in N for x = x*, as suggested by Lemma 1.15.
This flow gives an allocation of goods in S* to buyers in I'(S*), which fully spends all
the money m(I"(S*)). The same flow also shows that x* is feasible for the problem for
goods A — §* and buyers B — I'(S%).

In the next iteration, the algorithm removes S* and I"(S*), initializes the prices of
the goods in A — S§* to x*, and raises prices until a new set goes tight. The algorithm
continues in this manner, iteratively finding prices of sets of goods as they go tight. It
terminates when all goods have been assigned prices.

Lemma 1.16 The value x* is feasible for the problem restricted to goods in
A — S* and buyers in B — I'(S*). Furthermore, in the subgraph of G induced on
A — S* and B — T'(S*), all vertices have nonzero degree.

PROOF In the max-flow computed in N for x = x*, the flow going through
nodes in S* completely uses up the capacity of edges from I'($*) to ¢. Therefore,
all the flow going through nodesin A — S* must exit vianodes in B — I'(S*). Now,
the first claim follows from Lemma 1.15. Furthermore, a good j € A — S* must
have nonzero degree to B — I'(S*). Finally, since each buyer i € (B — I'(5%))
has nonzero degree in G and has no edges to S*, it must have nonzero degree to
A—S* O

Theorem 1.17 The above-stated algorithm computes equilibrium prices and
allocations in polynomial time.

PROOF Attermination, all goods are assigned prices and are therefore fully sold.
By the second claim in Lemma 1.16, when the algorithm terminates, each buyer
must be in the neighborhood of one of the tight sets found and therefore must be
allocated goods in return for her money. We need to show that each buyer gets
her optimal bundle of goods. Let S$* be the first tight set found by the algorithm.
Since S* was a maximal tight set at x*, prices must strictly rise before a new
set goes tight in the second iteration. Therefore, prices are monotone increasing
across iterations and all goods in A — S* are assigned higher prices than x*. Since
each buyer i € I'(S*) is allocated goods from S* only, she was given an optimal
bundle. Now, the claim follows by induction.

Clearly, the algorithm will execute at most |A]| iterations. The time taken for
one iteration is dominated by the time required for computing x* and S*. Observe
that x* = m(I'(S*))/a(S*), i.e., its numerator and denominator are polynomial

26 BASIC SOLUTION CONCEPTS AND COMPUTATIONAL ISSUES

sized integers. Therefore binary search for finding x* will take polynomial
time. O

Acknowledgments

We would like to thank Christos Papadimitriou, Bernhard von Stengel, Tim Rough-
garden, and Rakesh Vohra for their extremely valuable critiques and suggestions on
an early draft of this chapter. We also thank Ramesh Johari and Tim Roughgarden for
suggesting the ISP routing version of the Prisoners’ Dilemma in Section 1.1.

Bibliography

K.K. Arrow and G. Debreu. Existence of an equilibrium for competitive economy. Econometrica,
22:265-290, 1954.

R.J. Aumann. Acceptable points in general cooperative n-person games. In: Contributions to the
Theory of Games 1V, Princeton University Press, 1959.

R.J. Aumann. Subjectivity an correlation in randomized strategies. J. Math. Econ., 1:67-96,
1974.

D. Fudenberg and J. Tirole. Game Theory, MIT Press, 1991.

D. Gale and L.S. Shapley. College admissions and the stability of marriage. American Mathematical
Monthly, 69:9-15, 1962.

A. Mas-Colell, M. Whinston, and J. Green. Microeconomic Theory, Oxford Press, 1995.

D. Monderer and L. Shapley. Potential games. Games and Economic Behavior 14:124-143, 1996.

J. Nash. Noncooperative games. Annals of Mathematics, 54:289-295, 1951.

M. Osborne and A. Rubinstein. A Course in Game Theory, MIT Press, 1994.

Exercises

1.1 Give a finite algorithm for finding a Nash equilibrium for a game with two players
defined by a game matrix. Your algorithm may run in exponential time.

1.2 Consider a two-player game given in matrix form where each player has n strategies.
Assume that the payoffs for each player are in the range [0, 1] and are selected
independently and uniformly at random. Show that the probability that this random
game has a pure (deterministic) Nash equilibrium approaches 1 — 1/e as n goes to
infinity. You may use the fact that lim(1 — 1/n)” = 1/e as n goes to infinity.

1.3 We have seen that finding a Nash in a two-person zero-sum game is significantly
easier than general two-person games. Now consider a three-person zero-sum game,
that is, a game in which the rewards of the three players always sums to zero. Show
that finding a Nash equilibrium in such games is at least as hard as that in general
two-person games.

1.4 Consider an n person game in which each player has only two strategies. This game
has 2" possible outcomes (for the 2" ways the n players can play), therefore the
game in matrix form is exponentially large. To circumvent this, in Chapter 7 we
will consider a special class of games called graphical games. The idea is that the

1.5

1.6

1.7

EXERCISES 27

value (or payoff) of a player can depend only on a subset of players. We will define
a dependence graph G, whose nodes are the players, and an edge between two
players i and j represents the fact that the payoff of player i depends on the strategy
of player j or vice versa. Thus, if node i has k neighbors, then its payoff depends
only on its own strategy and the strategies of its k neighbors.

Consider a game where the players have 2 pure strategies each and assume that
the graph G is a tree with maximum degree 3. Give a polynomial time algorithm to
decide if such a game has a pure Nash equilibrium. (Recall that there are 2" possible
pure strategy vectors, yet your algorithm must run in time polynomial in n.)

Consider an n player game in which each player has 2 strategies. For this problem,
think of the strategies as “on” and “off.” For example, the strategy can be either to
participate or not to participate in some event. Further more, assume that the game
is symmetric, in that all players have the same payoff functions, and that the payoff
for a player depends only on the strategy of the player and the number of people
playing strategy “on.” So the game is defined by 2n values: u,,(k) and ue ¢ (k), which
denote the payoff for playing the “on” and “off” strategies, assuming that k of the
other players chose to play “on” fork =0, ..., n—1.

Give a polynomial time algorithm to find a correlated equilibrium for such a
game. Note that the input to this problem consists of the 2n numbers above. As
usual, polynomial means polynomial in this input length. You may use the fact that
linear programming is solvable in polynomial time.

Consider a 2-person game in matrix form. Assume that both players have n pure
strategies. In a Nash equilibrium a player may be required to play a mixed strategy
that gives nonzero probability to all (or almost all) of his pure strategies. Strategies
that mix between so many pure options are hard to play, and also hard to understand.
The goal of this problem is to show that one can reach an almost perfect Nash
equilibrium by playing strategies that only choose between a few of the options.

We will use p/ to be the probability distribution for player j, so p! is the proba-
bility that player j will use his ith pure strategy. The support of a mixed strategy p/
for player j is the set S/ = {i : p/ > 0}, i.e., the set of different pure strategies that
are used with nonzero probability. We will be interested in solutions where each
player has a strategy with small support.

For a given € > 0, we will say that a set of mixed strategies p', p? is e-approximate
Nash if for both players j =1 or 2, and all other strategies p/ for this player, the
expected payoff for player j using strategy p/ is at most e M more than his expected
payoff using strategy p/, where M is the maximum payoff.

Show that for any fixed € > 0 and any 2-player game with all nonnegative payoffs,
there is an e-approximate Nash equilibrium such that both players play the following
simple kind of mixed strategy. For each player j, the strategy selects a subset §; of at
most O(log n) of player ;s pure strategies, and makes player j select one of the strate-
gies in §; uniformly at random. The set §; may be a multiset, i.e., may contain the
same pure strategy more than once such a strategy is more likely to be selected by the
random choice). The constant in the O(.) notation may depend on the parameter .

Hint: Consider any mixed Nash strategy with possibly large support, and try to
simplify the support by selecting the subsets $; for the two players based on this
Nash equilibrium.

The classical Bertrand game is the following. Assume that n companies, which
produce the same product, are competing for customers. If each company i has a
production level of g;, there will be g =Y, g; units of the product on the market.

28

1.8

BASIC SOLUTION CONCEPTS AND COMPUTATIONAL ISSUES

Now, demand for this product depends on the price and if g units are on the
market, price will settle so that all g units are sold. Assume that we are given a
“demand-price curve” p(d), which gives the price at which all d units can be sold.
Assume that p(d) is a monotone decreasing, differentiable function of d. With this
definition, the income of the firm i will be g; p(g). Assume that production is very
cheap and each firm will produce to maximize its income.

(a) Show that the total income for a monopolistic firm, can be arbitrarily higher
than the total income of many different firms sharing the same market. Hint: this is
true for almost all price curves; you may want to use, e.g., p(d) =1 —d.

(b) Assume that p(d) is twice differentiable, monotone decreasing, and p”(d) < 0.
Show that the monopolistic income is at most n times the total income of the n
competing companies.

Let V denote a set of n agents, labeled 1, 2, ..., n. Let 0 denote the root node and
for any subset S € V, ST denote the set SU {0}. Let G = (V*, E) be a complete,
undirected graph with edge costs ¢ : E — Z* which satisfy the triangle inequality.
For a subset S C V, let c(S) denote the cost of a minimum spanning tree in the
subgraph of G induced on S*. The spanning tree game asks for a budget balanced
cost-sharing method for minimum spanning tree that lies on the core.

Consider the following cost-sharing method for sharing the cost of building a
minimum spanning tree in G among the n agents. Find any minimum spanning
tree, say T, and root it at vertex 0. Define the cost of agent i to be the cost of the
first edge on the unique path from i to 0 in T. Clearly, this cost-sharing method
is budget balanced; i.e., the total cost retrieved from the n agents is precisely the
cost of a minimum spanning tree in G. Show that this cost-sharing method is in the
core, i.e., for any subset S C V, the total cost charged to agents in S is at most the
cost they would incur if they were to directly connect to the root, i.e., c(S).

CHAPTER 2

The Complexity of Finding
Nash Equilibria

Christos H. Papadimitriou

Abstract

Computing a NAsH equilibrium, given a game in normal form, is a fundamental problem for Algo-
rithmic Game Theory. The problem is essentially combinatorial, and in the case of two players it
can be solved by a pivoting technique called the Lemke—Howson algorithm, which however is ex-
ponential in the worst case. We outline the recent proof that finding a NAsH equilibrium is complete
for the complexity class PPAD, even in the case of two players; this is evidence that the problem is
intractable. We also introduce several variants of succinctly representable games, a genre important
in terms of both applications and computational considerations, and discuss algorithms for correlated
equilibria, a more relaxed equilibrium concept.

2.1 Introduction

NasH’s theorem — stating that every finite game has a mixed NAsH equilibrium (Nash,
1951) —is a very reassuring fact: Any game can, in principle, reach a quiescent state,
one in which no player has an incentive to change his or her behavior. One question
arises immediately: Can this state be reached in practice? Is there an efficient algorithm
for finding the equilibrium that is guaranteed to exist? This is the question explored in
this chapter.

But why should we be interested in the issue of computational complexity in con-
nection to NASH equilibria? After all, a NASH equilibrium is above all a conceptual
tool, a prediction about rational strategic behavior by agents in situations of conflict —
a context that is completely devoid of computation.

We believe that this matter of computational complexity is one of central importance
here, and indeed that the algorithmic point of view has much to contribute to the debate
of economists about solution concepts. The reason is simple: If an equilibrium concept
is not efficiently computable, much of its credibility as a prediction of the behavior
of rational agents is lost — after all, there is no clear reason why a group of agents
cannot be simulated by a machine. Efficient computability is an important modeling

29

30 THE COMPLEXITY OF FINDING NASH EQUILIBRIA

perequisite for solution concepts. In the words of Kamal Jain, “If your laptop cannot
find it, neither can the market.”!

2.1.1 Best Responses and Supports

Let us thus define NAsH to be the following computational problem: Given a game
in strategic form, find a NASH equilibrium. Since NAsH calls for the computation
of a real-valued distribution for each player, it seems primae facie to be a quest in
continuous mathematics. However, a little thought reveals that the task is essentially
combinatorial.

Recall that a mixed strategy profile is a NASH equilibrium if the mixed strategy
of each player is a best response to the mixed strategies of the rest; that is, it attains
the maximum possibly utility among all possible mixed strategies of this player. The
following observation is useful here (recall that the support of a mixed strategy is the
set of all pure strategies that have nonzero probability in it).

Theorem 2.1 A mixed strategy is a best response if and only if all pure strategies
in its support are best responses.

To see why, assume for the sake of contradiction that a best response mixed strategy
contains in its support a pure strategy that is not itself a best response. Then the utility of
the player would be improved by decreasing the probability of the worst such strategy
(increasing proportionally the remaining nonzero probabilities to fill the gap); this
contradicts the assumption that the mixed strategy was a best response. Conversely, if
all strategies in all supports are best responses, then the strategy profile combination
must be a NASH equilibrium.

This simple fact reveals the subtle nature of a mixed NASH equilibrium: Players
combine pure best response strategies (instead of using, for the same utility, a single
pure best response) in order to create for other players a range of best responses that
will sustain the equilibrium!

Example 2.2 Consider the symmetric game with two players captured by the

matrix

030
A=1003
222
A game with two players can be represented by two matrices (A, B) (hence the
term bimatrix game often used to describe such games), where the rows of A are
the strategies of Player 1 and the columns of A are the strategies of Player 2,
while the entries are the utilities of Player 1; the opposite holds for matrix B. A
bimatrix game is called symmetric if B = AT i.e., the two players have the same
set of strategies, and their utilities remain the same if their roles are reversed.

In the above symmetric game, consider the equilibrium in which both play-
ers play the mixed strategy (0, 1/3,2/3). This is a symmetric NASH equilibrium,

! One may object to this aphorism on the basis that in markets agents work in parallel, and are therefore more
powerful than ordinary algorithms; however, a little thought reveals that parallelism cannot be the cure for
exponential worst case.

IS THE Nash EQUILIBRIUM PROBLEM NP-COMPLETE? 31

because both players play the same mixed strategy. (A variant of NASH’S proof
establishes that every symmetric game, with any number of players, has a sym-
metric equilibrium — it may also have nonsymmetric ones.) We can check whether
it is indeed an equilibrium, by calculating the utility of each strategy, assuming
the opponent plays (0, 1/3, 2/3): The utilities are 1 for the first strategy, and 2
for the other two. Thus, every strategy in the support (i.e., either of strategies 2
and 3) is a best response, and the mixed strategy is indeed a NASH equilibrium.
Note that, from Player 1’s point of view, playing just strategy 2, or just strategy 3,
or any mixture of the two, is equally beneficial to the equilibrium mixed strategy
(0, 1/3,2/3). The only advantage of following the precise mix suggested by the
equilibrium is that it motivates the other player to do the same.

Incidentally, in our discussion of NASH equilibria in this chapter, we shall often
use the simpler two-player case to illustrate the ideas. Unfortunately, the main
result of this section says that two-player games are not, in any significant sense,
easier than the general problem.

It also follows from these considerations that finding a mixed NASH equilibrium
means finding the right supports: Once one support for each player has been identified,
the precise mixed strategies can be computed by solving a system of algebraic equations
(in the case of two players, linear equations): For each player i we have a number of
variables equal to the size of the support, call it k;, one equation stating that these
variables add to 1, and k; — 1 others stating that the k; expected utilities are equal.
Solving this system of) ; k; equations in) ; k; unknowns yields k; numbers for
each player. If these numbers are real and nonnegative, and the utility expectation is
maximized at the support, then we have discovered a mixed NASH equilibrium.

In fact, if in the two-player case the utilities are integers (as it makes sense to assume
in the context of computation), then the probabilities in the mixed NASH equilibrium
will necessarily be rational numbers, since they constitute the solution of a system of
linear equations with integer coefficients. This is not true in general: NASH’S original
paper (1951) includes a beautiful example of a three-player poker game whose only
NAsH equilibrium involves irrational numbers.

The bottom line is that finding a Nasu equilibrium is a combinatorial problem: It
entails identifying an appropriate support for each player. Indeed, most algorithms
proposed over the past half century for finding NASH equilibria are combinatorial in
nature, and work by seeking supports. Unfortunately, none of them are known to be
efficient — to always succeed after only a polynomial number of steps.

2.2 Is the Nasu Equilibrium Problem NP-Complete?

Computer scientists have developed over the years notions of complexity, chief among
them NP-completeness (Garey and Johnson, 1979), to characterize computational prob-
lems which, just like NasH and SATISFIABILITY,? seem to resist efficient solution. Should
we then try to apply this theory and prove that NAsH is NP-complete?

2 Recall that SATISFIABILITY is the problem that asks, given a Boolean formula in conjunctive normal form, to
find a satisfying truth assignment.

32 THE COMPLEXITY OF FINDING NASH EQUILIBRIA

It turns out that NAsH is a very different kind of intractable problem, one for which
NP-completeness is not an appropriate concept of complexity. The basic reason is
that every game is guaranteed to have a NAsH equilibrium. In contrast, in a typical
NP-complete problem such as SATISFIABILITY, the sought solution may or may not
exist. NP-complete problems owe much of their difficulty, and their susceptibility to
NP-completeness reductions, to precisely this dichotomy.? For, suppose that NAsH is
NP-complete, and there is a reduction from SATISFIABILITY to NASH. This would entail
an efficiently computable function f mapping Boolean formulae to games, and such
that, for every formula ¢, ¢ is satisfiable if and only if any NASH equilibrium of f(¢)
satisfies some easy-to-check property I1. But now, given any unsatisfiable formula ¢,
we could guess a NasH equilibrium of f(¢), and check that it does not satisfy IT: This
implies NP = coNP!

Problems such as NasH for which a solution is guaranteed to exist require much
more specialized and subtle complexity analysis — and the end diagnosis is necessar-
ily less severe than NP-completeness (see Beame et al., 1998; Johnson et al., 1988;
Papadimitriou, 1994 for more on this subject).

2.2.1 NaSsH vs Brouwer

In contemplating the complexity of NAsH, a natural first reaction is to look into NASH’S
proof (1951) and see precisely how existence is established — with an eye towards
making this existence proof “constructive.” Unfortunately this does not get us very
far, because NASH’s proof relies on Brouwer’s fixpoint theorem, stating that every
continuous function f from the n-dimensional unit ball to itself has a fixpoint: a point
x such that f(x) = x. NAsH’s proof is a clever reduction of the existence of a mixed
equilibrium to the existence of such a fixpoint. Unfortunately, Brouwer’s theorem is
well-known for its nonconstructive nature, and finding a Brouwer fixpoint is known to
be a hard problem (Hirsch et al., 1989; Papadimitriou, 1994) — again, in the specialized
sense alluded to above, since a solution is guaranteed to exist here also.

Natural next question: Is there a reduction in the opposite direction, one establishing
that NAsH is precisely as hard as the known difficult problem of finding a Brouwer fix-
point? The answer is “yes,” and this is in fact a useful alternative way of understanding
the main result explained in this chapter.*

2.2.2 NP-Completeness of Generalizations

As we have discussed, what makes NP-completeness inappropriate for NAsH is the
fact that NASH equilibria always exist. If the computational problem NAsH is twisted

3 But how about the traveling salesman problem? Does it not always have a solution? It does, but this solution
(the optimum tour) is hard to verify, and so the TSP is not an appropriate comparison here. To be brought into
the realm of NP-completeness, optimization problems such as the TSP must be first transformed into decision
problems of the form “given a TSP instance and a bound B, does a tour of length B or smaller exist?” This
problem is much closer to SATISFIABILITY.

4 This may seem puzzling, as it seems to suggest that Brouwer’s theorem is also of a combinatorial nature. As
we shall see, in a certain sense indeed it is.

THE LEMKE—HOWSON ALGORITHM 33

in any one of several simple ways that deprive it from its existence guarantee, NP-
completeness comes into play almost immediately.

Theorem 2.3 (Gilboa and Zemel, 1989) The following are NP-complete prob-
lems, even for symmetric games: Given a two-player game in strategic form, does
it have

e at least two Nasu equilibria?
e a Nasu equilibrium in which player 1 has utility at least a given amount?

e a Nasu equilibrium in which the two players have total utility at least a given
amount?

e a Nasu equilibrium with support of size greater than a given number?
e a Nasu equilibrium whose support contains strategy s?
e a Nasu equilibrium whose support does not contain strategy s?

e elc., etc.

A simple proof, due to (Conitzer and Sandholm, 2003), goes roughly as follows:
Reduction from SATISFIABILITY. It is not hard to construct a symmetric game whose
strategies are all literals (variables and their negations) and whose NASH equilibria are
all truth assignments. In other words, if we choose, for each of the n variables, either the
variable itself or its negation, and play it with probability % then we get a symmetric
NasH equilibrium, and all NAsH equilibria of the game are of this sort. It is also easy to
add to this game a new pure NAsH equilibrium (d, d), with lower utility, where d (for
“default”) is a new strategy. Then you add new strategies, one for each clause, such
that the strategy for clause C is attractive, when a particular truth assignment is played
by the opponent, only if all three literals of C are contradicted by the truth assignment.
Once a clause becomes attractive, it destroys the assignment equilibrium (via other
strategies not detailed here) and makes it drift to (d, d). It is then easy to establish that
the NAsH equilibria of the resulting game are precisely (d, d) plus all satisfying truth
assignments. All the results enumerated in the statement of the theorem, and more,
follow very easily.

2.3 The Lemke-Howson Algorithm

We now sketch the Lemke—Howson algorithm, the best known among the combinatorial
algorithms for finding a NAsH equilibrium (this algorithm is explained in much more
detail in the next chapter). It works in the case of two-player games, by exploiting
the elegant combinatorial structure of supports. It constitutes an alternative proof of
NAsH’s theorem, and brings out in a rather striking way the complexity issues involved
in solving NAsH. Its presentation is much simpler in the case of symmetric games. We
therefore start by proving a basic complexity result for games: looking at symmetric
games is no loss of generality.

34 THE COMPLEXITY OF FINDING NASH EQUILIBRIA

2.3.1 Reduction to Symmetric Games

Define SYMMETRIC NASH to be the following problem: Given a symmetric game, find
a symmetric NASH equilibrium. As noted above, NAsH proved in his original paper
that such equilibrium always exists. Here we establish the following fact, which was
actually first pointed out before NASH’S paper, in Gale et al., 1950 essentially with the
same proof, for the case of two-player zero-sum games:

Theorem 2.4 There is a polynomial reduction from NASH t0 SYMMETRIC NASH.

Thus the symmetric case of NASH is as hard as the general one.

We shall describe the reduction for the two-player case, the proof for any fixed
number of players being a straightforward generalization. Suppose that we are given
a two-player game described by matrices A and B; without loss of generality, assume
that all entries of these matrices are positive (adding the same number to all entries of
A or B changes nothing). Consider now the symmetric game consisting of this matrix:

C = < I;) T 13) and let (x, y) be a symmetric equilibrium of this game (by x we denote

the first m components of the vector, where m is the number of rows of A, and by y
the rest). It is easy to see that, for (x, y) to be a best response to itself, y must be a best
response to x, and x must be a best response to y. Hence, x and y constitute a NASH
equilibrium of the original game, completing the proof.

Incidentally, it is not known how hard it is to find any NASH equilibrium in a
symmetric game (it could be easier than NASH), or to find a nonsymmetric equilibrium
in a symmetric game (it could be easier or harder than NASH).

2.3.2 Pivoting on Supports

So, let us concentrate on finding a NASH equilibrium in a symmetric two-player game
with n x n utility matrix A, assumed with no loss of generality to have nonnegative
entries and in addition no column that is totally zero. Consider the convex polytope
P defined by the 2n inequalities Az < 1,z > 0 (it turns out that these inequalities
are important in identifying mixed NASH equilibria, because, intuitively, when an
inequality from A;x < 1 is tight, the corresponding strategy is a best response). It is
a nonempty, bounded polytope (since z = 0 is a solution, and all coefficients of A are
nonnegative while no column is zero). Let us assume for simplicity that the polytope P
is also nondegenerate, that is, every vertex lies on precisely n constraints (every linear
program can be made nondegenerate by a slight perturbation of its coefficients, so this
is little loss of generality). We say that a strategy i is represented at a vertex z if at that
vertex either z; = 0 or A;z = 1 or both — that is, if at least one of the two inequalities
of the polytope associated with strategy i is tight at z.

Suppose that at a vertex z all strategies are represented. This of course could happen
if z is the all-zero vertex — but suppose it is not. Then for all strategies i with z; > 0 it
must be the case that A;z = 1. Define now a vector x as follows:

Zi

D i1 T .

Xi =

THE LEMKE—HOWSON ALGORITHM 35

X1
232
223
132
123
123 122
X 123 123 X3

Figure 2.1. The Lemke—Howson algorithm can be thought of as following a directed path in a
graph.

Since we assume z # 0, the x;’s are well defined, and they are nonnegative numbers

adding to 1, thus constituting a mixed strategy. We claim that x is a symmetric NASH

equilibrium. In proof, just notice that x satisfies the necessary and sufficient condition

of a NAsH equilibrium (recall Theorem): Every strategy in its support is a best response.
Let us apply this to the symmetric game of Example 2.2, with utility matrix

030
A=1]1003
222

The polytope P is shown in Figure 2.1; it is nondegenerate because every vertex
lies on three planes, and has three adjacent vertices. The vertices are labeled by the
strategies that are represented there (ignore the exponents > for a moment). The only
vertices where all strategies are represented are the vertex z = (0, 0, 0) and the vertex
z =10, 1/6, 1/3) — notice that the latter vertex corresponds to the NASH equilibrium
x =(0,1/3,2/3).

So, any vertex of P (other than (0, 0, 0)) at which all strategies are represented is a
NasH equilibrium. But how do we know that such a vertex exists in general? After all,
not all choices of n tight constraints result in vertices of a polytope. We shall develop
a pivoting method for looking for such a vertex.

Fix a strategy, say strategy n, and consider the set V of all vertices of P at which all
strategies are represented except possibly for strategy n. This set of vertices is nonempty,
because it contains vertex (0, 0, 0), so let us start there a path (vg = 0, vy, vp,...) of
vertices in the set V. Since we assume that P is nondegenerate, there are n vertices
adjacent to every vertex, and each is obtainable by relaxing one of the tight inequalities
at the vertex and making some other inequality tight. So consider the n vertices adjacent
to vy = (0, 0, 0). In one of these vertices, z, is nonzero and all other variables are zero,
so this new vertex is also in V; call it v;.

36 THE COMPLEXITY OF FINDING NASH EQUILIBRIA

Y

Figure 2.2. The path cannot cross itself.

At vp all strategies are represented except for strategy n, and in fact one strategy
i < n is “represented twice,” in that we have both z; = 0 and C;z = 1. (We represent
this by i?). By relaxing either of these two inequalities we can obtain two new vertices
in V adjacent to v;. One of them is vy, the vertex we came from, and the other is bound
to be some new vertex v, € V.

If at v, all strategies are represented, then it is a NASH equilibrium and we are done.
Otherwise, there is a strategy j that is represented twice at v, and there are two vertices
in V that are adjacent to v, and correspond to these two inequalities. One of these two
vertices is v; and the other is our new vertex vz, and so on. The path for the example
of Figure 2.1 where strategy n = 3 is the one that may not be represented, is shown as
a sequence of bold arrows.

How can this path end? No vertex v; can be repeated, because repeating v; (see
Figure 2.2) would mean that there are three vertices adjacent to v; that are obtainable
by relaxing a constraint associated with its doubly represented strategy, and this is
impossible (it is also easy to see that it cannot return to 0). And it cannot go on forever,
since P is a finite polytope. The only place where the process can stop is at a vertex in
V, other than 0 (a moment’s thought tells us it has to be different from 0) that has no
doubly represented strategy — that is to say, at a symmetric Nasu equilibrium!

This completes our description of the Lemke—Howson algorithm, as well as our
proof of NAsH’s theorem for two-player, nondegenerate games.

2.4 The Class PPAD

Let us dissect the existence proof in the previous section. It works by creating a graph.
The set of vertices of this graph, V, is a finite set of combinatorial objects (vertices of P,
or sets of inequalities, where all strategies are represented, with the possible exception
of strategy n). This graph has a very simple “path-like” structure: All vertices have
either one or two edges incident upon them — because every vertex v € V has either
one or two adjacent vertices (depending on whether or not strategy n is represented in
v). The overall graph may be richer than a path — it will be, in general, a set of paths
and cycles (see Figure 2.3). The important point is that there is definitely at least one
known endpoint of a path: the all-zero vertex. We must conclude that there is another
endpoint, and this endpoint is necessarily a NAsH equilibrium of the game.

We must now mention a subtle point: the paths are directed. Looking at a vertex in
V', we can assign a direction to its incident edge(s), at most one coming in and at most

THE CLASS PPAD 37

Standard
source Q

Figure 2.3. A typical problem in PPAD.

one going out, and do this in a way that is consistent from one vertex to another. In
our three-dimensional example of Figure 2.1 the rule for asigning directions is simple:
Going in the direction of the arrow, we should have a face all vertices of which are
labeled 3 on our right, and a face all vertices of which are labeled 1 on our left. In games
with more strategies, and thus a polytope of a higher dimension, there is a similar but
more complicated (and more algebraic) “orientation rule.” So, the graph in the proof
of NasH’s Theorem is a directed graph with all outdegrees and indegrees at most one.

What we mean to say here is that the existence proof of NAsH’s theorem (for the two-
player symmetric, nondegenerate case, even though something similar holds for the
general case as well) has the following abstract structure: A directed graph is defined on
a set of nodes that are easily recognizable combinatorial objects (in our case, vertices
of the polytope where all strategies, with the possible exception of strategy n, are repre-
sented). Each one of these vertices has indegree and outdegree at most one; therefore, the
graph is a set of paths and cycles (see Figure 2.3). By necessity there is one vertex with
no incoming edges and one outgoing edge, called a standard source (in the case of two-
player NASH, the all-zero vertex). We must conclude that there must be a sink: a NASH
equilibrium. In fact, not just a sink: notice that a source other than the standard (all-zero)
one is also a NASH equilibrium, since all strategies are represented there as well. An-
other important point is that there is an efficient way, given a vertex in the graph to find
its two adjacent vertices (or decide that there is only one). This can be done by simplex
pivoting on the doubly represented variable (or on variable n, if it is represented).

Any such proof suggests a simple algorithm for finding a solution: start from the
standard source, and follow the path until you find a sink (in the case of two-player
NasH this is called the Lemke—Howson algorithm). Unfortunately, this is not an efficient
algorithm because the number of vertices in the graph is exponentially large. Actually,
in the case of two-player NASH there are examples of games in which such paths are
exponentially long (Savani and von Stengel, 2004).

38 THE COMPLEXITY OF FINDING NASH EQUILIBRIA

It turns out that, besides NASH, there is a host of other computational problems with
guaranteed existence of solutions, for which existence follows from precisely this type
of argument:

¢ A directed graph is defined on a finite but exponentially large set of vertices.

¢ Each vertex has indegree and outdegree at most one.

¢ Given a string, it is a computationally easy problem to (a) tell if it is indeed a vertex of
the graph, and if so to (b) find its neighbors (one or two of them), and to (c) tell which
one is the predecessor and/or which one is the successor (i.e., identify the direction of
each edge).

¢ There is one known source (vertex with no incoming edges) called the “standard source.”

¢ Any sink of the graph (a vertex with no outgoing edges), or any source other than the
standard one, is a solution of the problem.

One problem whose existence proof has this form is finding an approximate Brouwer
fixpoint of a function. We omit the precise definition and representation details here;
a stylized version of this problem is defined in Section 2.6. Another is the following
problem called HAM SANDWITCH: Given n sets of 2n points each in n dimensions, find
a hyperplane which, for each of the n sets, leaves n points on each side. There are
many other such problems (see Papadimitriou, 1994). For none of these problems do
we know a polynomial algorithm for finding a solution.

All these problems comprise the complexity class called PPAD. In other words,
PPAD is the class of all problems, whose solution space can be set up as the set of
all sinks and all nonstandard sources in a directed graph with the properties displayed
above.

Solving a problem in PPAD is to telescope the long path and arrive at a sink (or
a nonstandard source), fast and without rote traversal — just as solving a problem in
NP means narrowing down to a solution among the exponentially many candidates
without exhaustive search. We do not know whether either of these feats is possi-
ble in general. But we do know that achieving the latter would imply managing the
former too. That is, P = NP implies PPAD = P (proof: PPAD is essentially a sub-
set of NP, since a solution, such as a NasH equilibrium, can be certified quickly if
found).

In the case of NP, we have a useful notion of difficulty — NP-completeness — that
helps characterize the complexity of difficult problems in NP, even in the absence of
a proof that P # NP. A similar manoeuvre is possible and useful in the case of PPAD
as well. We can advance our understanding of the complexity of a problem such as
NasH by proving it PPAD-complete — meaning that all other problems in PPAD reduce
to it. Such a result implies that we could solve the particular problem efficiently if
and only if all problems in PPAD (many of which, like BROUWER, are well-known
hard nuts that have resisted decades of efforts at an efficient solution) can be thus
solved.

Indeed, the main result explained in the balance of this chapter is a proof that NAsH
is PPAD-complete.

3 The name, introduced in Papadimitriou (1994), stands for “polynomial parity argument (directed case).” See
that paper, as well as Beame et al. (1998) and Daskalakis et al. (2006), for a more formal definition.

SUCCINCT REPRESENTATIONS OF GAMES 39

2.4.1 Are PPAD-Complete Problems Hard?

But why do we think that PPAD-complete problems are indeed hard? PPAD-
completeness is weaker evidence of intractability than NP-completeness: it could
very well be that PPAD = P # NP. Yet it is a rather compelling argument for in-
tractability. If a PPAD-complete problem could be solved in polynomial time, then all
problems in PPAD (finding Brouwer and Borsuk-Ulam fixpoints, cutting ham sand-
wiches, finding Arrow-Debreu equilibria in markets, etc., many of which have resisted
decades of scrutiny, see Papadimitriou (1994) for a more complete list) would also
be solved. It would mean that any local combinatorial description of a deterministic
simplex pivoting rule would lead to a novel polynomial algorithm for linear pro-
gramming. Besides, since it is known (Hirsch et al., 1989) that any algorithm for
finding Brouwer fixpoints that treats the function as a black box must be exponential,
PPAD = P would mean that there is a way to find Brouwer fixpoints by delving into
the detailed properties of the function — a possibility that seems quite counterintu-
itive. Also, an efficient algorithm for a PPAD-complete problem would have to defeat
the oracles constructed in Beame et al. (1998) — computational universes in which
PPAD # P — and so it would have to be extremely sophisticated in a very specific
sense.

In mathematics we must accept as a possibility anything whose negation remains
unproved. PPAD could very well be equal to P, despite the compelling evidence to the
contrary outlined above. For all we know, it might even be the case that P = NP —
in which case PPAD, lying “between” P and NP, would immediately be squeezed
down to P as well. But it seems a reasonable working hypothesis that neither of these
eventualities will actually hold, and that by proving a problem PPAD-complete we
indeed establish it as an intractable problem.

2.5 Succinct Representations of Games

Computational problems have inputs, and the input to NASH is a description of the
game for which we need to find an equilibrium. How long is such a description?

Describing a game in strategic form entails listing all utilities for all players and
strategy combinations. In the case of two players, with m and n strategies respectively,
this amounts to describing 2mn numbers. This makes the two-player case of NASH
such a very neat and interesting computational problem.

But we are interested in games because we think that they can model the Internet,
markets, auctions — and these have far more than two players. Suppose that we have a
game with n players, and think of n as being in the hundreds or thousands — a rather
modest range for the contexts and applications outlined above. Suppose for simplicity
that they all have the same number of strategies, call it s — in any nontrivial game s will
be at least two. Representing the game now requires ns" numbers!

This is a huge input. No user can be expected to supply it, and no algorithm to handle
it. Furthermore, the astronomical input trivializes complexity: If s is a small number
such as 2 or 5, a trivial efficient algorithm exists: try all combinations of supports.
But this algorithm is “efficient” only because the input is so huge: For fixed s, (2°)" is
polynomial in the length of the input, ns” . ..

40 THE COMPLEXITY OF FINDING NASH EQUILIBRIA

Conclusion: In our study of the complexity of computational problems for games
such as NAsSH we must be especially interested in games with many players; however,
only succinctly representable multiplayer games can be of relevance and computational
interest.

And there are many such games in the literature; we start by describing one of the
latest arrivals (Kearns et al., 2001) that happens to play a central role in our story.

2.5.1 Graphical Games

Suppose that many players are engaged in a complex game; yet, the utility of each
player depends on the actions of very few other players. That is, there is a directed
graph ({1, 2, ..., n}, E), with vertices the set of players, and (i, j) € E only if the
utility of j depends on the strategy chosen by i (j’s utility depends, of course, on the
strategy chosen by j). More formally, for any two strategy profiles s and s” if s; = s;,
and, for all (i, j) € E we have s; = s/, then u;(s) = u;(s"). A graphical game, as these
are called, played on a graph with n nodes and indegree at most d, and s choices per
player, requires only ns%*! numbers for its description — a huge savings over ns" when
d is modest. (For more on graphical games, see Chapter 7.)

For a simple example, consider a directed cycle on 20 players, where the utilities are
captured by the game matrix A of example 2.2. That is, if a player chooses a strategy
i € {1, 2,3} and his predecessor in the cycle chooses another strategy j, then the utility
of the first player is C;; (the utility of the predecessor will depend on the strategy
played by his predecessor). Ordinarily, this game would require 20 x 3?° numbers to
be described; its graph structure reduces this to just a few bytes.

Can you find a NAsH equilibrium in this game?

2.5.2 Other Succinct Games

There are many other computationally meaningful ways of representing some interest-
ing games succinctly. Here are some of the most important ones.

(i) Sparse games. If very few of the ns" utilities are nonzero, then the input can be
meaningfully small. Graphical games can be seen as a special case of sparse games,
in which the sparsity pattern is captured by a graph whose vertices are the players.

(ii) Symmetric games. In a symmetric game the players are all identical. So, in evaluating

the utility of a combination of strategies, what matters is how many of the n players
n+sfl)

play each of the s strategies. Thus, to describe such a game we need only s(1

numbers.

(iii) Anonymous games. This is a generalization of symmetric games, in which each player
is different, but cannot distinguish between the others, and so again his or her utility
depends on the partition of the other players into strategies. sn (":r: 1) numbers suffice
here.

(iv) Extensive form games. These are given as explicit game trees (see the next chapter).
A strategy for a player is a combination of strategies, one for each vertex in the
game tree (information set, more accurately, see the next chapter for details) in which
the player has the initiative. The utility of a strategy combination is that of the leaf
reached if the strategies are followed.

THE REDUCTION 41

(v) Congestion games. These games abstract the network congestion games studied in
Chapters 18 and 19. Suppose that there are n players, and a set of edges E. The set of
strategies for each player is a set of subsets of E, called paths. For each edge e € E
we have a congestion function c, mapping {0, 1, ..., n} to the nonnegative integers.
If the n players choose strategies/paths P = (P;, ..., P,), letthe load of edge e, £(P)
be the size of the set {i : e € P;}. Then the utility of the ith player is Zeepi c.(L(P)).

(vi) There is the even more succinct form of network congestion games, where E is the
set of edges of an actual graph, and we are given two vertices for each player. The
strategies available to a player are all simple paths between these two nodes.

(vii) Local effect games. These are generalizations of the congestion games, see Leyton-
Brown and Tennenholtz 2003.
(viii) Facility location games. See Chapter 19.

(ix) Multimatrix games. Suppose that we have n players with m strategies each, and for
each pair (i, j) of players an m x m utility matrix A"/, The utility of player i for the
strategy combination sy, . .., §,) is Z_,' 4i A’“’ e That is, each player receives the total
sum of his or her interactions with all other players.

2.6 The Reduction

In this section we give a brief sketch of the reduction, recently discovered in Daskalakis
et al. (2006) and Goldberg and Papadimitriou (2006) and extended to two-player games
in Chen and Deng (2005b), which establishes that NAsH is PPAD-complete.

2.6.1 A PPAD-Complete Problem

The departure point of the reduction is BROUWER, a stylized discrete version of the
Brouwer fixpoint problem. It is presented in terms of a function ¢ from the three-
dimensional unit cube to itself. Imagine that the unit cube is subdivided into 2*" equal
cubelets, each of side ¢ = 27", and that the function need only be described at all
cubelet centers. At a cubelet center x, ¢(x) can take four values: x +6;,i =0, ..., 3,
where the §;s are the following tiny displacements mapping the center of the cubelet to
the center of a nearby cubelet: 6; = (¢, 0, 0) 6, = (0, €, 0), §3 = (0, 0, €), and finally
8o = (—€, —e, —e€). If x is the center of a boundary cubelet, then we must make sure
that ¢(x) does not fall outside the cube — but this is easy to check. We are seeking
a “fixpoint,” which is defined here to be any internal cubelet corner point such that,
among its eight adjacent cubelets, all four possible displacements §;,i =0, ..., 3, are
present.

But how is the function ¢ represented? We assume that ¢ is given in terms of a
Boolean circuit, a directed acyclic graph of AND, OR, and NOT gates, with 3n bits as
inputs (enough to describe the cublet in question) and two bits as outputs (enough to
specify which one of the four displacements is to be applied). This is a computationally
meaningful way of representing functions that is quite common in the complexity theory
literature; any function ¢ of the sort described above (including the boundary checks)
can be captured by such a circuit. And this completes the description of BROUWER, our
starting PPAD-complete problem: Given a Boolean circuit describing ¢, find a fixpoint

42 THE COMPLEXITY OF FINDING NASH EQUILIBRIA

of ¢. We omit the challenging proof that it is indeed PPAD-complete (see Daskalakis
et al., 2006).

2.6.2 The Plan

But how should we go about reducing this problem to NasH? We shall start by reduc-
ing BROUWER to an intermediate graphical game with many players. All these players
have just two strategies, 0 and 1; therefore, we can think of any mixed strategy of a
player as a number in [0, 1] (the probability he or she assigns to strategy 1). Three
of these players will be thought of as choosing three numbers that are the coordi-
nates of a point in the cube. Others will respond by analyzing these coordinates to
identify the cubelet wherein this point lies, and by computing (by a simulation of the
circuit) the displacements §; at the cubelet and adjacent cubelets. The resulting choices
by the players will incentivize the three original players to change their mixed strategy
— unless the point is a fixpoint of ¢, in which case the three players will not change
strategies, and the graphical game will be at a NASH equilibrium!

2.6.3 The Gadgets

To carry out this plan, we need certain devices — commonly called “gadgets” in the
reduction business — for performing basic arithmetic and logical operations. That is, we
need to define certain small graphical games with players that are considered as inputs
and another player as output, such that in any NAsH equilibrium the mixed strategy of
the output player (thought of as a real number between 0 and 1) stands in a particular
arithmetical or logical relation with the inputs (again, thought of as numbers).

Consider, for example, the multiplication game. It has four players, two input players
a and b, an output player ¢, and a middle player d. The underlying directed graph has
edges (a, d), (b,d), (c,d), (d, ¢); i.e., one of these four players affects the utility of
another if and only if there is an edge in this list from the former to the latter. The players
have two strategies each, called 0 and 1, so that any mixed strategy profile for a player
is in fact a real number in [0, 1] (the probability with which the player plays strategy 1).
The utilities are so constructed that in any NASH equilibrium of this game, the output is
always the product of the two inputs — all seen as numbers, of course: ¢ = a - b (here
we use a to represent not just player a, but also its value, i.e., the probability with
which he plays strategy 1). To specify the game, we need to describe the utilities of
the output and middle player (the utilities of the inputs are irrelevant since they have
no incoming edges; this is crucial, because it allows the inputs to be “reused” in many
gadgets, without one use influencing the others). If the middle player d plays 1 (recall
that all nodes have two strategies, 1 and 0), then its utility is 1 if both inputs play 1,
and it is O zero otherwise. Thus, if the two input players play 1 with probabilities a and
b (recall that these are the “values” of the two inputs), and the middle player plays 1,
then his utility is exactly a - b. If on the other hand the middle player plays 0, then its
utility is 1 if the output player plays 1, and it is O otherwise. Finally, the output player
gets utility 1 if the middle player plays 1, and —1 if he plays O.

Thus, the output player is motivated to play 1 with probability ¢, which is as high as
possible, in order to maximize the utility from the middle player’s playing 1 — but not

THE REDUCTION 43

so high that the middle player is tempted to play 0, as he would whenever ¢ > a - b.
Thus, at equilibrium, ¢ must be exactly a - b, and the multiplication gadget works!

In a similar manner we can construct gadgets that add and subtract their inputs
(always within the range [0, 1], of course), or perform certain logical operations. For
example, it is a trivial exercise to design a gadget with two nodes, an input x and
an output y, such that y =1 if x > % and y=0if x < % (notice that, importantly,
the output of this comparator is undetermined is x = %). It is also easy to design
gadgets that perform AND, OR, and NOT operations on their inputs (the inputs here
are assumed to be Boolean, that is to say, pure strategies).

2.6.4 The Graphical Game

Using these devices, we can put together a graphical game whose NASH equilibria
reflect accurately the Brouwer fixpoints of the given function ¢.

The graphical game is huge, but has a simple structure: There are three players, called
the leaders, whose mixed strategies identify a point (x, y, z) in the unit cube. These
leaders are inputs to a series of comparators and subtractors which extract one by one
the n most significant bits of the binary representation of x, y, and z, thus identifying
the cubelet within which the point (x, y, z) lies. A system of logical gadgets could
then compute the outputs of the given circuit that describes ¢, when the inputs are the
3n extracted bits, repeat for the neighboring cubelets, and decide whether we are at a
fixpoint.

But there is a catch: As we pointed out above, our comparators are “brittle” in that
they are indeterminate when their input is exactly half. This is of necessity: It can
be shown (see Daskalakis et al., 2006) that nonbrittle comparators (ones that behave
deterministically at half) cannot exist! (It turns out that, with such comparators, we
could construct a graphical game with no NAsH equilibrium . ..) This has the effect
that the computation described above is imprecise (and, in fact, in an unpredictable
manner) when the point (x, y, z) lies exactly on the boundary of a cubelet, and this can
create spurious equilibria. We must somehow “smoothen” this discontinuity.

This is accomplished by a more complicated construction, in which the calculation
of ¢ is carried out not for the single point (x, y, z) but for a large and very fine grid of
points around it, with all results averaged.

Once the average displacement (Ax, Ay, Az) near (x, y, z) has been calculated, its
components are added to the three leaders, completing the construction of the graphical
game. This way the loop is closed, and the leaders (who had heretofore no incoming
edges) are finally affected — very indirectly, of course — by their own choices. We
must now prove that the NASH equilibria of this game correspond precisely to those
points in the unit cube for which the average displacement is the zero vector. And
from this, establish that the average displacement is zero if and only if we are near a
fixpoint.

2.6.5 Simulating the Graphical Game by Few Players

We have already established an interesting result: Finding a NAsH equilibrium in a
graphical game is PPAD-complete. It is even more interesting because the underlying

44 THE COMPLEXITY OF FINDING NASH EQUILIBRIA

directed graph of the game, despite its size and complexity, has a rather simple
structure: It is bipartite, and all vertices have indegree three or less. It is bipartite
because all gadgets are bipartite (the inputs and the outputs are on one side, the middle
nodes on the other; the logical gadgets can be redesigned to have a middle node as
well); and the way the gadgets are put together maintains the bipartite property. Finally,
the middle nodes of the gadget are the ones of maximum indegree — three.

The challenge now is to simulate this graphical game by one with finitely many
players. Already in Goldberg and Papadimitriou (2006) and Daskalakis et al. (2006), a
simulation by four players was shown, establishing that NAsH is PPAD-complete even
in the four-player case. The idea in the simulation is this: Each of the four players
“represents” many nodes of the graphical game. How players are represented is best
understood in terms of a particular undirected graph associated with the graphical
game, called the conflict graph. This graph is defined on the vertices of the graphical
game, and has an edge between two nodes u and v if in the graphical game either (a)
there is an edge between u and v, in either direction, or (b) there are edges from both u
and v to the same node w. This is the conflict graph of the game; it should be intuitively
clear that eventualities (a) and (b) make it difficult for the same player to represent both
u and v, and so coloring the conflict graph and assigning its color classes to different
players makes sense. The crucial observation is that the conflict graph of the graphical
game constructed in the reduction is four-colorable.

So, we can assign to each of four players (think of them as “lawyers”) all nodes
(call them “clients”) in a color class. A lawyer’s strategy set if the union of the strategy
sets of his clients, and so the clients can be represented fairly if the lawyer plays the
average of their mixed strategies. Since the clients come from a color class of the
conflict graph, the lawyer can represent them all with no conflict of interest (he or she
should not represent two players that play against one another, or two players who
both play against a third one). But there is a problem: A lawyer may neglect some
clients with small payoffs and favor (in terms of weights in his mixed strategy) the
more lucrative ones. This is taken care of by having the four lawyers play, on the side, a
generalization of the “rock-paper-scissors game,” at very high stakes. Since this game
is known to force the players to distribute their probabilities evenly, all clients will
now be represented fairly in the lawyer’s mixed strategy; the four-player simulation is
complete.

These results, up to the four player simulation, first appeared in the beginning of
October 2005 (Goldberg and Papadimitriou, 2006; Daskalakis et al., 2006). It was
conjectured in Daskalakis et al. (2006) that the 3-player case of NAsH is also PPAD-
complete, whereas the 2-player case is in P. Indeed, a few weeks later, two independent
and very different simulations of the graphical game by three players appeared (Chen
and Deng, 2005b; Daskalakis and Papadimitriou, 2005) thus proving the first part
of this conjecture. The proof in Daskalakis and Papadimitriou (2005) was local, and
worked by modifying the gadgets so that the conflict graph became three-colorable;
this approach had therefore reached its limit, because for the graphical game to work
the conflict graph must contain triangles. It was again conjectured in Daskalakis and
Papadimitriou (2005) that the two-player case can be solved in polynomial time. In
contrast, the proof in Chen and Deng (2005b) was more ad hoc and nonlocal, and was
therefore in a sense more open-ended and promising.

CORRELATED EQUILIBRIA 45

A month later, a surprisingly simple two-player simulation was discovered (Chen
and Deng, 2005a), thus establishing that even the two-player case of NAsH is PPAD-
complete! The intuitive idea behind this new construction is that many of the “conflicts
of interest” captured in the conflict graph (in particular, the (b) case of its definition) hap-
pen to be unproblematic in this particular game: The two input nodes of a gadget cannot
effectively “conspire” to improve their lot — and thus they could, in principle, be repre-
sented by the same (carefully programmed) lawyer. Thus, only two players are needed,
corresponding to the two sides of the bipartite graphical game. The construction is now
in fact a little more direct: there is no graph game, and the two players are constructed
ab initio, with the gadgets, as well as the side game of rock—paper—scissors, built in.

2.6.6 Approximate Equilibria

Incidentally, this side game of rock—paper—scissors is the source of another difficulty
that permeates all these proofs, and which we have not yet discussed: It only guarantees
that the lawyers approximately balance the interests of their clients; as a result, the
whole reduction, and the argument at each stage of the construction, must be carried
out in terms of e-approximate Nasn equilibria. An e-approximate NASH equilibrium is a
mixed strategy profile such that no other strategy can improve the payoff by more than
an additive €. (Notice that an e-approximate NASH equilibrium may or may not be near
a true NAsH equilibrium.) It is easy to see, in retrospect, that this use of approximation
is inherently needed: Two-player games always have rational NAsH equilibria, whereas
games with more players may have only irrational ones. Any simulation of the latter
by the former must involve some kind of approximation.

Now that we know that computing NASH equilibria is an intractable problem, com-
puting approximate equilibria emerges as a very attractive compromise. But can it
be done in polynomial time? The reduction described so far shows that it is PPAD-
complete to compute e-approximate NAsH equilibria when € is exponentially small
(smaller than the side of the cubelet in the initial BROUWER problem, or 27" for some
¢ > 0, where n is the number of strategies). Starting from an n-dimensional version
of BROUWER, the result can be strengthened up to an € that is an inverse polynomial,
(n~°) (Chen et al., 20006).

There are some positive algorithmic results known for approximate NASH equilib-
ria: %—approximate NasH equilibria are very easy to compute in two-player games

(Daskalakis et al., in press) and an e-approximate NASH equilibrium can be found in
logn

less than exponential time (more specifically, in time n <) in arbitrary games (see
Lipton et al., 2003). Discovering polynomial algorithms for computing e-approximate
NasH equilibria for € between these values — possibly for arbitrarily small constant
€ > 0 —remains an important open problem.

2.7 Correlated Equilibria

Consider the symmetric game (often called chicken) with payoffs

(50)

46 THE COMPLEXITY OF FINDING NASH EQUILIBRIA

The payoffs are supposed to capture the situation in which two very macho drivers
speed toward an intersection. Each has two options: Stop or go. There are two pure
equilibria (me and you) and the symmetric mixed equilibrium (1/2, 1/2). These three
NasH equilibria create the following three probability distributions on the pure strategy

0 1\ /0 0)\/[(} 1
proﬁles:(>()(‘1‘)
00){1o){l1 1

Consider however the following distribution: <(l) 5) It is not a NASH equilibrium;
in fact, it is easy to see that there are no two mixe%i strategies for the two players that
generate this distribution (in algebraic terms, the matrix is not of rank one). However, it
is a rational outcome of the game, in the following more sophisticated sense: Suppose
that a trusted third party draws from this distribution, and recommends to each player
to play according to the outcome. (Coming back to the drivers story, this solution,
randomizing between (stop, go) and (go, stop) is tantamount to a traffic signal.) If
the lower left box is chosen, e.g., the recommendation is that Player 1 go and Player
2 stop (i.e., green light for Player 1). What is remarkable about this distribution of
recommendations is that it is self-enforcing: If either player assumes that the other will
follow the recommendation, his best bet is to actually follow the recommendation!

This motivates the following definition (Aumann, 1974): A correlated equilibrium is
a probability distribution { p,} on the space of strategy profiles that obeys the following
conditions: For each player i, and every two different strategies j, j’ of i, conditioned
on the event that a strategy profile with j as is strategy was drawn from the distribution,
the expected utility of playing j is no smaller than that of playing j’:

—al

> " (uy — ug)ps; = 0. (CE)

seS_;

(Naturally, we also require that p; > 0 and) p; = 1.) Here by S_; we denote the
strategy profiles of all players except for i; if s € S_;, sj denotes the strategy profile
in which player i plays j and the others play s. Notice that the inequalities express
exactly the requirement that, if a strategy profile is drawn from the distribution {p;}
and each player is told, privately, his or her own component of the outcome, and if
furthermore all players assume that the others will follow the recommendation, then
the recommendation is self-enforcing.

Notice also the following: If p',i =1,...,n, is a set of mixed strategies of the
players, and we consider the distribution p, induced by it (p; =[], péi) then the
inequalities (CE) state that these mixed strategies constitute a mixed NASH equilibrium!
Indeed, for each i, j, j’, equation (CE) states in this case that, if j is in i’s support, then
it is a best response. (If strategy j is not in the support, then the inequality becomes a
tautology, 0 > 0; if it is in the support, then we can divide by its probability the whole
inequality, and the resulting inequality says that j is best response.) We conclude
that any NASH equilibrium is a correlated equilibrium. In other words, the correlated
equilibrium is a generalization of the NASH equilibrium, allowing the probabilities on
the space of strategy profiles to be correlated arbitrarily. Conversely, NASH equilibrium
is the special case of correlated equilibrium in which p;’s are restricted to come from
a product (uncorrelated) distribution.

CORRELATED EQUILIBRIA 47

For example, in the drivers game, the (CE) inequalities are as follows:

@4 —=5pu+1-0p>0
5=4pu+O0—1)pn=>0
4 —=35pn+0—-0)pn >0
S=—DHpn2+O0—1ppr=>0

A crucial observation now is that the (CE) inequalities are linear in the unknown
variables {p;}, and thus the system (CE) can always be solved efficiently by linear
programming. In fact, we know that these inequalities always have at least one a
solution: The NAsH equilibrium that is guaranteed to exist by NASH’s theorem.

To restate the situation in terms of our concerns in this chapter, the correlated
equilibrium is a computationally benign generalization of the intractable NASH equi-
librium. We can find in polynomial time a correlated equilibrium for any game. In
fact, we can find the correlated equilibrium that optimizes any linear function of the
{ps}’s, such as the expected sum of utilities. For example, in the drivers game, we can
optimize the sum of the players’ expected utilities by maximizing the linear objective

8p11 + 6p12 + 6py; over the polytope defined by the inequalities above. The optimum
1

correlated equilibrium is this: 8) — a traffic light that is red for both one third of

W= W=

the time.

2.7.1 Correlated Equilibria vs NasH Equilibria: The Whole Picture

The polytope defined by the (CE) inequalities in the case of the drivers game is shown
in Figure 2.4 (the fourth dimension, py; = 1 — p1; — p12 — p21, is suppressed in the
geometric depiction). Every point in this polytope is a correlated equilibrium. There

are two pure NASH equilibria (N1 and N2) and one symmetric mied one (N3). The
1 1

1 11
“traffic light” correlated equilibrium C1 = <(l) 6) and the optimum one C2 = { { (3)
2 3
are also shown. Notice that the three NASH equilibria are vertices of the polytope. This
is no coincidence.

Theorem 2.5 In any nondegenerate two-player game, the NASH equilibria are
vertices of the (CE) polytope.

Naturally, not all vertices of the (CE) polytope will be NAsH equilibria, but at
least one will be. In other words, in two-player games every NASH equilibrium is the
optimum correlated equilibrium for some linear function — unfortunately, guessing this
function is apparently not easy.

To recapitulate, NASH equilibria are correlated equilibria satisfying the further con-
straint that they are the product distribution of some pair of mixed strategies. It is
this single additional constraint that makes the problem of finding a NASH equilibrium
so much harder. It is apparently a very nonconvex constraint (think of it as a curved
surface in Figure 2.4, “touching” the (CE) polytope at three of its vertices). In contrast,
for three or more players there are games in which the NASH equilibria are not vertices

48 THE COMPLEXITY OF FINDING NASH EQUILIBRIA

Cl

N2
Py

Figure 2.4. The three NasH equilibria (N1, N2, N3) of the drivers’ game are vertices of the
polytope of the correlated equilibria. Two other correlated equilibra are shown (C1, C2).

of the (CE) polytope; e.g., it is easy to see that any game with integer utilities that has
only irrational NASH equilibria must be of this sort.

2.7.2 Correlated Equilibria in Succinct Games

But as we observed in Section 2.5, polynomial-time algorithms whose input is a
game, such as the linear programming algorithm for finding correlated equilibria,
make a mockery of complexity theory when the number of players is reasonably high.
This brings us to the following important question: Can we find correlated equilibria
efficiently when the game is represented succinctly?

There are some very interesting — and very natural — “learning” algorithms for ap-
proximating correlated equilibria, reviewed in Chapter 4 of this book. These algorithms
work by simulating repeated play of the game, in which the various players change
their strategies according to how much they “regret” previous decisions. Certain so-
phisticated ways of doing this are guaranteed to reach a point that is quite close to
the (CE) polytope. To arrive at a distance €, from the (CE) polytope, e% iterations are
required, where ¢ is some small constant depending on the particular method. But the
question remains, can we find a point of the (CE) polytope in polynomial time?

Recently, there have been some interesting results on this question; to state them we
need to introduce some definitions. We say that a succinctly representable game is of
polynomial type if the number of players, as well as the number of strategies of each
player, in a game represented by a string of length # is always bounded by a polynomial
in n. For such a game, the expected utility problem is this: Calculate the expected utility
of each player, if for each player i the given mixed strategy p' played. It turns out

CONCLUDING REMARKS 49

that solving this problem is enough for the correlated equilibrium problem to be
solved:

Theorem 2.6 (Papadimitriou, 2005) [n any succinctly representable game of
polynomial type for which the expected utility problem can be solved in polynomial
time, the problem of finding a correlated equilibrium can be solved in polynomial
time as well. Consequently, there is a polynomial-time algorithm (polynomial in
the length of the description of the game) for finding a correlated equilibrium
in sparse, symmetric, anonymous, graphical, congestion, local effect, facility
location, and multimatrix games (among many others, recall the definitions in
Section 2.5).

But how about the slightly more demanding problem of finding, not just any corre-
lated equilibrium, but the one that optimizes a given linear objective of the probabilities?
A much less sweeping result is available here.

Theorem 2.7 (Papadimitriou and Roughgarden, 2005) The problem of opti-
mizing a linear function over correlated equilibria can be solved in polynomial
time for symmetric games, anonymous games, and graphical games for which the
underlying graph is of bounded treewidth.

In contrast, it is NP-hard to find the optimum-correlated equilibrium in gen-
eral graphical games and congestion games, among others (Papadimitriou and
Roughgarden, 2005).

2.8 Concluding Remarks

The computational complexity of equilibrium concepts deserves a central place in
game theoretic discourse. The proof, outlined in this chapter, that finding a mixed
NasH equilibrium is PPAD-complete raises some interesting questions regarding the
usefulness of the NAsH equilibrium, and helps focus our interest in alternative notions
(most interesting among them the approximate NAsH equilibrium discussed in the end
of Section 2.6).

But there are many counterarguments to the importance of such a negative com-
plexity result. It only shows that it is hard to find a NaSH equilibrium in some very
far-fetched, artificial games that happen to encode Brouwer functions. Of what rele-
vance can such a result be to economic practice?

The same can be said (and has been said, in the early days) about the NP-
completeness of the traveling salesman problem, for example. And the answer remains
the same: The PPAD-completeness of NASH suggests that any approach to finding
NAsH equibria that aspires to be efficient, as well as any proposal for using the concept
in an applied setting, should explicitly take advantage of computationally beneficial
special properties of the games in hand, by proving positive algorithmic results for
interesting classes of games. On the other hand (as has often been the case with NP-
completeness, and as it has started to happen here as well; Abbott et al., 2005; Codenotti

50 THE COMPLEXITY OF FINDING NASH EQUILIBRIA

et al., 2006), PPAD-completeness proofs will be eventually refined to cover simpler
and more realistic-looking classes of games. And then researchers will strive to identify
even simpler classes.

An intractability result such as the one outlined in this chapter should be most
usefully seen as the opening move in an interesting game.

Acknowledgment

Many thanks to Bernhard von Stengel for several useful suggestions.

Bibliography

T. Abbott, D. Kane, and P. Valiant. On the complexity of two-player win-lose games. Proc. 2005
FOCS.

R.J. Aumann. Subjectivity and correlation in randomized strategies. J. Math. Econ., 1:67-96, 1974.

P. Beame, S. Cook, J. Edmonds, R. Impagliazzo, and T. Pitassi. The relative complexity of NP search
problems. J. Comput. Syst. Sci., 57(1):13—-19, 1998.

X. Chen and X. Deng. 3-NASH is PPAD-Complete. Electronic Colloquium on Computational Com-
plexity, 134, 2005a.

X. Chen and X. Deng. Settling the complexity of 2-player Nash-equilibrium. Electronic Colloquium
on Computational Complexity, 134, 2005b; Fdns. Comp. 2006, to appear.

X. Chen, X. Deng, and S. Teng. Computing Nash equilibria: Aprroximation and smoothed complexity.
FOCS 2006, pp. 603-612, 2006.

B. Codenotti, M. Leoncini, and G. Resta. Efficient computation of Nash equilibria for very sparse
win-lose games. Electronic Colloquium on Computational Complexity, 12, 2006.

V. Conitzer and T. Sandholm. Complexity results about Nash equilibria. In: Proc. 18th Int. Joint Conf.
Artificial Intelligence, pp. 765-771, 2003.

C. Daskalakis, P.W. Goldberg, and C.H. Papadimitriou. The complexity of computing a Nash equi-
librium. Symp. on Theory of Computing, 2006, pp. 71-78.

C. Daskalakis, A. Mehta, and C.H. Papadimitriou. A note on approximate Nash equilibria. In:
Proc. 2006 Workshop on Internet Network Economics, in press.

C. Daskalakis and C.H. Papadimitriou. Three-player Games are Hard. Electronic Colloquium on
Computational Complexity, 139, 2005.

F.S. Evangelista and T.E.S. Raghavan. A note on correlated equilibrium. Intl. J. Game Theory,
25(1):35-41, 2005.

D. Gale, H-W. Kuhn, and A.W. Tucker. On symmetric games. In: H.-W. Kuhn and A.W. Tucker,
editors, Contributions to the Theory Games, 1:81-87. Princeton University Press, 1950.

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness, Freeman, 1979.

I. Gilboa and E. Zemel. Nash and correlated equilibria: Some complexity considerations. Games
Econ. Behav., 1989.

P.W. Goldberg and C.H. Papadimitriou. Reducibility between equilibrium problems. Symp. on Theory
of Computing, 2006, pp. 62-70.

S. Hart and D. Schmeidler. Existence of correlated equilibria. Math. Operat. Res., 14(1):18-25, 1989.

M. Hirsch, C.H. Papadimitriou, and S. Vavasis. Exponential lower bounds for finding brouwer
fixpoints. J. Complexity, 5:379-416, 1989.

D.S. Johnson, C.H. Papadimitriou, and M. Yannakakis. How easy is local search? J. Comput. Syst.
Sci., 37(1):79-100, 1988.

BIBLIOGRAPHY 51

M. Kearns, M. Littman, and S. Singh. Graphical models for game theory. In: Proc. Conf. on Uncer-
tainty in Artificial Intelligence, 2001, pp. 253-260.

K. Leyton-Brown and M. Tennenholtz. Local-effect games. Intl. Joint Conf. Artificial Intelligence,
2003, pp. 772-780.

R.J. Lipton, E. Markakis, and A. Mehta. Playing large games using simple strategies. ACM Electronic
Commerce, 2003, pp. 36-41.

J. Nash. Noncooperative games. Ann. Math., 54:289-295, 1951.

C.H. Papadimitriou. On the complexity of the parity argument and other inefficient proofs of existence.
J. Comput. Syst. Sci., 48(3):498-532, 1994.

C.H. Papadimitriou. Computing correlated equilibria in multi-player games. Symp. on Theory of
Computing, 2005, pp. 49-56.

C.H. Papadimitriou and T. Roughgarden. Computing equilibria in multi-player games. Symp. on
Discrete Algorithms, 2005, pp. 82-91.

R. Savani and B. von Stengel. Exponentially many steps for finding a Nash equilibrium in a Bimatrix
Game. Proc. of 45th Fdns. on Comp. Science, pp. 258-267, 2004.

B. von Stengel. Computing equilibria for two-person games. Handbook of Game Theory with Eco-
nomic Applications, Vol. 3, R. J. Aumann and S. Hart, eds. Elsevier, Amsterdam, pp. 1723-1759,
2002.

CHAPTER 3

Equilibrium Computation for
Two-Player Games in Strategic
and Extensive Form

Bernhard von Stengel

Abstract

We explain algorithms for computing Nash equilibria of two-player games given in strategic form or
extensive form. The strategic form is a table that lists the players’ strategies and resulting payofts.
The “best response” condition states that in equilibrium, all pure strategies in the support of a
mixed strategy must get maximal, and hence equal, payoff. The resulting equations and inequalities
define polytopes, whose “completely labeled” vertex pairs are the Nash equilibria of the game. The
Lemke—Howson algorithm follows a path of edges of the polytope pair that leads to one equilibrium.
Extensive games are game trees, with information sets that model imperfect information of the players.
Strategies in an extensive game are combinations of moves, so the strategic form has exponential
size. In contrast, the linear-sized sequence form of the extensive game describes sequences of moves
and how to randomize between them.

3.1 Introduction

A basic model in noncooperative game theory is the strategic form that defines a game
by a set of strategies for each player and a payoff to each player for any strategy profile
(which is a combination of strategies, one for each player). The central solution concept
for such games is the Nash equilibrium, a strategy profile where each strategy is a best
response to the fixed strategies of the other players. In general, equilibria exist only
in mixed (randomized) strategies, with probabilities that fulfill certain equations and
inequalities. Solving these constraints is an algorithmic problem. Its computational
complexity is discussed in Chapter 2.

In this chapter, we describe methods for finding equilibria in sufficient detail to
show how they could be implemented. We restrict ourselves to games with two players.
These can be studied using polyhedra, because a player’s expected payoffs are linear
in the mixed strategy probabilities of the other player. Nash equilibria of games with
more than two players involve expected payoffs that are products of the other players’
probabilities. The resulting polynomial equations and inequalities require different
approaches.

53

54 EQUILIBRIUM COMPUTATION FOR TWO-PLAYER GAMES

For games in strategic form, we give the basic “best response condition” (Prop. 3.1,
see Section 3.2), explain the use of polyhedra (Section 3.3), and describe the Lemke—
Howson algorithm that finds one Nash equilibrium (Section 3.4). An implementation
without numerical errors uses integer pivoting (Section 3.5). “Generic” games (i.e.,
“almost all” games with real payoffs) are nondegenerate (see Definition 3.2); degenerate
games are considered in Section 3.5.

An extensive game (defined in Section 3.7) is a fundamental model of dynamic
interactions. A game tree models in detail the moves available to the players and
their information over time. The nodes of the tree represent game states. An in-
formation set is a set of states in which a player has the same moves, and does
not know which state he is in. A player’s strategy in an extensive game specifies a
move for each information set, so a player may have exponentially many strategies.
This complexity can be reduced: Subgames (see Section 3.8) are subtrees so that all
players know they are in the subgame. Finding equilibria inductively for subgames
leads to subgame perfect equilibria, but this reduces the complexity only if play-
ers are sufficiently often (e.g., always) informed about the game state. The reduced
strategic form applies to general games (see Section 3.9), but may still be expo-
nential. A player has perfect recall if his information sets reflect that he remembers
his earlier moves. Players can then randomize locally with behavior strategies. This
classic theorem (Corollary 3.12) is turned into an algorithm with the sequence form
(Sections 3.10 and 3.11) which is a strategic description that has the same size as the
game tree.

We give in this chapter an exposition of the main ideas, not of all earliest or latest
developments of the subject. Section 3.12 summarizes the main references. Further
research is outlined in Section 3.13.

3.2 Bimatrix Games and the Best Response Condition

We use the following notation throughout. Let (A, B) be a bimatrix game, where A and
B are m x n matrices of payoffs to the row player 1 and column player 2, respectively.
This is a two-player game in strategic form (also called “normal form”), which is
played by a simultaneous choice of a row i by player 1 and column j by player 2, who
then receive payoff a;; and b;;, respectively. The payoffs represent risk-neutral utilities,
so when facing a probability distribution, the players want to maximize their expected
payoff. These preferences do not depend on positive-affine transformations, so that A
and B can be assumed to have nonnegative entries, which are rationals, or more simply
integers, when A and B define the input to an algorithm.

All vectors are column vectors, so an m-vector x is treated as an m X 1 matrix.
A mixed strategy x for player 1 is a probability distribution on rows, written as an
m-vector of probabilities. Similarly, a mixed strategy y for player 2 is an n-vector of
probabilities for playing columns. The support of a mixed strategy is the set of pure
strategies that have positive probability. A vector or matrix with all components zero
is denoted by 0, a vector of all ones by 1. Inequalities like x > 0 between two vectors
hold for all components. B is the matrix B transposed.

BIMATRIX GAMES AND THE BEST RESPONSE CONDITION 55

Let M be the set of the m pure strategies of player 1 and let N be the set of the n
pure strategies of player 2. It is useful to assume that these sets are disjoint, as in

M={,...,m}, N={m+1,....,m+n) (3.1)

Then x € RY and y € R", which means, in particular, that the components of y are
y; for j € N. Similarly, the payoff matrices A and B belong to RM*V.

A best response to the mixed strategy y of player 2 is a mixed strategy x of player 1
that maximizes his expected payoff x " Ay. Similarly, a best response y of player 2 to
x maximizes her expected payoff x ' By. A Nash equilibrium is a pair (x, y) of mixed
strategies that are best responses to each other. The following proposition states that
a mixed strategy x is a best response to an opponent strategy y if and only if all pure
strategies in its support are pure best responses to y. The same holds with the roles of
the players exchanged.

Proposition 3.1 (Best response condition) Let x and y be mixed strategies of
player 1 and 2, respectively. Then x is a best response to y if and only if for all
ieM,

xi >0 = (Ay); =u =max{(Ay) | k € M}. (3.2)

PROOF (Ay); is the ith component of Ay, which is the expected payoff to
player 1 when playing row i. Then

xTAY =) "xi(Ay)i = xi(u— @ —(Ay)) =u— Y x; (W — (Ay)).
ieM ieM ieM
Sox"Ay < ubecause x; > 0and u — (Ay); > Oforalli € M,and x " Ay = u if
and only if x; > 0 implies (Ay); = u, as claimed. O

Proposition 3.1 has the following intuition: Player 1’s payoff x " Ay is linear in x,
so if it is maximized on a face of the simplex of mixed strategies of player 1, then it is
also maximized on any vertex (i.e., pure strategy) of that face, and if it is maximized
on a set of vertices then it is also maximized on any convex combination of them.
The proposition is useful because it states a finite condition, which is easily checked,
about all pure strategies of the player, rather than about the infinite set of all mixed
strategies. It can also be used algorithmically to find Nash equilibria, by trying out
the different possible supports of mixed strategies. All pure strategies in the support
must have maximum, and hence equal, expected payoff to that player. This leads to
equations for the probabilities of the opponent’s mixed strategy.

As an example, consider the 3 x 2 bimatrix game (A, B) with

33 32
A=1{2 5], B=1|2 6|. (3.3)
0 6 31

This game has only one pure-strategy Nash equilibrium, namely the top row (numbered
1 in the pure strategy set M = {1, 2, 3} of player 1), together with the left column (which
by (3.1) has number 4 in the pure strategy set N = {4, 5} of player 2). A pure strategy

56 EQUILIBRIUM COMPUTATION FOR TWO-PLAYER GAMES

equilibrium is given by mixed strategies of support size 1 each, so here it is the mixed
strategy pair ((1,0,0)7, (1,0)7).

The game in (3.3) has also some mixed equilibria. Any pure strategy of a player
has a unique pure best response of the other player, so in any other equilibrium, each
player must mix at least two pure strategies to fulfill condition (3.2). In particular,
player 2 must be indifferent between her two columns. If the support of player 1’s
mixed strategy x is {1, 2}, then player 1 can make player 2 indifferent by x; = 4/5,
x = 1/5, which is the unique solution to the equations x; + x, = 1 and (for the two
columns of B) 3x; 4+ 2x, = 2x; + 6x;. In turn, (3.2) requires that player 2 plays with
probabilities y, and ys so that player 1 is indifferent between rows 1 and 2, i.e.,
3y4 4+ 3ys = 2y4 + Sys or (y4, y5) = (2/3, 1/3). The vector of expected payoffs to
player 1 is then Ay = (3, 3,2)" so that (3.2) holds.

A second mixed equilibrium is (x, y) = ((0, 1/3,2/3)T, (1/3,2/3)T) with expected
payoft vectors x ' B = (8/3, 8/3)and Ay = (3,4, 4)". Again, the support of x contains
only pure strategies i where the corresponding expected payoff (Ay); is maximal.

A third support pair, {1, 3}, for player 1, does not lead to an equilibrium, for two
reasons. First, player 2 would have to play y = (1/2, 1/2)T to make player 1 indifferent
between row 1 and row 3. But then Ay = (3, 7/2, 3)T, so that rows 1 and 3 give the
same payoff to player 1 but not the maximum payoff for all rows. Secondly, making
player 2 indifferent via 3x; 4+ 3x3 = 2x; + x3 has the solution x; =2, x3 = —1 in
order to have x; + x3 = 1, so x is not a vector of probabilities.

In this “support testing” method, it normally suffices to consider supports of equal
size for the two players. For example, in (3.3) it is not necessary to consider a mixed
strategy x of player 1 where all three pure strategies have positive probability, because
player 1 would then have to be indifferent between all these. However, a mixed strategy
y of player 1 is already uniquely determined by equalizing the expected payoffs for
two rows, and then the payoff for the remaining row is already different. This is the
typical, “nondegenerate” case, according to the following definition.

Definition 3.2 A two-player game is called nondegenerate if no mixed strategy
of support size k has more than k pure best responses.

In a degenerate game, Definition 3.2 is violated, for example, if there is a pure strat-
egy that has two pure best responses. For the moment, we consider only nondegenerate
games, where the player’s equilibrium strategies have equal sized support, which is
immediate from Proposition 3.1:

Proposition 3.3 In any Nash equilibrium (x, y) of a nondegenerate bimatrix
game, x and y have supports of equal size.

The “support testing” algorithm for finding equilibria of a nondegenerate bimatrix
game then works as follows.

Algorithm 3.4 (Equilibria by support enumeration) Input: A nondegenerate
bimatrix game. Output: All Nash equilibria of the game. Method: For each k =
1, ..., min{m, n} and each pair (I, J) of k-sized subsets of M and N, respectively,

EQUILIBRIA VIA LABELED POLYTOPES 57

solve the equations) ,_, x;b;j =vforje J, >, xi =1, Zjej a;jy; = u, for
iel, Zje] v; = 1, and check that x > 0, y > 0, and that (3.2) holds for x and
analogously y.

The linear equations considered in this algorithm may not have solutions, which then
mean no equilibrium for that support pair. Nonunique solutions occur only for degen-
erate games, because a linear dependency allows to reduce the support of a mixed
strategy. Degenerate games are discussed in Section 3.6 below.

3.3 Equilibria via Labeled Polytopes

To identify the possible supports of equilibrium strategies, one can use “best response
polytopes” that express directly the inequalities of best responses and nonnegative
probabilities.

We first recall some notions from the theory of (convex) polyhedra. An affine
combination of points 71, ..., z; in some Euclidean space is of the form Zle ZiMhi,
where A, ..., A arereals with Zf‘: | Ai = 1.1tis called a convex combination if A; > 0
for all i. A set of points is convex if it is closed under forming convex combinations.
Given points are daffinely independent if none of these points are an affine combination
of the others. A convex set has dimension d if and only if it has d + 1, but no more,
affinely independent points.

A polyhedron P in R? isaset {z € R? | Cz < g} for some matrix C and vector g. It
is called full-dimensional if it has dimension d. It is called a polytope if it is bounded.
Afaceof Pisaset{z € P |c'z = qo} for some c € R, gy € R so that the inequality
¢z < goholds forall z in P. A vertex of P is the unique element of a zero-dimensional
face of P. An edge of P is a one-dimensional face of P. A facet of a d-dimensional
polyhedron P is a face of dimension d — 1. It can be shown that any nonempty face
F of P can be obtained by turning some of the inequalities defining P into equalities,
which are then called binding inequalities. That is, F ={z € P | c;z=g¢q;, i € I},
where ¢;z < g; for i € I are some of the rows in Cz < g. A facet is characterized by
a single binding inequality which is irredundant; i.e., the inequality cannot be omitted
without changing the polyhedron. A d-dimensional polyhedron P is called simple if
no point belongs to more than d facets of P, which is true if there are no special
dependencies between the facet-defining inequalities.

The “best response polyhedron” of a player is the set of that player’s mixed strategies
together with the “upper envelope” of expected payoffs (and any larger payoffs) to the
other player. For player 2 in the example (3.3), it is the set Q of triples (v4, ys, u) that
fulfill 3y, +3ys < u,2ys +5ys < u,0y4 +6ys < u,ys > 0,ys > 0,and ys + y5 = 1.
The first three inequalities, in matrix notation Ay < 1u, say that u is at least as large
as the expected payoff for each pure strategy of player 1. The other constraints y > 0
and 17y = 1 state that y is a vector of probabilities. The best response polyhedron P
for player 1 is defined analogously. Generally,

={x,v)eRY" xR |x>0,1"x=1, B'x < 1v},

P
— 3.4
Q={0.u)eR" xR | Ay <1u, y>0, 1Ty =1}. G4

58 EQUILIBRIUM COMPUTATION FOR TWO-PLAYER GAMES

0 I =Y
0 1 RO

Figure 3.1. Best reponse polyhedron Q for strategies of player 2, and corresponding poly-
tope Q, which has vertices 0, p, g, r, s.

The left picture in Figure 3.1 shows Q for our example, for 0 < y; < 1, which uniquely
determines ys as 1 — y,. The circled numbers indicate the facets of Q, which are either
the strategies i € M of the other player 1 or the own strategies j € N. Facets 1, 2, 3 of
player 1 indicate his best responses together with his expected payoff u. For example,
1 is a best response when y4 > 2/3. Facets 4 and 5 of player 2 tell when the respective
own strategy has probability zero, namely y; = 0 or ys = 0.

We say a point (y, u) of Q has label k € M U N if the kth inequality in the definition
of Q is binding, which for k =i € M is the ith binding inequality Zje Naijyj=u
(meaning i is a best response to y), or for k = j € N the binding inequality y; = 0.
In the example, (y4, ys, u) = (2/3, 1/3, 3) has labels 1 and 2, so rows 1 and 2 are
best responses to y with expected payoff 3 to player 1. The labels of a point (x, v)
of P are defined correspondingly: It has label i € M if x; = 0, and label j € N if
Y iem bijxi = v. With these labels, an equilibrium is a pair (x, y) of mixed strategies
so that with the corresponding expected payoffs v and u, the pair ((x, v), (y, #)) in
P x Q is completely labeled, which means that every label k € M U N appears as a
label either of (x, v) or of (v, u). This is equivalent to the best response condition (3.2):
A missing label would mean a pure strategy of a player, e.g., i of player 1, that does not
have probability zero, so x; > 0, and is also not a best response, since »_ jen Gijyj < U,
because the respective inequality i is not binding in P or Q. But this is exactly when
the best response condition is violated. Conversely, if every label appears in P or Q,
then each pure strategy is a best response or has probability zero, so x and y are mutual
best responses.

The constraints (3.4) that define P and Q can be simplified by eliminating the payoff
variables 1 and v, which works if these are always positive. For that purpose, assume
that

A and BT are nonnegative and have no zero column. 3.5

EQUILIBRIA VIA LABELED POLYTOPES 59

Figure 3.2. The best response polytopes P (with vertices 0, a, b, ¢, d, e) and Q for the game
in (3.3). The arrows describe the Lemke-Howson algorithm (see Section 3.4).

We could simply assume A > 0 and B > 0, but it is useful to admit zero matrix entries
(e.g., as in the identity matrix); even negative entries are possible as long as the upper
envelope remains positive, e.g., for as4 (currently zero) in (3.3), as Figure 3.1 shows.

For P, we divide each inequality Y iembijxi <v by v, which gives
Zie u bij(xi/v) <1, treat x; /v as a new variable that we call again x;, and call the
resulting polyhedron P. Similarly, Q is replaced by Q by dividing each inequality in
Ay < 1u by u. Then

P={xeRM| x>0, BTx <1},
(3.6)
0={yeRV|Ay=<1 y=0}.
It is easy to see that (3.5) implies that P and Q are full-dimensional polytopes, unlike
P and Q. In effect, we have normalized the expected payoffs to be 1, and dropped the
conditions 1 "x = 1 and 17y = 1. Nonzero vectors x € P and y € Q are multiplied by
v=1/1"x and u = 1/1"y to turn them into probability vectors. The scaling factors v
and u are the expected payoffs to the other player.

The set P is in one-to-one correspondence with P — {0} with the map (x, v) — x -
(1/v). Similarly, (y, u) — y - (1/u) defines a bijection Q — Q — {0}. These bijections
are not linear, but are known as “projective transformations” (for a visualization see von
Stengel, 2002, Fig. 2.5). They preserve the face incidences since a binding inequality in
P (respectively, Q) corresponds to a binding inequality in P (respectively, Q) and vice
versa. In particular, points have the same /abels defined by the binding inequalities,
which are some of the m + n inequalities defining P and Q in (3.6). An equilibrium
is then a completely labeled pair (x, y) € P x Q — {(0, 0)}, which has for each label
i € M the respective binding inequality in x > 0 or Ay < 1, and for each j € N the
respective binding inequality in BTx < 1 or y > 0.

For the example (3.3), the polytope Q is shown on the right in Figure 3.1 and in
Figure 3.2. The vertices y of Q, written as y ', are (0, 0) with labels 4, 5, vertex p =
(0, 1/6) with labels 3, 4, vertex g = (1/12, 1/6) with labels 2, 3, vertex r = (1/6, 1/9)
with labels 1, 2, and s = (1/3, 0) with labels 1, 5. The polytope P is shown on the
left in Figure 3.2. Its vertices x are 0 with labels 1, 2, 3, and (written as xT) vertex
a = (1/3,0, 0) with labels 2, 3, 4, vertex b = (2/7, 1/14, 0) with labels 3, 4, 5, vertex
¢ = (0, 1/6,0) with labels 1, 3,5, vertex d = (0, 1/8, 1/4) with labels 1, 4, 5, and

60 EQUILIBRIUM COMPUTATION FOR TWO-PLAYER GAMES

e = (0,0, 1/3) with labels 1, 2, 4. Note that the vectors alone show only the “own”
labels as the unplayed own strategies; the information about the other player’s best
responses is important as well. The following three completely labeled vertex pairs
define the Nash equilibria of the game, which we already found earlier: the pure
strategy equilibrium (a, s), and the mixed equilibria (b, r) and (d, ¢g). The vertices ¢
and e of P, and p of Q, are not part of an equilibrium.

Nondegeneracy of a bimatrix game (A, B) can be stated in terms of the polytopes
P and Q in (3.6) as follows: no point in P has more than m labels, and no point in Q
has more than » labels. (If x € P and x has support of size k and L is the set of labels
of x, then |L N M| =m — k, so |L| > m implies x has more than k best responses in
L N N.)Then P and Q are simple polytopes, because a point of P, say, that is on more
than m facets would have more than m labels. Even if P and Q are simple polytopes, the
game can be degenerate if the description of a polytope is redundant in the sense that
some inequality can be omitted, but nevertheless is sometimes binding. This occurs
if a player has a pure strategy that is weakly dominated by or payoff equivalent to
some other mixed strategy. Nonsimple polytopes or redundant inequalities of this kind
do not occur for “generic” payoffs; this illustrates the assumption of nondegeneracy
from a geometric viewpoint. (A strictly dominated strategy may occur generically,
but it defines a redundant inequality that is never binding, so this does not lead to a
degenerate game.)

Because the game is nondegenerate, only vertices of P can have m labels, and only
vertices of Q can have n labels. Otherwise, a point of P with m labels that is not a
vertex would be on a higher dimensional face, and a vertex of that face, which is a
vertex of P, would have additional labels. Consequently, only vertices of P and Q
have to be inspected as possible equilibrium strategies.

Algorithm 3.5 (Equilibria by vertex enumeration) /nput: A nondegenerate
bimatrix game. Output: All Nash equilibria of the game. Method: For each vertex
x of P — {0}, and each vertex y of Q — {0}, if (x, y) is completely labeled, output
the Nash equilibrium (x - 1/17x, y - 1/17y).

Algorithm 3.5 is superior to the support enumeration Algorithm 3.4 because there are
more supports than vertices. For example, if m = n, then approximately 4" possible
support pairs have to be tested, but P and Q have less than 2.6" many vertices,
by the “upper bound theorem” for polytopes. This entails less work, assuming that
complementary vertex pairs (x, y) are found efficiently.

Enumerating all vertices of a polytope P, say, is a standard problem in computional
geometry. The elegant /rs (lexicographic reverse search) algorithm considers a known
vertex, like 0 for P in (3.6), and a linear objective function that, over P, is maximized
at that vertex, like the function x +> —1" x. For any vertex of P, the simplex algorithm
with a unique pivoting rule (e.g., Bland’s least-index rule for choosing the entering
and leaving variable) then generates a unique path to 0, defining a directed tree on the
vertices of P with root 0. The algorithm explores that tree by a depth-first search from
0 which “reverts” the simplex steps by considering recursively for each vertex x of P
the edges to vertices x’ so that the simplex algorithm pivots from x’ to x.

THE LEMKE—HOWSON ALGORITHM 61
3.4 The Lemke-Howson Algorithm

Algorithms 3.4 and 3.5 find all Nash equilibria of a nondegenerate bimatrix game
(A, B). In contrast, the Lemke-Howson (for short LH) algorithm finds one Nash
equilibrium, and provides an elementary proof that Nash equilibria exist. The LH
algorithm follows a path (called LH path) of vertex pairs (x, y) of P x Q, for the
polytopes P and Q defined in (3.6), that starts at (0, 0) and ends at a Nash equilibrium.

An LH path alternately follows edges of P and Q, keeping the vertex in the other
polytope fixed. Because the game is nondegenerate, a vertex of P is given by m labels,
and a vertex of Q is given by n labels. An edge of P is defined by m — 1 labels. For
example, in Figure 3.2 the edge defined by labels 1 and 3 joins the vertices 0 and c.
Dropping a label [of a vertex x of P, say, means traversing the unique edge that has
all the labels of x except for /. For example, dropping label 2 of the vertex 0 of P
in Figure 3.2 gives the edge, defined by labels 1 and 3, that joins 0 to vertex c. The
endpoint of the edge has a new label, which is said to be picked up, so in the example
label 5 is picked up at vertex c.

The LH algorithm starts from (0, 0) in P x Q. This is called the artificial equi-
librium, which is a completely labeled vertex pair because every pure strategy has
probability zero. It does not represent a Nash equilibrium of the game because the zero
vector cannot be rescaled to a mixed strategy vector. An initial free choice of the LH
algorithm is a pure strategy k of a player (any label in M U N), called the missing label.
Starting with (x, y) = (0, 0), label k is dropped. At the endpoint of the corresponding
edge (of P if k € M, of Q if k € N), the new label that is picked up is duplicate
because it was present in the other polytope. That duplicate label is then dropped in the
other polytope, picking up a new label. If the newly picked label is the missing label,
the algorithm terminates and has found a Nash equilibrium. Otherwise, the algorithm
repeats by dropping the duplicate label in the other polytope, and continues in this
fashion.

In the example (3.3), suppose that the missing label is k = 2. The polytopes P and
Q are shown in Figure 3.2. Starting from 0 in P, label 2 is dropped, traversing the edge
from 0 to vertex ¢, which is the set of points x of P that have labels 1 and 3, shown
by an arrow in Figure 3.2. The endpoint c of that edge has label 5 which is picked up.
At the vertex pair (¢, 0) of P x Q, all labels except for the missing label 2 are present,
so label 5 is now duplicate because it is both a label of ¢ and of 0. The next step is
therefore to drop the duplicate label 5 in Q, traversing the edge from 0 to vertex p
while keeping ¢ in P fixed. The label that is picked up at vertex p is 3, which is now
duplicate. Dropping label 3 in P defines the unique edge defined by labels 1 and 5,
which joins vertex ¢ to vertex d. At vertex d, label 4 is picked up. Dropping label 4
in Q means traversing the edge of Q from p to g. At vertex ¢, label 2 is picked up.
Because 2 is the missing label, the current vertex pair (d, q) is completely labeled, and
it is the Nash equilibrium found by the algorithm.

In terms of the game, the first two LH steps amount to taking a pure strategy (given
by the missing label &, say of player 1) and considering its best response, say j, which
defines a pure strategy pair (k, j). If this is not already an equilibrium, the best response
i to j is not k, so that i is a duplicate label, and is now given positive probability in

62 EQUILIBRIUM COMPUTATION FOR TWO-PLAYER GAMES

addition to k. In general, one possibility is that a duplicate label is a new best response
which in the next step gets positive probability, as in this case. Alternatively, the
duplicate label is a pure strategy whose probability has just become zero, so that it no
longer needs to be maintained as a best response in the other polytope and the path
moves away from the best response facet.

Algorithm 3.6 (Lemke-Howson) [nput: Nondegenerate bimatrix game. Out-
put: One Nash equilibrium of the game. Method: Choose k € M U N, called the
missing label. Let (x, y) = (0,0) € P x Q. Drop label k (from x in P if k € M,
from y in Q if kK € N). Loop: Call the new vertex pair (x, y). Let / be the label
that is picked up. If [= k, terminate with Nash equilibrium (x, y) (rescaled as
mixed strategy pair). Otherwise, drop [in the other polytope and repeat.

The LH algorithm terminates, and finds a Nash equilibrium, because P x Q has
only finitely many vertex pairs. The next vertex pair on the path is always unique.
Hence, a given vertex pair cannot be revisited because that would provide an additional
possibility to proceed in the first place.

We have described the LH path for missing label k by means of alternating edges
between two polytopes. In fact, it is a path on the product polytope P x Q, given by
the set of pairs (x, y) of P x Q that are k-almost completely labeled, meaning that
every label in M U N — {k} appears as a label of either x or y. In Figure 3.2 for k = 2,
the vertex pairs on the path are (0, 0), (c, 0), (¢, p), (d, p), (d, g).

For a fixed missing label k, the k-almost completely labeled vertices and edges of the
product polytope P x Q form a graph of degree 1 or 2. Clearly, such a graph consists of
disjoints paths and cycles. The endpoints of the paths are completely labeled. They are
the Nash equilibria of the game and the artificial equilibrium (0, 0). Since the number
of endpoints of the paths is even, we obtain the following.

Corollary 3.7 A nondegenerate bimatrix game has an odd number of Nash
equilibria.

The LH algorithm can start at any Nash equilibrium, not just the artificial equilib-
rium. In Figure 3.2 with missing label 2, starting the algorithm at the Nash equilibrium
(d, g) would just generate the known LH path backward to (0, 0). When started at the
Nash equilibrium (a, s), the LH path for the missing label 2 gives the vertex pair (b, s),
where label 5 is duplicate, and then the equilibrium (b, r). This path cannot go back
to (0, 0) because the path leading to (0, 0) starts at (d, g). This gives the three Nash
equilibria of the game as endpoints of the two LH paths for missing label 2.

These three equilibria can also be found by the LH algorithm by varying the missing
label. For example, the LH path for missing label 1 in Figure 3.2 leads to (a, s), from
which (b, r) is subsequently found via missing label 2.

However, some Nash equilibria can remain elusive to the LH algorithm. An example
is the following symmetric 3 x 3 game with

3 30
A=B" =14 0 1]. (3.7)
0 4 5

INTEGER PIVOTING 63

Every Nash equilibrium (x, y) of this game is symmetric, i.e., x = y, where xT is

0,0,1), (1/2,1/4,1/4), or (3/4,1/4, 0). Only the first of these is found by the LH
algorithm, for any missing label; because the game is symmetric, it suffices to consider
the missing labels 1, 2, 3. (A symmetric game remains unchanged when the players
are exchanged; a symmetric game has always a symmetric equilibrium, but may also
have nonsymmetric equilibria, which obviously come in pairs.)

3.5 Integer Pivoting

The LH algorithm follows the edges of a polyhedron, which is implemented alge-
braically by pivoting as used by the simplex algorithm for solving a linear program. We
describe an efficient implementation that has no numerical errors by storing integers of
arbitrary precision. The constraints defining the polyhedron are thereby represented as
linear equations with nonnegative slack variables. For the polytopes P and Q in (3.6),
these slack variables are nonnegative vectors s € RY and r € RM so that x € P and
y € Q if and only if

B'x+s=1, r+ Ay =1, (3.8)
and
x>0, s>0, r>0, y=>0. 3.9

A binding inequality corresponds to a zero slack variable. The pair (x, y) is completely
labeled if and only if x;#; = O foralli € M and y;s; = Oforall j € N, which by (3.9)
can be written as the orthogonality condition

x'r=0, yTs =0. (3.10)

A basic solution to (3.8) is given by n basic (linearly independent) columns of
BTx + s =1 and m basic columns of r + Ay = 1, where the nonbasic variables that
correspond to the m respectively n other (nonbasic) columns are set to zero, so that the
basic variables are uniquely determined. A basic feasible solution also fulfills (3.9),
and defines a vertex x of P and y of Q. The labels of such a vertex are given by the
respective nonbasic columns.

Pivoting is a change of the basis where a nonbasic variable enters and a basic variable
leaves the set of basic variables, while preserving feasibility (3.9). We illustrate this for
the edges of the polytope P in Figure 3.2 shown as arrows, which are the edges that
connect 0 to vertex ¢, and c to d. The system B'x 4+ s = 1 is here

3)6] + 2)62 + 3)63 + S4 =1
2x1+@x2+ X3 + 55 =1

and the basic variables in (3.11) are s4 and s5, defining the basic feasible solution s, = 1
and ss = 1, which is simply the right-hand side of (3.11) because the basic columns
form the identity matrix. Dropping label 2 means that x; is no longer a nonbasic
variable, so x; enters the basis. Increasing x, while maintaining (3.11) changes the
current basic variables as s4 = 1 — 2x3, s5s = 1 — 6x,, and these stay nonnegative as
long as x; < 1/6. The term 1/6 is the minimum ratio, over all rows in (3.11) with

@3.11)

64 EQUILIBRIUM COMPUTATION FOR TWO-PLAYER GAMES

positive coefficients of the entering variable x,, of the right-hand side divided by the
coefficient. (Only positive coefficients bound the increase of x;, which applies to at
least one row since the polyhedron P is bounded.) The minimum ratio test determines
uniquely ss as the variable that leaves the basis, giving the label 5 that is picked up in
that step. The respective coefficient 6 of x; is indicated by a box in (3.11), and is called
the pivot element; its row is the pivot row and its column is the pivot column.

Algebraically, pivoting is done by applying row operations to (3.11) so that the new
basic variable x, has a unit column, so that the basic solution is again given by the
right-hand side. Integer pivoting is a way to achieve this while keeping all coefficients
of the system as integers; the basic columns then form an identity matrix multiplied by
an integer. To that end, all rows (which in (3.11) is only the first row) except for the
pivot row are multiplied with the pivot element, giving the intermediate system

18)61 + 12)62 + 18)63 + 6S4 =6

2)61 + 6)62 + X3 + 55 = 1 (312)

Then, suitable multiples of the pivot row are subtracted from the other rows to obtain
zero entries in the pivot column, giving the new system

14)61 —|— X3 —I— 6S4 — 2S5 = 4 (313)
2X1 —|— 6XQ —|— X3 —|— §5 = 1

In (3.13), the basic columns for the basic variables s4 and x; form the identity matrix,
multiplied by 6 (which is pivot element that has just been used). Clearly, all matrix
entries are integers. The next step of the LH algorithm in the example is to let ys be the
entering variable in the system r + Ay = 1, which we do not show. There, the leaving
variable is r3 (giving the duplicate label 3) so that the next entering variable in (3.13)
is x3. The minimum ratio test (which can be performed using only multiplications,
not divisions) shows that among the nonnegativity constraints 6s4, = 4 — 16x3 > 0 and
6x, = 1 — x3 > 0, the former is tighter so that s4 is the leaving variable. The pivot
element, shown by a box in (3.13), is 16, with the first row as pivot row.

The integer pivoting step is to multiply the other rows with the pivot element, giving

14x4 + 16x3 + 654 — 255 = 4

32x; + 96x; + 16x3 + 1655 = 16. (3.14)

Subsequently, a suitable multiple of the pivot row is subtracted from each other row,
giving the new system

14x; + 16x3 + 654 — 255 = 4

18)61 + 96)62 — 6S4 + 18S5 =12 (315)

with x3 and x;, as basic variables. However, except for the pivot row, the unchanged
basic variables have larger coefficients than before, because they have been multiplied
with the new pivot element 16. The second row in (3.15) can now be divided by the
previous pivot element 6, and this division is integral for all coefficients in that row;
this is the key feature of integer pivoting, explained shortly. The new system is

14)6] + 16)63 + 6S4 - 2S5 =1

3X1 + 16x2 — 84 + 3S5 = 2. (316)

DEGENERATE GAMES 65

This is the final system because the duplicate label 4 (given by the variable s4 that has
just left) is dropped in Q, where the missing label 2 is picked up. The basic solution in
(3.16) is vertex d of P with x3 = 4/16, x, = 2/16, and labels (given by the nonbasic
columns) 1, 4, and 5.

Integer pivoting, as illustrated in this example, always maintains an integer matrix
(or “tableau”) of coefficients of a system of linear equations that is equivalent to the
original system B'x + s = 1, in the form

CB'x+Cs=C1. (3.17)

In (3.17), C is the inverse of the basis matrix given by the basic columns of the original
system, multiplied by the determinant of the basis matrix (which is 6 in (3.13), and
16 in (3.16)). The matrix C is given by the (integer) cofactors of the basis matrix; the
cofactor of a matrix entry is the determinant of the matrix when the row and column
of that element are deleted. Each entry in (3.17) has a bounded number of digits (by at
most a factor of n log n compared to the original matrix entries), so integer pivoting is
a polynomial-time algorithm. It is also superior to using fractions of integers (rational
numbers) because their cancelation requires greatest common divisor computations
that take the bulk of computation time. Only the final fractions defining the solution,
like x3 = 4/16 and x, = 2/16 in (3.16), may have to be canceled.

3.6 Degenerate Games

The uniqueness of an LH path requires a nondegenerate game. In a degenerate game, a
vertex of P, for example, may have more than m labels. When that vertex is represented
as a basic feasible solution as in (3.17) this means that not only the m nonbasic variables
are zero, but also at least one basic variable. Such a degenerate basic feasible solution
results from a pivoting step where the leaving variable (representing the label that is
picked up) is not unique.

As an example, consider the 3 x 2 game

3 3 3 3
A=1|2 5], B={(2 6], (3.18)
0 6 3 1

which agrees with (3.3) except that b;5 = 3. The polytope Q for this game is the same
as before, shown on the right in Figure 3.2. The polytope P is the convex hull of the
original vertices 0, a, ¢, d, e shown on the left in Figure 3.2, so vertex b has merged
with a. The new facets of P with labels 4 and 5 are triangles with vertices a, d, e and
a, c, d, respectively.

In this example (3.18), the first step of the LH path for missing label 1 would be
from (0, 0) to (a, 0), where the two labels 4 and 5 are picked up, because vertex a
has the four labels 2, 3, 4, 5 due to the degeneracy. If then label 4 is dropped in Q,
the algorithm finds the equilibrium (a, s) and no problem occurs. However, dropping
label 5 in Q would mean a move to (a, p) where label 3 is picked up, and none of the
two edges of P that move away from the facet with label 3 (which are the edges from

66 EQUILIBRIUM COMPUTATION FOR TWO-PLAYER GAMES

a to d and from a to e) would, together with p, be 1-almost completely labeled, so the
algorithm fails at this point.

Degeneracy can be resolved by perturbing the linear system lexicographically,
which is well known from linear programming. Assume that the system B'x + s =
1, say, is changed to the perturbed system B'x +s =1+ (¢!,...,&")". After any
number of pivoting steps, this system has the form

CB'x+Cs=C1+CE",....,eMT (3.19)

for some invertible matrix C. The corresponding unperturbed basic feasible solution
may have a zero basic variable, which is a row of C1, but for sufficiently small ¢ > 0 it
is positive if and only if in that row the first nonzero entry of the matrix C is positive; this
is the invariant maintained by the algorithm, using a more general “lexico-minimum”
ratio test. No actual perturbance is required, and C is already stored in the system as
the matrix of coefficients of s, as seen from (3.19).

Degenerate games may have infinite sets of equilibria. In the example (3.18), vertex
a of P, which represents the pure strategy (1,0,0)" of player 1, together with the
entire edge that joins vertices r and s of Q, defines a component of Nash equilibria,
where player 2 plays some mixed strategy (ys, | — y4) for2/3 < y4 < 1. However, this
equilibrium component is a convex combination of the “extreme” equilibria (a, r) and
(a, s). In general, even in a degenerate game, the Nash equilibria can be described in
terms of pairs of vertices of P and Q. We write conv U for the convex hull of a set U.

Proposition 3.8 Let (A, B) be a bimatrix game, and (x,y) € P x Q. Then
(x, y) (rescaled) is a Nash equilibrium if and only if there is a set U of vertices of
P — {0} and a set V of vertices of Q — {0} so that x € convU and y € convV,
and every (u, v) € U x V is completely labeled.

Proposition 3.8 holds because labels are preserved under convex combinations, and
because every face of P or Q has the labels of its vertices, which are vertices of the
entire polytope; for details see von Stengel (2002, Thm. 2.14).

The following algorithm, which extends Algorithm 3.5, outputs a complete descrip-
tion of all Nash equilibria of a bimatrix game: Define a bipartite graph on the vertices
of P — {0} and Q — {0}, whose edges are the completely labeled vertex pairs (x, y).
The “cliques” (maximal complete bipartite subgraphs) of this graph of the form U x V
then define sets of Nash equilibria conv U x conv V whose union is the set of all Nash
equilibria. These sets are called “maximal Nash subsets.” They may be nondisjoint,
if they contain common points (x, y). The connected unions of these sets are usually
called the (topological) components of Nash equilibria.

3.7 Extensive Games and Their Strategic Form

A game in strategic form is a “static” description of an interactive situation, where play-
ers act simultaneously. A detailed “dynamic” description is an extensive game where
players act sequentially, where some moves can be made by a chance player, and where
each player’s information about earlier moves is modeled in detail. Extensive games are

EXTENSIVE GAMES AND THEIR STRATEGIC FORM 67

L r L r
2 5]|(L,S) 2 6](L,S)
0 6((L,T) 3 1T
A= 3 3|(R,S) b= 3 3|(R,S)
3 3|(R,T) 3 3 |(R,T)
01 r 01
0 0
L L
A= |3 R B=|3 R

(2) <0) (5) (6) 2 5|LS 2 6|LS
2) \3) \6/ \1 0 6|LT 3 1|LT
Figure 3.3. Left: A game in extensive form. Top right: Its strategic form payoff matrices A and B.
Bottom right: Its sequence form payoff matrices A and B, where rows and columns correspond

to the sequences of the players which are marked at the side. Any sequence pair not leading
to a leaf has matrix entry zero, which is left blank.

a fundamental representation of dynamic interactions which generalizes other models
like repeated and multistage games, or games with incomplete information.

The basic structure of an extensive game is a directed tree. The nodes of the tree
represent game states. Trees (rather than general graphs) are used because then a game
state encodes the full history of play. Only one player moves at any one state along
a tree edge. The game starts at the root (initial node) of the tree and ends at a leaf
(terminal node), where each player receives a payoff. The nonterminal nodes are called
decision nodes. A player’s possible moves are assigned to the outgoing edges of the
decision node.

The decision nodes are partitioned into information sets. All nodes in an information
set belong to the same player, and have the same moves. The interpretation is that when
a player makes a move, he only knows the information set but not the particular node
he is at. In a game with perfect information, all information sets are singletons (and
can therefore be omitted). We denote the set of information sets of player i by H;,
information sets by #, and the set of moves at & by Cj,.

Figure 3.3 shows an example of an extensive game. Moves are marked by upper-case
letters for player 1 and by lowercase letters for player 2. Information sets are indicated
by ovals. The two information sets of player 1 have move sets {L, R} and {S, T'}, and
the information set of player 2 has move set {/, r}. A play of the game may proceed
by player 1 choosing L, player 2 choosing r, and player 1 choosing S, after which the
game terminates with payoffs 5 and 6 to players 1 and 2. By definition, move S of
player 1 is the same, no matter whether player 2 has chosen [or r, because player 1
does not know the game state in his second information set.

At some decision nodes, the next move may be a chance move. Chance is here
treated as an additional player O, who receives no payoff and who plays according to
a known behavior strategy. A behavior strategy of player i is given by a probability
distribution on Cj, for all 4 in H;. (The information sets belonging to the chance player
are singletons.) A pure strategy is a behavior strategy where each move is picked

68 EQUILIBRIUM COMPUTATION FOR TWO-PLAYER GAMES

deterministically. A pure strategy of player i can be regarded as an element (c;,) e, of
]_[he,_,,_ Cj, that is, as a tuple of moves, like (L, S) for player 1 in Figure 3.3.

Tabulating all pure strategies of the players and recording the resulting expected
payoffs defines the strategic form of the game. In Figure 3.3, the strategic form of the
extensive game is shown at the top right, with payoff matrices A and B to player 1 and
player 2.

Given the strategic form, a player can play according to a mixed strategy, which is
a probability distribution on pure strategies. The player chooses a pure strategy, which
is a complete plan of action, according to this distribution, and plays it in the game.
In contrast, a behavior strategy can be played by “delaying” the random move until
the player reaches the respective information set. It can be considered as a special
mixed strategy since it defines a probability for every pure strategy, where the moves
at information sets are chosen independently.

We consider algorithms for finding Nash equilibria of an extensive game, with the
tree together with the described game data as input. The strategic form is bad for this
purpose because it is typically exponentially large in the game tree. As described in
the subsequent sections, this complexity can be reduced, in some cases by considering
subgames and corresponding subgame perfect equilibria. The reduced strategic form of
the game is smaller but may still be exponentially large. A reduction from exponential
to linear size is provided by the sequence form, which allows one to compute directly
behavior strategies rather than mixed strategies.

3.8 Subgame Perfect Equilibria

A subgame of an extensive game is a subtree of the game tree that includes all infor-
mation sets containing a node of the subtree. Figure 3.3 has a subgame starting at the
decision node of player 2; the nodes in the second information set of player 1 are not
roots of subgames because player 1 does not know that he is in the respective subtree.
In the subgame, player 2 moves first, but player 1 does not get to know that move.
So this subgame is equivalent to a 2 x 2 game in strategic form where the players act
simultaneously. (In this way, every game in strategic form can be represented as a game
in extensive form.)

The subgame in Figure 3.3 has a unique mixed equilibrium with probability 2/3 for
the moves T and r, respectively, and expected payoff 4 to player 1 and 8/3 to player 2.
Replacing the subgame by the payoff pair (4, 8/3), one obtains a very simple game
with moves L and R for player 1, where L is optimal. So player 1’s mixed strategy
with probabilities 1/3 and 2/3 for (L, S) and (L, T') and player 2’s mixed strategy
(1/3,2/3) for I, r define a Nash equilibrium of the game. This is the, here unique,
subgame perfect equilibrium of the game, defined by the property that it induces a
Nash equilibrium in every subgame.

Algorithm 3.9 (Subgame perfect equilibrium) /nput: An extensive game.
Output: A subgame perfect Nash equilibrium of the game. Method: Consider,
in increasing order of inclusion, each subgame of the game, find a Nash equilib-
rium of the subgame, and replace the subgame by a new terminal node that has
the equilibrium payoffs.

REDUCED STRATEGIC FORM 69

In a game with perfect information, every node is the root of a subgame. Then Algo-
rithm 3.9 is the well-known, linear time backward induction method, also sometimes
known as “Zermelo’s algorithm.” Because the subgame involves only one player in
each iteration, a deterministic move is optimal, which shows that any game with perfect
information has a (subgame perfect) Nash equilibrium where every player uses a pure
strategy.

In games with imperfect information, a subgame perfect equilibrium may require
mixed strategies, as Figure 3.3 demonstrates.

3.9 Reduced Strategic Form

Not all extensive games have nontrivial subgames, and one may also be interested
in equilibria that are not subgame perfect. In Figure 3.3, such an equilibrium is the
pure strategy pair ({(R, S), [). Here, player 2 is indifferent between her moves [/ and r
because the initial move R of player 1 means that player 2 never has to make move /
or r, so player 2 receives the constant payoff 3 after move R. If play actually reached
player 2’s information set, move / would not be optimal against S, which is why this is
not a subgame perfect equilibrium. Player 2 can, in fact, randomize between [/ and r,
and as long as [is played with probability at least 2/3, (R, S) remains a best response
of player 1, as required in equilibrium.

In this game, the pure strategies (R, S) and (R, T) of player 1 are overspecific
as “plans of action”: the initial move R of player 1 makes the subsequent choice
of S or T irrelevant since player 1’s second information set cannot be reached after
move R. Consequently, the two payoff rows for (R, S) and (R, T') are identical for both
players. In the reduced strategic form, moves at information sets that cannot be reached
because of an earlier own move are identified. In Figure 3.3, this reduction yields the
pure strategy (more precisely, equivalence class of pure strategies) (R,), where *
denotes an arbitrary move. The two (reduced as well as unreduced) pure strategies of
player 2 are her moves / and r.

The reduced strategic form of Figure 3.3 corresponds to the bimatrix game (3.18) if
(R, %) is taken as the first strategy (top row) of player 1. This game is degenerate even
if the payoffs in the extensive game are generic, because player 2, irrespective of her
own move, receives constant payoff 3 when player 1 chooses (R, *).

Once a two-player extensive game has been converted to its reduced strategic form,
it can be considered as a bimatrix game, where we refer to its rows and columns as the
“pure strategies” of player 1 and 2, even if they leave moves at unreachable information
sets unspecified.

The concept of subgame perfect equilibrium requires fully specified strategies,
rather than reduced strategies. For example, it is not possible to say whether the Nash
equilibrium ({R, x),[) of the reduced strategic form of the game in Figure 3.3 is
subgame perfect or not, because player 1’s behavior at his second information set is
unspecified. This could be said for a Nash equilibrium of the full strategic form with
two rows (R, S) and (R, T'). However, these identical two rows are indistinguishable
computationally, so there is no point in applying an algorithm to the full rather than the
reduced strategic form, because any splitting of probabilities between payoff-identical

70 EQUILIBRIUM COMPUTATION FOR TWO-PLAYER GAMES

strategies would be arbitrary. If one is interested in finding subgame perfect equilibria,
one should use Algorithm 3.9. At each stage of that algorithm, the considered games
have by definition no further subgames, and equilibria of these games can be found
using the reduced strategic form or the sequence form.

A player may have parallel information sets that are not distinguished by own
earlier moves. These arise when a player receives information about an earlier move by
another player. Combinations of moves at parallel information sets cannot be reduced,
which causes a multiplicative growth of the number of reduced strategies. In general,
the reduced strategic form can therefore still be exponential in the size of the game tree.

3.10 The Sequence Form

In the reduced strategic form, pure strategies are only partially specified, by omitting
moves at information sets that cannot be reached because of an own earlier move. In
the sequence form, pure strategies are replaced by an even more partial description
of sequences which specify a player’s moves only along a path in the game tree. The
number of these paths, and therefore of these sequences, is bounded by the number
of nodes of the tree. However, randomizing between such sequences can no longer be
described by a single probability distribution, but requires a system of linear equations.

A sequence of moves of player i is the sequence of his moves (disregarding the
moves of other players) on the unique path from the root to some node ¢ of the tree, and
is denoted o;(t). For example, for the leftmost leaf ¢ in Figure 3.3 this sequence is LS
for player 1 and [for player 2. The empty sequence is denoted @. Player i has perfect
recall if and only if 0;(s) = o;(t) for any nodes s, ¢ € h and h € H;. Then the unique
sequence o;(¢) leading to any node ¢ in & will be denoted o;,. Perfect recall means that
the player cannot get additional information about his position in an information set
by remembering his earlier moves. We assume all players have perfect recall.

Let B; be a behavior strategy of player i. The move probabilities S;(c) fulfill

Y B@=1. pic)=0 forheH, ceCy. (3.20)

ceCy,

The realization probability of a sequence o of player i under §; is

pilol= [] i) (3.21)
cmo
Aninformation set 4 in H; is called relevant under §; if 8;[0},] > 0, otherwise irrelevant,
in agreement with irrelevant information sets as considered in the reduced strategic
form.
Let S; be the set of sequences of moves for player i. Then any o in S; is either the
empty sequence ¢ or uniquely given by its last move c at the information set / in H;,
that is, 0 = oy,¢. Hence,

Si={0} U {opc|heH, ceCp}

This implies that the number of sequences of player i, apart from the empty sequence,
is equal to his total number of moves, that is, |S;| = 1 + ZheH,» |C|. This number is
linear in the size of the game tree.

THE SEQUENCE FORM 71

Let 1 and B, denote behavior strategies of the two players, and let 8y be the known
behavior of the chance player. Let a(¢) and b(¢) denote the payoffs to player 1 and
player 2, respectively, at a leaf ¢ of the tree. The probability of reaching ¢ is the product
of move probabilities on the path to 7. The expected payoff to player 1 is therefore

Y a() Boloo(d)] Bilor()] Baloa(1)] (3.22)

leaves

and the expected payoff to player 2 is the same expression with b(¢) instead of a(t).
However, the expected payoff is nonlinear in terms of behavior strategy probabilities
Bi(c) since the terms S;[o;(¢)] are products by (3.21).

Therefore, we consider directly the realization probabilities B;[o] as functions of
sequences o in S;. They can also be defined for mixed strategies w; of player i,
which choose each pure strategy ; of player i with probability w,(;r;). Under 7;, the
realization probability of o in §; is m;[o’], which is equal to 1 if 7r; prescribes all the
moves in o and zero otherwise. Under p;, the realization probability of o is

uilol =Y wirmlo]l. (3.23)

Ti

For player 1, this defines a map x from S; to R by x(0) = u[o] for o € S;. We call
x the realization plan of w, or a realization plan for player 1. A realization plan for
player 2, similarly defined on S, by a mixed strategy u,, is denoted y. Realization
plans have two important properties.

Proposition 3.10 A realization plan x of a mixed strategy of player 1 fulfills
x(c) > O0foralloc € Sy and

x(@) =1, Z x(opc) = x(oy) forallh € Hy. (3.24)

ceCy

Conversely, any x: Sy — R with these properties is the realization plan of a
behavior strategy of player 1, which is unique except at irrelevant information
sets. A realization plan y of player 2 is characterized analogously.

For the second property, two mixed strategies are called realization equivalent if
they reach any node of the tree with the same probabilities, given any strategy of the
other player. We can assume that all chance probabilities Sy(c) are positive, by pruning
any tree branches that are unreached by chance.

Proposition 3.11 Two mixed strategies |; and |, of player i are realization
equivalent if and only if they have the same realization plan, that is, pu;[o] = (o]
forallo € S;.

These two propositions (to be proved in Exercise 3.13) imply the well-known
result by Kuhn (1953) that behavior strategies are strategically as expressive as mixed
strategies.

Corollary 3.12 (Kuhn’s theorem) For a player with perfect recall, any mixed
strategy is realization equivalent to a behavior strategy.

72 EQUILIBRIUM COMPUTATION FOR TWO-PLAYER GAMES

Proposition 3.10 characterizes realization plans by nonnegativity and the equations
(3.11). A realization plan describes a behavior strategy uniquely except for the moves
at irrelevant information sets. In particular, the realization plan of a pure strategy (that
is, a realization plan with values 0 or 1) is as specific as a reduced pure strategy.

A realization plan represents all the relevant strategic information of a mixed strategy
by Proposition 3.11. This compact information is obtained with the linear map in (3.23).
This map assigns to any mixed strategy wu;, regarded as a tuple of mixed strategy
probabilities p;(7;), its realization plan, regarded as a tuple of realization probabilities
wilo]for o in S;. The simplex of mixed strategies is thereby mapped to the polytope of
realization plans defined by the linear constraints in Proposition 3.10. The vertices of
this polytope are the realization plans of pure strategies. The number of these vertices
may be exponential. However, the number of defining inequalities and the dimension
of the polytope is linear in the tree size. For player i, this dimension is the number
|S;| of variables minus the number 1 + | H;| of equations (3.24) (which are linearly
independent), so itis), ., (ICy| — 1).

We consider realization plans as vectors in x € RISl and y e RI%2!| that is,
X = (X5)ses, Where x, = x(0), and similarly y = (y;)res,. The linear constraints in
Proposition 3.10 are denoted by

Ex=e, x>0 and Fy=f y=>0, (3.25)

using the constraint matrices E and F and vectors e and f. The matrix E and right-
hand side e have 1 + |H;| rows, and E has |S;| columns. The first row denotes the
equation x(¥J) = 1 in (3.24). The other rows for 4 € H; are the equations —x (o) +
> cec, X(ane) = 0.

In Figure 3.3, the sets of sequences are S; = {#, L, R, LS, LT}and S, = {0, 1, r},
and in (3.25),

1 1
E=|-1 1 1 . e=|0], F=[} f=H,
I U 0 11 1 0

Each sequence appears exactly once on the left-hand side of the equations (3.24),
accounting for the entry 1 in each column of E and F'. The number of information sets
and therefore the number of rows of E and F' is at most linear in the size of the game
tree.

Define the sequence form payoff matrices A and B, each of dimension |S1| x |S,],
as follows. For o0 € S| and T € S, let the matrix entry a,, of A be defined by

gr = > a(t) Boloo(®)]. (3.26)

leaves t : o1(t)=0, 02(t)=1

The matrix entry of B is this term with b instead of a. An example is shown on the
bottom right in Figure 3.3. These two matrices are sparse, since the matrix entry for a
pair o, T of sequences is zero (the empty sum) whenever these sequences do not lead
to a leaf. If they do, the matrix entry is the payoff at the leaf (or leaves, weighted with
chance probabilities of reaching the leaves, if there are chance moves). Then by (3.22),
the expected payoffs to players 1 and 2 are x ' Ay and x| By, respectively, which is

COMPUTING EQUILIBRIA WITH THE SEQUENCE FORM 73

just another way of writing the weighted sum over all leaves. The constraint and payoff
matrices define the sequence form of the game.

3.11 Computing Equilibria with the Sequence Form

Realization plans in the sequence form take the role of mixed strategies in the strategic
form. In fact, mixed strategies x and y are a special case, by letting E and F in (3.25)
be single rows 1" and ¢ = f = 1. The computation of equilibria with the sequence
form uses linear programming duality, which is also of interest for the strategic form.

Consider a fixed realization plan y of player 2. A best response x of player 1 is a
realization plan that maximizes his expected payoff x " (Ay). That is, x is a solution to
the linear program (LP)

maximize xT(Ay) subjectto Ex =e, x > 0. 3.27)

This LP has a dual LP with a vector u of unconstrained variables whose dimension is
1 + | Hy|, the number of rows of E. This dual LP states

minimize e 'u subjectto E'u > Ay. (3.28)

Both LPs have feasible solutions, so by the strong duality theorem of linear program-
ming, they have the same optimal value.

Consider now a zero-sum game, where B = —A. Player 2, when choosing y, has
to assume that her opponent plays rationally and maximizes x ' Ay. This maximum
payoff to player 1 is the optimal value of the LP (3.27), which is equal to the optimal
value e " u of the dual LP (3.28). Player 2 is interested in minimizing e u by her choice
of y. The constraints of (3.28) are linear in u and y even if y is treated as a variable.
So a minmax realization plan y of player 2 (minimizing the maximum amount she has
to pay) is a solution to the LP

mirbirilize e'u subjectto Fy = f, ETu— Ay >0, y=>0. (3.29)
The dual of this LP has variables v and x corresponding to the primal constraints
Fy = fand ETu — Ay > 0, respectively. It has the form

maximize f'v subjectto Ex =e, Flv—A'x <0, x>0. (3.30)
v, x

It is easy to verify that this LP describes the problem of finding a maxmin realization
plan x (with maxmin payoff fv) for player 1.

This implies, first, that any zero-sum game has an equilibrium (x, y). More impor-
tantly, given an extensive game, the number of nonzero entries in the sparse matrices
E, F, A, and the number of variables, is linear in the size of the game tree. Hence, we
have shown the following.

Theorem 3.13 The equilibria of a two-person zero-sum game in extensive form
with perfect recall are the solutions to the LP (3.29) with sparse payoff matrix A
in (3.26) and constraint matrices E and F in (3.25) defined by Prop. 3.10. The
size of this LP is linear in the size of the game tree.

74 EQUILIBRIUM COMPUTATION FOR TWO-PLAYER GAMES

A best response x of player 1 against the mixed strategy y of player 2 is a solution
to the LP (3.27). This is also useful for games that are not zero-sum. By strong duality,
a feasible solution x is optimal if and only if there is a dual solution u fulfilling
E'u> Ay and x " (Ay) = e'u, thatis, x " (Ay) = (x " E ")u or equivalently

x (E'u—Ay)=0. (3.31)

Because the vectors x and E'u — Ay are nonnegative, (3.31) states that they are
complementary in the sense that they cannot both have positive components in the same
position. This characterization of an optimal primal-dual pair of feasible solutions is
known as complementary slackness in linear programming. For the strategic form, this
condition is equivalent to the best response condition (3.2).

For player 2, the realization plan y is a best response to x if and only if it maximizes
(x"B)y subjectto Fy = f,y > 0. The dual of this LP has the vector v of variables and
says: minimize f'v subject to F'v > Bx. Here, a primal-dual pair y, v of feasible
solutions is optimal if and only if, analogous to (3.31),

y' (Flv—BTx)=0. (3.32)

Considering these conditions for both players, this shows the following.

Theorem 3.14 Consider the two-person extensive game with sequence form
payoff matrices A, B and constraint matrices E, F. Then the pair (x, y) of re-
alization plans defines an equilibrium if and only if there are vectors u,v so
that

Ex=e, x>0, Fy=f y=>0,
E'u—Ay>0, Flv—B'x>0 (3.33)
and (3.31), (3.32) hold. The size of the matrices E, F, A, B is linear in the size
of the game tree.

The conditions (3.33) define a linear complementarity problem (LCP). For a game
in strategic from, (3.8), (3.9), and (3.10) define also an LCP, to which the LH algorithm
finds one solution. For a general extensive game, the LH algorithm cannot be applied
to the LCP in Theorem 3.14, because u and v are not scalar dual variables that
are easily eliminated from the system. Instead, it is possible to use a variant called
Lemke’s algorithm. Similar to the LH algorithm, it introduces a degree of freedom
to the system, by considering an additional column for the linear equations and a
corresponding variable zo which is initially nonzero, and which allows for an initial
feasible solution where x = 0 and y = 0. Then a binding inequality in r = E "u —
Ay > 0(ors = F'v — BTx > 0) means that a basic slack variable r,, (or s;) can leave
the basis, with x, (respectively, y;) entering, while keeping (3.10). Like in the LH
algorithm, this “complementary pivoting rule” continues until an equilibrium is found,
here when the auxiliary variable z leaves the basis.

DISCUSSION AND OPEN PROBLEMS 75
3.12 Further Reading

A scholarly and more comprehensive account of the results of this chapter is von
Stengel (2002). The best response condition (Proposition 3.1) is due to Nash (1951).
Algorithm 3.4 is folklore, and has been used by Dickhaut and Kaplan (1991). Polyhedra
are explained in Ziegler (1995). Shapley (1974) introduced distinct labels as in (3.1)
to visualize the LH algorithm. He labels subdivisions of the mixed strategy simplices,
ignoring the payoff components in P and Q in (3.4). We prefer the polytope view using
P and Q in (3.6), which simplifies the LH algorithm. Moreover, this view is useful for
constructing games with many equilibria (von Stengel, 1999) that come close to the
upper bound theorem for polytopes (Keiding, 1997; McMullen, 1970) , and for games
with exponentially long LH paths (Savani and von Stengel, 2006).

Algorithm 3.5 is suggested in (Kuhn, 1961; Mangasarian, 1964; Vorob’ev, 1958).
The Irs method for vertex enumeration is due to (Avis, 2005; Avis and Fukuda, 1992).
An equilibrium enumeration that (implicitly) alternates between P and Q is Audet
et al. (2001). It has been implemented with integer pivoting (like /rs) by Rosenberg
(2004).

The LH algorithm is due to Lemke and Howson (1964). Shapley (1974) also shows
that the endpoints of an LH path are equilibria of different index, which is an orientation
defined by determinants, explored further in von Schemde (2005). A recent account of
integer pivoting is Azulay and Pique (2001). Proposition 3.8 is due to Winkels (1979)
and Jansen (1981).

Extensive games with information sets are due to Kuhn (1953). Subgame perfection
(Selten, 1975) is one of many refinements of Nash equilibria (von Damme, 1987).
Main ideas of the sequence form have been discovered independently by (Koller and
Megiddo, 1992; Romanovskii, 1962; von Stengel, 1996). Lemke’s algorithm (Lemke,
1965) is applied to the sequence form in Koller et al. (1996); von Stengel et al. (2002).

A recent paper, with further references, on algorithms for finding equilibria of games
with more than two players, is Datta (2003).

3.13 Discussion and Open Problems

We have described the basic mathematical structure of Nash equilibria for two-player
games, namely polyhedra and the complementarity condition of best responses. The
resulting algorithms should simplify the analysis of larger games as used by applied
game theorists. At present, existing software packages (Avis, 2005; Canty, 2003; McK-
elvey et al., 2006) are prototypes that are not easy to use. Improved implementations
should lead to more widespread use of the algorithms, and reveal which kinds of
games practitioners are interested in. If the games are discretized versions of games
in economic settings, enumerating all equilibria will soon hit the size barriers of these
exponential algorithms. Then the LH algorithm may possibly be used to give an indi-
cation if the game has only one Nash equilibrium, or Lemke’s method with varying
starting point as in von Stengel et al. (2002). This should give practical evidence if
these algorithms have usually good running times, as is widely believed, in contrast to

76 EQUILIBRIUM COMPUTATION FOR TWO-PLAYER GAMES

the extremal examples in Savani and Stengel (2006). An open theoretical question is if
LH, or Lemke’s algorithm, has expected polynomial running time, as it is known for
the simplex method, for suitable probabilistic assumptions on the instance data.

The computational complexity of finding one Nash equilibrium of a two-player
game, as discussed in Chapter 2, is open in the sense that not even a subexponential
algorithm is known. Incremental or divide-and-conquer approaches, perhaps using the
polyhedral structure, require a generalization of the equilibrium condition, because
equilibria typically do not result from equilibria of games with fewer strategies. At
the same time, such an approach must not maintain the entire set of Nash equilibria,
because questions about that set (such as uniqueness, see Theorem 2.3) are typically
NP-hard.

Extensive games are a general model of dynamic games. The condition of perfect
recall leads to canonical representations and algorithms, as described. Special types of
extensive games, like repeated games and Bayesian games, are widely used in applied
game theory. Finding equilibria of these models — where that task is difficult — should
give a focus for further research.

Bibliography

C. Audet, P. Hansen, B. Jaumard, and G. Savard. Enumeration of all extreme equilibria of bimatrix
games. SIAM J. Sci. Comput. 23, 323-338, 2001.

D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and vertex enumeration of arrangements
and polyhedra. Disc. Comp. Geometry 8, 295-313, 1992.

D. Avis. User’s Guide for Irs. Available at: http://cgm.cs.mcgill.ca/~avis, 2005.

D.-O. Azulay and J.-F. Pique. A revised simplex method with integer Q-matrices. ACM Trans. Math.
Software 27, 350-360, 2001.

C. Bron and J. Kerbosch. Finding all cliques of an undirectred graph. Comm. ACM 16, 575-577,
1973.

M.J. Canty. Resolving Conflict with Mathematica: Algorithms for Two-Person Games. Academic
Press, Amsterdam, 2003.

R.S. Datta. Using computer algebra to compute Nash equilibria. Proc. 2003 Int. Symp. Symbolic and
Algebraic Computation, ACM, 74-79, 2003.

J. Dickhaut and T. Kaplan. A program for finding Nash equilibria. Math. J. 1:4, 87-93, 1991.

M.J.M. Jansen. Maximal Nash subsets for bimatrix games. Naval Res. Logistics Q. 28, 147-152,
1981.

H. Keiding. On the maximal number of Nash equilibria in an n x n bimatrix game. Games Econ.
Behav. 21, 148-160, 1997.

D. Koller and N. Megiddo. The complexity of two-person zero-sum games in extensive form. Games
Econ. Behav. 4, 528-552, 1992.

D. Koller, N. Megiddo, and B. von Stengel. Efficient computation of equilibria for extensive two-
person games. Games Econ. Behav. 14, 247-259, 1996.

H.W. Kuhn. Extensive games and the problem of information. In: Contributions to the Theory of
Games 11, eds. H. W. Kuhn and A. W. Tucker, Ann. Math. Studies 28, Princeton Univ. Press,
Princeton, 193-216, 1953.

H.W. Kuhn. An algorithm for equilibrium points in bimatrix games. Proc. National Academy of
Sciences of the U.S.A. 47, 1657-1662, 1961.

C.E. Lemke. Bimatrix equilibrium points and mathematical programming. Manag. Sci. 11, 681-689,
1965.

EXERCISES 77

C.E. Lemke and J.T. Howson, Jr. Equilibrium points of bimatrix games. J. SIAM 12, 413-423, 1964.

O.L. Mangasarian. Equilibrium points in bimatrix games. J. STAM 12, 778-780, 1964.

R.D. McKelvey, A. McLennan, and T.L. Turocy. Gambit: Software Tools for Game Theory. Available
at: http://econweb.tamu.edu/gambit, 2006.

P. McMullen. The maximum number of faces of a convex polytope. Mathematika 17, 179—184, 1970.

J.E. Nash. Non-cooperative games. Ann. Math. 54, 286-295, 1951.

I.V. Romanovskii. Reduction of a game with complete memory to a matrix game. Soviet Math. 3,
678-681, 1962.

G.D. Rosenberg. Enumeration of all extreme equilibria of bimatrix games with integer pivoting
and improved degeneracy check. CDAM Res. Rep. LSE-CDAM-2005-18, London School of
Economics, 2004.

R. Savani and B. von Stengel. Hard-to-solve bimatrix games. Econometrica 74, 397-429, 2006.

R. Selten. Reexamination of the perfectness concept for equilibrium points in extensive games. /nt.
J. Game Theory 4, 22-55, 1975.

L.S. Shapley. A note on the Lemke—Howson algorithm. Mathematical Programming Study 1 : Pivoting
and Extensions, 175189, 1974.

E. van Damme. Stability and Perfection of Nash Equilibria. Springer, Berlin, 1987.

A. von Schemde. Index and Stability in Bimatrix Games. Springer, Berlin, 2005.

B. von Stengel. Efficient computation of behavior strategies. Games Econ. Behav. 14,220-246, 1996.

B. von Stengel. New maximal numbers of equilibria in bimatrix games. Disc. Comp. Geometry 21,
557-568, 1999.

B. von Stengel. Computing equilibria for two-person games. In: Handbook of Game Theory with
Economic Applications, eds. R.J. Aumann and S. Hart, Elsevier, Amsterdam, 3, 1723-1759, 2002.

B. von Stengel, A.H. van den Elzen, and A.J.J. Talman. Computing normal form perfect equilibria
for extensive two-person games. Econometrica 70, 693-715, 2002.

N.N. Vorob’ev. Equilibrium points in bimatrix games. Theory of Probability and its Applications 3,
297-309, 1958.

H.-M. Winkels. An algorithm to determine all equilibrium points of a bimatrix game. In: Game
Theory and Related Topics, eds. O. Moeschlin and D. Pallaschke, North-Holland, Amsterdam,
137-148, 1979.

G.M. Ziegler. Lectures on Polytopes. Springer, New York, 1995.

Exercises

3.1 Prove the claim made after Algorithm 3.4 that nonunique solutions to the equations
in that algorithm occur only for degenerate games.

3.2 Show that in an equilibrium of a nondegenerate game, all pure best responses are
played with positive probability.

3.3 Give further details of the argument made after Algorithm 3.6 that LH terminates.
A duplicate label of a vertex pair (x, y) can be dropped in either polytope. Interpret
these two possibilities.

3.4 Why is every pure strategy equilibrium found by LH for a suitable missing label?

3.5 Show that the “projection” to polytope P, say, of a LH path from (x, y) to (x’, V)
in P x Qis also a path in P from x to x’. Hence, if (x, y) is an equilibrium, where
can x be on that projected path?

3.6 Verify the LH paths for the example (3.7).

78

3.7

3.8

3.9

3.10

3.12

3.13
3.14

EQUILIBRIUM COMPUTATION FOR TWO-PLAYER GAMES

Apply integer pivoting to the system r + Ay =1 in the example, omitted after
(3.13).

After (3.14), what is the multiplier in the “suitable multiple of the pivot row”? Give
formulas for the update rules of the tableau.

Draw the polytope P for the game (3.18), and verify that the described naive use
of LH fails.

Implement the lexico-minimum ratio test for the system (3.19) using the data in
(3.17); you need a suitable array to identify the order of the basic variables.

Adapt a clique enumeration algorithm for graphs such as (Bron and Kerbosch,
1973) to find all maximal Nash subsets (see at the end of Section 3.6).

Consider an extensive game with a binary game tree of depth L (and thus 2t
leaves), where the two players alternate and are informed about all past moves
except for the last move of the other player (see von Stengel et al., 2002). How
many reduced strategies do the players have?

Prove Proposition 3.10, using (3.20), (3.21), and (3.23). Prove Proposition 3.11.

Write down the LCP of Theorem 3.14 for the game in Figure 3.3. Find all its
solutions, for example with a variant of Algorithm 3.4.

CHAPTER 4

Learning, Regret Minimization,
and Equilibria

Avrim Blum and Yishay Mansour

Abstract

Many situations involve repeatedly making decisions in an uncertain environment: for instance,
deciding what route to drive to work each day, or repeated play of a game against an opponent with an
unknown strategy. In this chapter we describe learning algorithms with strong guarantees for settings
of this type, along with connections to game-theoretic equilibria when all players in a system are
simultaneously adapting in such a manner.

We begin by presenting algorithms for repeated play of a matrix game with the guarantee that
against any opponent, they will perform nearly as well as the best fixed action in hindsight (also called
the problem of combining expert advice or minimizing external regret). In a zero-sum game, such
algorithms are guaranteed to approach or exceed the minimax value of the game, and even provide
a simple proof of the minimax theorem. We then turn to algorithms that minimize an even stronger
form of regret, known as internal or swap regret. We present a general reduction showing how to
convert any algorithm for minimizing external regret to one that minimizes this stronger form of
regret as well. Internal regret is important because when all players in a game minimize this stronger
type of regret, the empirical distribution of play is known to converge to correlated equilibrium.

The third part of this chapter explains a different reduction: how to convert from the full information
setting in which the action chosen by the opponent is revealed after each time step, to the partial
information (bandit) setting, where at each time step only the payoff of the selected action is observed
(such as in routing), and still maintain a small external regret.

Finally, we end by discussing routing games in the Wardrop model, where one can show that if
all participants minimize their own external regret, then overall traffic is guaranteed to converge to
an approximate Nash Equilibrium. This further motivates price-of-anarchy results.

4.1 Introduction

In this chapter we consider the problem of repeatedly making decisions in an uncertain
environment. The basic setting is we have a space of N actions, such as what route to
use to drive to work, or the rows of a matrix game like {rock, paper, scissors}. At each
time step, the algorithm probabilistically chooses an action (say, selecting what route
to take), the environment makes its “move” (setting the road congestions on that day),

79

80 LEARNING, REGRET MINIMIZATION, AND EQUILIBRIA

and the algorithm then incurs the loss for its action chosen (how long its route took).
The process then repeats the next day. What we would like are adaptive algorithms that
can perform well in such settings, as well as to understand the dynamics of the system
when there are multiple players, all adjusting their behavior in such a way.

A key technique for analyzing problems of this sort is known as regret analysis.
The motivation behind regret analysis can be viewed as the following: we design
a sophisticated online algorithm that deals with various issues of uncertainty and
decision making, and sell it to a client. Our algorithm runs for some time and incurs a
certain loss. We would like to avoid the embarrassment that our client will come back
to us and claim that in retrospect we could have incurred a much lower loss if we used
his simple alternative policy m. The regret of our online algorithm is the difference
between the loss of our algorithm and the loss using .

Different notions of regret quantify differently what is considered to be a “simple”
alternative policy. External regret, also called the problem of combining expert advice,
compares performance to the best single action in retrospect. This implies that the
simple alternative policy performs the same action in all time steps, which indeed is
quite simple. Nonetheless, external regret provides a general methodology for devel-
oping online algorithms whose performance matches that of an optimal static offline
algorithm by modeling the possible static solutions as different actions. In the context
of machine learning, algorithms with good external regret bounds can be powerful
tools for achieving performance comparable to the optimal prediction rule from some
large class of hypotheses.

In Section 4.3 we describe several algorithms with particularly strong external regret
bounds. We start with the very weak greedy algorithm, and build up to an algorithm
whose loss is at most O(+/T log N) greater than that of the best action, where T is
the number of time steps. That is, the regret per time step drops as O(y/(log N)/T).
In Section 4.4 we show that in a zero-sum game, such algorithms are guaranteed to
approach or exceed the value of the game, and even yield a simple proof of the minimax
theorem.

A second category of alternative policies are those that consider the online sequence
of actions and suggest a simple modification to it, such as “every time you bought IBM,
you should have bought Microsoft instead.” While one can study very general classes
of modification rules, the most common form, known as internal or swap regret, allows
one to modify the online action sequence by changing every occurrence of a given
action i by an alternative action j. (The distinction between internal and swap regret
is that internal regret allows only one action to be replaced by another, whereas swap
regret allows any mapping from {1, ..., N} to {l,..., N} and can be up to a factor N
larger). In Section 4.5 we present a simple way to efficiently convert any external regret
minimizing algorithm into one that minimizes swap regret with only a factor N increase
in the regret term. Using the results for external regret this achieves a swap regret bound
of O(y/TNlog N). (Algorithms for swap regret have also been developed from first
principles—see the Notes section of this chapter for references—but this procedure
gives the best bounds known for efficient algorithms.)

The importance of swap regret is due to its tight connection to correlated equilibria,
defined in Chapter 1. In fact, one way to think of a correlated equilibrium is that it
is a distribution Q over the joint action space such that every player would have zero

MODEL AND PRELIMINARIES 81

internal (or swap) regret when playing it. As we point out in Section 4.4, if each player
can achieve swap regret €T, then the empirical distribution of the joint actions of the
players will be an e-correlated equilibrium.

We also describe how external regret results can be extended to the partial infor-
mation model, also called the multiarmed bandit (MAB) problem. In this model, the
online algorithm only gets to observe the loss of the action actually selected, and does
not see the losses of the actions not chosen. For example, in the case of driving to
work, you may only observe the travel time on the route you actually drive, and do not
get to find out how long it would have taken had you chosen some alternative route.
In Section 4.6 we present a general reduction, showing how to convert an algorithm
with low external regret in the full information model to one for the partial information
model (though the bounds produced are not the best known bounds for this problem).

Notice that the route-choosing problem can be viewed as a general-sum game: your
travel time depends on the choices of the other drivers as well. In Section 4.7 we
discuss results showing that in the Wardrop model of infinitesimal agents (considered
in Chapter 18), if each driver acts to minimize external regret, then traffic flow over
time can be shown to approach an approximate Nash equilibrium. This serves to further
motivate price-of-anarchy results in this context, since it means they apply to the case
that participants are using well-motivated self-interested adaptive behavior.

We remark that the results we present in this chapter are not always the strongest
known, and the interested reader is referred to the recent book (Cesa-Bianchi and
Lugosi, 2006) that gives a thorough coverage of many of the the topics in this chapter.
See also the Notes section for further references.

4.2 Model and Preliminaries

We assume an adversarial online model where there are N available actions X =
{1, ..., N}. Ateach time step 7, an online algorithm H selects a distribution p’ over the
N actions. After that, the adversary selects aloss vector £/ € [0, 1]V, where E§ e [0, 1]is
the loss of the i-th action at time ¢. In the full information model, the online algorithm H
receives the loss vector £/ and experiences a loss £/, = Y% | p!¢’. (This can be viewed
as an expected loss when the online algorithm selects action i € X with probability
pi.) In the partial information model, the online algorithm receives (¢, , k'), where k'
is distributed according to p’, and E’H = 22, is its loss. The loss of the i-th action during
the first T time steps is LT = Y ¢!, and the loss of H is LT, = Y"1, ¢,

The aim for the external regret setting is to design an online algorithm that will
be able to approach the performance of the best algorithm from a given class of
algorithms G; namely, to have a loss close to LT,min = min,eg L;. Formally we would
like to minimize the external regret Rg = L, — Lg’min, and § is called the comparison
class. The most studied comparison class G is the one that consists of all the single
actions, i.e., G = X. In this chapter we concentrate on this important comparison class,
namely, we want the online algorithm’s loss to be close to LT, = min; L, and let the
external regretbe R = LT, — LT, .

External regret uses a fixed comparison class G, but one can also envision a compar-
ison class that depends on the online algorithm’s actions. We can consider modification

82 LEARNING, REGRET MINIMIZATION, AND EQUILIBRIA

rules that modify the actions selected by the online algorithm, producing an alternative
strategy which we will want to compete against. A modification rule F has as input the
history and the current action selected by the online procedure and outputs a (possibly
different) action. (We denote by F’ the function F at time ¢, including any dependency
on the history.) Given a sequence of probability distributions p’ used by an online
algorithm H, and a modification rule F', we define a new sequence of probability dis-
tributions f' = F'(p'), where f/ = >, p(;_; P} The loss of the modified sequence
isLy =7, f/€. Notethatat time ¢ the modification rule F shifts the probability
that H assigned to action j to action F’(j). This implies that the modification rule F

generates a different distribution, as a function of the online algorithm’s distribution
t

p'.

We will focus on the case of a finite set 7 of memoryless modification rules (they
do not depend on history). Given a sequence of loss vectors, the regret of an online
algorithm H with respect to the modification rules F is

Rp =max {Ly — Ly, p}.

Note that the external regret setting is equivalent to having a set F** of N mod-
ification rules F;, where F; always outputs action i. For internal regret, the set F™"
consists of N(N — 1) modification rules F; ;, where F; j(i) = j and F; ;(i") =i’ for
i’ # i. That is, the internal regret of H is

T
T T _ t{pt t
IQ;E}X {LH - LH,F} = l“}g {Z Di (ﬁi - gj)} .
A more general class of memoryless modification rules is swap regret defined by the
class F%, which includes all NV functions F : {1,..., N} — {1, ..., N}, where the
function F swaps the current online action i with F(i) (which can be the same or a
different action). That is, the swap regret of H is

max {Ly — Ly r} = r}lg{Zp, (¢ —¢) }

Note that since F* C F5¥ and Fi* C F SW, both external and internal regret are upper-
bounded by swap regret. (See also Exercises 4.1 and 4.2.)

4.3 External Regret Minimization

Before describing the external regret results, we begin by pointing out that it is not
possible to guarantee low regret with respect to the overall optimal sequence of de-
cisions in hindsight, as is done in competitive analysis (Borodin and El-Yaniv, 1998;
Sleator and Tarjan, 1985). This will motivate why we will be concentrating on more
restricted comparison classes. In particular, let G, be the set of all functions mapping
times {1, ..., T} toactions X = {1,..., N}.

Theorem 4.1 For any online algorithm H there exists a sequence of T loss
vectors such that regret Rg,, is at least T(1 — 1/N).

EXTERNAL REGRET MINIMIZATION 83

PROOF The sequence is simply as follows: at each time ¢, the action i, of lowest
probability p! gets a loss of 0, and all the other actions get a loss of 1. Since
min;{p]} < 1/N, this means the loss of H in T time steps is at least (1 — 1/N).
On the other hand, there exists g € G,;, namely g(¢) = i,, with a total loss of 0.

O

The above proof shows that if we consider all possible functions, we have a very large
regret. For the rest of the section we will use the comparison class G, = {g; : i € X},
where g; always selects action i. Namely, we compare the online algorithm to the best
single action.

4.3.1 Warmup: Greedy and Randomized-Greedy Algorithms

In this section, for simplicity we will assume that all losses are either O or 1 (rather than
a real number in [0, 1]), which will simplify notation and proofs, although everything
presented can be easily extended to the general case.

Our first attempt to develop a good regret minimization algorithm will be to consider
the greedy algorithm. Recall that L} = Zi:l £, namely the cumulative loss up to time
t of action i. The Greedy algorithm at each time ¢ selects action x’ = arg min;cy Lf_l
(if there are multiple actions with the same cumulative loss, it prefers the action with
the lowest index). Formally:

Greedy Algorithm

Initially: xl=1.

Attimer: Let L=l = min;ex L' and 8! = (i : LI7' = LIZ1).
Let x’ = min '~ 1.

Theorem 4.2 The Greedy algorithm, for any sequence of losses has

LT <N-LT +(N—-1).

Greedy — min

PROOF At each time 7 such that Greedy incurs a loss of 1 and L., does
not increase, at least one action is removed from S’. This can occur at most
N times before L!; increases by 1. Therefore, Greedy incurs loss at most N
between successive increments in L’ . . More formally, this shows inductively

that L/, <N-—|S|+N- L]

Greedy — min*

The above guarantee on Greedy is quite weak, stating only that its loss is at most
a factor of N larger than the loss of the best action. The following theorem shows
that this weakness is shared by any deterministic online algorithm. (A deterministic
algorithm concentrates its entire weight on a single action at each time step.)

Theorem 4.3 For any deterministic algorithm D there exists a loss sequence
for which LT = T and LT, = |T/N].

min

84 LEARNING, REGRET MINIMIZATION, AND EQUILIBRIA

Note that the above theorem implies that LT > N - LT. + (T mod N), which almost
matches the upper bound for Greedy (Theorem 4.2).

PROOF Fix a deterministic online algorithm D and let x’ be the action it selects
at time t. We will generate the loss sequence in the following way. At time ¢, let
the loss of x” be 1 and the loss of any other action be 0. This ensures that D incurs
loss 1 at each time step, so Lg =T.

Since there are N different actions, there is some action that algorithm D has
selected at most |7/ N | times. By construction, only the actions selected by D
ever have a loss, so this implies that LT, < |T/N]. O
Theorem 4.3 motivates considering randomized algorithms. In particular, one weak-

ness of the greedy algorithm was that it had a deterministic tie breaker. One can hope
that if the online algorithm splits its weight between all the currently best actions,
better performance could be achieved. Specifically, let Randomized Greedy (RG) be
the procedure that assigns a uniform distribution over all those actions with minimum
total loss so far. We now will show that this algorithm achieves a significant perfor-
mance improvement: its loss is at most an O(log N) factor from the best action, rather
than O(N). (This is similar to the analysis of the randomized marking algorithm in
competitive analysis.)

Randomized Greedy (RG) Algorithm
Initially: pl =1/Nfori € X.
Attime r: Let L7 = minjex L™ and 81 = (i : L7 = L2

Let p! = 1/|S""!| fori € $"~" and p! = 0 otherwise.

Theorem 4.4 The Randomized Greedy (RG) algorithm, for any loss se-
quence, has

L, < (nN)+(1+InN)L], .
PROOF The proof follows from showing that the loss incurred by Randomized
Greedy between successive increases in L], is at most 1 + In N. Specifically, let
tj denote the time step at which L! ; first reaches a loss of j, so we are interested
in the loss of Randomized Greedy between time steps f; and ¢; . At time any ¢
we have 1 < |§'| < N. Furthermore, if at time ¢ € (¢;, ;4] the size of S’ shrinks
by k from some size n’ down to n’ — k, then the loss of the online algorithm
RG is k/n’, since each such action has weight 1/n’. Finally, notice that we can
upper bound k/n" by 1/n" +1/(n" — 1)+ ---+ 1/(n’ — k + 1). Therefore, over
the entire time-interval (¢}, ¢; 1], the loss of Randomized Greedy is at most:

IUN+1/N—D+1/(N=2)+---+1/1<1+InN.

More formally, this shows inductively that L, < (1/N +1/(N —1)+---+
/(8" + 1)+ A +1InN)- L m|

min*

EXTERNAL REGRET MINIMIZATION 85

4.3.2 Randomized Weighted Majority Algorithm

Although Randomized Greedy achieved a significant performance gain compared
to the Greedy algorithm, we still have a logarithmic ratio to the best action. Looking
more closely at the proof, one can see that the losses are greatest when the sets S’
are small, since the online loss can be viewed as proportional to 1/|S’|. One way to
overcome this weakness is to give some weight to actions which are currently “near
best.” That is, we would like the probability mass on some action to decay gracefully
with its distance to optimality. This is the idea of the Randomized Weighted Majority
algorithm of Littlestone and Warmuth.

Specifically, in the Randomized Weighted Majority algorithm, we give an action i
whose total loss so far is L; a weight w; = (1 —)™, and then choose probabilities
proportional to the weights: p; = w;/ Z;V:l w ;. The parameter n will be set to optimize
certain trade-offs but conceptually think of it as a small constant, say 0.01. In this
section we will again assume losses in {0, 1} rather than [0, 1] because it allows for
an especially intuitive interpretation of the proof (Theorem 4.5). We then relax this
assumption in the next section (Theorem 4.6).

Randomized Weighted Majority (RWM) Algorithm

Initially: u)l.1 =1 and pl-1 =1/N,fori € X.

Attimer: If e = 1 letw! = w/™'(1 —p);else (€)' = 0) let w! = wi™".
Let p! = w; /W', where W' =", _, w!.

Algorithm RWM and Theorem 4.5 can be generalized to losses in [0, 1] by replacing the
update rule with w! = w!~'(1 — m& " (see Exercise 4.3).

Theorem 4.5 For n < 1/2, the loss of Randomized Weighted Majority
(RWM) on any sequence of binary {0, 1} losses satisfies

T T InN
Legy = (T 4+)Ly, + T

Setting n = min{/(In N)/T, 1/2} yields LL, < LT. +2+/TInN.

(Note: The second part of the theorem assumes 7 is known in advance. If T is unknown,
then a “guess and double” approach can be used to set with just a constant-factor loss in
regret. In fact, one can achieve the potentially better bound LI, < LI +2/LyinIn N

by setting n = min{/(In N)/Lin, 1/2}.)

PROOF The key to the proof is to consider the total weight W’. What we will
show is that anytime the online algorithm has significant expected loss, the total
weight must drop substantially. We will then combine this with the fact that
W > max; w/ = (1 - n)Lmin to achieve the desired bound.

Specifically, let F* = (3 ,.,,_,; wi)/ W' denote the fraction of the weight W’
that is on actions that experiené:e a loss of 1 at time ¢; so, F' equals the expected
loss of algorithm RWM at time ¢. Now, each of the actions experiencing a loss
of 1 has its weight multiplied by (1 — n) while the rest are unchanged. There-
fore, Witl = W' — nF'W' = W'(1 — nF"). In other words, the proportion of

86 LEARNING, REGRET MINIMIZATION, AND EQUILIBRIA

the weight removed from the system at each time ¢ is exactly proportional to the
expected loss of the online algorithm. Now, using the fact that W! = N and using
our lower bound on W7*! we have

T T
(1 —mhmn < W = W] —nF) = NT](—nF".
=1 1=1
Taking logarithms,

T
LinIn(l =) < (nN) +) " In(l —nF")

t=1

T
<(nN)—) nF'
t=1
(Using the inequality In(1 — z) < —z)

= (InN)—nLL,

(by definition of F")

Therefore,
—L;in In(1 — n) n In(N)

n n

In(N)
< (Lt Ly + ==

T
Lpyy =

(Using the inequality —In(1 —z) < z +z%> for0 < z < %)

which completes the proof. O

4.3.3 Polynomial Weights Algorithm

The Polynomial Weights (PW) algorithm is a natural extension of the RWM algo-
rithm to losses in [0, 1] (or even to the case of both losses and gains, see Exercise 4.4)
that maintains the same proof structure as that used for RWM and in addition performs
especially well in the case of small losses.

Polynomial Weights (PW) Algorithm
Initially: wl.1 = 1and pi1 =1/N,fori € X.
Attime r: Letw! = w!~'(1 —ne!™").

Let p! = w;/ W', where W' =) "._, w!.

Notice that the only difference between PW and RWM is in the update step. In particular,
it is no longer necessarily the case that an action of total loss L has weight (1 — n)£.
However, what is maintained is the property that if the algorithm’s loss at time ¢ is
F’, then exactly an nF' fraction of the total weight is removed from the system.
Specifically, from the update rule we have W't = W' — 3" pw!e! = W'(1 — nF")
where F' = (), witl)/ W' is the loss of PW at time 7. We can use this fact to prove the
following.

EXTERNAL REGRET MINIMIZATION 87

Theorem 4.6 ThePolynomial Weights (PW) algorithm,usingn < 1/2,for
any [0, 1]-valued loss sequence and for any k has,

In(N)
Ly, <L{ +n0 + s

where QkT = ZtT:l(ch)z.Setting n =min{/(In N)/T, 1/2} and noting that Q,Z <
T,wehave LI, < LT. +2J/TInN.!

PROOF As noted above, we have W't! = W/(1 — nF"), where F' is PW’s loss
at time 7. So, as with the analysis of RWM, we have W7*! = N]_[,TZI(I —nF")
and therefore

T T
W™ = IN+) In(l-nF) < InN—yY F' = InN—nL,

=1 =1

Now for the lower bound, we have

In Wt > Inw/ ™!

T
= Zln (1—nt)
=1

(using the recursive definition of weights)
T T
2
t t
z —Z’?fk - E :(nﬁk)
t=1 t=1

(using the inequality In(1 — z) > —z — z2 for0 < z < %)
= —nL; —n*Qy.
Combining the upper and lower bounds on In W7 *! we have:
—nLg —1°Qf <InN —nLg,

which yields the theorem. O

4.3.4 Lower Bounds

An obvious question is whether one can significantly improve the bound in Theorem
4.6. We will show two simple results that imply that the regret bound is near optimal
(see Exercise 4.5 for a better lower bound). The first result shows that one cannot hope
to get sublinear regret when 7T is small compared to log NV, and the second shows that
one cannot hope to achieve regret o(v/T) even when N = 2.

Theorem 4.7 Consider T < log, N. There exists a stochastic generation of
losses such that, for any online algorithm R1, we have E[L%L,1= T/2 and yet
LI{liH =0.

! Again, for simplicity we assume that the number of time steps T is given as a parameter to the algorithm;
otherwise, one can use a “guess and double” method to set 7.

88 LEARNING, REGRET MINIMIZATION, AND EQUILIBRIA

PROOF Consider the following sequence of losses. At time ¢+ = 1, a random
subset of NV /2 actions gets a loss of 0 and the rest gets a loss of 1. At time ¢ = 2,
a random subset of N /4 of the actions that had loss O at time ¢ = 1 gets a loss of
0, and the rest (including actions that had a loss of 1 at time 1) gets a loss of 1.
This process repeats: at each time step, a random subset of half of the actions that
have received loss 0 so far gets a loss of 0, while all the rest gets a loss of 1. Any
online algorithm incurs an expected loss of 1/2 at each time step, because at each
time step ¢ the expected fraction of probability mass p; on actions that receive
a loss of 0 is at most 1/2. Yet, for T < log, N there will always be some action
with total loss of 0. DO

Theorem 4.8 Consider N = 2. There exists a stochastic generation of losses
such that, for any online algorithm R2, we have E[L%, — LT. 1= Q(/T).

PROOF Attime ¢, we flip a fair coinand set £ = z; = (0, 1) with probability 1/2
and ¢' = z; = (1, 0) with probability 1/2. For any distribution p’ the expected
loss at time ¢ is exactly 1/2. Therefore any online algorithm R2 has expected loss
of T/2.

Given a sequence of T such losses, with T /2 + y losses z; and T /2 — y losses
72, we have T/2 — LT. = |y|. It remains to lower bound E[|y|]. Note that the

T/§+y)/2T, which is upper bounded by 0(1/T) (using a

Sterling approximation). This implies that with a constant probability we have
ly| = Q(+/T), which completes the proof. [

probability of y is (

4.4 Regret Minimization and Game Theory

In this section we outline the connection between regret minimization and central
concepts in game theory. We start by showing that in a two-player constant sum game,
a player with external regret sublinear in 7" will have an average payoff that is at least
the value of the game, minus a vanishing error term. For a general game, we will see that
if all the players use procedures with sublinear swap-regret, then they will converge to
an approximate correlated equilibrium. We also show that for a player who minimizes
swap-regret, the frequency of playing dominated actions is vanishing.

4.4.1 Game Theoretic Model

We start with the standard definitions of a game (see also Chapter 1). A game G =
(M, (X;), (s;)) has a finite set M of m players. Player i has a set X; of N actions and
a loss function s; : X; x (X« X;) — [0, 1] that maps the action of player i and the
actions of the other players to a real number. (We have scaled losses to [0, 1].) The
joint action space is X = x X;.

We consider a player i that plays a game G for T time steps using an online procedure
ON. Attime step ¢, player i plays a distribution (mixed action) P/, while the other players
play the joint distribution P’,. We denote by £f the loss of player i at time ¢, i.e.,

REGRET MINIMIZATION AND GAME THEORY 89

E.pi[s;(x")], and its cumulative loss is LgN = Zthl EBN.z It is natural to define, for
playeri attimez, the loss vectoras ' = (¢}, ..., £,), where E’ =E, ~pt, [sl(xi, xt)]
Namely, E’ is the loss player i would have observed if at tlme tit had played action
x;. The cumulatlve loss of action x; € X; of player i is LT Zt U and LT =
min; LT.

4.4.2 Constant Sum Games and External Regret Minimization

A two-player constant sum game G = ({1, 2}, (X;), (s;)) has the property that for some
constant ¢, forevery x; € X and x, € X, we have s;(xy, x3) + s2(x1, x2) = c. Itis well
known that any constant sum game has a well-defined value (v, v,) for the game, and
playeri € {1, 2} has a mixed strategy which guarantees that its expected loss is at most
v;, regardless of the other player’s strategy. (See Owen, 1982, for more details.) In such
games, external regret-minimization procedures provide the following guarantee.

Theorem 4.9 Let G be a constant sum game with game value (v, vy). If player
iefl,2} plays for T steps using a procedure ON with external regret R, then its
average loss * 7Ly is at most v; + R/T.

PROOF Let g be the mixed strategy corresponding to the observed frequencies
of the actions player 2 has played; that is, g; = Zth 1 Py /T, where P, ; is the
weight player 2 gives to action j at time ¢. By the theory of constant sum games,
for any mixed strategy g of player 2, player 1 has some action x; € X such
that Ey,~,[s1(xr, x2)] < vy (see Owen, 1982). This implies, in our setting, that if
player 1 has always played action x;, then its loss would be at most v; T'. Therefore
LT < LI < v T. Now, using the fact that player 1 is playing a procedure ON
with external regret R, we have that LU <LT +R<uyT+R. O

min

Thus, using a procedure with regret R = O(4/T log N) as in Theorem 4.6 will

guarantee average loss at most v; + O(y/(log N)/T).
In fact, we can use the existence of external regret minimization algo-

rithms to prove the minimax theorem of two-player zero-sum games. For

player 1, let vrlnin = MiNy, cx, MaXzea(x,) Ex,~z[S1(x1,x2)] and vrlnax = maXy,ex,
mingeax,) Ex,~z[51(x1, x2)]. That is, vrlmn is the best loss that player 1 can guaran-
tee for itself if it is told the mixed action of player 2 in advance. Similarly, v is the

best loss that player 1 can guarantee to itself if it has to go first in selecting a mixed

action, and player 2’s action may then depend on it. The minimax theorem states that

véﬁn = max Since s1(x1, X) = —s2(x1, x2) we can similarly define v, = —v! and
2

v = U

max min*
In the following we give a proof of the minimax theorem based on the existence

of external regret algorithms. Assume for contradiction that v}, = vl. + y for some
y > 0 (it is easy to see that v} >). Consider both players playing a regret

mm

2 Alternatively, we could consider x! as a random variable distributed according to P/, and similarly discuss the
expected loss. We prefer the above presentation for consistency with the rest of the chapter.

90 LEARNING, REGRET MINIMIZATION, AND EQUILIBRIA

minimization algorithm for 7 steps having external regret of at most R, such that
R/T < y/2.Let Loy be the loss of player 1 and note that — Loy is the loss of player
2. Let Li . be the cumulative loss of the best action of player i € {1, 2}. As before,
let ¢; be the mixed strategy corresponding to the observed frequencies of actions of
player i € {1,2}. Then, L., /T <vl.. since for L., we select the best action with
respect to a specific mixed action, namely ¢,. Similarly, ernin /T < vfnin. The regret
minimization algorithms guarantee for player 1 that Loy < L., + R, and for player

2 that —Lon < L2, + R. Combining the inequalities we have:

Tv. —R=-Tvl —R<-L) —R<Lon<L. +R<Tvl +R.

max max min min

1 1

This implies that v, — vy, <2R/T <y, which is a contradiction. Therefore,
1 1

Upmax = Umin» Which establishes the minimax theorem.

4.4.3 Correlated Equilibrium and Swap Regret Minimization

We first define the relevant modification rules and establish the connection between
them and equilibrium notions. For x1, b1, by € X;, let switch;(x1, by, by) be the follow-
ing modification function of the action x; of player i:

b2 ifx1 = bl

switch; (xg, by, by) = .
i(x1, b1, bo) {x1 otherwise

Given a modification function f for player i, we can measure the regret of player i
with respect to f as the decrease in its loss, 1.e.,

regret; (x, f) = 5;(x) — 5;(f(x;), x_;).

For example, when we consider f(x;) = switch;(xy, by, by), for a fixed by, b, € X;,
then regret; (x, f) is measuring the regret player i has for playing action b; rather than
b,, when the other players play x_;.

A correlated equilibrium is a distribution P over the joint action space with the
following property. Imagine a correlating device draws a vector of actions x € X using
distribution P over X, and gives player i the action x; from x. (Player i is not given
any other information regarding x.) The probability distribution P is a correlated
equilibrium if, for each player, it is a best response to play the suggested action,
provided that the other players also do not deviate. (For a more detailed discussion of
correlated equilibrium, see Chapter 1.)

Definition 4.10 A joint probability distribution P over X is a correlated equi-
librium if for every player i, and any actions by, b, € X;, we have that

E.~plregret,(x, switch; (-, b1, b;))] < 0.

An equivalent definition that extends more naturally to the case of approximate
equilibria is to say that rather than only switching between a pair of actions, we allow
simultaneously replacing every action in X; with another action in X; (possibly the same
action). A distribution P is a correlated equilibrium iff for any function F : X; — X;
we have E, p[regret;(x, F')] < 0.

REGRET MINIMIZATION AND GAME THEORY 91

We now define an e-correlated equilibrium. An e-correlated equilibrium is a distri-
bution P such that each player has in expectation at most an € incentive to deviate.
Formally,

Definition 4.11 A joint probability distribution P over X is an e-correlated
equilibria if for every player i and for any function F; : X; — X;, we have
E,~plregret;(x, F;)] < e.

The following theorem relates the empirical distribution of the actions performed
by each player, their swap regret, and the distance to correlated equilibrium.

Theorem 4.12 Let G = (M, (X)), (s;)) be a game and assume that for T time
steps every player follows a strategy that has swap regret of at most R. Then,
the empirical distribution Q of the joint actions played by the players is an
(R/T)-correlated equilibrium.

PROOF The empirical distribution Q assigns to every P’ a probability of 1/T.
Fix a function F : X; — X; for player i. Since player i has swap regret at most

R, we have LI < LgN » + R, where L is the loss of player i. By definition of
the regret function, we therefore have

Ll = Z Eyepilsi(x")] — Z Eqp[si(F(x), x")]
t=1

Ep[regret;(x', F)] = T - E ~g[regret;(x, F)).

HMNI

Therefore, for any function F; : X; — X; we have E,p[regret;(x, F;)] < R/T.
O

The above theorem states that the payoff of each player is its payoff in some
approximate correlated equilibrium. In addition, it relates the swap regret to the distance
from equilibrium. Note that if the average swap regret vanishes then the procedure
converges, in the limit, to the set of correlated equilibria.

4.4.4 Dominated Strategies

We say that an action x; € X; is e-dominated by action x; € X; ifforany x_; € X_; we
have s;(x;, x_;) > € + s;(xx, x_;). Similarly, action x; € X; is e-dominated by a mixed
action y € A(X;) if for any x_; € X_; we have 5;(x;, x_;) > € + E,,~y[si(xq, x_;)].
Intuitively, a good learning algorithm ought to be able to learn not to play actions
that are e-dominated by others, and in this section we show that indeed if player i plays
a procedure with sublinear swap regret, then it will very rarely play dominated actions.
More precisely, let action x; be e-dominated by action x; € X;. Using our notation,
this implies that for any x_; we have that regret; (x, switch; (-, x;, xx)) > €. Let D, be
the set of e-dominated actions of player i, and let w be the weight that player i puts on

92 LEARNING, REGRET MINIMIZATION, AND EQUILIBRIA

actions in D., averaged over time, i.e., w = % Z[T: 1 2_jep, Pi ;- Playeri’s swap regret
isatleastewT (since we could replace each action in D, with the action that dominates
it). So, if the player’s swap regret is R, then ewT < R. Therefore, the time-average
weight that player i puts on the set of e-dominated actions is at most R/(eT), which
tends to O if R is sublinear in 7. That is:

Theorem 4.13 Consider a game G and a player i that uses a procedure of swap
regret R for T time steps. Then the average weight that player i puts on the set of
e-dominated actions is at most R/(eT).

We remark that in general the property of having low external regret is not sufficient
by itself to give such a guarantee, though the algorithms RWM and PW do indeed have
such a guarantee (see Exercise 4.8).

4.5 Generic Reduction from External to Swap Regret

In this section we give a black-box reduction showing how any procedure A achieving
good external regret can be used as a subroutine to achieve good swap regret as well.
The high-level idea is as follows (see also Figure 4.1). We will instantiate N copies
Ay, ..., Ay of the external-regret procedure. At each time step, these procedures will
each give us a probability vector, which we will combine in a particular way to produce
our own probability vector p. When we receive a loss vector £, we will partition it
among the N procedures, giving procedure A; a fraction p; (p; is our probability mass
on action 7), so that A;’s belief about the loss of action j is D, p;¢’;, and matches the
cost we would incur putting i ’s probability mass on j. In the proof, procedure A; will,
in some sense, be responsible for ensuring low regret of the i — j variety. The key to
making this work is that we will be able to define the p’s so that the sum of the losses
of the procedures A; on their own loss vectors matches our overall true loss. Recall the
definition of an R external regret procedure.

ai
4 < ' p"
pilt —
O
O H
O P
ay
Ay < ”
p et

Figure 4.1. The structure of the swap regret reduction.

GENERIC REDUCTION FROM EXTERNAL TO SWAP REGRET 93

Definition 4.14 An R external regret procedure A guarantees that for any se-
quence of T losses ¢’ and for any action j € {1, ..., N}, we have

T T
L§=Z£;‘5253+R=LJT+R.
=1

t=1

We assume we have N copies Aq, ..., Ay of an R external regret procedure. We
combine the N procedures to one master procedure H as follows. At each time step ¢,
each procedure A; outputs a distribution ¢/, where ql.”j is the fraction it assigns action
Jj. We compute a single distribution p' such that p’ = 3, piq; ;. Thatis, p' = p' 0,
where p' is our distribution and Q' is the matrix of ‘L‘t, ;- (We can view p' as a stationary
distribution of the Markov Process defined by Q, and it is well known that such a
p' exists and is efficiently computable.) For intuition into this choice of p’, notice
that it implies we can consider action selection in two equivalent ways. The first is
simply using the distribution p’ to select action j with probability p?. The second is to
select procedure A; with probability p! and then to use A; to select the action (which
produces distribution p’ Q").

When the adversary returns the loss vector £/, we return to each A; the loss vector
pit'. So, procedure A; experiences loss (pi€') - g/ = pi(g} - €").

Since A; is an R external regret procedure, for any action j, we have,

T T
D opi(gl) =) piti+ R @.1)
t=1 t=1

If we sum the losses of the N procedures at a given time 7, we get) ; pi(q} - €') =
p'Q'', where p' is the row vector of our distribution, Q" is the matrix of g] j-and '
is viewed as a column vector. By design of p’, we have p’ Q" = p’. So, the sum of the
perceived losses of the N procedures is equal to our actual loss p'¢’.

Therefore, summing equation (4.1) over all N procedures, the left-hand side sums
to L1, where H is our master online procedure. Since the right-hand side of equation
(4.1) holds for any j, we have that for any function F : {1,..., N} - {1,..., N},

N T
L, <3 pilhey+ NR=L} , + NR
i=1 t=1
Therefore we have proven the following theorem.

Theorem 4.15 Given an R external regret procedure, the master online pro-
cedure H has the following guarantee. For every function F :{1,..., N} —
{17 L) N}y

Ly <Luyr+ NR,

i.e., the swap regret of H is at most NR.

Using Theorem 4.6, we can immediately derive the following corollary.

94 LEARNING, REGRET MINIMIZATION, AND EQUILIBRIA

Corollary 4.16 There exists an online algorithm H such that for every function
F:{l,...,N} = {1,..., N}, we have that

Ly <Lyr+ ONTlogN),
i.e., the swap regret of H is at most O(N+/T log N).

Remark. See Exercise 4.6 for an improvement to O(,/NT log N).

4.6 The Partial Information Model

In this section we show, for external regret, a simple reduction from the partial infor-
mation to the full information model.> The main difference between the two models is
that in the full information model, the online procedure has access to the loss of every
action. In the partial information model the online procedure receives as feedback only
the loss of a single action, the action it performed. This very naturally leads to an ex-
ploration versus exploitation trade-off in the partial information model, and essentially
any online procedure will have to somehow explore the various actions and estimate
their loss.

The high-level idea of the reduction is as follows. Assume that the number of time
steps T is given as a parameter. We will partition the 7' time steps into K blocks. The
procedure will use the same distribution over actions in all the time steps of any given
block, except it will also randomly sample each action once (the exploration part).
The partial information procedure MAB will pass to the full information procedure FIB
the vector of losses received from its exploration steps. The full information procedure
FIB will then return a new distribution over actions. The main part of the proof will be
to relate the loss of the full information procedure FIB on the loss sequence it observes
to the loss of the partial information procedure MAB on the real loss sequence.

We start by considering a full information procedure FIB that partitions the T time
steps into K blocks, B!, ..., BX where B/ = {(i — 1)(T/K)+1,...,i(T/K)}, and
uses the same distribution in all the time steps of a block. (For simplicity we assume
that K divides T.) Consider an Ry external regret minimization procedure FIB (over
K time steps), which at the end of block i updates the distribution using the average
loss vector, i.e., c™ = Y, 5. £'/|B7|. Let CK = "X ¢ and CK,, = min; CK. Since
FIB has external regret at most Ry, this implies that the loss of FIB, over the loss
sequence c7, is at most CK, + Rg. Since in every block B” the procedure FIB uses a
single distribution p°, its loss on the entire loss sequence is:

K T & T
LIZIB = Zzpf.ﬁt = Epr.cT < E[Crlrfm-i_RK]
t=1teB" =1

At this point it is worth noting that if Rx = O(/K log N) the overall regret is
O((T/~K)/Tog N), which is minimized at K = T, namely by having each block

3 This reduction does not produce the best-known bounds for the partial information model (see, e.g., Auer et al.,
2002 for better bounds) but is particularly simple and generic.

THE PARTIAL INFORMATION MODEL 95

be a single time step. However, we will have an additional loss associated with each
block (due to the sampling) which will cause the optimization to require that K < T.

The next step in developing the partial information procedure MAB is to use loss
vectors that are not the “true average” but whose expectation is the same. More formally,
the feedback to the full information procedure FIB will be a random variable vector
¢* such that for any action i we have E[¢]] = ¢]. Similarly, let C‘iK = Zf:l ¢} and
C’Ifin = min; C lK . (Intuitively, we will generate the vector ¢* using sampling within a

block.) This implies that for any block B* and any distribution p® we have

N N

1 R

YH Z piol = ptoct = prcf = pr[cf] 4.2)
teB" i=1 i=1

That is, the loss of p® in BT is equal to its expected loss with respect to ¢*.

The full information procedure FIB observes the losses ¢*, for 7 € {1,..., K}.
However, since ¢* are random variables, the distribution p* is also a random variable
that depends on the previous losses, i.e., ¢!, ..., 7!, Still, with respect to any sequence
of losses ¢*, we have that

K

~K T AT ~ K

Cerp = § iP ¢ = Chyin + Ri
=1

Since E[CX] = CK, this implies that

E[Cfs] = E[Coin] + Rk < Cpyin + Ry,
where we used the fact that E[min; C‘iK] < min; E[C lK] and the expectation is over the
choices of ¢*.

Note that for any sequence of losses ¢!, ..., ¢K, both FIB and MAB will use the
same sequence of distributions p!, ..., pX. From (4.2) we have that in any block B?
the expected loss of FIB and the loss of MAB are the same, assuming they both use the
same distribution p*. This implies that

E[Cfs] = E[CXs].

We now need to show how to derive random variables ¢ with the desired property.
This will be done by choosing randomly, for each action i and block B*, an exploration
time #; € B*. (These do not need to be independent over the different actions, so can
easily be done without collisions.) At time #; the procedure MAB will play action i (i.e.,
the probability vector with all probability mass on). This implies that the feedback that
it receives will be E;f , and we will then set ¢} to be Elt.". This guarantees that E[¢]] = c].

So far we have ignored the loss in the exploration steps. Since the maximum loss is
1, and there are N exploration steps in each of the K blocks, the total loss in all the
exploration steps is at most N K. Therefore we have

E[Lys] = NK + (T/K)E[Cyys]
< NK +(T/K)[CX,, + Rk]

min
=Ll +NK +(T/K)Rk.

96 LEARNING, REGRET MINIMIZATION, AND EQUILIBRIA

By Theorem 4.6, there are external regret procedures that have regret Ry =
O(J/KIogN). By setting K = (T/N)*3, for T > N, we have the following
theorem.

Theorem 4.17 Given an O(/K log N) external regret procedure FIB (for K
time steps), there is a partial information procedure MAB that guarantees

Llg < LI + O**N'3logN),

min

where T > N.

4.7 On Convergence of Regret-Minimizing Strategies to Nash
Equilibrium in Routing Games

As mentioned earlier, one natural setting for regret-minimizing algorithms is online
routing. For example, a person could use such algorithms to select which of N available
routes to use to drive to work each morning in such a way that his performance will
be nearly as good as the best fixed route in hindsight, even if traffic changes arbitrarily
from day to day. In fact, even though in a graph G, the number of paths N between
two nodes may be exponential in the size of G, there are a number of external-regret
minimizing algorithms whose running time and regret bounds are polynomial in the
graph size. Moreover, a number of extensions have shown how these algorithms can be
applied even to the partial-information setting where only the cost of the path traversed
is revealed to the algorithm.

In this section we consider the game-theoretic properties of such algorithms in the
Wardrop model of traffic flow. In this model, we have a directed network G = (V, E),
and one unit flow of traffic (a large population of infinitesimal users that we view as
having one unit of volume) wanting to travel between two distinguished nodes vgar
and vepg. (For simplicity, we are considering just the single-commodity version of the
model.) We assume each edge e has a cost given by a latency function £, that is some
nondecreasing function of the amount of traffic flowing on edge e. In other words, the
time to traverse each edge e is a function of the amount of congestion on that edge. In
particular, given some flow f, where we use f, to denote the amount of flow on a given
edge e, the cost of some path P is) _,_p £.(f,) and the average travel time of all users
in the population can be written as) ,_, €.(f.) f.. A flow f is at Nash equilibrium if
all flow-carrying paths P from vgg tO venq are minimum-latency paths given the flow
I

Chapter 18 considers this model in much more detail, analyzing the relationship
between latencies in Nash equilibrium flows and those in globally optimum flows
(flows that minimize the total travel time averaged over all users). In this section we
describe results showing that if the users in such a setting are adapting their paths
from day to day using external-regret minimizing algorithms (or even if they just
happen to experience low-regret, regardless of the specific algorithms used) then flow
will approach Nash equilibrium. Note that a Nash equilibrium is precisely a set of
static strategies that are all no-regret with respect to each other, so such a result seems
natural; however, there are many simple games for which regret-minimizing algorithms

ON CONVERGENCE OF REGRET-MINIMIZING STRATEGIES 97

do not approach Nash equilibrium and can even perform much worse than any Nash
equilibrium.

Specifically, one can show that if each user has regret o(T'), or even if just the average
regret (averaged over the users) is o(T), then flow approaches Nash equilibrium in the
sense that a 1 — € fraction of days ¢ have the property that a 1 — € fraction of the
users that day experience travel time at most € larger than the best path for that day,
where € approaches O at a rate that depends polynomially on the size of the graph,
the regret-bounds of the algorithms, and the maximum slope of any latency function.
Note that this is a somewhat nonstandard notion of convergence to equilibrium: usually
for an “e-approximate equilibrium” one requires that all participants have at most €
incentive to deviate. However, since low-regret algorithms are allowed to occasionally
take long paths, and in fact algorithms in the MAB model must occasionally explore
paths they have not tried in a long time (to avoid regret if the paths have become much
better in the meantime), the multiple levels of hedging are actually necessary for a
result of this kind.

In this section we present just a special case of this result. Let P denote the set of
all simple paths from vy t0 veng and let f7 denote the flow on day ¢. Let C(f) =
Y ek Le(fe) fe denote the cost of a flow f. Note that C(f) is a weighted average of
costs of paths in P and in fact is equal to the average cost of all users in the flow f.
Define a flow f to be e-Nash if C(f) < € + minpep), p L(fe); that is, the average
incentive to deviate over all users is at most €. Let R(T) denote the average regret
(averaged over users) up through day T, so

R(T) = ZZZ —mmZZE

t=1 ecE t=1 ecP

Finally, let T, denote the number of time steps T needed so that R(T) < €T for all
T > T. For example the RWM and PW algorithms discussed in Section 4.3 achieve
T, = 0(}2 log N) if we set n = €/2. Then we will show the following.

Theorem 4.18 Suppose the latency functions £, are linear. Then for T > T,
the average flow j‘ = %(f1 + .-+ fT)is e-Nash.

PROOF From the linearity of the latency functions, we have for all e, Ee(ﬂ) =
% Zthl L.(f!). Since £.(f]) f! is a convex function of the flow, this implies

N A
tef e = 7 3 te(£)
=1

Summing over all e, we have

N
cms—Zaﬁ

<e+ mm — Z Z E (by definition of T,)

t=1 ecP
=€+ ml}n Z £.(fe). (by linearity)

ecP

98 LEARNING, REGRET MINIMIZATION, AND EQUILIBRIA

This result shows the time-average flow is an approximate Nash equilibrium. This can
then be used to prove that most of the f must in fact be approximate Nash. The key idea
here is that if the cost of any edge were to fluctuate wildly over time, then that would
imply that most of the users of that edge experienced latency substantially greater than
the edge’s average cost (because more users are using the edge when it is congested
than when it is not congested), which in turn implies they experience substantial regret.
These arguments can then be carried over to the case of general (nonlinear) latency
functions.

4.7.1 Current Research Directions

In this section we sketch some current research directions with respect to regret mini-
mization.

Refined regret bounds: The regret bounds that we presented depend on the number of
time steps 7', and are independent of the performance of the best action. Such bounds
are also called zero-order bounds. More refined first-order bounds depend on the loss
of the best action, and second-order bounds depend on the sum of squares of the losses
(such as Q7 in Theorem 4.6). An interesting open problem is to get an external regret
that is proportional to the empirical variance of the best action. Another challenge is
to reduce the prior information needed by the regret minimization algorithm. Ideally,
it should be able to learn and adapt to parameters such as the maximum and minimum
loss. See Cesa-Bianchi et al. (2005) for a detailed discussion of those issues.

Large actions spaces: In this chapter we assumed the number of actions N is small
enough to be able to list them all, and our algorithms work in time proportional to N.
However, in many settings N is exponential in the natural parameters of the problem.
For example, the N actions might be all simple paths between two nodes s and ¢ in
an n-node graph, or all binary search trees on {1, ..., n}. Since the full information
external regret bounds are only logarithmic in N, from the point of view of information,
we can derive polynomial regret bounds. The challenge is whether in such settings we
can produce computationally efficient algorithms.

There have recently been several results able to handle broad classes of problems
of this type. Kalai and Vempala (2003) give an efficient algorithm for any problem
in which (a) the set X of actions can be viewed as a subset of R", (b) the loss
vectors £ are linear functions over R" (so the loss of action x is £ - x), and (c) we
can efficiently solve the offline optimization problem argmin,s[x - £] for any given
loss vector £. For instance, this setting can model the path and search-tree examples
above.* Zinkevich (2003) extends this to convex loss functions with a projection oracle,
and there is substantial interest in trying to broaden the class of settings that efficient
regret-minimization algorithms can be applied to.

4 The case of search trees has the additional issue that there is a rotation cost associated with using a different
action (tree) at time ¢ + 1 than that used at time ¢. This is addressed in Kalai and Vempala (2003) as well.

BIBLIOGRAPHY 99

Dynamics: It is also very interesting to analyze the dynamics of regret minimization
algorithms. The classical example is that of swap regret: when all the players play
swap regret-minimization algorithms, the empirical distribution converges to the set
of correlated equilibria (Section 4.4). We also saw convergence in two-player zero-
sum games to the minimax value of the game (Section 4.4), and convergence to
Nash equilibrium in a Wardrop-model routing game (Section 4.7). Further results on
convergence to equilibria in other settings would be of substantial interest. At a high
level, understanding the dynamics of regret-minimization algorithms would allow us
to better understand the strengths and weaknesses of using such procedures. For more
information on learning in games, see the book by Fudenberg and Levine (1998).

4.8 Notes

Hannan (1957) was the first to develop algorithms with external regret sublinear in
T. Later, motivated by machine learning settings in which N can be quite large,
algorithms that furthermore have only a logarithmic dependence on N were developed
by Littlestone and Warmuth (1994), and extended by a number of researchers (Cesa-
Bianchi et al., 1997; Freund and Schapire, 1997, 1999). In particular, the Randomized
Weighted Majority algorithm and Theorem 4.5 are from Littlestone and Warmuth
(1994) and the Polynomial Weights algorithm and Theorem 4.6 is from Cesa-Bianchi
et al. (2005). Computationally efficient algorithms for generic frameworks that model
many settings in which N may be exponential in the natural problem description (such
as considering all s-¢ paths in a graph or all binary search trees on n elements) were
developed in Kalai and Vempala (2000) and Zinkevich (2003).

The notion of internal regret and its connection to correlated equilibrium appear in
Foster and Vohra (1998) and Hart and Mas-Colell (2000) and more general modification
rules were considered in Lehrer (2003). A number of specific low internal regret
algorithms were developed by a number of researcher (Blum and Mansour, 2005;
Cesa-Bianchi and Lugosi, 2003; Foster and Vohra, 1997, 1998, 1999; Hart and Mas-
Colell, 2003; Stoltz and Lugosi, 2005). The reduction in Section 4.5 from external to
swap regret is from Blum and Mansour (2005).

Algorithms with strong external regret bounds for the partial information model are
given in Auer et al. (2002) , and algorithms with low internal regret appear in Blum and
Mansour (2005) and Cesa-Bianchi et al. (2006). The reduction from full information
to partial information in Section 4.6 is in the spirit of algorithms of Awerbuch and
Mansour (2003) and Awerbuch and Kleinberg (2004). Extensions of the algorithm of
Kalai and Vempala (2003) to the partial information setting appear in Awerbuch and
Kleinberg (2004), Dani and Hayes (2006) and McMahan and Blum (2004). The results
in Section 4.7 on approaching Nash equilibria in routing games are from Blum et al.
(20006).

Bibliography

P. Auer, N. Cesa-Bianchi, Y. Freund, and R.E. Schapire. The nonstochastic multiarmed bandit prob-
lem. SIAM J. Comp., 32(1):48-77, 2002.

100 LEARNING, REGRET MINIMIZATION, AND EQUILIBRIA

B. Awerbuch and R.D. Kleinberg. Adaptive routing with end-to-end feedback: Distributed learning
and geometric approaches. In Symp. on Theory of Computing, pp. 45-53, 2004.

B. Awerbuch and Y. Mansour. Adapting to a reliable network path. In PODC, pp. 360-367, 2003.

A. Blum, E. Even-Dar, and K. Ligett. Routing without regret: On convergence to nash equilibria of
regret-minimizing algorithms in routing games. In Princ. Distributed Comp., 2006.

A. Blum and Y. Mansour. From external to internal regret. In Conf. on Learning Theory, 2005.

A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge University
Press, 1998.

N. Cesa-Bianchi, Y. Freund, D.P. Helmbold, D. Haussler, R.E. Schapire, and M.K. Warmuth. How to
use expert advice. J. ACM, 44(3):427-485, 1997.

N. Cesa-Bianchi and G. Lugosi. Potential-based algorithms in on-line prediction and game theory.
Mach. Learn., 51(3):239-261, 2003.

N. Cesa-Bianchi and G. Lugosi. Prediction, Learning and Games. Cambridge University Press, 2006.

N. Cesa-Bianchi, G. Lugosi, and G. Stoltz. Regret minimization under partial monitoring. Math. of
O.R. (to appear), 2006.

N. Cesa-Bianchi, Y. Mansour, and G. Stoltz. Improved second-order bounds for prediction with expert
advice. In Conf. on Learning Theory, 2005.

V. Dani and T.P. Hayes. Robbing the bandit: Less regret in online geometric optimization against an
adaptive adversary. In Symp. on Descrete Algorithms, pp. 937-943, 2006.

D. Foster and R. Vohra. Calibrated learning and correlated equilibrium. Games Econ. Behav., 21:40—
55, 1997.

D. Foster and R. Vohra. Asymptotic calibration. Biometrika, 85:379-390, 1998.

D. Foster and R. Vohra. Regret in the on-line decision problem. Games Econ. Behav.,29:7-36, 1999.

Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-line learning and an application
to boosting. J. Comp. System Sci., 55(1):119-139, 1997.

Y. Freund and R.E. Schapire. Adaptive game playing using multiplicative weights. Games Econ.
Behav., 29:79-103, 1999.

D. Fudenberg and D.K. Levine. The Theory of Learning in Games. MIT Press, 1998.

J. Hannan. Approximation to bayes risk in repeated plays. In M. Dresher, A. Tucker, and P. Wolfe,
editors, Contributions to the Theory of Games, 3:97—-139, Princeton University Press, 1957.

S. Hart and A. Mas-Colell. A simple adaptive procedure leading to correlated equilibrium. Econo-
metrica, 68:1127-1150, 2000.

A. Kalai and S. Vempala. Efficient algorithms for online decision problems. In Conf. on Learning
Theory, pp. 26-40, 2003.

E. Lehrer. A wide range no-regret theorem. Games Econ. Behav., 42:101-115, 2003.

N. Littlestone and M.K. Warmuth. The weighted majority algorithm. Informat. Comput., 108:212—
261, 1994.

H.B. McMahan and A. Blum. Online geometric optimization in the bandit setting against an adaptive
adversary. In Proc. 17th Annual Conference on Learning Theory, pp. 109—123, 2004.

G. Stoltz and G. Lugosi. Internal regret in on-line portfolio selection. Mach. Learn. J., 59:125-159,
2005.

G. Owen. Game Theory. Academic Press, 1982.

D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging rules. Comm. ACM,
28:202-208, 1985.

M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In Proc. Intl.
Conf. Machine Learning, 928-936, 2003.

EXERCISES 101

Exercises

4.1
4.2

4.3

4.4

4.5
4.6

4.7
4.8

Show that swap regret is at most N times larger than internal regret.

Show an example (even with N = 3) where the ratio between the external and swap
regret is unbounded.

Show that the RwM algorithm with update rule w! = w'='(1 —)% achieves the same
external regret bound as given in Theorem 4.6 for the PW algorithm, for losses in
[0, 1].

Consider a setting where the payoffs are in the range [—1, 411, and the goal of the
algorithm is to maximize its payoff. Derive a modified Pw algorithm whose external
regret is O(,/QL,, log N + log N), where QI > Q] for k € X;.

Show a Q(,/T log N) lower bound on external regret, for the case that T > N.
Improve the swap regret bound to O(,/NT log N). Hint: Use the observation that
the sum of the losses of all the A; is bounded by T.

(Open Problem) Does there exist an Q(,/T N log N) lower bound for swap regret?

Show that if a player plays algorithm RWM (or PW) then it gives e-dominated actions
small weight. Also, show that there are cases in which the external regret of a player
can be small, yet it gives e-dominated actions high weight.

CHAPTER 5

Combinatorial Algorithms
for Market Equilibria

Vijay V. Vazirani

Abstract

Combinatorial polynomial time algorithms are presented for finding equilibrium prices and allocations
for the linear utilities case of the Fisher and Arrow—Debreu models using the primal-dual schema and
an auction-based approach, respectively. An intersting feature of the first algorithm is that it finds an
optimal solution to a nonlinear convex program, the Eisenberg-Gale program.

Resource allocation markets in Kelly’s model are also discussed and a strongly polynomial
combinatorial algorithm is presented for one of them.

5.1 Introduction

Thinkers and philosophers have pondered over the notions of markets and money
through the ages. The credit for initiating formal mathematical modeling and study
of these notions is generally attributed to nineteenth-century economist Leon Walras
(1874). The fact that Western economies are capitalistic had a lot to do with the over-
whelming importance given to this study within mathematical economics — essentially,
our most critical decision-making is relegated to pricing mechanisms. They largely de-
termine the relative prices of goods and services, ensure that the economy is efficient,
in that goods and services are made available to entities that produce items that are
most in demand, and ensure a stable operation of the economy.

A central tenet in pricing mechanisms is that prices be such that demand equals
supply; that is, the economy should operate at equilibrium. It is not surprising therefore
that perhaps the most celebrated theorem within general equilibrium theory, the Arrow—
Debreu Theorem, establishes precisely the existence of such prices under a very general
model of the economy. The First Welfare Theorem, which shows Pareto optimality of
allocations obtained at equilibrium prices, provides important social justification for
this theory.

Although general equilibrium theory enjoyed the status of crown jewel within math-
ematical economics, it suffers from a serious shortcoming — other than a few isolated
results, some of which were real gems, e.g., Eisenberg and Gale (1959) and Scarf

103

104 COMBINATORIAL ALGORITHMS FOR MARKET EQUILIBRIA

(1973), it was essentially a nonalgorithmic theory. With the emergence of new markets
on the Internet, which already form an important part of today’s economy and are pro-
jected to grow considerably in the future, and the availability of massive computational
power for running these markets in a distributed or centralized manner, the need for
developing an algorithmic theory of markets and market equilibria is apparent. Such
algorithms can also provide a valuable tool for understanding the repercussions of
technological advances, new goods or changes to the tax structure on existing prices,
production, and consumption.

A good beginning has been made over the last 5 years within algorithmic game
theory, starting with the work of Deng et al. (2002). However, considering the fact that
markets were an active area of study for over a century within mathematical economics,
it is safe to say that we have only scratched the surface of what should be a rich theory.

Irving Fisher (see Brainard and Scarf, 2000) and Walras (1874) gave two fundamen-
tal market models that were studied extensively within mathematical economics. The
latter model is also called the exchange model or the Arrow—Debreu model (Arrow and
Debreu, 1954). In this chapter we will present combinatorial algorithms for both these
models for the case of linear utility functions. A second approach that has emerged for
computing equilibria for these models is the efficient solution of convex programs, since
equilibrium alloctions for both these models can be captured via convex programs; see
Chapter 6 for this approach.

Two techniques have been primarily used for obtaining combinatorial algorithms
for these models — the primal-dual schema (Devanur et al. 2002) and an auction-based
approach (Garg and Kapoor, 2004). We will present algorithms for the Fisher and
Arrow—Debreu models, using the first and second techniques, respectively.

An interesting aspect of the first algorithm was the extension of the primal-dual
schema from its usual setting of combinatorially solving, either exactly or ap-
proximately, linear programs, to exactly solving a nonlinear convex program (see
Section 5.5). The latter program, due to Eisenberg and Gale (1959), captures
equilibrium allocations for the linear case of Fisher’s model. Unlike complementary
slackness conditions for linear programs, which involve either primal or dual variables,
but not both, KKT conditions for a nonlinear convex program simultaneously involve
both types of variables. The repercussions of this are apparent in the way the algorithm
is structured.

In a different context, that of modeling and understanding TCP congestion control,’
Kelly (1997) defined a class of resource allocation markets and gave a convex pro-
gram that captures equilibrium allocations for his model. Interestingly enough, Kelly’s
program has the same structure as the Eisenberg—Gale program (see also Chapter 22).

! In particular, Kelly’s object was to explain the unprecedented success of TCP, and its congestion avoidance
protocol due to Jacobson (1988), which played a crucial role in the phenomenal growth of the Internet and the
deployment of a myriad of diverse applications on it. Fairness is a key property desired of a congestion avoidance
protocol and Jacobson’s protocol does seem to ensure fairness. Recent results show that if Jacobson’s protocol
is run on the end-nodes and the Floyd—Jacobson protocol (Floyd and Jacobson, 1993) is run at buffer queues,
in the limit, traffic flows converge to an optimal solution of Kelly’s convex program, i.e., they are equilibrium
allocations, see Low and Lapsley (1999). Furthermore, Kelly used his convex programming formulation to
prove that equilibrium allocations in his model satisfy proportional fairness (see Section 5.13), thereby giving
a formal ratification of Jacobson’s protocol.

FISHER’S LINEAR CASE AND THE EISENBERG—GALE CONVEX PROGRAM 105

The flow market is of special significance within this framework. It consists of a
network, with link capacities specified, and source — sink pairs of nodes, each with an
initial endowment of money; allocations in this market are flows from each source to
the corresponding sink. The problem is to find equilibrium flows and prices of edges
(in the context of TCP, the latter can be viewed as drop rates at links).

Kelly’s model attracted much theoretical study, partly with a view to designing
next-generation protocols. Continuous time algorithms (though not having polynomial
running time), for finding equilibrium flows in the flow market, were given by Kelly
et al. (1998) (see also Wang et al., 2005, for more recent work along these lines). Soon
after the appearance of Devanur et al. (2002), Kelly and Vazirani (2002) observed that
Kelly’s model esentially generalizes Fisher’s linear case and stated, “Continuous time
algorithms similar to TCP are known, but insights from discrete algorithms may be
provocative.”

With a view to answering this question, a systematic study of markets whose equilib-
ria are captured by Eisenberg-Gale-type programs was undertaken by Jain and Vazirani
(2006). In Section 5.14 we present, from this paper, a strongly polynomial algorithm
for the special case of the flow market when there is one source and multiple sinks.

5.2 Fisher’s Linear Case and the Eisenberg—Gale
Convex Program

Fisher’s linear case? is the following. Consider a market consisting of a set B of buyers
and a set A of divisible goods. Assume |A| = n and |B| = n’. We are given for each
buyer i the amount ¢; of money she possesses and for each good j the amount b; of
this good. In addition, we are given the utility functions of the buyers. Our critical
assumption is that these functions are linear. Let u;; denote the utility derived by i on
obtaining a unit amount of good j. Thus if the buyer i is given x;; units of good j, for
1 < j < n, then the happiness she derives is

n
E uijxij.
j=1

Prices py, ..., p, of the goods are said to be market clearing prices if, after each buyer
is assigned an optimal basket of goods relative to these prices, there is no surplus or
deficiency of any of the goods. Our problem is to compute such prices in polynomial
time.

First observe that w.l.o.g. we may assume that each b; is unit — by scaling the u;;’s
appropriately. The u;;’s and e;’s are in general rational; by scaling appropriately, they
may be assumed to be integral. We will make the mild assumption that each good has
a potential buyer; i.e., a buyer who derives nonzero utility from this good. Under this
assumption, market clearing prices do exist.

It turns out that equilibrium allocations for Fisher’s linear case are captured as op-
timal solutions to a remarkable convex program, the Eisenberg—Gale convex program.

2 See Section 5.13 for a special case of this market and a simple polynomial time algorithm for it.

106 COMBINATORIAL ALGORITHMS FOR MARKET EQUILIBRIA

Before stating the program, it will be instructive to list considerations that would be
useful in deriving such a program.

Clearly, a convex program whose optimal solution is an equilibrium allocation must
have as constraints the packing constraints on the x;;’s. Furthermore, its objective
function, which attempts to maximize utilities derived, should satisfy the following:

¢ If the utilities of any buyer are scaled by a constant, the optimal allocation remains
unchanged.

¢ [f the money of a buyer b is split among two new buyers whose utility functions are the
same as that of b then sum of the optimal allocations of the new buyers should be an
optimal allocation for b.

The money weighted geometric mean of buyers’ utilities satisfies both these

conditions:
/3 e
max <1_[u;’) .

ieA

Clearly, the following objective function is equivalent:
max l_[u;'.

Its log is used in the Eisenberg—Gale convex program:

n
maximize E e logu;

i=1
n
subjectto u; = u;ix;; YieB
! Z Y (5.1)
j=1
inj <1 VjieA
i=1
X,‘jZO ViEB,VjEA
where x;; is the amount of good j allocated to buyer i. Interpret Lagrangian variables,
say p;’s, corresponding to the second set of conditions as prices of goods. By the

Karush, Kuhn, Tucker (KKT) conditions, optimal solutions to x;;’s and p;’s must
satisfy the following:

Q) YjeA: p;=>0.
(i) VjeA: p;>0= >, x;=1

(ili) Vi e B,YjeA: p— < -Z.feAe?f.f_’“f.
’ ,
(iv) VieBVjeAix; >0 =" = Tt
’ ,

From these conditions, one can derive that an optimal solution to convex program (5.1)
must satisfy the market clearing conditions.

The Eisenberg and Gale program also helps prove, in a very simple manner, the
following basic properties of equilibria for the linear case of Fisher’s model.

FISHER’S LINEAR CASE AND THE EISENBERG—GALE CONVEX PROGRAM 107

Theorem 5.1 For the linear case of Fisher's model:

e [feach good has a potential buyer, equilibrium exists.

o The set of equilibrium allocations is convex.

* Equilibrium utilities and prices are unique.

* Ifall u;j’s and e;’s are rational, then equilibrium allocations and prices are also

rational. Moreover, they can be written using polynomially many bits in the length
of the instance.

PROOF Corresponding to good j there is a buyer i such that u;; > 0. By the
third KKT condition,

el-u,-j

Pz
D UijXij

Now, by the second KKT condition,) ,_, x;; = 1. Hence, prices of all goods are
positive and all goods are fully sold.

The third and fourth conditions imply that if buyer i gets good j then j must
be among the goods that give buyer i maximum utility per unit money spent at
current prices. Hence each buyer gets only a bundle consisting of her most desired
goods, i.e., an optimal bundle.

The fourth condition is equivalent to

> 0.

€illijXij

VieBVjeA: —atutii
D jea ijXij

= PjXij-
Summing over all j gives

. €) WijXij

VieB: —:E PjXij.

o
DjeattijXij S

This implies

Vi € B : e,~=ijx,~j.
J

Hence the money of each buyer is fully spent. This completes the proof that
market equilibrium exists.

Since each equilibrium allocation is an optimal solution to the Eisenberg-Gale
convex program, the set of equilibrium allocations must form a convex set.

Since log is a strictly concave function, if there is more than one equilibrium,
the utility derived by each buyer must be the same in all equilibria. This fact,
together with the fourth condition, gives that the equilibrium prices are unique.

Finally, we prove the fourth claim by showing that equilibrium allocations
and prices are solutions to a system of linear equations. Let g; = 1/p; be a new
variable corresponding to each good j and let k be the number of nonzero x;;’s in
an equilibrium allocation. The system will consist of k + [equations over k + [
unknowns, the latter being the n g ;’s and the k the nonzero x;;’s. The equations are
corresponding to each good j, the equality given by the second KKT condition,

108 COMBINATORIAL ALGORITHMS FOR MARKET EQUILIBRIA

and corresponding to each nonzero x;;, the equality given by the fourth KKT
condition. O

5.3 Checking If Given Prices Are Equilibrium Prices

Let p=(p1,..., pn) denote a vector of prices. Let us first devise an algorithm for
answering the following question: Is p the equilibrium price vector, and if so, find
equilibrium allocations for the buyers.

Atprices p, buyer i derives u;; / p; amount of utility per unit money spent on good ;.
Clearly, she will be happiest with goods that maximize this ratio. Define her bang per
buck to be o; = max;{u;;/p;}. For each i € B, j € A, a; > u;;/p;, with equality
holding only if j is i’s bang per buck good. If there are several goods maximizing
this ratio, she is equally happy with any combination of these goods. This motivates
defining the following bipartite graph, G. Its bipartition is (A, B) and fori € B, j € A,
(i, j)isanedge in G iff &; = u;;/p;. We will call this graph the equality subgraph and
its edges the equality edges.

5.3.1 The Network N(p)

Any goods sold along the edges of the equality subgraph will make buyers happiest,
relative to prices p. Computing the largest amount of goods that can be sold in this
manner, without exceeding the budgets of buyers or the amount of goods available
(assumed unit for each good), can be accomplished by computing max-flow in the
following network (see Figure 5.1). Direct edges of G from A to B and assign a
capacity of infinity to all these edges. Introduce source vertex s and a directed edge
from s to each vertex j € A with a capacity of p;. Introduce sink vertex t and a directed
edge from each vertex i € B to ¢ with a capacity of e;. The network is clearly a function
of the prices p and will be denoted by N(p).

A: goods B: buyers

P m

4 T 3
infinite capacity edges

Figure 5.1. The network N(p).

THE PRIMAL-DUAL SCHEMA IN THE ENHANCED SETTING 109

Corresponding to a feasible flow f in network N(p), let us define the allocation of
goods to the buyers to be the following. If edge (j, i) from good j to buyer i carries
flow f(j, i), then buyer i receives f(j,i)/p; units of good j.

The question posed above can be answered via one max-flow computation, as
asserted in the following lemma. Its proof is straightforward and is omitted.

Lemma 5.2 Prices p are equilibrium prices iff in the network N (p) the two cuts
(s, AUBUt)and (s UAU B, t) are min-cuts. If so, allocations corresponding
to any max-flow in N are equilibrium allocations.

5.4 Two Crucial Ingredients of the Algorithm

The algorithm starts with very low prices that are guaranteed to be below the equilibrium
prices for each good. The algorithm always works on the network N (p) w.r.t. the current
prices p. W.r.t. the starting prices, buyers have surplus money left. The algorithm raises
prices iteratively and reduces the surplus. When the surplus vanishes, it terminates;
these prices are equilibrium prices.

This algorithmic outline immediately raises two questions:

* How do we ensure that the equilibrium price of no good is exceeded?
* How do we ensure that the surplus money of buyers reduces fast enough that the
algorithm terminates in polynomial time?

The answers to these two questions lead to two crucial ingredients of the algorithm:
tight sets and balanced flows.

5.5 The Primal-Dual Schema in the Enhanced Setting

We will use the notation setup in the previous sections to describe at a high level the
new difficulties presented by the enhanced setting of convex programs and the manner
in which the primal-dual schema is modified to obtain a combinatorial algorithm for
solving the Eisenberg—Gale convex program.

The fundamental difference between complementary slackness conditions for linear
programs and KKT conditions for nonlinear convex programs is that whereas the
former do not involve both primal and dual variables simultaneously in an equality
constraint (obtained by assuming that one of the variables takes a nonzero value), the
latter do.

As described in the previous section, the algorithm will start with very low prices and
keep increasing them greedily, i.e., the dual growth process is greedy. Indeed, all known
primal-dual algorithms use a greedy dual growth process — with one exception, namely
Edmonds’ algorithm for maximum weight matching in general graphs (Edmonds,
1965).

Now, the disadvantage of a greedy dual growth process is obvious — the fact that a
raised dual is “bad,” in the sense that it “obstructs’ other duals that could have led to a
larger overall dual solution, may become clear only later in the run of the algorithm. In

110 COMBINATORIAL ALGORITHMS FOR MARKET EQUILIBRIA

view of this, the issue of using more sophisticated dual growth processes has received
a lot of attention, especially in the context of approximation algorithms. The problem
with such a process is that it will make primal objects go tight and loose and the
number of such reversals will have to be upper bounded in the running time analysis.
The impeccable combinatorial structure of matching supports such an accounting and
in fact this leads to a strongly polynomial algorithm. However, thus far, all attempts at
making such a scheme work out for other problems have failed.

In our case, even though the dual growth process is greedy, because of the more
complex nature of KKT conditions, edges in the equality subgraph appear and disappear
as the algorithm proceeds. Hence, we are forced to carry out the difficult accounting
process alluded to above for bounding the running time.

We next point out which KKT conditions the algorithm enforces and which ones
it relaxes, as well as the exact mechanism by which it satisfies the latter. Throughout
the algorithm, we enforce the first two conditions listed in Section 5.2. As mentioned
in Section 5.4, at any point in the algorithm, via a max-flow in the network N(p), all
goods can be sold; however, buyers may have surplus money left over. W.r.t. a balanced
flow in network N(p) (see Section 5.7 for a definition of such a flow), let m; be the
money spent by buyer i. Thus, buyer i’s surplus money is y; = e; — m;. We will relax
the third and fourth KKT conditions to the following:

. . Wij D jea WijXij
« VieBVjeA: U o =AU
Pj m;
Wij D jeaUijXij

o ViEB,VjGA:xij>O = — =
pPj m;

Consider the following potential function:
S=yi+yi+-+rm

We will give a process by which this potential function decreases by an inverse poly-
nomial fraction in polynomial time (in each phase, as detailed in Lemma 5.21). When
@ drops all the way to zero, all KKT conditions are exactly satisfied.

Finally, there is a marked difference between the way this algorithm will satisfy
KKT conditions and the way primal-dual algorithms for LP’s do. The latter satisfy
complementary conditions in discrete steps, i.e., in each iteration, the algorithm sat-
isfies at least one new condition. So, if each iteration can be implemented in strongly
polynomial time, the entire algorithm has a similar running time. On the other hand,
the algorithm for Fisher’s linear case satisfies KKT conditions continuously — as the
algorithm proceeds, the KKT conditions corresponding to each buyer get satisfied to a
greater extent.

Observe that at the start of the algorithm, the value of ¢ is a function not just of
the number of buyers and goods but of the length of the input (since it depends on
the money possessed by buyers). Therefore, even though a phase of the algorithm can
be implemented in strongly polynomial time, the running time of the entire algorithm
is polynomial and not strongly polynomial. Indeed, obtaining a strongly polynomial
algorithm for this problem remains a tantalizing open problem (see Section 5.15).

BALANCED FLOWS 111
5.6 Tight Sets and the Invariant

Let p denote the current prices within the run of the algorithm. Foraset S € A of goods,
let p(S) denote the total value of goods in S; this is simply the sum of current prices of
goods in S. For aset T C B of buyers, let m(T) denote the total money possessed by
the buyers in T; i.e., m(T) =),y ;. For § C A, define its neighborhood in N(p),

I'S)={jeB|3i € Swith(i, j) € N(p)}.

Clearly, I'(S) is the set of buyers who are interested in goods in S at current prices.

We will say that S is a tight set if the current value of S exactly equals the money
possessed by buyers who are interested in goods in S; i.e., p(S) = m(I'(S)). Under this
circumstance, increasing prices of goods in S may lead to exceeding the equilibrium
price of some good. Therefore, when a set of goods goes tight, the algorithm freezes
the prices of all goods in S. As described in Section 5.7, when new edges enter the
equality subgraph, the algorithm may unfreeze certain frozen goods and again start
increasing their prices.

A systematic way of ensuring that the equilibrium price of no good is exceeded is
to ensure the following Invariant.

Invariant: The prices p are such that the cut (s, A U B U t) is a min-cut in N(p).

Lemma 5.3 For given prices p, network N(p) satisfies the Invariant iff

VS S A p(S) = m(I'(S)).

PROOF The forward direction is trivial, since under max-flow (of value p(A))
every set S € A must be sending p(S) amount of flow to its neighborhood.

Let us prove the reverse direction. Assume that (s U A; U B, A, U B, Ut)isa
min-cutin N(p), with A}, A» € A and By, B, C B (see Figure 5.2). The capacity
of this cut is p(A;) + m(B;). Now, ['(A) C By, since otherwise the cut will have
infinite capacity. Moving A; and I'(A;) to the ¢ side also results in a cut. By
the condition stated in the Lemma, p(A;) < m(I'(A})). Therefore, the capacity
of this cut is no larger than the previous one and this is also a min-cut in N(p).
Hence the Invariant holds. O

The Invariant ensures that, at current prices, all goods can be sold. The only even-
tuality is that buyers may be left with surplus money. The algorithm raises prices
systematically, thereby decreasing buyers’ surplus money. When (s U A U B, t) is also
a min-cut in N(p), by Lemma 5.2, equilibrium has been attained.

5.7 Balanced Flows

Denote the current network, N(p), by simply N. We will assume that network N
satisfies the Invariant; i.e., (s, A U B U ¢) is a min-cut in N. Given a feasible flow f in
N, let R(f) denote the residual graph w.r.t. f. Define the surplus of buyer i, y;(N, f),
to be the residual capacity of the edge (i,) with respect to flow f in network N,

112 COMBINATORIAL ALGORITHMS FOR MARKET EQUILIBRIA

Ay B

7

o

4, B,
Figure 5.2. Min-cut in N(p). There are no edges from A; to B,.

i.e., ¢; minus the flow sent through the edge (i, t). The surplus vector is defined to be
y(N, f):= 1N,), (N, f),..., va(N,). Let ||v|| denote the I, norm of vector
v. A balanced flow in network N is a flow that minimizes ||y (N, f)]|. A balanced flow
must be a max-flow in N because augmenting a given flow can only lead to a decrease
in the [, norm of the surplus vector.

Lemma 5.4 All balanced flows in N have the same surplus vector.

PROOF It is easy to see that if y; and y, are the surplus vectors w.r.t flows f;
and f>, then (y; + y»)/2 is the surplus vector w.r.t the flow (f; + f>)/2. Since the
set of feasible flows in NV is a convex region, so is the set of all feasible surplus
vectors. Since a balanced flow minimizes a strictly concave function of the surplus
vector, the optimal surplus vector must be unique. O

The following property of balanced flows will be used critically in the algorithm. 3

Property 1: If y (N, f) < y;(N, f) then there is no path from node j to node i
in R(f) —{s, 1}.

Theorem 5.5 A maximum-flow in N is balanced iff it satisfies Property 1.

PROOF Let f beabalanced flow andlety;(N, f) > y;(N, f)forsomei, j € B.
Suppose, for the sake of contradiction, there is a path from j toi in R(f) — {s, t}.

In N, the only edge out of j is the edge (J, ¢). Since the path in R(f) from j to i
must start with a positive capacity edge which is different from edge (j, ¢), by flow
conservation, the capacity of (¢, j) must be positive in R(f). Since y;(N, f) > 0,
the edge (i, #) has a positive capacity in R(f). Now, the edges (¢, j) and (i, t)

3 Unlike the previous sections, in Section 5.7, j will denote a buyer.

BALANCED FLOWS 113

Figure 5.3. The circulation in R(f) if Property 1 does not hold.

concatenated with the path from j to i gives us a cycle with positive residual
capacity in R(f) (see Figure 5.3). Sending a circulation of positive value along
this cycle will result in another max-flow in which the residual capacity of j is
slightly larger and that of i is slightly smaller; i.e., the flow is more balanced. This
contradicts the fact that f is a balanced flow.

To prove the other direction, first observe that the /; norm of the surplus vector
of a max-flow f satisfying Property 1 is locally optimum w.r.t. changes in pairs
of components of the surplus vector. This is so because any circulation in R(f)
can only send flow from a high surplus buyer to a low surplus buyer resulting
in a less balanced flow. Now, since /; norm is a strictly concave function, any
locally optimal solution is also globally optimal. Hence, a max-flow f satisfying
Property 1 must be a balanced flow. O

5.7.1 Finding a Balanced Flow

We will show that the following algorithm, which uses a divide and conquer strategy,
finds a balanced flow in the given network N in polynomial time. As stated above, we
will assume that this network satisfies the Invariant, i.e., (s, A U B Ut) is a min-cut
in N.

Continuously reduce the capacities of all edges that go from B to ¢, other than those
edges whose capacity becomes zero, until the capacity of the cut ({s} U A U B, {t})
becomes the same as the capacity of the cut ({s}, A U B U {t}). Let the resulting network
be N’ and let f’ be a max-flow in N'. Find a maximal s — ¢ min-cut in N’, say (S, T),
withs € Sandt € T.

Case 1: If T = {¢} then find a max-flow in N’ and output it — this will be a balanced
flow in N.

Case 2: Otherwise, let Ny and N, be the subnetworks of N induced by S U {¢}
and T U {s}, respectively. (Observe that N; and N, inherit original capacities from
N and not the reduced capacities from N’.) Let A; and B; be the subsets of A and
B, respectively, induced by N;. Similarly, let A, and B, be the subsets of A and B,
respectively, induced by N,. Recursively find balanced flows, fi and f>, in N; and N,,
respectively. Output the flow f = f; U f, — this will be a balanced flow in N.

114 COMBINATORIAL ALGORITHMS FOR MARKET EQUILIBRIA

Lemma 5.6 f is a max-flow in N.

PROOF In the first case, i.e., T = {t}, the algorithm outputs a max-flow in N’'.
This flow must saturate the cut ({s} U A U B, {t}). However, since the capacity
of this cut in N’ is the same as the capacity of the cut ({s}, A U B U {¢}), by the
Invariant, this is also a max-flow in N.

Next let us consider the second case. Since N; and N, are edge-disjoint net-
works, f = f; U f> will be a feasible flow in N. We will show that f must saturate
all edges from s to A and therefore by the Invariant, it is a max-flow.

Let g be amax-flow in N. Observe that N’, and hence N, cannot have any edges
from A; to B;. Therefore, all flow of g going to A; must flow via B;. Therefore,
the restriction of g to N; saturates all edges from s to A; in N;. Therefore, so
must f; since it is a max-flow in Nj.

Let f/ be a max-flow in N’. Since (S, T') is a min-cut in N’, f’ must saturate
all edges from s to A,. Furthermore, all flow of f’ going to A, must flow via B,
i.e., the restriction of f” to flow going through A, is a feasible flow in N,. Since
Jf» 1s a max-flow in N,, it must also saturate all edges from s to A,. Hence f
saturates all edges from s to A in N, and is therefore a max-flow. O

Lemma 5.7 f is a balanced flow in network N.

PROOF We will show, by induction on the depth of recursion, that the max-flow
output by the algorithm is a balanced flow in N. In the base case, the algorithm
terminates in the first case; i.e., T = {t}, the surplus vector is precisely the amounts
subtracted from capacities of edges from B to ¢ in going from N to N’. Clearly,
this surplus vector makes components as equal as possible, thus minimizing its /,
norm.

Next assume that the algorithm terminates in the second case. By Lemma 5.6, f
is a max-flow; we will show that it satisfies Property 1 and is therefore a balanced
flow. By the induction hypothesis, f; and f, are balanced flows in N; and N,
respectively, and therefore Property 1 cannot be violated in these two networks.

Let R be the residual graph of N w.r.t. flow f; we only need to show that
paths in R that go from one part to the other do not violate Property 1. As already
observed in the proof of Lemma 5.6, there are no edges from A to B, in N, and
therefore there are no residual paths from j € B to i € B,. There may however
be paths going from j € B, toi € B; in R. We will show that for any two nodes
i € Biand j € By, yi(N, f) < y;(N, f), thereby establishing Property 1.

First observe that by the maximality of the min-cut found in N, all nodes in B,
have surplus capacity > 0 w.r.t. flow f” in N’ (all nodes having surplus zero must
be in B}). Therefore, the same amount, say X, was subtracted from the capac ity
of each edge (i, t),i € By, in going from network N to N’. We will show that
¥;(N, f) > X foreachi € B,. A similar proof shows that y;(N, f) < X for each
i € By, thereby establishing Property 1.

Let L be the set of vertices in B, having minimum surplus w.r.t. f. Let K be
the set of vertices in A, that are reachable via an edge from L in R. We claim

THE MAIN ALGORITHM 115

that ['(K') = L, because otherwise, there will be a residual path from i € L to
J € By — L, thereby violating Property 1.

Let c(K) denote the sum of capacities of all edges from s to vertices of K.
Observe that all these edges are saturated in f’ and this flow must leave via
vertices of L. Let E; denote the set of edges going from L to t. Let ¢(L) and
¢/(L) denote the sum of capacities of all edges in Ej in networks N and N’,
respectively. By the argument given above, ¢/(L) > ¢(K).

Since X is subtracted from all edges in E; in going from network N to N’,
¢(L) = (L) + |L|X. The total surplus of the edges in E; w.r.t. flow f is

e(L) — c(K) = (L) + |L|X — c(K) > |L|X.

Finally, since all edges in E;, have the same surplus, each has surplus > X. The
lemma follows. O

Theorem 5.8 The above-stated algorithm computes a balanced flow in network
N using at most n max-flow computations.

PROOF Clearly, the number of goods in the biggest piece drops by at least 1 in
each iteration. Therefore, the depth of recursion is at most n. Next, observe that
N and N, are vertex disjoint, other than s and ¢, and therefore, the time needed
to compute max-flows in them is bounded by the time needed to compute a max-
flow in N. Hence, the total computational overhead is » max-flow computations.
Finally, as shown in Lemma 5.7, the flow output by the algorithm is a balanced
flowin N. O

5.8 The Main Algorithm

First we show how to initialize prices so the Invariant holds. The following two
conditions guarantee this.

¢ The initial prices are low enough prices that each buyer can afford all the goods. Fixing
prices at 1/n suffices, since the goods together cost one unit and all ¢;’s are integral.

¢ Each good j has an interested buyer, i.e., has an edge incident at it in the equality
subgraph. Compute «; for each buyer i at the prices fixed in the previous step and
compute the equality subgraph. If good j has no edge incident, reduce its price to

o)
pj =maxy—- .
i o

If the Invariant holds, it is easy to see that there is a unique maximal tight set S C A.
Clearly, the prices of goods in the tight set cannot be increased without violating the
Invariant. On the other hand, the algorithm can raise prices of all goods in A — S.
However, we do not know any way of bounding the running time of any algorithm
based on such an approach. In fact, it seems that any such algorithm can be forced
to take a large number of steps in which it makes only very small progress toward
decreasing the surplus of the buyers, thereby taking super polynomial time.

116 COMBINATORIAL ALGORITHMS FOR MARKET EQUILIBRIA

Instead, we will show how to use the notion of balanced flow to give a polynomial
time algorithm. The idea is to always raise prices of those goods which are desired by
buyers having a lot of surplus money. Eventually, when a subset of these goods goes
tight, the surplus of some of these buyers vanishes, thus leading to substantial progress.
Property 1 of balanced flows provides us with a powerful condition to ensure that even
as the network N(p) changes because of changes in p, the algorithm can still keep
working with a set of buyers having a large surplus.

The iterative improvement steps follow the spirit of the primal-dual schema: The
“primal” variables are the flows in the edges of N(p) and the “dual” variables are
the current prices. The current flow suggests how to improve the prices and vice
versa.

A run of the algorithm is partitioned into phases, each phase ends with a new set
going tight. Each phase is partitioned into iterations that are defined below.

A phase starts with computation of a balanced flow, say f, in the current network,
N(p). If the algorithm of Section 5.7 for finding a balanced flow terminates in
Case 1, then by Lemma 5.2 the current prices and allocations are equilibrium prices
and allocations and the algorithm halts. Otherwise, let § be the maximum surplus of
buyers w.r.t. f. Initialize to be the set of buyers having surplus §. Let J be the set of
goods that have edges to I in N(p). The network induced by 7 U J is called the active
subgraph.

At this point, we are ready to raise prices of goods in J. However, we would like to
do this in such a way that for each buyer i € I, the set of goods she likes best, which
are all in J, remains unchanged as prices increase. This can be accomplished by raising
prices of goods in J in such a way that the ratio of any two prices remains unchanged.
The rest of the algorithm for a phase is as follows.

Step ¢: Multiply the current prices of all goods in J by variable x, initialize x to 1
and raise x continuously until one of the following two events happens. Observe that
as soon as x > 1, buyers in B — I are no longer interested in goods in J and all such
edges can be dropped from the equality subgraph and N.

e Event 1: If a subset S C J goes tight, the current phase terminates and the algorithm
starts with the next phase.

¢ Event 2: As prices of goods in J keep increasing, goods in A — J become more and
more desirable for buyers in /. If as a result an edge (i, j), withi e I and j € A — J,
enters the equality subgraph (see Figure 5.4). add directed edge (j, i) to network N(p)
and compute a balanced flow, say f, in the current network, N(p). If the balanced
flow algorithm terminates in Case 1, halt and output the current prices and allocations.
Otherwise, let R be the residual graph corresponding to f. Determine the set of all
buyers that have residual paths to buyers in the current set I (clearly, this set will contain
all buyers in 7). Update the new set I to be this set. Update J to be the set of goods that
have edges to I in N(p). Go to Step .

To complete the algorithm, we simply need to compute the smallest values of x at
which Event 1 and Event 2 happen, and consider only the smaller of these. For Event
2, this is straightforward. We give an algorithm for Event 1 in the next section.

FINDING TIGHT SETS 117

A-J B-1

of

active
subgraph

J !

Figure 5.4. If Event 2 happens, edge (j, i) is added to N(p).

5.9 Finding Tight Sets

Let p denote the current price vector (i.e., at x = 1). We first present a lemma that
describes how the min-cut changes in N(x - p) as x increases. Throughout this section,
we will use the function m to denote money w.r.t. prices p. W.L.o.g. assume that w.r.t.
prices p the tight set in G is empty (since we can always restrict attention to the active
subgraph, for the purposes of finding the next tight set). Define

. mT(S)
x*= min ———,
p£scA m(S)
the value of x at which a nonempty set goes tight. Let S* denote the tight set at
prices x* - p. If (s U A; U By, A, U B, Ut) is a cut in the network, we will assume that

A],Az - Aal’ldB],Bz C B.

Lemma 5.9 W..t. prices x - p:
o ifx <x*then (s, AU B Ut)isamin-cut.

* if x > x* then (s, AU B Ut) is not a min-cut. Moreover, if (s UA; U By, A, U
By Ut) is a min-cut in N(x - p) then S* C A;.

PROOF Suppose x < x*. By definition of x*,
VS C A:x-m(S) <m([(9)).

Therefore by Lemma 5.3, w.r.t. prices x - p, the Invariant holds. Hence (s, A U
B Ut) is a min-cut.

Next suppose that x > x*. Since x - m(S*) > x* - m(S*) = m(['(§*)), w.r.t.
prices x - p, the cut (s U S* U I'(8*), 1) has strictly smaller capacity than the cut
(s U AU B, 1). Therefore the latter cannot be a min-cut.

Now consider the min-cut (s UA; U B;, A,UB, Ut). Let S*N A, = S, and
S* — 8, = S;. Suppose S, # @. Clearly I'(S;) € B; (otherwise the cut will have
infinite capacity). If m(I'(S;) N By) < x - m(S3), then by moving S> and I'(S$,) to

118 COMBINATORIAL ALGORITHMS FOR MARKET EQUILIBRIA

the s side of this cut, we can get a smaller cut, contradicting the minimality of the
cut picked. In particular, m(I'(S*) N By) < m(I'(S*)) = x* - m(S*) < x - m(S™).
Therefore S, # S*, and hence, S; # @. Furthermore,

m(T'(S2) N By) > x - m(S2) > x*m(Sy).
On the other hand,
m(I'($2) N By) +m(I'(S1)) < x*(m(S2) + m(S1)).
The two imply that
m(I'(S)))
m(S1)

contradicting the definition of x*. Hence S = Jand S* C A;. O

*
I

Lemma 5.10 Let x = m(B)/m(A) and suppose that x > x*. If (s UA; U
By, Ay U B, Ut) be a min-cut in N(x - p) then Ay must be a proper subset of
A.

PROOF If A = A, then B| = B (otherwise this cut has oo capacity), and (s U
A U B, t)is amin-cut. But for the chosen value of x, this cut has the same capacity
as (s, AU B Ur). Since x > x*, the latter is not a min-cut by Lemma 5.9. Hence,
Aj is a proper subset of A. O

Lemma 5.11 x* and S* can be found using n max-flow computations.

PROOF Letx = m(B)/m(A). Clearly, x > x*. If (s, AU B Ut) is a min-cut in
N(x - p), then by Lemma 5.9, x* = x. If so, §* = A.

Otherwise, let (s U A} U By, A, U B, Ut) be a min-cut in N(x - p). By Lem-
mas 5.9and 5.10, S* € A; C A. Therefore, it is sufficient to recurse on the smaller
graph (A, '(Ay)). O

5.10 Running Time of the Algorithm
LetU = max,-eg,jeA{uij} and let A = nU".

Lemma 5.12 At the termination of a phase, the prices of goods in the newly
tight set must be rational numbers with denominator < A.

PROOF Let S be the newly tight set and consider the equality subgraph induced
on the bipartition (S, I'(S)). Assume w.l.0.g. that this graph is connected (other-
wise we prove the lemma for each connected component of this graph). Let j € S.
Pick a subgraph in which j can reach all other vertices j' € S. Clearly, at most
2|S| < 2n edges suffice. If j reaches j’ with a path of length 2/, then p;; = ap;/b
where a and b are products of [utility parameters (u;;’s) each. Since alternate
edges of this path contribute to @ and b, we can partition the u;;’s in this subgraph

RUNNING TIME OF THE ALGORITHM 119

into two sets such that a and b use u;;’s from distinct sets. These considerations
lead easily to showing that m(S) = p;c/d where ¢ < A. Now,

pj=mI(S)d/c,

hence proving the lemma. O

Lemma 5.13 Consider two phases P and P’, not necessarily consecutive, such
that good j lies in the newly tight sets at the end of P as well as P'. Then the
increase in the price of j, going from P to P',is > 1/A>.

PROOF Let the prices of j at the end of P and P’ be p/q and r/s, respectively.
Clearly, /s > p/q. By Lemma 5.12, g < A and r < A. Therefore the increase
in price of j,

1
> —.
Z 0

v | N
SRS

Within a phase, we will call each occurrence of Events 1 and 2 an iteration.
Lemma 5.14 The total number of iterations in a phase is bounded by n.

PROOF After an iteration due to Event 2, at least one new good must move into
the active subgraph. Since there is at least one good in the active subgraph at the
start of a phase, the total number of iterations in a phase due to Event 2 is at
most n — 1. Finally, the last iteration in each phase is due to Event 1. The lemma
follows. O

Lemma 5.15 If f and f* are respectively a feasible and a balanced flow
in N(p) such that y;(p, f*) = vy;(p, f) =6, for some i € B and § > 0, then
ly (e,)1 < ly(p, HI — 8%

PROOF Suppose we start with f and get anew flow f’ by decreasing the surplus
of i by §, and increasing the surpluses of some other buyers in the process. We
show that this already decreases the /> norm of the surplus vector by 52 and so the
lemma follows.

Consider the flow f* — f. Decompose this flow into flow paths and circula-
tions. Among these, augment f with only those that go through the edge (i, 7), to
get f’. These are either paths that go from s to i to ¢, or circulations that go from
i to t to some i; and back to i. Then y;(f) = y:(f*) = y:(f) — § and for a set
of vertices i, i2, . . ., ix, we have y;,(f") = y;,(f) + 81, 8.t. 81, 82, ..., 8 > O and
Z;‘zl 8; < 8. Moreover, for all [, there is a path from i to i; in R(p, f*). Since f*
is balanced, and satisfies Property 1, y:(f') = y;(f*) = v, (f*) = yi,(f').

By Lemma 5.16, ||y (p, f)I?> < lly(p, f)II*> — 8% and since f* is a balanced
flow in N(p), ly(p, fI2 < lly(p, fHI% O

120 COMBINATORIAL ALGORITHMS FOR MARKET EQUILIBRIA

Lemma5.16 Ifa>b;>0,i=1,2,...,n andSZZ';:ltsj where §,8; >
0,j=1,2,...,n,then

(@, b1, ba, ..., b)I* < (@ +8,by — 81, bs — 82, ..., by — 8,)|1* — 82

PROOF

(@+87 +) (b —8) —a’> =) b =8 +2a (5—2&-) 2 8
i=1

i=1

Let Ny denote the network at the beginning of a phase. Assume that the phase
consists of k iterations, and that N, denotes the network at the end of iteration 7. Let f;
be a balanced flow in N;,0 <t < k.

Lemma 5.17 f; is a feasible flow in N, 1, for 0 <t < k.

PROOF The lemma follows from the fact that each of the two actions, raising
the prices of goods in J or adding an edge as required in Event 2, can only lead
to a network that supports an augmented max-flow. O

Corollary 5.18 ||y (N,)|| is monotonically decreasing with t.

Let §; denote the minimum surplus of a buyer in the active subgraph in network N;,
for 0 <t < k; clearly, §g = $.

Lemma 5.19 [f 6,_1 — &; > O then there exists an i € H such that y;(p,_,) —
vi(p;) = 81— 4.

PROOF Consider the residual network R(p,, f) corresponding to the balanced
flow computed at the end of iteration ¢. By definition of H,, every vertex v €
H, \ H,_; canreachavertexi € H,_; in R(p,, f) and therefore, by Theorem 5.5,
vo(P;) = vi(p,). This means that minimum surplus §, is achieved by a vertex i
in H,_,. Hence, the surplus of vertex i is decreased by at least §,_; — §; during
iteration t. O

Lemma 5.20 [f8,1 <8, then |ly(N)I? — Iy (NI = (8 — 8i11)2, for 0 <
t <k

PROOF ByLemma5.19,if §,;; < &, then there is a buyer i whose surplus drops
by &; — 8,41 in going from f; to f;;;. By Lemmas 5.15 and 5.17, we get the
desired conclusion. O

THE LINEAR CASE OF THE ARROW—DEBREU MODEL 121

Lemma 5.21 [n a phase, the square of the I, norm of the surplus vector drops
by a factor of

PROOF We will first prove that

82
ly (No)II> = Iy (NoII? > —.

Observe that the left-hand side can be written as a telescoping sum in which
each term is of the form ||y (N,)||> — || ¥ (N,+1)||>. By Corollary 5.18, each of these
terms is positive. Consider only those terms in which the difference §; — 6,41 >
0. Their sum is minimized when all these differences are equal. Now using
Lemma 5.20 and the fact that §o = § and &; = 0, we get that

2

I}
ly (No)IZ = Iy (NoII* > -

By Lemma 5.14, k < n, giving the desired inequality.
The above-stated inequality and the fact that ||y (No)||> < né* gives us

2 2 1
Iy(NOI” = ly(NolI" | 1 — = |-
n

The lemma follows. O

Theorem 5.22 The algorithm finds equilibrium prices and allocations for linear
utility functions in Fisher’s model using

O(n*(logn + nlog U + log M))

max-flow computations.

PROOF ByLemma5.21, the square of the surplus vector drops by a factor of half
after O(n?) phases. At the start of the algorithm, the square of the surplus vector is
at most M?. Once its value drops below 1/A*, the algorithm achieves equilibrium
prices. This follows from Lemmas 5.12 and 5.13 Therefore the number of phases
is

O(n*log(A*M?) = On*(logn + nlogU + log M)).

By Lemma 5.14 each phase consists of n iterations and by Lemma 5.11 each
iteration requires n max-flow computations. The theorem follows. O

5.11 The Linear Case of the Arrow—Debreu Model

The Arrow—Debreu model is also known as the Walrasian model or the exchange
model, and it generalizes Fisher’s model. Consider a market consisting of a set A of
agents and a set G of goods; assume |G| = n and |A| = m. Each agent i comes to the

122 COMBINATORIAL ALGORITHMS FOR MARKET EQUILIBRIA

market with an initial endowment of goods, ¢; = (¢;1, €2, - - ., €;,). We may assume
w.l.o.g. that the total amount of each good is unit, i.e., for 1 < j <n, Z:"zl ejj=1.
Each agent has linear utilities for these goods. The utility of agent i on deriving x;;
amount of good j, for 1 < j <n,is 3 _, uijxi;.

The problem is to find prices p = (py, ..., pn) for the goods so that if each agent
sells her initial endowment at these prices and buys her optimal bundle, the market
clears; i.e., there is no deficiency or surplus of any good. An agent may have more than
one optimal bundle; we will assume that we are free to give each agent any optiaml
bundle to meet the market clearing condition.

Observe that a Fisher market with linear utilities, n goods, and m buyers reduces
to an Arrow—Debreu market with linear utilities, n + 1 goods and m + 1 agents as
follows. In the Arrow—Debreu market, we will assume that money is the n + 1’st good,
the first m agents correspond to the m buyers whose initial endowment is the money
they come to the market with and the m 4 1’st agent’s initial endowment is all n goods.
The first m agents have utilities for goods, as given by the Fisher market and no utility
for money, whereas the m 4 1’st agent has utility for money only.

We define the following terms for the algorithm below. For agent i, leta; = Z;”zl eij.
Let ani, be the minimum among a;, | <i < m. Denote by pn.x the maximum price
assigned to a good by the algorithm. Denote by upy, and upn,x the minimum and
maximum values of u;; over all agents i and goods j.

5.12 An Auction-Based Algorithm

We will present an auction-based algorithm for the linear case of the Arrow—Debreu
model. It will find an approximate equilibrium in the following sense. For any fixed
€ > 0, it will find prices p for the goods such that the market clears and each agent
gets a bundle of goods that provides her utility at least (1 — €)? times the utility of her
optimal bundle.

The algorithm initializes the price of each good to be unit, computes the worth of
the initial endowment of each agent, and gives this money to each agent. All goods are
initially fully unsold.

We will denote by p = (p1, p2, ..., pu) the vector of prices of goods at any point in
the algorithm. As p changes, the algorithm recomputes the value of each agent’s initial
endowment and updates her money accordingly. Clearly, at the start of the algorithm,
the total surplus (unspent) money of all agents is .

At any point in the algorithm, a part of good j is sold at price p; and part of it is
sold at (1 + €)p;. The run of the algorithm is partitioned into iterations. Each iteration
terminates when the price of some good is raised by a factor of (1 + €). Each iteration
is further partitioned into rounds. In a round, the algorithm considers agents one by one
in some arbitrary but fixed order, say 1, 2, ..., m. If the agent being considered, i, has
no surplus money, the algorithm moves to the next agent. Otherwise, it finds i ’s optimal
good, in terms of bang per buck, at current prices; say, it is good j. It then proceeds
to execute the operation of outbid. This entails buying back good j from agents who
have it at price p; and selling it to i at price p;(1 + €). This process can end in one of
two ways:

AN AUCTION-BASED ALGORITHM 123

* Agent i’s surplus money is exhausted. If so, the algorithm moves on to the next agent.

* No agent has good j at price p; anymore. If so, it raises the price of good j to p;(1 + ¢€)
by setting p; to p;(1+ €). The current iteration terminates and agents’ moneys are
updated because of this price rise.

When the current round comes to an end, the algorithm checks if the total surplus
money with the buyers is at most €an;,. If so, the algorithm terminates. Otherwise, it
goes to the next round.

At termination, the algorithm gives the unsold goods to an arbitrary agent to en-
sure that the market clears. It outputs the allocations received by all agents and the
terminating prices p. Observe, however, that some of good j may have been sold at
price (1 4+ €)p; even though the equilibrium price of good j is p;. Because of this
descrepancy, agents will only get approximately optimal bundles. Lemma 5.25 will
establish a bound on the approximation factor.

Lemma 5.23 The number of rounds executed in an iteration is bounded by
1 x
0 (— log APma) .
€ €Amin

PROOF Observe that if outbid buys a good at price p;, it sells it at price (1 +
€)p;, thereby decreasing the overall surplus. Therefore, in each round that is fully
completed (i.e., does not terminate mid-way because of a price increase), the
total surplus of agents is reduced by a factor of (1 4 €). The total surplus at the
beginning of the iteration is at most the total money possessed by all agents, i.e.,
NPmax- The iteration terminates (and in fact the algorithm terminates) as soon as
the total surplus is at most €ap;,. Therefore, a bound on the number of rounds in
an iteration is

1 npmax
0814 —
min

Lemma 5.24 The total number of iterations is bounded by

n
(0] (— log pmax).
€

PROOF Each iteration raises the price of a good by a factor of (1 + €). Therefore
the number of iterations is bounded by

n 10g1+e Pmax-

124 COMBINATORIAL ALGORITHMS FOR MARKET EQUILIBRIA

Lemma 5.25 Relative to terminating prices, each agent gets a bundle of goods
that provides her utility at least (1 — €)* times the utility of her optimal bundle.

PROOF The algorithm always sells an agent her optimal goods relative to current
prices p (recall, however, that at the time of the sale, an agent is charged a price
of (1 + €)p; for good j). There are two reasons why an agent i may end up with a
suboptimal bundle in the end. First, at termination, part of her money may remain
unspent. Let M denote the total worth of i’s initial endowment at terminating
prices. Assume that she spent M, of this. Since the total surplus money left at
termination is at most €y, M1 > (1 — e)M.

The second reason is that some part of good j may have been sold at price (1 +
€)p; to agent i, even though the equilibrium price announced is p;. Equivalently,
we may assume that i gets her optimal goods at prices p for a fraction of her
money. The latter is at least

M, 1—-eM 5
> >0 —e)M
1+¢€ 1+¢€

money. The lemma follows. O

Theorem 5.26 The algorithm given above finds an approximate equilibrium for
the linear case of the Arrow—Debreu model in time

mn NVUmax Umax
(0] (— log log) .

62 €dminVUmin Umin

PROOF Observe that each good whose price is raised beyond 1 is fully sold.
Since the total money of agents is the total worth of all goods at prices p, the
condition that the total surplus money of agents is at most €ay,;, must be reached
before the price of all goods increases beyond 1. Hence at termination, the price
of at least one good is 1.

Clearly, at termination, the ratio of maximum to minimum price of a good is
bounded by viax/Vmin. Therefore, pnax is bounded by viax/Vmin- Each round is
executed in O(m) time. Now the bound on the total running time follows from
Lemmas 5.23 and 5.24. O

5.13 Resource Allocation Markets

Kelly considered the following general setup for modeling resource allocation. Let R
be a set of resources and ¢: R — Z™ be the function specifying the available capacity
of each resource r € R. Let A = {ay, ..., a,} be a set of agents and m; € Z™" be the
money available with agent a;.

Each agent wants to build as many objects as possible using resources in R. An
agent may be able to use several different subsets of R to make one object. Let
Si1, Sizs - - -, Sit, be subsets of R usable by agent a;, k; € Z. Denote by x;j the number
of objects a; makes using the subset S;;, 1 < j < k;; x;; is not rquired to be integral.
Let f; = ZI;: | Xij be the total number of objects made by agent a;. We will say that

RESOURCE ALLOCATION MARKETS 125

fi» 1 <i < nis feasible if simultaneously each agent a; can make f; objects without
violating capacity constraints on R.

Kelly gave the following convex program and showed that an optimal solution to it
satisfies proportional fairness; i.e., if f;* is an optimal solution and f; is any feasible
solution, then

n fl_fl*
,;—fi* <0.

Intuitively, the only way of making an agent happier by 5% is to make other agents
unhappy by at least a total of 5%.

Maximize Z m; log f;

a;€A
ki
Subject to P = Xii Va; € A
] fi]2_1: J (5.2)
Z x,-jfc(r) Vr € R
(ij):res;;
.X,'jZO ‘v’aieA,lfjfk,»

This general setup can be used to model many situations. The following are examples
of situations of a combinatorial nature.

(i) Market 1 (flow market): Given a directed or undirected graph G = (V, E), E is

the set of resources, with capacities specified. Agents are source-sink pairs of nodes,
(1, t1), - -+, (Sk, tx), with money my, ..., my, respectively. Each s; —#; path is an
object for agent (s;, t;).

(ii) Market 2: Given a directed graph G = (V, E), E is the set of resources, with
capacities specified. Agents are A C V, each with specified money. For s € A objects
are branchings rooted at s and spanning all V.

(iii) Market 3: Same as above, except the graph is undirected and the objects are spanning
trees.

Using KKT conditions, one can show that an optimal solution to this convex program
is an equilibrium solution. Let p,, r € R be Lagrangian variables corresponding to the
second set of conditions; we will interpret these as prices of resources. By the KKT
conditions optimal solutions to x;;’s and p,’s must satisfy the following equilibrium
conditions:

(i) Resource r € R has positive price only if it is used to capacity.
(i) Each agent uses only the cheapest sets to make objects.
(iii) The money of each agent is fully used up.

Since the objective function of convex program (5.2) is strictly concave, one can
see that at optimality, the vector f, ..., f, is unique. Clearly, this also holds for every
equilibrium allocation.

126 COMBINATORIAL ALGORITHMS FOR MARKET EQUILIBRIA
5.14 Algorithm for Single-Source Multiple-Sink Markets

In this section, we consider the special case of a flow market, Market 1, with a single
source and multiple sinks. We will assume that the underlying graph is directed. In case
it is undirected, one can use the standard reduction from undirected graphs to directed
graphs — replace each undirected edge (u, v) with the two edges (u, v) and (v, u) of the
same capacity.

Formally, let G = (V, E) be a directed graph with capacities on edges. Let s € V
be the source node and T = {11, ..., t.} be the set of sink nodes, also called terminals.
Let m; be the money possessed by sink ;. The problem is to determine equilibrium
flow and edge prices. The following example may help appreciate better some of the
intricacies of this problem.

Example 5.27 Consider graph G = (V, E) with V = {s, a, b, ¢, d} and sinks
b and d with $120 and $10, respectively. The edges are (s, a), (s, ¢) having
capacity 2, (a, b) having capacity 1, and (a, d), (c, d), (c, b) having capacity
10 (see Figure 5.5). The unique equilibrium prices are p;.q) = $10, pup =
$30, ps.e) = $40, and the rest of the edges have zero price. At equilibrium, flow
on path s,a,d is 1, on s,a, b is 1, and on s, ¢, b is 2. Simulating the algorithm
below on this example will reveal the complex sequence of cuts it needs to find
in order to compute the equilibrium. Computing equilibrium for other values of
money is left as an intersting exercise.

We will present a strongly polynomial algorithm for this problem which is based
on the primal-dual schema; i.e., it alternately adjusts flows and prices, attempting to
satisfy all KKT conditions. Often, primal-dual algorithms can naturally be viewed as
executing an auction. This viewpoint is leads to a particularly simple way of presenting
the current algorithm. We will describe it as an ascending price auction in which the
buyers are sinks and sellers are edges. The buyers have fixed budgets and are trying to
maximize the flow they receive and the sellers are trying to extract as high a price as
possible from the buyers. One important deviation from the usual auction situation is

a 1 b

$120

$10

c 10 d

Figure 5.5. The network for Example 5.27.

ALGORITHM FOR SINGLE-SOURCE MULTIPLE-SINK MARKETS 127

that the sellers act in a highly coordinated manner — at any point in the algorithm, all
edges in a particular cut, say (S, S), raise their prices simultaneously while prices of
the remaining edges remain unchanged. The prices of all edges are initialized to zero.
The first cut considered by the algorithm is the (unique) maximal min-cut separating
all sinks from s, say (Sp, S0).

Denote by rate(t;) the cost of the cheapest s — #; path w.r.t. current prices. The flow
demanded by sink ¢#; at this point is m; /rate(t;). At the start of the algorithm, when all
edge prices are zero, each sink is demanding infinite flow. Therefore, the algorithm
will not be able to find a feasible flow that satisfies all demands. Indeed, this will be
the case all the way until termination; at any intermediate point, some cuts will need
to be oversaturated in order to meet all the demand.

The price of edges in cut (S, S) is raised as long as the demand across it exceeds
supply; i.e., the cut is oversaturated because of flow demanded by sinks in S. At the
moment that demand exactly equals supply, the edges in this cut stop raising prices and
declare themselves sold at current prices. This makes sense from the viewpoint of the
edges in the cut — if they raise prices any more, demand will be less than supply; i.e.,
the cut will be under-saturated, and then these edges will have to be priced at zero!

The crucial question is: when does the cut (S, S) realize that it needs to sell itself?
This point is reached as soon as there is a cut, say (U, ﬁ), with S C U, such that the
difference in the capacities of the two cuts is precisely equal to the flow demanded by
sinks in S — U (see Figure 5.6). Let (U, U) be the maximal such cut (it is easy to see
that it will be unique). If U = V, the algorithm halts. Otherwise, cut (U, ﬁ) must be
oversaturated — it assumes the role of (S, S) and the algorithm goes to the next iteration.

Note that an edge may be present in more than one cut whose price is raised by the
algorithm. If so, its price will be simply the sum of the prices assigned to these cuts.

Suppose that the algorithm executes k iterations. Let (S;, S;) be the cut it finds in
iteration i, 1 <i < k, with Sy = V. Clearly, we have S C S; C --- C Sy = V. Let T;
be the set of terminals in S; — S;_y, for 1 <i < k. Let ¢; be the set of edges of G in
the cut (S;, S;), for 0 < i < k and p; be the price assigned to edges in c;. Clearly, for
each terminal t € T;, rate(t) = po+ --- + pi—1, for 1 <i <k.

Se

Cut(S, S) Cut(U, U)

Figure 5.6. The total flow demanded by &, and t; equals the difference in capacities of cut
(S, S) and cut (U, U).

128 COMBINATORIAL ALGORITHMS FOR MARKET EQUILIBRIA

Let G’ denote the graph obtained by adding a new sink node ¢ to G and edges (¢;,)
from each of the original sinks to ¢. Let the capacity of edge (t;, t) be m; /rate(t;). For
convenience, even in G/, we will denote V — S by S. It is easy to see that each of the
cuts (S;, E U {¢}) in G’ has the same capacity, for 0 < i < k, and each of these k + 1
cuts is a mininimum s — ¢ cut in G'.

Let f’ denote a maximum s — ¢ flow in G’. Obtain flow f from f’ by ignoring flow
on the edges into ¢. Then f is a feasible flow in G that sends m; /rate(t;) flow to each
sink #;.

Lemma 5.28 Flow f and the prices found by the algorithm constitute an
equilibrium flow and prices.

PROOF We will show that flow f and the prices found satisfy all KKT condi-
tions.

* Since each of the cuts (S;, S; U {r}), for 0 < i < k is saturated in G’ by flow f’,
each of the cuts ¢y, ¢, . .., cx—1 is saturated by f. Hence, all edges having nonzero
prices must be saturated.

* The cost of the cheapest path to terminal ' € T is rate(t’). Clearly, every flow to ¢’
uses a path of this cost.

* Since the flow sent to t' € T is m; /rate(¢), the money of each terminal is fully
spent. O

Below we give a strongly polynomial time subroutine for computing the next cut in
each iteration.

5.14.1 Finding the Next Cut

Let (S, S) be the cut in G, whose price is being raised in the current iteration and let ¢
be the set of edges in this cut and f its capacity. Let T’ denote the set of sinks in S. Let
p’ denote the sum of the prices assigned to all cuts found so far in the algorithm (this
is a constant for the purposes of this subroutine) and let p denote the price assigned to
edges in c. The cut (S, S) satisfies the following conditions:

e It is a maximal minimum cut separating 7’ from s.
e At p=0,everycut (U, U), with § C U, is oversaturated.

Let p* be the smallest value of p at which there is a cut (U, U),withScU,inG
such that the difference in the capacities of (S, S) and (U, U) is precisely equal to the
flow demanded by sinks in U — S at prices p*; moreover, (U, U) is the maximal such
cut. Below we give a strongly polynomial algorithm for finding p* and (U, U).

Define graph G’ by adding a new sink node ¢ to G and edges (¢;, t) for each sink
t; € S. Define the capacity of edge (#;, t) to be m; /(p’ + p) where m; is the money of
sink #; (see Figure 5.7). As in Section 5.14 we will denote V — S by S even in G'. The
proof of the following lemma is obvious.

ALGORITHM FOR SINGLE-SOURCE MULTIPLE-SINK MARKETS 129

ts 153 13 t7 t;

Cut(S, S) Cut(U, U)
priced at p

Figure 5.7. Graph C'.

Lemma 5.29 At the start of the current iteration, (S, S U {t}) is a maximal
minimum s — t cut in G'. p* is the smallest value of p at which a new minimum
s —t cut appears in G'. (U, U U {t}) is the maximal minimum s — t cut in G at
price p*.

For any cut C in G', let cap ,(C) denote its capacity, assuming that the prices of edges
in ¢ is p. For p > 0, define cut(p) to be the maximal s — ¢ min-cut in G’ assuming
that the price assigned to edges in c is p. For cut (A, A U {t}), A C V, let price(A, A U
{t}) denote the smallest price that needs to be assigned to edges in ¢ to ensure that
cap,(A, AU{t) = fiie., (A, AU{t}) is also a min s — ¢ cut in G'; if (A, A U {t})
cannot be made a minimum s — ¢ cut for any price p then price(A, AU {t)) = oo.
Clearly, price(A, A U {t}) > p*. Observe that determining price(4, A U {t}) involves
simply solving an equation in which p is unknown.

Lemma 5.30 Suppose p > p*. Let cut(p) = (A, A U {t}), where A # U. Let
price(A, AU {t}) = q and cut(q) = (B, BU {t}). Then B C A.

PROOF Since we have assumed that A % U, it must be the case that
cap (A, AUt) > f. Thezefore, q = priceiA, AU{t}) < p.Let cs and cp de-
note the capacities of (A, AU {t}) and (B, B U {t}) at price p = 0. Let m, and
mp denote the money possessed by sinks in (A — §) and (B — §), respectively.
Since (A, A U {t}) is a maximal s — ¢ mincut at price p,
mp

ma
Ca+— <cp+—.
p p

130 COMBINATORIAL ALGORITHMS FOR MARKET EQUILIBRIA

Subroutine
Inputs: Cut (S, S) in G whose price is being raised in the current iteration.
Output: Price p* and next cut (U, U).

G C <~ (V,1D
(i) p < price(C)
iii) While cut(p) # C do:
(@) C <« cut(p)
(b) p < price(C)
(iv) Output (C, p)

Figure 5.8. Subroutine for finding next cut.

Since (B, B U {t}) is a maximal s — ¢ mincut at price ¢,

mp my
cp+— <ca+—.
q

The two together imply

nmp —my mp —my
—— <Cp—Cp < ———.
q

First suppose that A C B. Clearly m4 < mpg. But this contradicts the last
inequality since ¢ < p.

Next, suppose that A and B cross. By the last inequality above, there must be a
price, r, such that g < r < p at which cap, (A, AU{t) = cap, (B, BU{t) =g,
say. By the submodularity of cuts, one of the following must hold:

(i) cap,((AN B), (AN B)U {t}) < g. Since the money possessed by sinks in (A N
B) — S is at most m, at price g, cap,((A N B), (A N B){t}) < cap,(B, BU{)).
This contradicts the fact that (B, B U {t}) is a min-cut at price q.

(ii) cap,((AU B), (AU B) U {t}) < g. Since the money possessed by sinks in (A U
B) — § is at least my, at price p, cap,((AU B), (AU B) U {r}) < cap,(A, AU
{t}). This contradicts the fact that (A, A U {r}) is a min-cut at price p.

Hence we getthat B C A. O

Lemma 5.31 Subroutine 5.8 terminates with the cut (U, U U {t}) and price p*
in at most r max-flow computations, where r is the number of sinks.

PROOF Aslongas p > p* by Lemma 5.30, the algorithm keeps finding smaller
and smaller cuts, containing fewer sinks on the s side. Therefore, in at most r
iterations, it must arrive at a cut such that p = p*. Since cut(p*) = (U, U U),
the next cut it considers is (U, U U {t}). Since price(U, U U {t}) = p*, at this
point the algorithm terminates. O

DISCUSSION AND OPEN PROBLEMS 131

Theorem 5.32 The algorithm given in Section 5.14 finds equilibrium edge
prices and flows using O(r*) max-flow computations, where r is the number of
sinks.

PROOF Clearly, the number of sinks trapped in the sets Sy C S; C --- C S
keeps increasing and therefore, the number of iterations k < r. The running time
for each iteration is dominated by the time taken by subroutine (5.8), which
by Lemma 5.31 is r max-flow computations. Hence the total time taken by the
algorithm is O(r?) max-flow computations. By Lemma 5.28 the flow and prices
found by the algorithm are equilibrium flow and prices. O

5.15 Discussion and Open Problems

Linear utility functions provided us with perhaps the easiest algorithmic questions that
helped us commence our algorithmic study of market equilibria. However, such func-
tions are much too restrictive to be useful. Concave utility functions are considered
especially useful in economics because they model the important condition of decreas-
ing marginal utilities as a function of the amount of good obtained. Furthermore, if
the utility functions are strictly concave, at any given prices, there is a unique optimal
bundle of goods for each agent. This leads to the following remarkable communication
complexity fact: In such a market, it suffices to simply announce equilibrium prices —
then, all agents can individually compute and buy their optimal bundles and the market
clears!

On the other hand, concave utility functions, even if they are additively separable
over the goods, are not easy to deal with algorithmically. In fact, obtaining a polynomial
time algorithm for such functions is a premier open problem today. For the case of
linear functions, the approach used in Section 5.8 — of starting with very low prices and
gradually raising them until the equilibrium is reached — is made possible by the prop-
erty of weak gross substitutability. This property holds for a utility function if on raising
the price of one good, the demand of another good cannot go down. As a consequence
of this property, the need to decrease the price of the second good does not arise.

Concave utility functions do not satisfy weak gross substitutability. Exercises 5.5
and 5.6 outline an approach that attempts to finesse this difficulty for the case of
piecewise-linear, concave functions. Does this approach lead to an efficient algorithm
for computing, either exactly or approximately, equilibrium prices for such functions?
If so, one can handle a concave function by approximating it with a piecewise-linear,
concave function. Alternatively, can one show that finding an equilibrium for such
utility functions is PPAD-hard?

Considering the properties of the linear case of Fisher’s model established in
Theorem 5.1, one wonders whether its equilibrium allocations can be captured via
a linear program. Resolving this, positively or negatively, seems an exciting problem.
Another question remaining open is whether there is a strongly polynomial algorithm
for computing equilibrium prices for this case. Finally, we would like to point to the
numerous questions remaining open for gaining a deeper algorithmic understanding of
Eisenberg—Gale markets (Jain and Vazirani, 2006).

132 COMBINATORIAL ALGORITHMS FOR MARKET EQUILIBRIA
Acknowledgments

I wish to thank Deeparnab Chakrabarty, Nikhil Devanur, Sergei Izmalkov, Kamal Jain
and Kasturi Vardarajan for valuable discussions and comments on the writeup.

Bibliography

K. Arrow and G. Debreu. Existence of an equilibrium for a competitive economy. Econometrica,
22:265-290, 1954.

W.C. Brainard and H.E. Scarf. How to compute equilibrium prices in 1891. Cowles Foundation
Discussion Paper, (1270) 2000.

X. Deng, C. Papadimitriou, and S. Safra. On the complexity of equilibria. In Proc. ACM Symp. on
Theor. Comp., 2002.

N. Devanur, C.H. Papadimitriou, A. Saberi, and V.V. Vazirani. Market equilibrium via a primal-dual-
type algorithm. In Proc. IEEE Annual Symp. Fdns. of Comp. Sci., 2002. To appear in J. ACM.
Journal version available at: http://www-static.cc.gatech.edu/vazirani/market.ps.

N. Devanur and V.V. Vazirani. The spending constraint model for market equilibrium: Algorithmic,
existence and uniqueness results. In Proc. 36th Symp. on Theory of Computing, 2004.

J. Edmonds. Maximum matching and a polyhedron with 0,1-vertices. J. Res. Natl. Bur. Standards,
69:125-130, 1965.

J. Edmonds. Optimum branchings. J. Res. Natl. Bur. Standards, Section B, 71:233-240, 1967.

E. Eisenberg and D. Gale. Consensus of subjective probabilities: The Pari-Mutuel method. Annals
Math. Stat., 30:165-168, 1959.

S. Floyd and V. Jacobson. Random early detection gateways for congestion avoidance. /[EEE/ACM
Trans. Networking, 1(1):397-413, 1993.

R. Garg and S. Kapoor. Auction algorithms for market equilibrium. In Proc. 36th Symp. on Theory
of Computing, 2004.

V. Jacobson. Congestion avoidance and control. In ACM SIGCOMM, pp. 314-329, 1988.

K. Jain and V.V. Vazirani. Eisenberg-gale markets: Algorithms and structural properties. In Proc.
39th Symp. on Theory of Computing, 2007.

E.P. Kelly. Charging and rate control for elastic traffic. Euro. Trans. on Telecomm., 8:33-37, 1997.

F.P. Kelly, A.K. Maulloo, and D.K.H. Tan. Rate control in communication networks. J. Oper. Res.
Soc., 49:237-252, 1998.

F.P. Kelly and V.V. Vazirani. Rate control as a market equilibrium. Unpublished manuscript 2002.
Available at: http://www-static.cc.gatech.edu/vazirani/KV.pdf.

S. Low and D. Lapsley. Optimization flow control, 1: basic algorithm and convergence. IEEE/ACM
Trans. Networking, 7(6):861-874, 1999.

C.S.J.A. Nash-Williams. Edge-disjoint spanning trees of finite graphs. J. London Math. Soc., 36:445—
450, 1961.

H. Scarf. The Computation of Economic Equilibria (with collaboration of T. Hansen). Cowles Foun-
dation Monograph No. 24., New Haven: Yale University Press, 1973.

W.T. Tutte. On the problem of decomposing a graph into n connected factors. J. London Math. Soc-.,
36:221-230, 1961.

V.V. Vazirani. Spending constraint utilities, with applications to the Adwords market. Submitted to
Math. of Operations Research, 2006.

L. Walras. Eléments d’ économie politique pure ou théorie de la richesse sociale (Elements of Pure
Economics, or the theory of social wealth). Lausanne, Paris, 1874. (1899, 4th ed.; 1926, rev ed.,
1954, Engl. transl.).

EXERCISES 133

J. Wang, L. Li, S.H. Low, and J.C. Doyle. Cross-layer optimization in TCP/IP networks. IEEE/ACM
Trans. Networking, 13:582-268, 2005.

5.1

5.2

5.3

5.4
5.5

Exercises

Give a strongly polynomial algorithm for Fisher’s linear case under the assumption
that all u;;’s are 0/1 (the algorithm given in Section 5.8 is not strongly polynomial).

Let us extend Fisher’s linear model to assume that buyers have utility for money
(Vazirani, 2006). Let u;o denote the utility accrued by buyer i for one unit of money.
Now, each buyer’s optimal bundle can also include money—effectively this is part
of their own money which they prefer not to spend at current prices. The notion of
equilibrium also generalizes—all goods need to be sold and all money needs to be
either spent or returned as part of optimal bundles. Extend the algorithm given in
Section 5.8 to this situation, still maintaining its polynomial running time.

Let us define a new class of utility functions, spending constraint utility functions
for Fisher’s model (Vazirani, 2006). As before, let A and B be the set of goods and
buyers, respectively. Fori € B and j € A, let rj- : [0, e(i)] — R, be the rate function
of buyer i for good j; it specifies the rate at which i derives utility per unit of j
received, as a function of the amount of her budget spent on j. If the price of j is
fixed at p; per unit amount of j, then the function r;-/p,- gives the rate at which i
derives utility per dollar spent, as a function of the amount of her budget spent on
j.
Relative to prices p for the goods, give efficient algorithms for

(@) computing buyer i’s optimal bundle,
(b) determining if p are equilibrium prices, and
(c) computing equilibrium allocations if p are equilibrium prices.

Prove that equilibrium prices are unique for the model of Exercise 5.3.

It turns out that there is a polynomial time algorithm for computing equilibrium
prices and allocations for the utility functions defined in Exercise 5.3 (Devanur and
Vazirani, 2004; Vazirani, 2006). The following is an attempt to use this algorithm
to derive an algorithm for computing equilibrium prices for the case of piecewise-
linear, concave utility functions for Fisher’s model.

Let fj; be the piecewise-linear, concave utility function of buyer i for good j; f;;
is a function of x;;, the allocation of good j to buyer i. Let p be any prices of goods
that sum up to the total money possessed by buyers (as before, we will assume that
there is a unit amount of each good in the market).

Let us obtain spending constraint utility functions from the f;;’s as follows. Let
gij be the derivative of fj;; clearly, g;; is a decreasing step function. Define

n =g (21,
s =5 (2
where y;; denotes the amount of money spent by i on good j. Observe that function
hij gives the rate at which i derives utility per unit of j received as a function of the
amount of money spent on j. Hence h;; is precisely a spending constraint utility
function. Let us run the algorithm mentioned above on these functions h;;’s to obtain
equilibrium prices, say p’.

134

5.6

5.7

5.8

5.9

COMBINATORIAL ALGORITHMS FOR MARKET EQUILIBRIA

Show that p = p’ iff prices p are equilibrium prices for the piecewise-linear, con-
cave utility functions f;;’s (equilibrium prices for piecewise-linear, concave utility
functions need not be unique).

Open problem (Devanur and Vazirani, 2004): Consider the process given in Exercise
5.3, which, given starting prices p, finds new prices p’. By the assertion made in
Exercise 5.3, the fixed points of this process are precisely equilibrium prices for the
piecewise-linear, concave utility functions f;;’s.

Does this procedure converge to a fixed point, and if so, how fast? If it does
not converge fast enough, does it converge quickly to an approximate fixed point,
which may be used to obtain approximate equilibrium prices?

Consider the single-source multiple-sink market for which a strongly polynomial
algorithm is given in Section 5.14. Obtain simpler algorithms for the case that the
underlying graph is a path or a tree.

Observe that the algorithm given in Section 5.14 for Market 1 defined in Section
5.13 uses the max-flow min-cut theorem critically (Jain and Vazirani, 2006). Obtain
a strongly polynomial algorithm for Market 3 using the following max-min theorem.

For a partition Vi, ..., Vi, k > 2 of the vertices of an undirected graph G, let C
be the capacity of edges whose end points are in different parts. Let us define the
edge-tenacity of this partition to be C/(k — 1), and let us define the edge-tenacity
of G to be the minimum edge-tenacity over all partitions. Nash-William (1961) and
Tutte (1961) proved that the maximum fractional packing of spanning trees in G is
exactly equal to its edge-tenacity.

Next consider Market 2 defined in Section 5.13. For the case |A| = 1, a polynomial
time algorithm follows from the following max—min theorem due to Edmonds (1967).

Let G = (V, E) be a directed graph with edge capacities specified and source
s € V. The maximum number of branchings rooted out of s that can be packed in
G equals min,cy c(v), where c(v) is the capacity of a minimum s — v cut.

Next assume that there are two agents, s1, s, € V. Derive a strongly polynomial
algorithm for this market using the following fact from Jain and Vazirani (2006). Let
F1 and F, be capacities of a minimum s; — s, and s, — 57 cut, respectively. Let F be
Minyev_(, 5} f'(v), where f’(v) is the capacity of a minimum cut separating v from
s1 and s,. Then:

(@) The maximum number of branchings, rooted at s; and s,, that can be packed in
G is exactly min{Fy + F3, F}.

(b) Let f; and f, be two nonnegative real numbers such that f; < Fy, f, < F;, and
fi + fo < F. Then there exists a packing of branchings in G with f; of them
rooted at s; and 1, of them rooted at s,.

CHAPTER 6

Computation of Market
Equilibria by Convex
Programming

Bruno Codenotti and Kasturi Varadarajan

Abstract

We introduce convex programming techniques to compute market equilibria in general equilibrium
models. We show that this approach provides an effective arsenal of tools for several restricted, yet
important, classes of markets. We also point out its intrinsic limitations.

6.1 Introduction

The market equilibrium problem consists of finding a set of prices and allocations of
goods to economic agents such that each agent maximizes her utility, subject to her
budget constraints, and the market clears. Since the nineteenth century, economists
have introduced models that capture the notion of market equilibrium. In 1874, Walras
published the “Elements of Pure Economics,” in which he describes a model for the state
of an economic system in terms of demand and supply, and expresses the supply equal
demand equilibrium conditions (Walras, 1954). In 1936, Wald gave the first proof of the
existence of an equilibrium for the Walrasian system, albeit under severe restrictions
(Wald, 1951). In 1954, Nobel laureates Arrow and Debreu proved the existence of an
equilibrium under much milder assumptions (Arrow and Debreu, 1954).

The market equilibrium problem can be stated as a fixed point problem, and indeed
the proofs of existence of a market equilibrium are based on either Brouwer’s or Kaku-
tani’s fixed point theorem, depending on the setting (see, e.g., the beautiful monograph
(Border, 1985) for a friendly exposition of the main results in this vein).

Under a capitalistic economic system, the prices and production of all goods are
interrelated, so that the equilibrium price of one good may depend on all the different
markets of goods that are available. Equilibrium models must therefore take into
account a multitude of different markets of goods. This intrinsic large-scale nature of the
problem calls for algorithmic investigations and shows the central role of computation.

Starting from the 60°’s, the intimate connection between the notions of fixed-point and
market equilibrium was exploited for computational goals by Scarf and some coauthors,

135

136 COMPUTATION OF MARKET EQUILIBRIA BY CONVEX PROGRAMMING

who employed path-following techniques to compute approximate equilibrium prices
(Eaves and Scarf, 1976; Hansen and Scarf, 1973; Scarf, 1967, 1982). In their simplest
form these methods are based upon a decomposition of the price simplex into a large
number of small regions and on the use of information about the problem instance
to construct a path that can be shown to terminate close to a fixed point. While the
appropriate termination is guaranteed by the fixpoint theorems, the worst case running
time of these algorithms turns out to be exponential.

Over the last few years, the problem of computing market equilibria has re-
ceived significant attention within the theoretical computer science community. In-
spired by Papadimitriou (2001), and starting with the work of Deng, Papadim-
itriou, and Safra (2003), theoretical computer scientists have developed polyno-
mial time algorithms for several restricted versions of the market equilibrium
problem.

In this chapter we focus on algorithms based on convex programming techniques.
Elsewhere in this book (Vazirani, 2007), algorithms of a combinatorial nature are
presented.

6.1.1 Definitions: Models and Equilibrium

We start by describing a model of the so-called exchange economy, an important special
case of the model considered by Arrow and Debreu (1954). The more general one,
which we will call the Arrow-Debreu model, includes the production of goods. We will
deal with models with production in Section 6.6.

Let us consider m economic agents that represent traders of n goods. Let R’, denote
the subset of R"” with all nonnegative coordinates. The j-th coordinate in R" will
stand for good j. Each trader i has a concave utility function u; : R}, — R, which
represents her preferences for the different bundles of goods, and an initial endowment
of goods w; = (w1, ..., wi,) € RY,. We make the standard assumption that u; is non-
satiable, that is, for any x € R}, there is a y € R, such that u;(y) > u;(x). We also
assume that u; is monotone, that is, u;(y) > u;(x) if y > x. For the initial endowment
of trader i, we assume that w;; > O for at least one j. At given prices 7 € R’,, trader
i will sell her endowment, and ask for the bundle of goods x; = (x;1, ..., x;,) € R},
which maximizes u;(x) subject to the budget constraint' 77 - x < 7 - w;. The budget
constraint simply says that the bundles of goods that are available to trader i are the
ones that cost no more than her income 7 - w;.

An equilibrium is a vector of prices 7 = (7, ..., m,) € R at which, for each
trader i, there is a bundle X; = (X;1, ..., X;,) € R, of goods such that the following
two conditions hold:

(i) Foreachtraderi,the vector xX; maximizes u;(x) subject to the constraints 7 - x < 7w - w;
and x € RY}..
(ii) For each good j, >, X;j <Y, w;j.

! Given two vectors x and y, x - y denotes their inner product.

INTRODUCTION 137

Let R, , be the set of vectors in R", whose components are strictly positive. For
purposes of exposition, we will generally restrict our attention to price vectors in R’} | .
When we violate this convention, we will be explicit about it.

For any price vector 7, a vector x; (57), which maximizes u;(x) subject to the budget
constraint 7 - x <7 -w; and x € R, is called a demand of trader i at prices 7.
Observe that there is at least one demand vector, and that there can be multiple demand
vectors. We will usually assume that there is exactly one demand vector at price 7;
that is, we have a demand function. This assumption holds if the utility function
satisfies a condition known as strict quasi-concavity. Once again, we will be explicit
when we will deal with exceptions, since for some common utility functions such as
the linear ones, the demand is not a function but a correspondence or a set valued
function.

The vector z;(w) = x;(;r) — w; is called the individual excess demand of trader
i. Then X*(7) = > Xix(mw) denotes the market demand of good k at prices 7, and
ZK(r) = X*(w) — Y, wix the market excess demand of good k at prices 7. The vec-
tors X() = (X (), ..., X"(n)) and Z(w) = (Z' (%), ..., Z"(7)) are called market
demand (or aggregate demand) and market excess demand, respectively. Observe that
the economy satisfies positive homogeneity, i.e., for any price vector 7 and any A > 0,
we have Z(mr) = Z(Ax). The assumptions on the utility functions imply that for any
price m, we have 7 - x;(;r) = 7 - w;. Thus the economy satisfies Walras’ Law: for any
price 7, we have w - Z() = 0.

In terms of the aggregate excess demand function, the equilibrium can be equiva-
lently defined as a vector of prices m = (71, ..., m,) € R such that ZJi(m) <0 for
each j.

6.1.2 The Tatonnement Process

The model of an economy and the definition of the market equilibrium fail to predict
any kind of dynamics leading to an equilibrium, although they convey the intuition that,
in any process leading to a stable state where demand equals supply, a disequilibrium
price of a good will have to increase if the demand for such a good exceeds its supply,
and vice versa.

Walras (1954) introduced a price-adjustment mechanism, which he called taron-
nement. He took inspiration from the workings of the stock-exchange in Paris, and
suggested a trial-and-error process run by a fictitious auctioneer. The economic agents
receive a price signal, and report their demands at these prices to the auctioneer. The
auctioneer then adjusts the prices in proportion to the magnitude of the aggregate de-
mands, and announces the new prices. In each round, agents recalculate their demands
upon receiving the newly adjusted price signal and report these new demands to the
auctioneer. The process continues until prices converge to an equilibrium. In its contin-
uous version, as formalized by Samuelson (1947), the tAtonnement process is governed
by the differential equation system:

dﬂk
- = 0Z), k=1,2,....n, (6.1)

138 COMPUTATION OF MARKET EQUILIBRIA BY CONVEX PROGRAMMING

where G () denotes some continuous and differentiable, sign-preserving function, and
Z,() is the market excess demand function for good k.

6.1.3 Approximate Equilibria

Since a price equilibrium vector that is rational exists only in very special cases, most
algorithms actually compute an approximate equilibrium.

Definition 6.1 A bundle x; € R, is a p-approximate demand, for p > 1,
of trader i at prices 7w if u;(x;) > iu* and 7 - x; < umw - w;, where u* =
max{u;(x)|x e R, 7w -x <7 - w;}.

A price vector 7 is a strong [-approximate equilibrium (u > 1) if there are bundles
x; such that (1) for each trader i, x; is the demand of trader i at prices r,and (2)), x;; <
nY_; w;; for each good j. A price vector 7 is a weak p-approximate equilibrium
(u > 1) if there are bundles x; such that (1) for each trader i, x; is a p-approximate
demand of trader i at prices 7, and (2)), x;; <), w;; for each good ;.

Definition 6.2 An algorithm that computes an approximate equilibrium, for any
& > 0, in time that is polynomial in the input size and 1/& (resp., log 1/¢) is called
polynomial time approximation scheme (resp., polynomial time algorithm).

6.1.4 Gross Substitutability

In general, not only equilibria are not unique, but the set of equilibrium points may be
disconnected. Yet many real markets do work, and economists have struggled to capture
realistic restrictions on markets, where the equilibrium problem exhibits some structure,
like uniqueness or convexity. The general approach has been to impose restrictions
either at the level of individuals (by restricting the utility functions considered and/or
by making assumptions on the initial endowments) or at the level of the aggregate
market (by assuming that the composition of the individual actions is particularly well
behaved).

The property of gross substitutability (GS) plays a significant role in the theory of
equilibrium and in related computational results based on convex programming.

The market excess demand is said to satisfy gross substitutability (resp., weak
gross substitutability [WGS]) if for any two sets of prices 7 and 7’ such
that 0 < m; <z}, for each j, and 7; <} for some j, we have that my = m;
for any good k implies Z¥(w) < Z¥(n') (resp., Z¥(w) < Z¥(x')). In words, GS
means that increasing the price of some of the goods while keeping some oth-
ers fixed can only cause an increase in the demand for the goods whose price is
fixed.

Itis easy to see that WGS implies that the equilibrium prices are unique up to scaling
(Varian, 1992, p. 395) and that the market excess demand satisfies WGS when each
individual excess demand does.

INTRODUCTION 139

6.1.5 Special Forms of the Utility Functions

A utility function u(-) is homogeneous (of degree 1) if it satisfies u(ax) = au(x), for
all ¢ > 0.

A utility function u(-) is log-homogeneous if it satisfies u(ax) = loga + u(x), for
all @ > 0.

Three popular examples of homogeneous utility functions are as follows.

* The linear utility function, which has the form u;(x) =) j @ijXij-

¢ The Cobb-Douglas function, which has the form u; (x) = [;j(xij)®1, where > jaij =1

e The Leontief (or fixed-proportions) utility function, which has the form u;(x) =
minj ajjXij.

We now define the constant elasticity of substitution functional form (CES, for
short), which is a family of homogeneous utility functions of particular importance in
applications. A CES function is a concave function defined as

1

n »
UXT, ey Xp) = <Zaixf> :
i=1

where the ¢;’s are the utility parameters, and —oo < p < 1, p # 0, is a parameter
representing the elasticity of substitution 1/1 — p (see Varian, 1992, p. 13).

CES functions have been thoroughly analyzed in Arrow et al. (1961), where it has
also been shown how to derive, in the limit, their special cases, i.e., linear, Cobb—
Douglas, and Leontief functions (see Arrow et al., 1961, p. 231). For p — 1, CES
take the linear form, and the goods are perfect substitutes, so that there is no pref-
erence for variety. For p > 0, the goods are partial substitutes, and different values
of o in this range allow us to express different levels of preference for variety. For
p — 0, CES become Cobb-Douglas functions, and express a perfect balance be-
tween substitution and complementarity effects. Indeed it is not difficult to show that
a trader with a Cobb-Douglas utility spends a fixed fraction of her income on each
good.

For p < 0, CES functions model markets with significant complementarity effects
between goods. This feature reaches its extreme (perfect complementarity) as p —
—00, 1.e., when CES take the form of Leontief functions.

6.1.6 Equilibrium vs Optimization

In 1960, Negishi showed that equilibrium allocations of goods for an exchange economy
can be determined by solving a convex program where the weights of the function to
be maximized are unknown (Negishi, 1960).

Negishi proved the following theorem.

Theorem 6.3 Suppose that the initial endowment of each trader includes a
positive amount of each good.

140 COMPUTATION OF MARKET EQUILIBRIA BY CONVEX PROGRAMMING

Given positive welfare weights «;, i = 1, ..., m, consider the convex program

Maximize Z oui(x;)
;
Subjectto Y x;; <Y wyj.for 1 < j <n.

There exist a; > 0, i =1,...,m, such that the optimal solutions X; to the
program above with these «; are equilibrium allocations. That is, for some price
vector 7w, X; = x;(7r) for each i.

In the proof of Negishi’s theorem, the price vector r for a given set of welfare weights
o; is obtained from the dual variables in the Karush—-Kuhn—Tucker characterization of
the optimal solution to the convex program. Whenever the utility functions are log-
homogeneous, the Karush—-Kuhn—Tucker characterization implies that ¢; is always
equal to - X;. For the welfare weights that correspond to equilibrium, we must then
have o; = 7 - w;.

Negishi’s characterization of the equilibrium has inspired certain algorithmic ap-
proaches to compute it (Rutherford, 1999). It is also connected to some recent theoret-
ical computer science work (Jain et al., 2003; Ye, in press).

6.1.7 The Fisher Model

A special case of the exchange model occurs when the initial endowments are pro-
portional; i.e., when w; = §;w, §; > 0, so that the relative incomes of the traders
are independent of the prices. This special case is equivalent to Fisher model, which
is a market of n goods desired by m utility maximizing buyers with fixed incomes.
In the standard account of Fisher model, each buyer has a concave utility function
u; : R — Ry and an endowment ¢; > 0 of money. There is a seller with an amount
gj > 0 of good j. An equilibrium in this setting is a nonnegative vector of prices
7= (my,...,T,) € Rf at which there is a bundle X; = (x;1, ..., Xin) € Ri of goods
for each trader i such that the following two conditions hold:

(i) The vector X; maximizes u;(x) subject to the constraints - x < ¢; and x € R’,..
(i) For each good j, >, X;; = g;.

6.1.8 Overview

The rest of this chapter is organized as follows.

In Section 6.2, we analyze the Fisher model under the assumption that the traders are
endowed with homogeneous utility functions, and present Eisenberg’s convex program
for computing an equilibrium in such models.

In Section 6.3, we consider exchange economies that satisfy weak gross substi-
tutability, and show that, under such conditions, an important inequality holds, which
implicitly gives a convex feasibility formulation for the equilibrium. We discuss algo-
rithmic work that exploits this formulation.

FISHER MODEL WITH HOMOGENEOUS CONSUMERS 141

In Section 6.4, we discuss convex feasibility formulations for exchange economies
with some special and widely used utility functions, more precisely, linear and CES
functions.

In Section 6.5, we expose the limitations of convex programming techniques, by
presenting examples where convexity is violated (the equilibria are multiple and dis-
connected), and relating some of these examples to other equilibrium problems and to
recently proven hardness results.

In Section 6.6, we discuss convex feasibility formulations for economies that gen-
eralize the exchange model by including production technologies.

Finally, in Section 6.7, we guide the reader through the bibliography.

6.2 Fisher Model with Homogeneous Consumers

Whenever the traders have homogeneous utility functions, the equilibrium conditions
for Fisher model can be rewritten as the solution to the following convex program
(Eisenberg’s program), on nonnegative variables x;;:

Maximize Z e; logu;(x;)

1

Subject to inj <g; foreach j.

4

Recall that u; is the i-th trader’s utility function, e; is the i-th trader’s endowment of
money, and g; is the amount of the j-th good.

Notice that the program does not have variables corresponding to prices. The optimal
solution to this program yields allocations for each trader that, at prices given by
the Lagrangian dual variables corresponding to the optimal solution, are exactly the
individual demands of the traders. We present a proof of this result for the case where
the utility functions are differentiable.

Let ¥ be an optimal solution to Eisenberg’s program. Observe that u;(x;) > O for
each i. The Karush—Kuhn—Tucker necessary optimality theorem (Mangasarian, 1969,
Chapter 7.7) says that there exist 7; > 0, for each good j, and A;; > 0, for each trader
i and good j, such that

T ((ZX’Y) - qj) =0 foreach good j, (6.2)

Aijxij =0 foreachi, j, (6.3)

and

e; du;(x;)

— X =m; —A;; foreachi, j. (6.4)
u;(X;) 0x;j ! !

142 COMPUTATION OF MARKET EQUILIBRIA BY CONVEX PROGRAMMING

For trader 7, let us multiply the j-th equality in (6.4) by X;;, and add the resulting
equalities. We obtain

€; _ Bui()"c,-) —
ZXUT = Z(ﬁj — Aij)Xij.
17)]

u;(X;) I

Using 6.3 and Euler’s identity u; (x;) =) j Xij % for the homogeneous u;, this equality
ij
becomes
e = Z 7Tj)_Cij.
J

At the price vector 7, the bundle X; thus exhausts the budget of trader i. Let y; € R’}
be any bundle such that 7 - y; < e;. We proceed along the lines of the Karush—Kuhn—
Tucker sufficient optimality theorem (Mangasarian, 1969, Chapter 7.2) to show that
u;(%;) > u;(y;). Using the concavity of u;,

wi(y;) — ui(x;) < Vu(x;) - (yi — X;)

u;i(X;) _
= E(ﬂj—)wj)(yl'j—xij)
i N
j
u;i(X;)
= E(Tijij—)\ijyij)_ei
1 .
J

IA

ui(x;)
l .l Zﬂj)’ij—ei
J

=

e

We have shown that that X; is a demand of trader i at price 7. Turning now to market
clearance, observe that (6.2) implies that) . X;; = ¢; for any good j such that 77; > 0.
For each good j such that 77; = 0, feasibility tells us that), X;; < g;; let us allocate
th