
Overloaded Orthogonal Drawings

Evgenios M. Kornaropoulos1,2 and Ioannis G. Tollis1,2

1 Department of Computer Science, University of Crete, Heraklion, Crete, Greece
2 Institute of Computer Science, Foundation for Research and Technology-Hellas,

Vassilika Vouton, P.O. Box 1385, Heraklion, GR-71110 Greece
{kornarop,tollis}@ics.forth.gr

Abstract. Orthogonal drawings are widely used for graph visualiza-
tion due to their high clarity of representation. In this paper we present
a technique called Overloaded Orthogonal Drawing. We first place the
vertices on grid points following a relaxed version of dominance drawing,
called weak dominance condition. Edge routing is implied automatically
by the vertex coordinates. In order to simplify these drawings we use
an overloading technique. All algorithms are simple and easy to imple-
ment and can be applied to directed acyclic graphs, planar, non-planar
and also undirected graphs. We also present bounds on the number of
bends and the area. Overloaded Orthogonal drawings present several in-
teresting properties such as efficient visual edge confirmation as well as
simplicity and clarity of the drawing.

1 Introduction

An orthogonal drawing maps each edge into a chain of horizontal and vertical line
segments. An orthogonal grid drawing is an orthogonal drawing such that vertices
and bends along the edges have integer coordinates. Drawings in this style are
useful in many applications due to the high clarity of the model. The problem of
constructing an orthogonal drawing while minimizing several aesthetic criteria
such as area, bends, maximum edge length and total edge length is an NP-hard
problem [4]. Therefore most algorithms employ heuristics that try to layout the
graph in a manner which is good for some set of aesthetics.

Various algorithms have been introduced to produce orthogonal drawings of
planar graphs [18,2,20,19,4]. A necessary and sufficient condition for a plane
graph with maximum degree three to have an orthogonal drawing without bends
was presented in [17]. Another interesting result is that an outerplanar graph
G with maximum degree at most three has an orthogonal drawing with no
bends if and only if G contains no triangles [12]. Bertolazzi et al. presented [1] a
branch and bound algorithm that computes an orthogonal representation with
the minimum number of bends of a biconnected planar graph. For drawings
of non-planar graphs [9,3,13], the required area can be as little as 0.76n2 [14],
the total number of bends is no more than 2n + 2 [2,14], and each edge has
at most two bends. Experimental studies have been conducted where various
proposed algorithms were tested on their performance on area, bends, crossings,

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 242–253, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Overloaded Orthogonal Drawings 243

edge length, and time [21]. Dominance drawings are a widely used technique
for visualizing planar st-graphs. These drawings have numerous useful features
such as, small number of bends, small area, linear time complexity, detection
and display of symmetries [4,5].

In this paper we introduce the overloaded orthogonal model which combines
dominance and row/column reuse. We use a concept of relaxed dominance for
vertex coordinate assignment, and orthogonal grid layout with overloaded use of
rows/columns for edge routing. This type of routing has been used extensively
in VLSI layout [11]. The concept of merging together groups of edges has been
also used in the confluent drawing framework [6,7] to facilitate readability of the
graph. This model can be applied to both planar and non-planar graphs. Also
it can be efficiently applied to graphs with maximum degree four, and to graphs
with degree higher than four. The presented algorithms produce drawings with
at most n − 1 bends, O(n2) area, they run in linear time O(n + m), and are
easy to implement. Although a direct comparison with the bounds of traditional
orthogonal drawings is a bit unfair (due to the reuse of rows and columns) our
bounds on the number of bends and area are promising. Furthermore, every
overloaded orthogonal drawing simplifies tremendously the visual confirmation
of the existence of an edge and/or path between any two vertices.

This paper is organized as follows: in Section 2 we present an algorithm for
constructing overloaded orthogonal drawings. In Section 3 we discuss some prop-
erties of the proposed model. In Section 4 we present properties and bounds of
the overloaded orthogonal model in directed acyclic graphs. Section 5 gives an
application of the proposed model to other graphs and finally Section 6 gives
conclusions and open problems.

2 Overloaded Orthogonal Framework

In this framework, we propose to place the vertices in the grid so that edges
flow from left-to-right and from bottom-to-top. Each vertex u is placed on a
point in the grid with coordinates X(u) and Y (u). Dominance drawings achieve
this vertex placement for st-planar graphs. A dominance drawing Γ of a graph
G = (V, E) has the following property: for any two vertices u, v ∈ V there is a
directed path from u to v in G, if and only if X(u) ≤ X(v) and Y (u) ≤ Y (v)
in Γ . But, not every directed acyclic graph has a dominance drawing. Therefore
we propose a relaxed condition, called weak dominance condition, that can be
applied to any directed acyclic graph (dag):

Weak Dominance Condition: Let G = (V, E) be a directed acyclic graph.
For any two vertices u, v ∈ V if there is a directed path from u to v in G, then
X(u) ≤ X(v) and Y (u) ≤ Y (v).

Thus if v is in the upper-right quadrant of u, then v is not necessarily reach-
able from u. A path that is implied by the vertex coordinates but does not exist

244 E.M. Kornaropoulos and I.G. Tollis

in G is called a falsely implied path (or fip). The problem of minimizing the
number of falsely implied paths was introduced in [10], where it is shown that
the corresponding decision problem is NP-complete.

Following the footsteps of the algorithm for dominance drawing for (reduced)
planar st-graphs presented in [5], we formulate an algorithm for vertex place-
ment that respects the weak dominance condition and is applicable to any dag.
The main algorithm for planar st-graphs described in [5] consists of three phases.
In the first phase, called ’Preprocessing Phase’, a linked data structure is con-
structed in order to efficiently calculate coordinates. During the second phase
called ’Preliminary Layout’ distinct X, Y coordinates are given to each vertex.
In the third and final phase, a compaction procedure is applied to reduce the
area of the drawing.

We will construct a similar data structure as in ’Preprocessing step’, but for
general directed acyclic graphs. Let W be a representation of a dag G such that
the incoming edges for each vertex u appear consecutively around u. Represen-
tation W will be called a representation in consecutive form. The representation
in consecutive form is a method to force a left-to-right order in the incoming as
well as outgoing edges of every vertex of G. Without loss of generality we assume
that there is only one source, s. If not then we insert an artificial super-source
s and connect it to all sources of G. The algorithm performs two topological
sortings on the vertices of G. Successors of each vertex are scanned in clockwise
order for the X coordinate assignment, and in counterclockwise order for the Y
coordinate assignment. The order is imposed according to the representation in
consecutive form that is given as an input. We will present the algorithm for
clockwise scan, that computes the X-coordinate assignment.

Algorithm. TOPOLOGICAL-SORTING(Adj(G))

1. for each vertex v ∈ V
2. X[v]← ∞
3. X[s]← 0
4. time←1
5. VISIT-CLCK(s)
6. return X

Algorithm. VISIT-CLCK(u)

1. for each vertex v ∈ Adj(u) such that (u, v)
is the leftmost outgoing edge of u do

2. if in-degree(v)=1
3. X[v]← time
4. time←time+1
5. remove edge e=(u, v)
6. VISIT-CLCK (v)
7. else
8. remove edge e=(u, v)

Overloaded Orthogonal Drawings 245

Algorithm TOPOLOGICAL-SORTING scans the outgoing edges of a vertex u
in clockwise order (leftmost outgoing edge) and visits a direct successor v only if
v has in-degree one. Otherwise, it removes edge (u, v) from the list. Analogously,
we formulate an algorithm for the Y -coordinate assignment that performs a
counterclockwise scan, by replacing VISIT-CLCK with VISIT-COCLCK. The
difference between the two VISIT algorithms is Line 1, where instead of leftmost
outgoing edge we now have rightmost outgoing edge. The two topological sortings
are used by WDP algorithm for assigning X and Y coordinates to the vertices
of G.

Algorithm. (WDP)WEAK DOMINANCE PLACEMENT (W)
1. X coordinates ← TOPOLOGICAL SORTING(W) using VISIT-CLCK
2. Y coordinates ← TOPOLOGICAL SORTING(W) using VISIT-COCLCK

We denote the number of vertices in G by n, and the number of edges in G
by m. Since both topological sorting algorithms run in linear time O(n + m),
algorithm WDP also runs in linear time O(n + m).

In the rest of this section we will see how the Algorithm WDP creates a
natural separation between pq-components. A pq-component Gpq = (V ′, E′) of
G is a maximally induced subgraph of G with a single source p and a single
sink q that contains at least two edges and that is connected with the rest of
G only through vertex p and vertex q. Thus, vertex p is a dominator of every
vertex v ∈ V ′ and q is a post-dominator of every vertex v ∈ V ′. Due to space
limitations, the proofs of the following results are omitted.

Lemma 1. If dag G=(V, E) includes a pq-component Gpq = (V ′, E′), then
X(q) = X(p) + |V ′| − 1 and Y (q) = Y (p) + |V ′| − 1.

Corollary 1. If dag G=(V,E) includes a pq-component G′ = (V ′, E′) , then for
every vertex u ∈ G′, X(p)≤X(u)≤X(p)+|V ′|−1 and Y (p)≤Y (u)≤Y (p)+|V ′|−1.

Let X() and Y () be the coordinates constructed by WDP algorithm. Also let
G′ = (V ′, E′) be a component where V ′ ⊆ V and E′ ⊆ E. A component G′ is
said to be separated, if the following property holds for X() and Y ():

∀u ∈ V ′, v ∈ V−V ′ ⇒ (X(u)≤X(v)∧Y (u)≤Y (v)) ∨ (X(u)≥X(v)∧Y (u)≥Y (v))

This property is a guarantee that every vertex v ∈ V −V ′ that is not a member
of a component G′ will not appear between the vertices of G′. We refer to this
as the separation property.

Theorem 1. Vertex placement X() and Y () constructed by algorithm WEAK
DOMINANCE PLACEMENT respects the separation property for every pq-
component.

Proof. (Sketch) Let G′ = (V ′, E′)⊆G be a pq-component. Then algorithm TOPO-
LOGICAL - SORTING for G, returns a numbering of vertices of G′ from X(p)
to X(p) + |V ′|. Also holds for Y -coordinates, i.e., numbers vertices of G′ from
Y (p) to Y (p) + |V ′|. Thus, no vertex from V − V ′ can be drawn inside a pq-
component. ��

246 E.M. Kornaropoulos and I.G. Tollis

Lemma 2. Let u and v be a pair of vertices of G such that X(v) = X(u) + 1.
Then Y (u) < Y (v) if and only if G has an edge (u,v).

Lemma 3. Let u and v be a pair of vertices of G such that Y (v) = Y (u) + 1.
Then X(u) < X(v) if and only if G has an edge (u,v).

Our proposed framework contains the term ’overloaded’ because all outgoing
edges of a vertex use the same column in order to reach their corresponding
destination vertex. We will first discuss how a single edge is routed, and then we
will focus on unambiguously visualizing the edges of the drawing.

Edge routing is automatically implied by the coordinates of the vertices. Each
edge (u, v) consists of a vertical edge segment from (X(u),Y (u)) to (X(u),Y (v))
and a horizontal segment from (X(u),Y (v)) to (X(v),Y (v)). Because various
edges reuse segments of rows and columns we introduce e-points to resolve am-
biguities, see Figure 1. Given an edge (u, v) an e-point is defined as an unlabeled
point that is placed on point (X(u), Y (v)) to indicate a direct connection from u
to v. A bend will appear in the final drawing instead of an e-point if: (a) vertex
u does not have a successor w such that Y (w) ≥ Y (v) and (b) vertex v does not
have a predecessor z such that X(z) ≤ X(v).

Fig. 1. (a) the vertical segment of (u, v) is overloaded by the vertical segment of (u, w).
To visualize the edge from u to w, an e-point is placed at (X(u), Y (w)). (b) the hori-
zontal segment of (v, w) is overloaded by the horizontal segment of (u, w). To visualize
the edge from u to w, an e-point is placed at (X(u), Y (w)). If there is no e-point then
(w, v)/∈ E (c), whereas if there is an e-point in (X(w),Y (v)) then (w, v)∈ E (d).

We will describe an algorithm that receives the vertex coordinates as an input,
and outputs an overloaded orthogonal drawing. It routes the edges according to
the given coordinates and places e-points where needed.

In order to construct an overloaded orthogonal drawing a linked data structure
for G will be constructed. Each vertex u ∈ V of G, points to the list of its direct
successors sorted in decreasing order according to their Y -coordinate. This single
linked list of u, can be traversed by means of pointer next(u). It can also be
accessed by pointer getFirst(u), that is u’s direct successor with the highest
Y -coordinate (hence first in the list). In case of a tie, we can arbitrarily order
vertices with the same coordinate without affecting the overall result.

Overloaded Orthogonal Drawings 247

Algorithm. (OOD) OVERLOADED ORTH. DRAWING(Adj(G) , X() ,Y())
1. for each vertex u ∈ V
2. visited[u]← 0
3. for each vertex u ∈ V in increasing order of X-coordinate
4. v ← next(u)
5. while v = nil
6. Draw edge segment from (X(u),Y(u)) to (X(u),Y(v))
7. Draw edge segment from (X(u),Y(v)) to (X(v),Y(v))
8. if getFirst(u)=v OR visited[v]=0
9. New e-point ← (X(u),Y(v))
10. visited[v] ← 1
11. v ← next(v)
12. end

Fig. 2. Two different drawings of a regular degree four graph with 13 vertices and 26
edges. In the left picture an orthogonal grid drawing is depicted, the graph and the
drawing are taken from [4]. While, in the right picture there is an overloaded orthogonal
drawing of the same graph. No compaction was performed to the overloaded orthogonal
drawing.

Theorem 2. Algorithm OOD produces an overloaded orthogonal drawing Γ of
G with vertex coordinates computed by algorithm WDP. Γ has at most n − 1
bends, O(n2) area and is constructed in O(n + m) time.

2.1 Compaction

Compaction is applied as a post-processing step in an overloaded orthogonal
drawing in order to reduce the X- and Y -coordinates. Our compaction follows

248 E.M. Kornaropoulos and I.G. Tollis

the steps of the Algorithm in [4,5]. However since our graphs are not planar,
and therefore we do not have planar embeddings, we need to be extra careful in
order to produce a valid drawing. In this step we allow equality between vertex
coordinates under the following conditions: (a) The compaction is performed
between vertices u, v ∈ V such that there is an edge (u, v)∈ E. (b) Two distinct
vertices cannot coincide in the same point. (c) Compaction on the X- or Y -
coordinates will not be performed if an edge is forced to pass over u or any other
vertex.

3 Clarity and Readability of the Model

In this section we outline some advantages of the overloaded orthogonal model.

•Meaningful relation between vertex coordinates : The weak dominance condition
implies that: if there is a path from u to v then vertex v will appear in the upper
right quadrant of vertex u.

•Works for any pair of topological sortings as X,Y coordinates: Since every pair
of topological sortings respects the weak dominance condition, we can take any
pair of topological sorting as X, Y coordinates.

• Universality of the model : The overloaded orthogonal model does not discrimi-
nate between graphs with maximum degree four, and graphs with higher degree.
Furthermore, it can be efficiently applied to planar and to non-planar graphs.
The overloaded orthogonal model can also be applied to undirected graphs,
given that an st-numbering with various properties can be computed for any
undirected graph [15,16] . An interesting example is presented in Section 5.

• Efficient Visual Confirmation of an Edge: We can visually confirm the exis-
tence of an edge (u, v) by checking if there is an e-point or a bend on point
(X(u), Y (v)). If a compaction is performed u or v could replace the e-point
at the location (X(u), Y (v)). In contrast, in the regular orthogonal model we
would visually follow every outgoing edge of u successively, until we reach v.
Consequently, the size of a graph does not affect the readability of an over-
loaded orthogonal drawing, as we can check if any two vertices are connected by
inspecting only a single point i.e., in O(1) time.

• Efficient Visual Confirmation of Reachability: An interesting extension of this
graph drawing technique occurs when we use the transitive closure of a graph as
input. In that case every possible path along the original directed acyclic graph
G = (V, E) will be represented by an edge in the transitive closure G∗ = (V, E∗).
By applying the overloaded orthogonal model we can check if a vertex v is
reachable from a vertex u by examining point (X(u), Y (v)) in the drawing. As
shown in Figure 3, e-points of the corresponding transitive edges are colored
grey. Notice that there is no e-point at (X(4), Y (9)), despite the fact that the
coordinates of vertex 9 dominate the coordinates of vertex 4. In this context,
crossings indicate the existence of falsely implied paths.

Overloaded Orthogonal Drawings 249

Fig. 3. An overloaded orthogonal drawing of the transitive closure. Reachability of any
pair of vertices u-v can be confirmed by looking at point (X(u), Y (v)). By the the color
of the e-point we can determine if there is an edge or a path between the vertices.

4 Directed Acyclic Graphs

In this section we present several properties and bounds of overloaded orthogonal
drawings for directed acyclic graphs. If X(u) = X(v) and Y (u) = Y (v) for every
pair of vertices u, v ∈ V , then every edge has a ’step’-like form and consequently
produces either a bend or an e-point. Therefore we have:

Lemma 4. Let Γ be an overloaded orthogonal drawing of dag G, where each
vertex is placed in a distinct X, Y coordinate. Then bends(Γ)+ePoints(Γ) = m.

If a compaction is performed on drawing Γ , then the sum bends(Γ)+ePoints(Γ)
would be less than the number of edges. Additionally, every vertex can have at
most one bend on its row. That bend is produced from its direct predecessor
with the lowest X-coordinate. Taking into consideration that sources do not have
incoming edges, we have the following lemma:

Lemma 5. Let Γ be any overloaded orthogonal drawing of a dag G. Let also ns

be the number of sources of G. Then bends(Γ) ≤ n− ns.

The upper bound of the above lemma is tight as shown by the following theorem.

Theorem 3. There exists a family of planar n-vertex graphs Gn, for n ≥ 3,
such that any overloaded orthogonal drawing Γ of Gn requires at least n − 2
bends, and (n− 2)×(n− 2) area.

Proof. (Sketch) Consider the graph Gn shown in Figure 4. Each vertex ui has two
outgoing edges, (ui, ui+2) and (ui, ui+1). The transitive closure of this family of

250 E.M. Kornaropoulos and I.G. Tollis

Fig. 4. An explanatory construction of Theorem 3

graphs is a complete directed acyclic graph, therefore the topological sorting for
this graph is unique. Their drawings admit a single compaction in Y -coordinate
between vertex u1 and vertex u2, and a single compaction in X-coordinate be-
tween vertex un−1 and vertex un. Therefore an overloaded orthogonal drawing
of this family of graphs has optimal area (n− 2)×(n− 2), and has at least n− 2
bends. ��
The dominance drawing technique was applied to reduced planar st-graphs in [5].
If we apply the edge routing technique using the vertex coordinates produced by
the dominance drawing algorithm presented in [5], the drawing has zero bends.

Fig. 5. Proof of Theorem 4. The left picture illustrates the difference between (z1)-case
and (z2)-case. In the right picture there is a drawing of a K3,3 that exists in (z2)-case.

Theorem 4. Given a reduced planar st-graph G = (V, E), an overloaded or-
thogonal drawing Γ with zero bends can be constructed in linear time, O(n).

Proof. (Sketch) Consider a reduced planar st-graph G with vertex coordinates
obtained by the dominance drawing algorithm in [5]. Let an edge (u, w)∈ E such
that it forms a bend that cannot be removed by a compaction. We construct
such a scenario and prove that this edge cannot exist without contradicting the

Overloaded Orthogonal Drawings 251

basic assumptions. Vertex u and vertex v cannot be consecutive in X-coordinate.
Thus there must be a vertex v such that X(u) < X(v) ≤ X(w). Let also a vertex
z such that Y (u) < Y (z) < Y (w). Vertex z cannot be between u and w in X-
coordinate due to the fact that G is reduced. Thus, we have two different cases:
(z1) where X(s) < X(z) < X(u) and (z2) where X(w) < X(z) < X(t). Case
(z1) will conclude that edge (u, w) is transitive. Case (z2) will conclude that
there is a graph homeomorphic to K3,3 and consequently G is not planar, a
contradiction in both cases. ��

Fig. 6. In the left figure we have the straight-line dominance drawing of a reduced
planar st-graph as described in [4]. In the right figure there is a compacted overloaded
orthogonal drawing of the same graph with zero bends.

5 Other Graphs

In this section the overloaded orthogonal model is going to be extended to draw
undirected graphs and directed graphs with cycles. Let G be an undirected graph
and s, t be two distinct vertices of G. If the graph is planar we first construct a
planar embedding and proceed, otherwise we ignore that step. An st-numbering
for G is a numbering v1, v2, . . . , vn of the vertices of G such that s = v1, t = vn,
and every vertex vj , other than s and t, is adjacent to at least two vertices vi

and vk with i < j < k. Such a numbering can be constructed in linear time [8].
Given an st-numbering we orient the edges of E from the low-numbered vertex
to the high numbered one. We name the resulting digraph D. The algorithm
for st-orientation proposed in [15,16], parametrically controls the length of the
longest path of the final st-oriented graph. As it was expected, different values of
parameter p yield overloaded orthogonal drawings with different characteristics.
We can apply the vertex placement algorithm to D, and then route the edges
as described in Algorithm OOD. A compaction step can also be performed.
As shown in Figure 7, the st-orientation with p = 0 results in an overloaded
orthogonal drawing with area 19×19, while the st-orientation with p = 1 results
in an overloaded orthogonal drawing with optimal area 2×19. We are conducting

252 E.M. Kornaropoulos and I.G. Tollis

an experimental study in order to investigate the influence of an st-numbering
of G, on the area of its overloaded orthogonal drawing Γ .

If G is a directed graph with cycles one could find a minimal feedback arc
set F [4] and obtain an uncompacted overloaded orthogonal drawing of G− F .
Complete the drawing by routing each edge (u, v) ∈ F as follows: vertical seg-
ment from (X(u), Y (u)) to (X(u), Y (v)), horizontal segment from (X(u), Y (v))
to (X(v), Y (v)), placing e-points where necessary. Notice that rows and columns
used for routing these edges, have not been used to route the edges of G− F .

Fig. 7. Two overloaded orthogonal drawings of an originally undirected planar graph
are shown. Left: the st-orientation was produced by algorithm [15] with parameter
p = 0, right: same algorithm with parameter p = 1.

6 Conclusion and Open Problems

We presented algorithms that produce overloaded orthogonal drawings with at
most n − 1 bends, O(n2) area, they run in linear time O(n + m), and are easy
to implement. An interesting open problem is to find algorithms for weak dom-
inance placement that provide upper bounds on the number of crossings in an
overloaded orthogonal drawing of the transitive closure.

References

1. Bertolazzi, P., Di Battista, G., Didimo, W.: Computing orthogonal drawings with
the minimum number of bends. IEEE Transactions on Computers 49(8), 826–840
(2000)

Overloaded Orthogonal Drawings 253

2. Biedl, T., Kant, G.: A better heuristic for orthogonal graph drawings. Computa-
tional Geometry: Theory and Applications 9(3), 159–180 (1998)

3. Biedl, T.C., Madden, B.P., Tollis, I.G.: The Three-Phase Method: A Unified Ap-
proach to Orthogonal Graph Drawing. Int. J. Comput. Geometry Appl. 10(6),
553–580 (2000)

4. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of graphs. Prentice - Hall, New Jersey (1998)

5. Di Battista, G., Tamassia, R., Tollis, I.G.: Area Requirement and Symmetry Dis-
play of Planar Upward Drawings. Discrete and Comput. Geom. 7(4), 381–401
(1992)

6. Dickerson, M., Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent Drawings:
Vizualizing Non-planar Diagrams in a Planar Way. Journal of Graph Algorithms
and Applications 9(1), 31–52 (2005)

7. Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent Layered Drawings. Algorith-
mica 47(4), 439–452 (2007)

8. Even, S., Tarjan, R.: Computing an st-numbering. Theoretical Computer Sci-
ence 2(3), 339–344 (1976)

9. Fößmeier, U., Kaufmann, M.: Algorithms and Area Bounds for Nonplanar Orthog-
onal Drawings. In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 134–145.
Springer, Heidelberg (1997)

10. Kornaropoulos, E.M., Tollis, I.G.: Weak Dominance Drawings and Linear Exten-
sion Diameter, arXiv:1108.1439 (2011)

11. Lengauer, T.: Combinatorial algorithms for integrated circuit layout. John Wiley
& Sons, Inc., New York (1990)

12. Nomura, K., Tayu, S., Ueno, S.: On the Orthogonal Drawing of Outerplanar
Graphs. Journal IEICE Transactions on Fundamentals of Electronics, Commu-
nications and Computer Sciences E88-A(6), 1583–1588 (2005)

13. Papakostas, A., Tollis, I.G.: Efficient Orthogonal Drawings of High Degree Graphs.
Algorithmica 26(1), 100–125 (2000)

14. Papakostas, A., Tollis, I.G.: Algorithms for Area-Efficient Orthogonal Drawings.
Computational Geometry Theory and Applications 9(1-2), 83–110 (1998)

15. Papamanthou, C., Tollis, I.G.: Algorithms for computing a parameterized st-
orientation. Theoretical Computer Science 408(2-3), 224–240 (2008)

16. Papamanthou, C., Tollis, I.G.: Applications of Parameterized st-Orientations. Jour-
nal of Graph Algorithms and Applications 14(2), 337–365 (2010)

17. Rahman, S., Nishizeki, T., Naznin, M.: Orthogonal Drawings of Plane Graphs
Without Bends. Journal of Graph Algorithms and Applications 7(4), 335–362
(2003)

18. Storer, J.: On minimal node-cost planar embeddings. Networks 14(2), 181–212
(1984)

19. Tamassia, R.: On embedding a graph in the grid with the minimum number of
bends. SIAM J. Computing 16(3), 421–444 (1987)

20. Tamassia, R., Tollis, I.G.: Planar Grid Embeddings in Linear Time. IEEE Trans-
actions on Circuits and Systems 36(9), 1230–1234 (1989)

21. Vismara, L., Di Battista, G., Garg, A., Liotta, G., Tamassia, R., Vargiu, F.:
Experimental studies on graph drawing algorithms. Software: Practice and
Experience 30(11), 1235–1284 (2000)

	Overloaded Orthogonal Drawings
	Introduction
	Overloaded Orthogonal Framework
	Compaction

	Clarity and Readability of the Model
	Directed Acyclic Graphs
	Other Graphs
	Conclusion and Open Problems

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

