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Abstract

We analyze the heat transfer in the flow of two viscous incompressible immiscible fluids in a channel with porous beds
bounded by differentially heated rigid plates by using Galerkin’s finite element method. Solutions of the governing
equations have been obtained by dividing the flow region into four zones applying appropriate matching conditions. The
velocity, temperature and the shear stresses, Nusselt numbers are evaluated using finite element analysis and their behavior
is discussed for variations in the governing parameters.

Keywords: Convection flow, Heat transfer, Permeable bed, Quadratic elements, Global matrix, Darcy parameter, Brinkman
number

1. Introduction

A system consisting partially of a fluid saturated porous material is known as a composite system, and the convection
flow and heat transfer in composite systems form an important class of problems. The convection phenomenon in these
systems is usually affected by the interaction of the temperature and flow fields in the porous spaces and the open spaces.
The importance of this class of problems is justified both in fundamental and in practical sense with reference to practical
thermal engineering applications which stand to benefit, if a better understanding of heat and the fluid flow processes in
composite systems is acquired. The following examples are cited; fibrous and granular insulation which occupies only
a part of the space between a hot and a cold boundary, fault zones in geothermal systems, cooling of stored grain etc.
The heat transfer in flow past a permeable bed was investigated by (Vidyanidhi, V. et al, 1970), (Vidyanidhi, V. et al,
1977), (Rudraiah, N. et al,1977) and (Rudraiah, N. et al, 1976), taking the dissipation effect in the energy equation. Their
configuration consisted of a fluid bounded below by a permeable bed. The rate of heat transfer between the fluid and
the permeable surface was discussed, making use of slip temperature condition at the interface. (Bhargava, S.K. et al,
1989) investigated the heat transfer in the generalized couette flow of two viscous, inviscid, immiscible fluids bounded
by permeable bed making use of Brinkman model (Brinkman, H.C., 1947). Analytical solutions were obtained for the
velocity and temperature distribution by dividing the flow region in four zones and applying the appropriate matching
conditions.
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Heat transfer in the steady flow of immiscible viscous fluids in a porous channel assumes importance because of some
important applications, like in ground water hydrology etc. (Sacheti, N.C. et al, 1983) have discussed heat transfer in
steady flow of immiscible fluids in a channel bounded below by a naturally permeable wall of low permeability. (Sunil,
K.B. and Sacheti, N.C., 1989) investigated heat transfer in generalized couette flow of two immiscible Newtonian fluids
bounded below by a porous medium of moderate permeability. The adjacent flow of two immiscible fluids between porous
beds was investigated via the finite element method by (S. Rao Gunakala et al, 2004).

In this paper, we make use of finite element analysis (Zienkiewicz, O. et al, 2005), (Reddy, J.N., 2005) to discuss the heat
transfer in the flow of viscous, incompressible immiscible fluids in a channel with porous beds bounded by differentially
heated rigid plates. This is an extension of the work done by (S.Rao Gunakala et al, 2004).The geometry of the interface
of the immiscible fluids as well as the interface between each fluid and the adjacent porous bed are assumed to be known
for the purpose of our analysis. The clean fluid regions are governed by Navier-Stokes equations, while the Brinkman
model is used for the fluid through porous beds. The Galerkin finite element analysis with line elements is used to obtain
quadratic polynomial approximation solutions for the governing equations. The flow region is divided into four zones
and the global matrix equations are obtained, applying appropriate inter-element continuity and boundary conditions. The
velocity, temperature at different levels, shear stresses and Nusselt numbers on the impermeable boundary are evaluated,
and their behavior is discussed for variations in the governing parameters.

2. Formulation

Consider the heat transfer in flow of two immiscible fluids in a horizontal channel of height 2h, bounded by permeable
beds of different permeabilities. The outer impermeable walls are maintained at constant temperature. The velocity and
temperature field in the porous and clean regions of the channel are assumed to be fully developed. There is a coupling
between temperature and velocity in all the zones. The flow takes place under the influence of a constant pressure gradient
on each fluid. The entire flow configuration is divided into four zones. The flow geometry described in Figure 1. Zone
– I (−h ≤ y ≤ 0) corresponds to a region of clean fluid with viscosity μ1 bounded below by the porous bed, Zone – III

(− (s + h) ≤ y ≤ h) with permeability k1, y = −h is the nominal surface separating the clean fluid and porous bed and s

is the thickness of permeable material. Zone – II (0 ≤ y ≤ h) contains the flow of clean fluid with viscosity μ2 (< μ1) ,
bounded above by the porous bed Zone – IV (h ≤ y ≤ s + h) whose permeability is k2, and is separated by the nominal
surface y = h.

In the absence of an extraneous force, the following are the equations governing each zone and respective conditions
including the interface conditions.

Zone – I :
dV1

dx
= 0

μ1
d2V1

dy2 =
dp1

dx
(1)

K1
d2T1

dy2 + μ1

(
dV1

dy

)2
= 0 (2)

Zone – II :
dV2

dx
= 0

μ2
d2V2

dy2 =
dp2

dx
(3)

K2
d2T2

dy2 + μ2

(
dV2

dy

)2
= 0 (4)

Zone – III :
dV p1

dx
= 0

μ1
d2V p1

dy2 − μ1

k1
V p1 =

dp1

dx
(5)

K1
d2T p1

dy2 + μ1

(
dV p1

dy

)2
+
μ1

k1
(V p1)2 = 0 (6)

Zone – IV :
dV p2

dx
= 0
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μ2
d2V p2

dy2 − μ2

k2
V p2 =

dp2

dx
(7)

K2
d2T p2

dy2 + μ2

(
dV p2

dy

)2
+
μ2

k2
(V p2)2 = 0 (8)

Where V1, V2, V p1 , V p2 are velocities in Zones I, II, III and IV respectively. T1, T2, T p1 , T p2 are the corresponding
temperatures. K1 and K2 are thermal conductivities of the lower and upper clean fluids respectively.

The interfacial continuity conditions are

V1 = V p1;
dV1

dy
=

dV p1

dy
&

dT1

dy
=

dT p1

dy
; T1 = T p1 at y = −h

V2 = V p2;
dV2

dy
=

dV p2

dy
&

dT2

dy
=

dT p2

dy
; T2 = T p2 at y = +h

V1 = V2 & μ1
dV1

dy
= μ2

dV2

dy

T1 = T2 & K1
dT1

dy
= K2

dT2

dy

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭ ; y = 0 (9)

The boundary condition on the impermeable wall is given by

V p1 = 0 & T1 = TL (constant) ; y = − (h + s)

V p2 = 0 & T2 = Tu (constant) ; y = + (h + s) (10)

We define the following nondimensional variables

V∗
1 =

V1

U
, V∗

2 =
V2

U
, V p∗

1 =
V p1

U
, V p∗

2 =
V p2

U

P∗
1 =

p1

ρ1U2 , P∗
2 =

p2

ρ2U2 , x∗ =
x

h
, y∗ =

y

h
, τ∗ =

s

h

θ∗1 =
T1 − TL

TL − Tu

, θ∗2 =
T2 − Tu

TL − Tu

, θp∗
1 =

T p1 − TL

TL − Tu

, θp∗
2 =

T p2 − Tu

TL − Tu

(11)

where U is the interface velocity, and ρ1, ρ2 are the densities of the lower and upper immiscible fluids respectively.

Making use of these nondimensional variables, the nondimensional equations corresponding to each zone are (dropping
asterisks)

Zone – I :
d2V1

dy2 − R1
dp1

dx
= 0 (12)

d2θ1

dy2 − Br1

(
dV1

dy

)2
= 0 (13)

Zone – II :
d2V2

dy2 − R2
dp2

dx
= 0 (14)

d2θ2

dy2 − Br2

(
dV2

dy

)2
= 0 (15)

Zone – III :
d2V p1

dy2 − D1V p1 − R1
dp1

dx
= 0 (16)

d2θp1

dy2 + Br1

(
dV p1

dy

)2
+ Br1D1V p2

1 = 0 (17)

Zone – IV :
d2V p2

dy2 − D2V p2 − R2
dp2

dx
= 0 (18)

d2θp2

dy2 + Br2

(
dV p2

dy

)2
+ Br2D2V p2

2 = 0 (19)
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where
R1 =

ρ1Uh

μ1
, R2 =

ρ2Uh

μ2

are Reynolds numbers in zones I & II respectively

D1 =
h2

k1
, D2 =

h2

k2

are Darcy parameters numbers in zones III & IV respectively

Bri =
μiU

2

K1 (TL − Tu)
, i = 1, 2

is the Brinkman number, and

P1 = R1
dp1

dx
, P2 = R2

dp2

dx

The interfacial conditions and boundary conditions in nondimensional form are

V1 = V p1,
dV1

dy
=

dV p1

dy
&

dT1

dy
=

dT p1

dy
, θ1 = θp1; y = −1 (20)

V2 = V p2,
dV2

dy
=

dV p2

dy
&

dT2

dy
=

dT p2

dy
, θ2 = θp2; y = +1

V1 = V2 &
dV1

dy
= μ

dV2

dy
, where μ =

μ2

μ1

θ1 = θ2 &
dθ1

dy
= K

dθ2

dy
, where K =

K2

K1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭ ; y = 0 (21)

The boundary conditions on the impermeable wall in nondimensional form are

V p1 = 0 & θ1 = θL (constant) ; y = − (1 + τ) (22)
V p2 = 0 & θ2 = θu (constant) ; y = + (1 + τ)

2.1 Shear Stress and Nusselt Number

The Shear stress on impermeable boundaries in nondimensional form is

Γ1 =

(
dV p1

dy

)
at y = − (1 + τ) and Γ2 =

(
dV p2

dy

)
at y = (1 + τ) ,

The rate of heat transfer (Nusselt number) on impermeable boundaries in nondimensional form are

Nu1 =
dθp1

dy
at y = − (1 + τ) and Nu2 =

dθp2

dy
at y = (1 + τ)

3. Finite Element Analysis

According to (Zienkiewicz, O. et al, 2005) and (Reddy, J.N., 2005), the underlying mathematical basis of the finite
element method first lies with the classical Rayleigh-Ritz and variational calculus procedures. These theories explained
why the finite element method worked well for the class of problems in which variational statements could be obtained
(e.g., linear diffusion type problems). However, as interest grew in the application of the finite element method to more
types of problems, the use of classical theory to describe such problems became limited and could not be applied, e.g., for
fluid-related problems. Extension of the mathematical basis to non-linear problems was achieved through the method of
weighted residuals (MWR), originally conceived by Galerkin in the early 20th century. The MWR was found to provide
the ideal theoretical basis for a much wider variety of problems as opposed to the Rayleigh-Ritz method. Basically, the
method requires the governing differential equation to be multiplied by a set of predetermined weights and the resulting
product integrated over space; this integral is required to vanish. Technically, Galerkin’s method is a part of the general
MWR procedure, since various types of weights can be utilized; in the case of Galerkin’s method, the weights are chosen
to be the same as the functions used to define the unknown variables. The finite element method now employs Galerkin’s
method to establish the approximations to the governing equations

We now apply the Galerkin finite element method to the differential equations (12) to (19), while dividing the flow region
into line elements. The following procedure leads to the finite element equations for velocity and temperature in each
zone.
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Zone - I

If VK
1 and θK

1 are the approximation functions of V1 and θ1 in the element ek, we define the errors (residual)

EK
1 = − d

dy

⎛⎜⎜⎜⎜⎝dVK
1

dy

⎞⎟⎟⎟⎟⎠ + P1 (23)

EK
1T = − d

dy

⎛⎜⎜⎜⎜⎝dθK
1

dy

⎞⎟⎟⎟⎟⎠ + Br1

⎛⎜⎜⎜⎜⎝dVK
1

dy

⎞⎟⎟⎟⎟⎠2 (24)

Where VK
1 and θK

1 are linear combinations of Lagrange polynomials in terms of the respective local nodal values

VK
1 =
∑

j

uK
j Ψ

K
j , θK

1 =
∑

j

tK
j Ψ

K
j

Where ΨK′
j s are shape functions which are given in appendix I.

These errors (23-24) are orthogonal to the weight function over the domain eK . Under the Galerkin method, we choose
the approximation functions as the weight functions. Multiplying both sides of (12) and (13) by the weight functions and
integrating over the domain eK we obtain∫

eK

EK
1 Ψ

K
j dy = 0 and

∫
eK

EK
1T Ψ

K
j dy = 0

Integrating by parts, these line integrals are∫
eK

⎡⎢⎢⎢⎢⎢⎣dVK
1

dy

dΨK
j

dy
+ P1Ψ

K
j

⎤⎥⎥⎥⎥⎥⎦ dy =

∫
eK

ΨK
j

dVK
1

dy
dy (25)

∫
eK

⎡⎢⎢⎢⎢⎢⎢⎣dθK
1

dy

dΨK
j

dy
+ Br1

⎛⎜⎜⎜⎜⎝dVK
1

dy

⎞⎟⎟⎟⎟⎠2 ΨK
j

⎤⎥⎥⎥⎥⎥⎥⎦ dy =

∫
eK

ΨK
j

dVK
1

dy
dy (26)

Substituting VK
1 and θK

1 in (25) and (26) respectively, we get

n∑
i = 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣uK
i

∫
eK

dΨK
j

dy

dΨK
i

dy
dy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ + P1

∫
eK

ΨK
j dy = Q1K

j (27)

n∑
i = 1

tK
i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
∫
eK

dΨK
j

dy

dΨK
i

dy
dy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ + Br1

∫
eK

ΨK
j

⎛⎜⎜⎜⎜⎝dVK
1

dy

⎞⎟⎟⎟⎟⎠2 dy = Q1K
jθ (28)

where

Q1K
j =

∫
eK

ΨK
j

dVK
1

dy
dy; Q1K

jθ =

∫
eK

ΨK
j

dθK
1

dy
dy

Equations (27-28) are the local (stiffness) matrices of the Zone - I. We can implement the same procedure on Zones - II,
III & IV.

We make use of quadratic polynomial approximations, and divide each zone into mi (i = 1, 2, 3) quadratic elements. For
computational purposes, we choose two quadratic elements in each zone to assemble the corresponding stiffness matrices
in each zone, making use of inter-element continuity, boundary conditions and equilibrium conditions of the secondary
variables to obtain the 17 × 17 global matrix in terms of the global nodal values Ui (1 ≤ i ≤ 16). Details of the stiffness
matrices for each zone are omitted herein for brevity. The corresponding global matrix with respect to the velocity and
temperature are discussed below.

Making use of the boundary conditions for the velocity in terms of the nodal values, we obtain

U3
1 = U1 = 0 & U4

5 = U17 = 0

The interfacial velocity conditions in terms of the nodal values are given by

U3
5 = U1

1 = U5, U1
5 = U2

1 = U9, U2
5 = U4

1 = U12
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Equilibrium conditions of the secondary variables

Q11
1 + Q31

2 = 0; Q12
3 + U21

1 = 0; Q23
3 + Q41

1 = 0

are utilized to assemble the matrix equations for the four zones. We obtain the global nodes Ui (i = 2...16) , and Q31
1 & Q42

3
reduces to a 17 × 17 matrix equation. This 17 × 17 global matrix equation with respect to the velocity can be partitioned
in the form [

E11 E12

E21 E22

] [
Δ1

U

Δ2
U

]
=

[
F1

U

F2
U

]
(29)

where Δ1
U , Δ

2
U , F1

U , F2
U are column matrices

Δ1
U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
U2
U3
U4
U5
U6
U7
U8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; Δ1

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U9
U10
U11
U12
U13
U14
U15
U16
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; F1

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P1 τ
12 + Q1

1
−4P1 τ

12−4P1 τ
12−4P1 τ
12

P1
12 (τ + 1)

−4P1
12−4P1
12−4P1
12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; F2

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
12 (P1 + P2)

−4P2
12−4P2
12−4P2
12

− P2
12 (1 + τ)
−4P2 τ

12−4P2 τ
12−4P2 τ
12−4P2 τ

12 + Q42
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where P1 = R1

dp1

dx
, P2 = R2

dp2

dx
; R1 & R2 are Reynold’s numbers in Zone -I and II respectively.

E11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1 p2 p3 0 0 0 0 0
p2 p4 p2 0 0 0 0 0
p3 p2 2p1 p2 p3 0 0 0
0 0 p3 p4 p2 0 0 0
0 0 0 p3 p3 p1 +

14
3 − 16

2
2
3

0 0 0 0 − 16
3

32
3 − 16

3 0
0 0 0 0 2

3 − 16
3

28
3 − 16

3
0 0 0 0 0 0 − 16

3
32
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
E12, E21 and E22 are similar 8 × 9 and 9 × 9 matrices respectively.

p1 =
14
3τ
+

D14τ
60

; p2 = −16
3τ
+

D12τ
60

; p3 =
2
3τ

− D1τ

60
and p4 =

32
3τ
+

D116τ
60

q1 =
14
3τ
+

D24τ
60

; q2 = −16
3τ
+

D22τ
60

; q3 =
2
3τ

− D2τ

60
and q4 =

32
3τ
+

D216τ
60

where D1, D2 are the Darcy parameters in Zones III & IV respectively. Solving the matrix equation (29), we obtain the
solution for Ui (i = 2, ...16).

The finite element solutions for the velocity with respect to the four zones are

V p1 ≈ U1Ψ
1
1 + U2Ψ

1
2 + U3Ψ

1
3, − (1 + τ) ≤ y ≤ − (1 + τ/2)

U3Ψ
2
1 + U4Ψ

2
2 + U5Ψ

2
3, − (1 + τ/2) ≤ y ≤ −1

V1 ≈ U5Ψ
3
1 + U6Ψ

3
2 + U7Ψ

3
3, − 1 ≤ y ≤ −1/2

U7Ψ
4
1 + U8Ψ

4
2 + U9Ψ

4
3, − 1/2 ≤ y ≤ 0

V2 ≈ U9Ψ
5
1 + U10Ψ

5
2 + U11Ψ

5
3, 0 ≤ y ≤ −1/2

U11Ψ
6
1 + U12Ψ

6
2 + U13Ψ

6
3, 1/2 ≤ y ≤ 1

V p2 ≈ U13Ψ
7
1 + U14Ψ

7
2 + U15Ψ

7
3, 1 ≤ y ≤ − (1 + τ/2)

U15Ψ
8
1 + U16Ψ

8
2 + U17Ψ

8
3, − (1 + τ/2) ≤ y ≤ (1 + τ) (30)

Ψ1
1 etc. are shape functions under a quadratic polynomial approximation, the details of which are provided in appendix 1.

The boundary conditions for the temperature in terms of the nodal values are

θ1
1 = θ1 & θ4

5 = θ17
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The interfacial temperature conditions in terms of the nodal values are

θ3
5 = θ

1
1 = θ5; θ1

5 = θ
2
1 = θ9; θ2

5 = θ
4
1 = θ12

Equilibrium conditions of the secondary variables at the nodes

Q11
1θ + Q31

2θ = 0; Q12
3θ + Q21

1θ = 0; Q23
3T + Q41

1T = 0

Making use of the aforementioned conditions and proceeding in a similar fashion, the 17 × 17 matrix equations in terms
of nodal values of temperature θi (i = 2, ..., 16) and Q31

1θ & Q42
3θ are partitioned.[

G11 G12

G21 G22

] [
Δ1
θ

Δ2
θ

]
=

[
F1
θ

F2
θ

]
(31)

where Δ1
θ ,Δ

2
θ , F

1
θ , F

2
θ are column matrices given by

Δ1
θ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ1
θ2
θ3
θ4
θ5
θ6
θ7
θ8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; Δ2

θ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ9
θ10
θ11
θ12
θ13
θ14
θ15
θ16
θu

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
;

G11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

14
3τ

−16
3τ

2
3τ 0 0 0 0 0

−16
3τ

32
3τ

−16
3τ 0 0 0 0 0

2
3τ

−16
3τ

28
3τ

−16
3τ

2
3τ 0 0 0

0 0 −16
3τ

32
3τ

−16
3τ 0 0 0

0 0 0 2
3τ

−16
3τ

14
3τ +

14
3

−16
3

2
3

0 0 0 0 −16
3

32
2

−16
3 0

0 0 0 0 2
3

−16
3

28
3

−16
3

0 0 0 0 0 0 − 16
3

32
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
G21, G12 and G22 are similar 8 × 9 and 9 × 9 matrices respectively

F1
θ = Br1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
U2

2

(
16
5τ +

D12τ
105

)
+ U2

3

(
−1
5τ +

D1τ
280

)]
+ Q31

1θ[
U2

2

(
64
15τ +

D18τ
35

)
+ U2

3

(
12
5τ +

D1τ
42

)][
U2

2

(
16
5τ +

D12τ
105

)
+ U2

3

(
74
15τ +

D126τ
280

)]
+[

U2
4

(
16
5τ +

D18τ
35

)
+ U2

5

(
−1
5τ − D1τ

280

)][
U2

3

(
12
5τ +

D1τ
42

)
+ U2

4

(
64
15τ +

D12τ
105

)
+ U2

5

(
12
5τ +

D1τ
42

)][
U2

3

(
−1
5τ − D1τ

280

)
+ U2

4

(
16
15τ +

D12τ
105

)
+ U2

5

(
37
5τ +

D113τ
280

)]
+[

U2
5

(
37
5 +

13
280

)
+ 3U2

6 (3.22) − U2
7 (0.204)

][
U2

5 (2.42) + U2
6 (4.5) + U2

7 (2.42)
][

U2
5 (−0.204) + U2

6 (3.22) + U2
7 (5.02) + U2

8 (3.22) + U2
9 (−0.204)

][
U2

7 (2.42) + U2
8 (4.5) + U2

9 (2.42)
]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F2
θ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Br2

[
U2

7 (−0.204) + U2
8 (3.22) + U2

9 (5.02) + U2
10 (3.22) + U2

11 (−0.204)
]

Br2

[
U2

9 (2.42) + U2
10 (4.5) + U2

11(2.42)
]

Br2

[
U2

9 (−0.204) + U2
10 (3.22) + U2

11 (5.02) + U2
12 (3.22) + U2

13 (−0.204)
]

Br2

[
U2

11 (2.42) + U2
12 (4.5) + U2

13 (2.42)
]

Br2

[
U2

11 (−0.204) + U2
12 (3.22) + U2

13

(
2.51 + 37

15τ +
D113τ

280

)]
+

Br2

[
U2

14

(
16
5τ +

D22τ
105

)
+ U2

15

(
−1
5τ − D2τ

280

)]
Br2

[
U2

13

(
12
15τ +

D2τ
42

)
+ U2

14

(
64
15τ +

D28τ
35

)
+ U2

15

(
12
15τ +

D2τ
42

)]
Br2

[
U2

13

(
− 1

5s
+ D2 s

280

)
+ U2

14

(
16
5τ +

D22τ
105

)]
+

Br2

[
U2

15

(
74
15τ +

D226τ
280

)
+ U2

16

(
16
5τ +

D22τ
105

)]
Br2

[
U2

16

(
12
5τ +

D28τ
35

)
+ U2

16

(
69
15τ +

D28τ
35

)]
Br2

[
U2

15

(
−1
5τ +

D2τ
280

)
+ U2

16

(
16
5τ +

D22τ
105

)]
+ Q42

3θ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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where Br1, Br2 are Brinkman numbers in Zone-III & IV respectively. Solving the matrix equation (31) we obtain the
solution for θi (i = 2, ..., 16)

The finite element solutions for the temperature of the four zones

θp1 ≈ θ1Ψ
1
1 + θ2Ψ

1
2 + θ3Ψ

1
3, − (1 + τ) ≤ y ≤ − (1 + τ/2)

θ3Ψ
2
1 + θ4Ψ

2
2 + θ5Ψ

2
3, − (1 + τ/2) ≤ y ≤ −1

θ1 ≈ θ5Ψ
3
1 + θ6Ψ

3
2 + θ7Ψ

3
3, − 1 ≤ y ≤ −1/2

θ7Ψ
4
1 + θ8Ψ

4
2 + θ9Ψ

4
3, − 1/2 ≤ y ≤ 0

V2 ≈ θ9Ψ
5
1 + θ10Ψ

5
2 + θ11Ψ

5
3, 0 ≤ y ≤ −1/2

θ11Ψ
6
1 + θ12Ψ

6
2 + θ13Ψ

6
3, 1/2 ≤ y ≤ 1

V p2 ≈ θ13Ψ
7
1 + θ14Ψ

7
2 + θ15Ψ

7
3, 1 ≤ y ≤ − (1 + τ/2)

θ15Ψ
8
1 + θ16Ψ

8
2 + θ17Ψ

8
3, − (1 + τ/2) ≤ y ≤ (1 + τ) (32)

Ψ1
1 etc. are shape functions under the quadratic polynomial approximation, the details of which are given in appendix I.

4. Discussion

The velocity, temperature are computationally evaluated and the respective profiles in each zone are plotted in Figures (2)–
(53) for variations in the governing parameters D1, D2, R1, R2, Br1 and Br2. The stresses on the impermeable boundaries
and the corresponding rate of heat transfer (Nusselt Number) have been evaluated and summarized in Tables (1)-(4). It
is interesting to note that the behavior of the velocity and temperature in case of their porous beds has features different
from the case of thick porous beds.

The behavior of velocity, with reference to the variation in permeability of the upper and lower porous beds, may be
observed from Figures (10) – (29). When the permeability of upper porous bed corresponds to a Darcy parameter D2 <
104, any increase in the Darcy parameter D1 in the lower porous bed reduces the velocity in entire fluid region. However,
for D2 > 104, any increase in D1 reduces the velocity in lower half of the fluid region while enhancing the upper half
of the fluid region. Likewise, by maintaining the permeability of the lower porous bed at D1 ∼ 104, we see that a lower
permeability in upper porous bed creates a higher velocity in the entire fluid region. This is so except at the level y = −1.05,
where the velocity transitions from positive to negative. We also observe that by increasing the Darcy parameter in the
upper porous bed to D2 > 2 × 104, the velocity in the fluid region slightly depreciates at all corresponding points while
remaining invariant in the upper porous bed. The velocity in all four zones is augmented with an increase in the Reynolds
numbers relative to both of the immiscible regions, as seen in Figures (10)–(25). We also observe that, in general, the
velocity in the permeable beds reduces with a decrease in the permeability of the beds. This is depicted in Figures (14–19,
22–25).

The temperature properties are shown in Figures (26)–(53) for variations in the governing parameters. We find that the
temperature increases with increasing D1 but decreases with increasing D2 in the clean fluid zones (Figures 26 – 44). In
the porous beds, with reference to D1, the behavior in lower porous bed contrasts with that in upper porous bed. Also the
thicknesses of the beds play a significant role on the temperature (Figures 43–53). We may also note that the influence
of the temperature with reference to D2 on the upper porous bed is similar to that of D2 on the lower porous bed. The
temperature in clear fluids as well as porous beds increases with increasing Br1 and Br2, as seen in Figures (32,46,47,40).

The stresses corresponding to variations in the Darcy parameters and Reynolds number are evaluated for different thick-
nesses of the porous beds (See Tables 1 and 2). We observe that the stresses on the lower and upper plates diminish if
the permeability of the porous beds bounded by these plates decrease. The stresses increase with increasing Reynolds
numbers corresponding to either of the immiscible fluids.

The rate of heat transfer on the boundary plates for variations in D1, D2, R1, R2, Br1 and Br2 are presented in Tables 3 and
4. The Brinkman numbers Br1 and Br2 indicate the extent to which the viscous heating is important relative to the heat
flow resulting from the imposed temperature difference. We find that the Nusselt numbers Nu1 and Nu2 depend on the
thickness of the porous bed. It is interesting to note that in case of thick porous beds, Nu1 and Nu2 increase with increasing
D1 but decrease with increasing D2. However in case of thin porous beds, Nu1 and Nu2 decrease with increasing D1 or
D2. Nu1 or Nu2 decrease with increasing Reynolds number R1 or R2 on both boundaries, and increases with increasing
Brinkman numbers Br1 or Br2.
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Table 1. Shear Stress (Γ1) at − (1 + τ)

τ I II III IV V VI VII VIII IX X

0.20 17.25 16.07 11.31 14.23 12.68 14.05 17.33 20.25 24.54 18.34
0.40 −12.17 −13.78 −8.97 −10.57 −10.41 −11.41 −10.89 −12.50 −15.54 −14.89
0.50 −11.07 −10.68 −4.12 −7.60 −3.41 −2.71 −15.96 −19.44 −22.20 −5.47
0.60 −10.07 −9.68 −2.98 −5.50 −2.15 −1.85 −13.65 −18.22 −21.50 −4.48

I II III IV V VI VII VIII IX X

D1 5 × 103 7 × 103 104 104 103 104 104 104 103 103

D2 103 104 5 × 103 7 × 103 7 × 103 7 × 103 7 × 103 7 × 103 7 × 103 7 × 103

R1 20 20 20 20 20 30 30 30 30 30
R2 30 30 30 30 30 30 20 40 40 50

Table 2. Shear Stress (Γ2) at (1 + τ)

τ I II III IV V VI VII VIII IX X

0.20 −28.83 −33.58 −22.35 −23.09 −26.06 −29.77 −26.15 −29.89 −37.35 −37.23
0.40 −210.64 27.80 9.31 15.48 8.56 7.80 29.31 35.48 40.89 13.21
0.50 134.34 182.17 38.69 86.52 24.45 10.21 210.65 258.47 292.05 43.79
0.60 323.15 418.16 133.12 228.14 118.90 104.68 446.60 541.61 622.41 185.47

I II III IV V VI VII VIII IX X

D1 5 × 103 7 × 103 104 104 103 104 104 104 103 103

D2 103 104 5 × 103 7 × 103 7 × 103 7 × 103 7 × 103 7 × 103 7 × 103 7 × 103

R1 20 20 20 20 20 30 30 30 30 30
R2 30 30 30 30 30 30 20 40 40 50

Table 3. Nusselt Number NU1 at − (1 + τ)

τ I II III IV V VI VII VIII IX

0.20 −150.90 −78.30 72.89 −10.40 249.10 −479.20 56.74 92.50 −589.40
0.40 893.45 766.62 551.45 372.78 176.56 354.32 418.52 595.45 675.48
0.50 628.12 864.15 621.32 482.41 286.32 456.96 618.42 762.32 865.32
0.60 782.23 625.78 864.56 622.21 456.28 600.78 812.67 915.56 965.56

I II III IV V VI VII VIII IX

D1 5 × 103 7 × 103 104 104 103 103 103 103 103

D2 103 104 5 × 103 7 × 103 7 × 103 7 × 103 7 × 103 7 × 103 7 × 103

R1 20 20 20 20 30 30 30 30 30
R2 30 30 30 30 30 20 40 50 50
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Table 4. Nusselt Number NU2 at (1 + τ)

τ I II III IV V VI VII VIII IX

0.20 180.60 −126.10 −395.60 −117.70 21.30 504.20 −231.50 −331.00 480.00
0.40 −339.13 −331.48 −305.38 −209.50 −425.60 956.25 −567.86 −489.00 860.00
0.50 450.41 658.62 438.42 386.27 925.62 1015.21 628.42 562.36 953.00
0.60 628.30 862.48 624.12 586.25 1025.10 1125.20 728.42 685.00 1155.60

I II III IV V VI VII VIII IX

D1 5 × 103 7 × 103 104 104 103 103 103 103 103

D2 103 104 5 × 103 7 × 103 7 × 103 7 × 103 7 × 103 7 × 103 7 × 103

R1 20 20 20 20 30 30 30 30 30
R2 30 30 30 30 30 20 40 50 50

Figure 1. Schematic diagram of the parallel plate channel flow bounded by porous beds with heat transfer

Figure 2. V1 with D1;where τ = 0.20, D2 = 5 × 103, P1 = 50, P2 = 20, Br1 = 0.5, Br2 = 0.5. Legend #I : D1 =

7 × 103; #II : D1 = 104; #III : D1 = 2 × 104; #IV : D1 = 3 × 103; #V : D1 = 4 × 104

Figure 3. V p1 with D1, where τ = 0.20. For legend see Figure 2
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Figure 4. V2 with D1 when τ = 0.20. For legend see Figure 2

Figure 5. V p2 with D1 when τ = 0.20. For legend see Figure 2

Figure 6. V1 with D2 when τ = 0.20, D1 = 104, P1 = 40, P2 = 20, Br1 = 0.5, Br2 = 0.5. Legend #I : D2 = 3 × 103;
#II : D2 = 5 × 103; #III : D2 = 7 × 104; #IV : D2 = 104; #V : D2 = 2 × 104.

Figure 7. V p1 with D2 when τ = 0.20. For legend see Figure 6
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Figure 8. V2 with D2 when τ = 0.20. For legend see Figure 6

Figure 9. V p2 with D2 when τ = 0.20. For legend see Figure 6

Figure 10. V1 with P1 when τ = 0.20, D1 = 104, D2 = 7 × 103, P2 = 20, Br1 = 0.5. Legend #I : P1 = 10; #II : P1 = 20;
#III : P1 = 30.

Figure 11. V1 with P1 when τ = 0.20. For legend see Figure 10
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Figure 12. V1 with P2 when τ = 0.20, D1 = 104, D2 = 7 × 103, P1 = 10.0, Br1 = 0.5, Br2 = 0.5. Legend #I : P2 = 10;
#II : P2 = 20; #III : P2 = 30.

Figure 13. V1 with P2 when τ = 0.20. For legend see Figure 12

Figure 14. V1 with P2 when τ = 0.50. For legend see Figure 10

Figure 15. V1 with P2 when τ = 0.50. For legend see Figure 10
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Figure 16. V p1 with P2 when τ = 0.20. For legend see Figure 12

Figure 17. V p1 with P2 when τ = 0.50. For legend see Figure 12

Figure 18. V2 with P1 when τ = 0.20. For legend see Figure 10

Figure 19. V2 with P1 when τ = 0.20. For legend see Figure 10
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Figure 20. V2 with P2 when τ = 0.20. For legend see Figure 12

Figure 21. V2 with P2 when τ = 0.50. For legend see Figure 12

Figure 22. V p2 with P2 when τ = 0.20. For legend see Figure 10

Figure 23. V p2 with P1 when τ = 0.50. For legend see Figure 10

88 ISSN 1916-9795 E-ISSN 1916-9809



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 3, No. 2; May 2011

Figure 24. V p2 with P2 when τ = 0.50. For legend see Figure 12

Figure 25. V p2 with P2 when τ = 0.50. For legend see Figure 12

Figure 26. θ1 with D2 when τ = 0.20, D2 = 7 × 103, P1 = 20, P2 = 30, Br1 = 0.5, Br2 = 0.5. Legend #I : D1 = 5 × 103;
#2 : D1 = 7 × 103; #3 : D1 = 104.

Figure 27. θ1 with D1 when τ = 0.50. For legend see Figure 26
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Figure 28. θ1 with D2 when τ = 0.20, D1 = 7 × 103, P1 = 20, P2 = 30, Br1 = 0.5, Br2 = 0.5. Legend #I : D2 = 104;
#II : D2 = 2 × 104; #III : D2 = 3 × 104.

Figure 29. θ1 with D2 when τ = 0.50. For legend see Figure 28

Figure 30. θ1 with D2 when τ = 0.20, D1 = 104, D2 = 7 × 103, P1 = 10, Br2 = 0.5. Legend #I : P2 = 10; #II : P2 = 20;
#III : P2 = 30.
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Figure 31. θ1 with D2 when τ = 0.50. For legend see Figure 30

Figure 32. θ1 with Br1 when τ = 0.20, D1 = 104, D2 = 7 × 103, P1 = 10, P2 = 20, Br2 = 0.50. Legend #I : B1 = 0.5;
#II : B1 = 0.75; #III : B1 = 1.0.

Figure 33. θ1 with Br1 when τ = 0.50. For legend see Figure 32

Figure 34. θ2 with D1 when τ = 0.20. For legend see Figure 26

Figure 35. θ2 with D1 when τ = 0.5. For legend see Figure 26
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Figure 36. θ2 with D2 when τ = 0.20. For legend see Figure 28

Figure 37. θ2 with D2 when τ = 0.50. For legend see Figure 28

Figure 38. θ2 with P2 when τ = 0.50. For legend see Figure 30

Figure 39. θ2 with Br1 when τ = 0.50. For legend see Figure 32
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Figure 40. θ2 with Br2 when τ = 0.50, D1 = 104, D2 = 7 × 103, P1 = 10, P2 = 20, Br1 = 0.5. Legend #I : Br2 = 0.5;
#II : Br2 = 0.75; #III : Br2 = 1.0.

Figure 41. θp1 with D1 when τ = 0.20. For legend see Figure 26

Figure 42. θp1 with D1 when τ = 0.50. For legend see Figure 26

Figure 43. θp1 with D2 when τ = 0.20. For legend see Figure 28
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Figure 44. θp1 with D2 when τ = 0.20. For legend see Figure 28

Figure 45. θp1 with P1 when τ = 0.50, D1 = 104, D2 = 7 × 103, P2 = 20, Br1 = 0.50, Br2 = 0.5. Legend #I : P1 = 10;
#II : P1 = 20; #III : P1 = 30.

Figure 46. θp1 with Br1 when τ = 0.50. For legend see Figure 32

Figure 47. θp1 with Br2 when τ = 0.50. For legend see Figure 40
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Figure 48. θp2 with D1 when τ = 0.20. For legend see Figure 26

Figure 49. θp2 with D1 when τ = 0.50. For legend see Figure 26

Figure 50. θp2 with D2 when τ = 0.20. For legend see Figure 28

Figure 51. θp2 with D2 when τ = 0.50. For legend see Figure 28
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Figure 52. θp2 with Br1 when τ = 0.50. For legend see Figure 32

Figure 53. θp2 with Br2 when τ = 0.50. For legend see Figure 40

Appendix - I

Ψ1
1 =
[
1 − 2/τ (y + 1 + τ)

] [
1 − 4/τ(y + 1 + τ)

]
Ψ1

2 = 8/τ (y + 1 + τ)
[
1 − 2/τ (y + 1 + τ)

]
Ψ1

3 = −2/τ (y + 1 + τ)
[
1 − 4/τ (y + 1 + τ)

]
Ψ2

1 =
[
1 − 2/τ (y + 1 + τ/2)

] [
1 − 4/τ (y + 1 + τ/2)

]
Ψ2

2 = 8/τ (y + 1 + τ/2)
[
1 − 4/τ (y + 1 + τ/2)

]
Ψ2

3 = −2/τ (y + 1 + τ/2)
[
1 − 4/τ (y + 1 + τ/2)

]
Ψ3

1 =
[
1 − 2 (y + 1)

] [
1 − 4 (y + 1)

]
Ψ3

2 = 8 (y + 1)
[
1 − 2 (y + 1)

]
Ψ3

3 = −2 (y + 1)
[
1 − 4 (y + 1)

]
Ψ4

1 =
[
1 − 2 (y + 1/2)

] [
1 − 4 (y + 1/2)

]
Ψ4

2 = 8 (y + 1/2)
[
1 − 2 (y + 1/2)

]
Ψ4

3 = −2 (y + 1/2)
[
1 − 4 (y + 1/2)

]
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Ψ5
1 = (1 − 2y) (1 − 4y)

Ψ5
2 = 8y (1 − 2y)

Ψ5
3 = −2y (1 − 4y)

Ψ6
1 =
[
1 − 2 (y − 1/2)

] [
1 − 4 (y − 1/2)

]
Ψ6

2 = 8 (y − 1/2)
[
1 − 2 (y − 1/2)

]
Ψ6

3 = −2 (y − 1/2)
[
1 − 4 (y − 1/2)

]
Ψ7

1 =
[
1 − 2/τ (y − 1)

] [
1 − 4/τ (y − 1)

]
Ψ7

2 = 8/τ (y − 1)
[
1 − 4/τ (y − 1)

]
Ψ7

3 = −2/τ (y − 1)
[
1 − 4/τ (y − 1)

]
Ψ8

1 =
[
1 − 2/τ (y − 1 − τ)

] [
1 − 4/τ (y − 1 − τ)

]
Ψ8

2 = 8/τ (y − 1 − τ/2)
[
1 − 2/τ (y − 1 − τ)

]
Ψ8

3 = −2/τ (y − 1 − τ/2)
[
1 − 4/τ (y − 1 − τ/2)

]
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