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Abstract

We present a new method for the interactive rendering of isosurfaces using ray trac-
ing on multi-core processors. This method consists of a combination of an object-
order traversal that coarsely identifies possible candidate 3D data blocks for each
small set of contiguous pixels, and an isosurface ray casting strategy tailored for
the resulting limited-size lists of candidate 3D data blocks. Our implementation
scheme results in a compact indexing structure and makes careful use of multi-
threading and memory management environments commonly present in multi-core
processors. While static screen partitioning is widely used in the literature, our
scheme starts with an image partitioning for the initial stage and then performs dy-
namic allocation of groups of ray casting tasks among the different threads to ensure
almost equal loads among the different cores while maintaining spatial locality. We
also pay a particular attention to the overhead incurred by moving the data across
the different levels of the memory hierarchy. We test our system on a two-processor
Clovertown platform, each consisting of a Quad-Core 1.86 GHz Intel Xeon Pro-
cessor, and present detailed experimental results for a number of widely different
benchmarks. We show that our system is efficient and scalable, and achieves high
cache performance and excellent load balancing, resulting in an overall performance
that is superior to any of the previous algorithms. In fact, we achieve interactive
isosurface rendering on a screen with 10242 resolution for all the datasets tested up
to the maximum size that can fit in the main memory of our platform.

? The version of this work has been submitted to IEEE Transaction on Visualization
and Computer Graphics (TVCG), 2007.
1 This work is supported by the NSF research infrastructure grant CNS-04-03313.
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1 Introduction

Rendering isosurfaces is widely recognized as an effective approach for the
visual exploration, computational analysis, and manipulation of volumetric
datasets. Such datasets are appearing at a very fast rate with increasingly
larger sizes due to the dramatic advances in imaging instruments and com-
puting technologies. In particular, as the speed of processors continues to
improve, researchers are performing large scientific simulations to study very
complex phenomena at increasingly finer resolution scales. Such simulations
end up generating very large datasets that need to be examined at a relatively
fine scale. One such set is the Richtmyer-Meshkov instability dataset produced
by the ASCI team at Lawrence Livermore National Labs (LLNL), consisting
of 270 time steps, each consisting of 20482 × 1920 volume of one-byte scalar
field 2 . The most commonly used method for visualizing isosurfaces is to com-
pute a triangular mesh approximation of the isosurface followed by rendering
the triangles through a graphics hardware. This method was popularized by
the introduction of the Marching Cubes algorithm in [9], and has since been
improved using a wide number of different techniques (e.g., [1,16]). The result-
ing efficient schemes create either spatial or range-based indexing structures
through a preprocessing step in such a way as to enable the extraction and
rendering of the isosurface in time that primarily depends on the size of the
triangular mesh of the isosurface rather than the size of the input dataset.

A major drawback of the above scheme is the extraction of a possibly very
large triangular mesh for each specific isovalue, a large part of which may not
be visible from any specific viewpoint. The size of this view-independent tri-
angular mesh tends to increase significantly as the size of the dataset grows
or as the structure of the isosurface becomes more complex. In fact, it is not
uncommon to encounter isosurfaces whose triangular meshes, as generated by
any variant of the Marching Cubes algorithm, consist of hundreds of millions
of triangles such as the Richtmyer-Meshkov instability dataset from LLNL or
some of the visible human datasets from National Library of Medicine 3 . One
way to address this drawback is to only extract and render the triangles that
cover the portions of the isosurface, which are visible from the viewpoints of in-
terest. A scheme for view-dependent rendering was introduced in [8], in which
they showed that the view dependent visualization can significantly reduce the
complexity of the rendered surfaces. Unfortunately, view dependent isosurface
generation algorithms tend to be relatively slow in extracting triangles as they
have to deal with two different types of constraints. The first involves a range
search relative to the given isovalue, while the second constraint amounts to
a spatial filtering to identify the visible portion of the isosurface. In order to

2 http://www.llnl.gov/CASC/asciturb/
3 http://www.nlm.nih.gov/research/visible/
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achieve interactive rendering, researchers have resorted to parallel algorithms
such as those that appeared in [4,24]. A recent method based on an elaborate
data structure for a persistent octree was described in [17]. We should note
that the quality of the generated isosurfaces using triangular meshes may be
poor especially for complex regions as the triangular mesh is just a polygonal
approximation of the surface.

In this paper, we consider the alternative approach of generating isosur-
faces by using ray tracing. Such an approach was first proposed in [14], using
a brute-force ray tracing on the SGI Reality Monster, which is a shared mem-
ory multiprocessor. A distributed memory version was described in [2], and
schemes based on kd-trees and octree are described in [3,19,6]. In the next
section, we will provide an overview of the isosurface ray tracing algorithms
since they are directly related to the algorithm described in this paper, and
then proceed to describe our algorithm.

2 Previous Work

Isosurface ray tracing directly computes the isosurface by shooting rays
from the viewpoint through the pixels and computing the intersections of
these rays with the isosurface. This method, coupled with various techniques
for improving visual effects such as shading, reflection, and global illumination,
can generate extremely high quality visualization of isosurfaces. However, the
method is computationally demanding, especially for high resolution screens,
since it is pixel-by-pixel approach and hence its complexity depends on the
number of rays and the size of the dataset as well as on the scheme used for
ray traversal and for computing and shading the intersection voxels of the
rays with the isosurface. Note that in general the memory access is relatively
expensive as the voxels are not processed in the same order as the data layout,
and cache performance can be poor since the cells intersected with cast rays
are not easily predictable.

Given the high computational requirements of isosurface ray tracing, Parker
et. al. [14] describe an implementation on the SGI Reality Monster, which is
a shared-memory multiprocessor with up to 128 processors, and show interac-
tive isosurface rendering of the 1GB Visible Woman dataset. The screen size
used is 5122. Their algorithm uses a simple multi-level spatial hierarchy with
a 3D tiling of the input data to improve cache performance. More recently,
Wald et. al. [19] describe an implementation using a combination of a kd-tree
and coherent ray tracing that exploits the SIMD extensions that are available
on many of the current multi-core processors. A kd-tree is a binary tree that
represents a spatial partitioning of the volume data. Each node, except for the
leaves, represents a splitting plane that is closest to the center of the largest
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dimension. Each node contains the minimum and the maximum of the densi-
ties contained within the subtree. This structure is very similar to the octree
as described in [21,6], except that the authors claim that the kd-tree more
easily enables a simple handling of packets of rays used in coherent ray trac-
ing. Coherent ray tracing traverses packet of rays through the kd-tree in order
to make effective use of the SIMD extensions. However this comes at the cost
of creating an indexing structure that is at least twice as large as the input
data size. For example, their most compact kd-tree representation of the 8GB
LLNL dataset is of size 18GB. The authors illustrate the performance of their
scheme on a single and on a 5-node cluster of dual-1.8 GHz AMD Opteron,
with a default screen size of 5122. A more compact kd-tree is introduced in [3]
and used for isosurface ray tracing on two-processor platform, each is a dual-
core 2.6 GHz AMD Opteron with 16GB RAM. They show interactive rate
isosurface rendering for a variety of datasets of sizes up to 8GB but using half
the memory used in [19]. The multi-layer ray tracing method using frustum
traversal proposed in [15] utilizes spatial coherence in image space to speedup
the rendering of geometric objects of a few million triangles (basically involv-
ing coherent scenes) but it is unclear whether the method will perform well
on complex (and possibly incoherent) isosurfaces in large scale datasets such
as LLNL. In fact, it has been noticed that the packet ray traversal technique
(including the exploitation of SIMD instructions) may perform poorly on inco-
herent complex scenarios where frequent ray splitting and merging could lead
to a worse performance than just using a single-ray [6,7,3]. As the most recent
implementation of the single-ray scheme, an octree representation that con-
tains the scalar data as well as the range information is used in [6] to generate
competitive performance on multi-core processors. Its multi-resolution level of
detail (LOD) version that incorporates coherent ray tracing to work around
the problem of incoherent scenes appears in [7], resulting in faster rendering
of LOD data in some cases.

Additional work that is somewhat related to our work but addressing the
general direct volume rendering problem appears in [18,20]. To improve the
efficiency of ray tracing for direct volume rendering, a two-step method is pro-
posed in [18]. The first step consists of projecting the boundary cells onto the
image plane using graphics hardware, and the second step applies the standard
ray tracing but now slightly more constrained. In [20], 3D-textures are used to
estimate the start of ray traversal. Some other schemes use quantized voxels
to accelerate volume rendering [11], or object-order projection to speed up ray
casting for parallel view port volume rendering [12], as well as cache-efficient
layouts of bounding volume hierarchies [23] to improve kd-tree access during
ray casting for some medium size of datasets. The direct volume rendering and
ray casting implemented on GPUs also appeared in the past few years with the
advent of improved GPU programmability. Some recent related advances are
reported in [5]. However, the GPU-based approach is constrained by its on-
board memory size (usually 512MB) and its fairly strict SIMD programming
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model.

3 A Novel Hybrid Strategy

In general, there are several main features that have been exploited in the
literature to speed up the computation of isosurfaces through ray tracing.
These are:

• The use of spatial decomposition indexing structures augmented by the
range of the densities at each node. Such a structure enables the culling
away of large parts of the data, which are not part of the visible portion of
the isosurface. Also, the input data can be incorporated into the structure
to generate a multiresolution representation of the volumetric data.

• The mapping of the inherent parallelism of ray tracing into pipelined and
parallel architectures since the ray traversal corresponding to any pixel can
be performed independently of any other ray traversal.

• An attempt to optimize cache performance by processing chunks of the
input data of suitable sizes.

• The exploitation of the SIMD extensions on some of the newer multi-core
processors, which led to the idea of shooting a packet of rays (typically, 4
rays corresponding to 2 × 2 adjacent pixels) as the unit traversal through
the volumetric dataset.

Except for applying the above techniques in different ways, all the known iso-
surface ray tracing algorithms follow more or less the same basic strategy. We
restrict ourselves here to primary ray tracing as it delivers most effectively the
visual information of isosurfaces and is the most time-consuming component
of ray tracing. In this paper, we introduce a new strategy to greatly improve
primary ray tracing to generate isosurfaces. Our method is a combination of
object-order projection of a coarse version of the data and a very efficient ray
tracing restricted to a few data blocks for each packet of rays (corresponding
to adjacent pixels). For clarity, we start by presenting the single ray version,
which will be extended to packets of rays in the next section. At a high level,
our scheme consists of the following two phases.

Phase I: We perform a traversal of a 3D-tiled version of our volumetric
dataset, using a very compact data structure, to identify, through projection
from object space onto the image space, the visible and isosurface-intersecting
3D-tiles corresponding to each pixel. From now on, we refer to a 3D-tile of
the input data as a data block or simply a block. At the end of this phase,
we will have, for each pixel, a list of data blocks that are visible from the ray
through this pixel and that intersect the isosurface, organized in a front to
back order relative to the viewpoint.
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Phase II: We now shoot a ray from each pixel through its ordered list of data
blocks constructed during Phase I (assuming the list is non-empty; otherwise
there is no work to be done), checking whether an intersection voxel with
the isosurface lies within a block from the list . There is no need to proceed
further once an intersection voxel is found. This will be followed with a trilinear
interpolation and shading of the corresponding voxel.

We now proceed to provide more details about each phase and to explain
how such a strategy can be optimized on multi-core processor architectures
and how it can make effective use of their memory hierarchies.

We organize our volumetric data into a coarse grid of equal-sized blocks,
where the scalar field values within each block are stored contiguously in a pre-
defined order and the block is identified by the coordinates of a pre-specified
corner. We use an octree to index the data within a block such that the leaves
correspond to 2 × 2 × 2 cells. That is, each leaf will contain a pointer to
such a cell. As usual, each node of the octree will contain the minimum and
maximum of the values of the voxels lying within the region represented by
the node. In addition, we build a BONO (Branch-On-Need Octree) [21] tree
for the coarse grid, augmented as usual by the appropriate value ranges. The
BONO structure is very similar to the octree except that, for data resolutions
other than powers of two, BONO avoids allocating nodes of empty subtrees,
and hence it is more space-efficient than the original octree. Note that the
blocks are always chosen so that each dimension is a power of two, and hence
the use of octrees to index their scalar data.

Phase I is implemented as follows. For efficiency reasons, we limit the size
of the list of blocks associated with each pixel to a fixed constant k. We later
show that k ≤ 20 seems to give the most efficient implementation. We note
that we will always obtain the correct visible isosurface regardless of the value
of k. The BONO tree representing the coarse grid is traversed starting from
the root. Assume we reach a node v of the tree. If the range stored in v contains
the isovalue, we project the minimum axis-aligned bounding box (AABB) of
v onto the screen. Such a 3D AABB is computed by using the coordinates
of a pre-specified corner, whose x, y, and z extensions can be deduced from
the level of v. We consider all the pixels falling within the projected area. If
the size of the list of any such pixel is less than k, we traverse the children of
v in a front to back order relative to the view point. Otherwise, we skip the
subtree rooted at v. Once a leaf is reached, the list of each pixel falling within
the projection of the minimum bounding box of the corresponding block is
augmented with a pointer to this block unless the list already has k blocks.
Notice that at the end of this phase, we have a list of size at most k blocks
associated with each pixel, and organized in a front to back order since this is
how the BONO tree was traversed. The limit imposed by the value k makes
this phase quite efficient.
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Phase II is implemented as follows. For each pixel with non-empty list ,
we shoot a ray from this pixel through the list of its blocks, one block at a
time in the order they appear on the list. If the list is empty, the ray does
not intersect the isosurface. Otherwise, if the ray intersects a voxel on the
isosurface for a block on the list, we perform a trilinear interpolation using
the unit cell containing the voxel followed by (diffuse) shading. The ray voxel
intersection is computed using the method described in [10] while the normals
are computed using forward difference. If the ray reaches the end of the list
without finding such a voxel (and hence the list is of size k), we revert to the
traditional approach by resuming the traversal of the BONO tree from where
we stopped during the first phase, which is indicated at the end of each k-sized
list. Lastly, if the list is of size less than k with no intersection found at this
stage, which implies that this ray does not intersect the isosurface. Clearly
we will always end up with the correct intersection points of all the rays with
the isosurface regardless of the value of k. However, we will later show that
the case when we have to resume the traversal of the BONO tree (as in the
traditional approach) occurs rarely if k is chosen appropriately. Among the
advantages of our scheme are:

• The traversal of the BONO tree of the coarse version of the volumetric data
can be performed extremely fast since its size is very compact and each
projection enables us to increase the sizes of the lists of many nearby pixels
simultaneously. Also, the upper bound imposed by the value of k restricts
the traversal significantly.

• Almost all the pixels with rays not intersecting the isosurfaces will be iden-
tified through the first phase of our algorithm, and we only shoot very few
non-intersecting rays during the second phase. We will later show that the
percentage of the non-intersecting rays cast is extremely small.

• The traversal of a ray is now conducted through visible blocks in a front to
back order, and hence we are skipping in general a substantial fraction of
irrelevant portions of the volumetric data up front.

• Nearby pixels will likely have a number of common blocks on their lists
and hence we can use spatial locality of pixels to achieve high performance
caching. That is, processing nearby pixels can make effective use of caching
since their corresponding lists are short and are likely to share blocks. We
will show how to exploit this feature to significantly improve performance.

We next consider a couple of optimization techniques to this basic scheme.
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4 Improvements on Basic Scheme

4.1 Extension to Packets of Rays

Our scheme builds for each pixel a small size list of data blocks that are
visible from the ray through this pixel and that intersect the isosurface. In
general, we expect the lists of adjacent pixels to significantly overlap, especially
for close views. We exploit this feature by combining the lists of each group
of adjacent pixels (say 2× 2 as used in our experimental results) into a single
list. This is somewhat similar in spirit to the use of packet of rays in [19,7].
However in this work we do not make use of SIMD instructions to process the
packet of rays for ray casting since its success depends upon scene coherency
and the use of such instructions may lead to poorer rendering performance
on complex incoherent scenarios as pointed out in [6,7]. Instead, our emphasis
here is on high level algorithmic techniques that are applicable to all scenes.
However, we intend to explore in the future the additional benefits of our
algorithm when SIMD instructions are exploited to process each grouped list
of data blocks for coherent scenes.

View List upper bound k Time (msec)

Type 10242 lists 5122 lists 10242 lists 5122 lists Ratio

3 6 273 110 2.48

Far 7 14 362 142 2.55

11 22 434 169 2.57

3 6 228 68 3.35

Close 7 14 334 92 3.63

11 22 449 119 3.77

Table 1. List generation time on single-core for Far and Close views with various
upper bound k using single pixels (resulting in 1024 × 1024 lists) and groups of
2 × 2 of adjacent pixels (resulting in 512 × 512 lists) on a 10242 screen. To make
the comparison fair, the list upper bound k is adjusted so that two cases generate
relatively the same number of shaded pixels after rays are cast through the data
blocks on the lists.

During the Phase I creation of the lists, we traverse the BONO tree as
before. However we create lists for each packet of rays (corresponding to an
adjacent group of pixels typically 2 × 2) rather than a separate list for each
pixel. Whenever such a group of pixels overlaps with the projection of the
current node being traversed, the group’s list is processed as before. Since we
are now creating fewer lists, the performance of Phase I improves substantially
as illustrated in Table 1, which shows the execution times corresponding to
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different values of k to generate respectively 10242 lists (one list per pixel) and
5122 lists (one list for each 2× 2 adjacent pixels).

During Phase II, a slight overhead will be incurred as the upper bound k
on the size of the list needs to be increased for the grouped list. However we
will show later that we achieve the best performance when k is around 20,
compared to 12 in the single pixel case, and therefore the overhead will be
minimal.

Fig. 1. Execution time of List generation(PhaseI) and ray casting(PhaseII) on sin-
gle-core as we vary the zoom-in from far-view to close-view for block sizes 83 and
43.

4.2 Adaptive Block Size

Another improvement to our basic scheme is to make the size of the data
block adaptive. For far views, we can use relatively large size blocks especially
when processing large volumetric data. For example, we use 8×8×8 blocks for
the LLNL dataset to handle the rendering of far views, which results in 6× 6
pixels on average being covered by the projection of a data block, and this
seems to achieve the best performance when generating the lists for groups of
2×2 adjacent pixels. However when we zoom in for close views, the smaller size
blocks are more effective especially that the number of BONO nodes visited
and the number of projected blocks are much smaller but the projection of a
block covers more pixels (e.g. 12× 12 on average when we use 4× 4× 4 blocks
for a 16 : 1 zoom-in close view). Figure 1 illustrates the performance of each
of Phase I and Phase II on the LLNL dataset as a function of the block size
and the viewpoint.
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We make our scheme adaptive as follows. We visit the BONO nodes as
before, except that, for close views, at the end of the traversal of the BONO
tree, we proceed with the octree traversal of the BONO tree leaves until we
reach the desired block size. After reaching the desired size, we proceed using
the current blocks to compute the minimum bounding box and construct the
lists for the various packets of rays.

5 Multithreaded Implementation

As the multi-core processors begin to dominate the computing market, new
programming paradigms are needed to fully exploit the performance oppor-
tunities offered by these processors. In general, parallel programming remains
a difficult task in spite of the considerable related research efforts undertaken
during the past several decades. Unfortunately, this task becomes even more
difficult for multi-core processors given the limited on-chip memory, and the
typical complex memory hierarchies present in such architectures. Moreover,
there are currently no widely adopted mechanisms for handling communica-
tion or memory accesses on such processors. Compare this for example with
distributed memory multiprocessors for which the message passing MPI com-
munication libraries have been quite successful in supporting many applica-
tions. On the other hand, multi-core processors present an opportunity for
speeding up the computation by partitioning the load among the cores, but
a careful management of the memory hierarchy (including whatever caches
are available) is critical to the overall performance, in addition to the usual
problem of trying to ensure balanced loads among the cores with as little com-
munication as possible. In this paper, we will focus on programming a single
multi-core processor rather than a cluster of these processors since we believe
this is where the main challenge is, and moreover a multi-core processor will
soon be the common platform for most people. Programming clusters of such
processors will probably be a relatively easy extension of that of the single
multi-core processor since we can make use of the many cluster programming
techniques that have been developed over the past twenty years or so. We use
the Clovertown platform, consisting of two Quad-Core Intel 1.86 GHz Xeon
Processors 5320. Each dual-core on a Quad-core shares an L2 cache of size
4MB, and hence the total L2 cache available is 8MB. Our Clovertown plat-
form has 8GB of main memory, which constitutes an upper bound on the size
of the datasets used in our experiments.

In general, assume we have p cores on a multi-core processor, with some local
(possibly shared) cache or memory available for each core. Using p threads,
our scheme is implemented as follows.

Step1. To handle Phase I, the screen is divided into almost equal contiguous
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regions, with each thread responsible for creating the lists of 3D data blocks
corresponding to the pixels in its region. Each thread traverses the BONO
tree and creates the lists of blocks corresponding to its groups of pixels. Hence
a traversal of a node is followed by traversing the children nodes in a front
to back order only if the projection of the minimum bounding box of the
node intersects with the thread’s screen region and there is at least one list
associated with the region which is not full (i.e., its size is less than k). Note
that our BONO tree is small and only a fraction (no more than 10%) of
the total BONO tree nodes are actually accessed during Phase I due to the
imposed list upper bound k.

Step2. To handle Phase II, we start by partitioning the ray casting tasks
through all the lists as follows.

2.1 Partition the screen into small image-size tiles (for example 8 × 8 or
16 × 16) and order these tiles using a Z-order (or a space-filling curve
such Hilbert space filling curve). Such ordering will ensure a high degree
of spatial locality of nearby tiles and will result in high cache performance
as we will show later. This step is performed during the preprocessing
stage and takes a few milliseconds.

2.2 After the lists are generated in Step1, assign a weight to each small-size
image tile, which is equal to the number of non-empty lists within the
tile, and compute the total weight W of all the tiles.

2.3 Following the Z-order of the image tiles, group the tiles as follows. The
first set of tiles whose total weight is W

2
are grouped into p equal groups,

each group consisting of a contiguous set of tiles following the Z-order.
A group is identified by a pair of indices indicating the first and the last
image tile in the group. The second set of remaining tiles whose total
weight is W

4
is grouped equally as before into p groups. This process

is repeated until each image tile is associated with a group, and hence
we need at most logarithmic number of iterations in screen size, each
iteration creating p groups. The result is a list LI of pairs of indices, each
pair delineating a group of image tiles.

Step3. We perform ray casting dynamically as follows. Initially, each thread
will grab a group of image tiles from the ordered list LI created in Step2. A
thread will then process its group by shooting rays through the pixels in the
group using the data block lists generated in Step1. Once a thread completes
the processing of its group, it grabs the first available group of tiles from the
list LI , and start processing the corresponding group. The process continues
until all the image tiles are processed.

Our dynamic allocation of the ray casting tasks attempts to achieve an
optimal trade-off between two conflicting requirements. The first is the desire
to have fine-grain tasks to be assigned dynamically with the goal of achieving
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tight load balancing. The second requirement is to make the number of jobs
as small as possible with the goal of minimizing the amount of coordination
and synchronization among the threads. In our list LI , we start with jobs
(corresponding to groups of image tiles) that are relatively large, and decrease
the sizes until we reach fine-grain jobs at the last p positions of LI . Therefore
our strategy seems to strike an optimal balance between the two requirements.
In the next section, we will illustrate the performance of each step, and show
in particular that we are able to achieve a very tight load balancing among
the different threads as well as very high cache performance.

6 Experimental Results

We have conducted extensive testing of our algorithm on six datasets whose
sizes range from about 100MB to 8GB, which is the largest dataset that can
fit into the main memory of our Clovertown platform. Although the isosurface
can be generated from an arbitrary viewing point, we report our test results
for two typical views: Far-view that enables the viewing of the complete iso-
surface on the screen; and Close-view that consists of a zooming by a ratio
of 16 : 1 to view details of regions of interest. These two view settings will
typically involve significantly different numbers of voxels intersecting the iso-
surface, which directly influence the performance of any isosurface rendering
algorithm. Hence, we measure the corresponding performance separately to
shed more light into the robustness of our scheme. In addition, we take six
different viewing angles for both Far-view and Close-view, specified by zenith
angle φ = {15o, 45o, 75o} and azimuth angle θ = {22.5o, 45o} in spherical coor-
dinates. Due to the high topological complexity of most generated isosurfaces,
the screen resolution for our testing is typically set at 10242, which for exam-
ple enables the highlighting of the fine details of the complex LLNL dataset.
As described before, our scheme consists of an initial phase that generates a
list of data blocks for each packet of rays, followed by a dynamic allocation of
groups of Z-ordered image tiles among the processor cores, and ending with
ray casting through the lists associated with groups of adjacent pixels. If the
ray intersects the isosurface, the intersection position is calculated by solving a
trilinear interpolation equation as in [10], then the pixel is shaded by comput-
ing the forward difference gradient as the normal at the intersection position
and applying the diffuse shading model. We measure the execution time of
each phase as well as the overall rendering frame rate of the corresponding
isosurfaces. We will show scalability both in data output size and number
of cores used. In particular, we run our tests on 1, 2, 4, 8 CPU cores of our
Clovertown platform and measure the performance for each case separately.

At this point, we note that comparing our experimental results with those
of previous algorithms is not straightforward (except when comparing the
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sizes of the indexing structures) since prior work did not provide sufficient
details about their testing scenarios and they used different processors (which
sometimes were faster in CPU clock speed than our 1.86 GHz Quad-core
processors and had more main memory). However we will see later that our
performance numbers suggest significantly better performance than any of the
published algorithms. To illustrate the relative increased performance achieved
by our techniques in a concrete way, we implemented a standard ray casting
algorithm using the octree indexing structure, while trying to make as effective
use of the memory hierarchy and multithreading as much as possible. All
the detailed steps for ray traversal, computing the intersection points, and
shading are the same as in our algorithm. In particular, our multi-threaded
implementation of the standard algorithm is based on a dynamic allocation
of static small screen tiles (16 × 16 pixels) to the different processor cores.
Therefore the comparison between the two algorithms running on the same
machine with identical datasets, viewpoints, and screen sizes will highlight
the differences in the strategies used by both algorithms rather than the small
implementation details. Moreover, it appears that the performance of this
standard octree algorithm is rather very similar to that achieved by the octree
algorithm reported in [6].

The rest of this section is organized as follows. We first present the attributes
of our indexing structures for the datasets used, illustrating their substantially
smaller sizes than the kd-trees used in previous work. We then demonstrate
the critical importance of the size limit on the lists of data blocks by focusing
on the rendering of the complex LLNL isosurfaces on high resolution screens.
We end with an illustration of the overall performance of our algorithm for
all the six datasets, and demonstrate adaptability to the complexity of the
rendered scenes, high cache performance, and scalability in number of cores.

6.1 Datasets Used

We selected six datasets for our tests, which can generate spatially sparse or
dense, topologically smooth or complex isosurfaces, and which represent most
types of isosurfaces encountered in various applications (Figure 2). The sizes
of these datasets vary from 87MB to 8GB, which is the largest that can fit
into our main memory. These datasets illustrate our scheme’s adaptivity to
various types of isosurfaces and data sizes. Table 2 illustrates the block size
used for each dataset and the corresponding number of blocks for each case.
In all cases, the number of blocks is relatively small and does not exceed a few
millions, and hence the corresponding BONO tree is very compact and can
be constructed extremely quickly. In fact, our largest BONO tree is around
46MB for the LLNL 8GB dataset. On the other hand, the accumulated size
of the finer indexing structures (that is, octrees) for all the data blocks is just
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Fig. 2. The six datasets used in our experiments. From left to right, top to down, the
datasets are: Aneurism, Bunny, Skull, Abdominal, VisMale and LLNL respectively.

a fraction of original dataset, no more than 1
4

as shown in Table 3. Note that
the total sizes of our indexing structures are substantially smaller than those
used by the kd-tree algorithms (such as [19,3]). The preprocessing times are
also much better than any of the published preprocessing times even when the
previous algorithms are run on faster clocked processors.

Data Field Grid Data Block # of

Sets Size Size Size Size Blocks

Abdominal 2 bytes 5122 × 174 87 MB 43 302 K

Bunny 2 bytes 5122 × 360 180 MB 43 1,181 K

Aneurism 2 bytes 5122 × 512 256 MB 43 1,620 K

Skull 2 bytes 5122 × 512 256 MB 43 1,680 K

VisMale 2 bytes 5122 × 1882 941 MB 83 663 K

LLNL 1 bytes 20482 × 1920 7.5 GB 83 5,655 K

Table 2. Parameters of various datasets used
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Data Indexing Size (MB) Preprocess Time (Sec) Space

Blocks BONO Blocks BONO Overhead

Abdominal 11.52 2.97 7.1 0.172 13.24 %

Bunny 45.07 11.43 15.2 0.332 25.04 %

Aneurism 61.80 15.68 23.4 0.407 24.14 %

Skull 64.12 16.26 25.6 0.427 25.05 %

VisMale 187.37 6.43 88.3 0.221 19.91 %

LLNL 809.08 46.79 520.0 1.950 10.53 %

Table 3. Size of our indexing structure for Blocks and BONO tree along with their
preprocessing time

6.2 Performance Implication of the Upper Bound on the Lists of Tiles

In addition to our new strategy that combines object order traversal followed
by ray tracing, we make use of a novel trick by putting a limit k on the number
of blocks computed for each group of adjacent pixels (corresponding to a packet
of rays). We examine here the critical importance of such an upper bound.
The total execution time of our algorithm consists of four main components:
(i) the time it takes to traverse the BONO tree and to generate the lists of
blocks; (ii) the time it takes to group the small-sized image tiles into groups
for dynamic allocation among the processor cores; (iii) the time to perform ray
casting through the data block lists; and (iv) the time needed for ray casting
of the unfinished pixels (that is, those pixels whose lists were of size k with
no intersecting voxels found in step (iii)). The amount of work involved in
grouping the image tiles is small (in the order of 2 ∼ 3 milliseconds). The
bulk of the time is spent on steps (i), (iii), and (iv). In order to illustrate the
trade-off involved relative to the upper bound k and the various stages of the
algorithm, we ran a number of experiments on the LLNL dataset of time step
250 using the isovalue of 70 and screen resolution 10242 for Far-view settings
on our Clovertown platform. We measured the execution time on a single core
for different values of k, ranging from 0 to 42 (note that standard ray casting
is the same as the case when k = 0). The corresponding results are illustrated
in Figures 3.

From these results, we can make the following observations. First, the stan-
dard ray casting corresponding to the case when k = 0 has the longest execu-
tion time by a factor of approximately 40% relative to our algorithm for the
best value of k. Second, the time it takes to generate the block lists (indicated
in blue) increases with the value k almost linearly because the depth complex-
ity of LLNL data is high (∼ 50) but its contribution to the total time is less
than 10% for k ≤ 30. Third, the ray casting on the block lists (indicated in red)
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Fig. 3. Execution times of the different stages of our algorithm on a single core vs.
the value of upper bound k. The results are for the Far-view of the LLNL dataset
of time step 250 using 10242 screen resolution.

Fig. 4. Percentage of pixels left to shade after going through k blocks from the lists
for the 20482 × 1920 LLNL dataset at time step 250. Screen size is 10242.

takes an increasingly larger fraction of the total execution time as k increases,
and is significantly larger than the time it takes to generate the lists. Fourth,
and perhaps most importantly, the number of rays that have no intersection
with the isosurface after going through exactly k blocks (indicated in yellow)
drops very quickly initially as k increases and then somewhat levels off, which
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Fig. 5. Analysis of the percentage of rays having no intersection with the isosurface
in our scheme using the 20482×1920 LLNL dataset at time step 250 under Far-view.
Screen size is 10242.

can be verified more clearly by examining the curve shown in Figure 4. The
combined effect of these properties lead to an optimal value for k that in our
experiments has been in the range 16 ∼ 22. For example, the optimal value of
k is around 20 ∼ 22 for the LLNL dataset, while for the VisMale dataset, the
optimal value of k is around 16 ∼ 18 because of a smaller complexity depth.

Another important benefit of our scheme is the significant decrease in the
number of rays cast which do not intersect the isosurface relative to the stan-
dard strategy. The traversal of the BONO tree effectively identifies the area
on the screen where the isosurface is mapped, passing this information for
ray casting through the block lists. Figure 5 illustrates the dependence of the
non-intersecting rays cast upon the value of k. The blue curve represents the
number of non-intersecting rays determined when going through the lists con-
taining less than k blocks, while the red curve represents the number of non-
intersecting rays determined at the very last step of the algorithm after their
k-size lists were completed. Obviously, the total number of non-intersecting
rays cast is the sum of these two numbers, and does not depend upon the value
k > 0. The percentage is out of the total number of rays cast by our algorithm.
As shown in Figure 5, the value of k directly impacts these two numbers, while
the total number of non-intersecting rays cast by our algorithm (for k > 0)
is about 5.2% of the total number of rays cast. On the other hand, the stan-
dard ray casting doesn’t filter out any ray initially and simply shoots a ray
through each pixel. When the isosurface doesn’t occupy most of the screen,
which is not uncommon in Far-view, the percentage of non-intersecting rays
over total number of rays cast could be large (such as in Aneurism and Ab-
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dominal datasets). For the same LLNL dataset and the same screen resolution,
standard ray tracing ends up with around 45% non-intersecting rays on aver-
age over the six tested viewpoints under Far-view. This clearly illustrates the
power of our hybrid strategy that manages to almost eliminate the casting of
non-intersecting rays.

We will assume for the rest of this paper that an optimal value of k has
been selected and report the performance corresponding to this value.

6.3 Overall Performance

In this section, we give an overview on the overall performance of our algo-
rithm on different datasets using a range of viewpoints. The tests conducted
are for both the Far-view and the Close-view, each from six viewing angles
specified by (φ , θ), using a 10242 screen resolution. A variable number of
cores, up to 8, are used by running the multi-threaded version of our algo-
rithm. While the scalability of our algorithm and a detailed analysis of the
load balance achieved are described in Section 6.6, we report here on the
overall performance and compare it with the best published results. The per-
formance, expressed in terms of fps to render the LLNL dataset (time step
250 and the isovalue is equal to 70), is listed in Table 4 for the Far-view and
the Close-view at the six different viewing angles. As can be seen, we achieve
interactive rates regardless of the viewpoint or the viewing angle for a very
complex isosurface on a high resolution screen. These results illustrate the
robustness of our scheme regardless of the complexity of the scene. Note that
the number of cores is supposed to steadily increase in the future (perhaps
doubling every 18 ∼ 24 months), and hence our scheme will easily achieve
interactive rates on future desktop or laptop processors.

10242 Screen φ− θ

View Core 15-22 15-45 45-22 45-45 75-22 75-45

Far 2-core 0.87 0.87 0.84 0.81 1.36 1.35

8-core 3.41 3.44 3.28 3.20 5.29 5.24

Close 2-core 1.32 1.27 1.08 1.00 1.04 0.98

8-core 5.08 4.85 4.15 3.85 4.12 3.83

Table 4. Performance of our algorithm on the Clovertown in fps for the LLNL
dataset with screen resolution 10242 and isovalue 70 under Far and Close views.

As already noted in previous research [14,19], the ray traversal across the
spatial acceleration structure, such as kd-trees or octrees, constitutes the major
portion of the total execution time (usually around 65% ∼ 70%) in standard

18



ray casting. Yet, Phase I of our algorithm uses efficient object-order projection
of blocks to considerably reduce the number of ray traversal steps in Phase
II, which in large part leads to our superior performance. In Table 5 the
comparison of number of ray traversal steps in our algorithm and standard
ray casting for various datasets clearly elucidates this aspect.

10242 Screen standard ray ours

Dataset casting (×103) (×103) ratio

Abdominal 39,992 5,865 6.82

Bunny 22,547 2,585 8.72

Aneurism 45,237 3,291 13.8

Skull 37,648 5,463 6.89

VisMale 21,421 3,174 6.75

LLNL (far) 42,228 12,944 3.26

LLNL (close) 42,868 6,129 6.99

Table 5. Number of ray traversal steps undertaken during ray casting in standard
ray casting and our algorithm for a screen size of 10242 screen using all the datasets
considered in this paper.

Screen size 5122 10242

Dataset standard ours ratio standard ours ratio

Abdominal 12.99 24.65 1.90 3.80 7.87 2.07

Bunny 22.22 38.56 1.74 6.49 12.66 1.95

Aneurism 13.89 39.33 2.83 3.77 12.35 3.27

Skull 13.70 25.02 1.83 3.76 7.19 1.91

visMale 18.52 29.68 1.60 5.52 9.26 1.68

Table 6. Measured performance on 8-core Clovertown in fps for our scheme and the
standard octree ray tracing algorithm under Far-view setting for various datasets

We now report a summary of our performance results on the other datasets
illustrated in Fig. 2. These results, expressed in terms of fps under the Far-
view setting and taking the average over the different viewing angles, are shown
in Table 6. Since these datasets have lower depth complexity than the LLNL
dataset, combined with the fact that their isosurfaces cover the screen un-
evenly, our algorithm delivers a faster interactive rendering rate and achieves
further performance improvements over the standard ray casting algorithm.
Note also the significant performance achieved for the lower resolution screen
of size 5122.
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Finally, we compare our algorithm to the algorithm reported in [6], which
uses the 16-core NUMA 2.4 GHz Opteron workstation. As far as the authors
know, the performance numbers published in [6] are the best known for the
general isosurface ray tracing problem. Since our platform is different than
theirs, we need to calibrate the two processors. Comparing the SPEC bench-
mark 4 performance on the AMD Opteron 2.6 GHz and the Intel Xeon 1.86
GHz with the same number of cores (8 in each case) as shown in Table 7,
we note that the Opteron runs slightly faster and has significantly better
throughput than the Intel Xeon. Listed in Table 8 are the performance num-
bers reported in [6] on their 16-core NUMA and the performance numbers of
our algorithm on the Clovertown 8-core using the same dataset, the same view-
point, and the same screen size. While the number of cores on their platform
is twice the number of cores on our platform and they have access to 64GB of
memory compared to 8GB on our platform, our performance is significantly
better for close views and only slightly worse for far views. As we show later,
our algorithm is highly scalable and hence we expect our performance to al-
most double on a 16-core Clovertown, and hence the resulting performance
will be significantly better than that of the algorithm in [6].

AMD Intel

CPU Model Opteron 8218 Xeon E5320

CPU Clock 2.6 GHz 1.86 GHz

Multi-Core 4 processors 2 processors

2-core per die 4-core per die

L1 Cache per core 64 KB I + 64 KB D 32 KB I + 32 KB D

L2 Cache per die 2 MB I+D 4 MB I+D

Main memory 32 GB 16 GB

Cint 11.3 11.1

Speed Cfp 11.9 9.57

Through- Cint rate 85.3 58.5

put Cfp rate 83.2 41.3

Table 7. Performance comparison between an 8-core Opteron 8218 and an 8-core
Xeon E5320 using the SPEC benchmark.

4 http://www.spec.org/benchmarks.html
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Screen 10242 NUMA 16-Core Clovertown 8-Core

View Time step Knoll et. al. ours

50 7.4 5.88

Far 150 5.7 4.90

270 4.7 4.15

50 4.3 7.04

Close 150 3.6 5.81

270 3.5 5.58

Table 8. Performance Comparison in fps for LLNL datasets on 10242 screen reso-
lution. NUMA is Knoll’s platform consisting of AMD 2.4GHz 16-core Opteron with
64GB memory, Clovertown is our platform consisting of Intel 1.86GHz 8-Core with
8GB memory. The LLNL datasets and testing views correspond to their settings
with isovalue = 20.

6.4 Adaptivity Upon Data Complexity

An overall critical issue regarding the performance of isosurface rendering
algorithms is the way they depend on the input data size. The original MC
algorithm had to traverse all the unit cells of the volumetric data and hence it
was soon discovered that the algorithm is too slow for large datasets. Efforts
were then directed toward reducing the rendering algorithm execution time
so that it primarily depends on the size of the intermediate triangular mesh
generated by the MC strategy rather than the whole input data. Several such
variations of the MC algorithm already exist [1,16]. However the triangular
mesh approximation is typically much larger than what is needed to render
the isosurface from a particular viewpoint, and hence come up the efforts for
efficient view-dependent algorithms. We argue that our algorithm in general
adapts extremely well to the size of the visible portions of the isosurface rather
than to the size of the input dataset. In fact, any algorithm has to examine
the visible portions of the isosurface in order to render it, and hence the
running time has to be at least proportional to the size of the visible portion
of the isosurface (that is, proportional to the number of visible voxels on the
isosurface). For an optimal value of k, our algorithm spends a small fraction
of the overall time (less than 10%) to determine the lists of blocks for all the
pixels through the BONO tree traversal, while almost all the remaining time
is spent on determining and shading the voxels that intersect the isosurface.
Note that after the first phase we don’t shoot rays for the pixels with empty
lists, skip a large number of ray traversal steps that are otherwise required in
standard ray casting algorithm, and just spend a negligible amount of time
on a small number of rays that at the very last step don’t end up intersecting
the isosurface. This is illustrated in Table 5 and Figure 6, which highlight in
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black and yellow the areas explored by our algorithms but they are not part
of the isosurface.

Fig. 6. The illustration of the adaptivity of our scheme using isosurfaces from
Aneurism and Abdominal datasets. The pixels colored black or yellow are those from
which non-intersecting rays are cast by our algorithm (and no other non-intersecting
rays are cast). Color black specifies the area where rays do not intersect isosurface
after processing the tile lists having less than k blocks; Color yellow represents the
area for which our algorithm reverts to the standard ray casting algorithm but ends
up with non-intersecting rays.

6.5 Cache Performance

A critical factor affecting the performance of any ray tracing algorithm
is the irregular data access, which makes it difficult to exploit caches. This
issue is even more critical on multi-core processors as the overhead of memory
accesses becomes relatively more significant. During Phase I of our scheme,
the data access is relatively regular as we process the data in object order and
generate block lists. During Phase II, Our scheme sorts the small-size image
tiles (typically, 8× 8) into a Z-order, and group the tiles into decreasing size
groups that depend on the weight of each tile, followed by dynamic allocation
of these groups to the different threads. We now illustrate the resulting cache
performance. Table 9 shows the cache miss rates achieved by our scheme during
Phase II both on a single core and on an 8-core Clovertown for far and close
views of the LLNL dataset. Here we have excluded the initial misses caused
by the first time access to the data. These results clearly show that a thread
will rarely need to access the main memory after the first time the data was
loaded.
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Number of Cores Single-core 8-core

View # of data load # of L2 Miss # of L2 Miss

Type requests cache miss Rate cache miss Rate

Far 66,712K 768K 1.15% 770K 1.15%

Close 53,380K 750K 1.41% 788K 1.48%

Table 9. Cache profiling of data request during Phase II for LLNL dataset with
isovalue 70 and screen resolution 10242. Data load request is the number of requests
issued for min/max and voxel values during the ray casting; L2 cache miss is the
number of requests that fail to find the requested data inside the cache after the
initial load.

6.6 Scalability of Our Algorithm

Our scheme achieves a very good scalability in terms of the number of cores
used. The first phase divides the image equally among the core processors,
and hence the work load is distributed almost equally among them. Before
performing the ray casting phase, we create an ordered list of groups of small-
size image tiles, which are then dynamically allocated to the threads as they
become available. While the lists associated with each packet of rays are of
different sizes, they are upper bounded by the value of k, which is typically
less than or equal to 22. Given the dynamic allocation, we expect the loads
on the different threads to be almost equally distributed, resulting in scalable
performance. This is indeed the case as illustrated in Table 10, which shows
the average frame rate over six views for the two different settings of the
viewpoint on the LLNL dataset using a varying number of cores. The results
are for 5122 and 10242 screen resolution respectively.

Screen Size 5122 10242

Cores Far-view Close-view Far-view Close-view

1 1.77 1.97 0.51 0.56

2 3.53 3.82 1.02 1.12

4 7.03 7.64 2.04 2.23

8 13.08 14.53 3.98 4.31

Scalability

over 8-core 92.4% 92.2% 97.5% 96.2%

Table 10. Average frame rate of our algorithm on Clovertown for the LLNL dataset
at time step 250 under a varying number of CPU cores using 5122 and 10242 screen
resolution.
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8-core / 10242 Number of (×103) Time (msec)

View Proc. Rays Traversal Intersect Phase Total

Type No. Cast Steps Voxels I II

0 98 1,380 277 19 223 250

1 102 1,353 274 22 223 250

F 2 99 1,365 276 22 223 250

a 3 97 1,393 274 18 224 251

r 4 96 1,355 278 16 223 250

5 101 1,344 275 22 223 250

6 100 1,365 273 21 223 250

7 94 1,361 275 18 223 250
σ

Ave × 100% 2.14 0.81 0.48 10.8 0.21 0.19

0 147 850 382 21 202 231

1 155 844 378 21 203 232

C 2 140 897 360 21 202 231

l 3 127 915 381 20 202 231

o 4 149 857 379 21 203 232

s 5 157 880 371 22 202 231

e 6 149 852 377 20 200 230

7 151 844 382 21 203 232
σ

Ave × 100% 4.39 2.61 1.39 2.32 0.31 0.27

Table 11. The work from two Phases distributed among eight threads running among
8-core for 10242 screen and isovalue 70 along with their corresponding individual
execution time. The tests are done on LLNL dataset for both far and close views.
The work load is measured by the number of projected blocks and the number of
ray traversal steps and voxel intersections respectively for Phase I and Phase II.
Total includes the synchronization time and writing time of the frame buffer.

In fact, an examination of Table 10 reveals that the scalability of our al-
gorithm is above 90% for both views for up to the maximum number of
cores available on our Clovertown platform. Clearly, the advantage of ray-
redistribution in our scheme is more useful for the sparse isosurfaces such as
those generated by the Abdominal, Aneurism, and Skull datasets since many
of the block lists will be empty.

Another way to illustrate the scalability of our scheme is through Table 11
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that shows the loads on the different threads for the LLNL dataset for both the
far and close views. We provide more details for Phase II since it constitutes
approximately 90% of the total computational load. Note that the numbers
of ray cast, octree traversal steps, and intersecting voxels are almost evenly
distributed among the threads regardless of the viewpoint. Therefore the loads
are extremely well-balanced among the different threads.

7 Conclusion

In this paper we presented a novel hybrid strategy for rendering isosurfaces
by ray tracing. The resulting algorithm starts with an object order traversal
that eliminates almost all the pixels with non-intersecting rays and creates
short lists of ordered small data blocks for the remaining pixels, then apply
ray casting for relevant pixels on these lists. We have shown that the total size
of our indexing structure is very compact and that our performance is signifi-
cantly superior relative to the published isosurface ray tracing algorithms. We
have also shown that our algorithm can effectively exploit the memory hierar-
chies and its multithreaded implementation can efficiently utilize the multicore
platform, which is available on almost all new processors. We presented the
results of some of our extensive tests, showing interactive rendering rates for
a variety of datasets, of widely different complexities, of size up to that of our
main memory on a high resolution 10242 screen. All these results indicate that
our scheme can easily achieve interactive rendering of isosurfaces of large scale
volumetric scalar data on emerging multi-core processors.
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Appendices: Isosurface Images from LLNL dataset

Fig. 7. Isosurface images of value 70 from Far-view and Close-view of LLNL dataset
at time step 250.
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