
LDI Tree:

A Hierarchical Representation for

Image-based Rendering

TR98-030

October 28, 1998�
Chun-Fa Chang

Gary Bishop

Anselmo Lastra

Department of Computer Science

University of North Carolina at Chapel Hill

Chapel Hill, NC 27599-3175 �
UNC is an Equal Opportunity/A�rmative Action Institution.

1

LDI Tree:
A Hierarchical Representation for Image-based Rendering

Chun-Fa Chang Gary Bishop Anselmo Lastra
University of North Carolina at Chapel Hill

Abstract
The 3D Image warping algorithm by McMillan and Bishop
uses regular single-layered depth images (which are called
reference images) as the initial input. Tears or gaps may
appear in the output when the previously occluded areas
are exposed in the new viewing position. Many reference
images that are taken from different positions can be used
to attenuate the occlusion problems but the rendering cost
increases with the number of reference images. Also,
combining the multiple reference images and eliminating
the redundant information is a non-trivial problem.

Recently, the Layered Depth Image (LDI) was pro-
posed by Shade et al. to merge multiple reference images
under a single center of projection. It tackles the occlusion
problems by keeping multiple depth pixels per pixel loca-
tion, while still maintaining the simplicity of warping a
single reference image. However, it does not consider the
issue of sampling rate.

We present the LDI tree, which combines a hierarchi-
cal space partition scheme with the concept of LDI. It
preserves the sampling rates of the reference images by
adaptively selecting an LDI in the LDI tree for each pixel.
While rendering from the LDI tree, we only have to trav-
erse the LDI tree to the levels that are comparable to the
sampling rate of the output image. We also present the
progressive refinement feature and a “gap filling” algo-
rithm by pre-filtering the LDI tree.

We show that the amount of memory required is of the
same order as the 2D reference images. This also bounds
the complexity of rendering time to be less than directly
rendering from all reference images.

1. Introduction
The 3D Image warping algorithm [12] proposed by
McMillan and Bishop uses regular single-layered depth
images (which are called reference images) as the initial
input. One of the major problems of 3D image warping is
the exposure artifact which are caused by the areas that are
occluded in the original reference image but visible in the
current view. Those artifacts appear as tears or gaps in the
output image. In Mark’s Post-Rendering Warping [10],
the techniques of splatting and meshing are proposed to
deal with the exposure artifacts. Both splatting and mesh-
ing are adequate for post-rendering warping in which the
current view does not deviate much from the view of the
reference image.

However, the fundamental problem of the exposure ar-
tifacts is that the information of the previously occluded
area is missing in the reference image. By using multiple
reference images taken from different viewpoints, the ex-
posure artifacts can be reduced because an area that is not
visible at one view may be visible at another. When mul-
tiple source images are available, we expect the exposure
artifacts that occur while warping one reference image to
be eliminated by one of the other reference images. How-
ever, combining multiple reference images and eliminating
the redundant information is a non-trivial problem, as
pointed out by McMillan and Bishop in their discussion of
inverse warping [13].

Recently, the Layered Depth Image (LDI) was pro-
posed by Shade et al. [17] to merge many reference images
under a single center of projection. It tackles the occlusion
problems by keeping multiple depth pixels per pixel loca-
tion, while still maintaining the simplicity of warping a
single reference image. Its limitation is that the fixed
resolution of the LDI may not provide adequate sampling
rate for every reference image. Figure 1 shows two exam-
ples of such situations. Assume the two reference images
have the same resolution as the LDI, the object covers
more pixels in reference image 1 than it does in the LDI.
Therefore the LDI has lower sampling rate for the object
than reference image 1. Similar analysis shows the LDI
has higher sampling rate than reference image 2. After we
combine both reference images into the LDI and render the
object at the center of projection of reference image 1, the
insufficient sampling rate of the LDI will cause the object
to look more blurry than it looks in reference image 1.
When we render the object at the center of projection of
reference image 2, the excessive sampling rate of the LDI
does not hurt the quality of the output. However, proc-
essing more pixels than necessary slows down the render-
ing.

In this paper, we present the LDI Tree, which combines
a hierarchical space partition scheme with the concept of
LDI. It preserves the sampling rate of the reference im-
ages by adaptively selecting an LDI in the LDI tree for
each pixel. While rendering from the LDI tree, we only
have to traverse the LDI tree to the levels that are compa-
rable to the sampling rate of the output image. Because
each LDI also contains pre-filtered results from its children
LDIs, the progressive refinement feature is easy to imple-
ment. The pre-filtering also enable a new “gap filling”
algorithm to fill the exposure artifacts that cannot be re-
solved by any reference image.

2

The amount of memory required is of the same order as
the 2D reference images. Therefore the LDI tree preserves
an important feature of the image-based rendering has over
traditional polygon-based rendering: the cost is bounded
by the complexity of the reference images, not by the
complexity of the scene.

2. Related Work

2.1. Inverse Warping
The original image warping described in [12] is a forward
warping process. The pixels of the reference images are
traversed and warped to the output image in the order they
appear in the reference images. Some pixels in the output
image may receive more than one warped pixel and some
may receive none, which causes artifacts.

In [13], McMillan proposed an inverse warping algo-
rithm. For each pixel in the output image, searches are
performed in all reference images to find the pixels that
could be warped to the specified location in the output
image. Although epipolar geometry limits the search
space to a one-dimensional line or curve in each reference
image and a quadtree-based optimization has been pro-
posed in [9], searching through all reference images is still
time consuming.

2.2. Layered Depth Image
Another way to deal with the exposure artifacts of image
warping is to use the Layered Depth Image (LDI)[17].
Given a set of reference images, one can create an LDI by
warping all reference images to a carefully chosen camera
setup (e.g. center of projection and view frustum) which is
usually close to the camera of one of the reference images.
When more than one pixel is warped to the same pixel
location of the LDI, some of them may be occluded. Al-
though the occluded pixels are not visible from the view-
point of the LDI, they are not discarded. Instead, separate
layers are created to store the occluded pixels. It is then
likely to reduce the exposure artifacts with the previously
occluded pixels. However the fixed resolution of LDI
limits its use as discussed previously in section 1.

2.3. Volumetric Methods
The LDI tree blurs the boundary between volume render-
ing and image-based rendering. Therefore we discuss the
related volume-based methods as follows.

Curless and Levoy presented a volumetric method to
extract isosurface from range images [3]. The goal of the
their work, however, was to build high-detail models made
of triangles. The volume data used in that method is not
hierarchical and it relies on a run-length encoding for
space efficiency.

There have also been work related to octree generation
from range images [1][2][8]. However the octree that is
generated in those methods is used to encode the space
occupancy information. Each octree cell represents either
completely occupied or completely empty parts of the
scene.

The multi-resolution volume representation in the Hi-
erarchical Splatting work [6] by Laur and Hanrahan can be
considered as a special case of LDI tree in which the LDIs
are of 1×1 resolution. It is however built from a fully ex-
panded octree (which is called pyramid in their paper).
The octree to be traversed during the rendering is also pre-
determined and does not change with the viewpoint.

2.4. Image Caching for Rendering Polygonal
Models

The image caching techniques by Shade et al. [16] and
Schaufler et al. [15] use hierarchical structure similar to
the LDI tree. Each space partition has an imposter instead
of an LDI. The imposter can be generated rapidly from the
objects within the space partition by using hardware accel-
eration. However, the imposter has to be frequently regen-
erated whenever it is no longer suitable for the new view.

In contrast, the information stored in the LDI tree is
valid at all time. By generating the LDI tree from the ref-
erence images instead of the objects within the space par-
titions, the LDI tree can be used for non-synthesized
scenes as well.

3. LDI Tree
The LDI tree is an octree with an LDI attached to each
octree cell (node). The octree is chosen for its simplicity
but can be replaced by the other space partition schemes.
Each octree cell also contains a bounding box and pointers
to its eight children cells. The root of the octree contains
the bounding box of the scene to be rendered. The fol-
lowing is the pseudo code:

Figure 1: The LDI does not preserve the sampling rates of the reference images.

LDI objectRef.1Ref.2

3

LDI_tree_node =
Bounding_box[X..Z, Min..max]: array of

real;
Children[0..7]: array of pointer to

LDI_tree_node;
LDI: Layered_depth_image

All LDIs in the LDI tree have the same resolution,
which can be set arbitrarily. The height (or number of
levels) of the LDI tree will adapt to different choice of
resolution. In general, a lower resolution results in more
levels in the LDI tree. Ultimately, we can make the reso-
lution of the LDI to be 1×1 which make the LDI tree re-
semble the volume data in the Hierarchical Splatting [6].

Note that each LDI in the LDI tree contains only the
samples from objects within the bounding box of the cell.
This is sometimes confusing because the LDI originally
proposed by Shade et al. combines the samples from all
reference images.

For simplicity, we use one face of the bounding box as
the projection plane of the LDI and orthographic projec-
tion is used. Using orthographic projection also makes the
pre-filtering of the children LDIs easier.

An example of the LDI tree is shown in Figure 7 by
viewing the bounding boxes from the top. The following
sections discuss the details in constructing the LDI tree
from multiple reference images and in rendering the new
view from the LDI tree.

3.1. Constructing the LDI Tree from Multiple
Reference Images

The LDI tree is constructed from reference images by
warping each pixel of the reference images to the LDI of
an octree cell, then filtering the affected LDI pixels to the
LDIs of all ancestor cells in the octree.

In 3D image warping, each pixel of the reference im-
ages contains depth information which is either explicitly
as a depth value or implicitly as a disparity value. This
allows us to project the center of the pixel to a point in the
space where the scene described by the reference images
resides.

We observed that the sampling rate or the "quality" of a
pixel of reference images depends on its depth informa-
tion. For example, if (part of) a reference image is taken
from a surface that is far away, then those pixels that de-
scribe that surface do not provide enough details when the
viewer zooms into or walks toward that surface. Con-
versely, warping every pixel of the reference taken near an
object is wasteful when the object is viewed from far
away.

We characterize the reference image by a pinhole cam-
era model using the notation adopted by McMillan

[12][13]. Figure 2 illustrates the camera model. C& is the
center of projection. Each pixel of the reference image has
coordinates (u, v) and the vectors a

v
and b

v
are the bases.

Each pixel also contains the color information and a dis-
parity value δ. When a pixel is projected to the 3D object
space, we get a point representing the center of the pro-

jected pixel and a “stamp size.” The center is computed
as:

and the stamp size S is calculated by:

To simplify our discussion, we do not consider the ori-
entation of the object surface which the pixel is taken
from. We also ignore the distortion at the edges of the
projection plane. The extension of our method to include
orientation information will be discussed later in this pa-
per.

An octree cell is then selected to store this pixel. The
center location determines which branch of the octree to
follow. The stamp size determines which level (or what
size) of the octree cell should be used. The level is chosen
such that the stamp size approximately matches the pixel
size of the LDI in that cell.

After an octree cell has been chosen, the pixel can then
be warped to the LDI of that cell. The details of the
warping are described in [9]. Usually, the center of the
pixel will not fall exactly on the grid of the LDI so resam-
pling is necessary. This is done by splatting[18] the pixel
to the neighboring grid points. In this paper we use a bi-
linear kernel. Four LDI pixels are updated for each pixel
of reference image. More specifically, the alpha values
that result from the splatting are computed by:

)3(alpha

(3b)
,)1,(

),,(

(3a)
,)1,(

),,(

1),(

/
/

YX

YY
X

X

YY
X

Y

Y

XX
X

X

XX
X

X

X

YYY

XXX

WW

PS
P
S

YcYiKernel

PS
P
S

YcYiKernel
W

PS
P
S

XcXiKernel

PS
P
S

XcXiKernel
W

s
d

sdKernel

NBP
NBP

=

≤∗−

>−
=

≤∗−

>−
=

−=

=
=

δ

δ

/

/

)2(

bS

aS

SSS

Y

X

YX

v

r

=

=
×=

C&

av

b
v

cv

Figure 2: The camera model.

(1)/)(δcbvauC
rrr& +++

4

where BX and BY are the sizes of the LDI projection plane
(which is a face of the bounding box). NX and NY are the
resolutions of the LDI. SX and SY are as defined in equa-
tion 2. (Xc, Yc) is the center of splatting in the selected
LDI and (Xi, Yi) is one of the grid points covered by the
splatting. The conditions in equations 3a and 3b guarantee
that the splat size will not be smaller than the LDI grid
size, which represents the maximal sampling rate of the
LDI.1

A pixel also contributes to the parent cell and all an-
cestor cells of the octree cell that was initially chosen.
This is done by splatting the pixel to the LDIs of all the
ancestor cells. The result is that the LDI of a cell contains
the samples within its descendants filtered down to its
resolution. Therefore, later in the rendering stage, we need
not traverse its children cells if the current cell already
provides enough details.

We classify the pixels in the LDI tree into two catego-
ries: unfiltered and filtered. The unfiltered pixels are those
come from the splatting to the octree cell that was initially
chosen for a reference image pixel. Those pixels that
come from the splatting to the ancestor cells are classified
as filtered, because they represent lower frequency com-
ponents of the unfiltered pixels. Note that an unfiltered
pixel may be merged with a filtered pixel during the con-
struction of LDI tree. The merged pixel is also considered
filtered because better-sampled pixels are in the LDIs of
some children cells of the current octree cell.

An LDI pixel may get contributions from many pixels
of the same surface. They may be neighboring pixels in
the same reference image, or pixels in different reference
images that sample the same surface. The contributions
from those pixels must be blended together. Figure 3a
shows an example of those cases. An LDI pixel can also
get contributions from many pixels of different surfaces.
In those cases, we assign them to different layers of the
LDI pixel. Figure 3b shows an example of those cases.
To determine whether they are from the same surface or
not, we check the difference in their depth value against a
threshold. We select the threshold to be slightly smaller

1 It is similar to how the subpixels are prefiltered in the
supersampling for antialiasing.

than the spacing between adjacent LDI pixels, so that the
sampling rate of the surface that is perpendicular to the
projection plane of the LDI can be preserved.

3.2. Rendering the Output Image from the
LDI Tree

We render a new view of the scene by warping the LDIs in
the octree cells to the output image. The advantage of
having a hierarchical model is that we need not render
every LDI in the octree. For those cells that are farther
away, we can render them in less detail by using the fil-
tered samples that are stored in the LDIs higher in the hier-
archy.

To start the rendering, we traverse the octree from the
top-level cell (i.e. the root). At each cell we first perform
view frustum culling, then check whether it can provide
enough details if its LDI is warped to the output image. If
the current cell does not provide enough details, then its
children are traversed. An LDI is considered to provide
enough details if the pixel stamp size covers about one
output pixel. Therefore the traversal of the LDI tree during
the rendering will adapt to the resolution of the output im-
age. Note that we do not calculate the pixel stamp size for
each individual pixel in an LDI. Because all the pixels in
the LDI of an octree cell represent samples of objects that
are within its bounding box (as shown in Figure 4), we can
estimate the range of stamp size for all pixels of the LDI
by warping the LDI pixels that correspond to the corners
of the bounding box. The corners of the bounding box are

LDI
Ref.1

Ref.2

LDI
Ref.1

Ref.2

(a) (b)
Figure 3: Illustrations of pixels that are warped to the same pixel location in an LDI. (a) Two pixels from refer-
ence image 1 and a pixel from refrence image 2 are taken from the same surface area. Blending is used to com-
bine their contribution to the LDI pixel. (b) One of the pixel from reference image is taken from a different sur-
face area. A separate layer in the LDI is created to accommodate its contribution to the same LDI pixel.

octree cell

LDI

output

Figure 4: To estimate the range of stamp size for all
pixels in the LDI, the corners of the bounding box are
warped to the output image.

5

obtained by placing the maximal and minimal possible
depth to the four corner pixel locations of the LDI. We use
equation 2 to compute the stamp size with the vector
a
v

and b
v

of the output image and the disparity value δ
obtained from the warping. Note that a special case exists
if the new viewpoint is within the octree cell. When it
happens we consider the cell not providing enough detail
and the children are traversed.

The pseudo code of the octree traversal follows:

Render (Octree) {
1. If outside of view frustum,

then return;
2. Estimate the stamp size of the LDI pix-

els;
3. If LDI stamp size is too large or the

viewer is inside the bounding box then {
4. Call Render() recursively for each

child node;
5. Warp the unfiltered pixels in LDI to

the Output buffer; }
6. else {
7. Warp both unfiltered and filtered

pixels in LDI to the output buffer; }
}
Note the difference in step 5 and step 7 of the pseudo

code. As mentioned in section 3.1, each LDI in the octree
contains both unfiltered and filtered pixels. When we
warp both the LDI in a parent cell and the LDI in a child
cell, the filtered pixels in the parent cell should not con-
tribute to the output because the unfiltered pixels in the
child cell already provides better sampling for the same
part of the scene.

One feature of the original LDI is that it preserves the
occlusion compatible order in McMillan’s 3D warping
algorithm [11][12]. However this feature is compromised
in the LDI tree. Although the back-to-front order can still
be obtained within an LDI and across LDIs of sibling cells
of the octree, we cannot obtain such order between LDIs of
a parent cell and a child cell. This causes problems when
unfiltered samples exist in both parent and child cells. In
addition, the warped pixels are semi-transparent due to the
splatting process. Therefore, we need to keep a list of pix-
els for each pixel location in the output buffer. We im-
plement the output buffer as an LDI. At the end of the
rendering, each list is composited to a color for display.
The details of the compositing are discussed next.

3.3. Compositing in the Output Buffer
Given a list of semi-transparent pixels, we sort the pixels
in depth and then use alpha blending starting from the
front of the sorted list. An exception is that two pixels
with similar depth should be merged first and their alpha
values summed together before they are alpha-blended
with the other pixels. That is because they are likely to
represent sampling of the same surface.

Therefore, the pixel merging is also performed in the
output LDI, which is similar to the pixel merging the LDI
of the octree cell as discussed in section 3.1. The differ-
ence is a single threshold value of depth difference does

not work anymore because the pixels can come from dif-
ferent levels of the LDI tree. This difficulty is solved by
attaching the level of octree cell where the pixel comes
from to each pixel in the output LDI. The threshold value
that is used for that level of octree is then used to deter-
mine whether two pixels in the output LDI should be
merged.

3.4. Progressive Refinement
As discussed in section 3.2, the traversal of the LDI tree
during the rendering depends on the resolution of the out-
put image. The simplest method to create the effect of
progressive refinement is to render the LDI tree to low-
resolution output image first, then increase the resolution
gradually. Even though this method does not utilize the
coherence between renderings of two different resolutions,
the result is acceptable because the low-resolution render-
ing can be done much faster than the full-resolution one.

To utilize the coherence between two renderings, we
can tag the octree cells that are traversed in the previous
rendering and skip them in the current rendering. Note
that some filtered pixels may have been warped to the out-
put buffer if they are from the leaf node of the subtree
traversed in the previous rendering. Those pixels must
also be tagged so they can be removed from the output
buffer.

3.5. Gap Filling
When we construct the LDI tree from many reference im-
ages, chances are we have eliminated most of the exposure
artifacts due to the occlusion problem. However, it is pos-
sible that some exposure artifacts still remain. We propose
here a two-pass algorithm that uses the filtered pixels in
the LDI tree to fill in the gaps in the output image. The
algorithm consists of the following steps:

1. The first pass is to render the output image from the
LDI tree as discussed in section 3.2.

2. A stencil (or coverage of pixels) is then built from the
output image.

3. Render the output image from the LDI tree again. But
in this pass, splat only the filtered pixels.

4. Use the stencil from step 2 to add the image from step
3 to the image from step 1.

The stencil from step 2 allows the filtered pixels to
draw only to the gaps in the output image from step 1.

Our gap filling method produces different results from
meshing method described in Mark’s Post-Rendering 3D
Warping [9]. Figure 5 shows an example of the gap that is
caused by a front surface occluding a back surface. In the
meshing method, the gaps are covered by quadrilaterals
stretching between the front surface and the back surface
(figure 5a). In contrast, our gap filling method splats the
filtered samples from surfaces that surround the gap in the
output. As shown in figure 5b, the back surfaces make
more contribution to the gap than they do in the meshing
method. If we do not have additional surface connectivity
information in the original reference image, we believe the

6

methods like ours that are based on the filtering of existing
samples are more robust.

3.6. Analysis of Memory Requirement
Although a complete, fully expanded LDI tree may

contain too many LDIs to be practical for implementation,
it is worth noting that only a small subset of a complete
LDI tree is used when it is constructed from reference im-
ages.

When we construct the LDI tree from reference im-
ages, we add a constant number of unfiltered LDI pixels to
the octree cell chosen for each pixel of reference images.
We also add O(h) amount of filtered LDI pixels to the an-
cestor cells, where h is the number of ancestors. That
means the amount of memory taken by the LDI tree grows
in the same order as the amount taken by the original ref-
erence images, only if h is bounded.

We can further assume that h is bounded because the
maximal height of the LDI tree exists. Let L be the longest
side of bounding box of the scene, N be the resolution of
LDI, d be the smallest feature in the scene the human eyes
can discern, and H be the maximal height of the LDI tree.
Then we have:

Although we do not include the memory overhead for
maintaining the octree, we also do not include the possible
saving in memory when pixels are merged in the LDIs.
The experimental results will be presented later in this
paper to show that amount of memory indeed grows
slower than the number of reference images.

3.7. Rendering Time
An advantage the image-based rendering has over tradi-
tional polygon-based rendering is that the rendering time
does not grow with the complexity of the scene. That ad-
vantage is still preserved in the rendering from the LDI
tree, even though many layers of LDIs must be rendered.
Let us consider the worst case in which we need to render
every pixel in the LDI tree. As discussed previously, the
number of pixels is of the same order as the original refer-
ence images. Therefore the time complexity of rendering
from LDI tree is of the same order as warping all reference

images in the worst case. Because larger cells are used for
farther objects, the worst case rarely happens and usually
much less pixels in the LDI tree are rendered. The ex-
perimental results are presented in the next section.

4. Results
We implemented the LDI tree on a Silicon Graphics
Onyx2 with 2 gigabytes of main memory. The machine
has four 195 MHz MIPS R10000 processors but we did
not exploit its parallel processing capability in our imple-
mentation.

We tested our program with a model of the interior of
Palladio's Il Redentore in Venice [14]. The reference im-
ages are generated by ray tracing using the Rayshade pro-
gram [5]. Each reference image has 512×512 pixels and
90-degree field of view. Figure 6 shows one of the refer-
ence images.

In synthesized scenes, an LDI can be generated directly
by ray tracing [17]. We do not include it in our framework
because it does not apply to the reference images acquired

×
=

dN
LH 2log

Figure 5: This example shows the different results
of gap filling from the meshing method and the
method presented in this paper. (a) The meshing
method. (b) The gap filling method using filtered
samples.

(a) (b)

Chart 1: The memory usage of LDI trees.

Chart2: The rendering time.

Chart3: The number of octree cells traversed.

Memory Usage

0

50

100

150

200

250

300

350

400

450

0 2 4 6 8 10 12
Number of Reference Images

M
em

or
y

(in
 M

B
yt

e)

Rendering Time

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40
frame number

C
P

U
 ti

m
e

(in
 s

ec
on

d)

12 reference Images
10 reference Images
8 reference Images
6 reference Images
4 reference Images
2 reference Images

Octree Cells Accessed

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35 40
frame number

O
ct

re
e

C
el

ls
 A

cc
es

se
d

12 reference Images
10 reference Images
8 reference Images
6 reference Images
4 reference Images
2 reference Images

7

from non-synthesized scenes, such as the depth images that
are acquired by a laser range finder.

Figure 7 shows the top view of the bounding boxes of
the LDI tree after two of the reference images are proc-
essed. Each cell has an LDI in 64×64 resolution. The left
face of each cell is also the projection plane of its LDI.
Note that the cells near the center of projection of a refer-
ence image have more levels of subdivision. Figure 8
shows a new view which is rendered from the LDI tree.
We disabled the gap filling feature to let the exposure arti-
facts appear in blue background color. Figure 8 has severe
exposure artifacts because only two reference images are
used to generate the LDI tree. Figures 9 and 10 shows the
same view but with 4 and 12 reference images respec-
tively. Figure 11 is generated from the same LDI tree as
figure 10 but with the gap filling feature enabled.

We measured the memory usage of the LDI tree and
the results are in chart 1. It shows that the memory usage
grows slower than linearly with the number of reference
images, which supports our analysis in section 3.6.

We also measured the rendering time in our experi-
ment. The priority in our experiment is the correctness.
Therefore little optimization and hardware acceleration
were used to speed up the rendering. For example, the
splatting operation is implemented completely in software
simulation. Chart 2 shows the rendering time for a moving
path of 40 frames with various numbers of reference im-
ages. Each line represents the rendering times along the
path for a given number of reference images. The chart
also shows that the rendering time grows slower than line-
arly with the number of reference images. Furthermore,
chart 3 shows that the number of octree cells traversed
almost stays constant when the number of reference im-
ages increases. Therefore the increase in rendering time is
likely due to processing more details of scene that are
added from the additional reference images.

5. Conclusion and Future Work
Using multiple reference images in 3D image warping has
been a challenging problem. This paper describes the LDI
tree which combines multiple reference images into a hier-
archical representation and preserves their sampling rate of
the scene. The LDI tree allows the efficient extraction of
best available samples for any view and uses filtered sam-
ples in the hierarchy to reduce rendering time. The filtered
samples also enable the gap filling method presented in
section 3.5.

We have assumed that each pixel of reference images
provides only the color and depth information. No surface
normal or orientation information has been considered. A
direction for future work is to incorporate the surface ori-
entation into our framework, such as in the splatting and
the calculation of stamp size.

When a surface is sampled in multiple reference im-
ages, we should be able to get better sampling of the sur-
face than what we can get from any single image. How to
explore this type of cross-image supersampling is another
direction of future work.

 Like the original LDI, pixels that fall into the same
pixel location and have similar depth values are merged
together. That is based on the assumption that the surface
is diffuse and little view-dependent variance can occur.
How to extract view-dependent properties of the surface
instead of merging the pixels is yet another direction for
future work.

6. Acknowledgements
Special thanks to David McAllister for generating the ref-
erence images used in this paper, and Nathan O’Brien for
creating the excellent model of Il Redentore. This work is
supported by DARPA ITO contract number E278 and NSF
MIP-9612643.

7. References
[1] C. H. Chien, Y. B. Sim and J. K. Aggarwal. Genera-

tion of Volume/Surface Octree from Range Data. The
Computer Society Conference on Computer Vision
and Pattern Recognition, pages 254-60, June 1988.

[2] C. I. Connolly. Cumulative Generation of Octree
Models from Range Data. Proceedings, Intl’ Conf.
Robotics, pages 25-32, March 1984.

[3] Brian Curless and Marc Levoy. A Volumetric
Method for Building Complex Models from Range
Images. . In Proceedings of SIGGRAPH 1996.

[4] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski
and Michael F. Cohen. The Lumigraph. . In Pro-
ceedings of SIGGRAPH 1996.

[5] Craig Kolb. Rayshade.
http://www-graphics.stanford.edu/~cek/rayshade/.

[6] David Laur and Pat Hanrahan. Hierarchical Splatting:
A Progressive Refinement Algorithm for Volume
Rendering. . In Proceedings of SIGGRAPH 1991.

[7] Marc Levoy and Pat Hanrahan. Light Field Render-
ing. In Proceedings of SIGGRAPH 1996.

[8] A. Li and G. Crebbin. Octree Encoding of Objects
from Range Images. Pattern Recognition, 27(5):727-
739, May 1994.

[9] Robert W. Marcato Jr. Optimizing an Inverse Warper.
Master's of Engineering Thesis, Massachusetts Insti-
tute of Technology, 1998.

[10] William R. Mark, Leonard McMillan and Gary
Bishop. Post-Rendering 3D Warping. Proceedings of
the 1997 Symposium on Interactive 3D Graphics.

[11] Leonard McMillan. A List-Priority Rendering Algo-
rithm for Redisplaying Projected Surfaces. Technical
Report 95-005, UNC-CH, 1995.

[12] Leonard McMillan and Gary Bishop. Plenoptic Mod-
eling. In Proceeding of SIGGRAPH 1996.

[13] Leonard McMillan. An Image-Based Approach to
Three-Dimensional Computer Graphics. Ph.D. Dis-
sertation. Technical Report 97-013, University of
North Carolina at Chapel Hill. 1997.

[14] Nathan O’Brien.
http://www.fbe.unsw.edu.au/exhibits/rayshade/church/

[15] Gernot Schaufler and Wolfgang Stürzlinger. A Three-
Dimensional Image Cache for Virtual Reality. In Pro-

8

ceedings of Eurographics ’96, pages 227-236. August
1996.

[16] Jonathan Shade, Dani Lischinski, David H. Salesin,
Tony DeRose and John Snyder. Hierarchical Image
Caching for Accelerated Walkthrough of Complex
Environments. . In Proceedings of SIGGRAPH 1996.

[17] Jonathan Shade, Steven Gortler, Li-wei He and Rich-
ard Szeliski. Layered Depth Images. In Proceedings
of SIGGRAPH 1998.

[18] Lee Westover. SPLATTING: A Parallel, Feed-
Forward Volume Rendering Algorithm. Ph.D. Dis-
sertation. Technical Report 91-029, University of
North Carolina at Chapel Hill. 1991.

9

Figure 9: A new view generated from four
reference images.

Figure 8: A new view generated from two
reference images.

Figure 7: Top view of the octree cells
after combining two reference images.

Figure 6: One of the reference images.

Figure 11: A new view generated from 12
reference images. Gap filling is enabled.

Figure 10: A new view generated from 12
reference images.

