
PROC SQL for DATA Step Die-Hards
Christianna S. Williams, Yale University

ABSTRACT
PROC SQL can be rather intimidating for those who have
learned SAS data management techniques exclusively
using the DATA STEP. However, when it comes to data
manipulation, SAS often provides more than one method
to achieve the same result, and SQL provides another
valuable tool to have in one’s repertoire. Further,
Structured Query Language is implemented in many
widely used relational database systems with which SAS
may interface, so it is a worthwhile skill to have from that
perspective as well.

This tutorial will present a series of increasingly complex
examples. In each case I will demonstrate the DATA
STEP method with which users are probably already
familiar, followed by SQL code that will accomplish the
same data manipulation. The simplest examples will
include subsetting variables (columns, in SQL parlance)
and observations (rows), while the most complex
situations will include MERGEs (JOINS) of several types
and the summarization of information over multiple
observations for BY groups of interest. This approach
will clarify for which situations the DATA STEP method
or, conversely, PROC SQL would be better suited. The
emphasis will be on writing clear, concise, debug-able
SAS code, not on which types of programs run the fastest
on which platforms.

INTRODUCTION
The DATA step is a real workhorse for virtually all SAS
users. Its power and flexibility are probably among the
key reasons why the SAS language has become so
widely used by data analysts, data managers and other
“IT professionals”. However, at least since version 6.06,
PROC SQL, which is the SAS implementation of
Structured Query Language, has provided another
extremely versatile tool in the base SAS arsenal for data
manipulation. Still, for many of us who began using SAS
prior to the addition of SQL or learned from hardcore
DATA step programmers, change may not come easily.
We are often too pressed for time in our projects to learn
something new or venture from the familiar, even though
it may save us time and make us stronger programmers
in the long run. Often SQL can accomplish the same
data manipulation task with considerably less code than
more traditional SAS techniques.

This paper is designed to be a relatively painless
introduction to PROC SQL for users who are already
quite adept with the DATA step. Several examples of row
selection, grouping, sorting, summation and combining
information from different data sets will be presented.
For each example, I’ll show a DATA step method
(recognizing that there are often multiple techniques to
achieve the same result) followed by an SQL method.
Throughout the paper, when I refer to “DATA step
methods”, I include under this term other base SAS

procedures that are commonly used for data
manipulation (e.g. SORT, SUMMARY). In each code
example, SAS keywords are in ALL CAPS, while arbitrary
user-provided parameters (i.e. variable and data set
names) are in lower case.

THE DATA

First, a brief introduction to the data sets. Table 1
describes the four logically linked data sets, which
concern the hospital admissions for twenty make-believe
patients. The variable or variables that uniquely identify
an observation are indicated in bold; the data sets are
sorted by these keys. Complete listings are included at
the end of the paper. Throughout the paper, it is
assumed that these data sets are located in a data library
referenced by the libref EX.

Table 1. Description of data sets for examples

Data set Variable Description

admits pt_id patient identifier

admdate date of admission

disdate date of discharge

hosp hospital identifier

bp_sys systolic blood pressure
(mmHg)

bp_dia diastolic blood pressure
(mmHg)

dest discharge destination

primdx primary diagnosis (ICD-9)

md admitting physician
identifier

patients id patient identifier

lastname patient last name

firstnam patient first name

sex gender (1=M, 2=F)

birthdte date of birth

primmd primary physician identifier

hospital hosp_id hospital identifier

hospname hospital name

town hospital location

nbeds number of beds

type hospital type

doctors md_id physician identifier

hospadm hospital where MD has
admitting privileges

lastname physician last name

EXAMPLE 1: SUBSETTING VARIABLES (COLUMNS)

Here we just want to select three variables from the
ADMITS data set.

• DATA step code:

DATA selvar1 ;
SET ex.admits (KEEP = pt_id admdate disdate);
RUN;

The KEEP= option on the SET statement does the job.

• SQL code:

PROC SQL;
CREATE TABLE selvar2 AS
 SELECT pt_id, admdate, disdate
 FROM ex.admits ;
QUIT;

The SQL procedure is invoked with the PROC SQL
statement. SQL is an interactive procedure, in which
RUN has no meaning. QUIT forces a step boundary,
terminating the procedure. An SQL table in SAS is
identical to a SAS data set. The output table could also
be a permanent SAS data set; in such case, it would
simply be referenced by a two-level name (e.g.
EX.SELVAR2). A few other features of this simple
statement are worth noting. First, the variable names are
separated by commas rather than spaces; this is a
general feature of lists in SQL – lists of tables, as we’ll
see later, are also separated by commas. Second, the
AS keyword signals the use of an alias; in this case the
table name SELVAR2 is being used as an alias for the
results of the query beginning with the SELECT clause.
We’ll see other types of aliases later. Third, the FROM
clause names what entity we are querying. Here it is a
single input data set (EX.ADMITS), but it could also be
multiple data sets, a query, a view (either as SAS view or
a SAS/ACCESS view), or a table in an external database
(made available within SAS, for example, by open
database connect [ODBC]). Examples of the first two
types will be presented below.

SQL can also be used to write reports, in which case the
statement above would begin with the SELECT clause.
The resulting report looks much like output from PROC
PRINT. SAS views, which are stored queries, can also
be created with SQL. To do this, the keyword TABLE in
the CREATE statement above would simply be replaced
with the keyword VIEW. In this paper, since I am
focussing on the generation of new data sets meeting
desired specifications, virtually all the SQL statements
will begin with “CREATE TABLE…”.

One final point before we move on to some more
challenging examples: interestingly, although the results
of the DATA step and the PROC SQL are identical
(neither PROC PRINT nor PROC COMPARE reveal any
differences), slightly different messages are generated in
the log.

• For the DATA step:

NOTE: The data set WORK.SELVAR1 has 22
observations and 3 variables.

• For PROC SQL:

NOTE: Table WORK.SELVAR2 created, with 22
rows and 3 columns.

This points up a distinction in the terminology that stems
from the fact that SQL originated in the relational
database arena, while, of course, the DATA step evolved
for “flat file” data management. So, we have the following
equivalencies:

Table 2. Equivalencies among terms

DATA step PROC SQL

data set table

observation row

variable column

EXAMPLE 2A: SELECTING OBSERVATIONS (ROWS)

Almost all of the rest of the examples involve the
selection of certain observations (or rows) from a table or
combinations of tables. Here we simply want to select
admissions to the Veteran’s Administration hospital
(HOSP EQ 3 on the ADMITS data set).

• DATA step code:

DATA vahosp1 ;
 SET ex.admits ;
IF hosp EQ 3 ;
RUN;

The subsetting IF is used to choose those observations
for which the hospital identifier corresponds to the VA.

• SQL code:

PROC SQL FEEDBACK;
CREATE TABLE vahosp2 AS
 SELECT *
 FROM ex.admits
 WHERE hosp EQ 3;
QUIT;

Here, the WHERE clause performs the same function as
the subsetting IF above. Note that it is still part of the
CREATE statement. A few additional features of SQL are
demonstrated here in this simple query. First, the * is a
“wild card” syntax, which essentially means “Select all the
columns”. The FEEDBACK option on the PROC SQL
statement requests an expansion of the query in the log.
Useful in conjunction with the wild card, this results in the
following statement in the SAS log:

NOTE: Statement transforms to:
 select ADMITS.PT_ID, ADMITS.ADMDATE,
ADMITS.DISDATE, ADMITS.MD, ADMITS.HOSP,
ADMITS.DEST, ADMITS.BP_SYS, ADMITS.BP_DIA,
ADMITS.PRIMDX
 from EX.ADMITS
 where ADMITS.HOSP=3;

NOTE: Table WORK.VAHOSP2 created, with 6 rows
and 9 columns.

A subset of variables is shown in the output below.

Example 2a:
Selecting observations: VA Admits

PT_ID ADMDATE DISDATE HOSP

 003 15MAR1997 15MAR1997 3
 008 01OCT1997 15OCT1997 3
 008 26NOV1997 28NOV1997 3
 014 17JAN1998 20JAN1998 3
 018 01NOV1997 15NOV1997 3
 018 26DEC1997 08JAN1998 3

EXAMPLE 2B: SELECTING ROWS WITH CHARACTER
COMPARISONS

This next example illustrates selection based on the value
of a character variable. We wish to select all the
admissions with a primary diagnosis (PRIMDX),
corresponding to a myocardial infarction (MI) or heart
attack. The diagnoses are recorded as ICD-9-CM codes,
and the codes corresponding to MI are anything
beginning with 410.

• DATA step code:

DATA mi1 ;
 SET ex.admits ;
IF primdx EQ: ’410’ ;
RUN;

The EQ: comparison operator (or, equivalently =:) selects
all values that begin 410.

• SQL code:

PROC SQL;
CREATE TABLE mi2 AS
 SELECT *
 FROM ex.admits
 WHERE primdx LIKE ’410%’ ;
QUIT;

Here, the LIKE keyword and the % wildcard permit the
same selection. A subset columns from the output table
are shown below.

Example 2b:
Selecting observations based on character data

PT_ID ADMDATE HOSP PRIMDX

 001 07FEB1997 1 410.0
 005 10MAR1997 1 410.9
 009 15DEC1997 2 410.1
 012 12AUG1997 5 410.52

EXAMPLE 2C: SELECTING ROWS BASED ON A
CREATED VARIABLE

In this example we want to create a variable
corresponding to the number of days of the hospital stay
and select only those stays with duration of at least 14

days. Usually, both the admission date and discharge
date are considered days of stay.

• DATA Step code:

DATA twowks1 ;
 SET ex.admits (KEEP = pt_id hosp admdate
 disdate) ;
los = (disdate - admdate) + 1;
ATTRIB los LENGTH=4 LABEL=’Length of Stay’;

IF los GE 14 ;
RUN;

• SQL code:

PROC SQL;
CREATE TABLE twowks2 AS
 SELECT pt_id, hosp, admdate, disdate,
 (disdate - admdate) + 1 AS los
 LENGTH=4 LABEL=’Length of Stay’
 FROM ex.admits
 WHERE CALCULATED los GE 14;

Here, we see the creation of a new column and the
assignment of a column alias (LOS). Attributes can also
be added; they could include a FORMAT as well. There
is also one more subtle feature here: the CALCULATED
keyword is required to indicate that the column LOS
doesn’t exist on the input table (EX.ADMITS) but is
calculated during the query execution.

Example 2c:
Selecting observations based on created
variable

PT_ID HOSP ADMDATE DISDATE LOS

 001 1 12APR1997 25APR1997 14
 007 2 28JUL1997 10AUG1997 14
 008 3 01OCT1997 15OCT1997 15
 009 2 15DEC1997 04JAN1998 21
 018 3 01NOV1997 15NOV1997 15
 018 3 26DEC1997 08JAN1998 14
 020 1 08OCT1998 01NOV1998 25

On the other hand, it is not required to assign an alias to
a calculated column. The following would be perfectly
valid and would select the same observations:

SELECT pt_id, hosp, admdate, disdate,
 (disdate - admdate) + 1
 FROM ex.admits
 WHERE (disdate - admdate) + 1 GE 14;

However, SAS will assign an arbitrary, system-dependent
variable name to this column in the resulting table.
However, if this column had a LABEL, it would print at the
top of the column in the output, though the underlying
variable name would still be the undecipherable
_TEMA001.

EXAMPLE 2D (OR 2A REVISITED): SELECTING ROWS
IN ONE TABLE BASED ON INFORMATION FROM
ANOTHER TABLE

Returning to the example of selecting admissions to the
Veteran’s Administration hospital, let’s say we didn’t know

which value of the HOSP variable corresponded to the VA
hospital. The information that provides a “cross-walk”
between the hospital identifier code and the hospital
name is in the HOSPITALS data set.

• DATA Step Code:

PROC SORT DATA = ex.admits OUT=admits;
BY hosp ;
RUN;

DATA vahosp1d (DROP = hospname) ;
MERGE admits (IN=adm)
 ex.hospital (IN=va KEEP = hosp_id hospname
 RENAME = (hosp_id=hosp)
 WHERE = (hospname EQ: ’Veteran’));
BY hosp ;
IF adm AND va;
RUN;

PROC SORT;
BY pt_id admdate;
RUN;

We first need to sort the ADMITS data set by the hospital
code, and then merge it with the HOSPITAL data set,
renaming the hospital code variable and selecting only
those observations with a hospital name beginning
“Veteran”. If we want the admission to again be in
ascending order by patient ID and admission date,
another sort is required. The resulting data set is the
same as in Example 2A.

• PROC SQL Code:

PROC SQL ;
CREATE TABLE vahosp2d AS
 SELECT * FROM ex.admits
 WHERE hosp EQ (SELECT hosp_id FROM
 ex.hospital WHERE hospname
 EQ "Veteran’s Administration")
 ORDER BY pt_id, admdate ;
QUIT;

This procedure contains an example of a subquery, or a
query-expression that is nested within another query-
expression. The value of the hospital identifier (HOSP)
on the ADMITS data set is compared to the result of a
subquery of the HOSPITAL data set. In this case, this
works because the subquery returns a single value; that
is, there is a unique HOSP_ID value corresponding to a
HOSPNAME that begins “Veteran”. Note that no columns
are added to the resulting table from the HOSPITAL data
set, although this could be done too, as we’ll see in a later
example. No explicit sorting is required for this subquery
to work. The ORDER BY clause dictates the sort order of
the output data set. The output is identical to that shown
for Example 2A.

If you want to compare the value of HOSP to multiple
rows in the HOSPITAL data set, to obtain, for example,
all admissions to hospitals that have names beginning
with “C”, use the IN keyword:

SELECT * FROM ex.admits
 WHERE hosp IN (SELECT hosp_id FROM
 ex.hospital
 WHERE hospname LIKE ’C%’)
 ORDER BY pt_id, admdate ;

This will result in the selection of all admissions to
hospitals 4, 5 and 6 (Community Hospital, City Hospital

and Children’s Hospital, respectively); however, there are
no observations in ADMITS with HOSP equal to 6.

EXAMPLE 3: USING SUMMARY FUNCTIONS

Our next task is to count the number of admissions for
each of the patients with at least one admission. We also
want to calculate the minimum and maximum length of
stay for each patient.

• DATA Step Code:

DATA admsum1 ;
 SET ex.admits ;
BY pt_id;

** (1) Initialization;
IF FIRST.pt_id THEN DO;
 nstays = 0;
 minlos = .;
 maxlos = .;
END;

** (2) Accumulation;
nstays = nstays + 1;
los = (disdate - admdate) + 1;
minlos = MIN(OF minlos los) ;
maxlos = MAX(OF maxlos los) ;

** (3) Output;
IF LAST.pt_id THEN OUTPUT ;

RETAIN nstays minlos maxlos ;
KEEP pt_id nstays minlos maxlos ;
RUN;

We process the input data set by PT_ID. The DATA step
has three sections. First, when the input observation is
the first one for each subject, we initialize each of the
summary variables. Next, in the accumulation phase we
increment our counter and determine if the current stay is
the longest or shortest for this patient. The RETAIN
statement permits these comparisons. Finally, when it is
the last input observation for a given PT_ID, we output an
observation to our summary data set, keeping only the ID
and the summary variables. If we kept any other
variables, their values in the output data set would be the
values they had for the last observation for each subject,
and the output data set would still have one observation
for each patient in the ADMITS file (i.e. 14).

• PROC SQL code:

PROC SQL;
CREATE TABLE admsum2 AS
 SELECT pt_id, COUNT(*) AS nstays,
 MIN(disdate - admdate + 1) AS minlos,
 MAX(disdate - admdate + 1) AS maxlos
 FROM ex.admits
 GROUP BY pt_id ;
QUIT;

Two new features of PROC SQL are introduced here.
First, the GROUP BY clause instructs SQL what the
groupings are over which to perform any summary
functions. Second, the summary functions include
COUNT, which is the SQL name for the N or FREQ
functions used in other SAS procedures. The COUNT(*)
syntax essentially says count the rows for each GROUP
BY group. The summary columns are each given an
alias.

The output is shown below.

Example 3:
Using Summary Functions

PT_ID NSTAYS MINLOS MAXLOS

001 4 2 14
003 1 1 1
004 1 7 7
005 3 4 9
007 1 14 14
008 3 3 15

If we selected any columns other than the grouping
column(s) and the summary variables, the resulting table
would have a row for every row in the input table (i.e. 23),
and we’d get the following messages in the log:

NOTE: The query requires remerging summary
statistics back with the original data.

NOTE: Table WORK.ADMSUM2 created, with 23
rows and 5 columns.

Sometimes this “re-merging” is useful as Example 4b
below, but it is not what we want for this situation.

EXAMPLE 4A: SELECTION BASED ON SUMMARY
FUNCTIONS

Let’s say we want to identify potential blood pressure
outliers. We’d like to select all those observations that
are two standard deviations or further from the mean.

• DATA Step Code:

PROC SUMMARY DATA= ex.admits ;
VAR bp_sys ;
OUTPUT OUT=bpstats MEAN(bp_sys)=mean_sys
 STD(bp_sys)=sd_sys ;
RUN;

DATA hi_sys1 ;
 SET bpstats (keep=mean_sys sd_sys)
 ex.admits ;

IF _N_ EQ 1 THEN DO;
 high = mean_sys + 2*(sd_sys) ;
 low = mean_sys - 2*(sd_sys) ;
 DELETE;
END;
RETAIN high low;

IF (bp_sys GE high) OR (bp_sys LE low) ;

DROP mean_sys sd_sys high low ;
RUN;

PROC SUMMARY generates the statistics we need. We
concatenate this one-observation data set with our
admissions data set, RETAINing the high and low cutoffs
so we can make the comparison we need to choose the
potential outliers.

• PROC SQL Code:

PROC SQL ;
CREATE TABLE hi_sys2 AS
SELECT * FROM ex.admits
 WHERE (bp_sys GE
 (SELECT MEAN(bp_sys)+ 2*STD(bp_sys))
 FROM ex.admits))
 OR (bp_sys LE
 (SELECT (MEAN(bp_sys) - 2*STD(bp_sys))
 FROM ex.admits));
QUIT;

The summary functions are used here in two similar
subqueries of the same table to generate the values
against which the systolic blood pressure for each
observation in the outer query is compared. There is no
GROUP BY clause because we are generating the
summary values for the entire data set.

Example 4A:
Selection based on Summary Functions

PT_ID ADMDATE BP_SYS BP_DIA DEST
--
 001 12APR1997 230 101 1
 003 15MAR1997 74 40 9
 009 15DEC1997 228 92 9

EXAMPLE 4B: SELECTION BASED ON SUMMARY
FUNCTION WITH “RE-MERGE”

This example adds a small twist to the last one by
requiring that we select admissions with extreme systolic
blood pressure values by the discharge destination. The
variable DEST is 1 for those who are discharged home, 2
for those discharged to a rehabilitation facility and 9 for
those who die.

• DATA Step Code:

PROC SUMMARY DATA= ex.admits NWAY;
CLASS dest ;
VAR bp_sys ;
OUTPUT OUT=bpstats2 MEAN(bp_sys)=mean_sys
 STD(bp_sys)=sd_sys ;
RUN;

PROC SORT DATA = EX.ADMITS OUT=ADMITS;
BY DEST ;
RUN;

DATA hi_sys3 ;
 MERGE admits (KEEP = pt_id bp_sys bp_dia
 dest)
 bpstats2 (KEEP = dest mean_sys sd_sys);
BY dest ;

IF bp_sys GE mean_sys + 2*(sd_sys) OR
 bp_sys LE mean_sys - 2*(sd_sys) ;

FORMAT mean_sys sd_sys 6.2;
RUN;

We use a CLASS statement this time with PROC
SUMMARY and include the NWAY option so the
BPSTATS2 data set does not include the overall
statistics. The ADMITS data set must be sorted by DEST
before merging in the destination-specific means and

standard deviations. A subsetting IF pulls off the desired
observations.

• PROC SQL Code:

PROC SQL;
CREATE TABLE hi_sys4 AS
 SELECT pt_id, bp_sys, bp_dia, dest,
 MEAN(bp_sys) AS mean_sys FORMAT=6.2,
 STD(bp_sys) AS sd_sys FORMAT=6.2
 FROM ex.admits
 GROUP BY dest
 HAVING bp_sys GE (MEAN(bp_sys) +
 2*STD(bp_sys))
 OR bp_sys LE (MEAN(bp_sys) –
 2*STD(bp_sys)) ;
QUIT;

In some ways this example, in which the statistics are
generated and the selection of rows are made separately
for each BY group, is simpler than the last one where the
process was done for the sample as a whole. This
example doesn’t require a subquery. Rather it relies on a
“re-merging” of the summary statistics for each
GROUPing back with the ungrouped data, permitting the
row by row comparisons needed to select the outliers.
One new keyword is introduced here as well. HAVING
acts on groups in a manner analogous to the way a
WHERE clause operates on rows. A HAVING expression
usually is proceeded by a GROUP BY clause, which
defines the group that the HAVING expression evaluates,
and the query must include one or more summary
functions.

Example 4B:
Select using Summary Functions with re-merge

PT_ID BP_SYS BP_DIA DEST MEAN_SYS SD_SYS
--
 001 230 101 1 165.82 30.48
 018 199 9 2 151.09 21.28

EXAMPLE 4C: IDENTIFYING DUPLICATES

This example demonstrates another use of a HAVING
expression. We wish to select observations from the
DOCTORS data set that are not unique with respect to
the physician identifier. In other words we want to pull
out all the records for the doctors who have admitting
privileges at more than one hospital. We’d like them in
order by the physician’s last name.

• DATA Step Code:

DATA selmd1 ;
SET ex.doctors (KEEP = md_id lastname hospadm
 RENAME = (hospadm=hospital));
BY md_id ;

IF NOT (FIRST.md_id AND LAST.md_id) ;
RUN;

PROC SORT DATA=selmd1 ;
BY lastname ;
RUN;

Processing BY md_id with this subsetting IF will produce
the desired result.

• PROC SQL Code:

PROC SQL ;
 CREATE TABLE selmd2 AS
 SELECT md_id, lastname,
 hospadm AS hospital
 FROM ex.doctors
 GROUP BY md_id
 HAVING COUNT(*) GE 2
 ORDER BY lastname ;
QUIT;

Applying the GROUP BY clause, the query first counts
how many rows are associated with each doctor. The
HAVING expression then selects the rows that meet the
condition: being part of a group having more than one
row.

Example 4C:
Identifying duplicates

MD_ID LASTNAME HOSPITAL

 7803 Avitable 2
 7803 Avitable 3
 1972 Fitzhugh 2
 1972 Fitzhugh 1
 3274 Hanratty 1
 3274 Hanratty 3
 3274 Hanratty 2
 2322 MacArthur 1
 2322 MacArthur 3

EXAMPLE 5A: INNER JOIN OF TWO TABLES

A join combines data from two or more tables to produce
a single result table; the table resulting from an inner join
contains rows that have one or more matches in the other
table(s).

• DATA Step Code:

DATA admits1 ;
MERGE ex.admits (IN=adm KEEP = pt_id admdate
 disdate hosp md)
 ex.patients (IN=pts KEEP = id lastname
 sex primmd RENAME = (id=pt_id));
BY pt_id ;

IF adm AND pts;
RUN;

Selection based on the IN= temporary variables does the
trick. Note that this produces the desired result partly
because although there may be multiple admissions for
each patient, the PATIENTS data set has only one
observation for each value of the key variable PT_ID.
The information on each record for a given PT_ID in the
PATIENTS data set is replicated onto each observation in
the output data set.

• PROC SQL code:

PROC SQL ;
 CREATE TABLE admits2 AS
 SELECT pt_id, admdate, disdate, hosp, md,
 lastname, sex, primmd
 FROM ex.admits AS a, ex.patients AS b
 WHERE a.pt_id = b.id

 ORDER BY a.pt_id, admdate ;

QUIT;

The table aliases A and B are used here to clarify which
ID variables are coming from which data set. They are
not required here because there are no columns being
selected here that exist on both input data sets. Note that
the AS keyword is not required, but it emphasizes that an
alias is being assigned. The code above is more
commonly used for a simple inner join, but the following
also produces the same result.

PROC SQL ;
 CREATE TABLE admits2 AS
 SELECT pt_id, admdate, disdate, hosp, md,
 lastname, sex, primmd
 FROM ex.admits INNER JOIN ex.patients
 ON pt_id = id
 ORDER BY pt_id, admdate ;
QUIT;

This is also an example of an “equijoin” because the
selection criteria is equality of a column in one table with
a column in the second table. SAS MERGEs are always
equijoins. In the output below, only a subset of the 25
selected rows and 8 columns are shown.

Example 5A:
Inner Join of two tables

PT_ID ADMDATE HOSP MD LASTNAME PRIMMD

 001 07FEB1997 1 3274 Williams 1972
 001 12APR1997 1 1972 Williams 1972
 001 10SEP1997 2 3274 Williams 1972
 001 06JUN1998 2 3274 Williams 1972
 003 15MAR1997 3 2322 Gillette .
 004 18JUN1997 2 7803 Wallace 4003
 005 19JAN1997 1 1972 Abbott 1972
 005 10MAR1997 1 1972 Abbott 1972
 005 10APR1997 2 1972 Abbott 1972
 007 28JUL1997 2 3274 Nickelby 3274
 007 08SEP1997 2 3274 Nickelby 3274
 008 01OCT1997 3 3274 Lieberman 4003
 008 26NOV1997 3 2322 Lieberman 4003
 008 10DEC1997 9 2322 Lieberman 4003

EXAMPLE 5B: JOIN OF THREE TABLES WITH ROW
SELECTION

We now wish to identify patients who died in the hospital
(DEST = 9); we want their age at death and the number
of beds in the hospital. This requires obtaining
information from three of our tables, with differing key
fields.

• DATA Step Code:

DATA died1 (RENAME = (disdate=dthdate)) ;
 MERGE ex.admits (IN=dth KEEP = pt_id
 disdate hosp dest where = (dest=9))
 ex.patients (IN=pts KEEP = id birthdte
 RENAME = (id=pt_id));
BY pt_id ;
IF dth AND pts ;

agedth = FLOOR((disdate - birthdte)/365.25) ;

DROP dest birthdte ;
RUN;

PROC SORT DATA=died1; BY hosp; RUN;

DATA died1b ;
 MERGE died1 (IN=dth RENAME=(hosp=hosp_id))
 ex.hospital (IN=hsp KEEP=hosp_id nbeds);
 BY hosp_id ;

IF dth AND hsp ;
DROP hosp_id;
RUN;

PROC SORT; BY pt_id ; RUN;

This requires two DATA steps and two SORTs.

• PROC SQL code:

PROC SQL ;
CREATE TABLE died2 AS
 SELECT pt_id, nbeds, disdate AS dthdate,
 INT((disdate-birthdte)/365.25) AS agedth,
 nbeds
 FROM ex.admits, ex.hospital, ex.patients
 WHERE (pt_id = id) AND (hosp = hosp_id)
 AND dest EQ 9
 ORDER BY pt_id ;
QUIT;

Here we can query the combination of the three tables
because there is no requirement of a single key that links
all of the inputs.

Example 5B:
Join of three tables

PT_ID DTHDATE AGEDTH NBEDS

 001 12JUN1998 66 645
 003 15MAR1997 78 1176
 009 04JAN1998 88 645

EXAMPLE 5C: LEFT OUTER JOIN

A left outer join is an inner join of two or more tables that
is augmented with rows from the “left” table that do not
match with any rows in the “right” table(s). For this
example we want to produce a table that has a row for
each hospital with an indicator of whether there were any
admits at that hospital.

• DATA Step Code:

PROC SORT DATA = ex.admits (KEEP = hosp)
 OUT=admits RENAME=(hosp=hosp_id)) NODUPKEY;
BY hosp ;
RUN;

DATA HOSPS1 ;
MERGE ex.hospital (IN=hosp)
 admits (IN=adm);
 BY hosp_id ;

IF hosp ;

hasadmit = adm ;
RUN;

If the duplicates were not removed from the ADMITS data
set, the output data set would have multiple observations
for each hospital. The temporary boolean IN= variable is

made permanent to create our indicator of having at least
one record in the ADMITS data set.

• PROC SQL code:

PROC SQL ;
 CREATE TABLE hosps2 AS
 SELECT DISTINCT a.*,
 hosp IS NOT NULL AS hasadmit
 FROM ex.hospital a LEFT JOIN ex.admits b
 ON a.hosp_id = b.hosp ;
QUIT;

The keyword DISTINCT causes SQL to eliminate
duplicate rows from the resulting table. The expression
“hosp IS NOT NULL AS admits” assigns the alias
ADMITS to a new column whose value is TRUE (i.e. 1) if
a given HOSP_ID from the HOSPITAL table has a
matching HOSP value in the ADMITS table.

Example 5c:
Left Outer Join

 HOSP_ID HOSPNAME ADMITS

 1 Big University Hospital 1
 2 Our Lady of Charity 1
 3 Veteran’s Administration 1
 4 Community Hospital 1
 5 City Hospital 1
 6 Children’s Hospital 0

EXAMPLE 5D: INNER JOIN WITH A SUBQUERY

One of the items combined in a join can itself be a query.
In this case we want to identify the admissions for which
patients were treated by their primary physicians. We
want to include the doctor’s name and the patient’s name.

• DATA Step Code:

DATA prim1 (DROP = primmd);
 MERGE ex.admits (IN=adm KEEP = pt_id
 admdate disdate hosp md)
 ex.patients (IN=pts KEEP = id lastname
 primmd RENAME=(id=pt_id));
 BY pt_id ;

IF adm AND pts AND (md EQ primmd) ;
RUN;

PROC SORT DATA=prim1; BY md; RUN;

DATA doctors ;
 SET ex.doctors (KEEP = md_id lastname);

 BY md_id ;
 IF FIRST.md_id ;
RUN;

DATA prim1a ;
 MERGE prim1 (IN=p RENAME=(lastname=ptname
 md=md_id))
 doctors (RENAME = (lastname=mdname));
 BY md_id ;

IF p ;
RUN;

The first DATA step above selects the admissions for
which patients saw their primary physicians. The second

DATA step eliminates duplicate records for the same
physician. If this were not done, the final MERGE would
be a many-to-many merge and would not produce the
desired result. This final DATA step simply adds the
physician name to the selected admissions. Both
LASTNAME variables are RENAMEd to prevent the
physician name from overwriting the patient name.

• PROC SQL Code:

PROC SQL ;
CREATE TABLE prim2 AS
 SELECT pt_id, admdate, disdate, hosp, md_id,
 b.lastname AS ptname,
 c.lastname AS mdname
 FROM ex.admits a, ex.patients b,
 (SELECT DISTINCT md_id, lastname
 FROM ex.doctors) c
 WHERE (a.pt_id EQ b.id) AND
 (a.md EQ b.primmd) AND
 (a.md EQ c.md_id)
 ORDER BY a.pt_id, admdate ;
QUIT;

The third “table” listed in the FROM clause is itself a
query which selects non-duplicate physician ID’s and
names from the DOCTORS data set. The result of this
subquery can be aliased just like a table, and here the
aliases b and c are required so that the two lastname
columns can be distinguished. The ultimate row selection
is very straightforward. Sometimes for a complicated
query like this it is helpful to break it down into separate
queries.

Example 5D:
Inner Join with a subquery

PT_ID ADMDATE PTNAME MDNAME

 001 12APR1997 Williams Fitzhugh
 005 19JAN1997 Abbott Fitzhugh
 005 10MAR1997 Abbott Fitzhugh
 005 10APR1997 Abbott Fitzhugh
 007 28JUL1997 Nickelby Hanratty
 007 08SEP1997 Nickelby Hanratty
 010 30NOV1998 Alberts MacArthur
 018 01NOV1997 Baker Fitzhugh
 018 26DEC1997 Baker Fitzhugh

EXAMPLE 6: A CORRELATED SUBQUERY

A correlated subquery is a subquery for which the values
returned by the inner query depend on values in the
current row of the outer query. For example, we want to
display the names of physicians who had admissions to
the VA hospital.

• DATA Step Code:

PROC SORT DATA = ex.admits (KEEP=md hosp)
 OUT = admits;
BY md;
RUN;

PROC SORT DATA = ex.doctors OUT=doctors
 NODUPKEY ;
BY md_id ;

RUN;

DATA vadocs1 (DROP = hosp);
 MERGE doctors (IN=docs KEEP=md_id lastname)
 admits (IN=adm WHERE=(hosp = 3)
 RENAME = (md=md_id)) ;
BY md_id;
IF docs AND adm AND FIRST.md_id ;
RUN;

PROC SORT; BY lastname; RUN;

First, we need to sort the admissions data set by its link
to the physician data set and eliminate duplicate records
from the physician data set. Then we merge the VA
admission records into the physician data; we must again
“de-dup.” because some of these physicians have more
than one admission, and the information we are
interested in would be redundant.

• PROC SQL Code:

PROC SQL;
 CREATE TABLE vadocs2 AS
 SELECT DISTINCT md_id, lastname
 FROM ex.doctors AS d
 WHERE 3 IN
 (SELECT hosp
 FROM ex.admits AS a
 WHERE d.md_id = a.md)
 ORDER BY lastname;
QUIT;

Because the subquery refers to a column in the outer
query (MD_ID), it is evaluated for each row of the
DOCTORS table. So, for each row of the DOCTORS
table that has a match in the ADMITS table the WHERE
clause checks if 3 equals HOSP is TRUE; if so, the row is
selected. The output is below.

Example 6:
A correlated subquery

MD_ID LASTNAME

 7803 Avitable
 1972 Fitzhugh
 3274 Hanratty
 2322 MacArthur

CONCLUSION
I hope that the examples presented in this paper have
convinced you that PROC SQL is an extremely versatile
tool for the manipulation of data sets. Row selection,
summarization, the combination of information from
multiple input sources, and the ordering of the output can
often be achieved in a single statement! Another
compelling reason for becoming comfortable with SQL is
that many information systems store data in foreign
databases, such as ORACLE, Microsoft Access or SQL
Server. If these data are to be manipulated and analyzed
in SAS, frequently PROC SQL provides the link (e.g.
through ODBC).

Perhaps seeing some familiar DATA Step techniques
followed by a call to the SQL procedure that achieves the

same result will give you the impetus to try SQL or dig
into it a bit more deeply. I’ll close with three observations
that I hope will provide some encouragement.

First, it is always useful to have many different
techniques to draw on when tackling a challenging data
management task. And using a new project or
assignment as an opportunity to learn some new
methods makes you a more valuable employee – and
probably a more fulfilled one as well.

Second, on the technical side, the most complicated
nested query can usually be broken down into
manageable parts – start from the “inside” (the most
nested expressions) and work your way out. While it may
be possible to do it all in one statement, you don’t have
to. Try making each level of nesting into a separate
SELECT statement, using aliases with impunity, with a
final statement that connects the results of these simpler
statements. Once this is working, you can start building
the parts back together again.

Finally, in constructing these examples, I was struck that
using SQL forces one to think about data sets in a slightly
different way, focussing more on the relationships
among tables than the structure of any one table. In fact,
it makes one realize that a database is defined not only
by the component tables but just as importantly by the
linkages among them. This broadened perspective can
provide insight into building better databases as well as
writing better programs to access them.

REFERENCE
SAS Institute Inc., SAS Guide to the SQL Procedure:
Usage and Reference, Version 6, Fist Edition, Cary, NC;
SAS Institute Inc., 1989, 210 pp.

ACKNOWLEDGMENTS
Many thanks to Peter Charpentier, Evelyne Gabhauer and
Virginia Towle for their careful reading of and extremely
helpful comments on this paper.

CONTACT INFORMATION
I welcome your comments or questions. Contact the
author at:

Christianna Williams
Yale University Program on Aging
129 York Street, Suite 1-N
New Haven, CT 06511
Work Phone: (203) 764-9827
Fax: (203) 764-9831
Email: Christianna.Williams@yale.edu

SAS is a registered trademark or trademark of SAS
Institute Inc. in the USA and other countries. Oracle is a
registered trademark of the Oracle Corporation.
 indicates USA registration.

Other brand and product names are registered
trademarks or trademarks of their respective companies.

EXAMPLE DATA SETS
EX.ADMITS
PT_ID ADMDATE DISDATE MD HOSP DEST BP_SYS BP_DIA PRIMDX
--
 001 07FEB1997 08FEB1997 3274 1 1 188 85 410.0
 001 12APR1997 25APR1997 1972 1 1 230 101 428.2
 001 10SEP1997 19SEP1997 3274 2 2 170 78 813.90
 001 06JUN1998 12JUN1998 3274 2 9 185 94 428.4
 003 15MAR1997 15MAR1997 2322 3 9 74 40 431
 004 18JUN1997 24JUN1997 7803 2 2 140 78 434.1
 005 19JAN1997 22JAN1997 1972 1 1 148 84 411.81
 005 10MAR1997 18MAR1997 1972 1 1 160 90 410.9
 005 10APR1997 14APR1997 1972 2 1 150 89 411.0
 007 28JUL1997 10AUG1997 3274 2 2 136 72 155.0
 007 08SEP1997 15SEP1997 3274 2 2 138 71 155.0
 008 01OCT1997 15OCT1997 3274 3 1 145 74 820.8
 008 26NOV1997 28NOV1997 2322 3 2 135 76 V54.8
 008 10DEC1997 12DEC1997 2322 9 2 132 78 V54.8
 009 15DEC1997 04JAN1998 1972 2 9 228 92 410.1
 010 30NOV1998 06DEC1998 2322 1 1 147 84 E886.3
 012 12AUG1997 16AUG1997 4003 5 1 187 106 410.52
 014 17JAN1998 20JAN1998 7803 3 1 162 93 414.10
 015 25MAY1998 06JUN1998 4003 5 2 142 81 820.8
 015 17AUG1998 24AUG1998 4003 5 2 138 79 038.2
 016 25JUL1998 30JUL1998 7803 2 1 189 101 412.1
 018 01NOV1997 15NOV1997 1972 3 2 170 88 428.1
 018 26DEC1997 08JAN1998 1972 3 2 199 93 428.1
 020 04JUL1998 08JUL1998 2998 4 1 118 75 414.0
 020 08OCT1998 01NOV1998 2322 1 2 162 99 434.0

EX.PATIENTS
 ID SEX PRIMMD BIRTHDTE LASTNAME FIRSTNAM
--
001 1 1972 10AUG1931 Williams Hugh
002 2 1972 17MAR1929 Franklin Susan
003 1 . 02JUL1918 Gillette Michael
004 1 4003 25MAY1916 Wallace Geoffrey
005 2 1972 31AUG1931 Abbott Celeste
006 1 2322 12APR1899 Mathison Anthony
007 1 3274 07FEB1900 Nickelby Nicholas
008 2 4003 09NOV1935 Lieberman Marianne
009 2 3274 15SEP1909 Jacobson Frances
010 2 2322 14OCT1939 Alberts Josephine
011 2 1972 04NOV1917 Erickson Karen
012 1 7803 16JUN1926 Collins Elizabeth
013 1 4003 03AUG1937 Greene Riley
014 2 8034 14DEC1932 Marcus Emily
015 2 3274 . Zakur Hannah
016 1 1972 17JUN1904 DeLucia Antonio
017 1 2322 17APR1922 Cohen Adam
018 1 1972 13FEB1938 Baker Shelby
019 2 4003 01FEB1924 Wallace Judith
020 2 7803 07AUG1906 Nelson Caroline

EX.HOSPITAL
 HOSP_ID HOSPNAME TOWN NBEDS TYPE

 1 Big University Hospital New Mitford 841 1
 2 Our Lady of Charity North Mitford 645 2
 3 Veteran’s Administration West Mitford 1176 3
 4 Community Hospital Derbyville 448 1
 5 City Hospital New Mitford 1025 1
 6 Children’s Hospital East Mitford 239 2

EX.DOCTORS
MD_ID LASTNAME HOSPADM

 1972 Fitzhugh 1
 1972 Fitzhugh 2
 2322 MacArthur 1
 2322 MacArthur 3
 2998 Rosenberg 4
 3274 Hanratty 1
 3274 Hanratty 2
 3274 Hanratty 3
 4003 Colantonio 5
 7803 Avitable 2
 7803 Avitable 3

