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ABSTRACT 

Big Data has long been the topic of fascination for Computer 

Science enthusiasts around the world, and has gained even 

more prominence in the recent times with the continuous 

explosion of data resulting from the likes of social media and 

the quest for tech giants to gain access to deeper analysis of 

their data. This paper discusses two of the comparison of - 

Hadoop Map Reduce and the recently introduced Apache 

Spark – both of which provide a processing model for 

analyzing big data. Although both of these options are based 

on the concept of Big Data, their performance varies 

significantly based on the use case under implementation. 

This is what makes these two options worthy of analysis with 

respect to their variability and variety in the dynamic field of 

Big Data. In this paper we compare these two frameworks 

along with providing the performance analysis using a 

standard machine learning algorithm for clustering (K-

Means).  
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1. INTRODUCTION 
Apache Hadoop [1] is an open source framework that 

provides solutions for handling big data along with extensive 

processing and analysis. It was created by Doug Cutting in 

2005 when he was working for Yahoo at the time for the 

Nutch search engine project. Hadoop has two major 

components named HDFS (Hadoop Distributed File System) 

[2] and the Map Reduce [3] framework. Hadoop Distributed 

File System is said to be inspired by Google’s The Google 

File System (GFS) [4] and provides a scalable, efficient, and 

replica based storage of data at various nodes that form a part 

of a cluster. 

HDFS is based on a master slave architecture where 

‘namenode’ is the master and ‘datanodes’ are the slave nodes 

where the actual data resides (quite possibly replicated data). 

The replication factor by default is of three, but can be 

configured as per the need of the user and the usage type. The 

second vital component, which is Map Reduce is the 

processing model for Apache Hadoop which allows 

successful processing of the replicated data in parallel based 

on the former programming language techniques of map and 

reduce. Map is the phase which is implemented to distributed 

portions of a dataset to various ‘mappers’ that work in parallel 

to provide the achievability for the essence of big data 

computation. The outputs from these mappers are exposed to 

sorting and shuffling which takes the flow to the next phase, 

called the ‘Reduce’ phase where data is aggregated to find out 

the result to our initial problem statement [5].  

Although recently, the world of Big Data has seen a dynamic 

shift from this computing model with the introduction and 

stable release of Apache Spark [6], which provides a user 

friendly programming interface to decrease coding efforts and 

provide better performance in a majority of the cases with 

problems related to big data. Spark not just provides an 

alternative to Map Reduce, but also has options for SQL like 

querying with Shark and a machine learning library called 

MLib. The performance and working of spark is considerably 

different from that of map reduce, but is also dependent on the 

constraints of parallelism, the types of problems in context, 

and the resources available. 

Apache Spark [7] started as a research project at UC Berkeley 

in the AMPLab, was started with a goal to design a 

programming model that supports a much wider class of 

applications than MapReduce, while maintaining its automatic 

fault tolerance. 

Spark offers an abstraction called Resilient distributed 

Datasets (RDDs) [8] to support these applications efficiently. 

RDDs can be stored in memory between queries without 

requiring replication. Instead, they rebuild lost data on failure 

using lineage: each RDD remembers how it was built from 

other datasets (by transformations like map, join or groupBy) 

to rebuild itself. RDDs allow Spark to outperform existing 

models by up to 100x in multi-pass analytics. RDDs can 

support a wide variety of iterative algorithms, as well as 

interactive data mining and a highly efficient SQL engine 

Shark [9].  

2. DIFFERENCE BETWEEN 

MAPREDUCE AND SPARK 

 

Fig 3: Map phase in Map Reduce 
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The above diagram shows the Map phase of Hadoop Map 

Reduce [10]. The steps for the same are explained below:  

 The Map phase outputs the result in the form of (Key, 

Value) pairs.  

 The output would be stored in a circular buffer in 

memory.  

 When the circular buffer fills 80% (configurable), then 

it data is spilled onto disk. 

 All the spill files are combined into a single big file 

which is partitioned and sorted depending upon the 

reducers. 

 

Fig 2: Map phase in Spark 

The above diagram shows the Map phase of Hadoop Map 

Reduce [10]. The steps for the same are explained below: 

 In contrast to Map Reduce, the output of map phase is 

written to OS Buffer Cache.  

 Operating System decides whether the data will stay in 

buffer or will be spilled onto disk.  

 Unlike Map Reduce, Spark does not merge or partition 

spill files, with the only difference being that the map 

output from the same cores are merged into a single file. 

 Each Map task/core outputs as many spill files as 

number of reducers [11][12][13]. 

 

Fig 3: Reduce phase in Map Reduce 

Reduce side of Hadoop MR:   

 The data (intermediate files) created by the map phase is 

pulled by the reducers and loaded into the memory.  

 If buffer reaches 70% (configurable), it is spilled onto 

disk. 

 The data spilled to the disk is then merged into larger 

files, and the reduce function is initiated. 

 

Fig 4: Reduce phase in Spark 

 The map phase pushes the data in the form of 

intermediate (shuffle) files to the reducers. 

 These files are written to reducer’s memory and reduce 

functionality is invoked. 

2.1 Reasons to choose Spark 
 Spark uses the concept of RDD which allows us to store 

data on memory and persist it as per the requirements. 

This allows a massive increase in batch processing job 

performance (up to ten to hundred times as much as that 

of conventional Map Reduce). 

 Spark also allows us to cache the data in memory, which 

is beneficial in case of iterative algorithms such as those 

used in machine learning. 

 Traditional MapReduce and DAG engines are 

suboptimal for these applications because they are based 

on acyclic data flow: an application has to run as a 

series of distinct jobs, each of which reads data from 

stable storage (e.g. a distributed file system) and writes 

it back to stable storage. They incur significant cost 

loading the data on each step and writing it back to 

replicated storage. 

 Spark allows us to perform stream processing with large 

input data and deal with only a chunk of data on the fly. 

This can also be used for online machine learning, and 

is highly appropriate for use cases with a requirement 

for real time analysis which happens to be an almost 

ubiquitous requirement in the industry. 

 In particular, MapReduce is inefficient for multi-pass 

applications that require low-latency data sharing across 

multiple parallel operations. These applications are quite 

common in analytics, and include: 

 Iterative algorithms, including many machine 

learning algorithms and graph algorithms like 

PageRank. 

 Interactive data mining, where a user would like to 

load data into RAM across a cluster and query it 

repeatedly. 

 Streaming applications that maintain aggregate state 

over time. 
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2.2 Why should one stick to MapReduce 
The prominent benefits of MapReduce over Spark are 

highlighted as below: 

 The main component of Spark happens to be Scala, 

along with ported Java API’s. Map Reduce might be 

friendlier and more native for Java based developers. 

 If the functionality is implemented only in Mapper, with 

no reducers, then it would hardly give any benefit to 

move to Spark, since Spark has benefits due to its in-

memory handling of data, and processing in Mapper, 

data is held in memory even in Map Reduce. 

 People experience with Hadoop are familiar with 

MapReduce yet Spark is a totally new paradigm. 

 When it comes to data-parallel, ETL tasks, Map Reduce 

emerges as the winner when compared to Spark. 

 Spark on YARN is considerably new and may not be 

the best option for many people familiar with YARN 

already. 

3. MACHINE LEARNING AND K-

MEANS 

3.1 Machine Learning Introduction 
Machine learning is an active branch of artificial intelligence 

that allow computers to learn new patterns and instructions 

from data rather than being explicitly coded by a developer. 

Machine learning allows systems to enhance themselves 

based on new data that is added and to generate more efficient 

new patterns or instructions for new data [14]. 

3.2 K-Means Algorithm 
K Means clustering is a non-hierarchical approach of 

grouping items into different number of clusters/groups. The 

number of clusters/groups is defined by the user which he 

chooses based on his/her use-case and data in question. K-

Means works by forming cluster of data points by minimizing 

the sum of squared distances between the data points and their 

centroids. A centroid is a central point to a group of data 

points in the dataset. There are various ways of choosing 

initial centroid, but in many cases it is done using random 

allocation. The algorithm [14] is as follows: 

1. Firstly, select randomly chosen ‘k’ cluster centroids. 

2. Cluster Assignment: In this step, assign each of the 

data points in the dataset to one of the centroids, 

selecting centroid which is closest to the data-point. 

3. Centroid Movement: For each centroid, compute the 

average of all the data-points that are allocated to 

each centroid. This computed average is the new 

value of the particular centroid. 

4. Calculate the sum of square of distance that each 

centroid has moved from its previous value, repeat 

steps 2 and 3 until this value is not less than or equal 

to threshold value (usually 0.01) or the number of 

iterations reaches maximum iterations specified, 

either of which is satisfied. 

4. COMPARISON 
In order to come to a conclusion about the practical 

comparison of Apache Spark and Map Reduce, we performed 

a comparative analysis using these frameworks on a dataset 

that allows us to perform clustering using the K-Means 

algorithm. 

4.1 Dataset Description  
The Data Set includes sensor data of size 1240 MB collected 

over the years, and includes latitude and longitude values of 

the respective records. A sample of the data records is shown 

as below: The data record contains: 

1. Date 

2. Device Name 

3. Device ID 

4. Status 

5. Latitude 

6. Longitude 

Sample Record:  

2014-03-15:13:10:20|Titanic 2500|15e758be-8624-46aa-80a3-

b6e08e979600|77|70|40|22|13|0|enabled|connected|enabled|38.

9253917959|-122.78959506 

4.2 Performance Analysis and Description 

Post working on the K-Means algorithm on the described data 

set, we achieved the following results for comparison (shown 

in the tables on the right).  

To gain a varied analysis, we considered 64MB, 1240 MB 

with a single node and 1240MB with two nodes and 

monitored the performance in terms of the time taken for 

clustering as per our requirements using K-Means algorithm. 

The machines used had a configuration as follows:  

• 4GB RAM  

• Linux Ubuntu  

• 500 GB Hard Drive 

The results clearly showed that the performance of Spark turn 

out to be considerably higher in terms of time, where each of 

the dataset size results in a decrease in the processing time of 

up to three times as compared to that of Map Reduce.  

Although there exists a minor fluctuation in this result, this is 

due to the random nature of the K-Means algorithm and does 

not affect the analysis to a large extent. 

Table 1. Results for K-Means using Spark (MLib) 

Dataset Size Nodes Time (s) 

62MB 1 18 

1240MB 1 149 

1240MB 2 85 

Table 2. Results for K-Means using Map Reduce (Mahout)  

Dataset Size Nodes Time (s) 

62MB 1 44 

1240MB 1 291 

1240MB 2 163 
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5. CONCLUSION 
This paper provides an overview of both the frameworks and 

also compares these on various parameters followed by a 

performance analysis using K-Means algorithm. Our results 

for this analysis show that Spark is a very strong contender 

and would definitely bring about a change by using in-

memory processing. Observing Spark’s ability to perform 

batch processing, streaming, and machine learning on the 

same cluster and looking at the current rate of adoption of 

Spark throughout the industry, Spark will be the de facto 

framework for a large number of use cases involving Big Data 

processing. 

6. FUTURE WORK 
Although most of the algorithms on Mahout till now have 

been based on Map Reduce, Spark’s consistent improvements 

and increasing user base has lead Mahout to adopt Spark for 

their base framework replacing Map Reduce for their future 

implementations. This is one of the many instances where 

Spark is proving out to gain predominance over Map Reduce. 
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