
International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 1, March 2015

8

Comparing Apache Spark and Map Reduce with

Performance Analysis using K-Means

Satish Gopalani

Rohan Arora

ABSTRACT

Big Data has long been the topic of fascination for Computer

Science enthusiasts around the world, and has gained even

more prominence in the recent times with the continuous

explosion of data resulting from the likes of social media and

the quest for tech giants to gain access to deeper analysis of

their data. This paper discusses two of the comparison of -

Hadoop Map Reduce and the recently introduced Apache

Spark – both of which provide a processing model for

analyzing big data. Although both of these options are based

on the concept of Big Data, their performance varies

significantly based on the use case under implementation.

This is what makes these two options worthy of analysis with

respect to their variability and variety in the dynamic field of

Big Data. In this paper we compare these two frameworks

along with providing the performance analysis using a

standard machine learning algorithm for clustering (K-

Means).

General Terms

Big Data, Machine Learning, K Means.

Keywords

Big data, Hadoop, HDFS, Map Reduce, Spark, Mahout,

MLib, Machine learning, K-Means.

1. INTRODUCTION
Apache Hadoop [1] is an open source framework that

provides solutions for handling big data along with extensive

processing and analysis. It was created by Doug Cutting in

2005 when he was working for Yahoo at the time for the

Nutch search engine project. Hadoop has two major

components named HDFS (Hadoop Distributed File System)

[2] and the Map Reduce [3] framework. Hadoop Distributed

File System is said to be inspired by Google’s The Google

File System (GFS) [4] and provides a scalable, efficient, and

replica based storage of data at various nodes that form a part

of a cluster.

HDFS is based on a master slave architecture where

‘namenode’ is the master and ‘datanodes’ are the slave nodes

where the actual data resides (quite possibly replicated data).

The replication factor by default is of three, but can be

configured as per the need of the user and the usage type. The

second vital component, which is Map Reduce is the

processing model for Apache Hadoop which allows

successful processing of the replicated data in parallel based

on the former programming language techniques of map and

reduce. Map is the phase which is implemented to distributed

portions of a dataset to various ‘mappers’ that work in parallel

to provide the achievability for the essence of big data

computation. The outputs from these mappers are exposed to

sorting and shuffling which takes the flow to the next phase,

called the ‘Reduce’ phase where data is aggregated to find out

the result to our initial problem statement [5].

Although recently, the world of Big Data has seen a dynamic

shift from this computing model with the introduction and

stable release of Apache Spark [6], which provides a user

friendly programming interface to decrease coding efforts and

provide better performance in a majority of the cases with

problems related to big data. Spark not just provides an

alternative to Map Reduce, but also has options for SQL like

querying with Shark and a machine learning library called

MLib. The performance and working of spark is considerably

different from that of map reduce, but is also dependent on the

constraints of parallelism, the types of problems in context,

and the resources available.

Apache Spark [7] started as a research project at UC Berkeley

in the AMPLab, was started with a goal to design a

programming model that supports a much wider class of

applications than MapReduce, while maintaining its automatic

fault tolerance.

Spark offers an abstraction called Resilient distributed

Datasets (RDDs) [8] to support these applications efficiently.

RDDs can be stored in memory between queries without

requiring replication. Instead, they rebuild lost data on failure

using lineage: each RDD remembers how it was built from

other datasets (by transformations like map, join or groupBy)

to rebuild itself. RDDs allow Spark to outperform existing

models by up to 100x in multi-pass analytics. RDDs can

support a wide variety of iterative algorithms, as well as

interactive data mining and a highly efficient SQL engine

Shark [9].

2. DIFFERENCE BETWEEN

MAPREDUCE AND SPARK

Fig 3: Map phase in Map Reduce

International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 1, March 2015

9

The above diagram shows the Map phase of Hadoop Map

Reduce [10]. The steps for the same are explained below:

 The Map phase outputs the result in the form of (Key,

Value) pairs.

 The output would be stored in a circular buffer in

memory.

 When the circular buffer fills 80% (configurable), then

it data is spilled onto disk.

 All the spill files are combined into a single big file

which is partitioned and sorted depending upon the

reducers.

Fig 2: Map phase in Spark

The above diagram shows the Map phase of Hadoop Map

Reduce [10]. The steps for the same are explained below:

 In contrast to Map Reduce, the output of map phase is

written to OS Buffer Cache.

 Operating System decides whether the data will stay in

buffer or will be spilled onto disk.

 Unlike Map Reduce, Spark does not merge or partition

spill files, with the only difference being that the map

output from the same cores are merged into a single file.

 Each Map task/core outputs as many spill files as

number of reducers [11][12][13].

Fig 3: Reduce phase in Map Reduce

Reduce side of Hadoop MR:

 The data (intermediate files) created by the map phase is

pulled by the reducers and loaded into the memory.

 If buffer reaches 70% (configurable), it is spilled onto

disk.

 The data spilled to the disk is then merged into larger

files, and the reduce function is initiated.

Fig 4: Reduce phase in Spark

 The map phase pushes the data in the form of

intermediate (shuffle) files to the reducers.

 These files are written to reducer’s memory and reduce

functionality is invoked.

2.1 Reasons to choose Spark
 Spark uses the concept of RDD which allows us to store

data on memory and persist it as per the requirements.

This allows a massive increase in batch processing job

performance (up to ten to hundred times as much as that

of conventional Map Reduce).

 Spark also allows us to cache the data in memory, which

is beneficial in case of iterative algorithms such as those

used in machine learning.

 Traditional MapReduce and DAG engines are

suboptimal for these applications because they are based

on acyclic data flow: an application has to run as a

series of distinct jobs, each of which reads data from

stable storage (e.g. a distributed file system) and writes

it back to stable storage. They incur significant cost

loading the data on each step and writing it back to

replicated storage.

 Spark allows us to perform stream processing with large

input data and deal with only a chunk of data on the fly.

This can also be used for online machine learning, and

is highly appropriate for use cases with a requirement

for real time analysis which happens to be an almost

ubiquitous requirement in the industry.

 In particular, MapReduce is inefficient for multi-pass

applications that require low-latency data sharing across

multiple parallel operations. These applications are quite

common in analytics, and include:

 Iterative algorithms, including many machine

learning algorithms and graph algorithms like

PageRank.

 Interactive data mining, where a user would like to

load data into RAM across a cluster and query it

repeatedly.

 Streaming applications that maintain aggregate state

over time.

International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 1, March 2015

10

2.2 Why should one stick to MapReduce
The prominent benefits of MapReduce over Spark are

highlighted as below:

 The main component of Spark happens to be Scala,

along with ported Java API’s. Map Reduce might be

friendlier and more native for Java based developers.

 If the functionality is implemented only in Mapper, with

no reducers, then it would hardly give any benefit to

move to Spark, since Spark has benefits due to its in-

memory handling of data, and processing in Mapper,

data is held in memory even in Map Reduce.

 People experience with Hadoop are familiar with

MapReduce yet Spark is a totally new paradigm.

 When it comes to data-parallel, ETL tasks, Map Reduce

emerges as the winner when compared to Spark.

 Spark on YARN is considerably new and may not be

the best option for many people familiar with YARN

already.

3. MACHINE LEARNING AND K-

MEANS

3.1 Machine Learning Introduction
Machine learning is an active branch of artificial intelligence

that allow computers to learn new patterns and instructions

from data rather than being explicitly coded by a developer.

Machine learning allows systems to enhance themselves

based on new data that is added and to generate more efficient

new patterns or instructions for new data [14].

3.2 K-Means Algorithm
K Means clustering is a non-hierarchical approach of

grouping items into different number of clusters/groups. The

number of clusters/groups is defined by the user which he

chooses based on his/her use-case and data in question. K-

Means works by forming cluster of data points by minimizing

the sum of squared distances between the data points and their

centroids. A centroid is a central point to a group of data

points in the dataset. There are various ways of choosing

initial centroid, but in many cases it is done using random

allocation. The algorithm [14] is as follows:

1. Firstly, select randomly chosen ‘k’ cluster centroids.

2. Cluster Assignment: In this step, assign each of the

data points in the dataset to one of the centroids,

selecting centroid which is closest to the data-point.

3. Centroid Movement: For each centroid, compute the

average of all the data-points that are allocated to

each centroid. This computed average is the new

value of the particular centroid.

4. Calculate the sum of square of distance that each

centroid has moved from its previous value, repeat

steps 2 and 3 until this value is not less than or equal

to threshold value (usually 0.01) or the number of

iterations reaches maximum iterations specified,

either of which is satisfied.

4. COMPARISON
In order to come to a conclusion about the practical

comparison of Apache Spark and Map Reduce, we performed

a comparative analysis using these frameworks on a dataset

that allows us to perform clustering using the K-Means

algorithm.

4.1 Dataset Description
The Data Set includes sensor data of size 1240 MB collected

over the years, and includes latitude and longitude values of

the respective records. A sample of the data records is shown

as below: The data record contains:

1. Date

2. Device Name

3. Device ID

4. Status

5. Latitude

6. Longitude

Sample Record:

2014-03-15:13:10:20|Titanic 2500|15e758be-8624-46aa-80a3-

b6e08e979600|77|70|40|22|13|0|enabled|connected|enabled|38.

9253917959|-122.78959506

4.2 Performance Analysis and Description

Post working on the K-Means algorithm on the described data

set, we achieved the following results for comparison (shown

in the tables on the right).

To gain a varied analysis, we considered 64MB, 1240 MB

with a single node and 1240MB with two nodes and

monitored the performance in terms of the time taken for

clustering as per our requirements using K-Means algorithm.

The machines used had a configuration as follows:

• 4GB RAM

• Linux Ubuntu

• 500 GB Hard Drive

The results clearly showed that the performance of Spark turn

out to be considerably higher in terms of time, where each of

the dataset size results in a decrease in the processing time of

up to three times as compared to that of Map Reduce.

Although there exists a minor fluctuation in this result, this is

due to the random nature of the K-Means algorithm and does

not affect the analysis to a large extent.

Table 1. Results for K-Means using Spark (MLib)

Dataset Size Nodes Time (s)

62MB 1 18

1240MB 1 149

1240MB 2 85

Table 2. Results for K-Means using Map Reduce (Mahout)

Dataset Size Nodes Time (s)

62MB 1 44

1240MB 1 291

1240MB 2 163

International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 1, March 2015

11

5. CONCLUSION
This paper provides an overview of both the frameworks and

also compares these on various parameters followed by a

performance analysis using K-Means algorithm. Our results

for this analysis show that Spark is a very strong contender

and would definitely bring about a change by using in-

memory processing. Observing Spark’s ability to perform

batch processing, streaming, and machine learning on the

same cluster and looking at the current rate of adoption of

Spark throughout the industry, Spark will be the de facto

framework for a large number of use cases involving Big Data

processing.

6. FUTURE WORK
Although most of the algorithms on Mahout till now have

been based on Map Reduce, Spark’s consistent improvements

and increasing user base has lead Mahout to adopt Spark for

their base framework replacing Map Reduce for their future

implementations. This is one of the many instances where

Spark is proving out to gain predominance over Map Reduce.

7. REFERENCES
[1] Apache Hadoop Documentation 2014

http://hadoop.apache.org/.

[2] Shvachko K., Hairong Kuang, Radia S, Chansler, R The

Hadoop Distributed File System Mass Storage Systems

and Technologies (MSST), 2010 IEEE 26th Symposium

[3] Jeffrey Dean and Sanjay Ghemawat. MapReduce:

Simplified data processing on large clusters. In OSDI’04:

Sixth Symposium on Operating System Design and

Implementation, 2004.

[4] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak

Leung. The Google file system. In 19th Symposium on

Operating Systems Principles, pages 29–43, Lake

George, New York, 2003.

[5] HortonWorks documentation 2014

http://docs.hortonworks.com/HDPDocuments/HDP1/HD

P-1.2.4/bk_getting-started-

guide/content/ch_hdp1_getting_started_chp2_1.html

[6] Apache Spark documentation 2014

https://spark.apache.org/documentation.html.

[7] Apache Spark Research 2014

https://spark.apache.org/research.html.

[8] Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M.

McCauley, M. Franklin, S. Shenker, and I. Stoica.

Resilient distributed datasets: A fault-tolerant abstraction

for in-memory cluster computing. Technical Report

UCB/EECS-2011-82, EECS Department, University of

California, Berkeley, 2011

[9] Reynold Xin, Joshua Rosen, Matei Zaharia, Michael J.

Franklin, Scott Shenker, Ion Stoica. Shark: SQL and

Rich Analytics at Scale. SIGMOD 2013. June 2013.

[10] Tom White, Hadoop the definitive guide chapter 06

[11] Spark Internals - Spark Summit 2014 http://spark-

summit.org/wp-content/uploads/2014/07/A-Deeper-

Understanding-of-Spark-Internals-Aaron-Davidson.pdf

[12] Spark Job Flow – Databricks https://databricks-

training.s3.amazonaws.com/slides/advanced-spark-

training.pdf

[13] Aaron Davidson, Andrew Or. Optimizing Shuffle

Performance in Spark. Technical Report

http://www.cs.berkeley.edu/~kubitron/courses/cs262a-

F13/projects/reports/project16_report.pdf

[14] Machine Learning, Wikipedia, 2014

http://en.wikipedia.org/wiki/Machine_learning

[15] Machine learning with Spark - Spark Summit 2013

https://spark-summit.org/2013/exercises/machine-

learning-with-spark.html

IJCATM : www.ijcaonline.org

