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Abstract

A kind of second-order implicit characteristic fractional step finite difference method is presented in this paper for
the numerical simulation coupled system of enhanced (chemical) oil production on consideration capillary force
in porous media. Some techniques, such as the calculus of variations, energy analysis method, commutativity of
the products of difference operators, decomposition of high-order difference operators and the theory of a priori
estimates are introduced and an optimal order error estimates in l2 norm is derived. This method has been applied
successfully the numerical simulation of enhanced oil production in actual oilfields, and the simulation results are
quite interesting and satisfactory.

Keywords: enhanced (chemical) oil production, three-dimensional porous coupled system on consideration cap-
illary force, second-order implicit characteristic fractional step differences, optimal order l2 estimates, application
in actual oilfields

1. Introduction

1.1 Background and Mathematical Description

Massive residual crude oil remains in the reservoir after water-flooding exploiting because the constraint of cap-
illary force prevents the motion and the undesired fluidity ratio between displacement phase and driven phase
influences the flow slightly. Then it is more important to develop the displacement efficiency. A popular method is
discussed by adding some chemical addition agents such as polymer, surfactant and alkali into the injected mixture,
which can improve the flooding efficiency. The polymer can optimize the fluidity of displacement phase, modify
the ratio with respect to driven phases, balance the leading edges well, weaken the inner porous layer, and increase
the efficiency of displacement and the pressure gradient. Surfactant and alkali can decrease interfacial tensions of
different phases, then make the bound oil move and gather (Ewing, et al., 1988; Yuan, 2013; Yuan, et al., 1998) 1 2

3.
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In view of capillary force, and immiscible and incompressible flow, this paper discusses a second-order character-
istic fractional step difference method for numerical simulation of enhanced (chemical) oil production in porous
media, and gives the theoretical analysis. Based on the former mathematical and mechanical theory, the software is
accomplished, applied in national oilfields such as Daqing Oilfield and Shengli Oilfield and give rise to outstanding
benefits and social value.

The mathematical model is described by a nonlinear coupled system with initial-boundary values (Ewing, et al.,
1988; Yuan, 2013; Yuan, et al., 1998)1,2,3:

∂

∂t
(ϕco) − ∇ · (κ(X)

κγo (co)
µo
∇po

)
= qo, X = (x1, x2, x3)T ∈ Ω, t ∈ J = (0,T ], (1)

∂

∂t
(ϕcw) − ∇ · (κ(X)

κγw (cw)
µw

∇pw
)
= qw, X ∈ Ω, t ∈ J = (0,T ], (2)

ϕ
∂

∂t
(cwsα) + ∇ · (sαu − ϕcwKα∇sα) = Qα(X, t, cw, sα), X ∈ Ω, t ∈ J, α = 1, 2, · · · , nc, (3)

where Ω is a bounded computational domain. Let the subscripts ”o” and ”w” respectively denote the parameters
of oil phase and water phase. The notations cl, pl, κγl (cl), µl and ql denote the concentration, the pressure, the
relative permeability, the viscosity and the output quantity with respect to the l-phase, respectively. ϕ means the
rock porosity, κ(X) means the absolute permeability and sα = sα(X, t) denotes the component concentration. The
components denote sorts of chemical agents such as the polymer, surfactant, alkali and other ions, and the number
is denoted by nc. u is Darcy velocity, Kα = Kα(X) is diffusion coefficient, and Qα is source sink term related with
the output. The rock void space is assumed to be full of water and oil, co + cw = 1. The the capillary force is
dependent of the concentration c, defined by pc(c) = po − pw, where c = cw = 1 − co.

The models (1) and (2) should be expressed by a normal form (Ewing, et al., 1988; Yuan, 2013). Let λ(c) =
κγo (c)
µo
+

κγw (c)
µw

denote the total migration rate of two-phase fluid, and let λl(c) =
κγl (c)
µlλ(c) , l = o,w denote relative

migration rate corresponding to water or oil. Applying Chavent transformation (Ewing, et al., 1988; Yuan, 2013;
Douglas, 1983):

p =
po + pw

2
+

1
2

∫ pc

o
{λo(p−1

c (ξ)) − λw(p−1
c (ξ))}dξ. (4)

The flow equation is derived from (1) and (2),

−∇ · (κ(X)λ(c)∇p
)
= q, X ∈ Ω, t ∈ J = (0,T ], (5)

where q = qo + qw. The concentration equation is derived from the difference of (1) and (2),

ϕ
∂c
∂t
− ∇ · (κλλoλw p′c∇c) − 1

2
∇ · (κλ(λo − λw)∇p) =

1
2

(qo − qw).

Let u = −κ(X)λ(c)∇p, and note that the fact λo − λw = 2λo − 1, we get

ϕ
∂c
∂t
+ ∇ · (κλλoλw p′c∇c) − λ′ou · ∇c =

1
2
{(qw − λwq) − (qo − λoq)},

where
qw = q and qo = 0, if q ≥ 0 (water injection well),
qw = λwq and qo = λoq, if q < 0 (oil production well).

(1) and (2) are rewritten as follows,

∇ · u = q(X, t), X ∈ Ω, t ∈ J = (0,T ],
u = −κ(X)λ(c)∇p, X ∈ Ω, t ∈ J,

(6)

ϕ
∂c
∂t
− λ′(c)u∇c + ∇ · (κ(X)λλoλw p′c∇c) =

{
λoq, q ≥ 0,
0, q < 0. (7)

It is clear to restate (6) and (7) in a normalized formula,

− ∇ · (a(X, c)∇p) = q(X, t), X ∈ Ω, t ∈ J = (0,T ], (8a)
u = −a(X, c)∇p, X ∈ Ω, t ∈ J, (8b)
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ϕ
∂c
∂t
+ b(c)u · ∇c − ∇ · (D(X, c)∇c) = g(X, t, c), X ∈ Ω, t ∈ J, (9)

where a(X, c) = κ(X)λ(c), b(c) = −λ′(c), D(X, c) = −κ(X)λλoλw p′c(c). It follows that g(X, t, c) = λoq as q ≥ 0, and
it is true that g(X, t, c) = 0 as q < 0. Using (8), we can express (3) in a computational form

ϕc
∂sα
∂t
+ u · ∇sα − ∇ · (ϕcKα∇sα) = Qα − sα(q + ϕ

∂c
∂t

), X ∈ Ω, t ∈ J, α = 1, 2, · · · , nc, (10)

Two different boundary value conditions are considered in this paper.
(I) The boundary value condition for the constant pressure is given as follows

p = e(X, t), X ∈ ∂Ω, t ∈ J, (11a)
c = r(X, t), X ∈ ∂Ω, t ∈ J, (11b)
sα = rα(X, t), X ∈ ∂Ω, t ∈ J, α = 1, 2, · · · , nc, (11c)

where ∂Ω denotes the outer boundary surface of Ω.
(II) The boundary value condition for no permeation case is defined by

u · γ = 0, X ∈ ∂Ω, t ∈ J, (12a)
D∇c · γ = 0, X ∈ ∂Ω, t ∈ J, (12b)
Kα∇sα · γ = 0, X ∈ ∂Ω, t ∈ J, α = 1, 2, · · · , nc, (12c)

where γ denotes the outer normal unit vector. An additional condition should be introduced to determine the
pressure p in consideration of no permeation case, and it is defined by∫

Ω

pdX = 0, t ∈ J.

The compatibility condition is ∫
Ω

qdX = 0, t ∈ J,

and the initial value condition is

c(X, 0) = c0(X), X ∈ Ω, (13a)
sα(X, 0) = sα,0(X), X ∈ Ω, α = 1, 2, · · · , nc. (13b)

1.2 Relevant Development

Introducing an assumption of periodic condition, Douglas, Ewing, Wheeler, Russell and other scholars presented
characteristic finite difference method and characteristic finite element method to analyze a type of two dimensional
incompressible two-phase displacement problems and gave theoretical error estimates (Douglas, 1981, 1983; Dou-
glas, Russell, 1982; Ewing, Russell, Wheeler, 1984). A combination method was discussed by a whole consid-
eration of the characteristic method and normal finite difference method or normal finite element method, which
can reflect the hyperbolic nature of one-order part of convection-diffusion equation and decrease truncation er-
ror. This combination technique can also overcome numerical oscillation and dispersion, and can improve greatly
the computational stability and accuracy. Douglas and other scholars presented a mathematical model of slight
compression, numerical method and theoretical analysis for two-dimensional compressible displacement problem
under periodic assumption and began a modern numerical model research (Douglas, Roberts, 1983; Yuan, 1992,
1993; Ewing, 1983). The authors dropped the period condition, gave a new modified characteristic finite differ-
ence algorithm and finite element algorithm, and derived optimal order error estimates in L2-norm (Yuan, 1994,
1996, 1996; Axelsson, Gustafasson, 1979; Ewing, Lazarov, et al., 1994, 1996). In numerical simulation of modern
oilfields exploration and development, the computation is of greatly huge-scale, three-dimensional region and long
time interval consideration and the number of nodes maybe amount up to tens of thousands or even millions. It
is impossible to solve this computation by using normal methods and a typical technique, fractional step method,
is introduced in this paper (Peaceman, 1980; Douglas, Gunn, 1963, 1964; Marchuk, 1990). Though Douglas and
Peaceman applied this technique into oil-water two phases displacement problem successfully (Peaceman, 1980),
a type of substantial difficulty appeared in their theoretical analysis. Fourier method, considered in the proof of
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the stability and convergence by Douglas and Peaceman, was only applied in the constant-coefficient problems,
that is to say Fourier method is not popularized in general problems with variable coefficients (Douglas, Gunn,
1963, 1964; Marchuk, 1990). Considering actual application, numerical stability and accuracy, the authors present
one second-order characteristic fractional step finite difference method for three-dimensional incompressible and
immiscible two-phase displacement coupled problem of enhanced oil production with consideration of capillary
force. This algorithm can overcome numerical oscillation and dispersion, and can decrease the computational scale
by decomposing three-dimensional problem into three successive one-dimensional subproblems. Using the calcu-
lus of variation, energy analysis method, commutativity of the products of difference operators, decomposition of
high-order difference operators and the theory of a priori estimates, the authors give the second-order convergence
result of accuracy and error estimates in l2-norm, and successfully solve the international problem formulated by
Douglas and Ewing. The method discussed in this paper has been applied in numerical simulation of enhanced oil
production and gives a fundamental research in energy mathematics 1,2,3.

1.3 Hypotheses

In general, the problem is positive definite,

0 < a∗ ≤ a(c) ≤ a∗, 0 < ϕ∗ ≤ ϕ(X) ≤ ϕ∗,
(C) 0 < D∗ ≤ D(X, c) ≤ D∗, 0 < K∗ ≤ Kα(X) ≤ K∗, α = 1, 2, · · · , nc, (14a)∣∣∣∣∣∂a

∂c
(X, c)

∣∣∣∣∣ ≤ A∗, (14b)

where a∗, a∗, ϕ∗, ϕ∗, D∗, D∗ K∗, K∗ and A∗ are positive constants. b(c), g(c) and Qα(c, sα) are Lipschitz continuous
in the ε0 neighbours of exact solutions.

Exact solutions of (8)∼(14) are assumed to be suitably smooth,

(R) p, c, sα ∈ L∞(W4,∞) ∩W1,∞(W1,∞),
∂2c
∂t2 ,

∂2sα
∂t2 ∈ L∞(L∞), α = 1, 2, · · · , nc.

In this paper M and ε express a generic positive constant and a generic positive small constant, respectively, and
they have different meanings at different places.

2. Second-order Implicit Characteristic Fractional Step Finite Difference Method

Without loss of generality, the computational domain is taken as a rectangular cube Ω = {[0, 1]}3 and the problem
is assumed to be Ω-periodic. Note that numerical simulation is considered for the flow of interior region and the
boundary condition affects the flow weakly, so the periodic assumption is reasonable and related contents can be
found in the references (Douglas, 1983; Douglas, Russell, 1982; Douglas, 1981; Ewing, Russell, Wheeler, 1984;
Douglas, Roberts, 1983). Then The boundary value conditions of no permeation case can be dropped. Let the
partition Ωh replace the domain Ω and ∂Ωh denotes the boundary. Let h = 1/N denote the uniform spacial step
in three-dimensional domain and the notations are defined by X = (x1, x2, x3)T , Xi jk = (ih, jh, kh)T , tn = n∆t,
W(Xi jk, tn) = Wn

i jk,

An
i+1/2, jk =

[
a(Xi jk,Cn

i jk) + a(Xi+1, jk,Cn
i+1, jk)

]
/2, an

i+1/2, jk =
[
a(Xi jk, cn

i jk) + a(Xi+1, jk, cn
i+1, jk)

]
/2,

and An
i, j+1/2,k, an

i, j+1/2,k, An
i j,k+1/2, an

i j,k+1/2 are defined similarly. Let

δx̄1

(
Anδx1 Pn+1

)
i jk
= h−2

[
An

i+1/2, jk

(
Pn+1

i+1, jk − Pn+1
i jk

)
− An

i−1/2, jk

(
Pn+1

i jk − Pn+1
i−1, jk

)]
, (15a)

δx̄2

(
Anδx2 Pn+1

)
i jk
= h−2

[
An

i, j+1/2,k

(
Pn+1

i, j+1,k − Pn+1
i jk

)
− An

i, j−1/2,k

(
Pn+1

i jk − Pn+1
i, j−1,k

)]
, (15b)

δx̄3

(
Anδx3 Pn+1

)
i jk
= h−2

[
An

i j,k+1/2

(
Pn+1

i j,k+1 − Pn+1
i jk

)
− An

i j,k−1/2

(
Pn+1

i jk − Pn+1
i j,k−1

)]
, (15c)

∇h

(
An∇hPn+1

)
i jk
= δx̄1

(
Anδx1 Pn+1

)
i jk
+ δx̄2

(
Anδx2 Pn+1

)
i jk
+ δx̄3

(
Anδx3 Pn+1

)
i jk
. (16)

The flow equation (8) is discretized by

∇h

(
An∇hPn+1

)
i jk
= Gi jk = h−3

"
Xi jk+Qh

q(X, tn+1)dx1dx2dx3, 1 ≤ i, j, k ≤ N, (17)
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where Qh denotes the cube of the side-length h centered at the origin. Darcy velocity Un+1 = (Un+1
1 ,Un+1

2 ,Un+1
3 )T

is approximated as follows

Un+1
1,i jk = −

1
2

An
i+1/2, jk

Pn+1
i+1, jk − Pn+1

i jk

h
+ An

i−1/2, jk

Pn+1
i jk − Pn+1

i−1, jk

h

 , (18)

and the other quantities Un+1
2,i jk, Un+1

3,i jk are computed analogously.

The implicit characteristic fractional step algorithm is discussed to solve the saturation equation (9). The method
of characteristics is applied in discretizing first order hyperbolic part of (9), which is consistent with the physical
transportation of the flow along the direction of characteristics. The algorithm has high order of accuracy and
great stability, and runs well in a large time step (Douglas, 1983, 1981; Douglas, Russell, 1982). Let ψ(X,u) =[
ϕ2(X) + |u|2

]1/2
, ∂/∂τ = ψ−1 {ϕ∂/∂t + u · ∇}, and approximate the derivative along the characteristics by backward

differences,
∂cn+1

∂τ
≈ cn+1 − cn(X − ϕ−1(X)un+1(X)∆t)
∆t(1 + ϕ−2(X)|un+1(X)|2)1/2 .

It remains to compute the values of the saturation cn+1 at the (n + 1)-th time step as cn given. Replacing the
differential quotient by difference quotient, and decomposing the saturation equation (9) into the following form,

(
1 − ∆t

ϕ

∂

∂x1
(D(cn+1)

∂

∂x1
)
)(

1 − ∆t
ϕ

∂

∂x2
(D(cn+1)

∂

∂x2
)
)(

1 − ∆t
ϕ

∂

∂x3
(D(cn+1)

∂

∂x3
)
)
cn+1

= c̄n +
∆t
ϕ

f (X, t, cn+1) + O((∆t)2),
(19)

where u = (u1, u2, u3)T and c̄n = c(X − ϕ−1(X)b(cn+1)un+1(X)∆t, tn). Then the second-order implicit characteristic
finite difference program combined with fractional step is illustrated as follows,(

ϕ − ∆tδx̄1

(
D(Cn)δx1

))
i jk

Cn+1/3
i jk = ϕi jkĈn

i jk + ∆t f (X, tn,Cn)i jk, 1 ≤ i ≤ N. (20)(
ϕ − ∆tδx̄2

(
D(Cn)δx2

))
i jk

Cn+2/3
i jk = ϕi jkC

n+1/3
i jk , 1 ≤ j ≤ N. (21)(

ϕ − ∆tδx̄3

(
D(Cn)δx3

))
i jk

Cn+1
i jk = ϕi jkC

n+2/3
i jk , 1 ≤ k ≤ N. (22)

The discrete value of saturation Cn(X) is defined by a piecewise threefold quadratic interpolation of the values of
nodes {Cn

i jk}, and other symbols are defined by Ĉn
i jk = Cn(X̂n

i jk), X̂n
i jk = Xi jk − ϕ−1

i jkb(Cn
i jk)Un+1

i jk ∆t.

Introducing the symbols ϕ̂n+1 = ϕCn+1, ϕ̂n+1,−1 = (ϕ̂n+1)−1, and D̂n+1
α = ϕCn+1Kα, we can approximate the concen-

tration equation (10) by an implicit characteristic fractional step finite difference parallel algorithm,(
ϕ̂n+1 − ∆tδx̄1

(
D̂n+1
α δx1

))
i jk

S n+1/3
α,i jk = ϕ̂

n+1
i jk Ŝ n

α,i jk + ∆t
{
Qα(Cn+1

i jk , S
n
α,i jk)

− S n
α,i jk

(
q(Cn+1

i jk ) + ϕi jk

Cn+1
i jk −Cn

i jk

∆t
)}
, 1 ≤ i ≤ N, α = 1, 2, · · · , nc,

(23)

(
ϕ̂n+1 − ∆tδx̄2

(
D̂n+1
α δx2

))
i jk

S n+2/3
α,i jk = ϕ̂

n+1
i jk S n+1/3

α,i jk , 1 ≤ j ≤ N, α = 1, 2, · · · , nc, (24)(
ϕ̂n+1 − ∆tδx̄3

(
D̂n+1
α δx3

))
i jk

S n+1
α,i jk = ϕ̂

n+1
i jk S n+2/3

α,i jk , 1 ≤ k ≤ N, α = 1, 2, · · · , nc, (25)

where Ŝ n
α(X)(α = 1, 2, · · · , nc − 1) is computed by a piecewise threefold quadratic interpolation of the values of

neighbour nodes {S n
α,i jk}, and Ŝ n

α,i jk = S n
α(X̂n

i jk), X̂n
i jk = Xi jk − ϕ̂n+1,−1

i jk Un+1
i jk ∆t.

Initial value conditions:

P0
i jk = p0(Xi jk),C0

i jk = c0(Xi jk), S 0
α,i jk = sα,0(Xi jk), Xi jk ∈ Ωh, α = 1, 2, · · · , nc. (26)

The implicit program runs in the following order. Given {Pn
i jk,C

n
i jk, S

n
α,i jk, α = 1, 2, · · · , nc}, the pressure {Pn+1

i jk } is
computed by elimination method or conjugate gradient method from the difference equation (17). Then the values
of Darcy velocity {Un+1

i jk } are obtained by (18). The solution of transition sheaf {Cn+1/3
i jk } in x1 direction is computed
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by the method of speedup from (20), then {Cn+2/3
i jk } proceeds in x2 direction by (21), {Cn+1

i jk } is obtained finally in x3

direction by (22) similarly. Then the computation of the saturation goes on. The saturation {S n+1
α,i jk} is given by (25)

after {S n+1/3
α,i jk }, {S

n+2/3
α,i jk } are computed respectively in x1, x2 directions by the method of speedup from (23) and (24)

as shown in the above expression. It is accomplished in parallel with respect to α = 1, 2, · · · , nc. The solutions of
(17), (20)∼(22), (23)∼(25) and (26) exist and are sole because of the positive definite condition.

3. Convergence Analysis

Let π = p − P, ξ = c − C, ζα = sα − S α, where p, c and sα are exact solutions of (8)∼(13), and P, C and S α are
discrete solutions of (17)∼(26). Introduce the inner products and norms in discrete space l2(Ω) (Yuan, 2010, 2012).

< f , g >=
N∑

i, j,k=1

fi jkgi jkh3, || f ||20 =< f , f > .

< D∇h f ,∇h f > denotes the square of weighted semi-norm in h1(Ω) corresponding to the space H1(Ω) = W1,2(Ω),
and D(X) is positive definite.

Theorem 1 Assume that exact solutions of (8)∼(13) are appropriately smooth, p, c ∈ W1,∞(W1,∞) ∩ L∞(W4,∞),
sα ∈ W1,∞(W1,∞)∩ L∞(W4,∞), ∂c

∂τ
∈ L∞(W4,∞), ∂sα

∂τα
∈ L∞(W4,∞), ∂2c

∂τ2 ,
∂2 sα
∂τ2

α
∈ L∞(L∞), α = 1, 2, · · · , nc. The modified

characteristics method is applied to compute (17)∼(25) layer by layer, and the partition parameters satisfy

∆t = O(h2), (27)

then the following error estimates hold

||p − P||L̄∞((0,T ];h1) + ||c −C||L̄∞((0,T ];l2) + ||c −C||L̄2((0,T ];h1) ≤ M∗1{∆t + h2}, (28a)

||sα − S α||L̄∞((0,T ];l2) + ||sα − S α||L̄2((0,T ];h1) ≤ M∗2{∆t + h2}, α = 1, 2, · · · , nc, (28b)

where ||g||L̄∞(J;M) = sup
n∆t≤T

||gn||M, and M∗1 = M∗1(||p||W1,∞(W4,∞), ||p||L∞(W4,∞), ||c||W1,∞(W4,∞), || ∂c
∂τ
||L∞(W4,∞), || ∂

2c
∂τ2 ||L∞(L∞)),

M∗2 = M∗2(||sα||W1,∞(W4,∞), || ∂sα
∂τα
||L∞(W4,∞), || ∂

2 sα
∂τ2

α
||L∞(L∞)).

Proof. The error equation of the pressure is derived from the difference of (8)(t = tn+1) and (17),

−∇h(An∇hπ
n+1)i jk = ∇h

(
[a(cn+1) − a(cn)]∇h pn+1)

i jk + σ
n+1
i jk , 1 ≤ i, j, k ≤ N, (29)

where |σn+1
i jk | ≤ M

(||p||L∞(W4,∞), ||c||L∞(W3,∞)
){∆t + h2}.

Testing both sides of (29) by πn+1, and summing by parts⟨
An∇hπ

n+1,∇hπ
n+1⟩ = ⟨

σn+1, πn+1⟩ − ⟨
[a(cn+1) − a(cn)]∇h pn+1,∇hπ

n+1⟩. (30)

Then,

||∇hπ
n+1|| ≤ M(||pn+1||4,∞, ||cn+1||3,∞)

{||ξn|| + h2 + ∆t
}
. (31)

The error of the saturation is estimated later. Canceling the transient terms Cn+1/3
i jk and Cn+2/3

i jk in (20), (21) and
(22), introducing Ūn+1 = b(Cn)Un+1, and simplifying the dispersion term D(Cn) ≈ D(X) for convenience (this
simplification does not affect the nature of numerical analysis, that is to say the following process can be applied
in the theoretical analysis related of D(Cn)), we can obtain an equivalent difference equation,

ϕi jk

Cn+1
i jk − Ĉn

i jk

∆t
−

3∑
β=1

δx̄β (DδxβC
n+1)i jk

= g(Xi jk, tn,Cn
i jk) − ∆t

{
δx̄1

(
Dδx1

(
ϕ−1δx̄2

(
Dδx2C

n+1)))
i jk + δx̄1

(
Dδx1

(
ϕ−1δx̄3

(
Dδx3C

n+1)))
i jk

+ δx̄2

(
Dδx2

(
ϕ−1δx̄3

(
Dδx3C

n+1)))
i jk

}
+ (∆t)2δx̄1

(
Dδx1

(
ϕ−1δx̄2

(
Dδx2

(
ϕ−1δx̄3

(
Dδx3C

n+1)))))
i jk, 1 ≤ i, j, k ≤ N.

(32)
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Let ũn+1 = b(cn+1)un+1, and we derive error equation of the saturation from (9) (t = tn+1) and (32),

ϕi jk

ξn+1
i jk −

(
c(X̄n

i jk) − Ĉn
i jk

)
∆t

−
3∑
β=1

δx̄β (DδxβC
n+1)i jk

= g(Xi jk, tn+1, cn+1
i jk ) − g(Xi jk, tn,Cn

i jk) − ∆t
{
δx̄1

(
Dδx1

(
ϕ−1δx̄2

(
Dδx2ξ

n+1)))
i jk

+ δx̄1

(
Dδx1

(
ϕ−1δx̄2

(
Dδx2ξ

n+1)))
i jk + δx̄2

(
Dδx2

(
ϕ−1δx̄3

(
Dδx3ξ

n+1)))
i jk

}
+ (∆t)2δx̄1

(
Dδx1

(
ϕ−1δx̄2

(
Dδx2

(
ϕ−1δx̄3

(
Dδx3ξ

n+1)))))
i jk + ε

n+1
i jk , 1 ≤ i, j, k ≤ N,

(33)

where X̄n
i jk = Xi jk − ϕ−1

i jkūn+1
i jk ∆t, |εn+1

i jk | ≤ M
(|| ∂2c
∂τ2 ||L∞(L∞), || ∂c

∂τ
||L∞(W4,∞), ||c||L∞(W4,∞)

){
h2 + ∆t

}
.

Multiplying the both sides of (33) by ξn+1
i jk ∆t, summing by parts and rewriting the result in inner products,

⟨
ϕ
ξn+1 − ξ̂n

∆t
, ξn+1⟩∆t +

3∑
β=1

⟨
Dδxβξ

n+1, δxβξ
n+1⟩∆t

≤ M
{||ξn||2 + ||ξn+1||2 + ||∇hπ

n+1||2 + h4 + (∆t)2}∆t

− (∆t)2
{⟨
δx̄1

(
Dδx1

(
ϕ−1δx̄2

(
Dδx2ξ

n+1))), ξn+1⟩ + · · · + ⟨
δx̄2

(
Dδx2 (ϕ−1δx̄3

(
Dδx3ξ

n+1))), ξn+1⟩}
+ (∆t)3⟨δx̄1

(
Dδx1

(
ϕ−1δx̄2

(
Dδx2

(
ϕ−1δx̄3

(
Dδx3ξ

n+1))))), ξn+1⟩.
(34)

Introduce an induction hypothesis,

sup
1≤n≤L

max
{||πn||0,∞, ||ξn||0,∞

}→ 0, (h,∆t)→ 0. (35)

Using (35) and (31), we can obtain the following estimates from (34)

||ϕ1/2ξn+1||2 − ||ϕ1/2ξn||2 +
3∑
β=1

⟨
Dδxβξ

n+1, δxβξ
n+1⟩∆t

≤ ε||∇hξ
n+1||2∆t + M

{||ξn||2 + ||ξn+1||2 + h4 + (∆t)2}∆t

− (∆t)2
{⟨
δx̄1

(
Dδx1

(
ϕ−1δx̄2

(
Dδx2ξ

n+1))), ξn+1⟩ + · · · + ⟨
δx̄2

(
Dδx2 (ϕ−1δx̄3

(
Dδx3ξ

n+1))), ξn+1⟩}
+ (∆t)3⟨δx̄1

(
Dδx1

(
ϕ−1δx̄2

(
Dδx2

(
ϕ−1δx̄3

(
Dδx3ξ

n+1))))), ξn+1⟩,
(36)

where ||∇hξ
n+1||2 =

3∑
β=1
||δxβξ

n+1||2.

The third and forth terms on the right side of (36) are considered. Though −δx̄1 (Dδx1 ), −δx̄2 (Dδx2 ), · · · are self-
conjugate, positive definite and bounded operators, and the spacial domain is a unit cube, however their products are
generally incommutative. Using the product commutativity of difference operators δx1δx2 = δx2δx1 , δx̄1δx2 = δx2δx̄1 ,
δx1δx̄2 = δx̄2δx1 , δx̄1δx̄2 = δx̄2δx̄1 , we can express the first part of the third term as follows

− (∆t)2⟨δx̄1 (Dδx1 (ϕ−1δx̄2 (Dδx2ξ
n+1))), ξn+1⟩ = (∆t)2⟨δx1 (ϕ−1δx2 (Dδx1ξ

n+1)),Dδx1ξ
n+1⟩

= (∆t)2⟨δx1ϕ
−1 · δx̄2 (Dδx2ξ

n+1) + ϕ−1δx̄2δx1 (Dδx2ξ
n+1),Dδx1ξ

n+1⟩
= (∆t)2{⟨δx̄2 (Dδx2ξ

n+1, δx1ϕ
−1Dδx1ξ

n+1⟩ + ⟨
δx̄2δx1 (Dδx2ξ

n+1), ϕ−1Dδx1ξ
n+1⟩}

= −(∆t)2{⟨Dδx2ξ
n+1, δx2 (δx1ϕ

−1Dδx1ξ
n+1)

⟩
+

⟨
δx1 (Dδx2ξ

n+1), δx2 (ϕ−1Dδx1ξ
n+1)

⟩}
= −(∆t)2{⟨Dδx2ξ

n+1, δx2 (δx1ϕ
−1D)δx1ξ

n+1 + δx1ϕ
−1Dδx1δx2ξ

n+1⟩
+

⟨
Dδx1δx2ξ

n+1 + δx1 D · δx2ξ
n+1, ϕ−1Dδx1δx2ξ

n+1 + δx2 (ϕ−1D)δx1ξ
n+1⟩}

= −(∆t)2{⟨Dδx1δx2ξ
n+1, ϕ−1Dδx1δx2ξ

n+1⟩ + ⟨
Dδx1δx2ξ

n+1, δx2 (ϕ−1D)δx1ξ
n+1 + δx1ϕ

−1 · Dδx2ξ
n+1⟩

+
⟨
Dδx2ξ

n+1, δx2 (δx1ϕ
−1D) · δx1ξ

n+1⟩ + ⟨
δx1 D · δx2ξ

n+1, δx2 (ϕ−1D) · δx1ξ
n+1⟩}.

(37)

Considering the first term on the right side of (37),

−(∆t)2⟨Dδx1δx2ξ
n+1, ϕ−1Dδx1δx2ξ

n+1⟩ ≤ −(∆t)2D2
∗(ϕ
∗)−1||δx1δx2ξ

n+1||2. (38a)
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Applying ε−Cauchy formula and cancelling the terms of δx1δx2ξ
n+1,

− (∆t)2{⟨Dδx1δx2ξ
n+1, δx2 (ϕ−1D)δx1ξ

n+1 + δx1ϕ
−1 · Dδx2ξ

n+1⟩ + · · · }
≤ − (∆t)2

2
D2
∗(ϕ
∗)−1||δx1δx2ξ

n+1||2 + M(∆t)2{||δx1ξ
n+1||2 + ||δx2ξ

n+1||2}. (38b)

Collecting (38), (27) and inverse estimates, we have the estimates of (37),

− (∆t)2⟨δx̄1 (Dδx1 (ϕ−1δx̄2 (Dδx2ξ
n+1))), ξn+1⟩

≤ M(∆t)2{||δx1ξ
n+1||2 + ||δx2ξ

n+1||2}
≤ M∆t · h2{||δx1ξ

n+1||2 + ||δx2ξ
n+1||2} ≤ M||ξn+1||2∆t.

(39)

The other terms of the third term of (36) can be estimated similarly.

Summing by parts three times successively, extracting high-order terms of δx1δx2δx3ξ
n+1, cancelling them by

ε−Cauchy formula and using the constraint condition (27) and inverse estimates, we can give the estimates of
the forth term of (36)

(∆t)3⟨δx̄1

(
Dδx1

(
ϕ−1δx̄2

(
Dδx2

(
ϕ−1δx̄3

(
Dδx3ξ

n+1))))), ξn+1⟩ ≤ M||ξn+1||2∆t. (40)

The estimates of (34) are given by a summary of the condition (C) and (39), (40),

||ϕ1/2ξn+1||2 − ||ϕ1/2ξn||2 + ||∇hξ
n+1||2∆t ≤ M

{||ξn+1||2 + ||ξn||2 + h4 + (∆t)2}∆t. (41)

Summing (41) on t for 0 ≤ n ≤ L, and noting that ξ0 = 0,

||ϕ1/2ξL+1||2 +
L∑

n=0

||∇hξ
n+1||2∆t ≤ M

L∑
n=0

{||ξn+1||2∆t + h4 + (∆t)2}∆t. (42)

Applying Gronwall lemma,

||ξL+1||2 +
L∑

n=0

||ξn+1||21∆t ≤ M
{
h4 + (∆t)2}, (43)

where ||ξn+1||21 = ||∇hξ
n+1||2 + ||ξn+1||2.

It remains to verify the induction hypothesis (35). It is right as n = 0 because of ξ0 = 0. Assume the induction
hypothesis holds for any positive integer n between 1 and a given positive integer l. By (43) and (31) we have
||πl+1||0 + ||ξl+1||0 ≤ M

{
h2 + ∆t

}
. The inequality ||πl+1||0,∞ + ||ξl+1||0,∞ ≤ Mh1/2 follows from (13) and the maximum

norm estimates, and (35) holds for n = l + 1. Therefore, we finish the proof of error estimate (28a).

It continues to discuss error estimates of the components concentration. An equivalent expression is given after
cancelling S n+1/3

α , S n+2/3
α from (23), (24) and (25) and introducing a new notation ϕ̂n+1,−1 = (ϕ̂n+1)−1,

ϕ̂n+1
i jk

S n+1
α,i jk − Ŝ n

α,i jk

∆t
−

3∑
β=1

δx̄β
(
D̂n+1
α δxβS

n+1
α

)
i jk

= Qα
(
S n
α,i jk

) − S n
α,i jk

(
q(Cn+1

i jk ) − ϕi jk

Cn+1
i jk −Cn

i jk

∆t

)
− ∆t

{
δx̄1

(
D̂n+1
α δx1

(
ϕ̂n+1,−1δx̄2

(
D̂n+1
α δx2 S n+1

α

)))
i jk + · · · + δx̄2

(
D̂n+1
α δx2

(
ϕ̂n+1,−1δx̄3

(
D̂n+1
α δx3 S n+1

α

)))
i jk

}
+ (∆t)2δx̄1

(
D̂n+1
α δx1δx̄2

(
D̂n+1
α δx2

(
ϕ̂n+1,−1 · δx̄3

(
D̂n+1
α δx3 S n+1

α

)))))
i jk, 1 ≤ i, j, k ≤ N, α = 1, 2, · · · , nc.

(44)

Collecting (10) (t = tn+1) and (44), and letting ϕ̃n+1
i jk = (ϕcn+1)i jk, D̃n+1

α,i jk = (cn+1ϕKα)i jk, we can derive the following
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error equation,

ϕ̂n+1
i jk

ζn+1
α,i jk − (sα(X̄n

i jk) − Ŝ n
α,i jk)

∆t
−

3∑
β=1

δx̄β
(
D̃n+1
α δxβζ

n+1
α

)
i jk

=
{
(ϕ̂n+1 − ϕ̃n+1)

∂sn+1
α

∂t
}
i jk + Qα(Cn+1

i jk , S
n
α,i jk) − Qα(cn+1

i jk , s
n+1
α,i jk)

+
{
(S n

αq(Cn+1) − sn+1
α q(cn+1))i jk +

(
S n
αϕ

Cn+1 −Cn

∆t
− sn+1

α ϕ
∂cn+1

∂t
)
i jk

}
− ∆t

{
δx̄1

(
D̃n+1
α δx1

(
ϕ̃n+1,−1δx̄2

(
D̃n+1
α δx2 sn+1

α

)))
i jk − δx̄1

(
D̂n+1
α δx1

(
ϕ̂n+1,−1δx̄2

(
D̂n+1
α δx2 S n+1

α

)))
i jk + · · ·

}
+ (∆t)2

{
δx̄1

(
D̃n+1
α δx1

(
ϕ̃n+1,−1δx̄2

(
D̃n+1
α δx2

(
ϕ̃n+1,−1 · δx̄3

(
D̃n+1
α δx3 sn+1

α

)))))
i jk

− δx̄1

(
D̂n+1
α δx1

(
ϕ̂n+1,−1 · δx̄2

(
D̂n+1
α δx2

(
ϕ̂n+1,−1δx̄3

(
D̂n+1
α δx3 S n+1

α

)))))
i jk

}
+ εα,i jk, 1 ≤ i, j, k ≤ N − 1, α = 1, 2, · · · , nc,

(45)

where X̄n
i jk = Xi jk − ϕ̃n+1,−1

i jk un+1
i jk ∆t, |εα,i jk | ≤ M

{
h2 + ∆t

}
, α = 1, 2, · · · , nc.

In numerical analysis bound water almost exists everywhere in oil reservoir, that is to say there exists a positive
number c∗ such that c(X, t) ≥ c∗ > 0. Noticing the convergence result of c(X, t), (43), we can obtain the inequality
for h and ∆t sufficiently small

C(X, t) ≥ c∗
2
. (46)

Multiplying both sides of (45) by ζn+1
α,i jk∆t, making inner products, we can obtain

⟨
ϕ̂n+1 ζ

n+1
α − ζn

α

∆t
, ζn+1
α

⟩
∆t −

3∑
β=1

⟨
D̂n+1
α δxβζ

n+1
α , δxβζ

n+1
α

⟩
∆t

≤ ⟨
ϕ̂n+1 ζ̂

n
α − ζn

α

∆t
, ζn+1
α

⟩
∆t +

⟨
(ϕ̂n+1 − ϕ̃n+1)

∂sn+1
α

∂t
, ζn+1
α

⟩
∆t +

⟨
Qα(Cn+1, S n

α) − Qα(cn+1, sn+1
α ), ζn+1

α

⟩
∆t

+
⟨
S n
αq(Cn+1) − sn+1

α q(cn+1), ζn+1
α

⟩
∆t +

⟨
S n
αϕ

Cn+1 −Cn

∆t
− sn+1

α ϕ
∂cn+1

∂t
, ζn+1
α

⟩
∆t

− ∆t
{⟨
δx̄1

(
D̃n+1
α δx1

(
ϕ̃n+1,−1δx̄2

(
D̃n+1
α δx2 sn+1

α

))) − δx̄1

(
D̂n+1
α δx1

(
ϕ̂n+1,−1δx̄2

(
D̂n+1
α δx2 S n+1

α

)))
, ζn+1
α

⟩
+ · · ·

}
∆t

+ (∆t)2⟨δx̄1

(
D̃n+1
α δx1

(
ϕ̃n+1,−1δx̄2

(
D̃n+1
α δx2

(
ϕ̃n+1,−1 · δx̄3

(
D̃n+1
α δx3 sn+1

α

)))))
− δx̄1

(
D̂n+1
α δx1

(
ϕ̂n+1,−1 · δx̄2

(
D̂n+1
α δx2

(
ϕ̂n+1,−1δx̄3

(
D̂n+1
α δx3 S n+1

α

)))))
, ζn+1
α

⟩
∆t + M

{
h4 + (∆t)2}∆t.

(47)

Using (28a), we give the estimates of the terms on the left-hand side of (47),

⟨
ϕ̂n+1 ζ

n+1
α − ζn

α

∆t
, ζn+1
α

⟩
∆t ≥ 1

2
{⟨
ϕ̂n+1ζn+1

α , ζn+1
α

⟩ − ⟨
ϕ̂nζn

α, ζ
n
α

⟩} − M
∣∣∣∣∣∣ζn

α

∣∣∣∣∣∣2∆t. (48)

Similarly, by using (28a), the terms on the right-hand side of (47) are estimated as follows:

⟨
ϕ̂n+1 ζ̂

n
α − ζn

α

∆t
, ζn+1
α

⟩
∆t ≤ ε

∣∣∣∣∣∣∇hζ
n
α

∣∣∣∣∣∣2∆t + M
∣∣∣∣∣∣ζn+1

α

∣∣∣∣∣∣2∆t, (49a)

⟨
(ϕ̂n+1 − ϕ̃n+1)

∂sn+1
α

∂t
, ζn+1
α

⟩
∆t ≤ M

{
h4 + (∆t)2 +

∣∣∣∣∣∣ζn+1
α

∣∣∣∣∣∣2}∆t, (49b)⟨
Qα(Cn+1, S n

α) − Qα(cn+1, sn+1
α ), ζn+1

α

⟩
∆t +

⟨
S n
αq(Cn+1) − sn+1

α q(cn+1), ζn+1
α

⟩
∆t

+
⟨
S n
αϕ

Cn+1 −Cn

∆t
− sn+1

α ϕ
∂cn+1

∂t
, ζn+1
α

⟩
∆t ≤ M

{
h4 + (∆t)2 +

∣∣∣∣∣∣ζn+1
α

∣∣∣∣∣∣2 + ∣∣∣∣∣∣ζn
α

∣∣∣∣∣∣2}∆t. (49c)

In a similar analysis of (37)∼(40), the other terms on the right-hand side are estimated,

− ∆t
{⟨
δx̄1

(
D̃n+1
α δx1

(
ϕ̃n+1,−1δx̄2

(
D̃n+1
α δx2 sn+1

α

))) − δx̄1

(
D̂n+1
α δx1

(
ϕ̂n+1,−1δx̄2

(
D̂n+1
α δx2 S n+1

α

)))
, ζn+1
α

⟩
+ · · ·

}
∆t

≤ M
∣∣∣∣∣∣ζn+1

α

∣∣∣∣∣∣2∆t,
(49d)
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(∆t)2⟨δx̄1

(
D̃n+1
α δx1

(
ϕ̃n+1,−1δx̄2

(
D̃n+1
α δx2

(
ϕ̃n+1,−1 · δx̄3

(
D̃n+1
α δx3 sn+1

α

)))))
− δx̄1

(
D̂n+1
α δx1

(
ϕ̂n+1,−1 · δx̄2

(
D̂n+1
α δx2

(
ϕ̂n+1,−1δx̄3

(
D̂n+1
α δx3 S n+1

α

)))))
, ζn+1
α

⟩
∆t ≤ M

∣∣∣∣∣∣ζn+1
α

∣∣∣∣∣∣2∆t,
(49e)

Substituting (48) and (49) respectively into the left-hand side and the right-hand side of (47), summing on t from
n = 0 to n = L, and noting that ζ0

α = 0, we have

∣∣∣∣∣∣(ϕ̂n+1)1/2ζL+1
α

∣∣∣∣∣∣2 + L∑
n=0

3∑
β=1

∣∣∣∣∣∣(D̂n+1)1/2δxβζ
n+1
α

∣∣∣∣∣∣2∆t ≤ M
{ L∑

n=0

∣∣∣∣∣∣ζL+1
α

∣∣∣∣∣∣2∆t + h4 + (∆t)2}. (50)

Applying Gronwall Lemma, we get

||ζL+1
α ||2 +

L∑
n=0

||∇hζ
n+1
α ||2∆t ≤ M

{
h4 + (∆t)2}, α = 1, 2, · · · , nc. (51)

Then (28b) is proved. �

4. Actual Applications

The implicit characteristic fractional step method has been applied successfully in software design of enhanced
oil production of the polymer flooding and numerical simulation and analysis of actual oil production in Daqing
Oilfield. The mathematical model is formulated as follows (Ewing, et al., 1988; Yuan, 2013; Yuan, et al., 1998)
1,2,3:

∂

∂x

[
λl

(
∂pl

∂x
− γl

∂z
∂x

)]
=
∂

∂t

(
ϕ

sl

Bl

)
− ql, l = w, o, (52a)

pc = po − pw, sw + so = 1. (52b)

Let ”w” and ”o” refer to the water and the oil, and let ϕ mean the porosity. The symbols of the l-th phase are
defined as follows. pl denotes the pressure, sl means the saturation, Bl means the volume factor, λl denotes the
fluidity, γl is the proportion, ql is the source sink term, and pc is the pressure of capillary.

The mathematical model of the motion of the polymer, kation and anion components is described by a system of
convection-diffusion equations,

∂

∂t
(ϕswcα) + ∇ (cαu − ϕkα∇cα) = Qα, α = 1, 2, · · · , nc. (53)

where cα = cα(x, t) (α = 1, 2, · · · , nc) denotes the concentration of α-component, and nc is the number of compo-
nents. The simplified model of (52) and (53) is turned into the system of (8)∼(13)(Ewing, et al., 1989; Yuan, 2013;
Shen, et al., 2002).

 

Figure 1. Effective thicknesses distribution of Xing Fourth Zone
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Figure 2. Sketch of instantaneous oil production curve of the polymer in Xing Fourth Zone

 

Figure 3. Sketch of water moisture curve of the polymer in Xing Fourth Zone

Table 1. Analysis of numerical data of matter balance

 

Experimental tests for Daqing Oilfield (Xing Fourth Zone of the polymer development area) are discussed by using
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the polymer flooding software. The three-dimensional region of geological model is decomposed into 46 × 83 × 7
subdomains, and the effective thicknesses are distributed in Fig. 1. The sketch of instantaneous oil production
and the curve of water moisture are shown in Fig. 2 and Fig. 3. Numerical data of matter balance are analyzed
in Table 1. From this it is easy to see that numerical method of this type and its applicable software can keep
high order of accuracy and can reflect correctly the physical process and the principle of polymer flooding. Main
physical quantities distribute reasonably, computational accuracy is high, and some results of the polymer such as
accumulation, endless loop don’t arise.
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