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Abstract

In this paper, the natural boundary element method (NBEM) for an anisotropic hyperbolic problem in an exterior

elliptic domain is investigated. By the theory of the natural boundary reduction (NBR), the natural integral equa-

tion (NIE) and the Poisson integral formula of the problem considered are obtained, and the numerical method of

the NIE is given. Finally, some numerical examples are presented to demonstrate the performance of the method

in the paper.

Keywords: anisotropic problem, time-dependent problem, exterior elliptic domain, natural boundary reduction

(NBR), numerical solution

1. Introduction

In many fields of scientific and engineering computing, these problems in unbounded spatial domains are encoun-

tered frequently. The research of numerical solutions for these problems is one of hot spot problems at present.

Such problems pose a unique challenge to computation since their domains are unbounded. Although we can

apply classical boundary element methods (BEM) or boundary integral methods (BIM) to solve these problems in

unbounded domains, a great number of singular integrations usually need to be calculated in practice. Therefore it

takes a lot of time to deal with the computation of singular integrations. To overcome some difficulties to solve the

problems in unbounded domains numerically, Kang Feng and Dehao Yu have initiated and developed the natural

boundary element (NBE) method since the end of 1980’s (cf. Feng, 1980, 1983; Yu, 1993, 2002), it is also called as

the Dirichlet to Neumann method (DtN method) or the exact artificial boundary condition method (ABCM) lately.

NBE method has some distinctive advantages comparing with classical boundary element methods. It is easy to

be implemented on the computing, it has good stability of the numerical results, it is fully compatible with finite

element method (FEM), and it can be coupled with FEM naturally and directly. For the exterior elliptic problems,

the theory of the NBE method is being perfected (cf. Yu, 1993, 2002). For the time-dependent problems, the NBE

methods for initial boundary value problems of parabolic and hyperbolic problems are investigated in (cf. Du,

1999, 2001; Hao, 2009). In (Yu, 2003), the coupling of NBE and FEM for the exterior hyperbolic problems is

studied.

In this paper, we concentrate on the investigation of the NBE method for the time-dependent anisotropic hyperbolic

problem in an exterior elliptic domain by using the similar method as in (Hao, 2009). Using the transformation of

variables, we firstly turn the original equation into a Helmholtz equation which is equivalent to the original equa-

tion. Then we obtain the Poisson integral formula and the natural integral equation (NIE) of the original problem

by using the results in (Zhang, 2008). Finally some numerical examples are presented to illustrate feasibility and

efficiency of this method.
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Let Ω ⊂ R
2 be a bounded simple connected domain with an ellipse Γ

Δ
= ∂Ω as its boundary, Ωc Δ= R

2 \ Ω. For any

fixed positive number T , setting I Δ= (0, T ]. We consider the following initial-boundary value problems:

∂2u
∂t2
−
(
a
∂2u
∂x2
+ b
∂2u
∂y2

)
= 0, (x, y, t) ∈ Ωc × I, (1)

anx
∂u
∂x
+ bny

∂u
∂y
= g(x, y, t), (x, y, t) ∈ Γ × I, (2)

u(x, y, 0) = u0(x, y), ut(x, y, 0) = v0(x, y), (x, y) ∈ Ωc, (3)

where a and b are all positive constants, g(x, y, t), u0(x, y) and v0(x, y) are all known functions, n = (nx, ny) is the

outer unit normal vector on Γ to the internal of Ω. Moreover, we assume that the function u(x, y, t) is bounded

at infinity. By the principle of the natural boundary reduction (cf. Yu, 1993, 2002), we have the Poisson integral

formula

u(x, y, t) =Pu0(x, y, t), in Ω

and the natural integral equation
∂u
∂n
= K u0(x, y, t), on Γ.

For the sake of convenience, without loss of generality, we assume thatΩ is an ellipse centered at the origin, whose

symmetrical axes are x−axis and y−axis respectively since the expressions of the Poisson integral operator P and

the natural integral operator K are related to the geometric properties of domain. Moreover, we assume that the

solution of the problem considered satisfies appropriate smoothness.

2. NBR in an Exterior Elliptic Domain

2.1 Transformation of Variables

Let b > a > 0, Ωc be the exterior domain of closed ellipse Γ =
{
(x, y) | αx2 + βy2 = R2}, n = (nx, ny) =

−
( αx√
α2x2 + β2y2

,
βy√

α2x2 + β2y2

)
. Taking the transformation of variables:

x =
√

a ξ, y =
√

b η,

thus the closed ellipse Γ can be written as Γ̃ =
{
(ξ, η) | aαξ2 + bβη2 = R2}, Ωc is changed into Ω̃c =

{
(ξ, η) | aαξ2 +

bβη2 > R2}. And let

ξ =
1√
aα

r cos φ, η =
1√
bβ

r sin φ,

then the outer unit normal vector at the point (ξ, η) on Γ is

ν = − 1√
aα cos2 φ + bβ sin2 φ

(
√

aα cos φ,
√

bβ sin φ).

So, the problems (1)–(3) are actually equivalent to the following initial-boundary value problems:

∂2u(ξ, η, t)
∂2t

− Δu(ξ, η, t) = 0, (ξ, η, t) ∈ Ω̃c × I, (4)

∂u(ξ, η, t)
∂n

=

√
α cos2 φ + β sin2 φ√

aα cos2 φ + bβ sin2 φ

g(ξ, η, t), (ξ, η, t) ∈ Γ̃ × I, (5)

u(ξ, η, 0) = u0(ξ, η), ut(ξ, η, 0) = v0(ξ, η), (ξ, η) ∈ Ω̃c. (6)

By the separation of variables, the solution of problems (4)–(6) can be expressed as follows:

u(ξ, η, t) = Z(ξ, η)(cosωt + sinωt), ω ∈ R,
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then the control equation
∂2u(ξ, η, t)
∂2t

− Δu(ξ, η, t) = 0

can be the Helmholtz as follows:

ΔZ(ξ, η) + ω2Z(ξ, η) = 0. (7)

Introducing elliptic coordinates (μ, φ), the relationship between Cartesian coordinates (ξ, η) and the elliptic coor-

dinates (μ, φ) is as follows (cf. Ben-Poart, 1995; Wu, 2000):

ξ = f0 cosh μ cos φ, η = f0 sinh μ sin φ, (8)

where f0 =

√
bβ − aα

abαβ
R, μ0 = ln

√
aα +

√
bβ√

bβ − aα
, Γ̃μ0

=
{
(μ, φ) | μ = μ0, φ ∈ [0, 2π]

}
, Ω̃c =

{
(μ, φ) | μ > μ0, φ ∈

[0, 2π]
}
, cosh μ and sinh μ are the hyperbolic cosine and the hyperbolic sine, respectively. When μ is given by

different values, ( f0, 0), (− f0, 0) are the co-foci of ellipse families Γ̃μ.

If let J(μ, φ) =

∣∣∣∣∣∣ ξμ ξφ
ημ ηφ

∣∣∣∣∣∣ , then J(μ, φ) = f 2
0 cosh2 μ sin2 φ + f 2

0 sinh2 μ cos2 φ. It is not difficult to obtain that

J(μ0, φ) =
R2

abαβ
(bβ sin2 φ + aα cos2 φ). (9)

Lemma 2.1 (Wu, 2000; Zhu, 2004) Transformation (8) has the following properties:

(i) The Jacobi determination of the transformation (8)

J(μ, φ) = f 2
0 cosh2 μ sin2 φ + f 2

0 sinh2 μ cos2 φ = f 2
0 (cosh2 μ − cos2 φ), (10)

J(μ, φ) = 0 if and only if (ξ, η) = (± f0, 0);

(ii) For u ∈ C2(R2), the following holds

∂2u
∂μ2
+
∂2u
∂φ2
= J(μ, φ)

(∂2u
∂ξ2
+
∂2u
∂η2

)
; (11)

(iii) Let Γμ1

Δ
=
{
(μ, φ) | μ = μ1, φ ∈ [0, 2π]

}
be the inner boundary Ωc

μ1

Δ
=
{
(μ, φ) | μ > μ1, φ ∈ [0, 2π]

}
, ν be the outer

unit normal vector on Γμ1
, then

∂u
∂ν
= − 1√

J(μ1, φ)

∂u
∂μ
. (12)

Under the elliptic coordinates, Equation (7) can be expressed as follows:

1

J(μ, φ)

(
∂2Z
∂μ2
+
∂2Z
∂φ2

)
+ ω2Z = 0. (13)

By the separation of variables, we know that the solution of the problem (13) can be expressed as Z(μ, φ) =
F(μ)G(φ), and F(μ), G(φ) satisfy

G′′(φ) + (p − 2q cos 2φ)G(φ) = 0, (14)

F′′(μ) + (p − 2q cosh 2μ)F(μ) = 0, (15)

where p = k − α2

2
, q = α

2

4
, α2 = ω2 f 2

0 , k is a parameter. From Wang and Guo (1979), we know that Equations (14)

and (15) are the Mathieu and the modified Mathieu equation, respectively. Their solutions are the angular Mathieu

functions (AMF) and the radial Mathieu functions (RMF), 0 � φ < 2π, 0 � μ < ∞.

2.2 Angular Mathieu Functions and Radial Mathieu Functions

Angular Mathieu equation is a second-order linear differential equation, it has two linearly independent solutions,

which are called as the even Mathieu functions and the odd Mathieu functions

Φm(φ; q) =

⎧⎪⎨⎪⎩ cem(φ; q), m = 0, 1, 2, · · · ,
sem(φ; q), m = 1, 2, 3, · · · , (16)

109



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 5, No. 4; 2013

here m is the order of Mathieu equation. The period of Φm(φ; q) is π when m is even, the period of Φm(φ; q) is 2π
when m is odd number. The number p in Equations (14) and (15) denotes eigenvalues of even and odd angular

Mathieu functions, respectively. For the computation of the even Mathieu function cem(ϕ, q) and the odd Mathieu

function sem(φ; q) can refer to (Hao, 2009).

When q is positive, the solutions of Equation (15) are called as the even radial Mathieu functions of the first kind

and the odd radial Mathieu functions of the second kind

Rm(μ; q) =

⎧⎪⎨⎪⎩ Jem(μ; q), Jom(μ; q) (the first kind),

Nem(μ; q), Nom(μ; q) (the second kind),
(17)

here m is the order of the modified Mathieu function.

For the modified Mathieu functions, we can define (Hao, 2009)

Mc( j)
2n (μ; q) =

∞∑
�=0

(−1)�+n A2n
2�

(A2n
0

)−1
J�(u1)Z( j)

�
(u2), (18)

Mc( j)
2n+1

(μ; q) =

∞∑
�=0

(−1)�+n A2n+1
2�+1

(A2n+1
1

)−1

[
J�(u1)Z( j)

�+1
(u2) + J�+1(u1)Z( j)

�
(u2)
]
, (19)

Ms( j)
2n+1

(μ; q) =

∞∑
�=0

(−1)�+n B2n+1
2�+1

(B2n+1
1

)−1

[
J�(u1)Z( j)

�+1
(u2) − J�+1(u1)Z( j)

�
(u2)
]
, (20)

Ms( j)
2n+2

(μ; q) =

∞∑
�=0

(−1)�+n B2n+2
2�+2

(B2n+2
2

)−1

[
J�(u1)Z( j)

�+2
(u2) − J�+2(u1)Z( j)

�
(u2)
]
, (21)

where j = 1, 2, 3, 4, Z(1)
�

(x) = J�(x), Z(2)
�

(x) = Y�(x), Z(3)
�

(x) = H(1)
�

(x), Z(4)
�

(x) = H(2)
�

(x), u1 =
√

q exp(−μ),
u2 =

√
q exp(μ). Mc( j)

m (μ; q) and Ms( j)
m (μ; q) are the even and odd the modified Mathieu functions of the j-th kind.

The expansion coefficients and eigenvalues of the modified Mathieu functions are same as the ones of the Mathieu

functions.

2.3 The Poisson Integral Formula and the Natural Integral Equation

For the exterior problem, the solutions of Equation (15) can expressed by the even modified Mathieu functions of

the first kind and the second kind

Hom(μ; q) = Jom(μ; q) + iNom(μ; q), Hem(μ; q) = Jem(μ; q) + iNem(μ; q).

Hence, under the elliptic coordinates the solutions of Equations (4)–(6) can be expressed as

uem = Hem(μ)cem(φ, q)
[
cos(ωt) + sin(ωt)

]
, uom = Hom(μ)sem(φ, q)

[
cos(ωt) + sin(ωt)

]
.

For the even functions uem, we have m � 0, while the odd function uom, we have m � 1. Let Ho0 = se0 = 0, so

u(μ, φ, t) =
∞∑

m=0

[
Cm(t)Hem(μ)cem(φ, q) + Dm(t)Hom(μ)sem(φ, q)

]
(cos(ωt) + sin(ωt)), μ > μ0, (22)

where Cm and Dm are some constants. From (22), we have

u0(μ0, φ, t) =
∞∑

m=0

[
Cm(t)Hem(μ0)cem(φ, q) + Dm(t)Hom(μ0)sem(φ, q)

](
cos(ωt) + sin(ωt)

)
.

Using these above, we can obtain

Cm(t) =
1

πHem(μ0)(cos(ωt) + sin(ωt))

∫ 2π

0

u(μ0, φ
′, t)cem(φ′, q) dφ′, m = 0, 1, · · · ,

Dm(t) =
1

πHom(μ0)(cos(ωt) + sin(ωt))

∫ 2π

0

u(μ0, φ
′, t)sem(φ′, q) dφ′, m = 0, 1, · · · .
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Substituting Cm and Dm to (22), the function u(μ, φ, t) can be expressed as follows:

u(μ, φ, t) =
1

π

∞∑
m=0

∫ 2π

0

[ Hem(μ)

Hem(μ0)
cem(φ, q)cem(φ′, q)

+
Hom(μ)

Hom(μ0)
sem(φ, q)sem(φ′, q)

]
u0(μ0, φ

′, t)dφ′ Δ=Pu0(μ0, φ
′, t), μ > μ0.

(23)

(23) is the Poisson integral formula. Taking the derivatives of function u(μ, φ, t) with respect to μ, and taking the

limitation as μ approaches to μ0, we have

∂u
∂ν
= − 1

π
√

J(μ0, φ)

∞∑
m=0

∫ 2π

0

[He′m(μ0)

Hem(μ0)
cem(φ, q)cem(φ′, q)

+
Ho′m(μ0)

Hom(μ0)
sem(φ, q)sem(φ′, q)

]
u0(μ0, φ

′, t)dφ′ Δ= K u0(μ0, φ
′, t), μ = μ0.

(24)

Here He′m(μ0) and Ho′m(μ0) are the derivatives of functions Hem(μ) and Hom(μ) at μ = μ0. (24) is the natural

integral equation of the problems (4)–(6), and K is called as the natural integral operator (NBO). If (24) is solved,

the solution of the problems (4)–(6) can be obtained, and we can obtain the solution of the problems (1)–(3).

2.4 Direct Investigation of the NBO

Mathieu functions cem(φ, q) and sem(φ, q) satisfy the following orthogonal relations∫ 2π

0

cem(φ, q)cen(φ, q)dφ =
∫ 2π

0

sem(φ, q)sen(φ, q)dφ =
⎧⎪⎨⎪⎩ π, m = n,

0, m � n.

Similar to the expansion of Fourier series, for any v ∈ Hs(̃Γ), it can be expressed as

v =
1

π

∞∑
m=0

(∫ 2π

0

cem(φ, q)vdφ
)
cem(φ, q) +

( ∫ 2π

0

sem(φ, q)vdφ
)
sem(φ, q).

From 〈cem(φ, q), v〉 =
∫ 2π

0

cem(φ, q)vds =
∫ 2π

0

cem(φ, q)v
√

J(μ0, φ)dφ, we have

〈v, cem(φ, q)√
J(μ0, φ)

〉Γ̃ =
∫ 2π

0

cem(φ, q)vdφ.

Thus, v can be rewritten as

v =
1

π

∞∑
m=0

〈
v,

cem(φ, q)√
J(μ0, φ)

〉
Γ̃cem(φ, q) +

〈
v,

sem(φ, q)√
J(μ0, φ)

〉
Γ̃sem(φ, q).

To cope with the numerical analysis we recall an equivalent definition of the norm of Sobolev space Hs(̃Γ) for any

real number s:

‖v‖2
s,̃Γ

Δ
=

1

π2

+∞∑
m=0

(1 + m2)s
[∣∣∣〈v, cem(φ, q)√

J(μ0, φ)

〉
Γ̃

∣∣∣2 + ∣∣∣〈v, sem(φ, q)√
J(μ0, φ)

〉
Γ̃

∣∣∣2].
Theorem 2.2 An operator K : H

1
2 (̃Γ) → H−

1
2 (̃Γ) is linear continuous, that is, there exists a positive constant C

such that
‖K f ‖− 1

2
,̃Γ � C‖ f ‖ 1

2
,̃Γ, ∀ f ∈ H

1
2 (̃Γ).

Proof. It is easy to know that natural integral operator K is a linear operator. For any f (φ) ∈ H
1
2 (̃Γ), it is expressed

by the following series

f =
1

π

∞∑
m=0

〈
f ,

cem(φ, q)√
J(μ0, φ)

〉
Γ̃cem(φ, q) +

〈
f ,

sem(φ, q)√
J(μ0, φ)

〉
Γ̃sem(φ, q).
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Since

‖ f ‖2
s,̃Γ
=

1

π2

+∞∑
m=0

(1 + m2)
1
2

[∣∣∣〈 f ,
cem(φ, q)√

J(μ0, φ)

〉
Γ̃

∣∣∣2 + ∣∣∣〈 f ,
sem(φ, q)√

J(μ0, φ)

〉
Γ̃

∣∣∣2],
K f (φ) = − 1

π
√

J(μ0, φ)

∞∑
m=0

∫ 2π

0

[He′m(μ0)

Hem(μ0)
cem(φ, q)cem(φ′, q) +

Ho′m(μ0)

Hom(μ0)
sem(φ, q)sem(φ′, q)

]
f (μ0, φ

′, t)dφ′

=
1

π
√

J(μ0, φ)

∞∑
m=0

[
− He′m(μ0)

Hem(μ0)

〈
f ,

cem(φ, q)√
J(μ0, φ)

〉
Γ̃cem(φ, q) − Ho′m(μ0)

Hom(μ0)

〈
f ,

sem(φ, q)√
J(μ0, φ)

〉
Γ̃sem(φ, q)

]
.

So

‖K f (φ)‖2− 1
2
,̃Γ
=

1

π2J(μ0, φ)

∞∑
m=0

(1 + m2)−
1
2

[∣∣∣ − He′m(μ0)

Hem(μ0)

〈
f ,

cem(φ, q)√
J(μ0, φ)

〉
Γ̃

∣∣∣2 + ∣∣∣ − Ho′m(μ0)

Hom(μ0)

〈
f ,

sem(φ, q)√
J(μ0, φ)

〉
Γ̃

∣∣∣2].
A computation shows that

He′m(μ0, q)

Hem(μ0, q)
≈ α(1 + m2)

1
2 ,

Ho′m(μ0, q)

Hom(μ0, q)
≈ α(1 + m2)

1
2 , α ∈

(
− 2,−1

2

)
.

Therefore

‖K f (φ)||2− 1
2
,̃Γ
� 4

π2J(μ0, φ)

∞∑
m=0

(1 + m2)
1
2

[∣∣∣〈 f ,
cem(φ, q)√

J(μ0, φ)

〉
Γ̃

∣∣∣2 + ∣∣∣〈 f ,
sem(φ, q)√

J(μ0, φ)

〉
Γ̃

∣∣∣2]
=

4

J(μ0, φ)
‖ f ‖2

s,̃Γ
.

Noting that

J(μ0, φ) =
R2

ab
(b sin2 φ + a cos2 φ) =

R2

ab

(a + b
2
+

a − b
2

cos 2φ
)
,

R2

b
� J(μ0, φ) �

R2

a
,

thus
a

R2
� 1

J(μ0, φ)
� b

R2
. This proves that ‖K f (φ)‖2− 1

2
,̃Γ
� 4
√

b
R
‖ f ‖2

s,̃Γ
. �

3. Numerical Solutions of the NIE

Let τ be the time-step interval, and tk = kτ, vk(μ, φ) = v(μ, φ, tk), k = 1, 2, . . . ,N0, N0 =
[
T/τ
]
. Then the semi-

discrete formulation of (23) and (24), respectively, as follows

uk(μ, φ) =
1

π

∞∑
m=0

∫ 2π

0

[ Hem(μ)

Hem(μ0)
cem(φ, q)cem(φ′, q) +

Hom(μ)

Hom(μ0)
sem(φ, q)sem(φ′, q)

]
uk

0(μ0, φ
′)dφ′, μ > μ0, (25)

gk(μ0, φ) = −
√

abαβ

Rπ ·
√
α cos2 φ + β sin2 φ

∞∑
m=0

∫ 2π

0

[He′m(μ0)

Hem(μ0)
cem(φ, q)cem(φ′, q)

+
Ho′m(μ0)

Hom(μ0)
sem(φ, q)sem(φ′, q)

]
uk

0(μ0, φ
′)dφ′ Δ= K kuk

0(μ0, φ
′).

(26)

For (26), we have the following variational problem:

Find uk
0(μ, φ) ∈ H

1
2 (̃Γ), such that b(uk

0, v
k) =

〈
gk, vk〉, ∀ vk ∈ H

1
2 (̃Γ), (27)

where

b(uk
0, v

k) =
〈
K kuk

0, v
k〉 = ∫

Γ̃

(
K kuk

0(μ0, φ)
) · vkds,

〈
gk, vk〉 = ∫

Γ̃

gkvkds.

Theorem 3.1 The bilinear form b(·, ·), which is defined by the natural integral operator K , is symmetric and
continuous on H

1
2 (̃Γ) × H

1
2 (̃Γ), and V–elliptic.
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Proof. From the definition of the bilinear form b(·, ·), we have

b(u, v) =

∫
Γ̃

− 1

π
√

J(μ0, φ)

∞∑
m=0

∫ 2π

0

[He′m(μ0)

Hem(μ0)
cem(φ, q)cem(φ′, q)

]
+

Ho′m(μ0)

Hom(μ0)
sem(φ, q)sem(φ′, q)

]
u(μ0, φ

′, t)v(μ0, φ, t)dφ′ds

= − 1

π

∫ 2π

0

∫ 2π

0

∞∑
m=0

[He′m(μ0)

Hem(μ0)
cem(φ, q)cem(φ′, q)

]
+

Ho′m(μ0)

Hom(μ0)
sem(φ, q)sem(φ′, q)

]
u(μ0, φ

′, t)v(μ0, φ, t)dφ′dφ.

Hence, b(u, v) = b(v, u), this proves b(·, ·) is symmetric on H
1
2 (̃Γ) × H

1
2 (̃Γ).

Using Theorem 2.2, for any u, v ∈ H
1
2 (̃Γ), we have

b(u, v) =
〈
K u, v

〉 � ‖K u‖− 1
2
,̃Γ‖v‖ 1

2
,̃Γ � C‖u‖ 1

2
,̃Γ‖v‖ 1

2
,̃Γ,

this proves b(·, ·) is continuous on H
1
2 (̃Γ) × H

1
2 (̃Γ). For any u ∈ H

1
2 (̃Γ), we have

b(u, u) =
〈
K u, u

〉
= −1

π

∫ 2π

0

∫ 2π

0

∞∑
m=0

[He′m(μ0)

Hem(μ0)
cem(φ, q)cem(φ′, q)

+
Ho′m(μ0)

Hom(μ0)
sem(φ, q)sem(φ′, q)

]
u(μ0, φ

′, t)u(μ0, φ, t)dφ′dφ

=
1

π

∞∑
m=0

[
− He′m(μ0)

Hem(μ0)

〈
u,

cem(φ, q)√
J(μ0, φ)

〉
Γ̃

〈
u,

cem(φ′, q)√
J(μ0, φ′)

〉
Γ̃

− Ho′m(μ0)

Hom(μ0)

〈
u,

sem(φ, q)√
J(μ0, φ)

〉
Γ̃

〈
u,

sem(φ′, q)√
J(μ0, φ′)

〉
Γ̃

]
=

1

π

∞∑
m=0

[
− He′m(μ0)

Hem(μ0)

∣∣∣〈u, cem(φ, q)√
J(μ0, φ)

〉
Γ̃

∣∣∣2 − Ho′m(μ0)

Hom(μ0)

∣∣∣〈u, sem(φ, q)√
J(μ0, φ)

〉
Γ̃

∣∣∣2]
1

2π

∞∑
m=0

(1 + m2)
1
2

[∣∣∣〈u, cem(φ, q)√
J(μ0, φ)

〉
Γ̃

∣∣∣2 + ∣∣∣〈u, sem(φ, q)√
J(μ0, φ)

〉
Γ̃

∣∣∣2]
� 1

π2

∞∑
m=0

(1 + m2)
1
2

[∣∣∣〈u, cem(φ, q)√
J(μ0, φ)

〉
Γ̃

∣∣∣2 + ∣∣∣〈u, sem(φ, q)√
J(μ0, φ)

〉
Γ̃

∣∣∣2] = ‖u‖21
2
,̃Γ
. �

3.1 Discretization and Computation of Stiffness Matrices

To solve the variational problem (27), we now divide the interval [0, 2π] into N sub-intervals, Setting h = 2π/N,

and let S h (̃Γ) is the finite element subspace of H
1
2 (̃Γ). Then the problem of (27) can be written as

Find uk
0h(μ, φ) ∈ S h(̃Γ), such that b(uk

0h, v
k) =

〈
gk, vk〉, ∀ vk ∈ S h (̃Γ). (28)

Let ϕk(φ), k = 1, 2, . . . ,N be base functions of S h(̃Γ), then uk
0h(μ0, φ) can be expressed as uk

0h(μ0, φ) =

N∑
j=1

uk
0 jϕ j(φ).

Substituting it into (28), we easily obtain the system of linear algebraic equations of (28) as follows:

QUk = bk, (29)

where

Q =
(
qi j
)

N×N , Uk =
(
uk

01, u
k
02, . . . , u

k
0N
)T
,

bk =
(
bk

1, b
k
2, . . . , b

k
N
)T
, bk

j =

∫ 2π

0

gk(μ0, φ) ϕ j(φ)

√
α cos2 φ + β sin2 φ

√
αβ

dφ,
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qi j = −
√

ab
Rπ

∞∑
m=0

∫ 2π

0

∫ 2π

0

[He′m(μ0)

Hem(μ0)
cem(φ, q)cem(φ′, q)

+
Ho′m(μ0)

Hom(μ0)
sem(φ, q)sem(φ′, q)

]
ϕi(φ)ϕ j(φ

′)dφ′dφ.

(30)

The Equation (29) has a unique solution. After finding uk
0 j( j = 1, 2, . . . ,N), we can obtain

uk
h(μ, φ) =

1

π

N∑
j=1

uk
0 j

[ ∞∑
m=0

∫ 2π

0

( Hem(μ)

Hem(μ0)
cem(φ, q)cem(φ′, q)

+
Hom(μ)

Hom(μ0)
sem(φ, q)sem(φ′, q)

)
ϕ j(φ

′)dφ′
]
, μ > μ0.

(31)

As an example, we shall give the formulae of qi j by using piecewise linear interpolation below. we take piecewise

linear interpolation under the uniform subdivision

Li(φ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
N
2π

(φ − φi−1), φ ∈ [φi−1, φi],

N
2π

(φi+1 − φ), φ ∈ [φi, φi+1],

0, otherwise,

(32)

where i = 1, 2, . . . ,N, φi =
i
N 2π, then Li(φ j) = δ

j
i , i, j = 1, 2, . . . ,N,

N∑
i=1

Li(φ) = 1, and span
{
Li(φ)

}N
i=1 ⊂ H

1
2 (̃Γ).

It is not difficult to get the following

qi j = −
√

ab
Rπ

∞∑
m=0

[He′2m(μ0)

He2m(μ0)
pi(2m)p j(2m) +

He′2m+1(μ0)

He2m+1(μ0)
Pi(2m + 1)Pj(2m + 1)

+
Ho′2m+1(μ0)

Ho2m+1(μ0)
si(2m + 1)s j(2m + 1) +

Ho′2m+2(μ0)

Ho2m+2(μ0)
S i(2m + 2)S j(2m + 2)

]
,

(33)

and the approximate solution is

uk
h =

1

π

N∑
j=1

uk
0 j

{ ∞∑
m=0

[( ∞∑
l=0

A(2m)
2l cos(2lφ)

) He2m(μ)

He2m(μ0)
p j(2m)

]
+

∞∑
m=0

[( ∞∑
l=0

A(2m+1)
2l cos((2l + 1)φ)

) He2m+1(μ)

He2m+1(μ0)
Pj(2m + 1)

]
+

∞∑
m=0

[( ∞∑
l=0

B(2m+1)
2l sin((2l + 1)φ)

) Ho2m+1(μ)

Ho2m+1(μ0)
s j(2m + 1)

]
+

∞∑
m=0

[( ∞∑
l=0

B(2m+2)
2l sin((2l + 2)φ)

) Ho2m+2(μ)

Ho2m+2(μ0)
S j(2m + 2)

]}
,

(34)

where

p j(2m) = A(2m)
0

2π

N
+

∞∑
l=1

A(2m)
2l

2N
π(2l)2

sin2
(2lπ

N

)
cos
(4 jlπ

N

)
,

Pj(2m + 1) =

∞∑
l=0

A(2m+1)
2l

2N
π(2l + 1)2

sin2
( (2l + 1)π

N

)
cos
(2(2l + 1) jπ

N

)
,

s j(2m + 1) =

∞∑
l=0

B(2m+1)
2l

2N
π(2l + 1)2

sin2
( (2l + 1)π

N

)
sin
(2(2l + 1) jπ

N

)
,
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S j(2m + 2) =

∞∑
l=0

B(2m+2)
2l

2N
π(2l + 2)2

sin2
( (2l + 2)π

N

)
sin
(2(2l + 2) jπ

N

)
.

From (33), we know

qi j = q ji, i, j = 1, 2, · · · ,N. (35)

(35) shows that the matrix Q is symmetric.

3.2 Error Estimates

Theorem 3.2 Let uk
0

and uk
0h be solutions of the variational problems (27), (28) respectively, and S h(̃Γ) be the space

of piecewise polynomials which are of degree j ( j � 1), uk
0
∈ H j+1(̃Γ), then there exists a constant C independent

of h, the following inequality holds
‖uk

0 − uk
0h‖L2(̃Γ) � Chj+1|uk

0|H j+1(̃Γ).

Theorem 3.3 Let uk and uk
h be solutions obtained by (25), (31) respectively, then there exists a constant C(μ, φ)

independent of h, the following inequality holds

|uk − uk
h| � C(μ, φ)‖uk

0 − uk
0h‖L2(̃Γ).

4. Numerical Examples

To demonstrate the performance of this method, we consider the numerical solutions of the following initial-

boundary value problem:
∂2u
∂t2
−
(
a
∂2u
∂x2
+ b
∂2u
∂y2

)
= 0, (x, y, t) ∈ Ωc × I, (36)

anx
∂u
∂x
+ bny

∂u
∂y
= g(x, y, t), (x, y, t) ∈ Γ × I, (37)

u(x, y, 0) = u0(x, y), ut(x, y, 0) = v0(x, y), (x, y) ∈ Ωc. (38)

Where b > a > 0,Ωc =
{
(x, y) | αx2+βy2 > R2}, Γ = {(x, y) | αx2+βy2 = R2}, n = (nx, ny) = −( αx√

α2 x2+β2y2
, βy√
α2 x2+β2y2

).

Functions g(x, y, t), u0(x, y) and v0(x, y) are given as follows

g(x, y, t) = − 1√
α2x2 + β2y2

[( √ax
E(x, y)

H(1)
1

(ωE(x, y)) − (x3 + xy2)ω√
aE2(x, y)

H(1)
2

(ωE(x, y))
)

+ i
( √by

E(x, y)
H(1)

1
(ωE(x, y)) − (y3 + x2y)ω√

bE2(x, y)
H(1)

2
(ωE(x, y))

)]
(cos(ωt) + sin(ωt)),

u0(x, y) = H(1)
1

(ωE(x, y))
( x√

aE(x, y)
+ i

y√
bE(x, y)

)
,

v0(x, y) = ωH(1)
1

(ωE(x, y))
( x√

aE(x, y)
+ i

y√
bE(x, y)

)
.

Here H(1)
1

(z) and H(1)
2

(z) are the Hankel functions of the first order, E(x, y) =

√
x2

a +
y2

b . Furthermore, some

conditions at infinity are needed. The exact solution of this problem is

u(x, y, t) = H(1)
1

(ωE(x, y))
( x√

aE(x, y)
+ i

y√
bE(x, y)

)
(cos(ωt) + sin(ωt)).

If we take a = 1, b = 2, α = 1, β = 2, R = 0.9, then f0 ≈ 0.77942, μ0 = ln
√

3.
∞∑

m=0
and

∞∑
l=0

can be replaced by
M∑

m=0

and
L∑

l=0
respectively. M and L may be not large numbers, such as M = 20, L = 10 when N = 32, while M = 40,

L = 20 when N = 64. Tables 4.1–4.4 give some values of numerical solution uh(μ, φ, t), exact solution u(μ, φ, t)
and relative error Er = |u − uh|/|u|.
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Table 4.1. Numerical solution uh, exact solution u and relative error Er (N = 32, t = 0.3, ω = 1)

μ φ
Real part of solution Imaginary part of solution

Er(τ = 0.05)
Re(uh) Re(u) Im(uh) Im(u)

1.0 0 6.24156e-1 6.24155e-1 -7.74424e-2 -7.74425e-2 1.12234e-6

1.5 0 7.27816e-1 7.27815e-1 -2.54670e-1 -2.54670e-1 1.29504e-6

1.5 π/8 7.77075e-1 7.77075e-1 -1.42319e-4 -1.42499e-4 1.03780e-6

3.0 π/4 3.57737e-1 3.57737e-1 6.69196e-3 6.69187e-3 1.31773e-6

6.0 2 7.77940e-2 7.77939e-2 -1.68462e-2 -1.68462e-2 1.32230e-6

Table 4.2. Numerical solution uh, exact solution u and relative error Er (N = 32, t = 0.5, ω = 1)

μ φ
Real part of solution Imaginary part of solution

Er(τ = 0.025)
Re(uh) Re(u) Im(uh) Im(u)

1.0 0 6.77123e-1 6.77122e-1 -8.40144e-1 -8.40145e-1 1.12234e-6

1.5 0 7.89581e-1 7.89579e-1 -2.76282e-1 -2.76282e-1 1.29504e-6

1.5 π/8 8.43020e-1 8.43019e-1 -1.54396e-4 -1.54592e-4 1.03780e-6

3.0 π/4 3.88096e-1 3.88095e-1 7.25986e-3 7.25976e-3 1.31773e-6

6.0 2 8.43958e-2 8.43957e-2 -1.82758e-2 -1.82758e-2 1.32230e-6

Table 4.3. Numerical solution uh, exact solution u and relative error Er (N = 64, t = 0.5, ω = 1)

μ φ
Real part of solution Imaginary part of solution

Er(τ = 0.05)
Re(uh) Re(u) Im(uh) Im(u)

1.0 0 6.77123e-1 6.77122e-1 -8.40145e-1 -8.40145e-1 2.19990e-7

1.5 0 7.89580e-1 7.89579e-1 -2.76282e-1 -2.76282e-1 3.13724e-7

1.5 π/8 8.43020e-1 8.43019e-1 -1.54533e-4 -1.54592e-4 2.59550e-7

3.0 π/4 3.88096e-1 3.88095e-1 7.25979e-3 7.25976e-3 3.37652e-7

6.0 2 8.43957e-2 8.43957e-2 -1.82758e-2 -1.82758e-2 3.37347e-7

Table 4.4. Numerical solution uh, exact solution u and relative error Er (N = 64, t = 0.5, ω = 1)

μ φ
Real part of solution Imaginary part of solution

Er(τ = 0.025)
Re(uh) Re(u) Im(uh) Im(u)

1.0 0 6.77123e-1 6.77122e-1 -8.40145e-1 -8.40145e-1 2.19990e-7

1.5 0 7.89580e-1 7.89579e-1 -2.76282e-1 -2.76282e-1 3.13724e-7

1.5 π/8 8.43020e-1 8.43019e-1 -1.54533e-4 -1.54592e-4 2.59550e-7

3.0 π/4 3.88096e-1 3.88095e-1 7.25979e-3 7.25976e-3 3.37652e-7

6.0 2 8.43957e-2 8.43957e-2 -1.82758e-2 -1.82758e-2 3.37347e-7

The curves of errors are partly depicted as follows.
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Figure 4.1. μ = 2, ω = 1, t = 0.3, τ = 0.05, T = 1, N = 32, M = 20, L = 10, the step of φ is 2π
N . The curve of the

relative error for all φ ∈ [0, 2π]. left: Re
( u−uh

u
)
, right: Im
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)
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Figure 4.2. μ = 2, ω = 1.5, t = 0.3, τ = 0.05, T = 1,N = 32, M = 20, L = 10, the step of φ is 2π
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Figure 4.3. μ = 2, ω = 1, t = 0.3, τ = 0.05, T = 1, N = 64, M = 40, L = 20, the step of φ is 2π
N . The curve of the
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Figure 4.5. μ = 2, ω = 1.5, φ = 0. Taking τ = 0.05, N = 32, M = 20, L = 10, T = 1, the curve of the relative error
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Figure 4.6. μ = 2, ω = 1.5, φ = 0. Taking τ = 0.025, N = 32, M = 20, L = 10, T = 1, the curve of the relative

error for all t ∈ [0, 1]. left: Re
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Figure 4.7. μ = 2, ω = 1, φ = 0. Taking τ = 0.05, N = 32, M = 20, L = 10, T = 10, the curve of the absolute error

for all t ∈ [0, 10]. left: Re
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u − uh), right: Im
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Figure 4.8. μ = 2, ω = 1, φ = 0. Taking τ = 0.05, N = 64, M = 40, L = 20, T = 10, the curve of the absolute error

for all t ∈ [0, 10]. left: Re
(
u − uh), right: Im

(
u − uh)

5. Conclusions

In this paper, the natural boundary element method for an anisotropic hyperbolic problem in an exterior elliptic

domain is investigated. By introducing the elliptic coordinates and the separation of variables, the original problem

is turned into exterior Helmholtz problem with elliptic boundary which is equivalent to the original problem. We

mainly study the solutions of the Poisson integral formula and the natural integral equation. Since the Poisson

integral formula and the natural integral equation involve the computation of the special functions—the Mathieu

functions and the modified Mathieu functions, to solve them numerically we use the method in Zhang and Du

(2008) and Gutiérrez-Vega and Podrı́guez-Dagnino (2003). Numerical results demonstrate the feasibility and

efficiency of this method.
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