Combining Multiple OCRs for Optimizing Word

Recognition

Prasun Sinha Jianchang Mao

Department of Computer Science IBM Almaden Research Center

Univ. of Illinois at Urbana-Champaign 650 Harry Road
Urbana, IL 61801, USA San Jose, CA 95120, USA
prasun@crhc.uiuc.edu mao@almaden.ibm.com
Abstract

In this paper, we present a method of combining multiple classifiers for optimizing
word recognition. As opposed to existing techniques for combining multiple OCRs,
where the combination scheme is selected by either using some heuristics or using a
character-level training procedure, the proposed method combines the results of indi-
vidual classifiers in such a way that the correct word is more likely to be hypothesized.
This method provides a solution to the crucial issue of assigning reliable cost to the
edges of the segmentation graph in the popular over-segmentation followed by dy-
namic programming approach for word recognition. Three combination functions are
proposed and implemented. Experiments show that proposed method for combining

multiple classifier has a significant improvement on the word recognition accuracy.

Keywords: Classifier combination, word recognition, OCR.
Track: Pattern Recognition and Analysis.

Correspondence to: Dr. Jianchang Mao.

1 Introduction

Handwritten word recognition is a challenging problem encountered in many real-world ap-
plications, such as postal mail sorting, bank check recognition, and automatic data entry
from business forms. A great deal of research has been focused on improving character recog-
nition accuracy. Such effort includes a recent trend to combine multiple character classifiers
(OCRs), which leads to the development of a large number of techniques for combining mul-
tiple OCRs [5, 6, 7, 11]. In these techniques, a combination scheme is selected by either
using some heuristics or using a character-level training procedure. However, a character
recognizer optimized at the character level does not necessarily produce a high recognition
accuracy at word level due to the high ambiguity in writing individual characters in a word
and the enormous difficulty in segmenting word into correct characters.

A prevalent technique for off-line cursive word recognition is based on over-segmentation
followed by dynamic programming [2, 4]. It seems to outperform segmentation-free Hidden
Markov Models (HMMs) using a sliding window [8]. Over-segmentation based HMMs can
also be built [3]. In general, the over-segmentation followed by dynamic programming ap-
proach does not require a probabilistic modeling. Heuristics can be easily incorporated into
the recognition. On the other hand, word-level optimization is difficult to perform without
any probabilistic modeling. In over-segmentation based word recognition, a more crucial
issue is to estimate reliably the probability or confidence of a segment being a character
category, rather than to hypothesize accurately the identity for each individual segment.

In this paper, we propose a method of combining multiple classifiers for optimizing word
recognition. The proposed method employs a word-level cost function which is directly re-
lated to word recognition instead of character recognition. Minimizing this cost function is
equivalent to maximizing the mutual information between the desired interpretation and all
possible interpretations, i.e., maximizing the probability of obtaining the desired interpreta-

tion of the word image.

2 Word-level Cost function

We use the over-segmentation followed by dynamic programming approach for cursive word
recognition. In this approach, the word recognition problem is posed as a problem of finding
the best path in a graph named segmentation graph (see Figure 1(b)). A set of split points on

word strokes is chosen based on heuristics to divide the word into a sequence of graphemes

(primitive structures of characters, see Figure 1(b)). A character may consist of one, two
or three graphemes. Each internal node in the graph represents a split point in the word.
The leftmost node and rightmost node indicate the word boundary. Each edge represents
the segment between the two split points connected by the edge. Since our over-segmentor
rarely produces more than three graphemes for a character, we remove all the edges which
cover more than three graphemes. A character classifier is usually used to assign a cost to
each edge in the segmentation graph. The dynamic programming technique is then used for
finding the best path from the leftmost node to the rightmost node. A sequence of characters
can then be obtained from the sequence of segments on the best path (see Figure 1(c)). Note
that this sequence of characters may not form a valid word in a dictionary. If a lexicon of
limited size is given, the dynamic programming technique is often used to rank every word

in the lexicon. The word with the highest rank is chosen as the recognition hypothesis.

SO O RO el SORaN S S ey
ro A = = —ly A = -
B \L{f’ //‘“x - i e - y,: Vz’xh/ -

— — —

Figure 1: Over-segmentation followed by dynamic programming. (a) Original word image.
(b) Graphemes and segmentation graph. (c) Segments on the correct path in the segmenta-

tion graph.

One challenging problem which is very cructal to recognition accuracy ts how to assign
a reliable cost to each edge in the segmentation graph such that the best path chosen by the
dynamic programming corresponds to the correct path with a high probability. A common
practice is to use a character classifier to assign costs to the edges. The classifier is first
trained at character level to optimize recognition accuracy. Unfortunately, a character rec-
ognizer optimized at the character level does not necessarily produce a high recognition
accuracy at word level due to the high ambiguity in writing individual characters in a word
and the enormous difficulty in segmenting word into correct characters.

This paper proposes a method for improving the cost assignment by combining multiple
character classifiers in such a way that the correct path through the graph becomes the
highest probability path. We choose the following cost function:

pd)

C=—-In(———
BSSIAvZTE

) (1)

where N is the total number of paths from the leftmost node to the rightmost node in
the segmentation graph, the path-number for the correct or the desired path is d, and P®
represents the probability of the ¢-th path. Minimizing this cost function is equivalent to
maximizing the mutual information between the observations and the desired interpretation,
i.e., maximizing the probability of obtaining the desired path.

Let S;; be the segment corresponding to the j-th edge on the :-th path. Further, let
yr(Si;) denote the k-th output of the word level trained classifier for the segment S;;. The
value of k in yx(S;;) is chosen to correspond to the j-th character on the ¢-th path. Then,
the probability of the ¢-th path in the graph can be estimated as

P =TT wi(Siy), (2)
7=1

where n; is the number of edges on the :-th path.

Bottou et al. [1] used the similar mutual information criterion for globally training a
document processing system represented by graph transformer networks. They used a kind of
back-propagation procedure to optimize the parameters in the system, including parameters
in field locator, segmentor, and a neural network classifier. However, no one has applied

word level criteria to optimize the combination of multiple classifiers (OCRs).

3 Combining Multiple Classifiers

Consider a set of M classifiers, each of which generates a C-dimensional output (C is the
number of classes), y; = (v, -, %), ¢ = 1,2,---, M. We do not require that y,; be
an estimate of the a posteriori probability for the j** class from the i** classifier. Let
y = (y1,- -+, yc), be the C-dimensional output of the combination of the M classifiers. We

have
y= f@(y17y27 to 7yM)7

where ©® = {6y, --6,} are the p parameters of the combination function. The goal is to
optimize these parameters so as to minimize the word-level cost function.

A larger number of combination functions can be used. In this paper, we demonstrate
the effectiveness of combining multiple classifiers for optimizing word recognition using the

following three combination functions of two neural network classifiers.

1. Softmax Function

Y1k +BY2k
Yr = Z?:l ey +By2’ (3)
2. Sigmoid Function
Y1k tBY2e+7
Yk = 1 + ecviktByzi+v’ (4)
3. Nonlinear Scaling Function
B ¥
ayqy, +
Yp = Y1k Yok (5)

Y bty

where «, 3, and 7 are real numbers. When @ = =+ = 1, the nonlinear scaling function
reduces to the normalized averaging function. The softmax and sigmoid functions have a
nice property of approximating probabilities well. Their derivatives are also well-behaved
and easy to compute. On the other hand, the nonlinear scaling function has a problem
with convergence, since the derivative has exponential and logarithmic terms which often
can become too small or too large resulting in a bad approximation to the partial derivatives
due to the finite numerical precision. Hence for some starting values of the parameters, the
values of the parameters keep diverging. Even otherwise, it takes some 20 epochs to converge

as opposed to 5 epochs in the case of sigmoid or softmax functions.

4 Optimization Method

We use the gradient descent method to estimate the set of parameters in a combination
function to minimize the cost function defined in Equation (1). The parameter updating

rule is as follows.

oc
Ot =8 = m= 12, ,p, (6)

where t is the index of iteration and 7 is the learning rate.
The partial derivatives of the cost function with respect to a parameter 8,, can be eval-

uated as follows.

a0 & 1 Iyr(S54)
00, Z_:{yk(sdj)x 00, ;

71=1
n; 7 8 SiJ
Sl 5y {PW x ey)
Zz 1 P ®

(7)

where the partial derivative %

is determined by the combination function used to com-
bine the results of multiple classifiers.
The computation of the above partial derivative involves an evaluation of two summations

over all possible paths:

N N g
ST PO and 30 (PO 30 L OuelSii)y
i=1 i=1 = k(S) 00m

A naive evaluation of these two summations is prohibitive because the value of N is often
very large. Fortunately, we find that both these summations can be computed using the
dynamic programming technique.

To simplify the notations, we introduce a new variable

1 " Oyx(Si;)
A 00,

T(Sijv k) =

Let us number the nodes in the segmentation graph from 0 to 7, where the 0-th node
represents the leftmost node and the 7-th node represents the rightmost node. The algorithm
requires calculation of partial results at each of these nodes from left to right. Let us define

the two partial results A®) and B® at node number t.

N(®) '

Al — Z j210) (8)
i=1
N(®)) n;

BY = 3 {PC) x 3" T(Si;,k)} (9)
=1 7=1

N® corresponds to the total number of paths from the node 0 to node t. S;; corresponds
to the j-th segment on the :-th path.
Hence, the final summations that we are interested in are A and B(").

The algorithm is as follows:

1. Initiakization: A =1, ACY =0, A2 =0, BO® =0, B(Y = 0 and B(-? = 0.

))

ALY A2 B and B(-2) have been initialized to make the recursion step simple.

2. Recursion: Compute A+ and Bt+Y) from A®) and B®) for ¢t = 0--- (T —1). Finally
we get A and B("), the summations we were looking for. S;.; in the following equa-
tions refers to the segment corresponding to the edge in the segmentation graph from

node 7z to node j.

AT = Ay 3T ur(Stenr) + A1) X D0 Ur(Setierr) + Agoz) X 37 Uk(Se-2241)(10)
k=1 k=1 k=1
Bt — Z [ye(Seier1) ¥ {B(t) + A® x T(Ser1, k) +

£
Il
—

[Yx(Se-101) X {BEV 4+ ACT T(S, 1001, k)3 +

NgE

£
Il
—

[Wi(Secaur1) x {BUD + A x T(8y 5,041, k)}] (11)

NgE

£
Il
—

5 Experiments

For our experiments on word level training, 5305 words are automatically extracted from
cursive script USPS addresses. These words are over-segmented and each of the graphemes
were then manually truthed. Another independent set of 4417 words is used for testing.
For each word, two lexicons of size 10 and 100 are generated randomly with the true word
always included. In our experiments, we use two neural network classifiers as the individual
classifiers. The two neural networks have the identical topology with 27 outputs, 50 hidden
units, and 108 input units. Twenty six output units (out of 27) correspond to the 26
alphabetic characters and the additional one represents a non-character. The upper-case
and lower-case of each letter are combined into a single category. For each segment (edge
in the segmentation graph), a total of 108 features are extracted, of which 88 are contour
directional features extracted from the size-normalized bitmap [9]. The rest 20 features

capture the relative size (height and width) of the segment with respect to its two neighboring

Table 1: Character recognition and word recognition accuracies of the two individual classi-

fiers. The lexzicon size is 10.

Cost Character Recognition | Word Recognition

function Training Test Training Test
Kullback-Leibler | 70.37% 67.31% 87.07% | 88.91%
Squared Error | 74.40% 71.16% 89.41% | 90.97%

graphemes, and the normalized position (column and row) of splitting points on both sides
of the segment in the joint bounding box with its two neighboring graphemes, respectively.

The two classifiers are trained using two different character-level cost functions. One uses
Kullback-Leibler function. In this network, the sigmoid function is used as the activation
function in the hidden layer and the softmax function is used as the activation function in the
output layer. The second network is trained using the squared error function. The sigmoid
function is used as the activation function in both the hidden layer and the output layer.

After training is done, the two classifiers are separately tested for both character recog-
nition and word recognition. The results on the training data and test data with a lexicon
size of 10 are summarized in Table 1. We see that the network trained with the square-error
cost outperforms the other at both the character-level and word-level recognition. Note that
the character level recognition rates of the two classifiers are relatively low compared to
results reported in the NIST conference on isolated character recognition [10]. This is due
to two facts: (i) in our case the upper-case and lower-case characters are mixed, and (ii) the
excessive ligature in cursive handwriting degrades the character recognition.

We then combine these two networks using the three combination functions. The param-
eters in each combination function are estimated to minimize the work-level cost function
defined in Equation (1) on the training data. These parameters are listed in Table 2, which
also summarizes the results on both the character recognition and word recognition accura-
cies using the three combination functions. The training were repeated several times, but
we found that different trials produce very similar results.

From Table 2, we can see that the word level training does not necessarily improve the
character recognition accuracy (in case of Sigmoid combination, it slightly improves, but in
the other two cases, the character recognition accuracy drops). However, the word recogni-

tion accuracy is significantly improved over individual classifiers by using the combinations of

Table 2: Character recognition and word recognition accuractes of the three combination

functions whose parameters are obtained by the word level training. The lexzicon size is 10.

Combination Parameters Character Recognition | Word Recognition
function a 06 ~y Training Test Training Test
Softmaz 3.72 | 5.07 73.00% 70.28% 95.08% | 94.95%
Stgmoid 6.72 | 9.27 | -5.73 | 75.38% 72.29% 95.34% | 95.20%

Nonlinear scaling | 36.65 | 1.03 | 1.26 | 70.55% 67.43% 92.72% | 92.05%

Table 3: Word recognition results with a lexicon size of 100.

Classtfier 1: Kullback-Leibler | Classifier 2: Square error | Combination: Sigmoid function

70.70% 74.69% 84.47%

the two classifiers. The sigmoid combination function achieves the best performance, which
is better than the best individual classifier by 5.93% on the training data and 4.23% on the
test data. The nonlinear scaling function is significantly inferior to the sigmoid and softmax
functions at both the character level and word level recognition.

We also perform the word recognition with a lexicon size of 100. For the sake of limited
space, we report only the word recognition results on the test data using the two individual
classifiers and the sigmoid function in Table 3. We see that an improvement of nearly 10% on
word recognition accuracy is achieved by using the sigmoid combination function optimized

at the word level.

6 Conclusions

We have presented a method for combining multiple OCRs for optimizing word recognition.
Experiments have shown that the proposed method is an effective technique for improving
word recognition accuracy, but is not necessarily effective for character level recognition. The
proposed method can also be used for combining information from neighboring characters,
which is much powerful because it makes use of context information to resolve inherent

ambiguity in handwritten characters.

References

1]

[11]

L. Bottou, Y. Bengio, and Y. LeCun. Global training of document processing systems
using graph transformer networks. In Proc. IEEE Computer Soc. Conf. on Computer
Vision and Pattern Recognition, pages 489-494, Puerto Rico, June 1997.

R. M. Bozinovic and S. N. Srihari. Off-line cursive word recognition. IEEE Trans,
PAMI, 11:68-83, Jan 1989.

M. Y. Chen, A. Kundu, and S. N. Srihari. Variable duration hidden markov model and
morphological segmentation for handwritten word recognition. IEEE Trans. on Image

Processing, 4(12):1675-1688, December 1995.

P. D. Gader, J. M. Keller, R. Krishnapuram, J. H. Chiang, and M. A. Mohamed. Neural
and fuzzy methods in handwriting recognition. Computer, pages 79-85, February 1997.

T. K. Ho, J. J. Hull, and S. N. Srihari. Decision combination in multiple classifier
systems. IEEE Trans. Pattern Anal. Machine Intell., 16(1):66-75, 1994.

J. Kittler. Improving recognition rates by classifier combination. In Intl. Workshop on

Frontiers in Handwriting Recognition, pages 81-102, Colchester, UK, Sept. 1996.

J. Mao and K. M. Mohiuddin. Improving ocr performance using character degradation

models and multiple classifiers. Accepted to appear in Pattern Recognition Letters.

M. Mohamed and P. Gader. Handwritten word recognition using segmentation-free
hidden markov modeling and segmentation-based dynamic programming techniques.

IEEE Trans. Pattern Anal. Machine Intell., 18(5):548-554, May 1996.

H. Takahashi. A neural net OCR using geometrical and zonal-pattern features. In Proc.

1st Intl. Conf. on Document Analysis and Recognition, pages 821-828, 1991.

R. A. Wilkinson and J. Geist et al. (eds). The first census optical character recognition
system conference. Technical report, NISTIR 4912, U.S. Department of Commerce,
NIST, Gaitherburg, MD 20899, 1992.

L. Xu, A. Krzyzak, and C. Y. Suen. Methods for combining multiple classifiers and their
applications in handwritten character recognition. IEEE Trans. Syst., Man, Cybern.,
22(3):418-435, 1992.

10

