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I. INTRODUCTION

Transmit waveform design is critical to radar

system performance. As such, waveform design has

a long history and rich literature. However implied

in most of the designs is the assumption that targets

have infinite wideband response, i.e., point targets.

Indeed many advances in radar technology have

been based on this assumption. Common waveforms

such as phase codes, wideband chirps, and pulse

trains are traditionally designed for range resolution,

Doppler resolution, and ambiguity considerations.

Furthermore no provision is applied to “adaptively”

change them while in operation. In fact most adaptive

signal and knowledge-based processing algorithms are

“receiver-centric.” Our focus here is on designing and

adapting waveforms that are matched to ensembles of

extended targets. When used in a “transmitter-centric”

closed-loop radar system, these transmit waveforms

can be adaptively modified by exploiting the

knowledge learned from the environment through

prior received echoes.

The design of matched waveforms has been

investigated from both signal-to-noise ratio (SNR) and

mutual information (MI) considerations. The optimum

waveform for maximizing SNR due to a known target

in additive Gaussian noise was first investigated in

[1], [2]. The problem of matching a known target

response in a signal-dependent interference and

additive channel noise was first investigated in

[3]. While no closed-form solution was derived,

a numerical approach was presented. It was noted

here that traditional waveforms, such as linear-FM

waveforms, were inferior in SNR performance for

extended targets. Unfortunately the work in [3] is

not guaranteed to converge to the optimal design

[4]. In [5], [6], the technique in [3] was extended

to a target-recognition application. Earlier work in

signal design for detection and system identification

includes the works in [7]—[9]. In addition signal

design for clutter rejection was considered in [10], and

waveform selection from the point of view of target

recognition was considered in [11]. The work of Kay

[4] presented optimal signal design for detection of

Gaussian point targets in Gaussian clutter.

Considering the problem of estimation, Bell

also made a considerable advance by investigating

waveforms designed to maximize MI between the

received signal and a Gaussian target ensemble

[1, 2]. By now, the direct relationship between two

measurement metrics: estimation theory’s minimum

mean square error (MMSE) and information theory’s

MI in Gaussian channels, is well known [12]. The use

of MMSE/MI in designing waveforms was extended

for multiple-input multiple-output (MIMO) target

recognition and classification applications [13]. The

work in [14] used MI-based radar waveform design

for multiple extended targets.
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In [15], Haykin proposed cognitive radar as a

technological solution for performance optimization

in resource-constrained and interference-limited

environments. Addressing this notion of a closed-loop

intelligent radar in our earlier work [16], we

introduced a specific cognitive radar platform which

utilized the techniques in [1], [2], [5], [6]. Both SNR

and MI were used to adaptively modify transmit

waveforms for recognition of known targets. It was

shown that this closed-loop radar framework can

reduce the energy required for identification. In [17],

[18], the closed-loop radar strategy was applied to

discrimination of target classes rather than a finite

ensemble of known targets. Finally in [18], we have

presented initial results on designing waveforms that

maximize MI in the presence of signal-dependent

interference.

From the above discussion, it is clear that two

criteria (SNR and MI) have been primary metrics

used to design matched waveforms. Furthermore

various target and interference paradigms are possible.

These paradigms include treating the target as either

deterministic or random and treating the interference

as either signal-independent (receiver noise) or

signal-dependent (clutter). The list below shows

possible design paradigms for both SNR-based

and MI-based approaches. The list also identifies

references relating to previous contributions for each

paradigm. This paper presents four new matched

waveform contributions: information-theoretic

waveform in signal-dependent interference, a new

frequency-domain approach to maximizing SNR

in signal-dependent clutter, and two SNR-based

waveforms that apply to random target ensembles. To

the best of our knowledge, these latter two paradigms

have not been addressed in the literature. It should

be noted that, in the case of maximizing SNR for

a known target in signal-dependent clutter, a recent

work [19] arrived at a similar frequency-domain

approach as our own. Paradigms where we make

new waveform design contributions in this paper are

denoted by (*) in the list below. For completeness, we

derive all the matched waveforms for all cases shown

in the list below.

Known Target

1) SNR-based waveform design in

signal-dependent interference, [3, 19]. (*)

2) SNR-based waveform design in noise, [1, 2].

Stochastic Target

1) SNR-based waveform design in

signal-dependent interference. (*)

2) SNR-based waveform design in noise. (*)

3) MI-based waveform design in signal-dependent

interference. (*)

4) MI-based waveform design in noise. [1, 2]

Fig. 1. Known target signal model for SNR-based waveform

design.

One consideration in forming practical radar

waveforms is the constant modulus constraint,

which permits efficient use of the front-end power

amplifier(s) [20]. SNR-based waveform designs

(in signal-dependent interference) and MI-based

waveform designs via an energy constraint presented

in this paper resulted in optimal transmit spectra. With

proper manipulation of the waveforms in the temporal

domain, it should be possible to design constant

modulus waveforms that approximate SNR-based

or MI-based waveform spectra with some loss of

optimality. For example, a recent work [21] introduces

a technique for spectrally designed waveforms to have

constant envelopes.

This paper is organized as follows. Section II

describes the signal models used for the known target

case and presents SNR-based matched waveform

designs. Section III describes the signal models

used for the finite-duration stochastic target case

and presents derivations of the matched waveform

designs for both SNR-based and MI-based paradigms.

Based on the prior section, Section IV relates MI and

SNR in the context of waveform design for stochastic

targets and describes transmit waveform behavior for

both paradigms and how they are related. Section V

presents waveform design examples and applications.

Section VI concludes the paper.

II. KNOWN-TARGET SIGNAL MODELS AND
SNR-BASED WAVEFORM DESIGN

A. Known Target in Signal-Dependent Interference

The case of a known target in signal-dependent

interference was first investigated in [3]. It is

difficult to arrive at a closed-form solution for

this case since the clutter interference depends

on the transmit waveform. Instead a numerical

algorithm was proposed in [3] that resulted in a

finite-duration transmit waveform and receive filter

pair. Unfortunately as mentioned earlier, such an

approach did not guarantee convergence to an

optimum design [4]. Here we revisit the problem and

find a frequency-domain expression for the transmit

waveform that maximizes SNR.

Fig. 1 shows a block diagram of the signal model

used for SNR-based waveform design. Let h(t) be

a known complex-valued baseband target impulse

response of finite duration Th and Fourier transform

ROMERO ET AL.: THEORY AND APPLICATION OF SNR AND MI MATCHED ILLUMINATION WAVEFORMS 913



H(f). Let r(t) be the complex-valued receive filter

impulse response and n(t) be a complex-valued,
zero-mean channel noise process with power

spectral density (PSD) Snn(f), which is non-zero

over the entire waveform bandwidth. Let c(t) be a
complex-valued, zero-mean Gaussian random process

representing an interference component, e.g., ground

clutter, and characterized by the PSD Scc(f). Let x(t)

be the complex-valued baseband transmit waveform

with finite-energy, duration T, and Fourier transform

X(f). The transmit waveform’s energy is

Ex =

Z 1

¡1
jX(f)j2df:

Throughout the paper, an italicized E with a subscript

denotes an energy value while the nonitalicized E[¢]
is the expected value operator. As seen in Fig. 1, the

signal y(t) at the output of the receive filter is

y(t) = r(t) ¤ [x(t)¤h(t) + x(t)¤c(t) +n(t)]:
Let ys(t) and yn(t) be the signal and noise components,
respectively, of the output y(t), which are defined by

ys(t) = r(t) ¤ x(t)¤h(t)
and

yn(t) = r(t) ¤ [x(t)¤c(t) +n(t)]:
The output signal-to-interference-plus-noise ratio

(SINR) at time t0 is

(SINR)t0 ´
jys(t0)j2
E[jyn(t0)j2]

: (1)

The SINR can be written as

(SINR)t0 =

¯̄R1
¡1R(f)H(f)X(f)e

j2¼ft0df
¯̄2R1

¡1 jR(f)j2L(f)df
where

L(f) = jX(f)j2Scc(f) + Snn(f):
SINR can be reexpressed as

(SINR)t0 =

¯̄̄̄
¯R1¡1R(f)pL(f)H(f)X(f)p

L(f)
ej2¼ft0df

¯̄̄̄
¯
2

R1
¡1 jR(f)j2L(f)df

:

Applying Schwarz’s inequality [22] yields the bound

(SINR)t0 ·
R1
¡1 jR(f)j2L(f)df

R1
¡1
jH(f)X(f)j2

L(f)
dfR1

¡1 jR(f)j2L(f)df
:

The SINR achieves its maximum of

(SINR)t0 =

Z 1

¡1

jH(f)X(f)j2
L(f)

df

if and only if the matched filter is of the form

R(f) =
[kH(f)X(f)ej2¼ft0 ]¤

jX(f)j2Scc(f)+ Snn(f)

where k is an arbitrary constant. Assuming that the

transmit signal is essentially limited to the bandwidth

W, SINR may be written as

(SINR)t0 '
Z
W

jH(f)j2jX(f)j2
Scc(f)jX(f)j2 + Snn(f)

df (2)

and the waveform energy constraint may be written asZ
W

jX(f)j2df · Ex: (3)

The denominator of (2) depends on the

transmit waveform; thus the approach of using the

eigenfunction solution to a Fredholm equation [1, 2]

does not apply easily [3]. Instead we recognize that

the transmit waveform is constrained according to (3)

and that the integration kernel of (2) is concave. This

leads to use of the Lagrangian multiplier technique,

which yields a solution in the form of

jX(f)j2 = max[0,B(f)(A¡D(f))] (4)

where B(f) and D(f) are

B(f) =

pjH(f)j2Snn(f)
Scc(f)

(5)

and

D(f) =

s
Snn(f)

jH(f)j2 (6)

respectively, and A is a constant determined by the

energy constraintZ
W

max[0,B(f)(A¡D(f))]df · Ex:

The derivation of (4) is shown in Appendix I. For a

given Ex, once A is found the SINR is calculated by

substituting (4) into (2).

The complex-valued transmit waveform that

maximizes SINR has a frequency spectrum obtained

by performing the waterfilling operation [23] on

the function B(f)(A¡D(f)). While (4) is indeed
the transmit waveform spectrum that maximizes

the SINR, important observations must be made.

First unless the bandwidth W is infinite and the

resulting spectrum contains no zero-energy bands

of finite width, by the Paley-Wiener Theorem, the

waveform defined by (4) cannot be time limited

[24], which is an original assumption placed on the

waveform design. That the resulting waveform is not

time limited is a fundamental limitation of defining

waveforms via frequency-domain waterfilling. In some

cases the resulting waveform may be approximately

limited to the desired time interval; however, even

this approximation is not guaranteed in general.

Fortunately it is possible to obtain a finite-duration

waveform that closely approximates the optimum

waveform. For example, we can use finite impulse

response (FIR) filter design techniques to find a time
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limited waveform that approximates the optimum

frequency spectrum in the least-squares sense. Second

we now observe the importance of restricting Scc(f)

to be positive within the bandwidth W, since it

ensures that (5) is always defined. Finally we note

that the numerical search necessary to find the correct

solution to (4) is a one-dimensional search over the

parameter A.

B. Known Target in Noise

In the special case of a clutter-free environment,

i.e., c(t) = 0, the output y(t) is

y(t) = r(t) ¤ [x(t)¤h(t) +n(t)]:
Thus the received signal and noise components are

ys(t) = x(t)¤h(t) ¤ r(t)
and

yn(t) = r(t)¤n(t)
respectively.

Since clutter is absent we have the special case of

a deterministic target in additive noise. The optimum

transmit waveform and receive filter that maximize

SNR for real signals while conforming to a transmit

energy constraint is due to Bell [1, 2]. With Scc(f) =

0, the receive filter is reduced to

R(f) =
[kH(f)X(f)ej2¼ft0 ]¤

Snn(f)

and the SINR expression in (2) reduces to

(SNR)t0 =

Z 1

¡1

jH(f)X(f)j2
Snn(f)

df: (7)

The complex-valued x(t) with finite duration T that

optimizes (7) within the energy constraint is defined

by

¸max²x(t) =

Z T=2

¡T=2
²x(¿ )M(t¡ ¿ )d¿ (8)

where M(t) is

M(t) =

Z 1

¡1

jH(f)j2
Snn(f)

ej2¼ftdf

and ²x(t) is the eigenfunction corresponding to the

largest eigenvalue (¸max) of this kernel. The resulting

SNR is
(SNR)t0 = ¸maxEx: (9)

In summary, the transmit waveform x(t) that

maximizes SNR for a known target in additive noise

is the eigenfunction corresponding to the maximum

eigenvalue of the kernel M(t), and the SNR is just

the product of this eigenvalue and the energy in the

transmit waveform. In the case where the noise is

white, the kernel M(t) becomes

M(t) =
1

N0

Z 1

¡1
jH(f)j2ej2¼ftdf:

Fig. 2. Top panel: Signal model for finite-duration random target.

Bottom panel: Signal model for finite-duration random target in

signal-dependent interference.

Thus when the additive noise is white, the kernel M(t)

is proportional to the inverse Fourier transform of the

energy spectrum of the deterministic target. Finally

the ²x(t) in (8) is noncausal, but according to (9), a

phase shift does not affect the SNR. Therefore the

waveform can be made causal by applying the proper

time delay [1].

III. FINITE-DURATION STOCHASTIC TARGET AND
WAVEFORM DESIGN

In [1], [2], an extended target was modeled

as a random process in order to derive a matched

waveform that maximized the mutual information

between the random target and the received echo. As

opposed to an infinite-time process, it was postulated

that this stochastic target h(t) is a finite-energy

finite-duration process where Th is the time duration

where most of the target energy resides. The output

SNR expression in (1) is inappropriate for application

to a scenario with this type of target; thus another

SNR definition is needed but will need to wait until

we formalize a proper model description for an

extended target that is random and exists only in a

finite time interval.

A. The Finite-Duration Stochastic Target Model

We formalize the definition of a stochastic

extended target by building upon the target model

initially introduced in [1], [2]. The random extended

target model is a process that can be considered

stationary within the interval [0,Th] but is zero outside

this interval. For SNR-based waveform design, the

process does not need to be Gaussian. A signal

of this nature can be constructed from elementary

signal models. Fig. 2 (top panel) shows how such a

process is created, where g(t) is a complex wide-sense
stationary process with some PSD and a(t) is a
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rectangular window function of duration Th. It is clear

that the product h(t) = a(t)g(t) is a finite-duration
random process having support only in [0,Th].

Furthermore, since g(t) is wide-sense stationary,
h(t) is locally stationary within [0,Th]. This unique
random process has been mathematically explored in

[25], [26].

Since h(t) is a finite-energy process, we can
assume that any realization of h(t) is integrable, i.e.,
any sample function h(t) has a Fourier transform H(f)

such that

Eh =

Z
Th

jh(t)j2dt=
Z 1

¡1
jH(f)j2df:

We can also obtain the time-averaged power Ph within

the interval [0,Th] as suggested in [27], which is given

by

Ph =
1

Th

Z
Th

jh(t)j2dt= 1

Th

Z 1

¡1
jH(f)j2df:

One may consider H(f) to be a sample realization of

a random transfer function H(f), where H(f) is the
Fourier transform counterpart of h(t). Next consider

the energy of h(t) or H(f) averaged over the ensemble
of target realizations. This ensemble-averaged energy

can be calculated by

Ēh =

Z
Th

E[jh(t)j2]dt=
Z 1

¡1
E[jH(f)j2]df: (10)

Note that (10) is an energy quantity, not power; hence

E[jH(f)j2] is not a PSD as would typically be used
for characterizing a random process. Instead the

ensemble’s average power, defined only in the interval

[0,Th], can be obtained through time averaging by

P̄h =
1

Th

Z
Th

E[jh(t)j2]dt= 1

Th

Z 1

¡1
E[jH(f)j2]df:

(11)

Observing (10)—(11), an energy spectral density

(ESD) can be defined as

»H(f) = E[jH(f)j2]:
Furthermore if the mean of the random transfer

function is
¹H(f) = E[H(f)]

then we can define

¾2H(f) = E[jH(f)¡¹H(f)j2] (12)

as the variance of H(f), called the energy spectral
variance (ESV) [1, 2]. We assume in this paper that

¹H(f) = 0, in which case the ESD and ESV functions

are equal. The ESV describes the average energy

of a finite-duration, zero-mean process in the same

sense that a PSD describes the average power of an

infinite-duration, wide-sense stationary process. From

(11), (12), and the zero-mean assumption, we define

¨H(f) =
¾2H(f)

Th
=
E[jH(f)j2]

Th
(13)

where ¨H(f) will be known as the power spectral

variance (PSV). By (11),

P̄h =

Z 1

¡1

E[jH(f)j2]
Th

df =

Z 1

¡1
¨H(f)df

that is, the time-averaged power P̄h of a finite-duration

process is described by its PSV. Care must be

exercised so as not to confuse ¨H(f) as a PSD.

Since h(t) is not a power process, a PSD does not

apply. Indeed the Wiener-Khintchine Theorem [28]

defines a PSD only for random processes where

the autocorrelation exists in the interval [¡1,1].
Since ¨H(f) is a time-scaled version of an ESV, it

contains the same information as the ESV except that

it conveys the critical power content in [0,Th]. Since

h(t) is stationary within the interval [0,Th], E[jh(t)j2]
is constant in that interval, and thus, the time-averaged

power is

P̄h = E[jh(t)j2] =
Z 1

¡1
¨H(f)df: (14)

Since the transmit waveform convolves with the

target response, a linear system model has to be

developed for finite-time duration processes. Let z(t)

be the random output that results from convolving

waveform x(t) with a random target h(t). Given a

particular realization h(t) with Fourier transform H(f),

we have

z(t) = x(t)(t)$ Z(f) = X(f)H(f):

Thus

E[jz(t)j2] = E[jx(t)¤h(t)j2]
and

E[jZ(f)j2] = E[jX(f)j2jH(f)j2]: (15)

It is important to note here that the quantity E[jz(t)j2]
has support on the interval [0,T+Th] but is not

constant within that interval. Unlike E[jh(t)j2],
which was formed by multiplying a true stationary

random process with a rectangular window, the

quantity E[jz(t)j2] results from the convolution of

a finite-duration random impulse response with a

finite-duration waveform. At any given time within

[0,T+Th], the expected output power depends

on the particular part of the transmit waveform

that overlaps the impulse response. For example,

clearly the convolution has ramp up and ramp down

periods where E[jz(t)j2] changes with time. Thus
E[jz(t)j2] is nonstationary within its support interval,
and a constant average power that is valid for all

times in the interval cannot be defined. In other

words, a relationship analogous to (14) cannot be

defined for the convolution output. This fact will

force approximations to be made when designing

waveforms for stochastic targets. It is reasonable

to define an ESV from (15) for the output random
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process according to

¾2Z(f) = jX(f)j2¾2H(f): (16)

Furthermore from (13) and (16), we can define a

time-averaged power spectral variance according to

¨Z(f) =
¾2Z(f)

Tz
=
jX(f)j2¾2H(f)

Tz
= ®jX(f)j2¨H(f)

(17)
where Tz = T+Th and ®= Th=Tz.

B. SNR-Based Waveform Design for Stochastic Target
in Signal-Dependent Interference

Returning to the need for a signal model and

SNR expression valid for stochastic targets, we

now consider the bottom panel of Fig. 2, which

depicts a signal model for stochastic targets to be

used for both SNR- and MI-based designs. Let the

extended stochastic target be h(t). Let x(t) be the
finite-energy waveform to be designed with finite

duration T. Let n(t) be the zero-mean receiver noise

process with PSD Snn(f) that is positive in the signal

bandwidth W (i.e., the frequency band [¡W=2,W=2]).
The signal-dependent interference component c(t)
is again a zero-mean random process with PSD

Scc(f) that is positive in the bandwidth W. As in

[1], the ideal lowpass filter with duration Tf is an

acknowledgment that the signals of interest are

practically bandlimited and will not affect derivation.

We first consider the expressions that result if the

target process is a true Gaussian random process

g(t). We then use the notion of spectral variance
developed earlier to obtain an approximate expression

for SNR. For a true stochastic signal g(t) with PSD
Sgg(f) in noise n(t), the local SNR [29] is given
by

SNRlocal =

Z 1

¡1
RSNR(f)df =

Z 1

¡1

Sgg(f)

Snn(f)
df (18)

where RSNR(f) = Sgg(f)=Snn(f) will now be termed

as the SNR spectral density. For a true random

target convolved with a transmit waveform in

signal-dependent interference, the SINR spectral

density is given by

RSINR(f) =
Sgg(f)jX(f)j2

jX(f)j2Scc(f)+ Snn(f)
: (19)

Since the output is stationary in any observation

interval, the integrated SINR in measurement interval

To is given by

SINR= To

Z 1

¡1

Sgg(f)jX(f)j2
jX(f)j2Scc(f) + Snn(f)

df: (20)

Since the target h(t) is of finite duration Th, we
approximate (20) using the stochastic extended

target model via the spectral variance functions.

With Tf negligible, the output y(t) has a convolution

interval of Ty = T+Th. Replacing a true PSD

with the PSV of (17) and observing y(t) in its
interval Ty , we modify (20) to define an SINR

quantity valid for a finite-time duration extended

target in signal-dependent interference given

by

SINR= Ty

Z 1

¡1

®¨H(f)jX(f)j2
jX(f)j2Scc(f) + Snn(f)

df (21)

where ®= Th=Ty. The scaling ® reflects the fact that

the convolution output of the finite-duration target and

the transmit waveform is only stationary for a finite

window of time. The SINR simplifies to

SINR=

Z 1

¡1

¾2H(f)jX(f)j2
jX(f)j2Scc(f) + Snn(f)

df:

For a waveform with energy concentrated in

the band [¡W=2,W=2], the SINR equation to be
maximized under the energy constraint of (3) is now

given by

SINR'
Z
W

¾2H(f)jX(f)j2
Scc(f)jX(f)j2 + Snn(f)

df: (22)

Owing to the concavity of the kernel in (22), we

again apply the Lagrangian multiplier technique.

Maximization of (22) with respect to jX(f)j2 leads
to the optimum waveform spectrum described by

jX(f)j2 = max[0,B(f)(A¡D(f))]: (23)

where B(f) and D(f) are described by

B(f) =

q
¾2H(f)Snn(f)

Scc(f)
(24)

and

D(f) =

s
Snn(f)

¾2H(f)
(25)

respectively, and A is a constant determined by the

energy constraintZ
W

max[0,B(f)(A¡D(f))]df · Ex:

Note the similarity between (23)—(25) and (4)—(6).

The only difference is that the energy spectrum

jH(f)j2 for the deterministic target has been
replaced by the ESV ¾2H(f) of the random target

ensemble. Thus the end result seems intuitively

satisfying.

For ThÀ T, ®! 1, and ¨H(f)! Sgg(f), the

SINR spectral density converges to that of (19). The

derivation of (4), which is shown in Appendix I

can also be applied to derive (23). Moreover issues

associated with the fact that the waveform defined by

(23) is not strictly time limited were already discussed

in Section IIA. The resulting SINR is defined in

(22).
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C. SNR-Based Waveform Design for Stochastic Target
in Noise

In the special case of a clutter-free environment,
i.e., c(t) = 0, the SNR is given by

SNR=

Z 1

¡1

¾2H(f)jX(f)j2
Snn(f)

df: (26)

Defining

G(f) =
¾2H(f)

Snn(f)

(26) is simply

SNR=

Z 1

¡1
G(f)jX(f)j2df: (27)

We desire to maximize (27) using a finite-duration,
energy-constrained x(t), which is obtained from the
solution to the Fredholm equation given by

¸max²x(t) =

Z T=2

¡T=2
²x(¿ )Rg(t¡ ¿)d¿ (28)

where the kernel Rg(t) is

Rg(t) =

Z 1

¡1
G(f)ej2¼ftdf:

Equation (28) is easily derived using [1, pp. 1584—85]
but with the proper modifications. For white noise,
Rg(t) becomes

Rg(t) =
1

N0

Z 1

¡1
¾2H(f)e

j2¼ftdf:

Thus ignoring the scaling factor 1=N0, the transmit
waveform that maximizes the SNR for a random
extended target in white noise is the eigenfunction
corresponding to the maximum eigenvalue of
the complex-valued target kernel function Rg(t).
Moreoever the target kernel function is the inverse
Fourier transform of the random target’s ESV
function. The resulting SNR is

SNR= ¸maxEx:

Finally we again note the similarity between (28)
and the analogous results for a deterministic target
in (8).

D. MI-Based Waveform Design for Stochastic Target in
Signal-Dependent Interference

Consider again the signal model from the bottom
panel of Fig. 2. We are interested in the mutual
information between the measurement y(t) and
target ensemble h(t) given a transmit signal x(t),
i.e., I(y(t);h(t) j x(t)). We initially investigated
waveform design for the case of a stochastic target
in signal-dependent interference in [18] where it
was assumed that TÀ Th, TÀ Tf , and Ty ¼ T [1, 2].
We reconsider the problem in terms of the spectral
variance functions defined above and with a stronger
treatment of the finite-duration target assumption.

As in the case of the SNR-based derivation, we
first consider the mutual information that would result
if the target process were a true Gaussian random
process g(t). Since Tf is negligible, we again ignore
the effect of the ideal lowpass filter. The received
output is given by

y(t) = ys(t) + yn(t) = x(t)¤g(t) + x(t)¤c(t) +n(t)
where ys(t) with PSD SY(f) and yn(t) with PSD SN(f)
are the signal and interference portions of the output.
Then the information rate is

_I(y(t);g(t) j x(t))

=

Z
W

ln

·
1+

SY(f)

SN(f)

¸
df

=

Z
W

ln

"
1+

jX(f)j2Sgg(f)
Snn(f) + jX(f)j2Scc(f)

#
df:

(29)

Unlike in the case of SNR-based models, it should
be noted that the clutter c(t) is necessarily Gaussian.
If the clutter were non-Gaussian, a closed-form
expression for the MI rate may not exist. Additionally
the true MI rate may not only depend on the
second-order statistics, and as such, the MI rate will
not lend itself to a convenient expression in terms of
the target, clutter, and noise PSDs. In this case any
MI-based waveform design based on (29) will be
suboptimal in terms of mutual information. Returning
to the Gaussian assumption on target, clutter, and
noise, the entropy of the target process g(t) would
be infinite (consider the number of time samples
necessary to represent a realization of g(t)) such that
observing y(t) for a finite amount of time would yield
no quantifiable reduction in the uncertainty of g(t).
For a finite-duration target h(t), the initial entropy

is finite, but it is not valid to define a PSD. The ESV
and PSV of the signal portion of the output are given
by

¾2Y(f) = jX(f)j2¾2H(f)
and

¨Y(f) =
¾2Y(f)

Ty
(30)

where Ty = T+Th is the duration of the convolution
output. Replacing SY(f) in (29) with the
time-averaged PSV of (30), an approximate
information rate can be defined as

_I(y(t);h(t) j x(t))

=

Z
W

ln

"
1+

jX(f)j2¾2H(f)
TyfSnn(f) + jX(f)j2Scc(f)g

#
df:

(31)

In reality due to the nonstationary nature of y(t),
the information rate is not uniform on the interval
[0,Ty] as (31) would seem to indicate. In effect we
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have time-averaged the information rate over the time
support of y(t).
Another potential issue is that (29) is valid only

when different samples of the random target’s transfer
function are uncorrelated Gaussian random variables.
In this case, the samples are also independent, and
the mutual information due to multiple frequency
components can be summed. In the limit as the
separation between frequency-domain samples goes
to zero, summation becomes integration, which results
in (29). However, similar to what was observed
in the SNR-based derivations for random targets,
allowing arbitrarily close frequency coefficients
to be uncorrelated corresponds to allowing the
target to be infinite in time duration. Thus applying
(31) to finite-duration targets involves two related
approximations: substituting a time-averaged PSV
for a true PSD and ignoring the correlation between
closely-spaced frequency coefficients. Recall that
we used the former in our SNR-based derivation.
Using the PSV of the signal portion of the output and
observing the output in Ty, the approximate mutual
information is

MI = I(y(t);h(t) j x(t))

= Ty

Z
W

ln

"
1+

jX(f)j2¾2H(f)
TyfSnn(f) + jX(f)j2Scc(f)g

#
df

= Ty

Z
W

ln

·
1+®

½ jX(f)j2¨H(f)
Snn(f) + jX(f)j2Scc(f)

¾¸
df:

(32)

Insofar as we are willing to take the analogy between
a true signal portion PSD SY(f) and a time-averaged
PSV ¨Y(f), the bracketed term in (32) is analogous to
the corresponding term in (29). The additional factor
®= Th=Ty is intuitive in that it accounts for the fact
that the output is not stationary in Ty as was noticed
in the SNR-based design. In the limit as Th!1, h(t)
becomes the true random process g(t), ®! 1, and the
integral in (32) converges to (29).
Subject to the approximations that have been

fully discussed above, we now wish to maximize
the mutual information I(y(t);h(t) j x(t)) in (32)
with respect to jX(f)j2 while conforming to the
energy constraint in (3). Despite the signal-dependent
interference term in (32), the function within the
integral is easily confirmed to be concave. The
Lagrangian multiplier technique is invoked, which
leads to the waterfilling waveform described by

jX(f)j2 = max
h
0,¡R(f) +

p
R2(f) + S(f)(A¡D(f))

i
(33)

where

D(f) =
Snn(f)

®¨H(f)
(34)

R(f) =
Snn(f)(2Scc(f) +®¨H(f))

2Scc(f)(Scc(f)+®¨H(f))
(35)

and

S(f) =
Snn(f)®¨H(f)

Scc(f)(Scc(f)+®¨H(f))
: (36)

The constant A is determined by the energy constraintZ
W

max

h
0,¡R(f)+

p
R2(f) + S(f)(A¡D(f))

i
df · Ex:

Once jX(f)j2 is found, the mutual information
is easily calculated from (32). The derivation of
(33) is shown in Appendix II. As we observed for
SNR-based waveform design, defining a waveform’s
spectrum via waterfilling may lead to conditions
that do not satisfy the Paley-Wiener constraint for
causality. Hence the time limited constraint may be
violated, but an approximate finite-duration waveform
is usually possible.
While (33) will be used in the subsequent results

section, it is somewhat hard to acquire an intuition of
the waveform it describes. To gain further intuition,
we apply a first-order Taylor approximation to

Q(f) =¡R(f) +
p
R2(f) + S(f)(A¡D(f)):

The approximation yields

Q̃(f) = B(f)(A¡D(f))
where B(f) is

B(f) =
®¨H(f)

2Scc(f) +®¨H(f)
: (37)

Thus the transmit waveform is approximated by

jX̃(f)j2 = max[0,B(f)(A¡D(f))] (38)

where A still controls the waveform’s energy. The
approximate maximum mutual information can then

be calculated by substituting jX̃(f)j2 in (32). It is clear
that if Scc(f) = 0, then (37) goes to unity. For the case
where clutter is non-zero, B(f) is a clutter-dependent
factor that modifies the waterfilling operation. To see
its effect, realize that B(f) takes on nonnegative real
values between 0 and 1. When the clutter spectrum is
zero, the clutter factor becomes one and has no effect.
When the clutter factor is non-zero, each frequency
component in A¡D(f) is weighted depending on the
clutter spectrum. As clutter becomes strong at certain
frequencies, the clutter factor B(f) goes to zero at
those frequencies, and no waveform energy is wasted
on those frequencies.

E. MI-Based Waveform Design for Stochastic Target in
Noise

In the absence of signal-dependent clutter, c(t) = 0
results in the special case of a noise-only scenario

where the approximate information rate simplifies to

_I(y(t);h(t) j x(t)) =
Z
W

ln

"
1+

jX(f)j2¾2H(f)
TySnn(f)

#
df:

(39)
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For MI-based waveform design under the special

case of a stochastic target in additive Gaussian

noise, the reader is referred to [1], [2] for a detailed

derivation. To quickly summarize the result based

on the approach in this paper, we set Scc(f) = 0. The

mutual information (32) is then reduced to

MI = I(y(t);h(t) j x(t))

= Ty

Z
W

ln

·
1+

jX(f)j2®¨H(f)
Snn(f)

¸
df: (40)

Equation (40) is maximized with respect to jX(f)j2
under the energy constraint of (3). Using the

Lagrangian multiplier technique, we obtain

jX(f)j2 = max
·
0,A¡ Snn(f)

®¨H

¸
(41)

where A is a constant determined by the energy

constraint Z
W

max

·
0,A¡ Snn(f)

®¨H

¸
df · Ex:

Note that the function being waterfilled is the function

Snn(f)=®¨H(f), and A defines the water level.

Finally consider the effect of substituting the

definitions of ® and ¨H(f) back into (41) and

applying the assumption TÀ Th used in [1], [2]. In

this case, ®¨H(f)! ¾2H(f)=T, and (41) becomes

the same MI expression used in [1], [2]. Thus, our

time-averaging interpretation of spectral variance is

consistent with [1], [2].

IV. THE MI-SNR RELATIONSHIP AND TRANSMIT
WAVEFORM BEHAVIOR

A. MI-SNR Relationship for Stochastic Signals

For a transmit waveform convolved with a true

stochastic target in signal-dependent interference,

notice that the MI rate in (29) may be rewritten in a

more well-known form (Shannon’s capacity equation)

_I =

Z
W

ln(1+ °(f))df (42)

where

°(f) =
Sgg(f)jX(f)j2

jX(f)j2Scc(f)+ Snn(f)
:

Note, however, that °(f) is exactly the SINR spectral

density (19) from the SNR-based design. In hindsight,

the SINR spectrum needed for SNR-based transmit

waveform design for stochastic targets could have

been derived via inspection of (29). Nevertheless, it

is satisfying to know that the SNR-based solution can

be derived from another avenue, i.e., utilizing the local

SNR spectrum of Kay [29].

For the extended random target case, direct

inspection of (32) and (21) results in the MI-SNR

relation given by

MI = Ty

Z
W

ln

·
1+

½
®¨H(f)jX(f)j2

Snn(f)+ jX(f)j2Scc(f)
¾¸
df

(43)

where the bracked term is clearly the SINR spectral

density. In other words, MI is related to SNR via

MI = Ty

Z
W

ln(1+RSINR(f))df: (44)

B. MI and SNR Transmit Waveform Behavior

In our previous work [16], we observed that in

the white-noise-only case, SNR-based and MI-based

waveforms form the transmit spectra differently. The

SNR-based waveform tends to concentrate most of

its energy in one dominant narrow frequency band

while the MI-based waveform tends to distribute

its energy over a few dominant frequency bands

[16]. Connecting the relationship of MI to SNR

for stochastic signals from the previous subsection

affords us the mathematical relationship on how

these waveforms are formed. We already know

from (28) that the SNR-based design forms an

eigenwaveform, i.e., it concentrates its energy in the

primary eigenfunction which yields the dominant

narrowband waveform design [16]. Now, we want

to gain an insight as to why the MI-based waveform

design distributes its energy to not only one but a few

dominant bands. Considering the stochastic target in

the white-noise-only case, the MI is given by (44)

with trivially replacing RSINR(f) with RSNR(f). Then

we can rewrite the MI expression to be

MI = Ty

Z
W

MI(f)df

where MI(f) may be thought of as MI spectral density

and is given by

MI(f) = ln[1+RSNR(f)]: (45)

Clearly the MI spectral density is a function of the

SNR spectral density. Consider how the frequency

coefficients of the MI spectral density are formed.

First the MI spectral density is always nonnegative

due to the addition of one to the SNR spectral density.

For frequency components with small coefficients

in (45), the MI spectral density is approximately

equal to the SNR spectral density via Taylor series

approximation. However for frequencies with large

coefficients, the MI spectral density is approximately

the logarithm of the SNR spectral density. The

logarithm function lowers the values of these large

coefficients. This effect allows for less dominant

frequency components in the MI spectral density

to be somewhat significant. Thus when MI-based

waveforms are formed, these frequency components

are allocated some energy via the waterfilling action.
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Fig. 3. Top panel: Target and clutter spectra. Middle panel: SNR-based waveform design. Bottom Panel: MI-based waveform design.

For waveform design in signal-dependent
interference, the waveform behavior for SNR-based
and MI-based designs are modified to account for
clutter. The clutter compensating nature and the
colored noise whitening effects of the waterfilling
solutions for both waveforms allow the waveforms
to de-emphasize frequency components where clutter
is strong and emphasize where clutter power is low
[18]. Consider an example given in the top panel of
Fig. 3 with arbitrary target spectrum, clutter spectrum,
and white noise. The middle panel of Fig. 3 shows
SNR-based waveforms, and the bottom panel of Fig. 3
shows MI-based waveforms for increasing transmit
energy constraints. For the low energy constraint of
Es = 0:01 energy units, the SNR-based waveform
basically fills the dominant frequency band while
the MI-based waveform distributes the energy over
a few bands as expected. The signal-dependent
interference has little effect on the formation of
these waveforms because the system is not clutter
limited. For intermediate energy of Es = 0:1 units,
both waveforms start to compensate for clutter while
for high transmit energy Es = 1:0 units, the clutter
whitening action is more evident, i.e., both waveforms
place most of their energy where clutter power is
low.

V. EXAMPLES AND APPLICATIONS

A. SNR-Based Examples

1) Known Target in Signal-Dependent Interference:

In this subsection, we investigate the performance of

the optimum SNR-based waterfilling waveform (4)

in signal-dependent interference. For a known target

energy spectrum, clutter PSD, and noise PSD, it is

straightforward to calculate the optimum waveform

and the SINR performance (2) for various energy

constraints. The resulting optimum waveform is very

much dependent on all three spectra and the energy

constraint. For a given energy constraint, the SINR

performance changes with a change in any of these

three spectra. Thus to present a performance curve,

we perform a Monte Carlo simulation over different

target energy spectra while holding the clutter

and noise PSDs fixed. We consider 1000 different

complex-valued known targets with approximately

bandpass-shaped spectra. The clutter PSD has a

cosine-shaped lowpass spectrum, and the noise is

additive white Gaussian noise (AWGN). To define

power ratios, we calculate a target’s power spectrum

by dividing its energy spectrum with its time duration.

As such, the TNR (target-to-noise ratio) can be

defined as the area under the resulting target power

spectrum to the area under the noise PSD. CNR

(clutter-to-noise ratio) is strictly the area ratio under

the PSDs. The TNR and CNR are set to 0 dB. For

each target spectrum we calculate the corresponding

optimum waveform and SINR while varying the

energy constraint from Ex = 0:001 to 100. We then

average SINR over the 1000 targets. For comparison,

the same simulation scheme is performed for the

noise-only waveform for deterministic targets (8)

as well as for a wideband (flat spectrum) impulse

waveform. Note that the latter two waveforms are not

clutter compensated. The results are shown in Fig. 4.
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Fig. 4. SINR performances of clutter-compensating SNR-based,

noise-only SNR-based, and wideband waveforms for known target

in signal-dependent interference.

As expected the SNR-based, clutter-compensated

waveform outperforms the noise-only SNR-based

waveform and the wideband impulse waveform

since the former is optimized for signal-dependent

interference. It is interesting to note, however, that

the impulse waveform outperforms the noise-only

SNR-based waveform when the transmit waveform

energy is high, i.e., where the system is extremely

clutter limited. In fact, the impulse waveform

approaches the SINR plateau of the optimum

waveform in this energy-rich regime. This is due

to the fact that at high energy, the system is clutter

limited and while the optimum waveform places all

of its energy into narrowbands such that SINR is

maximum, additional energy scales the target power

and clutter power by approximately the same amount;

hence, output SINR saturates. The impulse waveform

eventually reaches this saturation point but at a slower

rate than the optimum waveform. Since the noise-only

SNR-based waveform does not compensate for clutter,

it continues to place energy into frequency bands

where the target response is strong, but the clutter

may also be strong. Hence the noise-only SNR-based

waveform converges to a lower SINR plateau at high

transmit energy.

2) Stochastic Target in Signal-Dependent

Interference: In this subsection, we investigate the

SINR performance of the SNR-based waterfilling

waveform (23) in signal-dependent interference for

stochastic targets. The performance is compared to

the performance of the MI-maximizing waveform

(33) in signal-dependent interference, the noise-only

SNR-based waveform (28) for stochastic targets,

and a wideband impulse waveform. As in the

previous subsection, for a given energy constraint,

it is straightforward to calculate the average SINR

performance using (22) for a given target ESV, clutter

Fig. 5. SINR performances of clutter-compensating SNR-based,

clutter-compensating MI-based, noise-only SNR-based, and

wideband waveforms for stochastic target in signal-dependent

interference.

PSD, and noise PSD. Hence we again perform a

Monte Carlo simulation over different target properties

while holding the clutter and noise PSDs fixed. We

consider 1000 wideband target ESVs. The clutter PSD

has a comb-shaped spectrum, and the noise is AWGN.

The TNR and CNR ratios are set to 0 dB. For each

target ESV we calculate the corresponding optimum

waveform and SINR while varying the energy

constraint. We then average the SINR performance

over the 1000 target ESVs. The results are shown in

Fig. 5.

As expected the clutter-compensating SNR-based

waveform outperforms the noise-only SNR-based

waveform, the wideband impulse waveform, and

the MI-maximizing waterfilling waveform. Three

of the four waveforms converge to the same SINR

plateau when the system is extremely clutter limited

with the noise-only SNR-based waveform saturating

earlier. Surprisingly the MI-maximizing waveform,

having not been optimized for SNR, performs well

for low-energy (not shown in figure) and high-energy

constraints with performance degradation in an

intermediate energy regime. The impulse waveform

performed the poorest compared with the other three

waveforms.

B. MI-Based Examples

1) Stochastic Target in Signal-Dependent

Interference: In this subsection, we investigate

the MI-extraction performance of the optimum MI

waveform (33) in signal-dependent interference.

This performance is compared to the MI-extraction

performance of the SNR-based waterfilling waveform

(23), the noise-only MI-maximizing waveform (41),

and a wideband impulse waveform. For a given

energy constraint, target class ESV, clutter PSD, and
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Fig. 6. MI performances of clutter-compensating MI-based,

clutter-compensating SNR-based, noise-only MI-based, and

wideband waveforms for stochastic target in signal-dependent

interference.

noise PSD, we can calculate the approximate MI

from (32) for any of these four waveforms. We again

perform a Monte Carlo simulation over 1000 target

ESVs while holding the clutter and noise PSDs fixed.

The targets have approximately bandpass-shaped

ESVs, the noise is AWGN, and the clutter has a

comb-shaped PSD. The TNR and CNR are set at

0 dB.

As shown in Fig. 6, the MI-maximizing waveform

for signal-dependent interference outperforms the

noise-only MI-maximizing waveform, the wideband

impulse waveform, and the SNR-based waveform

for signal-dependent interference. As in the previous

subsection, it is noteworthy to mention that the

clutter-whitening SNR-based waveform performs

well in low- and high-energy regimes despite the fact

that it was optimized for SNR rather than MI. The

wideband impulse waveform performed the poorest in

extracting mutual information.

C. Application to Ensembles with Finite Number of
Hypotheses

In this subsection, we apply the waveform results

derived above to two problems in target recognition

or system identification. In the first experiment, our

goal is to determine which target is present from

among four known, deterministic alternatives. In the

second experiment we again have four hypotheses, but

in this case each hypothesis represents an ensemble

of possibilities characterized by a known ESV. We

use the idea of spectral variance to characterize the

set of four hypotheses. We then evaluate detection

performances of the different waveforms.

1) Finite Number of Known Impulse Responses:

In this example, we apply the clutter-compensating

SNR-based (23) and MI-based (33) waveforms

Fig. 7. Detection performances of MI-based and SNR-based

waterfilling waveforms in target recognition application.

in a target recognition problem. There are four

hypotheses for the target channel, and each hypothesis

is characterized by a known, deterministic impulse

response and a prior probability of that hypothesis

being true. Our goal is to identify the correct

hypothesis as accurately as possible with a single,

energy-limited transmission. We assume equal prior

probabilities for each target, but we show how other

priors could be incorporated. Since there are M = 4

targets, it may be a reasonable strategy to form the

optimum waveform as dictated by (4) for each target

impulse and to combine the resulting waveforms into

one transmit pulse. However it is not clear how such a

strategy should be implemented. Instead we continue

with the notion of spectral variance by applying the

definition of variance to the ensemble of four transfer

functions. This yields an ESV function according to

¾2H(f) =

MX
i=1

PijHi(f)j2¡
¯̄̄̄
¯
MX
i=1

PiHi(f)

¯̄̄̄
¯
2

: (46)

Along with the energy constraint, clutter, and noise

spectra, the resulting ESV function is used to form

the transmit waveform. The known targets have

approximately bandpass-shaped spectra. The clutter

is cosine-shaped, and noise is AWGN. In this

experiment, the true hypothesis is randomly chosen

from a set of four known targets. Both TNR and

CNR are set at 0 dB. After a single transmission

a decision is made as to which target is true. The

experiment is executed over a Monte Carlo of 10000

independent target set, noise, and clutter realizations.

The experiment is repeated over increasing energy

constraints. Fig. 7 shows the performances of the

three waveforms in recognizing the true target in

terms of percentage of correct decision. As one would

expect, the clutter-whitening waveforms (the MI-based

and SNR-based) have better detection performance
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than the wideband impulse waveform. The MI-based

waveform performs slightly better than the SNR-based

waveform.

2) Finite Number of Target Classes: In this

subsection, we again apply the clutter-whitening

SNR-based (23) and MI-based (33) waveforms

to problems in target class discrimination. Again

there are four hypotheses for the target channel

with each hypothesis representing a target class.

Each class represents a Gaussian target ensemble

described by a PSV. The top panel of Fig. 8 shows

the four target PSVs for the four hypotheses in

which each PSV has a bandpass shape, but each is

centered in a different frequency. It is our goal to

identify which target ensemble the target realization

belongs to in a single transmission. We assume

equal probability for M = 4 target ensembles.

Again we utilize the idea of probability-weighted

spectral variance, which is given by the ESV

function

¾2H(f) =

MX
i=1

Pr(Hi)¾
2
i (f)¡

¯̄̄̄
¯
MX
i=1

Pr(Hi)

q
¾2i (f)

¯̄̄̄
¯
2

:

(47)

The aggregate PSV is shown in the top panel of

Fig. 8. Notice that the aggregate PSV incorporates

the different target hypotheses in its spectrum. The

clutter is cosine-shaped, and noise is AWGN. TNR is

set at 10 dB, and CNR is set at 0 dB. For each Monte

Carlo trial a target class is randomly chosen from

which a target realization is generated. Independent

clutter and noise realizations are also generated.

After one transmission a decision is made as to

which ensemble the target realization belongs. Ten

thousand Monte Carlo trials are performed for each

energy constraint with the percentage of correct

decision calculated. The detection performances of

the two waveforms mentioned above along with

the wideband impulse waveform are shown in the

bottom panel of Fig. 8. It is interesting that the

results follow the pattern of results from the target

recognition experiment of the previous subsection.

The clutter-compensating MI-based and SNR-based

waveforms outperform the wideband impulse

waveform. In this experiment, the MI-based and

SNR-based waveform detection performances are very

close.

VI. SUMMARY AND CONCLUSIONS

A comprehensive treatment of transmit/receive

waveform design matched to known or stochastic

extended targets has been presented. A formalized

treatment of the finite-duration random target model

was also presented, with the result being a connection

between finite-duration random targets and true

random processes via a time-averaged spectral

Fig. 8. Detection performances of MI-based and SNR-based

waterfilling waveforms in target class discrimination application.

variance function. We used this spectral variance

function to derive matched waveforms for several new

scenarios.
For a known target, waveform designs were

derived for two possible paradigms:

1) SNR-based waveform design in
signal-dependent interference;
2) SNR-based waveform design in noise.

Our approach for optimizing SNR for a deterministic
target in signal-dependent interference leads to a new
solution where the numerical search required to define
the waveform is over a single variable.
For a finite-duration random target, waveform

designs were derived for four possible paradigms:

1) SNR-based waveform design in
signal-dependent interference;
2) SNR-based waveform design target in noise;
3) MI-based waveform design in signal-dependent

interference;
4) MI-based waveform design in noise.

The derivations for SNR-based stochastic target
optimization are new results. For both MI-based
designs, the optimum transmit waveforms turned
out to be waterfilling solutions in the frequency
domain. The waveform for MI-based optimization in
signal-dependent interference is a new result. In terms
of waveform design for stochastic targets, connections
between MI and SNR have been discussed.
Numerous examples were conducted to show

performances of optimum waveforms in various
paradigms. We evaluated the waveforms in terms of
the SNR and MI metrics used to derive the waveforms
as well as for a target recognition application for a
finite number of target hypotheses.
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APPENDIX I. DERIVATION OF SNR-BASED
WATERFILLING WAVEFORM FOR KNOWN TARGET
IN SIGNAL-DEPENDENT INTERFERENCE

THEOREM 1 The jX(f)j2 that maximizes the SINR
equation given by

(SINR)t0 =

Z
W

jH(f)j2jX(f)j2
Scc(f)jX(f)j2 + Snn(f)

df: (48)

given the constraint

Ex ¸
Z
W

jX(f)j2df (49)

is

jX(f)j2 = max[0,B(f)(A¡D(f))] (50)

where B(f) and D(f) are described by the following

equations

B(f) =

pjH(f)j2Snn(f)
Scc(f)

(51)

D(f) =

s
Snn(f)

jH(f)j2 : (52)

PROOF We invoke the Lagrangian multiplier

technique yielding an objective function

K(jX(f)j2,¸) =
Z
W

jH(f)j2jX(f)j2
Scc(f)jX(f)j2 + Snn(f)

df

+¸

·
Ex¡

Z
W

jX(f)j2df
¸
: (53)

This is equivalent to maximizing k(jX(f)j2) with
respect jX(f)j2 where k(jX(f)j2) is given by

k(jX(f)j2) = jH(f)j2jX(f)j2
Scc(f)jX(f)j2 + Snn(f)

df¡¸jX(f)j2:

(54)

Taking the derivative of k(jX(f)j2) with respect to
jX(f)j2 and setting it to zero yields the jX(f)j2 that
maximizes (48), where jX(f)j2 is given by

jX(f)j2 =¡Snn(f)
Scc(f)

§
s
Snn(f)jH(f)j2
¸S2cc(f)

: (55)

Setting A= 1=
p
¸, rearranging terms, and ensuring

jX(f)j2 to be positive, the jX(f)j2 that maximizes
SINR is given by

jX(f)j2 = max
"
0,

pjH(f)j2Snn(f)
Scc(f)

Ã
A¡

s
Snn(f)

jH(f)j2
!#
:

(56)

APPENDIX II. DERIVATION OF MI-BASED
WATERFILLING WAVEFORM IN SIGNAL-DEPENDENT
INTERFERENCE

THEOREM 2 The jX(f)j2 that maximizes the mutual
information

I(y(t);h(t) j x(t))

= Ty

Z
W

ln

·
1+

jX(f)j2®¨H(f)
Snn(f)+ jX(f)j2Scc(f)

¸
df

(57)
is given by

jX(f)j2 = max
h
0,¡R(f)+

p
R2(f) + S(f)(A¡D(f))

i
(58)

where D(f), R(f), and S(f) are defined by (34)—(36).

PROOF We invoke the Lagrangian multiplier

technique yielding an objective function

K(jX(f)j2,¸) = Ty
Z
W

ln

·
1+

jX(f)j2®¨H(f)
Snn(f)+ jX(f)j2Scc(f)

¸
df

+¸

·
Ex¡

Z
W

jX(f)j2df
¸
: (59)

This is equivalent to maximizing k(jX(f)j2) with
respect jX(f)j2 where k(jX(f)j2) is given by

k(jX(f)j2) = Ty ln
·
1+

jX(f)j2®¨H(f)
Snn(f) + jX(f)j2Scc(f)

¸
¡¸jX(f)j2:

(60)

Taking the derivative of k(jX(f)j2) with respect to
jX(f)j2 and setting it to zero yields

¸

Ty
=

Snn(f)®¨H(f)

A(f)jX(f)j4 +B(f)jX(f)j2 +C(f) (61)

where A(f), B(f), and C(f) are given by the

following;

A(f) = Scc(f)(Scc(f)+®¨H(f)) (62)

B(f) = Snn(f)(2Scc(f) +®¨H(f)) (63)

and

C(f) = S2nn(f): (64)

Setting A= Ty=¸ and ensuring jX(f)j2 to be positive,
the jX(f)j2 that maximizes the mutual information is
given by

jX(f)j2 = max
h
0,¡R(f) +

p
R2(f) + S(f)(A¡D(f))

i
:

(65)
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