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Abstract

These are notes on van den Bergh’s analogue of Poincaré duality in Hochschild (co)homo-
logy [VdB98]. They are based on survey talks that I gave in 2006 in Göttingen, Cambridge
and Warsaw and consist of an elementary explanation of the proof in terms of Ischebeck’s
spectral sequence [Isch69] and a detailed discussion of thecommutative case, plus some
motivating background material. The reader is assumed to befamiliar with standard homo-
logical algebra, but the commutative algebra and algebraicgeometry needed to understand
the commutative case is recalled. For more preliminaries see e.g. [Ei77, Se00] (commuta-
tive algebra and algebraic geometry), [MR01] (noncommutative rings) and [Bou87, CE56,
Wei95] (homological algebra).

I would like to thank Shahn Majid, Andreas Thom and Jan Dereziński for the invitations to give
the talks on which this note is based and for discussions on its subject. Thanks for discussions
go also to Tomasz Maszczyk and Yorck Sommerhäuser.
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1.3. Poincaré duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 31

2. Application to Hochschild (co)homology 32
2.1. Hochschild (co)homology . . . . . . . . . . . . . . . . . . . . . . . . .. . . 32
2.2. Smoothness and dim(A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3. Van den Bergh’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 33

3. The commutative case 34
3.1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 34
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1. POINCARÉ DUALITY IN TERMS OF TORAND EXT

1.1. THE FUNCTOR M 7→ M∗

Let Rbe a unital, associative ring and consider the functor that sends a (left) module to its linear
dual (which is a right module with action(φx)(m) := φ(m)x, φ ∈ M∗,x∈ R,m∈ M),

R-Mod → Mod-R, M 7→ M∗ = HomR(M,R). (1)

Except whenR is quasi-Frobenius (injective asR-module), this is not an exact functor, and its
derived functors Extn

R(·,R) define important invariants ofM such as

grade(M) := inf{n|ExtnR(M,R) 6= 0} ∈ N∪{∞}. (2)

As in the case of vector spaces over a field, its properties arealso related to the size ofM. If M
is for example projective, thenM∗ needs not to be projective (e.g.Mod-Z∋ ∏N Z≃ (

L

N Z)∗ is
not, see [La99] for a nice proof). But ifM is finitely generated projective, then it is not difficult
to see that so isM∗, thatM∗∗ ≃ M, and that for allN ∈ R-Mod the canonical morphism

M∗⊗RN → HomR(M,N), φ⊗n 7→ (m 7→ φ(m)n) (3)

is bijective. For arbitraryM this is in general neither injective nor surjective.

1.2. THE ISCHEBECK SPECTRAL SEQUENCE

Now we study (3) for modulesM which are not finitely generated projective but not too far away
from being so. Viewing (3) as a morphism of functors (leaveM,N open) and taking derived
functors one obtains the following classical result [Isch69]:

Theorem 1..1. Assume that M∈ R-Mod admits a finite resolution

0→ Pd → Pd−1 → . . . → P1 → P0 → M → 0 (4)

by finitely generated projective modules. Then for any N∈R-Mod there is a convergent spectral
sequence

E2
−pq = TorRq(ExtpR(M,R),N) ⇒ Extp−q

R (M,N), p,q≥ 0. (5)

Proof. Some people would say this is obvious, but we include the details to see where the
assumptions precisely enter. We fix a projective resolutionQ• of N and define the bicomplex

Cpq := HomR(P−p,Qq) ≃ P∗
−p⊗RQq, p≤ 0,q≥ 0. (6)

The minus sign at thep is just to turn the cochain complex HomR(P•,Qq) (fixedq) into a chain
complex (negatively graded). The isomorphism≃ from (3) holds sinceP−p is finitely generated
projective, so here this assumption is used.
Now one computes the homology of the total complex Totn :=

L

p+q=nCpq using the two spec-
tral sequences arising from its filtration by rows and by columns. Here the finite lengthd of
P• becomes crucial. It implies that after a shift+d in degreep our bicomplex is in the first
quadrant and hence both spectral sequences converge and converge to the same object (since
L

p+q=nCpq = ∏p+q=nCpq). Convergence alone would be automatic for example whenR is
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Gorenstein (has finite injective dimension asR-module), but even if both spectral sequences
stabilise on the second page the result can be wrong (this ledto the erratum to [VdB98]).
The first spectral sequence starts with computation of homologies ofCp• for fixed p, the bound-
ary loweringq. SinceQ• is a projective resolution ofN, this gives TorR• (P

∗
−p,N). But sinceP−p

and henceP∗
−p is finitely generated projective, these Tor’s vanish forq > 0. Forq = 0 we have

TorR0(P∗
−p,N) = P∗

−p⊗RN ≃ HomR(P−p,N). Thus the first page of the spectral sequence is

I E1
pq =

{

HomR(P−p,N) q = 0
0 otherwise.

(7)

In the next step of the spectral sequence one continues with the boundary onI E1 that lowersp.
SinceP• is a projective resolution ofM, this gives

I E2
pq =

{

Ext−p
R (M,N) q = 0

0 otherwise.
(8)

Since all terms of this page vanish except forq = 0, the spectral sequence becomes stable and
we obtain the total homology of our bicomplex

Hn(Tot(C)) ≃ Ext−n
R (M,N). (9)

The other spectral sequence is the one whose existence is theclaim of the theorem. Here one
fixes conversely firstq. SinceP∗

−p andQq are projective and hence flat, the universal coefficient
theorem gives

H−p(HomR(P•,R)⊗RQq) ≃ H−p(HomR(P•,R))⊗RQq, (10)

so the first page of this spectral sequence is

II E1
pq = Ext−p

R (M,R)⊗RQq. (11)

In the second step of this spectral sequence one now clearly gets

II E2
pq = TorRq(Ext−p

R (M,R),N) (12)

sinceQ• is a projective resolution ofN.

1.3. POINCARÉ DUALITY

There are two simple cases in which Ischebeck’s spectral sequence stabilises on its second page.
The first one is when allE2-terms are zero forq 6= 0:

Corollary 1..2. Suppose M is as in Theorem 1..1 and N is flat. Then

ExtpR(M,R)⊗RN ≃ ExtpR(M,N) (13)

for all p ≥ 0. In particular, (3) is an isomorphism.

However, we are even more interested in the orthogonal case:

Definition 1..3. M ∈ R-Mod satisfies Poincaré duality in dimensiond with dualising module
ωM := ExtdR(M,R) if it satisfies the assumptions in Theorem 1..1 and Extn

R(M,R) = 0 for n 6= d.
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In this case theE2-terms of Ischebeck’s spectral sequence are zero for allp 6= d and the sequence
again stabilises on its second page. Thus Theorem 1..1 yields:

Corollary 1..4. A module M∈ R-Mod satisfies Poincaŕe duality if and only if

TorRn(ωM,N) ≃ Extd−n
R (M,N) (14)

for all N ∈ R-Mod. In particular, one has

proj.dimR(M) := sup{n∈ N |∃N ∈ R-Mod : ExtnR(M,N) 6= 0} = d. (15)

This is the algebraic mechanism underlying the phenomenon of Poincaré duality well-known
in geometry and topology: The homology in degreen say of a compact smooth manifoldX can
be identified with its cohomology in degree dim(X)−n. Starting from Corollary 1..4 one can
derive such identifications in all kinds of (co)homology theories that can be expressed in terms
of Tor and Ext over suitable rings. Our main topic is a particularly nice one for Hochschild
(co)homology, but before specialising to this, let us make the final general remark that there is
also a dual spectral sequence (described as well in [Isch69])

ExtpR(ExtqR(M,R),N) ⇒ TorRq−p(N,M) (16)

in which the roles of Tor and Ext are exchanged. Taking hereN = R shows in particular that if
M satisfies Poincaré duality in dimensiond, then so doesωM (with everything now developed
for right modules), and thatωωM ≃ M.

2. APPLICATION TO HOCHSCHILD (CO)HOMOLOGY

2.1. HOCHSCHILD (CO)HOMOLOGY

In [Ho45] Hochschild introduced the (co)homology groups ofa unital associativek-algebraA
with coefficients in anA-bimoduleN (we assume for simplicity thatk is a field). To define
Hochschild’s theory, let us introduce the opposite algebraAop (samek-vector space, opposite
producta ·opb = ba) and the enveloping algebraAe := A⊗k Aop of A. Left A-modules are the
same as rightAop-modules and vice versa. Sincea⊗ b 7→ b⊗ a is an algebra isomorphism
Ae → (Ae)op, left and rightAe-modules become identified, and they are also the same asA-
bimodules with symmetric action ofk. Thus there are equivalences of categories

A-Mod ≃ Mod-Aop, Ae-Mod ≃ Mod-Ae≃ A-Modk-A. (17)

Definition 2..1. The Hochschild (co)homology groups ofA with coefficients inN are

Hn(A,N) := TorA
e

n (N,A), Hn(A,N) := ExtnAe(A,N). (18)

If the ground ringk is not assumed to be a field, then one should rather considerk-relative Tor
and Ext here, see e.g. [Lo92, Wei95]. Conversely there arek-vector space isomorphisms

TorAn(L,M) ≃ Hn(A,M⊗k L), ExtnA(M′,M′′) ≃ Hn(A,Homk(M
′,M′′)) (19)

for all L ∈ Mod-A,M,M′,M′′ ∈ A-Mod (see e.g. [CE56], Chapter IX). Using this, most of the
standard (co)homology theories (e.g. group and Lie algebra(co)homology) can be viewed as
special cases of Hochschild (co)homology. We refer to [Lo92, Wei95] for explicit descriptions
of the Hochschild (co)homology groups in low degrees, but mention only the following one that
will be used below and follows immediately from the definition:

Proposition 2..2. There is a canonical isomorphism of vector spaces

H0(A,N) ≃ Z(N) := {n∈ N |an= na∀a∈ A}. (20)
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2.2. SMOOTHNESS ANDDIM(A)

Recall that the (left) global dimension of a ringR is

gl.dim(R) := sup{proj.dimR(M) |M ∈ R-Mod}, (21)

and that a ring whose (left) global dimension is finite is called (left) regular (the geometric
motivation will be reviewed below). In view of (18) and (19),we have:

Proposition 2..3. There are inequalitiesgl.dim(A) ≤ proj.dimAe(A) ≤ gl.dim(Ae).

Following [CE56] we call proj.dimAe(A) simply the dimension

dim(A) := proj.dimAe(A) = sup{n∈ N |∃N ∈ A-Modk-A : Hn(A,N) 6= 0} (22)

of A, although it must not be confused in general with the Krull dimension. Unlike the latter or
gl.dim(A) which only see the ring structure ofA, dim(A) can depend heavily onk. For example,
A might be a field in which case it is Noetherian and Krull and global dimension vanish, but
Ae = A⊗k A can be quite wild ifk is sufficiently small andA is sufficiently big. While gl.dim is
thus quite ill-behaved on tensor products of algebras, we have [CE56], Proposition IX.7.4:

Proposition 2..4. One hasdim(A⊗k B) ≤ dim(A)+dim(B).

Since obviously dim(Aop) = dim(A), this implies together with Proposition 2..3:

Corollary 2..5. One hasdim(A) < ∞ if and only ifgl.dim(Ae) < ∞. In this case, A is both left
and right regular.

Thus finiteness of dim(A) is a sharpened form of regularity, and van den Bergh suggested to
call algebras with this property smooth:

Definition 2..6. A is called smooth if dim(A) < ∞.

As we remarked already, the converse of Corollary 2..5 is in general not true even for com-
mutativeA. However, as we will discuss below, smoothness and regularity actually agree for
coordinate ringsA = k[X] of affine varieties over perfect fields and then correspond precisely
to the nonsingularity ofX. Therefore, the terminology is in our opinion well motivated, al-
though probably slightly nonstandard. We warn the reader that there is also a much stronger
notion of smoothness (“quasi-freeness”) which means dim(A) ≤ 1 and is studied for example
in [Sch86, CQ95]. Note that evenC[x,y] is not smooth in this sense (but it is of course in ours).
Yet another notion of smoothness especially of commutativealgebras (“geometric regularity”)
means regularity ofA⊗k K for any algebraic field extensionk⊂ K.

2.3. VAN DEN BERGH’S THEOREM

In the setting of Hochschild (co)homology, Corollary 1..4 can be restated as follows:

Corollary 2..7. If an algebra A satisfies Poincaré duality as an Ae-module, then A is smooth
and there are k-vector space isomorphisms

Hn(A,ωA) ≃ Hd−n(A,A), d := dim(A). (23)

In particular, Hdim(A)(A,ωA) ≃ H0(A,A) ≃ Z(A) 6= 0.
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In [VdB98], M. van den Bergh pointed out a nice refinement of the above. To state his result,
we recall that anA-bimoduleN is invertible provided that there exists another bimoduleN−1

such thatN⊗A N−1 ≃ N−1⊗A N ≃ A as bimodules. Recall also that this means thatN⊗A · is an
equivalence fromAe-Mod to Ae-Mod itself (cf. Section 9.5 in [Wei95]). The result of van den
Bergh is the following:

Theorem 2..8. Suppose that A∈ Ae-Mod satisfies Poincaŕe duality and thatωA ∈ Mod-Ae ≃
A-Modk-A is invertible. Then A is smooth and

Hn(A,N) ≃ Hd−n(A,ω−1
A ⊗A N), N ∈ Ae-Mod,d := dim(A). (24)

Proof. Look back into the proof of Theorem 1..1 where we computedE1
pq = II E1

pq (equation
(11) at the very end of the proof). Under our assumptions thisis zero except forp = −d where
we haveE2

−dq = ωA⊗Ae Qq. By plain definition of the tensor product we have

ωA⊗Ae Qq ≃ A⊗Ae (ωA⊗A Qq), (25)

and if ωA is invertible, the functorωA⊗A · is an equivalenceAe-Mod → Ae-Mod, so it sends
the projective resolutionQ• of N to the projective resolutionωA ⊗A Q• of ωA ⊗A N. Hence
the homology computed in the second step of the spectral sequenceE is also the same as
TorA

e

• (A,ωA ⊗A N) ≃ H•(A,ωA ⊗A N) (here we used the canonical identificationAe-Mod ≃
Mod-Ae). The claim follows.

See e.g. [VdB98, Fa05, BZ06, HK06] for various applicationsof this theorem. What we will
explain in the remainder of this text is its meaning in the setting of affine algebraic geometry:
A coordinate ring of an affine variety satisfies duality if andonly if the variety is smooth.

3. THE COMMUTATIVE CASE

3.1. PRELIMINARIES

This text is written both for and by someone who is working mainly on noncommutative rings,
and therefore I decided to include here a lot of definitions, explanations and proofs concerning
commutative algebra and algebraic geometry. I apologise toexperts for the blow up.
So letR be now commutative. We identify left and right modules and symmetric bimodules,
but note that there are bimodules which are not symmetric.

Definition 3..1. A regular sequence inR is a sequence of elementsx1, . . . ,xd ∈ Rsuch that each
xn is not a zero divisor ofR/(x1, . . . ,xn−1).

Here(x1, . . . ,xn−1) is the ideal generated by thexi . The length of maximal regular sequences
contained in an idealI ⊂ R is equal to depth(I ,R) := grade(R/I). In algebraic geometry, regular
sequences play the role of coordinates transversal to the subspaceV(I) = {p ∈ SpecR| I ⊂
p} of the prime ideal space SpecR. This elucidates the relation grade(R/I) ≤ codim(V(I))
between the grade and a geometrically defined codimension ofV(I). By definition, one has
equality for allI whenR is Cohen-Macaulay, so then the grade serves as a homologically defined
codimension. Being Cohen-Macaulay is a weak notion of regularity since

R regular⇒ R Gorenstein⇒ R Cohen-Macaulay, (26)
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but the inverse implications do not hold in general.
All the attributes in (26) are local properties, that is,R is regular, Gorenstein or Cohen-Macaulay
iff all its localisationsRp are so. And as in differential geometry, coordinate systemsare helpful
often only locally. For example, one has for local rings the following theorem [Va67]:

Theorem 3..2. A proper ideal I in a Noetherian local ring R withproj.dimR(I)< ∞ is generated
by a regular sequence of length d if and only if I/I2 ∈ R/I-Mod is free of rank d.

If R is the Noetherian local ring of a varietyX in x∈ X (to be interpreted as the ring of rational
functions onX that are regular inx), thenR is regular iffX has no singularity inx. Its maximal
idealm consists of the functions vanishing inx, the canonical mapR→ R/m =: k corresponds
to the evaluation of a function inx, andm/m2 is geometrically the cotangent space ofX in x.
Then the above theorem links regular sequences generatingm (local coordinates onX around
x) to k-vector space bases ofm/m2 (formed by the differentials of the coordinates).

3.2. LOCAL POINCAR É DUALITY

In this section we prove a general result that establishes Poincaré duality for quotients of com-
mutative rings by ideals generated by regular sequences. Wewill later apply this to the local
rings of smooth affine varieties, hence the title of this paragraph. Throughout, we assume that
R a commutative regular Noetherian ring. In particular, any finitely generated module admits a
finite resolution by finitely generated projective modules.

Theorem 3..3. Suppose x1, . . . ,xd ∈ R form a regular sequence. Then M:= R/(x1, . . . ,xd) ∈
R-Mod satisfies Poincaŕe duality in dimension d withωM ≃ M.

Proof. This follows from some standard results in commutative algebra. First, we need:

Proposition 3..4. Suppose x∈ R is not a zero divisor of R and N∈ R-Mod. Then there are
isomorphisms of R-modules

ExtnR(R/(x),N) ≃

{

N/(x)N n= 1
0 otherwise.

(27)

Proof. By the assumptions, there is a short exact sequence ofR-modules

0 R
x·

R R/(x) 0 . (28)

This provides a free resolution ofR/(x) which one can use to compute ExtR(R/(x),N) as the
cohomology of the complex

0 HomR(R,N)
φ 7→φ(x·)

HomR(R,N) 0 . (29)

Finally, HomR(R,N) → N, φ 7→ φ(1) induces an isomorphism with the complex

0 N
x·

N 0 . (30)

The claim follows.

Recall next that the injective envelope (or injective hull)I(N) of N ∈ R-Mod is the unique
injective leftR-module containingN as an essential submodule (that is,N∩M = 0 for M ⊂ I(N)
impliesM = 0). See e.g. [Bou87] for more information.
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Proposition 3..5. Let x∈ R be not a zero divisor of N∈ R-Mod but act trivially on L∈ R-Mod.
ThenHomR(L, I(N)) = 0.

Proof. If φ ∈ HomR(L, I(N)), then 0= φ(0) = φ(xy) = xφ(y) for all y∈ L, so imφ∩N = 0 since
x is not a zero divisor ofN. But N is an essential submodule ofI(N), so imφ = 0.

As one of its main applications, the concept of injective envelope allows to construct a unique
minimal injective resolution of anyN ∈ R-Mod,

0
i−1=0

N
i0 I0

i1 I1
i2

. . . , In := I(cokerin−1), n≥ 0. (31)

Proposition 3..6. Let x∈ R be not a zero divisor of R,N ∈ R-Mod and I• be the minimal injec-
tive resolution of N. Then

HomR(R/(x), I1) → HomR(R/(x), I2) → . . . (32)

is an injective resolution of N/(x)N ∈ R/(x)-Mod.

Proof. SinceI• is an injective resolution, the cohomology of

0→ HomR(R/(x), I0) → HomR(R/(x), I1) → HomR(R/(x), I2) → . . . (33)

is ExtR(R/(x),N). But HomR(R/(x), I0) = 0 by Proposition 3..5. Therefore, the computation
of ExtR(R/(x),N) in Proposition 3..4 shows that the terms in degree≥ 1 form a resolution of
N/(x)N. For the injectivity of HomR(R/(x), In)∈R/(x)-Mod see e.g. [Ei77], Lemma A3.8.

Since for anyR-moduleN and anyR/(x)-moduleL we have

HomR/(x)(L,HomR(R/(x),N)) ≃ HomR(L⊗R/(x) R/(x),N) ≃ HomR(L,N), (34)

the above implies immediately:

Corollary 3..7. Let x∈R be not a zero divisor of R,N∈ R-Mod but act trivially on L∈R-Mod.
Then there is an isomorphism of R-modulesExtnR(L,N) ≃ Extn−1

R/(x)(L,N/(x)N).

Assume in particular thatx1, . . . ,xd ∈ R form a regular sequence. Then Theorem 3..3 follows
by repeated application of this corollary withx = x1, . . . ,xd, L = R/(x1, . . . ,xd), N = R.

3.3. THE HOCHSCHILD-KOSTANT-ROSENBERG THEOREM

From now on we focus on the setting of affine algebraic geometry and assume thatA is the co-
ordinate ringk[X] of an (irreducible) affine variety over a perfect fieldk. That is,A is a quotient
of a polynomial ringk[x1, . . . ,xn] without zero divisors, and every finite field extensionk ⊂ K
is separable (this includes of course algebraically closedfields, but also fields of characteristic
0 and finite fields). One could work in greater generality, butwe want to avoid any technicality
(see e.g. [Lo92], Section 3.4 and Appendix E and [Wei95], Sections 9.3.1 and 9.3.21).
Recall first that the formal (Kähler) differentials overA are defined by

Ωn(A) := Λn
AΩ1(A), Ω1(A) := kerµ/(kerµ)2, (35)

whereµ : Ae = A⊗k A=: k[X×X]→ A denotes the multiplication map. Note that(Ω1(A))∗ can
be identified with Derk(A), thek-linear derivations ofA.
The fundamental paper on the Hochschild (co)homology ofk[X] is [HKR62] where amongst
other things the following results were obtained:

1Be aware that there were some serious mistakes in these sections in the first edition.

36



Theorem 3..8. 1. If A= k[X],B = k[Y] as above are regular, then so is A⊗k B =: k[X×Y]. In
particular, A is smooth iff it is regular.
2. A is smooth iffΩ1(A) is finitely generated projective.
3. There are isomorphisms of A-modules

Ω1(A) ≃ H1(A,A), Derk(A) ≃ H1(A,A). (36)

4. If A is smooth, then there are isomorphisms of A-modules

Ωn(A) ≃ Hn(A,A), Λn
ADerk(A) ≃ Hn(A,A) ≃ (Ωn(A))∗. (37)

3.4. GLOBAL POINCAR É DUALITY

Now we prove that Poincaré duality as in Theorem 2..8 is not an exotic phenomenon in the
commutative case:

Theorem 3..9. A = k[X] is smooth iff it satisfies the assumptions of Theorem 2..8.

Proof. Poincaré duality implies proj.dimAe(A) < ∞, so⇐ is obvious.
For the other direction we consider the localisations of theright Ae-modules Hn(A,Ae) at
q ∈ SpecAe. SinceAe = k[X ×X] is Noetherian, we can use the compatibility of Ext with
localisation (see [Wei95], Proposition 3.3.10):

Proposition 3..10. If R is a commutative Noetherian ring and M,N ∈ R-Mod are finitely gen-
erated, then for allp ∈ SpecR one has(ExtnR(M,N))p ≃ ExtnRp

(Mp,Np).

This implies in particular that(Hn(A,Ae))q = 0 unless kerµ⊂ q, since otherwiseAq = 0 (this
is the localisation of theAe-moduleA with module structure induced byµ). Geometrically
speaking, this means that(Hn(A,Ae))q is supported only onX, embedded intoX ×X as the
diagonal, or in terms of prime ideals on the image of the homeomorphism

µ∗ : SpecA→V(kerµ) ⊂ SpecAe, p 7→ µ−1(p). (38)

By Theorem 3..8,Ω1(A) = kerµ/(kerµ)2 is a finitely generated projectiveA-module and hence
locally free over SpecA (this is the algebraic version of the Serre-Swan theorem that charac-
terises vector bundles as finitely generated projective modules, see e.g. [Se00], p. 73, Corol-
lary 2 and Proposition 20). Hence Theorem 3..2 implies together with Theorem 3..3 thatAq

satisfies forq ⊃ kerµ Poincaré duality as anAe
q-module in dimensiond equal to the rank of

Ω1(A) which is dim(X), and that the dualising module isωAq
≃ Aq itself.

In other words, Hn(A,Ae) = 0 for all n exceptn = dim(X) (since a module is zero iff all its
localisations are), and as anA-module,ωA = Hdim(X)(A,Ae) is locally free of rank 1, that is, it
is the module of sections of an algebraic line bundle overX.
Finally, Proposition 3..10 applied to H0(A,ωA) implies in view of (20) thatωA is a symmetric
bimodule, so we obtain the identification ofωA with the sections of our line bundle asAe-
module. Hence it is an invertible bimodule withω−1

A ≃ HomA(ωA,A), the sections of the dual
line bundle (this must not be confused with HomAe(ωA,Ae) = 0 for dim(X) > 0).

At the end we merge the above result with the Hochschild-Kostant-Rosenberg theorem. It is not
difficult to extend (37) to coefficients in finitely generatedprojectiveN ∈A-Mod and to identify
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thus Hochschild homology ofA with algebraic differential forms onX with coefficients in the
vector bundle whose module of sections isN,

Hn(A,N) ≃ Ωn(A,N) := Ωn(A)⊗A N. (39)

Therefore, Theorem 3..9 and Theorem 2..8 (and (20)) allow usto specify the line bundle corre-
sponding toωA explicitly and to reformulate Theorem 3..9 as follows:

Theorem 3..11. If A is the coordinate ring k[X] of a smooth affine variety X over a perfect field
k, then for all N∈ Ae-Mod we have

Hn(A,N) ≃ Hdim(X)−n(A,(Ωdim(X)(A))−1⊗A N). (40)

Proof. Indeed, we haveωA⊗A Ωdim(X)(A) ≃ Hdim(X)(A,ωA) ≃ H0(A,A) ≃ A, and both bimod-
ules are symmetric, soωA ≃ (Ωdim(X)(A))−1 ≃ Λdim(X)Derk(A).
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